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Abstract

This thesis addresses the question whether algorithms from Reliable Machine
Learning (RML), a family of machine learning frameworks that allow for theoretically
bounded prediction errors, can be accelerated in order to allow their use over large
data-sets. In particular, this investigation focuses on two fundamental members of
the RML family: Conformal Prediction (CP) and Venn-Abers Predictors (VAP).
The former consists in a machine learning framework that complements the output
of traditional supervised-learning algorithms with reliability measures to model the
uncertainty in the predictions. The latter allows for non-probabilistic classifiers
to produce well-calibrated probabilities over all possible classes. The additional
information that these methods generate, however, come at the price of non-
negligible computational overhead. Current state-of-the-art approaches propose the
use of these methods in an inductive setting, which indeed reduces their computing
cost meaningfully. Still, the use of these methods remains restricted to relatively
small data-sets. This thesis proposes the acceleration of CP and VAP by using the
idea of data summarisation. Specifically, we design methods that rely on reducing
the available input data into a coreset: a representation of the input data which
retains its main properties while being orders of magnitude smaller than the original
data-set. This idea is formalised with two contributions: Coreset-based Inductive
Conformal Prediction (C-ICP) and Inductive Venn-Abers Predictors with Enclosing
Balls (IVAP-WEB). The obtained results show that both methods indeed give
a substantial speed-up to CP and VAP, while largely preserving their predictive
performance. This work’s third and fourth original contributions are protocols that
accelerate the computation of certain types of coresets: Accelerated Clustering
via Sampling (ACvS) and Regressed Data Summarisation Framework (RDSF).
The numerical results obtained indicate that both ACvS and RDSF efficiently
produce high-quality summaries of data, and hence these methods can constitute
important tools alongside coresets.

This investigation studies the above frameworks and protocols under the lenses
of two fundamental machine learning methods: Logistic Regression and Support
Vector Machines, both well-studied at the RML and coreset communities. The
proposed methodologies constitute, to the best of our knowledge, the first incursion
in using coresets alongside CP and VAP; and, we believe, they open the door



for the study of further interactions between data summarisation techniques and
other members of the RML family, such as Venn Machines, Mondrian Prediction
and Conformal Predictive Distributions.
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Either mathematics is too big for the human mind
. . . or the human mind is more than a machine.

— Kurt Gödel
Essays on Gödel’s Reception of Leibniz, Husserl, and

Brouwer. ([1])

1
Introduction

This introductory chapter aims to motivate the problems that this thesis covers,

and to outline solutions for solving them. In the same measure, it will help

the reader place this work and its contributions within the current impressively

huge picture of Machine Learning and Artificial Intelligence. The set of research

questions that nurtured this work will be presented once the computational scenario

is properly defined. Finally, a short description for each of the remaining chapters

will be provided.

1.1 Machine Learning

It is instructive to start our exposition with the very definition of the field we

are placing ourselves in. Machine Learning (ML) can be defined as the field

concerned with automated detection of meaningful patterns, carried out through

computer programs. The word “automated” pinpoints the crucial difference from

traditional computer programs, where a human programmer writes explicit fine-

detailed instructions for each task that the program will, or will not, handle. A

machine learning program, however, deals with input data containing patterns that

are so complex that it is not feasible for the programmer to write explicit instructions

for handling them. A key characteristic of machine learning programs is the use of

1
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the input data as a source of experience that is available for the program to learn

to identify structures and patterns of some phenomena of interest. Ultimately, a

ML program converts that experience into expertise or knowledge ([2], Ch. 1, p. 1).

This knowledge generally persists in the form of some mathematical structure and

remains available for future automation and/or optimisation of specific tasks. This

principle is followed in the wide-range applications of current learning programs:

from the programs that learn to identify spam emails ([3], [4]) to those that seek to

unveil interactions among chemical compounds for drug studies ([5], [6]).

This investigation, however, will not assume any particular application. That is,

the methods to be proposed are application-agnostic and they will be concerned with

accelerating the execution of machine learning programs under mild assumptions.

This means that the resulting learning protocols, in principle, will be general enough

to be applied to any application of interest.

1.2 Supervised and Unsupervised Learning

Machine learning programs can be categorised following different principles. They

could be separated, for example, according to how computations are performed;

that is, we can have batch learning programs ([7]) that are assumed to have sufficient

resources to store and process their entire input data; and we can have streaming

learning algorithms ([8]), that usually rely on modest resources to handle large

input data, and thus they have to sequentially inspect data points one by one, do

some computations, store minimal information, and move on to the next point

in the data steam.

A more fundamental distinction among learning programs is that of supervised

learning programs and unsupervised learning programs ([9], Ch. 2 and Ch. 14); the

former require that the user provide them with input data that were categorised

a priori. This categorisation takes the form of labels given to each of the input

points. This labelling is assumed to be abstractly performed by the environment,

or by nature itself, and hence it is treated as ground truth.
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Supervised learning programs analyse relations between the data and their labels,

and they are expected to output a rule, or hypothesis, that can be used to assign,

with low error, correct labelling for data points that, unlike the input data, have

not been labelled before ([10], Ch. 2, p. 21). Thus, in the supervised setting, there

are at least two sets of data at play: the input data containing data points along

with the labelling information, which is usually referred as the training set, and

the set of data points that are reserved for assessing the performance of the ML

program, the test set. We can see that in the supervised setting, the principle of

“learning from experience” is followed straightforwardly: the training set contains

accumulated experience, and the learning program uses this experience in order to

provide the members of the test set the information they are missing: the labelling.

Unsupervised learning programs work differently: they do not distinguish

between training and test sets, and their goal is not to complete missing information

in the data as in the supervised case. Rather, unsupervised learning programs

attempt to make sense of the input data by looking for structures among input

points, or by obtaining some form of representation of the data ([11]). For example,

grouping data points into clusters by measuring their closeness is a typical task

in the unsupervised setting.

This thesis will be mostly concerned with the supervised setting; in particular, it

will cover two fundamental learning methods that belong to such category: Logistic

Regression and Support Vector Machines. Both of these methods will be studied as

part of a high-level machine learning framework called Reliable Machine Learning

(RML). In fact, an important portion of this research work will be devoted to

systematically define new learning programs, which will be referred as learning

protocols, that substantially improve the running time of two important RML

techniques: Conformal Prediction and Venn-Abers Prediction.

Unsupervised learning will also play an important role, albeit indirectly, in the

contributions of this research. More concretely, the classic k-Means method will be

used as a mean to achieve good data representations for logistic regression.
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1.3 Reliable Machine Learning

Most of the computational problems considered in this work have their roots in the

sub-field of Reliable Machine Learning (RML) ([12]): a family of methodologies

that supplement the output of machine learning algorithms with sets of reliability

measures. This extra reliability information can take different forms, depending on

the specific methodology at hand. This thesis will cover two fundamental members

of the RML family: Conformal Prediction (CP) and Venn-Abers Prediction (VAP).

CP ([13], Ch. 2, p. 17) allows for the design of supervised-learning programs

that not only give the user label predictions for data points he/she is interested

in classifying, but also confidence levels for those predictions. Furthermore, the

obtained confidence levels constitute strong prediction error bounds, which means

that the average number of mistakes CP makes can be known a priori. Thus,

CP is parameterised by the desired significance level for its predictions, letting

the practitioner carefully control the average number of errors that the CP is

allowed to commit.

VAP ([14]) is a relatively new member to the RML family, and it also assumes

a supervised-learning setting; however, unlike CP, VAP converts score-based

predictions into probability-type results, allowing a wide breadth of non-probabilistic

supervised methods to output well-calibrated probabilities. As CP, VAP also

provides bounded output; in this case, the output is a tuple containing upper and

lower bounds for the true probability of observing a specific label for a specific object.

1.4 Problem, Research Questions and Contribu-
tions

Now that the computational scenario has been laid out, we are in a good position

for presenting our main computational problem. This thesis is concerned with the

problem of scaling up the methods from RML mentioned above, CP and VAP, to

input data of moderate size, as it is well known that the informativeness of these

two methodologies comes at the price of high computational overhead (see [13],
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Ch. 4, [12], Ch. 2, [15] and [16]). Considerable speed-ups can be obtained for the

above methods by assuming an inductive setting, and indeed this approach has seen

successful applications in domains such as speech recognition ([17]), drug discovery

([5], [18]) and applicability domain determination ([19]). Still, even in the inductive

setting, these methods add a non-negligible computational overhead to the learning

process, and the data sets used are still restricted to small sizes i.e. in the order

of few thousands ([18], [20], [21], [22], [15]). Hence, the question remains: can the

running times of CP and VAP be improved in the inductive setting?

To address the above question, this work proposes a route different from the

usual path taken in Computer Science; that is, it will not attempt to improve the

running time of CP and VAP by re-designing, or even modifying, these methods.

Instead, the main idea will be to systematically replace the input data with a small

summarised version of it; and since this summary will be substantially smaller than

the original input data, the computations of CP and VAP will inevitably finish

faster. In order to obtain a good representation of the input data, the algorithmic

framework of coresets [23] will be used. A coreset (or core-set) is a compact data

set that provably correctly approximates a bigger set of points. Thus, this approach

should not be considered as an alternative to the well-known inductive setting;

instead, it brings to the table a pre-processing step that can help obtain substantial

acceleration in the inductive scenario. Therefore, this thesis will provide detailed

experimental analysis on the interaction between methods of RML and coresets,

which, to the best of our knowledge, has not been done before.

Naturally, the above idea raises many research questions; a summary of the

most fundamental ones can be found below.

Research Question 1 (On the validity, efficiency and calibration of CP and

VAP). Assume that it is possible to replace a given data-set with a carefully

constructed coreset. Assume further that the obtained coreset is used as input

data for (i) a conformal predictor, and (ii) a Venn-Abers prediction instance. Does

this compression-based approach meaningfully affect the validity and efficiency for

(i) and/or the probability calibration for (ii)?



1. Introduction 6

Research Question 2 (On the computational gains of coreset-based methods

for CP and VAP). Assume that it is possible to replace a given data-set with a

carefully constructed coreset. Assume further that the obtained coreset is used as

input data for (i) a conformal predictor, and (ii) a Venn-Abers prediction instance.

Considering that coresets require extra computations to summarise the given data-

set, can coreset-based approaches offer meaningful computational acceleration for

scenarios (i) and/or (ii)?

Research Question 3 (On the speed of the coreset computation). Assume that it

is possible to replace a given data-set with a carefully constructed coreset. Does the

coreset computation allow for practical optimisations without degrading the coreset

quality?

The above questions converged in a set of methods that provide answers

to the stated scientific inquiries. The contributions of this thesis can be sum-

marised as follows:

• Coreset-based Inductive Conformal Predictors (C-ICP) - a fast pro-

tocol for using conformal predictors over large input data. C-ICP compresses

the input data into a small coreset, and runs on it an inductive conformal

predictor. The results obtained indicate that C-ICP preserves the validity

property of conformal predictors while also retaining the efficiency of the

predictions. Therefore, C-ICP provides answers to Research Questions 1 and

2.

• Inductive Venn-Abers Predictors with Enclosing Balls (IVAP-WEB)

- a coreset-based calibrator that improves the running time of Venn-Abers

Prediction in the inductive setting. IVAP-WEB uses only a minimal portion

of the input data (e.g. 1%) to calibrate the predictions of scoring classifiers.

The resulting probability estimates are competitive with those obtained using

standard Venn-Abers on the full input data, and they can be obtained using

only a fraction of the computing time needed when considering all the available
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data e.g. IVAP-WEB can converge in 10% the time needed by traditional

IVAP. Therefore, IVAP-WEB allows us to answer Research Questions 1 and

2.

• Accelerated Clustering via Sampling (ACvS) - an acceleration strategy

for computing clustering-based coresets. Based on the proven fact that, in

expectation, a uniform random sample provides unbiased estimation for some

instances of clustering, ACvS proposes to construct a coreset by clustering only

a small uniform random sample taken from the input data. We show that when

using ACvS, the resulting coreset performs exactly the same as the coreset

obtained from clustering over the full input data, but the coreset construction

is meaningfully accelerated. ACvS sheds light on Research Question 3.

• Regressed Data Summarisation Framework (RDSF) - a coreset-based

data compression framework that not only reduces the size of a data-set,

but also learns to distinguish important points, in a well-defined sense, from

irrelevant ones. This knowledge is preserved in the form of a regression model,

and can be used to identify the importance of new points that may become

available to the practitioner, without the need of running the full coreset

algorithm. RDSF also contributes an answer to Research Question 3, and

leaves the door open for extensions to other coreset construction algorithms,

and to different computational settings e.g. streaming.

1.5 Thesis Structure

The thesis follows the following structure:

• Chapter 2 presents the machine learning methods and definitions necessary

for understanding this work’s new learning protocols. A discussion on suitable

data for said protocols will also be presented in this chapter, and such

discussion will culminate with the group of data-sets chosen for demonstrating

their effectiveness.
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• Chapter 3 provides a in-depth introduction to the central computational

technique over which the contributions of this thesis are built: the paradigm

of coresets.

• Chapter 4 introduces the theory of Conformal Prediction, and presents the

first contribution of this work: Coreset-based Inductive Conformal Prediction

(C-ICP).

• Chapter 5 defines the framework of Venn-Abers Prediction and presents

the second contribution of this work: Inductive Venn-Abers Predictors with

Enclosing Balls (IVAP-WEB).

• Chapter 6 identifies a computational bottleneck in the state-of-the-art

coreset algorithm for the Logistic Regression learning method, and in re-

sponse proposes two accelerating techniques to circumvent the problem: the

Accelerated Clustering via Sampling (ACvS) procedure and the Regressed

Data Summarisation Framework (RDSF), which are the third and fourth

contributions of this research, respectively.

• Chapter 7 concludes the thesis, and discusses future problems.



Where is the wisdom we lost in knowledge? Where is
the knowledge we lost in information?

— T.S. Eliot
The Rock. ([24])

2
Machine Learning Methods

2.1 Introduction

The first formal topic that needs to be addressed in order to present the contributions

of this thesis emerges from the following question: “what are the patterns that we

are interested in observing in the input data?”. As stated in the previous chapter,

machine learning programs are particular computer programs that attempt to

discover patterns in their input data in automated fashion. The patterns that they

may find is generally restricted to the specific machine learning algorithm they

implement. Thus, depending on the machine learning algorithm used, different

patterns emerge from the input data.

This chapter presents a set of machine learning algorithms that assume different

settings and work under different assumptions, to ultimately find structures in the

data, and learn those structures. Primarily, the most important algorithms for

presenting our work are two fundamental methods to perform object classification:

Logistic Regression (LR) ([25]) and Support Vector Machines (SVM) ([26]). The

main objective of this thesis is to accelerate the computation of the algorithms used

to solve these two problems for cases where the input data become large; specially,

we are interested in scenarios where LR and SVM are cast as part of the machine

learning frameworks of Conformal Prediction (CP) and Venn-Abers Prediction

9
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(VAP). These two machine learning frameworks will be presented in Chapter 4 and

Chapter 5, respectively. However, the definition of LR and SVM do not depend on

these frameworks. Furthermore, once the two machine learning problems have been

formally defined, their connection with CP and VAP will become clear.

Our contributions rely on obtaining computational acceleration by summarising,

or compressing, the input data for the problems of LR and SVM. The specific

data compression strategy we will employ will be discussed in Chapter 3; however,

for the compression process, we will need additional tools from machine learning.

Specifically, we will use the methods ofK-Means clustering ([27]) and Ordinary Least

Squares ([2], Ch. 9, p. 95) for obtaining a grouping of the input data and a regressor,

respectively. Both methods will be formally addressed and defined in this chapter,

and their connection with data compression will become clear in the next ones.

Finally, the chapter will conclude with the specifications and descriptions of

the data-sets that will be used to evaluate our machine learning programs in

Chapters 4, 5 and 6.

2.2 The Big Data Paradox

We start the exposition of the machine learning methods that this thesis is concerned

about with an important phenomenon that takes place when dealing with machine

learning programs. There are two competing forces at play whenever we are

attempting to learn over some input data.

On one hand, ML algorithms benefit substantially from having large input data.

In fact, the theoretical success of most machine learning methods generally depends

on having a sufficiently large input data, to ensure bounded generalisation error. In

statistical learning theory, this sufficiently large condition is referred as the sample

complexity, and it states that the larger the input data, the more probable that

the learning methods will produce correct results. A general bound on the sample

complexity can be found in [2], Chapter 3, Corollary 3.2.

On the other hand, having a large amount of input data does create computa-

tional bottlenecks in the learning process as most ML programs can quickly exhaust
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the available computing resources. Therefore, learning algorithms improve as the

amount of available data increases, and, at the same time, their computability and

convergence dramatically deteriorate with the increase of available information.

We refer to this set of conflicting objectives as the big data paradox, and we will

see this phenomenon manifesting itself very often in our discussions. Our work,

as will be presented in Chapters 4, 5 and 6, reacts to this issue by making a

compromise on the accuracy of machine learning algorithms, in a well-defined sense,

for the sake of computational efficiency.

In the next section we define the general setting for classification problems in

ML, and instantiate two fundamental methods: Logistic Regression and Support

Vector Machines.

2.3 Classification

An elemental task in machine learning is to make predictions. Any ML program

that makes predictions poses, either implicitly or explicitly, the following question:

having observed a set of objects labelled in certain fashion, can we extract, or

construct, a rule, or model, to predict the labelling for objects that (i) have not

been observed before, (ii) do not possess any label assigned to them?

