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  Abstract—In this paper, an improved in-motion coarse 
alignment method is proposed for the strapdown inertial 
navigation system (SINS) aided by the global positioning system 
(GPS). Traditional in-motion alignment methods suffer from 
complex noises contained in the outputs of inertial sensors and 
GPS. To solve this problem, this paper proposes an in-motion 
coarse alignment method using the vector observation and 
truncated vectorized K-matrix (VO-TVK) for autonomous 
underwater vehicles. The contributions of this study are twofold. 
Firstly, a new simplified model can be applied to the in-motion 
alignment process by employing the zero-trace and symmetry of 
the K-matrix. Secondly, the proposed VO-TVK algorithm can 
make up for the Optimal-REQUEST algorithm’s drawbacks, 
where the Optimal-REQUEST algorithm has the conservative 
covariance matrix and the scalar gain. The simulation, vehicle test 
and lake trial results illustrate that the proposed VO-TVK 
algorithm can efficiently reduce the effects of noises contained in 
the vector observation and achieve better accuracy than the 
compared algorithms. 

Index Terms— Autonomous underwater vehicle, in-motion 
coarse alignment, Kalman filter, vector observation, Strapdown 
inertial navigation system 

I. INTRODUCTION  

utonomous underwater vehicles (AUV)s have been playing 
an increasingly important role in underwater missions, as it 

has excellent concealment and can replace humans to perform 
dangerous tasks [1]-[2]. Precise positioning and navigation 
capabilities are the keys to ensuring AUV completes the mission 
well [3]-[5]. Strapdown inertial navigation systems (SINS)s 
have been widely used in the field of navigation and positioning 
because it does not rely on external signal and is less susceptible 
to outside interference [6]-[8]. However, the performance of 
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SINS highly depends on the accuracy of the initial navigation 
parameters, such as initial velocity, position and attitude 
[9]-[10]. Acquiring the initial information of SINS is typically 
called alignment, the SINS should firstly complete its alignment 
process before it steps into the steady working period [11]. 
Initial velocity and position can be directly obtained from 
external references like the global positioning system (GPS) 
and the Doppler velocity log (DVL) [12]. However, obtaining 
the initial attitude remains the dominant factor which influences 
accuracy of navigation [13]. The initial alignment process 
consists of the coarse alignment period and fine alignment 
period [14]. The former alignment period plays a necessary and 
preliminary part in the whole navigation mission, which 
estimates and provides a rough attitude estimation for the fine 
alignment [15]. 

A plenty of researchers devote themselves to developing new 
coarse alignment methods. It is worth noting the apparent 
motion of gravity in the inertial system can be described as a 
cone, using the center of the earth as the vertex. Based on that, a 
series of coarse alignment methods, which use the gravity in the 
inertial frame as a reference, have been investigated. Ref [16] 
employs the TRIAD algorithm to calculate the initial attitude 
based on the two vectors directly obtained by the accelerometers 
and gyroscopes. Ref [17] utilizes the Q-Method to calculate the 
initial attitude matrix, which is similar to the method proposed 
in Ref [16]. However, these self-alignment methods are only 
suitable for the swaying base or stationary base. In some cases, 
the TRIAD algorithm is limited when AUV needs to perform 
coarse alignment on moving base. Thus, Ref [18] innovatively 
proposes the optimization-based alignment (OBA) method, 
which is applicable to the in-motion coarse alignment. The OBA 
algorithm transforms the initial alignment problem into a 
continuous attitude determination problem by using infinite 
vector observations. After that, all the constructed vectors 
during the whole alignment process are used in the initial 
alignment process to improve the convergence rate. In order to 
expand the application range of the OBA algorithm, Ref [19] 
utilizes the devised velocity/position integration formulae to 
construct the vector observations, and provides the detailed 
iterative discrete calculation process. Unfortunately, the 
traditional OBA algorithms mentioned above do not well 
consider the effects of sensor errors hiding in the vector 
observation [20]. In order to further improve the accuracy of 
OBA algorithms, researchers have studied a series of improved 
OBA algorithms. Ref [21] develops the covariance models for 
the observation vectors and provides the variance propagation 
scheme based on error models. Ref [22] utilizes the quaternion 
estimation (QUEST) algorithm to estimate the initial attitude 
matrix. The QUEST algorithm constructs K-matrix with the 
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observation vectors and estimates the optimal attitude 
quaternion related to K-matrix, achieving faster convergence 
velocity than traditional OBA algorithms. However, this method 
is limited to the special trajectory of the vehicle. Thus, the 
REQUEST algorithm is studied in Ref [23], which is based on 
the QUEST algorithm. The REQUEST algorithm completes 
recursive processing of observation information by updating 
K-matrix which is utilized in the QUEST algorithm. Although 
the REQUEST algorithm can suppress the impacts of random 
noises to some extent, however, it relies on the empirical 
constant gain to filter measurement noises. This makes the 
REQUEST algorithm suboptimal and lacks robustness. As an 
improvement, Ref [24] proposes an Optimal-REQUEST 
algorithm to determine the attitude quaternion, which can filter 
the measurement noises by adjusting the gain of the filter 
adaptively. Nevertheless, the Optimal-REQUEST algorithm is 
still limited by the scalar gain. The other deficiency is that 
Optimal-REQUEST algorithm keeps a conservative estimation 
performance index from REQUEST algorithm. The drawbacks 
of the Optimal-REQUEST mentioned above limit the accuracy 
of the in-motion coarse alignment [25]-[26].  

In order to improve the performance of the coarse alignment, 
this paper systematically extends the Optimal-REQUEST 
algorithm and proposes a new in-motion coarse alignment 
method. While the AUV is moving on the water, the observation 
vectors-based measurement model can be constructed by the 
integration formulae with the assistance of GPS. Then, a 
Kalman filter based on the vector observation and truncated 
vectorized K-matrix, named the VO-TVK algorithm, is utilized 
to determine the attitude quaternion. The main contributions of 
this work are given in the following: 

1) The proposed VO-TVK algorithm covers the 
Optimal-REQUEST algorithm’s two deficiencies-using 
conservative estimation performance index and scalar 
gain. 

2) The random noises contained in the vector observation 
can be suppressed through the optimal probabilistic 
fundament of the minimum variance estimation 
approach. Meanwhile, the VO-TVK algorithm 
optimally preserves the unit-norm property of the 
estimated quaternion. 

3) The practical experiments have been successfully 
designed and the feasibility of the VO-TVK algorithm 
has been verified as being in the practical experiments 

The remaining parts of the paper are organized as follows. 
Section II mathematically formulates the general form of 
in-motion coarse alignment for SINS/GPS. In Section III, the 
discrete forms of constructed vectors are derived by considering 
the different sampling rates of SINS and GPS. Subsequently, the 
proposed VO-TVK algorithm is developed to implement the 
in-motion coarse alignment. In Section IV, the efficiency of the 
VO-TVK algorithm is demonstrated through simulation, vehicle 
test and lake trial. Finally, the conclusions are outlined in 
Section V. What is more, Appendix A shows the detailed 
schematics of the coordinated frames and Appendix B and C 
represent the detailed formula derivation. 

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT  
In this section, the traditional in-motion alignment method is 

described briefly, and then the existing practical issues are 
introduced.  