We can formalise the above scenario as follows: let the input data be of the

form D := {(xi, yi)}n, where n is the total number of (xi, yi) tuples in D, xi is an

object, or a feature vector, that mathematically belongs to the object space X := Rd,

and yi is the label for xi, and it belongs to the label space Y . Sometimes, it is

useful to refer to a tuple (x, y) ∈ D as an input example, where each input example

z := (x, y) comes from the space formed by the Cartesian product Z := X × Y .

Depending on the mathematical form of the label space, prediction problems in

machine learning can be instances of a classification problem, where Y is a finite

set and each member of Y is called a class; or a regression problem, where Y is the

infinite set of the real numbers i.e. Y := R. In this thesis we will be concerned

with classification problems that assume |Y | = 2; specifically, we mathematically

define the label space as the set Y := {−1, 1}. Classification problems of this kind
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are called binary classification problems, and they are of fundamental importance

in machine learning as every classification problem can be reduced to a set of

binary classification problems 1. It is useful to mention at this point that for binary

classification problems, the label 1 ∈ Y is referred as the positive label, whereas the

remaining label, −1 ∈ Y in our definitions, is called the negative label.

A fundamental assumption for our machine learning setting is the Randomness

Assumption, which we state as follows:

Assumption (Randomness). Every input example z ∈ D is sampled independently

from some probability distribution on the space Z.

Such assumption is a standard one in learning theory, and it is equivalent to

stating that all examples in D are independently and identically distributed (IID).

A rule to make predictions in the above scenario is called a hypothesis, a classifier

or a predictor 2, and it can be mathematically defined as a function hθ : X → Y ,

where h is parameterised by θ, which is called the model or the learning parameter.

That is, the predictor h maps an object to its potentially correct label, hence

predicting what the label of an object x is, considering the patterns seen in the

input data. We refer to the predicted label for a certain object x as ŷ := hθ(x),

to distinguish it from the ground-truth label y.

The above definition of h is an example of a parametric classifier : a classifier

that looks into the available input data and keeps a model, the (learning) parameter

θ, that mathematically reflects the patterns seen in the data. There are different

methods for obtaining the model θ, and each method defines a different classifier.

We shall consider two important methods for obtaining a binary classifier: LR and

SVM. Each method allows for the design of a hypothesis h by providing different

procedures for obtaining the underlying model θ which, mathematically, for both

of these problems, is of the form θ ∈ Θ, where Θ := Rd+1.
1There are standard procedures to do this. Two important approaches are: “one-against-all”

and “one-against-one”. See [28] for details.
2the more appropriate terms are scoring classifier and/or single-point predictor. The rationale

for this naming convention will become clear once Conformal Prediction and Venn-Abers Predictors
are introduced in Chapters 4 and 5, respectively.
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2.3.1 Logistic Regression

The Logistic Regression method proposes to obtain a learning parameter for the

classifier h by optimising an objective function called the log-likelihood function,

which we shall define in this section. For an unlabelled object x, the LR classifier

makes the prediction hLRθ (x) = σlogistic(x · θ), where σlogistic is defined as follows

([2], Ch. 9, p. 97):

σlogistic(r) :=
1 1/(1 + exp(−r)) > 0.5
−1 otherwise,

(2.1)

where r ∈ R and the expression 1/(1+exp(−r)) is a sigmoid function 3 known as

the logistic function. As we mentioned earlier, the challenge is to find the parameter

θ ∈ Θ that the LR classifier relies upon for making predictions.

We assume we have the input data D := {(xi, yi)}n; we further define the

likelihood of observing yi = 1 for xi as plogistic(yi = 1|xi; θ) := 1/(1 + exp(−x′i · θ)),

where θ ∈ Θ is the learning parameter and x′i ∈ Rd+1 is the object xi extended

with an 1 element to account for the bias term. The latter is a natural procedure

for writing an affine function in Rd as its homogeneous linear counterpart in

Rd+1 ([2], Ch. 9, p. 90).

Similarly, we can write the likelihood of observing the label yi = −1 for object xi
as:

plogistic(yi = −1|xi; θ) := 1− 1
(1 + exp(−x′i · θ))

= exp(−x′i · θ)
(1 + exp(−x′i · θ))

= 1
(1 + exp(x′i · θ))

.

(2.2)

Therefore, for any yi, we can write its likelihood as plogistic(yi|xi; θ) := 1/(1 + exp(−yix′i · θ)).

Because the input dataD is assumed to be independent and identically distributed,

an assumption we will carry throughout the whole thesis, the log-likelihood function

LLn(θ|D) can be defined as ([2], Ch. 9, p. 98):
3“Sigmoid” means “S-Shaped”, and it refers to the shape the function takes for all values in its

domain.
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LLn(θ|D) :=
n∑
i=1

ln plogistic(yi|xi; θ) = −
n∑
i=1

ln(1 + exp(−yix′i · θ)), (2.3)

which is the objective function for the LR problem. The optimal solution for

the above function can be obtained using maximum likelihood estimation ([29],

Ch. 4, p. 200). Maximising LLn(θ|D) is equalivent, however, to minimising

Ln(θ|D) := ∑n
i=1 ln(1 + exp(−yix′i · θ)) over all θ ∈ Θ. With this manipulation in

place, the optimisation problem for finding an optimal LR model can be written as:

θ∗ := arg min
θ∈Θ

Ln(θ|D). (2.4)

Once we have optimised Equation (2.4), we can use the optimal θ∗, or an

approximation to it, to define the LR classifier hLRθ∗ to predict the labels of unseen

data i.e. unlabelled objects that were not used in Equation 2.4 to find the optimal

model for LR. Thus, for an unlabelled object x, the LR classifier we just defined

will make a prediction hLRθ∗ (x) = σlogistic(x′ · θ∗) = ŷ, where ŷ ∈ Y .

The advantage of the LR hypothesis is that, because of the nature of the logistic

function, it provides a probabilistic interpretation to its predictions; that is, the

values produced by the logistic function, specified in the definition of σlogistic in

Equation (2.1), can be interpreted as probabilities for seeing the positive label.

Furthermore, these probabilities are generally well-calibrated in practice ([30]).

Therefore, the LR classifier concludes that, if the logistic value is greater than 0.5,

then it is more likely that the label for the object x is 1; if, however, the logistic

value is less or equal to 0.5, then it is safer to predict the negative label.

The log-likelihood function in Equation (2.3) is a convex function, and thus

modern solvers can efficiently optimise it ([2], Ch. 12, p. 124). However, as

the number of examples in the input data D grows, finding the optimal model

θ∗ becomes computationally prohibitive, specially if the LR model is computed

within a machine learning framework such as Conformal Prediction. This topic was

addressed extensively in our work published in [31]. By inspecting Equation (2.3)

closely, we indeed see that the number of computations done grows at least linearly
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with the number of input points. As we will see in Chapters 4 and 6, our main

claim is that it is not necessary to compute the log-likelihood for every input point

in order to obtain a good LR classifier; it is enough to perform the computations

on a very small subset of the data. By reducing the number of operations in this

way, we can efficiently obtain an approximated LR model, θ̄, and show that the

resulting LR classifier hLR
θ̄

performs well both within and without the Conformal

Prediction framework. In Chapter 3 we will present the computational technique

for finding such sub-sets of input points.

2.3.2 Support Vector Machines

We now turn our focus toward another approach for defining a classifier hθ: the

Support Vector Machines (SVM) paradigm ([26]).

The SVM method attempts to find a linear separation in the input data by

finding a hyperplane 4 that does not only separate input points, but also keeps

them far from itself ([2], Ch. 9, p. 90). This idea is formalised with the concept

of a margin, which is the minimal distance between a point in the input data and

a hyperplane ([2], Ch. 15, p. 168). Thus, SVM finds hyperplanes that separate

the input data by a large margin. A classifier defined using the SVM paradigm

takes the form of hSVMθ (x) = sign(x′ · θ), where x′ ∈ Rd+1 includes the bias term

and the function sign(a) outputs 1 if a > 0 and −1 otherwise. Thus, hSVMθ (x)

uses a large-margin hyperplane θ to make its predictions.

The SVM paradigm allows to be instantiated under different assumptions,

depending on what knowledge we might have regarding the input data. For

example, we can assume that the input data is linearly separable and, under that

assumption, we would have an instance of a hard-SVM formulation ([9], Ch. 12,

p. 417-420). However, linear separation is a strong assumption which can prove

restrictive for the applicability of our contributions. Thus, we consider the soft-SVM

formulation which allows for non-separable input data while attempting to find
4any hyperplane can be written as the linear function l(x) :=

∑
i xiθi = x · θ, where x and θ

are vectors, and the xi and θi are their respective components. In our ML context, we consider x
to be an input point and θ the learning model.
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hyperplanes that have as few input points as possible laying on the wrong side

of the halfspace. Formally, for our input data D, obtaining a model θ with the

soft-SVM formulation is equivalent to minimising the following objective function

over all θ ∈ Θ ([2], Ch. 15, p. 172):

f(θ) := λ||θ||2 + 1
n

n∑
i=1

`(θ;xi, yi), (2.5)

where `(θ;xi, yi) := max{0, 1 − yi(x′i · θ)} is a loss function ([32]) called the

hinge loss and λ > 0 is the parameter determining, or regularising, the trade-

off between increasing the margin size and ensuring that training data lie on

the correct side of the margin.

By definition, minimising the function in Equation 2.5 will allow us to find a

hyperplane θ∗ that makes a large-margin linear separation among input points. The

SVM paradigm, however, can naturally be extended to also capture non-linearity

among input points, which in turn could enhance the generalisation capabilities

of the hypothesis hSVMθ∗ . This can be achieved via the use of kernels ([9], Ch.

12, p. 417): mappings to high-dimensional feature spaces that allow the SVM

classifier to cope with non-linearity; that is, data points are mapped from their

original input space to a feature space where the former is embedded, so that a

linear separator can be learned in the latter space.

We can formalise this as follows: let K(w, z) := exp(−γ||w − z||2) and φ(·)

be the Radial Basis Function (RBF) kernel ([33]) and the feature mapping in-

duced by the kernel, respectively, with w, z ∈ Rd and γ ∈ R. The RBF kernel

function, also known as the Gaussian kernel function, allows us to obtain the

dot product for any two vectors without computing explicitly their mapping to

a higher dimensional space. Therefore, we can equivalently represent the kernel

through the corresponding kernel function and via its induced feature mapping

i.e. K(w, z) := φ(w) · φ(z) := exp(−γ||w − z||2).

We can then re-write Equation (2.5) as

f(θ) := λ||θ||2 + 1
n

n∑
i=1

max{0, 1− yi(θ · φ(x′i))}, (2.6)
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which now applies the mapping φ to all xi.

Equation 2.6 shows the kernelised SVM objective function in the primal form.

We shall use this formulation for the rest of the thesis. Finally, the optimisation

problem for the just defined SVM formulation is:

θ∗ := arg min
θ∈Θ

f(θ), (2.7)

where θ∗ is guaranteed to be a large-margin separator.

An important property of the solution for Equation (2.7) is that, following a

result known as the Fritz John optimality conditions ([34]), the SVM solution can

be written as a linear combination of the input points ([35]); that is, the optimal

SVM solution is of the form θ∗ := ∑n
i=1 αiyiφ(xi) ([33]). The αi are real-valued

coefficients, and when they have a non-zero value, their companion vectors xi are

called support vectors 5. Based on this property, it is standard to write the primal

SVM objective function, defined in Equation (2.6), in its dual form 6. The dual

SVM formulation directly optimises over the α coefficients that can be used to

construct the optimal solution. For the sake of completeness, we include the dual

SVM formulation as defined in [2], Ch. 15, p. 176:

max
α∈Rn:α≥0

 n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj)
 , (2.8)

where α ∈ Rn is a column vector containing the α coefficients for each input

point, and K(·, ·) is the kernel function that computes the dot product for any

two input points. Having both the primal and the dual formulation for SVM,

it is important to state that, for our work, the primal SVM objective function

is preferable as (i) it allows for gradient-based optimisation solvers such as the

Stochastic Gradient Descent (SGD) ([37]); (ii) it can be naturally extended to online

or streaming settings; (iii) it does not suffer from the over-quadratic computational

complexity of the dual form ([38]).
5since the SVM solution θ∗ is in the linear span of the vectors xi with coefficients αi 6= 0, the

xi vectors are said to geometrically support the optimal solution.
6the dual form can be derived from the primal by applying a tool from optimisation known as

the Karush-Kuhn-Tucker theorem ([36]).
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Still, solving the primal SVM poses a hard computational challenge as the

number of input points increases. This complexity arises from the fact that, when

using kernels, the number of non-zero αi, and thus the number of support vectors,

grow almost linearly with the number of input points ([39]). This phenomenon

is commonly known as the curse of kernelization ([40]), and the computational

challenges it presents are well-known and well documented (see [41], [40], [35]

and references therein).

To mitigate the curse of kernselisation, sparse models are generally preferred

as solutions for Equation (2.7) as sparsity, in this context, means that less input

points contribute toward the model; and hence the optimisation problem can be

solved faster. However, in alignment with the big data paradox discussed previously

in this chapter, too much sparsity can damage the quality of the obtained model.

In Chapter 3 we will present a tool that, heavily relying on results and intuitions

from the field of computational geometry, will allow us to obtain sparse SVM

models with strong convergence guarantees.

2.4 Other Machine Learning Problems

This section presents additional tools from machine learning whose definitions are

important for understanding our contributions in Chapters 4, 5 and 6.

2.4.1 k-Means Clustering

k-Means is an instance of clustering, an important unsupervised learning scenario

that was briefly mentioned in Chapter 1. Webster ([42]) intuitively defines clustering

as “a statistical classification technique for discovering whether the individuals of a

population fall into different groups by making quantitative comparisons of multiple

characteristics”. Thus, the aim of any clustering algorithm is to find the natural

grouping of input points based on one or more well-defined similarity measures.

Generally, ML programs that implement a clustering algorithm are parameterised

by an integer k, which is the number of groups, also known as clusters, that are

to be found in the input data. We are interested in using the k-Means method
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([27]) for obtaining a clustering of the input data. A solution found with k-Means

produces a partition of the input data, where each of the parts is concentrated

near their central point: the centre. Thus, the problem consists in finding those

centres, which ultimately will induce the desired clustering over the input data.

Formally, let our input data be of the form D := {(xi)}ni=1 and let k > 0 be the

number of clusters that we want to find in the input data. Notice that since

clustering assumes an unsupervised ML setting, our input data is unlabelled. Let

Q := {q1, q2, ..., qk} be a set of k potential cluster centres i.e. |Q| := k, and define

Q as the set of all sets containing k points in Rd. The k-Means method attempts

to optimise the following objective function ([43]):

Q∗ = arg min
Q∈Q

cost(D, Q) :=
∑
x∈D

min
q∈Q
||x− q||22 (2.9)

In this context, Q is a query and Q is the query space. Thus, each query has

a computable cost associated with it; in the case of k-Means, the sum of squared

Euclidean distances to the input points is the cost, and the task is to find a set of k

centres, Q∗, that minimises that cost. Therefore, the similarity measure used to

obtain a k-Means clustering of the data is the squared Euclidean distance. If we

change this measure to the Euclidean distance i.e. we replace ||x−q||22 with ||x−q||2
in Equation (2.9), we would have an instance of the k-Median method ([44]).

The state-of-the-art procedure that we will rely upon for solving the above

optimisation problem is called k-Means++ ([27]). In order to describe the steps

performed by this procedure for solving Equation (2.9), let D(x, S) be the minimum

squared Euclidean distance between point x and any set S ⊆ Rd i.e. D(x, S) :=

mins∈S ||x − s||22.

1. initialise an empty set Q = ∅ to collect the centres.

2. choose the first centre q1 uniformly at random from the input data D. Add it

to Q i.e. Q = Q ∪ {q1}

3. take a new centre qi from the input data, choosing x ∈ D with probability
D(x,Q)∑
x∈D D(x,Q) . Add qi to Q i.e. Q = Q ∪ {qi}.
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4. repeat step 3 until k centres are sampled i.e. until |Q| = k holds.

5. for each i ∈ {1, 2, ..., k}, set the cluster Ci to be the set of points in D that

are closer to centre qi ∈ Q than they are to centres qj ∈ Q, with i 6= j.

6. for each i ∈ {1, 2, ..., k}, set qi ∈ Q to be the mean of all points in Ci:

qi = 1
|Ci|

∑
x∈Ci x.

7. repeat steps 5 and 6 until Q no longer changes.

David Arthur and Sergei Vassilvitskii proved in [27] that the above sequence of

steps find a query Q̄ that is O(log(k)) competitive with the optimal solution Q∗

i.e. cost(D, Q̄) ≤ O(log(k))cost(D, Q∗). This idea of initialising a k-means solution

with a set of centres that is picked non-uniformly at random (steps 3 and 4) will be

fundamental to understand the compression techniques to be discussed in Chapter 3.

2.4.2 Linear Regression

We have mentioned before that an instance of a prediction problem where the label

space Y is the set of real numbers is called a regression problem. As we will see

in Chapter 6, regression will be used by one of our protocols to provide valuable

information during and after a data compression process.

In particular, we will consider the case of linear regression. Let our input data

be D := {(xi, yi)}n, where the object xi ∈ X has a target value yi ∈ Y , with Y := R.

An algorithm that makes predictions in a regression setting is called a regressor.

The Ordinary Least Squares (OLS) method finds a regressor to the following

objective function ([2], Ch. 9, p. 96):

arg min
θ∈Rd+1

1
n

n∑
i=1

((θ · x′i)− yi)2 (2.10)

where as before, x′i ∈ Rd+1 is the object xi ∈ Rd padded with a 1 to account

for the bias term. Therefore, the OLS approach consist in finding a a regression

model θ∗ that minimises the discrepancy between its prediction for object xi and

the ground-truth target value yi, for all i. The most attractive aspect of this
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formulation is that it is not necessary to use an optimisation solver to obtain a

solution because Equation 2.11 allows for a closed-form solution. Let X be a

matrix containing all the feature vectors x′ ∈ D as rows, and y by a column vector

containing all the true target values for the vectors in X. Then the OLS solution

can be exactly computed as ([9], Ch. 1, p. 12):

θ∗ = (XTX)−1XTy (2.11)

As anticipated, we will efficiently make use of this θ∗ in Chapter 6 in the

context of compressing input data.

2.5 Input Data

This section ends the chapter with a discussion on the kind of input data that

are suitable for the learning protocols that will be proposed in the thesis. As

Section 1.1 mentions, a key advantage of the new protocols is their generality. It is

fundamental, however, to explicitly state what “generality” means when referring

to input data. There are two assumptions on the input data that the new protocols

require in order to work. These assumptions can be considered as mild ones as

they are standard for machine learning methods.

The first assumption that needs to hold for the input data of the new protocols

is that the number of dimensions of the input points, d, should be strictly smaller

than the number of available input points, |D| := n i.e. d < n must be true.

Hence, the input data should ideally be represented by a tall and skinny matrix

([45]). The rationale for this assumption is that the data compression techniques the

new learning protocols will deploy are strongly investigated under this assumption.

Furthermore, the data used in Conformal Prediction conform well with this kind

of data. It follows, then, that the new protocols will be suitable for applications

where the norm is to have a large number of relatively low-dimensional records,

such as chemical compounds interactions detection ([46], [47]), drugs discovery ([5],

[18]) and indoor positioning via signal processing ([48]), to name a few. It is worth
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mentioning that an important group of applications where this assumption is mostly

violated is that of text processing/mining (see [49] and references therein), where

the data is traditionally represented with short and fat matrices ([50]).

The second assumption is that data points in the input data should be indepen-

dent and identically distributed (IID) with respect to some probability distribution.

As will be discussed in Chapter 4, this assumption is crucial for the Conformal

Prediction method. Furthermore, most machine learning applications, including

all the ones cited previously, need this assumption in order to learn anything. A

new machine learning set of applications where the IID assumption does not hold

is that of Federated Learning ([51]). Thus, the data used in such setting cannot

be used with the protocols proposed in this thesis.

2.5.1 Data-sets

To finish the above discussion on the nature of the input data suitable for the

protocols proposed in this thesis, Table 2.1 summarises the main characteristics of

the data-sets selected for testing the new methods. This table will be particularly

useful later as the contribution chapters will refer to it every time a set of experiments

results is presented.

Table 2.1: The six data-sets that will be used to evaluate the new methods proposed in
this thesis. N is the number of examples, d is the number of dimensions for each example;
+ shows the number of positive examples, - is the number of negative examples and +/-
shows the rate of the former with respect to the latter. Spa stands for the sparsity of the
data-sets.

Data-set N d + - +/- Spa
covertype ([52]) 581,012 54 283,301 297,711 0.9 0.77
webspam ([3]) 350,000 254 137,811 212,189 0.6 0.66
higgs ([53]) 11,000,000 28 5,170,877 5,829,123 0.8 0.07
a9a ([54]) 48,842 123 37,155 11,687 3.1 0.88
ijcnn1 ([55]) 141,691 22 128,126 13,565 9.4 0.40
w8a ([54]) 64,700 300 62,767 1,933 32.4 0.96

The selected data-sets are widely used for testing data compression techniques

and for ML classification in general (see their sources and their corresponding
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citations). Furthermore, each data-set is publicly available at their respective

sources. The data-sets can also be downloaded from the well-known LIBSVM 7

and UCI Machine Learning 8 repositories.

As mentioned earlier in this chapter, this work focuses specifically on binary clas-

sification. Then, for each data-set in Table 2.1, the following information is shown:

• Volume of Data (N column): the total number of examples available from

the data-set. To apply ML methods, a percentage of this number is used for

the learning process while the rest is used for testing learning performance.

Concrete percentages will be provided in the experiments sections in the

contribution chapters.

• Dimensionality of Data (d column): the number of variables considered in the

data-set. Mathematically, this is the number of dimensions for each feature

vector in the data.

• Number of positive examples (+ column): total number of examples (x, y)

for which y = 1.

• Number of negative examples (- column): total number of examples (x, y) for

which y = −1.

• Balance rate (+/- column): a score that assesses how balanced ([56]) the data-

sets are in terms of the number of positive and negative examples. Concretely,

it shows the proportion of the number of positive examples with respect to the

number of negative examples, for each data-set. Thus, a value greater than 1

means an imbalance in favour of the positive class, while a value smaller than

1 means that there are more examples belonging to the negative class than

those that belong to the positive class. Therefore, the closer this score is to

1, the more balanced the data-sets are. In similar measure, the further it is

from 1, the more imbalance we have in the data.
7https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/ - last accessed 15/11/2021.
8https://archive.ics.uci.edu/ml/index.php - last accessed 15/11/2021.
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• Sparsity score (Spa column): sparsity is an important structure in the data; it

tells the proportion of the number of zero elements in the feature vectors with

respect to the number of non-zero entries. This metric measures sparsity by

dividing the count of zero values in the feature vectors’ elements in a data-set

over the total number of elements for all the feature vectors (N ∗ d). Notice

that the conceptual opposite to sparsity is density; and thus a density score

could be computed by performing 1 - Spa.

Regrading the sources for these data-sets, they arise from a wide variety of

applications. Then, these applications are also suitable for this thesis’ protocols

and can be considered alongside those mentioned in the previous sub-section. Each

data-set in Table 2.1 can be described as follows:

• covertype: a database built at the College of Natural Resources from the

Colorado State University. It contains cartographic variables that are used to

predict different forest cover types. Originally, the data-set contains 7 possible

forest cover types. However, in our work we use the binary version of the

data-set in which the 7 cover types are combined into two possible classes:

cover type 1 and cover type 2.

• webspam: a large corpus of emails structured in variables such as average

length of uninterrupted sequences of capital letters, number of appearances of

specific spam words, etc. Each row, or object, in the corpus is appropriately

labelled as spam or not spam. This data-set is also known as spambase, and

it has been extensively used in the design of spam filters (see [3]).

• higgs: a physics data-set produced by a mixture of measurements made by in

particle accelerators and Monte Carlo simulations. Specifically, the first 21

variables are proper measurements and the last 7 are simulations based on

those 21 measurements. The task is to predict whether a Higgs boson will be

detected (signal 1) or not (signal 0). More details can be consulted in [53].
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• a9a: a database that contains census information for adult people, including

variables such as age, work class, education, marital status and more. The

task is to predict whether their yearly income will exceed $50,000. This

data-set has been used to show the performance of the Sequential Minimal

Optimization SMO algorithm ([54]) for learning SVM classifiers.

• w8a: data-set designed in the context of text categorisation: the data contains

as variables different keywords found in web pages and the task is to predict

whether the web pages belong to a category or not. Similar to a9a, this

data-set has also been used to test the effectiveness of the SMO algorithm for

the problem of support vector machines.

• ijcnn1: synthetic data-set used as part of a machine learning challenge during

the first edition of the well-known International Joint Conference on Neural

Networks (IJCNN 2001) ([55]). ijcnn1 presents a complex scenario for learning

classifiers due to the imbalance found in the data i.e. about 90% of the

instances belongs to the positive class.

2.6 Chapter Summary

Machine learning is the field concerned with automated detection of patterns in

data. One of the most fundamental tasks in the field is that of classification.

Two of the most important classification methods are logistic regression (LR)

and support vector machines (SVM). LR allows for the design of a classifier by

finding a model that maximises the likelihood of predicting the correct labelling

for a set of training examples. From the optimisation point of view, this task

is equivalent to minimising the negative log-likelihood function. The resulting

classifier makes predictions that have some interesting probabilistic interpretations,

and the LR classifiers uses a threshold of 0.5 to decide if the considered object

belongs to the positive or negative class.

SVM proposes a different formulation for finding a classification model. Based

on the idea of large-margin separation, SVM minimises the hinge loss in order to
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obtain a hyperplane that not only separate input points from different classes, but

also separates them by a large margin. The predictive capability of SVM can be

enriched with the use of kernels, which are functions that map input points to

higher dimensional spaces. It is a standard result in machine learning that by using

kernels, non-linearity in the input space can be captured by a linear classifier in the

high-dimensional feature space where input points are embedded. This powerful

feature, however, does not come for free as high computational cost, in terms of

both computing power and storage, is incurred with the use of kernels. This issue

will be a central topic to two of our contribution chapters.

We have also presented the method of K-Means clustering, which will be useful

for understanding the data compression technique we will present in the next

chapter. Similarly, the problem of finding a linear regressor will be fundamental

for understanding one of our learning protocols, and thus, a gentle introduction

was provided as a reference.

Finally, this chapter showed the data-sets chosen to present the empirical results

in this work. Each data-set is publicly available and can be easily obtained for

replication purposes. As long as the application area of interest uses data that (i)

can be represented with a tall and skinny matrix; (ii) have IID input data points,

the learning protocols in this thesis will be effective.



Truth is much too complicated to allow anything but
approximations.

— John Von Neumann
The Neumann Compendium. ([57])

3
Coresets

3.1 Introduction

The previous chapter has presented a set of machine learning techniques for finding

patterns in data and it has also highlighted the importance of having large amounts

of information as input for the machine learning algorithms used in those methods;

in other words, it has established that larger input data generally translates into

better learning. The computational consequence of this necessity, however, is that

the running time of machine learning programs can exhaust the available computing

power very quickly. We have referred to this phenomenon as the big data paradox.

This chapter introduces the central algorithmic tool this thesis uses for finding

middle-ground solutions to the above dilemma: the framework of coresets. Resem-

bling the concept of approximation algorithms in Computer Science, this technique

allows for the computation of a good solution as a surrogate to an optimal solution,

for the sake of computational efficiency, for hard computational problems. Unlike

conventional approximation algorithms, however, the coreset framework does not

attempt to change the algorithms whose running times we wish to improve; instead,

it aims to reduce, or compress, their input data into a small summary of data:

the coreset. Therefore, since computational complexity is measured as a function

27
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of the input size, we will aim to obtain computational acceleration by replacing

the large input data with a its compressed version.

The most attractive feature of this data-compression technique is that the coreset

theoretically preserves the main structures of the large input data, with respect to a

well-defined mathematical function; and thus, once a coreset is computed, it can be

used as a reliable proxy to the input data. From the statistical-learning point of view,

much like the training set can be seen as a window through which a partial view to the

ground-truth data-generating mechanisms becomes available to ML algorithms, the

coreset can be understood as a small window to the larger input data it represents.

Coresets will be instrumental to our contributions in Chapters 4, 5 and 6;

therefore, we devote this chapter to presenting the formal definitions for this data-

compression technique, along with the algorithms that will be used for computing

a coreset for the ML scenarios considered in the next chapters.

3.2 Background

The idea of approximating the solution of an existing algorithm is not new in

Computer Science; in fact, approximation algorithms are the standard approach

for tackling hard computational problems such as the set cover problem ([58]),

scheduling ([59]) and the knapsack problem ([60]).

The necessity of finding approximated solutions as surrogate for the optimal

ones is rooted in the inherent computational complexity of many problems. To

remind the reader, there are two main classes of problems in Computer Science:

those that can be solved in computational time that is polynomial in the input size

are said to belong to class P; on the other hand, the problems that (currently) do

not allow for a solution in polynomial time are contained in class NP. An algorithm

converges in polynomial time if and only if said time can be written as a function

f(n) = nk ([61], Ch. 7, p. 286), where n is the input size and k is a constant. Thus,

in Computer Science, problems that allow polynomial-time solutions are regarded

as efficiently solvable, or in computational terms, tractable.
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The design of algorithms becomes much more challenging for the problems in

the NP category as no polynomial-time solutions are known for them. In this case,

the algorithm designer has two options: (i) attempt to use an existing inefficient

algorithm, if any, to design a polynomial-time solution, or (ii) design an algorithm

for a relaxed version of the problem and hence accept some compromises in terms

of quality of the solutions, generality of the solutions or reliability of the solutions.

Approach (i) involves solving the most important computational problem of our

time, because finding a polynomial-time solution for a problem in NP immediately

implies that P = NP, which in turn would be a million-dollar groundbreaking

discovery. A much more realistic and down-to-earth path is the one stated in (ii);

as was hinted before, we cannot have a solution that is (a) optimal, (b) fast and

(c) general 1, for hard computational problems. The most common way around

this is to relax point (a) and settle for a “good enough” solution that can be

obtained in polynomial time. An algorithm that produces such solution is called

an Approximation Algorithm (AA).

Even though AAs produce sub-optimal solutions to the problems they are

designed to solve, they provide theoretical guarantees on the distance to the optimal

solutions. This distance is formalised by the approximation factor α. Notice that

the latter differences AAs from heuristics like Genetic Algorithms (GA) ([62]) and

Tabu Search (TS) ([63]), as these methods, despite working generally well in practice,

do not provide any guarantees for the solutions they compute.

Formally, we define approximation algorithms as Williamson et al. ([64],

Ch. 1, p. 14):

Definition 1 (α-approximation algorithm). We call A an α-approximation algo-

rithm for an optimisation problem if and only if A is a polynomial-time algorithm

that, for all instances of the problem, produces a solution whose value is within a

factor of α of the value of an optimal solution.

1that is, a solution that works for all instances of the problem.
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Definition 1 presents a concise summary of our discussion so far: AAs are fast

algorithms that provide solutions that are always within an α factor of an optimal

solution. Furthermore, this formal definition unveils two fundamental traits of AAs.

First, AAs are problem dependent and the problem they are designed for is an

optimisation problem; that is, a problem whose solution is found by minimising or

maximising a specific mathematical function, the objective function, over a well-

defined set of solutions, and possibly subject to a set of constraints. Second, the

solutions produced by AAs are not only for some instances of the optimisation

problem, instead, the approximated solutions hold for all instances in the solution

space of the problem. This is a strong guarantee, and a powerful advantage of

AAs. Hence, going back to the three desirable traits of an algorithmic solution i.e.

optimality, speed and generality, approximation algorithms give fast and general

solutions at the cost of relaxing optimality.

3.3 The Framework of Coresets

The framework of coresets is closely related to the concept of approximation

algorithms. The method was born in the field of Computational Geometry as a

systematic approach for finding the minimum number of input points that are

necessary to approximate the solution of various geometric problems, most notably

shape fitting problems ([65]). Even though the term “coreset” was coined in the

work of Agarwal et al. ([23]), the idea was present in the research community under

names such as “certificates” and ε-nets ([66], [23]).

A coreset is a small compact mathematical set that approximates a bigger set

([67]). As AAs, coresets provide a theoretical guarantee on the approximation

quality via an approximation factor, for a specific optimisation problem of interest.

Unlike AAs, coresets do not attempt to re-define any algorithmic solution in order to

speedup computations; instead, they solely work on the input data for the problem

at hand by attempting to reduce its size to a much smaller number. There are

three important aspects to this reduction in the data size:
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1. It is controlled. The reduction in size is not arbitrary in the sense that the

loss of information is bounded by an approximation factor. Thus, without

loss of generality, a coreset preserves the main properties of the set of data it

approximates.

2. It is fast. The computation of a coreset, in principle, should be fast. Hence,

an algorithm that reduces a set of data to a coreset, is expected to converge in

polynomial time. This is another similarity coresets share with AAs; however,

while AAs enforce this by definition, coresets do not. Hence, for coresets, this

is an informal requirement which, still, has a very important effect in practical

applications.

3. It is problem dependent. As its approximation algorithm counterpart, a

coreset is a small set that approximates a bigger set of data for a specific

optimisation problem. That is, since a coreset can be seen as an attempt to

retain the most valuable pieces of information from a set of data, a well-defined

notion of what is valuable is necessary.

The formal definition for coresets can be stated as follows: let function f be the

objective function for some optimisation problem and D be the input data. Define

a set of feasible solutions for f , Q; the members q ∈ Q are generally referred as

queries and Q itself is referred as the query space ([68]), because one can query the

value of f for each q ∈ Q by computing f(D, q). The set C is said to be a ∆-coreset

for D with respect to f if the following condition holds for all q ∈ Q [67]:

|f(D, q)− f(C, q)| ≤ ∆f(D, q) (3.1)

where ∆ > 0 accounts for the error incurred for evaluating f over C i.e. instead

of using the full input data D. This expression establishes the main error bound

offered by coresets. Indeed, there is some information loss when the input data

is replaced with its coreset, but this loss is bounded and controlled via the error

parameter ∆. Notice that this error factor is analogous to the α factor in AAs;

furthermore, as AAs, the error guarantee holds for all possible solutions of the
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given optimisation problem i.e. for all queries in the query space Q. Finally, as

was hinted before, it is expected that |C| � |D| holds.

3.4 RelatedWork on Coresets for Machine Learn-
ing

As discussed on Section 2.2, machine learning programs attempt to find meaningful

patterns in their input data. These patterns are crucial for obtaining a better

understanding of the underlying data-generating mechanisms at play. Thus, in the

field of machine learning, more input data is, in principle, and at the very least,

desirable; this is because having more data available inevitably means better chances

of unveiling more aspects of the ground-truth phenomenon of interest. Paradoxically,

computer programs in general become slower as their input data grows; this is the

big data paradox we have discussed in the previous chapter: on one hand, it is

highly desirable to gather as much data as possible as this generally improves the

output of learning programs , and on the other, the more data we collect, the more

computationally exhaustive learning algorithms become.