A. System Description 
According to the chain rule of the attitude matrix, n

bC  at any 
time satisfies: 

 ( ) ( ) (0) (0)
( ) (0) (0) ( )( )n n t n t n b

b b t n b b tt = =C C C C C  (1) 

where the n-frame and b-frame represent the navigation frame 
and body frame, respectively. (0)

( )
b
b tC  and (0)

( )
n
n tC  encode the 

attitude changes of the body frame and the navigation frame, 
respectively. Using the attitude update procedure based on b

ibω  
and n

inω , these two attitude matrices can be determined as 
follows [13]: 

 (0) (0)
( ) ( )

b b b
b t b t ib= ×C C ω  (2) 

 (0) (0)
( ) ( )

n n n
n t n t in= ×C C ω  (3) 

It is clear that (0)
(0)

n
bC  is always a constant matrix during the 

alignment. As long as (0)
(0)

n
bC  is obtained accurately, the current 

attitude matrix n
bC  can be calculated through Eqs. (1)-(3). 

According to the basic principle of OBA algorithm, the 
constant matrix (0)

(0)
n
bC  can be calculated using a series of  vector 

observations which are constructed based on the specific force 
equation. The specific force equation expression under the 
navigation frame is given by [15]: 

 (2 )n n b n n n n
b ie en= − + × +v C f ω ω v g  (4) 

where nv and ng  represent the velocity of the vehicle and the 
gravity vector in the n-frame, respectively; bf  as the outputs of 
accelerometers, represents the specific force in the b-frame; 

n
ieω  denotes the Earth rotation rate with respect to the inertial 

frame; n
enω  denotes the angular rate of the navigation frame 

with respect to the Earth frame. 
Combining Eq. (1) and Eq. (4), the following equation can be 

obtained [19]: 
 ( ) (0) (0)

(0) (0) ( ) (2 )n n t n b b n n n n
n b b t ie en= − + × +v C C C f ω ω v g  (5) 

After integration, the original specific force equation can be 
rewritten into the following form: 
 (0) (0) (0) (0) (0)

(0) ( ) ( ) ( ) ( )(2 )n b b n n n n n n n n
b b t n t n t ie en n t= + + × −C C f C v C ω ω v C g   (6) 

     Next, integrating Eq. (6) and noting that (0)
(0)

n
bC  is constant, 

the measurement vector and the reference vector can be 
described as: 

 (0)
(0)

n
b =C α β  (7) 

in which 
 (0)

( )0

t b b
b dτ τ= ∫α C f  (8) 

 (0) (0) (0)
( ) ( ) ( )0 0

(0)
t tn n n n n n n n

n t n ie nd dτ ττ τ= − + × −∫ ∫β C v v C ω v C g  (9) 

Based on the measurement vectors and the reference vectors, 
the initial attitude (0)

(0)
n
bC  can be determined by the Q-Method. 

First, the reference vectors and the measurement vectors should 
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be normalized: 
 =

βr
β

 (10) 

 =
αμ
α

 (11) 

Then, use the normalized vectors to calculate the 4 by 4 
symmetric K-matrix: 

 3
T= k k k

k
kk

σ
σ

− 
 
 

S I z
K

z
 (12) 

where the parameters in Eq. (12) are defined as follows: 

 
=1

T
n

k i i
i

ia∑B μ r  (13) 

 T+k k kS B B  (14) 

 
1

n

k i i i
i

a
=

×∑z μ r  (15) 

 ( )k kσ tr B   (16) 

where ( )tr   denotes the trace operator and 
1

1
n

i
i

a
=

=∑ . 

Finally, the corresponding optimal quaternion q  can be 
calculated by solving the eigenvector of the K-matrix 
corresponding to the largest eigenvalue [27]. The (0)

(0)
n
bC  matrix 

can be obtained from the optimal quaternion q  to attitude 
matrix. After that, the attitude angles of vehicles can be 
acquired by the chain of direction cosine matrix (DCM) using 
the Eqs. (1)-(3). Unfortunately, the sensors errors and 
measurement errors of velocity cannot be suppressed well by 
estimation algorithm with the analytical attitude determination 
method, which is shown in Eqs. (12)-(16). These formulae are 
core of the Q-Method, but they only represent analytical 
models. Therefore, the Q-Method itself does not have the 
ability to reduce the impact of errors. 

B. Problem Statement 
According to Section II-A, the general coarse alignment 

method can be implemented by the measurement vector μ  and 
reference vector r . As can be observed from Eq. (2) and Eq. 
(8), μ  is constructed by the true measurements of 
accelerometers and gyroscopes. However, the outputs of 
vectors contain the constant biases and the random noises. The 
noise models are shown as follows: 

 b b b
av= + ∇ +f f η  (17) 

 b b b
ib ib gv= + +ω ω ε η  (18) 

where b
x y zf f f =  f    denotes the measurement of 

accelerometers; b
ib x y zω ω ω =  ω    denotes the measurement 

of gyroscopes; bf denotes the true specific force; b
ibω  denotes 

the truth angular velocity of the vehicle; b∇  and bε  denote the 
constant biases of accelerometers and gyroscopes, respectively; 

avη  and gvη  denote the random noises of accelerometers and 
gyroscopes, respectively. 

Assuming that the installation error angles between GPS 
and SINS have been calibrated in advanced. The scale factor 
errors are also calibrated before the coarse alignment. Thus, the 
measurement model of GPS can be modeled as: 

 n n nδ= +v v v  (19) 

where nv represent the measurement of the GPS, nv  denotes 
the noise-free velocity, and nδ v is the measurement noise 
which is assumed to obey Gaussian distribution. 

The reference vector β can be constructed as: 

0 0

(0) (0) (0)
( ) ( ) ( )

(0)
( )

(0)
t tn n n n n

ie

n

n n n
n t n n

n
n t

d dτ ττ τ

δ

= − + × −

+≈

∫ ∫

  β C v v C ω v C g

β C v
 (20) 

Because of the short alignment time and small terms, the 
errors in the first integral on the right are ignored. rcan be 
acquired by normalized β . 

After that, Eq. (7) can be rewritten as: 
 (0) 0

( ) 0= +δn n n
n t bδ+r C v C Δμ  (21) 

After shifting the item of Eq. (21), the following model can 
be acquired: 

 0
0 δ= +n

br C μ μ  (22) 
where δμ is additive errors which is composed of the sensors 
errors and the measurement errors of GPS. Assuming that the 
sensors errors and the measurement errors of GPS both obey 
Gaussian distribution, therefore, δμ  also obeys Gaussian 
distribution. 

The aforementioned derivation demonstrates that some 
issues need to be further addressed for the OBA methods. To 
mitigate the measurement errors that are mixed in the vector 
observations, a number of efficient approaches have been 
proposed [28]-[33]. 

Therefore, inspired by the works mentioned hitherto, this 
paper proposes an in-motion coarse alignment method based on 
vector observation and truncated vectorized K-matrix. The 
innovations of the VO-TVK algorithm mainly consist of two 
aspects, where the VO-TVK algorithm vectorizes the matrix 
state-space equations of K-matrix and truncates the vectorized 
state vector using the linear dependence between the elements 
of the K-matrix. After that, the minimum variance estimation 
can be applied to the linear reduced model. Although the 
measurement noises are considered as Gaussian white noise, it 
does not impair the generality of the algorithm because there 
are a few techniques to cope with constant biases in the process 
noise model. Thus, the proposed VO-TVK algorithm is 
expected to enhance the accuracy of the traditional OBA 
algorithm. 

III. THE IMPROVED IN-MOTION COARSE ALIGNMENT  
The above deduction is the general formulation for the coarse 

alignment of the SINS/GPS integrated navigation system. 
When the formulae are implemented in the actual system, the 
sampling rates of SINS and GPS are usually different and the 
formulae must be discretized before calculation. In this section, 
the discrete formulae of the vector observation are studied, and 
the different sampling rates of SINS and GPS are considered. 
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The VO-TVK algorithm is utilized to update the K-matrix and 
the summarization of the proposed method is given at last. 

A. Discrete Formulation of the Vector Observation 
To show the different sampling rates of the SINS and GPS, 

the sampling intervals of SINS and GPS are respectively 
denoted as St∆ and Gt∆ , namely ( )G St D t D N∆ = ∆ ∈ . The 
discrete formulation of the vector observation can be derived as 
follows. 

Firstly, assuming the current alignment time Gt M t= ∆ , the 
first integration of β  in Eq. (9) can be calculated as [23]: 

 

( )

1

1

( ) (0)
( )0

1
( )(0)

( ) ( )
0
1

(0)
( )

0

1

21
(0)
( )

0

( )

( ) ( ) ( )

2

M

k
k

k
k

k

k
k

k

tn t n n n
n ie

M t n tn n n
n t n iet

k
M tn n n

n t k in iet
k

n n nk
k k k

G

M
n n nG
n t G in ie

k

d

d

t

tt t t d
t

tt

τ

τ

τ

τ

τ

τ τ

+

+

−

=

−

=

+

−

=

∆ = ×

= ×

 ≈ + − × × 

 −
+ − ∆ 

 ∆
= ∆ + × 

 

∫

∑ ∫

∑ ∫

∑

v C ω v

C C ω v

C I ω ω

v v v

C I ω ω

( )
2

1

21
(0)
( )

0

2

1

( )

( ) ( )
2 3

( )
2 6

( )
2 3

k

n
k

n n n nG G
in ie k k

M
n n n nG G
n t in ie k

k

n n nG G
in ie k

t

t t t t

t t t

t t t

+

−

=

+


× +


 ∆ ∆

+ × × −  
  

 ∆ ∆
= + × × + 

 
 ∆ ∆

+ × ×  
  

∑

v

I ω ω v v

C I ω ω v

I ω ω v
 (23) 

The second integration of β  in Eq. (9) can be calculated as: 

 
1

1

1
( )(0) (0)

( ) ( ) ( )0
0
1

(0)
( )

0

21
(0)
( )

0

( )

2

k
k

k
k

k

k
k

k

Mt t n tn n n n
n n t nt

k
M tn n n

n t k int
k

M
n n nG
n t G in

k

d d

t d

tt

τ ττ τ

τ τ

+

+

−

=

−

=

−

=

≈

 = + − × 

 ∆
= ∆ + × 



∑∫ ∫

∑ ∫

∑

C g C C g

C I ω g

C I ω g

 (24) 

  Secondly, the integration of α  in Eq. (8) can be calculated 
similar to the first assumption: 

 1
1

( )(0) (0)
( ) ( ) ( )0

0

k
k

k
k

Mt t b tb b b b
b b t bt

k
d dτ ττ τ+

−

=

= = ∑∫ ∫α C f C C f  (25) 

The incremental integral in Eq. (25) can be approximated 
using the two-sample method. The specific calculation is as 
follows: 

1 1( )( )
( )

1 2 1 2 1 2

1 2 1 2

( )

1 ( + ) ( )+
2

2 ( + )
3

k k
kM

k k k

t t tb tb t b b b
b ibt t t

d d dτ τ ω τ τ+ +  ∆ = = + ×  

= ∆ + ∆ + ∆ ∆ × ∆ + ∆

∆ × ∆ ∆ × ∆

∫ ∫ ∫v C f I f

v v θ θ v v

θ v v θ

(26) 

where 

 2

1 , 2 ,
1 +1

2

,

D
D

b b
k l S k l S

Dl l

t t
= =

∆ = ∆ ∆ = ∆∑ ∑v f v f  (27) 

 
2

1 , , 2 , ,
1

+1
2

,

D

D
b b

ib k l S ib k l S
Dl

l

t t
=

=

∆ = ∆ ∆ = ∆∑ ∑θ ω θ ω  (28) 

Using Eqs. (2)-(3), the DCM 
1

( )
( )

k

k

n t
n t +

C  and 
1

( )
( )

k

k

b t
b t +

C  can be 
calculated [23]: 

 
1

( ) 2
( ) 2

sin 1 cos
[ ] [ ]k

k

n n
in inn t n n

n t in inn n
in in

+

Θ − Θ
= + Θ × + Θ ×

Θ Θ
C I  (29) 

 
1

( ) 2
( ) 2

sin 1 cos
[ ] [ ]k

k

b b
ib ibb t b b

b t ib ibb b
ib ib

+

Θ − Θ
= + Θ × + Θ ×

Θ Θ
C I  (30) 

where 

 
,

1

n n
in in G

D
b b
ib ib l S

l

t

t
=

 Θ ≈ ∆



Θ = ∆


∑

ω

ω
 (31) 

where 1G k kt t t+∆ = − ; ,
b
ib lω denotes the lth angular rate of the 

gyroscope measurement during kt to 1kt + ; n n n
in ie en= +ω ω ω  is 

the angular rate of n-frame with respect to the i-frame. Due to 
the short alignment time and relatively slow speed of the 
vehicle, the rotating rate n

inω  is approximate to n
ieω . Moreover, 

n
ieω  can be acquired easily by the position of inertial 

measurement unit (IMU) and the Earth rotation rate. 
Finally, using Eqs. (9), (23) and (24), the discrete form of the 

vector β  can be written as: 
1

( )(0) (0) 2

( ) ( )
0

(0)
2

M

M k

nM
n tn n n n nin

M n t M n t G G
k

t t
−

=

×
= − + ∆ − ∆ + ∆

 
 
 

∑ ω
β C v v v C I g (32) 

Using Eqs. (25)-(28), the discrete form of the vector α  can 
be written as: 

 
0

1 ( 1) 1 2 1 2 1 2

1 2 1 2

1 ( + ( )
2

2+ +
3

b
M M b M− −

= + ∆ + ∆ + ∆ ∆ × ∆ + ∆
∆ × ∆ ∆ × ∆ 

α α C v v θ θ v v

θ v v θ

）

（ ）

 (33) 

With Eqs. (29)-(31), the initial DCM can be determined by 
the OBA algorithm. However, the OBA algorithm does not 
well mitigate the errors which come from the inertial sensors’ 
and GPS’s measurements. In the next subsection, a Kalman 
filter based on the truncated vectorized K-matrix is designed to 
circumvent the defects of the traditional OBA algorithms. 