In the last decades, coresets were introduced in machine learning in order to

provide a middle-ground solution to the above dilemma for hard learning problems.

Using the existing coreset theory, the machine learning community, alongside

computer science and computational geometry theorists, have developed different

approaches for constructing small coresets that approximate large input data. The

most studied learning problem in this regard is clustering, both in its special

cases such as k-Means ([67], [69], [70]) and k-Median ([70], [71], [44]), and in its

generalisation to M-estimators ([68], [72]). An important number of coreset results

for clustering can be found in [43] and [73].

There are also some incursions in the supervised-learning setting; specifically,

there exists coreset constructions for the problem of linear regression, along with

its constrained variants i.e. LASSO regression, Ridge regression and Elastic Net

regression ([74]), and recently, some advances on coresets for neural networks were

achieved ([75], [76], [77]). The most studied supervised-learning problem, however,
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is that of Logistic Regression (LR), for which Huggins et al. designed a novel

algorithm for summarising the input data based on existing coreset results for

clustering ([78]); a follow-up work was done by Munteanu et al. ([79]) where a new

complexity measure for the analysis of large data-sets was introduced, and new lower

bounds for coresets could be derived with respect to this measure. Independently

from these works, from an optimisation standpoint, Reddi et al. ([80]) proposed a

theoretical iterative approach for compressing input data assuming an Empirical

Risk Minimisation (ERM) setting ([2], Ch. 2, p. 15) instantiated with the logistic

loss and the hinge loss functions. Another supervised-learning problem that has

enjoyed the attention of the coreset community is that of Support Vector Machines

(SVM) ([81]); this followed the groundbreaking result in computational geometry by

Bădoiu and Clarkson [82] that showed that the `2-SVM problem can be reformulated

as the problem of finding the Minimum Enclosing Ball (MEB), and in this case,

the coreset includes the points lying furthest away from the current centre of the

current MEB. Many notable coreset algorithms for compressing input data for SVM

followed directly from this result, this includes the Core Vector Machine (CVM)

([83]), its simplified version, named Ball Vector Machine (BVM) ([84]), and the

recent Approximation Vector Machine (AVM) ([35]).

3.5 Coreset Construction

The expression in (3.1) states that evaluating function f over a ∆-coreset C, which

was obtained from the input data D, gives an output value that, in the worst case,

can deviate by a ∆ factor from any solution in the query space. A natural question

to ask is how to construct, or find, a set C that fulfils this requirement.

It turns out that the answer to the above question is far from trivial. First,

the answer depends heavily on f : a set of points that fulfils the requirement in

(3.1), for example, for the problem of k-Means will most likely not work for the

problem of Logistic Regression as solving these problems involve different settings

and different objective functions (see Section 2.3.1 and Section 2.4.1). In some

sense, this can be seen as a consequence of the famous impossibility result known
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as the No-free-lunch (NFL) theorem ([85]). Second, even when a specific problem

has been fixed, an algorithm for selecting coreset points must be designed and a

theorem stating that such algorithm produces a set of points that approximates

the original set of points, as shown in (3.1), has to be proved.

The most important approaches for constructing a ∆-coreset for ML problems

inevitably fall into one of the below four categories. As before, assume that D is

the input data and that C is a ∆-coreset for D with respect to function f .

1. Geometric decomposition ([70]): this category covers a set of procedures

that attempt to decompose, or discretise, the d-dimensional space where the

input points reside. Geometrically, a grid is drawn onto the input points and,

for each cell of the grid, a representative point has to be chosen. Hence, by

collecting all representative points, one obtains a ∆-coreset. This methodology

was the first approach used to construct coresets, and it has proved to be

effective for compressing data for many computational-geometry problems.

2. Randomised selection ([71]): this category refers to a well-established

framework, generally based on geometrical arguments, that involves defining

a sampling distribution to account for the importance of each input point. A

naive procedure for compressing input data using randomised selection is to

simply use an uniform distribution; however, albeit straightforward, uniform

sampling is unable to produce small coresets for non-outlier-resistant problems

([86]). A more involved procedure is offered by the Sensitivity Framework

proposed by Feldman et al. in [71], where a non-uniform distribution,

concentrated on a real-valued measure called the sensitivity, is used for

sampling sensitive, or important, points with respect to function f . Thus,

each input point is assigned a sensitivity score which captures the point’s

contribution toward the objective function f . Algorithms following this line

of work are generally parameterised by a probability of failure δ. This is

the probability that the guarantee in Equation 3.1 does not hold after the

compression process.
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3. Iterative selection ([82]): this set of strategies aims to construct coresets

by using tools and analysis from convex optimisation. Most of the techniques

under this category use coresets implicitly while optimising function f . In fact,

even the well-known sub-gradient method ([87]) can be seen as an iterative

algorithm that optimises function f over a coreset ([82]). The interested

reader can find more details on this approach in [88], [89], [90] and [91].

4. Projections ([92]): this category involves techniques that are largely inspired

by the Johnson-Lindenstrauss lemma ([93]), a result that states that the input

data can be embedded in a much lower-dimensional space such that the

distances among input points are approximately preserved. Thus, a coreset

constructed by projecting input points onto lower dimensional spaces generally

preserve the number of input points i.e. |C| ≤ |D|, but since the coreset points

live in a lower-dimensional sub-space, learning programs do converge faster.

Projection-based coresets are hence well-suited for high-dimensional input

data as many learning problems become simply intractable as the number of

dimensions increases, this is commonly known as the curse of dimensionality

([29], Ch. 1, p. 33).

From these four approaches to construct coresets, the first two are fundamental

to the rest of this thesis. The advantage of using geometric decomposition or

randomised selection for obtaining a coreset is that the obtained coreset C is, in

those cases, a subset of the input data D, which means that the input space is

preserved after the compression process. Projections and iterative approaches,

however, often apply mathematical transformations e.g. linear transformations,

to the points in the input data in order to obtain the coreset points. These

transformations generally project the input space into different sub-spaces and thus,

the input points and the coreset points cannot be associated after the compression

is done. Furthermore, in the latter cases, the coreset is a completely new dataset

and hence the prediction results obtained from learning over this coreset are hard

to interpret in terms of the original input data D.
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The next section presents two algorithms that offer proven guarantees for

computing a coreset for the classification problems defined in Section 2.3. The

first one is the Approximation Vector Machines (AVM) algorithm ([35]), and it

exploits the fact that the SVM objective function in Equation (2.5) can be reduced

to the problem of finding the Minimum Enclosing Ball (MEB) for a set of d-

dimensional points. This fact allows the use of well-known discretisation-based

ideas for constructing coresets. The second algorithm is named Randomised Coreset

Algorithm (RCA) ([78]) and it is an approach that relies on non-uniform sampling

for constructing a coreset for the LR problem. RCA performs importance sampling

in order to select input points with meaningful contribution to the LR objective

function, defined in Equation (2.4).

3.5.1 Deterministic Coreset for SVM

The method of Approximation Vector Machines, AVM for short, defines a the-

oretically proven approach for compressing the input data into a coreset when

the objective function at hand is the one for soft-SVM. AVM has two interesting

features: first, it proposes a deterministic approach to coresets and thus there

is no probability of failure (δ) in the compression process. The probability of

failure cannot be omitted in randomised algorithms. Second, AVM does not only

compress the input data, but also iteratively constructs a SVM model, θ̄, during

the compression process. Therefore, after AVM converges, we obtain both: a

fully trained SVM model 2, and the coreset over which the returned model was

trained. This style of output is indeed uncommon in the coreset literature as most

coreset algorithms output only the obtained coreset. This particular aspect of

AVM served as inspiration for one of our main contributions of this thesis, the

RDSF method, to be presented in Chapter 6.

Returning to our AVM presentation, it becomes clear from our discussion so far

that AVM does apply some solving strategy for the SVM objective function during
2notice that “fully trained” means that no more training is needed after AVM converges. This

obtained model, of course, is sub-optimal as it was constructed from a coreset, not from the full
input data.



3. Coresets 37

its execution. Indeed, AVM can be described as a coreset-based implementation of

the well-known Stochastic Gradient Descent (SGD) ([94]) solver. In other words,

what Le et al. proposed in [35] is to exploit the sequential nature of SGD to

incrementally build a SVM model θ̄t, ∀t ∈ (1, . . . , T ), over representative input

points, where T is the total number of sequential updates performed to the model.

Furthermore, Le et al. proved that, after T iterations, the final AVM solution, call

it θ̄T , is not far from the optimal SVM solution, θ∗.

Before providing a full description for AVM, it will be instructive to describe the

standard SGD steps. At each iteration t, SGD performs the following operations:

1. choose an example from the input data i.e. a tuple (xi, yi) from D.

2. set the learning rate ηt e.g. ηt = 1/λt (as recommended in [38]), where λ is

the regularisation parameter in the SVM objective function (2.5).

3. set the update for t as gt = λθt + ∇`(θt;xi, yi), where ∇`(θt;xi, yi) is the

gradient of the loss function ` i.e. the hinge loss presented in Section 2.3.2,

evaluated at (xi, yi).

4. perform the update θt+1 = θt − ηtgt.

Concentrating on step 3 above, notice that for the hinge loss it is true that the

gradient can be represented as ∇`(θt;xi, yi) := αtφ(xi), where αt is a scalar and φ

is our mapping to the feature space. These are the support vectors and their α

coefficients discussed on Section 2.3.2. If αt 6= 0 then xi is said to be a support

vector; and furthermore, the SGD solution at iteration t can be expressed in terms

of those support vectors, namely, θt := ∑t
i=1 α

(t)
i φ(xi). In practice, one would want

to set t = T = n, where n is the total number of training examples.

We have mentioned in our discussions on SVM that the number of support

vectors grows very quickly, especially when we use kernels. AVM allows us to

mitigate the curse of kernelisation by only increasing the model size when the newly

seen point is far from previously processed input points.
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We are now in a good position for defining what representative points means

for AVM. To do that, we need the following definition: given a domain space X

e.g. our object space, a δ-coverage for X is defined as below.

Definition 2 (δ-coverage). The collection of sets P = (Pi)i∈I is a δ-coverage of X

if and only if X ⊂ ∪i∈IPi and D(Pi) ≤ δ ∀i ∈ I, where I is the index set and D(Pi)

is the diameter of the set Pi i.e. the maximal pairwise distance between any two

points in the set. Furthermore, each element Pi ∈ P is referred as a cell.

To put the above definition in simpler language, a δ-coverage, called above P,

is a partition of a set of points into cells or containers, each having a diameter of

at most δ. Hence, to AVM, all the points in the same cell are approximately the

same, and thus all of them can be represented by a single point, called the core

point. In theory, any point in a cell can be chosen as its core point. In practice,

due to its sequential nature, AVM needs to construct the δ-coverage for the input

data on the fly and hence it deterministically chooses the centre of each cell as its

core point. The algorithm to construct the δ-coverage is described in Algorithm

11. Notice that it discretises the input space into hyperspheres or balls, each of

them containing its own core point. Each cell Pi is a ball which is constructed with

an input point as a centre and with fixed radius of δ/2. Notice further that the

first input point seen always becomes a centre, and hence a core point (c1). If the

distance of the second input point to the first one, which is a core point, is greater

than δ/2, then this point also becomes a core point (c2) and is used as the centre

for a second ball, and so on. Finally, the coreset is the union of all the core points

C := ∪i∈I{ci}, where each ci is the centre of a ball Pi ∈ P.

To further build intuition, Figure 3.1 shows the output of this algorithm for

230 synthetic 3-dimensional samples. The coreset is the set containing only the

centres of the balls. Notice that this directly implies that the coreset size is indeed

the number of enclosing balls used to discretise the input space.

Equipped with all of the above discussion, we can appreciate the full AVM

method in Algorithm 10. It is easy to see the SGD structure in the algorithm;
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Figure 3.1: An illustration of the 3D hyperspheres coverage for 230 samples (the blue
dots) from a synthetic dataset. All samples in each ball may be represented by its core
point: the centre of the ball, which reduces the total number of samples from 230 to just
10.

however, notice that now we fetch the core point representing the cell in which

the current input point resides, and perform a traditional SGD step using it.

AVM guarantees that if we proceed that way, we can obtain a solution θ̄T such

that E[|f(θ̄T ) − f(θ∗)|] ≤ ε, which in expectation gives us the main theoretical

coreset guarantee, as defined in Equation (3.1). For the theoretical proof on AVM’s

convergence we refer the reader to [35], pages 10-12.

One very important property of the AVM definition is that it does not provide

a way to control the number of core points. This is a very peculiar feature as most

coreset constructions use a special parameter for this. In practice, this should be

handled carefully; in fact, to use AVM as part of our methods in the next chapters,

we impose a budget size for AVM in order to control the size of the coreset.
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Algorithm 1: An algorithm for constructing P, as defined in [35]. Each
Pi is a ball with radius δ/2.
1 P ← ∅
2 M ← 0
3 for i ∈ 1, 2, . . . do
4 receive a (xi, yi) pair
5 ji = arg mink≤M ||xi − ck||
6 if ||xi − cji|| ≥ δ/2 then
7 M = M + 1
8 cM ← xi // Core point
9 P = P ∪ [B(cM , δ/2)] // Construct Pi

10 end
11 end

Algorithm 2: The AVM algorithm proposed by Le et al. Notice that the
SGD update rule is expressed in terms of αt and φ(·). The model θ is
constructed only from the core points.
Input: D: input data, λ: regularisation parameter, P := (Pi)i∈I : δ-coverage
Output: θ: SVM Model

1 initialise
2 θ1 ← 0
3 for t ∈ 1, . . . , T do
4 get (xt, yt)
5 ηt ← 1/λt
6 Find it ∈ I such that xt ∈ Pit
7 gt = λθt + αtφ(cit)
8 θt+1 = θt − ηtgt
9 end

10 return θT+1

3.5.2 Randomised Coreset for LR

This section presents the state-of-the-art method available for constructing a coreset

for the problem of logistic regression. The RCA method, proposed by Huggins

et al. , poses the task of constructing a coreset as the task of defining a non-

uniform distribution for the input points, and then sampling from that distribution.

We start to build intuition with the following general question: “why not simply

use uniform random sampling?”

Indeed, the above question does lead us to coresets. Uniform Random Sampling

(URS) can be seen as a naive randomised approach to compute a coreset. Consider
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we have our input data D and that we want to reduce its size in order to speed up

the computation of a machine learning algorithm. We can simply assign probability

1/|D| to each example in D and then sample according to this distribution. The time

needed to reduce the size of the input data in this way is virtually negligible. The

problem with this simple approach, however, is that we have to sample a very large

number of points to ensure low error ([86]); that is, in order to keep the discrepancy

between the result obtained from the full input data and the sample bounded, an

impractically large URS sample from D will be needed. This happens because

different points make different contributions to the objective function at hand and,

consequently, by assuming that all input points contribute equally to the objective

function, important points could be left out of the coreset if the uniform sample is

not sufficiently large. This result, however, does put us on the right direction.

RCA is guaranteed to produce a ∆-coreset of size M with probability 1− δ for

logistic regression. Thus, based on the objective function defined for logistic

regression in Equation (2.3), RCA outputs a coreset for which the following

theoretical guarantee holds:

|Ln(θ|D)− L̃M(θ|C)| ≤ ∆|Ln(θ|D)| (3.2)

for all θ ∈ Θ, where Ln(θ|D) is the negative of the log-likelihood function over

the input data and LM(θ|C) is the weighted negative of the log-likelihood function

evaluated over the ∆-coreset C, with |C| = M . Notice that the coreset guarantee

holds for the whole parameter space where θ lives, Θ ⊆ Rd+1.

Unlike the uniform-sampling approach where equal sampling probabilities are

assigned to all the elements in D, RCA defines a non-uniform distribution that

attempts to capture how important each input point is with respect to the log-

likelihood of the full input data D. This importance is materialised in a score called

the sensitivity of the point, which is the central quantity for constructing coresets

non-uniformly. Once the sensitivity is computed for each input point, M points

are sampled according to the sensitivity scores. The final step is to compute the

weights for each sampled point, which are generally inverse-proportional to the



3. Coresets 42

Algorithm 3: RCA: a randomised algorithm to construct coresets for
Logistic Regression.
Input: D: input data, QD: k-clustering of D with |QD| := k, M : coreset

size, R : radius of bounding Euclidean ball
Output: ∆-coreset C with |C| = M

1 initialise;
2 for i = 1, 2, ..., n do
3 mi ← Sensitivity(n,QD, R) ; // Compute the sensitivity of

each point
4 end
5 m̄n ← 1

n

∑n
i=1mn ;

6 for i = 1, 2, ..., n do
7 pi = mi

nm̄n
; // compute importance weight for each point

8 end
9 (K1, K2, ..., Kn) ∼ Multi(M,(pn)ni=1) ; // sample coreset points

10 for i = 1, 2, ..., n do
11 wi ← Ki

piM
; // calculate the weight for each coreset point

12 end
13 C ← {(wi, xi, yi)|wi > 0};
14 return C

sensitivity scores, and return the M weighted points. RCA is guaranteed to produce

a ∆-coreset of size M with probability 1 − δ for logistic regression.

RCA does produce coresets with better approximation guarantees compared

to uniform sampling. The downside is, however, that defining and computing

the sensitivities is very challenging because (i) computing the exact sensitivity of

each input point is not computationally tractable ([78]); thus, lower and upper

bounds for it need to be systematically defined; then, a proof to show that these

bounds yield to small coresets is necessary; (ii) the bounds should be efficiently

computable. On this front, it is worth mentioning that a coreset algorithm needs

to inspect each input point at least once. Hence, by “efficiently computable”, we

mean linear time in the number of input points n.

It is important to mention that Huggins et al. followed the well-established

sensitivity framework [71] to design their algorithm. This framework was successfully

used to construct coresets for different instances of clustering problems such as

k-Means and k-Median. The main idea is to formulate the coreset construction
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as the problem of finding an ε-approximation [95] , which can be computed using

non-uniform sampling based on the importance of each data point, in some well-

defined sense 3. Hence, each example in the input data is assigned an importance

score, and then a sampling based on the distribution of those importance scores is

performed in order to select the examples that will be included in the coreset.

An approximation to the optimal clustering of the input data is required in

order to calculate such importance scores. For each point (example), the sensitivity

score is computed by taking into account the distance between the point and its

nearest (sub-optimal) cluster centre obtained from the approximation. The next

step is to sample M points from the distribution defined by the sensitivity scores,

where M is the size of the coreset. Finally, each of the M points in the coreset is

assigned a positive real-valued weight which is the inverse of the point’s sensitivity

score. The sensitivity framework returns a coreset consisting of M weighted points.

The theoretical proofs and details can be found in [71].

If we inspect Algorithm 3 closely, we can see that it is assumed we have some

k-clustering of the input data, Q, where each q ∈ Q is a cluster centre in the input

data D and |Q| = k (See Section 2.4.1 for a full definition of k-Means clustering,

for example). These centres are used to compute the sensitivity scores (lines 2-4

); then, sensitivities are normalised and points get sampled (line 5); finally, the

weights, which are inverse proportional to the sensitivities, are computed for each

of the sampled points (lines 6-12). Thus, even though the obtained coreset is for

logistic regression, RCA still needs a clustering of the input data as it is common

for any coreset algorithms designed using the sensitivity framework.

Theoretically speaking, RCA uses a k-clustering of the input data to obtain a

bound on the sensitivities. The algorithm also receives a parameter R: a real-valued

quantity that bounds the parameter space, Rd+1, to an Euclidean ball of radius

R. As mentioned early, the coreset guarantee in Formula (3.2) should hold for all

parameters θ ∈ Rd+1. However, Huggins et al. showed that a bounded parameter

space is needed in to prevent the sensitivity from blowing out to infinity. The
3for our discussion, it is enough to state that this importance is a real-valued score in the

half-open interval [0,∞)
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proofs and technical details on how/why this clustering-based bound is indeed

a sensitivity bound for logistic regression is out of the scope of this discussion;

all these details can be found in [78].

Practically speaking, the use of k-clustering brings an intuitive interpretation for

the sensitivity: points that are bunched together are redundant while points that

are far from other points have more influence over the LR objective function ([96],

[78]). Hence, points far from the centres Q are assigned high sensitivity scores while

close points will get low scores. After computing the sensitivities, the algorithm

defines the non-uniform distribution based on these values. Ideally, we want to

sample sensitive points as often as possible and put them in the coreset. We sample

M points i.e. using the Multi() procedure, we compute their weights, and finally

return all the points with non-zero weights. It is worth mentioning that due to its

randomised nature, RCA produces different coresets at each run.

Remark 1. In the description of Algorithm 3, we hide the coreset dependency

on the coreset error parameter ∆. There is a good reason for doing this. When

theoretically designing a coreset algorithm for some fixed problem, there are two error

parameters involved: ∆ ∈ [0, 1], the “loss” incurred by coresets, and δ ∈ (0, 1), the

probability that the algorithm will fail to construct a coreset. Then, it is necessary to

define the minimum coreset size M in terms of these error parameters. The norm

is to prove there exists a function t : [0, 1]× (0, 1)→ Z+, with Z+ being the set of

all positive integers, that gives the corresponding coreset size for all possible error

values i.e. t(∆1, δ1) := M1 implies that M1 is the minimum number of points needed

in the coreset for achieving, with probability 1− δ1, the classical coreset guarantee

that instantiated for logistic regression in inequality (3.2), for ∆1. However, in

practice, one does not worry about explicitly giving the error parameters as inputs;

since each coreset algorithm comes with its own definition of t, one only needs to

give the desired coreset size M and the error parameters can be computed using

t. Finally, t defines a fundamental trade-off for coresets: the smaller the error

parameters, the bigger the resulting coreset size i.e. smaller coresets may potentially

lose more information than bigger coresets. For RCA, Huggins et al. proved that
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t(∆, δ) := d cm̄n∆2 [(D + 1)log m̄n + log(1
δ
)]e, where D is the number of features in the

input data, m̄n is the average sensitivity computed over all input examples and c is

a constant. The mentioned trade-off can be appreciated in the definition of t.

Figure 3.2 shows a single run of RCA over 100 two-dimensional points which were

synthetically generated to illustrate how the coreset algorithm works in practice.

The algorithm uses the clustering of the data to define the sensitivity for each

point. Then, it samples according to the non-uniform distribution of the sensitivity.

Finally, it computes the weights and returns a coreset. The only thing left to do in

this case is to run a LR solver over the coloured points in plot (d); using conformal

prediction language, the weighted coreset can be used as a proper training set for

training a single-point LR predictor. Notice that to compute the coreset, RCA only

needs the example’s object x. The label y is only used in the learning phase 4.

To finish the RCA exposition, the following final observations regarding the

algorithm can be noted: 1) the inverse relation between the sensitivity and the

weight of a point i.e. highly sensitive points are low-weighted and vice versa. This

becomes intuitive if one considers the fact that RCA is using clustering to compute

the sensitivity: highly sensitive points are representing few points from the original

dataset as they were far from other points. This can be observed in plots (c) and

(d) of Figure 3.2; 2) the compression trade-off between the size of the coreset M

and the coreset error ∆: smaller coresets can potentially incur in greater error while

a larger coreset can be more accurate at the cost of sacrificing more storage and

computing time; 3) the polynomial dependency of the coreset size on the mean

sensitivity m̄n (Remark 1): as the parameter space expands, the mean sensitivity

grows, which in turn enlarges the coreset size. Hence, it is clearer now why the

parameter space has to be bounded to a ball of radius R i.e. unbounded parameter

space means infinite sensitivity, which implies infinite coreset size. Again, if we go

back one more time to Figure 3.2, we computed the sensitivities in plot (c) fixing

the radius to R = 2.5. If we re-run the algorithm with a higher value for R, say

R = 5, then we would see that the great majority, if not all the points, would turn
4Coreset points retain the same labelling.
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(a) (b)

(c) (d)

Figure 3.2: A step-by-step run of RCA over a simple 2-dimensional synthetic dataset;
(a) shows an illustrative synthetic 2-dimensional data for which a logistic regression coreset
is computed using RCA; the data has 100 points; (b) displays a k-clustering of the data
to be used by the coreset algorithm to compute the sensitivities, with k = 3 (c) shows the
sensitivity distribution for our small dataset; the brighter the colour, the more sensitive
the point is;the radius was set to R = 2.5 (d) shows the obtained coreset, with the coreset
size being 9 points; the colours here indicate the weights of points: the brighter the colour,
the “heavier” the point is.

into a very bright colour. Hence, when the sensitivities are too high, we virtually

degenerate into uniform sampling; 4) RCA can compute all the sensitivity scores

in O(nk) time; we previously mentioned that coresets algorithm cannot do better

than linear time as they need to examine each data point at least once. Therefore,

RCA is a quite efficient coreset algorithm and, as the size of data gets very large,
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its gains in running time become quite useful.

3.6 The Size and Error Trade-off

A key point when discussing algorithms to construct coresets is the inevitable

inverse relationship between the size of the generated coreset and its error. As

our formal definition states, a coreset approximates the input data up to a factor

∆. Even though every coreset algorithm provides this theoretical guarantee, the

size of the resulting coreset, typically expressed as a function of ∆, can be very

different from algorithm to algorithm. Table 3.1 shows what the coreset sizes

look like for the well-studied problem of k-Means clustering, which is the most

investigated computational problem in the coreset community due to its geometrical

interpretation. The table also shows the coreset sizes for the LR and SVM problems,

as obtained by the RCA and AVM methods, respectively.

Table 3.1: The size-error trade-off of coreset algorithms for a set of ML problems. n
is the size of the input data, d is the number of dimensions in the input data, ∆ is the
approximation error and k is the parameter for the number of clusters for the k-Means
problem; P is the δ-coverage used in AVM.

Problem Coreset Size Authors

k-Means O(k∆−d logd+2 n) Har-Peled & Mazundar ([70])
k-Means O(k3∆−(d+1) logd+2 n) Har-Peled & Kushal ([97])
k-Means O(dk∆−2log8 n) Chen ([44])
k-Means O(dk log k∆−4 log5n) Feldman & Langberg ([71])

k-Means Õ(( d∆)O(d)k logO(d) n) Ackerman et al. ([98])
LR O( 1

∆2 (d+ 1)) Huggins et al. ([78])
SVM O(|P|) Le et al. ([35])

As shown in the above results, it is often the case that coresets are order of

magnitudes smaller than the input data size n i.e. the coreset size is logarithmic or

near-logarithmic in n. Table 3.1 also sheds light on the competing forces of coreset

error and coreset size: most of the coreset sizes have a polynomial dependence of 1
∆

on the approximation error; that is, in most of the bounds shown above, the greater
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the approximation error gets, the smaller the coreset size becomes, and vice versa.

Notice that AVM is a special case because, as we mentioned earlier in the chapter, the

method does not provide a bound on the coreset size explicitly. Thus, the maximum

coreset size is the total number of enclosing balls that we have in the δ-coverage P .

The main idea of Table 3.1 is to show how coresets react to the big data paradox

discussed previously, for different machine learning problems.

3.7 Adequate Data Representation with Coresets

One natural question that often arises when using coresets in practical applications

is the following: “ How adequately can a coreset represent a data-set for a specific

learning problem X?”. The answer to such question relies, ultimately, on the

machine learning practitioner. There are two important aspects that need to be

discussed to shed light on this issue.

3.7.1 The theoretical aspect

Coreset algorithms, such as the ones presented in this chapter, offer a theoretical

proof that states that when using the coreset as a surrogate for the original input

data one possesses, the discrepancy in performance will be measurable and tractable

with an error parameter ∆; and as the previous discussion in this section highlighted,

the value of this error parameter will influence the final size of the coreset. As the

chapter mentioned in Section 3.5.2 (Remark 1), each coreset algorithm comes with a

theoretical bound for the coreset size, and such bound is written with respect to the

coreset error parameter. For instance, the coreset size bound given by RCA can be

written as t(∆, δ) := M := d cm̄n∆2 [(D+1)logm̄n+log(1
δ
)]e, whereM is the coreset size,

D is the number of features in the input data, m̄n is the average sensitivity computed

over all input examples and c is a constant. In essence, once one has a coreset

algorithm for problem X, the coreset theory guarantees that the optimal solution

found in the coreset will never deviate from the optimal solution in the original data-

set by more than a factor of ∆ (see [78] for a condensed exposition of the theoretical

proofs involved when designing a coreset algorithm for logistic regression).



3. Coresets 49

In similar fashion, Chapter 4 will show how the framework of Conformal

Prediction also automatically produces a calibrated number of prediction errors

using machine learning classifiers.

3.7.2 The practical aspect

Coreset theory automatically guarantees the tractability of the error induced by the

data compression process. The theory, however, does not tell the user what error

values to use for generating a coreset as this heavily depends on the application

and setting the ML practitioner is interested in. To make this clear, suppose

we have two scenarios: scenario A and scenario B, both exploiting the benefits

of coresets in different fashion.

Scenario A

Scenario A consists in an industrial application of chemical compounds interactions

detection with the goal of releasing a new drug that aims to reduce the probability

of having a heart attack. In this setting, a very large training set containing records

of different drugs’ characteristics is available and the data scientist in charge wants

to perform a fast classification using LR to test how well the interaction of this

new drug can be predicted for some test data she has. Since her computational

power is modest, she decides to use the RCA algorithm, presented in Section 3.5.2,

to obtain a coreset that she can use as a proxy to the full input data available.

Assume that the original training set has a total number of 2, 000, 000 data points,

each point having 70 dimensions, and that this data-set has an average sensitivity

score of 2 5 i.e. n = 2, 000, 000, D = 70 and m̄n = 2. Given the sensible nature of

this application, the practitioner needs a coreset that allows for a very small error

i.e. because of the implications of missing some drugs interactions may have on

the users’ health. Thus, she sets the error parameter for the coreset to ∆ = 0.01

and the probability error to δ = 0.01. Plugging in all these parameters to RCA’s

coreset size function t(∆, δ), she obtains a coreset size of M = 1, 076, 373, which
5The average sensitivity score depends on the given input data, and it is calculated in the RCA

algorithm using a k-clustering of the input data. See Algorithm 3
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requires her to use slightly over 50% of the total amount of data available. This

means that in the worst case scenario, for all possible solutions for the LR problem

in the original data-set, the LR solution found in the coreset will be deviated from

that found in the original drugs interactions data-set by a factor of 0.01.

Scenario B

Scenario B presents a different situation from the one discussed above. Here,

the application at hand uses ML to give instant feedback to banking customers

regarding their loan applications in automated fashion. To do this, the data scientist

has a large database containing the banking activities of all the bank’s customers

from all the different branches. Since the nature of the application favours speed

over precision, he decides to just look at a subset of the available data to decide

whether the customer has good chances of getting the requested loan approved.

The computational resources assigned to this application are modest, and the data

scientist is only allowed to use 1Gb of data to make the decision for the loan

requests. The software output is just for the customers to know whether their loan

application is strong or not; at the end, the bank will have to get some further input

from the customers to make a final decision. Thus, the ML practitioner decides to

rely on a LR classifier to make the decision, and furthermore, she decides to use a

coreset, instead of uniform random sample, of the customers database for giving the

customer the requested feedback. She calculates that she can safely fit 1, 000, 000

data points in the assigned 1Gb space, out of the 20, 000, 000 data points stored in

the database. Each of these input points has a number of dimensions of D = 100.

Thus, she wants to calculate the worst case error for a coreset of sizeM = 1, 000, 000.

She further sets the probability-of-failure parameter to δ = 0.01. Assuming that

the average sensitivity of the bank customers data-set is m̄n = 50 and that the

coreset algorithm is RCA, putting these values into function t−1(M, δ) 6 gives a

coreset error bound of ∆ = 0.3. Hence, the approximate solution for LR found in

the coreset can deviate, in the worst case, by 30% from the value of the optimal
6notice that this is the inverse function of t, and gives the coreset error with respect to the

coreset size.
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solution found in the full costumers database. In conclusion, a coreset can always

track the worst case scenario for a specific problem. The optimal parameter values

to construct a coreset, however, cannot be generalised for all possible applications.

3.8 Aggregations via Merge & Reduce

Finally, one important aspect of the coreset paradigm is that it allows the adaptation

of batch coreset construction algorithm to distributed and streaming settings

straightforwardly. This is a very attractive feature of coresets, and we include it

here because the below properties will enable our contributions to be extended

to those computational settings.

The coreset paradigm provides the following two properties ([68]):

• Recursion: coresets allow to be computed in recursive fashion, at the cost

of stacking up the approximation error. Formally, if C1 is a ∆-coreset for D,

and C2 is a ∆-coreset for C1, then the recursion property asserts that C2 is a

∆2-coreset for D.

• Addition: two coresets can be safely merged together provided they are

representing two non-overlapping sets of data. Formally, let C1 be a ∆-coreset

for P1 and C2 be a ∆-coreset for P2, with P1 ∩ P2 := ∅. Then, by the addition

property, we have that C1 ∪ C2 is a ∆-coreset for P1 ∪ P2.

The combination of the Recursion and Addition properties gives a powerful

protocol for adapting existing coreset construction to more complex settings such as

the ones mentioned above. One could, for example, hold non-overlapping portions

of some input data across many machines. In order to avoid transmitting large

portion of data over the network, each machine could only transmit a coreset of its

local data to a central server, which in turn can perform a straightforward merge

operation (applying the addition property) to obtain a coreset representing all the

data stored in the machines. Some works on this line can be found in works of

Zhang et al. ([99]) and Feldman et al. ([100]).
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Another computational scenario that becomes available as consequence of the

two properties established above is that of streaming. In such setting, the input

data arrives sequentially to our hypothetical machine, and the incoming influx of

information is so big compared to the machine’s storage capacity, that the input

data can never be held in its entirety in memory. It turns out that coresets are quite

powerful for tackling this challenging situation. The main technique is referred as

merge & reduce and can be traced back to the 1980’s work of Bentley et al. ([101]);

it was in the work of Har-Peled and Mazumdar ([70]), however, that merge & reduce

was used alongside coresets. The approach can be summarised in three steps: (i)

from the virtually infinite sequence of incoming data points, wait until the first t

points arrive and, once this happens, compute a coreset for those t points. Store the

coreset and disregard the original input points; (ii) as soon as there are c coresets

stored in memory, merge the coresets, via the addition property, and compute the

coreset of the union of the c coresets, via the recursion property. Now there are

coresets with different error guarantees i.e. the recursion property accumulates

the error ∆ multiplicatively. Thus, this naturally imposes a hierarchical structure

on the coresets kept in storage with respect to their approximation error ∆; more

concisely, that structure can be accurately represented with a tree with arity at most

c; (iii) repeat steps (i) and (ii) to keep populating the coresets tree. An interesting

observation of this technique is that the top-most coreset in the tree, is a coreset

for the rest of the coresets in the tree. More details can be found in [70]. Also, a

new approach, based on merge & reduce, was proposed by Braverman et al. ([68]).