B. Filtering Design 
The construction of the time-varying K-matrix is shown in 

Eqs. (10)-(16). Before filtering, the process model and 
measurement model of K-matrix must be deducted.  

1) Process equation: The propagation of the K-matrix from 

kt  to 1kt +  yields 1k +K , defined below: 

 T
1k k k k+ =K Φ K Φ  (34) 

where kt  and 1kt +  represent the time of k and k+1 moment. kΦ  
is the transition matrix in the difference equation that governs 
the following discrete-time dynamics of the quaternion.  

                                   1k k k+ =q Φ q                                  (35) 
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During the coarse alignment, the quaternion corresponding 
to the K-matrix is always at the initial moment, thus 4k =Φ I . 

Taking the symmetry and zero-trace of the K-matrix into 
account, the number of independent elements can be reduced to 
nine. See Appendix C for the proof of the K-matrix’s zero-trace 
characteristic. After truncating the K-matrix, the state variable 
is constructed as: 

11 12 13 14 22 23 24 33 34

T

k k k k k k k k k kK K K K K K K K K  x   (36) 

where 
,i jkK denotes the element of kK at position (i, j).  

Then, the process model of the K-matrix can be written as:  
 1k k k+ = Ψx x   (37) 

where 1k +x is the 9 1×  state vector at the time of 1kt + ; 9k =Ψ I . 
2) Measurement equation: When a batch of independent 

observations +1
i
kμ and +1

i
kr are observed simultaneously 

( 1, 2 , ,i n= ⋅⋅ ⋅ ) at the time of 1kt + , the corresponding 

incremental K-matrix 1kδ +K  can be calculated as:  

 3+1 +1 +1
+1 T

+1 +1

= k k k
k

k k

σ
δ

σ
− 

 
 

S I z
K

z
 (38) 

where the parameters in Eq. (38) are defined as: 

 T

=1
+1

n

i
k i i ia∑B μ r  (39) 

 
+1

T
+1 +1+k k kS B B  (40) 

 +1
1

n

k i i i
i

a
=

×∑ rμz   (41) 

 +1 +1( )k kσ tr B  (42) 

Considering that 1kδ +K is calculated using the noisy 
measurements acquired at the time of +1kt , the K-matrix 
measurement model can be described as: 

 1 +1 1k k kδ + += +K K V  (43) 
The measurement noise matrix 1k +V  is shown as: 

 3
T1

μ μ μ
k

μ μ

σ
σ+

−
=

 
 
 

S I z
z

V  (44) 

where the parameters in Eq. (44) are defined as: 

 T
+1 1

1
( )

n
i i

μ i k k
i

a δ +
=
∑B μ r  (45) 

 T+μ μ μS B B  (46) 

 +1 1
1

n
i i

μ i k k
i

a δ +
=

×∑z μ r  (47) 

 ( )μ μσ tr B  (48) 

where +1
i
kδμ  denotes the random noises of the measurement 

results in measurement vector at +1kt . Similarly to kx , the 
vectors +1kx  and +1ky  can be defined using the elements of the 
matrices 1k +K  and 1kδ +K . When a batch of independent 

observations +1
i
kμ  and +1

i
kr  are observed simultaneously,

1, 2 , ,i n= ⋅⋅ ⋅ , the measurement equation can be presented as 
follows:  

 1 +1 1+ n
k k k+ +=y x v  (49) 

 1 1 1
1

n
n i i
k i k k

i
a δ+ + +

=

= ∑v Λ μ  (50) 

where ia  represents the weight associated with the thi  vector 

measurement at 1kt + , which 
1

1
n

i
i

a
=

=∑ ; 
1k

i
+

Λ is defined as: 
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1 1

0

0

0

0

0

0

k

k

i i i
k k k

i i
k

i i
k k

i i
k k

i i i
k k k

i i
k k

i i
k k

i i i
k k k

i i
k k

i

r r r

r r
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r r

r r r
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r r

r r r
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+

+

+ + +

+

+ +

+ +

+ + +
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 − −
 
 
 
 
 − 
 − −
 
 
 
− 

 − − 
 − 

Λ 
 (51) 

where the scalars
1 2 31 1 1

i i i
k k kr r r+ + +， ， denote the three 

components of the vector 1
i
k +r . 

Proof: See Appendix B. 
3) Noise stochastic models: The error in the thi vector 

measurement at the time of +1kt is modelled as a zero-mean 

white noise with a known covariance matrix +1
i
kR : 

 
T

1 1 +1( ) =i i i
k k kE δ δ+ +

 
  Rμ μ  (52) 

Furthermore, it is assumed that the measurement vectors 
calculated at the time of k+1 are uncorrelated. When i j≠ , the 
following equation holds: 

 
T

1 1 3( ) =i j
k kE δ δ+ +

 
 μ μ 0  (53) 

where 30  is the 3 3×  null matrix. After assuming that 1
i
k +δμ  is 

uncorrelated with 0x , the expectation matrix of the 

measurement noise 1
n
k +v  is calculated as: 

 
1 1 1 1 1

1 1

n n
n i i i i
k i k k i k k

i i
E E a a Eδ δ+ + + + +

= =

    = Λ = Λ =     
∑ ∑v μ μ 0  (54) 

The covariance matrix 1k +R  is given as: 

    

T T T
1 1 1 1 1 1 1

1 1

T T
1 1 1 1

1 1

T T
1 1 1 1 1 1

1 1 1

( ) = ( ) ( )

( ) ( )

( ) ( )

n n
n n i i j j

k k k i j k k k k
i j

n n
i i j j

i j k k k k
i j

n n n
i i j 2 i i i

i j k ij k k i k k k
i j i

E E a a

a a E

a a δ a

+ + + + + + +
= =

+ + + +
= =

+ + + + + +
= = =

 
    

 

 =  

= =

∑∑

∑∑

∑∑ ∑

R v v Λ δμ δμ Λ

Λ δμ δμ Λ

Λ R Λ Λ R Λ



 (55) 

where ijδ  is the Kronecker delta.   

4) Kalman filter summary: A linear Kalman filter is applied 
to the 9 9×  linear model which is described in Eq. (37) and Eqs. 
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(49)-(50). To distinguish the Kalman gain and K-matrix, the 
Kalman gain here is denoted by k+1G .  
Step 1 Initialization: 

 0/0 0ˆ =x y  (56) 
Step 2 Time Update: 

 1/ /ˆ ˆk k k k k+ = Ψx x  (57) 

 T
1/ /k k k k k k+ =P Ψ P Ψ  (58) 

where 9k =Ψ I . 
Step 3 Measurement Update: 

 1
+1 +1/ +1/ +1( )k k k k k k

−= +G P P R  (59) 

+1/ +1 +1/ 1 +1 1/ˆ ˆ ˆ( )k k k k k k k k+ += + −x x G y x  (60) 

 T T
+1/ +1 9 +1 +1/ 9 +1 +1 +1 1( ) ( )k k k k k k k k k += − − +P I G P I G G R G  (61) 

 T T
1 1 1 1 1 1

1
( ) ( )

n
n n i i i

k k k i k k k
i

E a+ + + + + +
=

  =  ∑R Λ R Λv v  (62) 

where 1
i
k +Λ is calculated using Eq. (51). 