3.9 Chapter Summary

Approximation algorithms are one of the most effective approaches to tackle hard

computational problems in Computer Science. This idea largely inspired similar

approaches in many mathematical fields and sub-fields. The paradigm of coresets

is one of such approaches; designed originally to efficiently solve shape-fitting

problems in computational geometry, coresets provide a systematic framework for

provably correctly approximating sets of points. The technique has seen substantial
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success in solving hard machine learning problems in the last decades, especially

for the intractable problem of clustering. Coresets are small problem-dependent

summaries of data. Once a coreset is computed, it can safely replace the original

input data as it provide a guarantee, ∆, that the solutions found in the coreset

will not be arbitrarily far from those found in the original input data. Thus,

coresets do lose some information, but the loss is bounded. The construction of

these small data summaries can be deterministic, randomised, iterative or based on

projections. For our work, the former two will be of great importance. Therefore,

we have presented two representative methods for those cases: the deterministic

AVM and the randomised RCA.

The size of a coreset depends inversely on the approximation error; that is, smaller

coresets allow for more information loss, and bigger coresets favour optimality as they

restrict the error size further. Consequently, the best parameters for computing

a coreset depend heavily on the application at hand.

The coreset paradigm is very attractive due to the properties of Recursion

and Addition: the former allows one to compute the coreset of coresets, at the

cost of accumulating error; the latter states that the union of coresets is also

a coreset, provided that the merged coresets are summarising non-overlapping

sets of data. It follows directly from these two properties that any solution to a

computational problem that is based on coresets can be extended to distributed

or streaming scenarios with little effort. The streaming setting, a particularly

constrained computational model, is a natural fit for coresets via the merge &

reduce approach, in which we can deal with an unbounded number of input points

by merging and re-compressing coresets, building hence a tree containing coresets

as leaves. Still, it is important to observe that coresets have limitations: they

are entirely problem dependent and thus theoretical guarantees for one problem

do not automatically transfer to any other problem. Furthermore, designing a

coreset construction algorithm is a demanding task and there are many problems

for which no coreset constructions are allowed.
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In the next three chapters, we will propose a series of protocols to efficiently

classify data, and the coreset technique will be the backbone for those protocols.



It is a profound and necessary truth that the deep
things in science are not found because they are useful;
they are found because it was possible to find them.

— J. Robert Oppenheimer
Atom and Void: Essays on Science and Community

([102])

4
Coreset-based Inductive Conformal

Prediction

4.1 Introduction

Up to this point, we have presented two fundamental machine learning classifiers,

LR and SVM; both of them allow us to predict labels for data we have not seen

before. These predictions, however, have to be taken with a grain of salt as we

cannot really know how good the predictions are until the correct labels are disclosed

to us. In this Chapter, we present Conformal Prediction (CP) [13]: a framework

where virtually any machine learning algorithm can be plugged-in in order to

complement its output with confidence information. That is, CP answers not only

the traditional question “what are the predictions for this set of objects?”, but

also the fundamental question of “how much can I trust these predictions?”. These

answers are given to us before we get to see the correct labelling of the data we

are making predictions over. The output of CP for a specific object x, then, is

not a predicted label ŷ (single-point prediction), but a set, called prediction set,

containing, for each possible labelling of the object i.e. ∀y ∈ Y , a p-value that

quantifies the fraction of training examples that are at least as different from others

as x is if we label it with y ([103]). The notion of difference here is grounded on a

dissimilarity function called non-conformity measure, which needs to be defined a

55
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priori. Furthermore, CP provides us with the following theoretical guarantee: if

we disregard the labels whose p-values are smaller than a significance parameter ε,

which is provided before running CP, then the correct label of the object at hand

will be in the prediction set with probability at least 1 − ε.

The above powerful properties do not come for free, unfortunately. Due to

its elevated computational overhead, the use of CP is mainly restricted to small

datasets. This chapter addresses this issue with the algorithmic data-compression

technique of coresets, presented in Chapter 3. Specifically, we will introduce the

method of Coreset-Based Inductive Conformal Prediction (C-ICP), which replaces

the training set in CP with a small coreset, obtaining substantial computational

acceleration without altering the CP framework in any way. CP will be instantiated

with the two classifiers introduced in Chapter 2: LR and SVM. Fundamentally,

we will show that the theoretical properties of CP transfer naturally to C-ICP,

and conclude that this first interaction between CP and coresets leave the door

open for a new research line on CP with large data.

4.2 Conformal Prediction

We start the chapter relying on the machine learning notation introduced in Chapter

2. Assume the typical classification scenario where we want to classify some object,

call it xn+1, and further assume that this object has a (so far unknown) label yn+1

that can be one of the values in the set {1,−1}; the imminent learning question is

what is the correct label of object xn+1? To answer this classic question in learning

theory, we would need to train a classifier on some objects sampled from the same

space xn+1 lives; more concretely, we need to take a fixed number,n, of training

objects, along with their respective labels, and construct a mathematical model

that will allow us to predict a label ŷn+1 for the current object we are interested

in classifying. This model is used to define a hypothesis, or single-point predictor,

as we discussed in Section 2.3. Thus, the typical output of a learning algorithm

in this case would be the predicted label ŷn+1 and only once the true label yn+1

becomes available to us we can know how well our classifier performed.
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The main purpose of the framework of Conformal Prediction is to attempt

to answer a second question in addition to the one stated above: how good of a

prediction is ŷn+1 for object xn+1?. To do this, CP converts single-point predictors

into conformal predictors. In the above situation, CP would tell us how likely it is

that ŷn+1 = 1 and ŷn+1 = −1. These values can be seen as reliability measures that

become available to us before we get to see the true label for object xn+1. This is

why the term Reliable Machine Learning ([12]) is used when machine learning occurs

through the CP framework. As mentioned before, CP receives an ε parameter, the

significance parameter, which guarantees that if we predict a label whose reliability

measure is greater than ε, then the average number of errors of CP will be at most

ε ([104]). Hence, a conformal predictor does not output a single-point prediction for

object xn+1 as, for example, the classifiers discussed in Chapter 2; instead, it gives

us a prediction set consisting of all labels whose reliability measures are greater

than the ε parameter. In the next section, we will formalise these ideas and we will

also shed light on two fundamental properties of CP: validity and efficiency.

4.2.1 CP Notation and Assumptions

In order to properly define the CP framework, it is important to make use of the

following compact notation. We define an example as zi := (xi, yi),∀i; that is, zi
is a tuple consisting of an object xi ∈ X and a its corresponding label yi ∈ Y ,

where X is the object space and Y is the set of all possible labels, or the label space.

We further set X := Rd and Y := {1,−1}. Therefore, the space where examples

live can be mathematically written as Z := X × Y .

As is usual in CP literature, we use a bag 1 as the main structure for holding

our data, and it implicitly implies that the ordering of our data is of no importance

for the output of conformal predictors ([13], p. 23). Thus, we define Zn, a bag

containing n examples, as Zn := Hz1, z2, ..., znI, where n ∈ N. As with all our

previous definitions, we also define the bag space, the space containing all bags

containing n examples, as Z∗.
1or a multiset.
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It will be useful to also remind the reader of our functional definition for single-

point predictors, as discussed in Section 2.3. Namely, we define a single-point

predictor as a function h : Z∗ × X → Y . Most machine learning predictors fall

under this definition, including the LR and SVM presented in Chapter 2; that is,

given a bunch of training examples Zn ∈ Z∗ and a new test object x ∈ X, the

single-point predictor h will output (predict) ŷ ∈ Y as the label for x.

Finally, it is important to observe that the theory we are about to present relies

on the Randomness assumption, stated in Section 2.3.

4.2.2 Non-conformity

Now that we have our notation and assumptions clear, we define a central concept

for CP: non-conformity. Generally, a conformal predictor measures how different

or non-conformal a new example is from a collection of examples we have already

seen. This idea is formalised via the concept of a non-conformity measure. Formally,

a nonconformity measure is defined as a function A : Z∗ × Z → R , where the

real-valued output of A is called a non-conformity score. Intuitively, this score

tells us how different an example z is with respect to the examples in the bag

Zn. A crucial observation here is that the description for such function A usually

relies on some learning model trained over the examples in Zn; hence, this is where

standard machine learning algorithms are plugged-in into the CP framework. As

the work of Shafer and Vovk states in [103], virtually any single-point predictor

can be used to define a non-conformity measure. Later in this chapter we will

define non-conformity measures for LR and SVM; for now, however, it is not

necessary to give a full definition of A.

Using A as defined above, and considering the bag Zn := Hz1, z2, ..., znI, a

non-conformity score can be assigned to example zi as follows:

αi := A(Hz1, z2, ..., zi−1, zi+1, ..., znI, zi) (4.1)

Notice that in order to compute the real-valued non-conformity score for the

example zi, αi, we exclude this example from Zn; this is because measuring how

non-conformal an example is compared to itself is trivial.
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We can compute these scores for each member of Zn and obtain a matching

bag, Hα1, α2, ..., αnI, containing all the non-conformity scores for each z ∈ Zn. In

the next section we will see that these values are of little interest to us in isolation

from each other; however, by comparing them against each other, CP produces the

p-values that can be used as informative reliability measures for our predictions.

4.2.3 P-values as Reliability Measures

With the main concepts in place, we can now fully define a conformal predictor.

As before, we start from the functional definition. A conformal predictor can be

defined as a function Γ : Z∗×Z × (0, 1)→ 2Y , where 2Y is the set of all the subsets

of Y and (0, 1) is the open interval between 0 and 1.

This function definition is fundamentally different from that of a single-point

predictor in two major ways: first, the conformal predictor Γ outputs a subset of the

label space Y , instead of a single element y ∈ Y ; second, Γ receives a real-valued

parameter, usually denoted as ε, that can take any value 0 < ε < 1; this is the

significance parameter we have mentioned before, and it is used to regulate the

informativeness of a conformal predictor.

We will expand our discussion on the above properties of Γ later in the Chapter;

now, however, it is important to finish our formal description of a CP by using

the non-conformity concepts introduced previously.

Let A be a non-conformity measure, Zn be a bag containing n examples and x be

an object whose label we want to predict. The first step is computing non-conformity

scores for all the examples in Zn and also for our new object x. Notice that this new

object is an incomplete example in the sense that we have no knowledge about its true

label, call it ytrue; in fact, that is exactly what we are attempting to predict. Thus,

we provide a postulated label to x ([104]), y ∈ Y , and then see how non-conformal

the example (x, y) is compared to the examples in Zn. Formally, for each y ∈ Y ,

we do the following non-conformity computation, as defined in Equation (4.1):

αi = A(Zn \ HziI ∪ H(x, y)I, zi) ∀zi ∈ Zn (4.2)
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Similarly, we compute the non-conformity score for the example (x, y), consisting

of the new object and its postulated label:

α = A(Zn, (x, y)) (4.3)

Finally, we perform the following calculation using the non-conformity scores

obtained in Equations (4.2) and (4.3):

py := |{i = 1, 2, .., n : αi ≥ α}|+ 1
n+ 1 (4.4)

where py is the p-value of the postulated label y.

As it has been hinted before, the non-conformity scores are only informative

to us when we compare them against each other. This intuition is captured by

the p-value py, which quantifies how non-conformal the object x is with respect

to all the examples in Zn if we postulate that its label is y. As done in [103], we

will refer to Equation (4.4) as the conformal algorithm.

Thus, if py is small, we can conclude that when we label the object x with y, we

obtain a very strange example, (x, y), with respect to the bag Zn. On the other

hand, if py is large, it means that the example (x, y) conforms well with the rest of

the labelled objects in Zn and hence we can conclude that y is a suitable label for x.

Following the conformal algorithm described above, we obtain a p-value for each

label y ∈ Y . In order to produce the prediction set for object x, the conformal

predictor Γ rejects labels with p-values less or equal to the significance parameter ε.

We can formalise the prediction done by any conformal predictor as follows:

Γε(Zn, x) := {y ∈ Y : py > ε} (4.5)

Notice that ε is now written on top of Γ, as is usual in conformal prediction

([12]). The expression in (4.5) formally shows that the conformal predictor will

output as potential labels for x all the labels whose p-values are greater than ε.

Hence, conformal predictors are generally called set predictors and, ideally, we

want these sets to be as small as possible.
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4.2.4 Validity and Efficiency

We have established that CP computes a sequence of non-conformity scores and, via

the conformal algorithm, processes those scores into p-values, which give insights on

the strangeness of the example being considered. It then outputs a set of possible

labels for the object x, which we are interested in classifying. More concretely, the

labels in the prediction set Γε(Zn, x) are the ones with p-values greater than the

significance parameter ε. The fact that we have a set of predictions instead of a

single-point prediction leads us to the concepts of validity and efficiency, both being

closely-related properties of the prediction sets generated via CP.

We say that the prediction set Γε(Zn, x) is valid if and only if Γε(Zn, x) contains

the correct label for x, ytrue, with probability at least 1−ε ([103]). The most powerful

feature of conformal prediction is that all prediction sets that are generated via the

conformal algorithm are, by default, valid. The proof of this claim can be found in

[13], Chapter 2. Hence, validity is automatically provided by the CP framework; for

instance, if we have a prediction set Γ0.05(Zn, x), it is guaranteed that the correct

label for x will be in the prediction set with 95% confidence. Furthermore, in this

case, the maximum number of classification errors will be 5%. It is important to

observe that this error bound is for the average number of mistakes and thus it

should not be interpreted as a bound for each prediction made by the conformal

predictor. It is also worth mentioning at this point that a classification mistake,

in the conformal-prediction sense, occurs when the correct label of the object in

question e.g. x, is not present in the prediction set Γε(Zn, x).

Notice that we have defined validity for the label prediction of a single object

x. By the Randomness assumption stated in Section 2.3, it follows that the same

guarantee will hold for any sequence of test objects we attempt to classify. Thus,

given any sequence of t test objects (x1, x2, ..., xt) where t ≥ 1, a conformal predictor

γ0.1 will misclassify at most 10% of the test objects, and the correct labels will

be in the prediction sets 90% of the time.

A natural consequence of the concept of validity is that of efficiency. A prediction

set output by a CP γε is said to be efficient if the size of obtained the prediction
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set is small. Given a prediction set Γε(Zn, x), the maximum efficiency possible for

any prediction set is |Γε(Zn, x)| = 1 i.e. there is only one label in the prediction

set, and the minimum possible efficiency is |Γε(Zn, x)| = |Y | i.e. all the labels

in the label space are in the prediction set.

The above two cases lie on both sides of the efficiency spectrum, and they are

useful for building intuition on the role played by the significance parameter in

CP. The first one, |Γε(Zn, x)| = 1, is the ideal case; it means that the conformal

predictor, at significance level ε, is (1− ε)% sure that the only member in Γε(Zn, x)

is the correct label for x. In general, we want to be as close to this situation as

possible; in other words, we always look for significance levels that produce the most

efficient prediction sets possible. On the other side of the spectrum, we have the case

where |Γε(Zn, x)| = |Y |; this can be interpreted, for this particular significance level,

as the conformal predictor not being able to distinguish any meaningful pattern

for x, given the information available to the conformal predictor i.e. the bag Zn

and also the non-conformity measure A. Thus, in this case, Γε trivially outputs

the whole label space Y . However, this seemingly naive answer from the conformal

predictor, sheds light on a fundamental property of efficiency: unlike validity, it is

not automatically guaranteed by CP. In fact, we can see efficiency as the price to

pay for having the strong guarantee of validity. Therefore, efficiency is the property

of conformal prediction that is not automatically guaranteed.

Continuing with the instructive case where |Γε(Zn, x)| = |Y |, it directly follows

from the definition of prediction sets (Equation (4.5)) that every label y ∈ Y

has a p-value py > ε. By increasing the value of the significance parameter, we

can potentially obtain different prediction sets, with different sizes. This implies

that, given two different significance values ε1 and ε2, where ε1 < ε2, we have

that Γε2(Zn, x) ⊆ Γε1(Zn, x). Hence, nested prediction sets are generated as we

increase the significance level ([13], p. 8). The adequate significance value, of

course, will be problem-dependent; however, as is implied by our definitions, the

more nested the prediction set is i.e. the higher the significance level, the higher

the chances that the predictor makes a mistake.
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4.2.5 The Transductive Computational Setting

By inspecting the full definition of the CP framework, we can make two important

observations: i) the CP framework is defined in sequential fashion; ii) computing

non-conformity scores for n examples implies training at least n learning models.

These two issues are closely related. The theory of CP framework assumes an

online setting in which, as new examples become available to us, the predictions

become more accurate. Algorithm 4 presents the classic online CP setting. Notice

that E ε0 is the total number of classification mistakes made by the algorithm at

significance level ε.

Algorithm 4: Transductive Conformal Prediction Protocol.
Input: ε ∈ (0, 1) : significance level

1 E ε0 ← 0
2 for n = 1, 2, 3... do
3 Observe object xn
4 Compute prediction set Γεn ⊆ Y
5 Observe the label yn
6 if yn ∈ Γεn then
7 err = 0
8 else
9 err = 1

10 end
11 E ε0 = E ε0 + err

12 end

The protocol shown in Algorithm 4 is commonly known as Transductive Con-

formal Prediction (TCP) ([13]), where transductive, as indicated by Vapnik in [105],

implies that learning and predicting are not separated processes, as is common in

traditional batch machine learning procedures. Instead, these two processes are

mixed together and they both happen for every new example that the algorithm sees.

TCP assumes an online setting where there is an unbounded amount of input

data available to it, but the examples can only be seen one by one. At each step, a

new object xn becomes available from an unknown distribution and TCP computes

a prediction set for this object. Then the true label yn also becomes available,

and the following error assessment is performed: if yn is not in the prediction set
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output by TCP, the prediction is marked as erroneous. An important observation

is that once the true label for xn is disclosed and the error assessment is done,

the example zn is added to the bag of previously seen examples and it is used

for all future predictions done by the algorithm.