5) Quaternion computation: Utilizing the updated 
estimated of the state vector x̂ , the variable 10x̂ can be 
calculated: 

 10 1 5 8ˆ ˆ ˆ ˆ(x x x x= − + + ） (63) 

Then, the updated matrix K̂  can be reconstructed: 

 

1 2 3 4

2 5 6 7

3 6 8 9

4 7 9 10

ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

=
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

x x x x
x x x x
x x x x
x x x x

 
 
 
 
 
 

K  (64) 

Finally, the eigenvector corresponding to the maximum 
eigenvalue of K-matrix is calculated, and the optimal 
quaternion is converted into an attitude matrix to complete the 
in-motion coarse alignment process. 

C. Algorithm Description 

Fig. 1 summarizes the in-motion coarse alignment procedure 
of the proposed TVK algorithm, and the specific algorithm 
procedure is shown in Table I. 

TABLE I  

THE PROPOSED VO-TVK ALGORITHM  

Initialization: 0 0

(0) (0) 3 0 01 b n

b nM = = = = =C C I α β 0， ，  

Inputs: { } { } { } { }
11 1 1

,
M M M Mb b

ib kk k k

n L
== = =

f ω v， ，  

Outputs: 
n
bC : the initial attitude matrix of vehicles. 

for k=1, 2, 3, …, n, do 
    %Construct the observation vectors: 

Calculate (0)
( )k

n
n tC  and (0)

( )k

b
b tC  using n

inω  and b
ibω  by: 

1

(0) (0) 2
( ) ( ) 2

sin 1 cos
[ ] [ ]

k k

n n
in inn n n n

n t n t in inn n
in in

−

 Θ − Θ = + Θ × + Θ ×
 Θ Θ 

C C I
 

1

(0) (0) 2
( ) ( ) 2

sin 1 cos
[ ] [ ]

k k

b b
ib ibb b b b

b t b t ib ibb b
ib ib

−

 Θ − Θ = + Θ × + Θ ×
 Θ Θ 

C C I
 

Calculate 
1∆v , 

2∆v , 
1∆θ  and 

2∆θ  by the two-sample method. 

if GPS outputs are available 
    Calculate the measurement vectors: 

1

2
(0)

1 ( ) 1

2 2

( )
2 6

( )
2 3 2

M

n n n nG G
M M n t in ie M

n n n n nG G G
in ie M G in

t t t

t t tt t

−− −

 ∆ ∆′ ′= + + × × + 
 

   ∆ ∆ ∆
+ × × − ∆ + ×    

    

β β C I ω ω v

I ω ω v I ω g

 

(0)
( ) (0)

M

n n n
M n t M M′= − +β C v v β  

Calculate the reference vectors:   

1

(0)
1 ( ) 1 2 1 2 1 2 1 2 1 2

1 2( + ) ( )+ + )
2 3M

b
M M b t −−

 = + ∆ + ∆ + ∆ ∆ × ∆ + ∆ ∆ × ∆ ∆ × ∆  
α α C v v θ θ v v θ v v θ(

      %Calculate K-matrix: 
if =1M   

The 
1K matrix can be constructed by Eqs. (12)-(16). 

       0x can be calculated by the truncated vectorized 
1K  matrix as follows: 

11 12 13 14 22 23 24 33 34

T

0 1 1 1 1 1 11 1 1K K K K K K K K K 
 x   

Initialize Kalman filter by: 

0 0=x y  
else if 

The 
MδK  matrix can be constructed by Eqs. (38)-(42). 

kt
y can be calculated by the truncated vectorized 

MδK  matrix: 

11 12 13 14 22 23 24 33 34

T

k k k k k k k k kt t t t t t t t tkt
δK δK δK δK δK δK δK δK δK 

 y 

end if 
%Update K-matrix: 
Update time by: 

1/ /ˆ ˆk k k k k+ =x Ψ x  

1/ /
T

k k k k k k+ =P Ψ P Ψ  
Update measurement by the following equations and Eq. (51): 

1
+1 +1/ +1/ +1( )k k k k k k

−= +G P P R  

+1/ +1 +1/ 1 +1 1/ˆ ˆ ˆ( )k k k k k k k k+ += + −x x G y x  
T T

+1/ +1 9 +1 +1/ 9 +1 +1 +1 1( ) ( )k k k k k k k k k += − − +P I G P I G G R G  
T T

1 1 1 1 1 1
1

( ) ( )
n

n n i i i
k k k i k k k

i
E a+ + + + + +

=

  =  ∑R v v Λ R Λ
  

Reconstruct the updated ˆ
MK  by Eqs. (63)-(64). 

Calculate the maximum eigenvector of ˆ
MK . 

Extract 0
0

b
nq  from ˆ

MK  and transform to 0
0

b
nC  

= +1M M  
end if  
Calculate the current attitude according to: 

( ) (0) (0)
(0) (0) ( )( ) k

k

n tn n b
b k n b b tt =C C C C  

end for 

IV. PERFORMANCE EVALUATION 
In this section, the simulation, vehicle test and lake trial are 

designed to verify the performance of the VO-TVK algorithm. 

A. Simulation Test 
In this simulation test, the well-defined trajectory is set in 

advance, and the actual information of the vehicle’s movement 
is known. Thus, the actual angles can be used as reference 
information to evaluate the performance of the proposed 
VO-TVK method.  

The motion process of vehicle is listed in Table II , where the 
different motion modes are simulated including uniform, 
acceleration, turning. Figs. 2-4 show the zigzag trajectory and 
the reference information (angles and velocity) of the vehicle. 
The output frequencies of the simulated inertial measurement 
units and GPS are set as 100Hz and 1Hz. Meanwhile, the 
constant biases and random noises of three-axis gyroscope, 
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three-axis accelerometer and GPS are given in Table III. The 
initial position of the vehicle is set as L=32.00° and λ=118.00°, 
where L denotes the latitude, and λ denotes the longitude.  

 

Fig. 1. The in-motion initial alignment procedure  
using the proposed VO-TVK algorithm.  

TABLE II  

PROCESS OF THE VEHICLE MOTION IN THE SIMULATION TEST 

Number Movement State Time(s) 

1 Accelerated ( 20.5a m s= ) 0~20s 

2 Uniform 20~40s 

3 Turn right ( 4z rad sω = ) 40~60s 

4 Uniform 60~160s 

5 Turn left  ( 4z rad sω = − ) 160~180s 

6 Uniform  180~250s 

TABLE III 

CONSTANT BIAS AND RANDOM NOISE OF THE SENSORS 
 IN THE SIMULATION 

Sensors Constant biases Random noise 

Gyroscopes 0.01 deg/h 0.01 deg/ h  

Accelerometers 10 ug 100 ug / Hz  

GPS 0 m/s 1 m/s 

During the whole initial alignment, the vehicle is moving on 
the horizontal plane and the total simulation time is 250s. To 
improve the credibility of simulation, the initial value of pitch, 
roll and yaw angles are respectively set as 3°, 3° and 10°. 
Besides, we choose the Q-Method algorithm, the REQUEST 
algorithm, the Optimal-REQUEST algorithm and the proposed 
VO-TVK algorithm to tested and compared. Figs. 5-7 are the 
alignment errors of the pitch, roll and yaw angles, respectively. 

In Fig. 5, it can be found that four algorithms have similar 
convergence rates. However, the other three algorithms except 
VO-TVK all fluctuate when the significant changes have taken 
place on roll angle. The proposed VO-TVK is the most stable 
and the accuracy is also improved with the increase of 
alignment time.  

As seen from Fig. 6, the stability of the proposed VO-TVK 
algorithm can be better proved in the calculation of roll angles. 
When the vehicle has turning action, the other three comparison 

algorithms all have large fluctuations. However, the proposed 
VO-TVK algorithm has not been affected, remaining stable and 
precise.  

 
Fig. 2.  Trajectory of the vehicle in the simulation test. 

 
Fig. 3. Reference velocity in the simulation test. 

 
Fig. 4. Reference attitude in the simulation test. 

Fig. 7 gives the yaw errors of four algorithms, and it can 
illustrate the advantages of the proposed VO-TVK algorithm 
well. To verify the performances of the VO-TVK algorithm and 
compared algorithms, the errors of velocity are set obviously. It 
is known that the velocity of GPS has a great influence on the 
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calculation of yaw angle. The Q-Method algorithm does not 
have the ability to alleviate the impact of errors hiding in the 
vector observation which results in the unsatisfactory 
alignment results. Meanwhile, the REQUEST algorithm 
utilizes the empirical constant gain to update the K-matrix and 
it is hard to find the appropriate value because the errors are 
cumulative during the alignment process. Thus, the accuracy of 
Q-Method and REQUEST algorithm are both poor in Fig. 7. 
What is more, the Optimal-REQUEST algorithm is hard to be 
performed well in the simulation test due to the conservative 
estimation performance index. The proposed VO-TVK 
algorithm combines the advantages of the Wahba problem and 
the Kalman filtering. It can well alleviate the influence of 
vector observation errors on alignment results. Meanwhile, it 
gets rid of the limits of empirical constant gain and 
conservative estimation performance index. Thus, the 
VO-TVK overcomes the impact of errors and maintains 
stability. Considering the alignment results of three angles, we 
find that the VO-TVK algorithm is the most stable and most 
precise alignment approach compared with the Q-Method, the 
REQUEST and the Optimal-REQUEST algorithm. 

  
Fig. 5. Curves of pitch angle errors. 

 
Fig. 6. Curves of roll angle errors. 

 

Fig. 7. Curves of yaw angle errors. 

To compare algorithms’ performances intuitively, each 
algorithm’s attitude errors are listed in Table IV, in which the 
‘Mean’ and ‘RMSE’ represent the mean and the root mean 
square error of attitude errors. From the quantitative results of 
the data, the RMSEs of the three angles calculated by the 
VO-TVK algorithm are the smallest between 150s and 250s. 
The comparisons of yaw angle are evident. After the Q-Method 
and Optimal-REQUEST are stable, the yaw errors are still 
increased. The obvious reason of this increase is that the 
Q-Method and Optimal-REQUEST algorithms cannot well 
alleviate the impacts of the errors included in vector 
observations, especially the impacts of velocity errors. In 
addition, although the calculation process of the REQUEST 
algorithm is very stable, the errors are always large because of 
the unchanged empirical constant gain. Through the 
above-mentioned analyses, it can be concluded that the 
VO-TVK algorithm has better ability to reduce the impacts 
from vector observations in comparison with the traditional 
algorithms. Therefore, the VO-TVK algorithm is more suitable 
for in-motion initial alignment. 

TABLE IV 

ERROR STATISTICS OF FOUR ALGORITHMS IN SIMULATION TEST 

Items Q-Method REQUEST Optimal- 
REQUEST 

VO- 
TVK 

Pitch  
(deg) 

1~ 
100s 

Mean -1.1914  -0.8872  -1.2569  -1.0679  
RMSE 1.5200  1.1307  1.7184  1.3503  

100~ 
250s 

Mean -0.3755  -0.3204  -0.3702  -0.2435  
RMSE 0.3833  0.3255  0.3784  0.2481  

Roll  
(deg) 

1~ 
100s 

Mean -0.6486  -0.0702  -0.7394  0.0221  
RMSE 0.8818  0.6261  0.9142  0.0870  

100~ 
250s 

Mean -0.0569  0.0733  -0.0426  -0.0030  
RMSE 0.3021  0.1201  0.2943  0.0105  

Yaw 
(deg) 

1~ 
100s 

Mean -3.5133  9.9815  -22.3781  -0.2471  
RMSE 26.2802  9.9825  40.5657  28.9407  

100~ 
250s 

Mean -25.6217  10.5216  -25.5541  -3.7628  
RMSE 25.8320  10.5488  25.7511  3.8838  

B. Vehicle Test 
In vehicle test, the effectiveness and superiority of the 

proposed method are demonstrated more deeply. The SINS, 
which is combined triaxial closed-loop fiber optic gyroscopes 
and triaxial micromechanical accelerometers, is equipped to 
collect raw data. Table V shows the specific parameters of 
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inertial devices. The GPS receiver produced by the NovAtel is 
used as the aiding system. Considering that the true attitude 
angles of the vehicle are unavailable in practical vehicle test, 
the attitude information collected by high-accuracy SINS is 
used to provide a reference. The attitude errors of 
high-accuracy SINS is less than 0.006º for pitch and roll angle 
and 0.01º for yaw angle. The sampling rates of SINS and GPS 
Receiver are 200Hz and 1Hz, respectively. Specifically, the 
SINS is installed on the surface of the steel plate. The vehicle 
and equipment are shown in Fig. 8, and the whole test lasts for 
300s. The vehicle test was carried out in Qingdao City, China. 
The reference attitudes and the velocities in the vehicle test are 
presented in Fig. 9 and Fig. 10. The trajectory of the vehicle test 
is depicted in Fig. 11. 

TABLE V 

PARAMETERS OF THE IMU IN VEHICLE TEST 

Items Gyroscope 
Gyro rate bias (deg/hr) <1.0  

Gyro rate scale factor (ppm)   100 
Angular random walk (deg/ hr )  <0.05  

Output frequency (Hz) 200 
Items Accelerometer 

Accelerometer scale factor (ppm) 250 
Accelerometer bias (mg) <1.0 
Output frequency (Hz) 200 

 
Fig. 8. Practical test vehicle platform. 

 

Fig. 9. Reference attitude in the vehicle test. 

In this vehicle test, the errors of the pitch, roll and yaw 
among the four methods are shown in Figs. 12-14, respectively. 
The blue, yellow, red and purple curves in Figs. 12-14 represent 
the Q-Method algorithm, the REQUEST algorithm, the 

Optimal-REQUEST algorithm and the VO-TVK algorithm. In 
order to compare the alignment errors among four algorithms 
more specifically, the values of Mean and RMSE are listed in 
Table VI. 

 
Fig. 10. Reference velocity in the vehicle test. 

 
 (a) Coordinates of the reference trajectory 

 

 (b) Google map of the reference trajectory 
Fig. 11 Vehicle trajectory.  