TCP has two very powerful properties and one undeniable drawback: first,

it becomes more accurate as the execution of the algorithm progresses i.e. the

number of examples collected grows and hence predictions are refined; second, the

predictions done at each step i do not only consider the previously seen examples

as most learning methods do, but also they are tailored to the object xi. The

main drawback of TCP is that it is computationally infeasible even for small input

data. Thus, for practical applications, a compromise on the benefits offered by the

transductive setting is necessary, for the sake of computational efficiency.

4.2.6 Inductive Computational Setting

Even though theoretically appealing, TCP cannot be used for modern datasets

as the cost of computing non-conformity becomes overwhelming as the number

of examples grows. A more forgiving computational setting is that of Inductive

Conformal Prediction (ICP) ([106]) where the concept of induction replaces that

of transduction. In the inductive model, a fixed number (or fraction) of examples

is used for computing non-conformity, and this knowledge persists in the form of

a learning model that is trained only once. After obtaining such model, we can

measure non-conformity for all new examples we are presented with, without the

necessity of performing expensive model training for each of them. Furthermore,

with no extra work, we can use the inductive version of CP in an off-line (batch)

setting, which is standard in machine learning.

The definitions of CP we gave in Section 4.2.3 were focused on the transductive

setting, which is the most natural model for conformal prediction. If we want to

switch to the inductive model, however, some formal modifications are required.

For defining ICP, let Zn := Hz1, z2, ..., znI be a training bag of examples that is

fully available to us. We start by splitting Zn into two non-overlapping bags: Zk
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and Z l such that Zk contains the first k examples in Zn and Z l contains the last

l examples in Zn 2, with Zk ∪ Z l = Zn and k + l = n. We call Zk the proper

training set 3 and Z l the calibration set. This split is fundamental to the efficiency

of ICP because the training of the learning model that is used in the description

of the non-conformity measure A will only be done once, over the fixed proper

training set Zk. Therefore, we write AZk(z) as shorthand for A(Zk, z) to represent

the non-conformity of some example z ∈ Z with respect to the examples in the

proper training set i.e. A is parameterised by the proper training set Zk.

Thus, for each y ∈ Y and for an object x ∈ X, we re-define the computation

of the non-conformity scores in (4.2) and (4.3) as:

αi = AZk(zi) ∀zi ∈ Z l (4.6)

and

α = AZk((x, y)), (4.7)

respectively. We also need to adjust the definition of the conformal algorithm,

shown in (4.4), as follows:

py := |{i = 1, 2, .., l : αi ≥ α}|+ 1
l + 1 (4.8)

ICP only computes the non-conformity scores for the examples in Z l, the

calibration set.

In short, ICP finds how the calibration set conforms to the proper training

set; this is captured by the sequence of αi in (Equation 4.6). Then, the algorithm

finds how the new object x conforms to the proper training set when it is labelled

with the postulated label y ( Equation (4.7)). Finally, the conformal algorithm
2Notice that our bag notation is robust enough to support ordering/indexing of its elements,

and we are making use of that feature. Thus, Zn := (z1, z2, ...) immutably references the first,
second, etc, elements in the bag irrespective of the specific examples occupying those positions.

3Even though mathematically defined as a bag, we call it “set” for the sake of consistency with
standard machine learning terminology.
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produces a p-value for y by comparing the non-conformity of the tuple (x, y) against

that of the examples in Z l (Equation (4.8)).

Notice that, to avoid over-fitting, ICP never computes non-conformity scores

for examples that were used for training the learning model encapsulated in A

i.e. the model is trained over Zk and the non-conformity scores αi are computed

only for those examples in Z l.

By inspecting the modifications done to convert the TCP into ICP, we can see

why the latter is much more computationally efficient. Notice that if we perform

ICP in the online model, we might have to set some rules for re-computing the

learning model once have seen “too many” examples in the input sequence. In

this work, however, we assume that the inductive model for CP always runs in

off-line fashion i.e. we are given the full batch of examples that are available for

training the conformal predictor before any computation happens. This assumption

is not restrictive as many single-point predictors in machine learning are designed

to operate in this setting, logistic regression included. Algorithm 5 shows our

protocol for ICP. When compared to the TCP protocol in Algorithm 4, we can

see that now we can do a lot more computations without looking at our test

examples yet. Also, because of the batch setting, we know exactly the number of

predictions to be done by ICP, t in this case; and also we can see a more clear-cut

separation between training and predicting.

Algorithm 5: Inductive Conformal Prediction Protocol.
Input: ε ∈ (0, 1) : significance level, Zn : input data, Zt : test data

1 Define Zk and Z l s.t. Zk ∪ Z l = Zn and k + l = n
2 Compute AZk(z) ∀z ∈ Z l

3 E ε0 ← 0
4 for (xi, yi) ∈ Zt do
5 Compute prediction set Γεn ⊆ Y
6 if yi ∈ Γεn then
7 err = 0
8 else
9 err = 1

10 end
11 E ε0 = E ε0 + err

12 end
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Finally, notice that ICP gives predictions that are not “tailored” to the new

object we are attempting to classify. In fact, it only considers the examples

in the proper training set. This puts ICP in disadvantage against TCP, which

takes into consideration every example we have seen. In CP terminology, ICP

has weakened validity and degraded efficiency compared to TCP ([12], Chapter

2, p. 27); however, this can be seen as a fair compromise if we are interested

in using CP in more realistic scenarios.

Even though ICP is much more computationally efficient than TCP, it still faces

considerable scalability issues. Then, the question remains: “can we do better?”.

The answer to this question is indeed affirmative, and we will discuss it on Section

4.3; specifically, we will present Coreset-based Conformal Prediction (CBCP), a new

strategy that greatly enhances the running time of ICP while retaining learning

performance. The most appealing aspect of our approach is that we do not need

to write a new method from scratch; instead, we can use the theory of coresets to

compress the input data approximately correctly, and keep CP untouched in the

process. Before diving into our solution to make CP more scalable, however, we

need to address two fundamental topics related to CP: the first one is regarding

the definition of non-conformity measures for our classification problems of interest:

LR and SVM; the second topic is about the definition of “learning performance” in

the context of CP; that is, we will define performance metrics in order to evaluate

the quality of the prediction sets produced by CP. These will be the topics for

Section 4.2.7 and Section 4.2.8, respectively.

4.2.7 Non-conformity Measures for LR and SVM

In order to instantiate CP for the machine learning problems presented in Section 2.3,

it is necessary to train a learning model on the proper training set. Such a model can

be obtained by solving the corresponding optimisation problem associated with the

ML problem of interest e.g. LR, SVM, etc. As explained earlier, CP uses existing

machine learning techniques to measure conformity among the objects in the input

data. The connection between single-point predictors and conformal predictors
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then is encapsulated in the concept of the non-conformity measure A. Thus, each

definition for A results in different conformal predictors. For classification problems,

a well-defined approach for defining A in a classifier-agnostic fashion is to compute

the Margin Error Function (MEF), which can be defined, for any bag of n examples

Zn and any example z := (x, y), as follows:

A(Zn, z) = 0.5− P̂ (ŷ|x)−maxy != ŷP̂ (y|x)
2 (4.9)

where y is the true label from example z, ŷ is an estimated label for the object

x from example z, and P̂ stands for an estimated probability function.

Equation 4.9 requires some unpacking: first, it should be useful to recall that

the functional definition of the non-conformity measure is A : Z∗ × Z → R; second,

the equation requires to evaluate the probability estimates for object x. Therefore,

to use MEF as a strategy for computing non-conformity, we need to define a

computable probability function P̂ for each of the learning problems in question.

We first define this function for the problem of LR.

Probability Estimate Function for LR

Defining P̂ for the problem of LR is relatively straightforward as the solution for

the LR problem is in itself able to produce well-calibrated probabilities. Thus, for

logistic regression, we define P̂LR(y|x) as follows:

1 / 1 + e−θ̂·x, if y = 1
1 / 1 + e θ̂·x, if y = −1

(4.10)

where θ̂ is the solution for the LR problem for the examples in Zn as computed

in Chapter 2, and a · b signifies the inner product between any two vectors a and b.

An interesting property of non-conformity measures is that they can be changed

by any monotonic transformation without altering the resulting prediction sets.

We can hence simplify the expression in (4.10) as:

1 / − θ̂ · x, if y = 1
1 / θ̂ · x, if y = −1

(4.11)
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Probability Estimate Function for SVM

Producing probability-type results with SVM is a less straightforward task as we will

need to use a calibrator : a method for converting the output of non-probabilistic

classifiers into well-calibrated probabilities.

In the RML family of algorithms, there is a powerful calibrator that produces

probability bounds with strong theoretical guarantees with respect to the true

probability of the predictions: Venn-Abers Prediction (VAP) ([14]). These calibration

guarantee, however, can cost considerable amount of computing power; and since

the purpose of this chapter is to accelerate the computation of CP, the VAP

method is unfeasible at this point. The computational cost of VAP will be the

main topic in Chapter 5, and there, this thesis will show that VAP can also

benefit from data compression to get substantial computational speed-up. For

now, however, this chapter will use a simpler calibrator to obtain P̂ (y|x) for the

SVM problem: Platt’s scaling ([107]). After obtaining the probabilities, they will

be used in Equation (4.9) to produce the non-conformity scores for each input

point in the calibration set. Notice that since conformal prediction does not output

probabilities, it does not require to have the strong calibration gurantees provided

by a calibrator like VAP. Furthermore, P̂ (y|x) is only necessary for computing

the non-conformity scores αi, and Equation (4.4) shows that all CP needs is to

compare the values of the αi against each other. Therefore, Platt’s scaling should

be sufficiently good for this particular task.

4.2.8 Performance Metrics

Now that conformal prediction has been fully defined, we present a set of criteria

for measuring how well a conformal predictor performs. For the sake of exposition,

given a bag with n training examples and the significance parameter ε, we will now

consider Γε to be a prediction set i.e. instead of Γε(Zn, x) as before, since the bag Zn

and the test object x will be clear from the context. Additionally, we consider we are

given a sequence S containing t test objects S := (x1, x2, ..., xt), and that our goal is

to calculate the average performance of the conformal predictor over this sequence.
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As discussed previously, having guaranteed validity is not enough for the

success of a conformal predictor. That is, we still need to make sure we get

informative prediction sets, which is equivalent to asking for an efficient conformal

predictor. Thus, the performance metrics used in CP measure efficiency from

different perspectives. In this work, we are interested in the following criteria:

the S indicator, the N indicator, the singleton-rate indicator and the empty-rate

indicator. This set of measures has been extensively studied, and they have been

successfully used to measure how informative the output of CP are (see [108]

and [16], and references therein).

S Indicator

Proposed in [109], this measure is also referred as the Sum criterion as it gives

the average sum of p-values py as follows:

1
t

t∑
i=1

∑
y∈Y

p(i)
y (4.12)

Notice that (i) in the above formula is simply an index to the test sequence S,

not an exponent. The S indicator belong to a family of indicators called ε-free

measures: metrics that do not depend on the significance parameter. Smaller

values of this measure are preferable.

N Indicator

The N indicator ([110])([109]), or Number criterion, computes the average size

of prediction sets over a test sequence:

1
t

t∑
i=1
|Γεi | (4.13)

In contrast with the S indicator, this is an ε-dependent measure. Smaller values

of the N indicator are preferable.
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Singleton-rate Indicator

This indicator computes the fraction of objects in the test sequence for which

the conformal predictor outputs a prediction set Γε that contains exactly one

prediction. Formally:

1
t

t∑
i=1

1{|Γε|=1}, (4.14)

where 1{P} is an indicator function returning 1 if the predicate P is true and

0 otherwise. We will refer to this measure using the symbol S. This ε-dependent

measure achieves its best value when it equals 1 i.e. every single prediction set for

every single test object contains exactly 1 prediction. Thus, the closer its value

gets to 1, the better the performance of the conformal predictor.

Empty-rate Indicator

In similar fashion to the singleton-rate indicator, the empty-rate indicator accounts

for the fraction of test objects for which the conformal predictor returns empty

prediction sets. We can write it as:

1
t

t∑
i=1

1{Γε=∅}, (4.15)

where ∅ is the empty set. As the singleton-rate indicator, this is an ε-dependent

measure; however, contrary to the singleton-rate indicator, we want this value

to be as close to zero as possible.

4.3 Strategy: Compress the Proper Training Set

We have defined the framework of Conformal Prediction as a learning paradigm

that we can use to obtain extra information regarding patterns we are interested in

classifying 4. Furthermore, CP can be seen as a statistical strategy for measuring

the natural uncertainty that arises from making predictions. To generate this
4Notice that CP can also be used for the problem of regression, where the label space Y is the

set of real numbers R (See Section 2.4.2); applying CP to regression, however, is out of the scope
of this thesis.



4. Coreset-based Inductive Conformal Prediction 72

extra information, CP demands non-negligible computing resources that quickly

become exhausted for input data of moderate sizes. An important part of the

computational burden can be eased if we switch to the inductive setting, at the

cost of compromising the efficiency of the conformal predictors. In this section

we go one step further; we present a new strategy to accelerate ICP by using the

data-compression paradigm defined in Chapter 3: coresets. Thus, we will present

a new learning protocol called Coreset-based Conformal Prediction (CBCP) that

allows us to have conformal predictors that do not look for patterns in the big

proper training set; instead, they learn over a very small, manageable, and accurate

coreset, and by doing so, we will show that CBCP saves substantial computing time.

4.3.1 Coreset-based Inductive Conformal Prediction

Our main contribution in this chapter is to borrow the framework of coresets from

the fields of Computational Geometry and Theoretical Computer Science, and put

it into practice for accelerating ICP. Our line of work hence focuses on leaving

predictors, both single-point and conformal, algorithmically intact, and concentrate

on compressing the input data. As discussed in Chapter 3, there are more than one

approach to obtain a coreset from the input data, which, in this case, is the proper

training set for conformal predictors. We present in this section two state-of-the-art

algorithms to construct coresets: the Randomised Coreset Algorithm (RCA) ([78])

for the LR problem and Approximation Vector Machines ([35]) for the SVM problem.

The former is based on the sensitivity framework for constructing coresets and the

latter follows the geometric decomposition approach for summarising data. Both

RCA and AVM are defined and discussed in Chapter 3, and we will use them here

as our main approaches for compressing the proper training set of ICP.

Let us then establish the notation for the method of Coreset-Based Inductive

Conformal Prediction (C-ICP). C-ICP uses the same notation as CP; however, it

also needs a pre-specified coreset algorithm that will be used for the compression

of the proper training set. Thus, to distinguish prediction sets that have been

computed from compressed data, we write ΓεS where S : Z∗ × N → Z+ is called
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the summary function, Z∗ is the space containing all bags of size n, N is the

set of natural numbers and Z+ is the space containing all bags of size m. The

summary function takes a bag of size n and also a natural number m, the size

of the desired summary. It then gives us a compressed bag of m examples and in

order for the compression to be meaningful, of course, m � n should hold. We

should make two important observations regarding our new notation: (i) notice

that CBCP allows for different coreset algorithms naturally; that is, we can use

coreset algorithms in a plug-in-plug-out fashion, each coreset algorithm giving a

different definition for S; (ii) notice that the notation is robust enough for allowing

any kind of compression technique to be used i.e. even compression functions that

do not give a coreset guarantee. If S is indeed defined with a coreset algorithm,

then this coreset construction should be for the machine learning problem i.e. for

the single-point predictor, encapsulated in the non-conformity function A.

To show C-ICP in action, we will define the summary function in two ways: one

definition based on RCA algorithm and one based on the AVM algorithm.

4.3.2 C-ICP Protocol

The Coreset-based conformal prediction protocol in the inductive model (C-ICP)

can be seen in Algorithm 6. Our approach takes advantage of the inductive model

to add one extra layer of computation: the compression of the proper training set.

Notice that once we have constructed a coreset for the proper training set Zk, we

can proceed to discard it and from there on use only the coreset C for the remaining

of the computations. Hence, we do not only save time in the non-conformity

evaluation phase (line 3), but also we can potentially save space in memory.

In the next section we evaluate C-ICP on the data presented on Section 2.5, and

we shall show that the strategy saves substantial computing time while retaining

the predictive power of ICP.
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Algorithm 6: Coreset-based Inductive Conformal Prediction (C-ICP)
Protocol.
Input: ε ∈ (0, 1) : significance level, Zn : input data, Zt : test data

1 Define Zk and Z l s.t. Zk ∪ Z l = Zn and k + l = n
2 Compute a coreset C for the proper training set Zk

3 Compute AC(z) ∀z ∈ Z l

4 E ε0 ← 0
5 for (xi, yi) ∈ Zt do
6 Compute prediction set ΓεS ⊆ Y
7 if yi ∈ ΓεS then
8 err = 0
9 else

10 err = 1
11 end
12 E ε0 = E ε0 + err

13 end

4.4 Experiments and Results

Now that our main strategy have been formally defined, this section presents the

results obtained from using our C-ICP protocol, presented in Algorithm 6. We

test coreset-based inductive conformal predictors against standalone conformal

predictors on the datasets presented in Table 2.1, Section 2.5.

Our experiments aim to shed light on the following research questions:

• How do C-ICP perform computationally when compared to ICP?

We shall see that C-ICP does provide a substantial boost in terms of running

time to standalone ICP. Furthermore, we will present cases where standalone

ICP cannot be computed at all due to the size of some of our datasets. It

is in those cases where C-ICP becomes the main strategy for obtaining the

benefits offered by the CP framework.