It can see from Figs. 12-14, the pitch angle curves and roll 
angle curves of the four methods are all divergent. This 
phenomenon does not occur in simulation test, because the 
accelerometer’s constant bias in vehicle test is a hundred times 
bigger than that in simulation test. The SINS used in the vehicle 
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test is made up of fiber optic gyroscopes and micromechanical 
accelerometers. As is well known, the calculations of pitch and 
roll angles are dependent on the accuracy of accelerometers, 
and the huge constant bias of accelerometers will damage the 
performance of the comparison algorithm and the proposed 
VO-TVK algorithm. Due to the limitation of the experimental 
conditions, the outputs of higher-accuracy accelerometer are 
unavailable. Thus, from Figs. 12-13 and Table VI, it indicates 
the accuracy of the pitch and roll angles among the Q-Method, 
the Optimal-REQUEST and the VO-TVK algorithm is 
approximately equivalent. However, the REQUEST algorithm 
has large fluctuations in all three angles’ results. This 
phenomenon proves the unreliability of the empirical constant 
gain. In the actual vehicle test, the REQUEST algorithm is 
lacking robustness as the empirical constant gain is used to 
update K-matrix. If the constant gain is very small, the old 
K-matrix (calculated in the last time interval) will be very large, 
which will lead to the REQUEST algorithm cannot accurately 
calculate the yaw angles. On the contrary, if the empirical 
constant gain is set small, the REQUEST algorithm will be 
affected by the cumulative error, resulting in the failure of the 
algorithm. The proposed VO-TVK solves this problem well, as 
it use Kalman filtering to update K-matrix.  

 
Fig. 12. Curves of pitch errors in the vehicle test. 

 
Fig. 13. Curves of roll errors in the vehicle test. 

 
Fig. 14. Curves of yaw errors in the vehicle test. 

TABLE VI 

ERROR STATISTICS OF FOUR ALGORITHMS IN VEHICLE TEST 

Items Q-Method REQUEST Optimal- 
REQUEST 

VO- 
TVK 

Pitch  
(deg) 

1~ 
150s 

Mean -1.6607  -0.9969  -1.4892  -1.5062  
RMSE 1.9146  1.1545  1.7488  1.7699  

150~ 
300s 

Mean -4.7894  -1.7266  -4.3421  -4.4377  
RMSE 4.9086  2.7363  4.5121  4.5443  

Roll  
(deg) 

1~ 
150s 

Mean 0.2369  0.3399  0.6284  0.5693  
RMSE 0.4517  0.6590  0.8737  0.8213  

150~ 
300s 

Mean 1.4177  1.3314  2.3642  2.2658  
RMSE 1.9453  2.5181  2.7308  2.6174  

Yaw 
(deg) 

1~ 
150s 

Mean 0.5836  17.5958  1.7077  22.0975  
RMSE 1.8989  29.6687  34.3181  63.8036  

150~ 
300s 

Mean -6.0599  24.9539  5.0449  4.4734  
RMSE 6.9079  68.7321  5.2649  4.6143  

Meanwhile, it is evident in Fig. 14 and Table VI that the 
proposed VO-TVK algorithm has better performance than 
other compared algorithms in calculating yaw angles. Though 
the Q-Method has a faster convergence speed than the 
VO-TVK algorithm, the former algorithm has a weak ability to 
relieve the errors of vector observation, resulting in the 
divergence trend of yaw angle error. The REQUEST, 
Optimal-REQUEST algorithm and the VO-TVK algorithm 
have a similar convergence rate, which is approximately 50s. 
However, it is the most precise that the yaw errors calculated by 
the VO-TVK algorithm. As can be seen from the Table VI, the 
value of RMSE during 150~300s calculated by the VO-TVK 
algorithm is approximately reduced by 33% and 12% compared 
with the Q-Method and the Optimal-REQUEST algorithm, 
respectively. Through the minimum variance estimation, the 
VO-TVK overcomes the defect of the conservative estimation 
performance index used in the Optimal-REQUEST and 
improves the performance of yaw calculation. 

Therefore, the above-mentioned analyses exhibit that the 
VO-TVK algorithm has better alignment accuracy than the 
compared algorithms. 

C. Lake Trial 
In order to further verify the effectiveness of the proposed 

VO-TVK method when AUV is sailing on the water, a lake trial 
was conducted in Weishan Lake, China.  
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The parameters of inertial measurement units are listed in 
Table V. The specific models and other parameters of 
high-accuracy SINS and GPS are described in the Section IV-B. 
The reference attitudes and the velocities in the lake trial are 
shown in Fig. 15 and Fig. 16. The trajectory and devices of the 
trial is shown in Fig. 17, and the entire trial process lasts 300s. 
Similar to vehicle test, four algorithms are compared in lake 
trial. The errors of pitch, roll and yaw angles are shown in Figs. 
18-20. The results of Mean and RMSE for four algorithms are 
listed in Table VII. The obvious difference between the lake 
trial and vehicle test is the velocity of test carrier, but the lake 
trial environment is closer to the real working one of AUV.  

The errors of pitch angle in Fig. 18 are different compared 
with that in Fig. 12. It is obvious that the REQUEST algorithm 
has three different performances in the simulation, the vehicle 
test and the lake trial. This phenomenon means that the 
selection of empirical constant gain is not reliable and stable. 
Moreover, the curves of the REQUEST are not smooth enough 
and they have slight fluctuation when the roll angle has change 
during 200~220s. The same phenomenon happens in Fig. 19 as 
well. Therefore, based on the results of the three experiments, 
the REQUEST algorithm is not the best choice for in-motion 
coarse alignment. Meanwhile, from the Table VII, it can be 
seen that, during 200~300s, the RMSE calculated by the 
VO-TVK algorithm is approximately reduce by 9%, 10% and 5% 
compared with the Q-Method, the REQUEST and the 
Optimal-REQUEST algorithm, respectively. 

 
Fig. 15. Reference attitude in the lake trial. 

 
Fig. 16. Reference velocity in the lake trial. 

 
Fig. 17. Lake trial, trial devices and trajectory. 

The curves of roll angles in Fig. 19 are also divergent, which 
are similar to the results in the vehicle test, and the main reason 
is still the large constant bias of accelerometers. Although 
among three angles, the errors of roll angles have the most 
obvious divergence phenomenon, it still can be seen from Fig. 
19 that the errors of roll angles calculated by the proposed 
VO-TVK algorithm are smaller than that of Q-Method and 
Optimal-REQUEST algorithm. 

In Fig. 20, the yaw angles can best verify the merits of the 
proposed VO-TVK algorithm. It can be observed that the 
VO-TVK algorithm tends to be stable within 20s, which is the 
fastest compared with the other three algorithms. Besides, 
along with the alignment time, errors of vector observation are 
accumulating resulting in the increase of yaw errors. The 
VO-TVK obviously has a better ability to suppress the 
divergent trend than other three algorithms. From Table VII, 
the RMSEs of yaw errors in 200~300s calculated by the 
proposed VO-TVK algorithm are  approximately reduced by 
20%, 70% and 5% compared with the Q-Method, the 
REQUEST and the Optimal-REQUEST algorithms, 
respectively. 

 
Fig. 18. Curves of pitch errors in the lake trial. 
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    Fig. 19. Curves of roll errors in the lake trial. 

 
Fig. 20. Curves of yaw errors in the lake trial. 

In conclusion, the in-motion coarse alignment method 
proposed in this paper has more accuracy and faster 
convergence rate. Therefore, it is more suitable than the 
compared algorithms to apply to the in-motion coarse 
alignment. 

V. CONCLUSION AND FUTURE WORK 
This paper proposes an improved in-motion coarse 

alignment method with GPS-aided. Firstly, when the AUV is 
sailing on the ocean, the reference and measurement vectors are 
changed with the rotation of the Earth and the motion of the 
vehicle. Thus, the vectors are constructed with the 
measurements of SINS and GPS. Meanwhile, the discrete 
forms of the reference and measurement vectors are derived in 
detail. Secondly, based on vector observation and truncated 
vectorized K-matrix, an in-motion alignment method is devised 
to suppress the sensors errors and velocity errors contained in 
the vector observation. The proposed VO-TVK algorithm takes 
advantages of two complementary approaches for attitude 
determination, which are the Kalman filtering and the Wahba 
problem. Finally, the simulation, vehicle test and lake trial are 
implemented to validate the performance of the proposed 
algorithm. The results show that the proposed algorithm 
improves the accuracy and convergence rate of coarse 
alignment. However, due to the limited conditions, the large 

constant biases of gyroscopes and accelerometers are not 
considered here, and the proposed algorithm may have poor 
performance when using the low-cost MEMS grade SINS to 
measure. And the error of the first velocity is also ignored in 
this paper. We will incorporate the constant biases of 
gyroscopes and accelerometers into the estimation algorithm 
and consider the error of the first velocity measurement in 
future works. 

TABLE VII 

ERROR STATISTICS OF FOUR ALGORITHMS IN LAKE TRIAL 

Items Q-Method REQUEST Optimal- 
REQUEST 

VO- 
TVK 

Pitch  
(deg) 

1~ 
100s 

Mean 0.8389  0.5075  0.7080  0.8285  
RMSE 0.9634  0.5716  1.0206  0.9583  

100~
200s 

Mean 0.6675  0.4981  0.8806  0.8381  
RMSE 0.6952  0.5201  0.8907  0.8471  

200~
300s 

Mean -0.3909  0.4896  0.1439  0.0887  
RMSE 0.7625  0.7676  0.7279  0.6898  

Roll  
(deg) 

1~ 
100s 

Mean 0.5707  0.4105 0.1591  0.5400  
RMSE 0.8171  0.6529  0.9029  0.7847  

100~
200s 

Mean 3.2951  2.1982  3.2691  3.2345  
RMSE 3.3705  2.2549  3.3580  3.3101  

200~
300s 

Mean 5.6100  3.7050  5.6329  5.5982  
RMSE 5.6488  3.7319  5.6734  5.6333  

Yaw 
(deg) 

1~ 
100s 

Mean 19.2401  21.3042  -23.5243  20.6257  
RMSE 19.2401  21.3042  -23.5243  20.6257  

100~
200s 

Mean 7.5769  7.5945  10.6507  10.0324  
RMSE 8.8929  7.7739  11.4023  10.7134  

200~
300s 

Mean -2.4859  7.7692  2.2504  1.9619  
RMSE 2.9748  7.9664  2.5241  2.3798  

APPENDIX A 

The frames used in this paper are defined as below and Fig. 
21 illustrates the coordinate frames. 

1) i-frame: Earth-centered initially-fixed orthogonal 
reference frame; 

2) n-frame: Orthogonal reference frame aligned with 
East-North-Up (ENU) geodetic axes; 

3) b-frame: Right-forward-upper orthogonal reference frame 
aligned with inertial measurement unit axes; 

4) b0-frame: Orthogonal reference frame that is non-rotating 
relative to the i-frame, which is formed by fixing the 
b-frame at start-up in the inertial space 

 
Fig. 21.  Definition of the coordinate frames. 
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APPENDIX B 

The illation of 1
n
k +v in Eq. (46) will be introduced in this 

section. 
Assuming a batch of vector observations are acquired 

simultaneously at the time of 1kt + , the measurement equation 
of the K-matrix can be written as: 

 1 1 1
n

k k kδ + + += +K K V  (65) 

where 1
n
k +V denotes the global measurement error in 1kδ +K . 

Next, to derive the expression conveniently, n
μB  is defined 

as: 

 T
1 1

1
( )

n
n i i
μ i k k

i
a δ + +

=

= ∑B μ r  (66) 

where 1
i
kδ +μ is the measurement error in the thi observation,

1

1
n

i
i

a
=

=∑ .  

Each single observation is defined 3 3×  matrix 
iμB

( 1, 2 ,i n= ⋅⋅⋅ ): 
 T

1 1( )
i

i i
μ k kδ + +B μ r  (67) 

Substituting Eq. (63) into Eq. (62) yields: 

 
1

i

n
n
μ i μ

i
a

=

= ∑B B  (68) 

 1
i
k +V for each single observation can be expressed as: 

1 T( )

i i i
μ μ 3 μi

k i i
μ μ

σ
σ+

 −
=  

  

S I z
V

z
                          (69) 

Similarly to the matrix 
iμB , the measurement matrix global 

error 1
n
k +V  can be calculated as: 

 1 1
1

n
n i
k i k

i
a+ +

=

= ∑V V  (70) 

After that, the vector 1
i
k +v can be truncated and vectorized as 

follows: 

 11 12 13 14 22

23 24 33 34

1 1 1 1 1
1 T

1 1 1 1

[

]

i i i i i
k k k k ki

k i i i i
k k k k

V V V V V

V V V V
+ + + + +

+
+ + + +

=v  (71) 

Then, use 1
i
k +v  instead of 1

i
k +V  to define the matrix 1

n
k +v . 

According to Eq. (66), 1
n
k +v can be written as follows: 

 1 1
1

n
n i
k i k

i
a+ +

=

= ∑v v  (72) 

Considering that 1
i
k +v is the measurement error associated 

with each single observation, 1
i
k +r can be substituted for 1k +r

into Eq. (47). 1
i
k +Λ  denotes the sequence of the n  single 

output gain matrices ( 1, 2, ,i n=  ). Then, the following 
equation can be acquired: 

 1 1 1=i i i
k k kδ+ + +v Λ μ  (73) 

Substituting Eq. (66) into Eq. (65) yields the sought equation 
of 1

n
k +v , as shown in Eq. (46). 

APPENDIX C 
In this section, the zero-trace characteristic of K-matrix is 

shown as below. 
The calculation of K-matrix’s trace can be written as: 

 ( )1 1 3 1

1 1 3 1( ) ( )
k k k

k k k

tr
tr tr

σ σ
σ σ

+ + +

+ + +

− +

= − +

S I
S I

 (74) 

Combing the Eqs. (40) and (42), we can acquire the result of 
the trace. 

 ( ) ( )
1 1 3 1

1 1 1 3 1

1 1 1 1

( ) ( )

( )

3 0

k k k

T
k k k k

k k k k

tr tr

tr tr tr

σ σ

σ σ

σ σ σ σ

+ + +

+ + + +

+ + + +

− +

= + − +

= + − + =

S I

B B I  (75) 

After vectorization, the zero trace property of K-matrix can 
be expressed by the Eq.(63) combined with the Eq. (64). 
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