• Are validity and efficiency retained when the C-ICP protocol is

applied? This is a fundamental question; having fast approximation protocols

is meaningless if predictive performance is arbitrarily lost. We will demonstrate

that the efficiency of C-ICP, in the Conformal Prediction sense, does not

exhibit any meaningful change when compared to ICP. Regarding validity, we



4. Coreset-based Inductive Conformal Prediction 75

will see that the number of errors incurred by both methods are comparable,

even though C-ICP measures non-conformity only over a small percentage of

the proper training set.

4.4.1 Experiments Description

In order to test how the performance of C-ICP compares to that of ICP, we

distinguish between the two methods as follows: ICP, naturally, represents the

standalone ICP method that learns over the full proper training set. To represent

C-ICP, we write C-ICP instances as C-ICPg%, meaning that, for this instance,

the coreset size m is g percent of the proper training set size. Then, for example,

C-ICP1%, C-ICP3% and C-ICP5% are three instances of the C-ICP protocol that

use coresets of 1%, 3% and 5% the size of the proper training set, respectively.

Our evaluations compares the below two methods:

• ICP: refers to using standalone ICP over the full input data.

• C-ICPg%: refers to using the C-ICP protocol instantiated with a coreset of

size g% of the proper training set.

We conduct our experiments as follows: for each dataset in Table 2.1, and

for each of the three methods specified above, we perform the following com-

putations 10 times:

1. shuffle the data: aiming at obtaining the best possible generalisation for our

results, we do a full shuffling of the data before performing any computation.

2. split the data: we split the samples as described in Section 4.2.6, that is,

we split it into the proper training set, which will be used to fit a single-point

predictor to measure non-conformity, the calibration set, which will be used

to calibrate the predictions, and the test set, which will be used to evaluate

the predictions.
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3. measure non-conformity: here is where standalone ICP differs from the

C-ICP instances. For ICP we proceed as usual: we train a single-point

predictor over the proper training set and use it to assign non-conformity

scores to the calibration set examples. For C-ICP, however, we follow the

corresponding protocol and compress the input data with a coreset algorithm:

RCA (Algorithm 3) for LR and AVM for SVM. The small coreset is then used

for computing the non-conformity scores.

4. make predictions and evaluate performance: the last step is to make

predictions for the test examples and apply our performance metrics. We will

use the criteria defined in Section 4.2.8.

Regarding the hardware, the experiments were deployed and run on a single

desktop machine running the Linux operating system, equipped with an Intel(R)

Xeon(R) CPU E3-1225 v5 @ 3.30GHz processor and 32 Gigabytes of RAM.

For the coreset implementations, we have used as baselines the implementations

provided by Huggins et al. 5, for the RCA algorithm, and by Le et al. 6, for AVM.

We have adapted these implementations to our needs for our experiments. For

Conformal Prediction, we used the Nonconformist library 7. All our programs were

written using the Python programming language.

4.4.2 Evaluation Criteria

The evaluation of our results is done by considering the following criteria, which

cover all of the computational aspects discussed in this chapter.

• Computing time: as we are deeply concerned about computational efficiency,

our main criterion is the time, in seconds, that is needed for each of the

considered approaches to compute prediction sets for each example in the test

set. We do not take into account the data splitting time nor the time needed

to compute our metrics and store the results. For the coreset-based predictors,
5https://bitbucket.org/jhhuggins/lrcoresets/src/master - last accessed 18/11/2021
6https://github.com/tund/avm - last accessed 18/11/2021
7https://github.com/donlnz/nonconformist - last accessed 18/11/2021



4. Coreset-based Inductive Conformal Prediction 77

we also take into account the compression time, and all the computations it

involves e.g. for RCA, the computation of a clustering of the data; for AVM,

the computation of the enclosing balls. For the efficiency of the experiments,

we have defined a time budget of 7,200 seconds for each of the considered

methods. If the computing time of any method surpassed this budget, the

method was stopped and its computing time, and all the other metrics, were

reported as incomputable for the time budget.

• Validity: the most important criterion, from the conformal-prediction point

of view, is the validity of the prediction sets obtained, as define in Section

4.2.4. We already know that the ICP protocol produces valid prediction

sets; however, as this is the first time coresets and conformal prediction are

combined together, the validity of C-ICP is not obvious. The validity is

measured by counting the average number of prediction errors incurred by

predictors, and making sure that this number does not arbitrarily surpasses

the error rate specified by ε.

• Efficiency: the efficiency of conformal predictors tells us how informative the

obtained prediction sets are; very efficient predictors are highly desirable (see

our discussion in Section 4.2.4). To measure this, we use the four efficiency

measures defined in Section 4.2.8; namely, the S indicator, the N indicator,

the singleton-rate indicator and the empty-rate indicator.

4.4.3 Computing Time

We start our analysis with the evaluation of the computational efficiency of C-ICP

compared to that of ICP for the machine learning problems of logistic regression and

support vector machines, both defined in Section 2.3.1 and Section 2.3.2, respectively.

Notice that some of the coreset sizes used in C-ICP are very small; our intention is to

verify if we can still maintain the same efficiency and validity of ICP when learning

from a tightly compressed proper training set. It is also worth noting that we have

used different coreset sizes for different data-sets; this is because, as data become
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larger, we can allow for smaller coresets for C-ICP. On the other hand, if the data

is not large, having a very small coreset could endanger the learning process; this is

because very small coresets can miss all the examples of one of the two considered

classes. Therefore, for covertype, higgs and webspam, C-ICP uses coreset sizes of 0.1,

0.5, 1 and 5 percent of the proper training set. For the smaller datasets, a9a, ijcnn1

and w8a, we use coreset of sizes 1, 5, 10 and 15 percent of the proper training set.

Table 4.1: Acceleration obtained by C-ICP for the six data-sets.

Data-set Problem Min acceleration rate Max acceleration rate
a9a LR 6.28x 12.78x

SVM 110.42x 115.17x
covertype LR 23.02x 41.54x

SVM -
higgs LR -

SVM -
ijcnn1 LR 4.46x 7.38x

SVM 99.79x 113.07x
w8a LR 4.34x 13.91x

SVM 2.68x 2.68x
webspam LR 15.43x 42.83x

SVM -

Figures 4.1, 4.2 and 4.3 show the computing time spent when running ICP and

C-ICP for the six data-sets considered in this thesis. Each figure shows results

for two data-sets, for both problems; LR, positioned on the left side, and SVM,

positioned on the right side of the figures. For LR, C-ICP uses the RCA method

(Algorithm 3, Section 3.5.2) to compress the proper training set into a coreset, while

for SVM, AVM (Algorithm 10, Section 3.5.1) produces the desired summary of

data within the C-ICP protocol. Each plot shows the time, in seconds, required

to make predictions for the different instances on the x axis. Notice that the

horizontal axis shows instances of C-ICP using different coreset sizes, and the

standalone ICP method that learns over the full input data. The main purpose of

presenting information in this fashion is to understand how sensible are the coreset
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(a) covertype

(b) webspam

Figure 4.1: Comparison of the computing time between C-ICP and ICP on the covertype,
webspam and higgs datasets. The RCA method is plugged in as a coreset algorithm.
For the latter, VAP was incomputable within the time budget. The central line in each
box indicates the median. The bottom and top of the box indicate the 25th and 75th
percentiles, respectively. The small circles denote outliers. C-ICP does improve ICP’s
running time on all three datasets. Different coreset sizes does not seem to meaningfully
impact on the computing time of C-ICP.

algorithms to the coreset sizes with respect to computing time, and how much of

that computing time is saved compared to standalone ICP.

The first observation we need to make is that, aligned with our discussions in
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(a) higgs

(b) ijcnn1

Figure 4.2: Comparison of the computing time between C-ICP and ICP on the covertype,
webspam and higgs datasets. The RCA method is plugged in as a coreset algorithm.
For the latter, VAP was incomputable within the time budget. The central line in each
box indicates the median. The bottom and top of the box indicate the 25th and 75th
percentiles, respectively. The small circles denote outliers. C-ICP does improve ICP’s
running time on all three datasets. Different coreset sizes does not seem to meaningfully
impact on the computing time of C-ICP.

Chapter 2, the SVM problem is notably more computationally exhaustive than

LR; we can see this by comparing the time scales on the y axes. Furthermore, for

data-sets covertype, webspam and higgs, standalone ICP did not converge within
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(a) w8a

(b) a9a

Figure 4.3: Comparison of the computing time between C-ICP and ICP on the covertype,
webspam and higgs datasets. The RCA method is plugged in as a coreset algorithm.
For the latter, VAP was incomputable within the time budget. The central line in each
box indicates the median. The bottom and top of the box indicate the 25th and 75th
percentiles, respectively. The small circles denote outliers. C-ICP does improve ICP’s
running time on all three datasets. Different coreset sizes does not seem to meaningfully
impact on the computing time of C-ICP.

our time budget of 7,200 seconds for the SVM problem. This phenomenon only

happened with the higgs data-set for LR.

Returning to our computing time analysis, we can indeed see that C-ICP boosts
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the computing time of ICP by at least a factor of 2.69 (w8a) for SVM, and by a

factor of 4.64 (ijcnn1) for LR. The maximum computable acceleration factor for the

SVM case is 115.17 (a9a) and, for LR, it is 113.07 (ijcnn1). We write “computable”

because, for the cases where no standalone ICP solution is available due to exceeding

the time budget, the acceleration factors could not be exactly computed. For such

cases, however, we can offer empirical lower bounds for the acceleration factor by

using the time budget of 7,200 seconds. Thus, for svm, acceleration factors of at least

248.2, 400 and 10 correspond to covertype, webspam and higgs, respectively. The

only incomputable case for LR is higgs, and it gives us an acceleration factor lower

bound of 32. We remind the reader that these are lower bounds, and we cannot tell

how loose or tight they are because we stopped the execution of ICP immediately

after violating our time budget. Still, from our experimental observations, for these

incomputable cases, we consider that the smaller values of lower bounds e.g. higgs,

are loose ones; and those for covertype and webspam are tighter. This follows from

the empirical fact that coresets seem to save more computing time as the input data

grow larger. Table 4.1 presents exact minimum and maximum acceleration factors

for the six data-sets, the incomputable cases are indicated with the - symbol.

Focusing on plot 4.3a from Figure 4.3, we can see that for w8a the computing time

of C-ICP increases considerably with the coreset size, making C-ICP computationally

more expensive than performing standalone ICP, for the SVM problem. This is

an important phenomenon that we will extensively discuss in Chapter 6, and it

generally happens when the machine learning task at hand can be efficiently solved

for a specific data-set. There are two factors of the w8a data-set that combined

could explain why the data compression process adds computational burden instead

of providing acceleration: a) w8a is a small data-set b) w8a is almost completely

sparse i.e. 96% of the input points are zero entries (See Table 2.1), and since

sparseness makes learning an SVM classifier easier (see discussions on Section 2.3.2),

then computing a coreset adds computational noise to the learning process. We can

still see that acceleration is possible in this case e.g. when C-ICP uses a coreset of

size 1% of the input data; but in general, small and sparse data seem to do better
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without performing any data reduction. Complementary results on the computing

time incurred by C-ICP can be found in Appendix A.

Our analysis so far indicate that C-ICP can meaningfully boost the performance

of ICP for the presented data-sets. However, recalling the big data paradox (Section

2.2), favouring computational efficiency usually implies sacrificing performance.

Therefore, computational acceleration is only half of our objective. In the next

section we analyse the performance of inductive-conformal predictors when instan-

tiated with and without compressed input data.

4.4.4 Efficiency and Validity

We now present the second part of our analysis: an examination on the validity

and efficiency properties of C-ICP and how they compare to those obtained via

ICP. Since, to the best of our knowledge, this is the first time an incursion on

the analysis of performance of conformal predictors is done in the context of data

compression, a clear-cut approach for making sense of the obtained result does not

exist 8. Thus, we conduct our analysis by considering the combination of all the

efficiency measures defined in section 4.2.8 and the validity of the predictors; that

is, even though each metric has its own importance, we believe that it makes more

sense to assess performance using them as a system of metrics, and not individually.

From our CP definitions, it follows that every instance of CP is parameterised

by a significance level ε. In order to make our analysis as complete as possible,

we consider a wide range of significance levels. Namely, we assume that ε takes

its values from the following increasing sequence:

E = (0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99)

Therefore, for each ε ∈ E, Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9 present the

results of evaluating validity and efficiency metrics over the covertype, webspam,

higgs, ijcnn1, a9a and w8a data-sets, respectively, assuming the LR problem. Notice
8technically, the first incursion was done in our previous works [31] and [111]. However, before

these works, there is no evidence of previous incursions.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.4: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the covertype data-set for the LR problem.

that since the patterns seem for LR and SVM are very similar, for the sake of

space, we only include results for LR in this section. The figures containing the
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.5: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the webspam data-set for the LR problem.

results for SVM can be found in Appendix A. However, the analysis presented

here holds for both learning scenarios. Additionally, further results on C-ICP that
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the reader may find useful can be found in the mentioned appendix e.g. using

coresets as heuristics for both LR and SVM, highlights between uniform random

sampling and coresets within CP, and more.

All plots in the figures have the significance levels on the x axis, and the

corresponding metric values on the y axis. C-ICP was instantiated with different

coreset sizes and, to remind the reader, that is indicated with the notation C-ICPg%

where g is the coreset size as a percentage of the proper training set. For the higgs

data-set, we do not have a result for ICP as its computing time violated our time

budget of 7,200 seconds. Thus, Figure 4.6 only shows results for C-ICP.

The first observation that can be extracted from the figures is that C-ICP

retains exactly the same validity property when compared to standalone ICP, for

all coreset sizes. This directly answers one of our fundamental research questions,

stated in Chapter 1, asking whether CP can retain its validity property even when

only a small summary of the proper training set is used. The validity results

can be seen in plot a in the figures.

Next we turn our focus to the efficiency of the predictions made by C-ICP

compared to those made by ICP. As we mentioned in Section 4.2.4, the informa-

tiveness of conformal predictors depends on how efficient the obtained prediction

sets are. Our results indicate that for every data-set analysed, C-ICP retains the

efficiency of standalone ICP. For example, we can see that in all data-sets, the

N indicator values between the different instances of C-ICP and standalone ICP

are virtually indistinguishable as all the curves have not only the same shape, but

also the same values. We can also make the same observation for the number of

empty predictions, for all the figures. Furthermore, we can appreciate how, as the

significance level increases, the number of errors (plot a in figures) and the number

of empty predictions (plot e in figures) both equally increase, while the N indicator,

which shows the average size of prediction sets (plot b in figures) decreases. This

corresponds with our CP definitions; that is, larger values for ε means that the CP

can potentially reject a larger number of p-values, which in turn ends up giving a
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.6: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the higgs data-set for the LR problem.

larger number of empty prediction sets. We can see that C-ICP behaves exactly

as ICP with respect to these trends and relationships among metrics.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.7: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the ijcnn1 data-set for the LR problem.

A very important efficiency indicator is the number of singleton predictions

made by conformal predictors (plot c in figures), which we also complement with
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.8: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the a9a data-set for the LR problem.

the number of cases where the single prediction made is incorrect (plot d in

figures). For this pair of metrics, we have seen different behaviours in our data-sets.



4. Coreset-based Inductive Conformal Prediction 90

Interestingly, for data-sets with high imbalance such as webspam (Figure 4.5),

ijcnn1 (Figure 4.7), a9a (Figure 4.8) and w8a (Figure 4.9), both standalone ICP and

C-ICP made a very small and irregular number of singleton predictions. Thus, the

performances of the two methods cannot be distinguished from each other in those

cases. This raises an issue that we believe is worth investigating as a future research

problem: in supervised learning settings, existing coreset algorithms do not take

into consideration the labelling of the input points. This seem to follow from the

fact that coreset constructions were originally designed for unsupervised learning

problems. However, we believe that using labelling information in the compression

process could bring interesting gains in the performance of coresets. Based on

these observations, we can formulate the following two research hypotheses that

can inspire new research directions:

• coresets, in the supervised setting, are vulnerable to imbalance in data.

• conformal prediction needs a specialised approach for overcoming imbalance

in the input data.

For the data-sets with a more balanced nature, covertype (Figure 4.4 and higgs

(Figure 4.6), however, the behaviour of this tuple of metrics is more stable. For

covertype, we indeed see that when C-ICP uses smaller coreset sizes, it does exhibit

a slight loss in its capability of making singleton predictions. However, when C-ICP

uses a coreset of size 5% of the proper training set, we can see that it achieves exactly

the same performance as ICP, both in the number of singleton predictions and

in the number of mistaken singleton predictions. For higgs, different coreset sizes

in C-ICP do not seem to meaningfully affect the number of singleton predictions,

although we can see that that the C-ICP instance using only 0.05% of the proper

training set is slightly more prone to making singleton prediction mistakes.

Finally, if we put together the results regarding computing time from the last

section, and the results on validity and efficiency from this section, we can argue

that the C-ICP protocol not only produces valid and efficient prediction sets, but

also it gives its predictions very efficiently, in the computational sense. That is,
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure 4.9: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the w8a data-set for the LR problem.

C-ICP can effectively retain the strong validity and the informativeness of ICP,

while boosting the running time of inductive conformal prediction. Therefore, based
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on our results, we can conclude that C-ICP is indeed the preferable approach

when one is interested in using conformal prediction with data-sets of moderate

sizes. Furthermore, our results suggest that as the input data becomes larger, the

acceleration obtained via the compression process also increases.

4.5 Chapter Summary

Many machine learning algorithms are computationally expensive, making theit

direct applications to large-scale datasets difficult or infeasible. The situation is

exacerbated when we use those algorithms as part of a framework that attempts

to enhance their output. Our experiments showed that obtaining the confidence

levels for our predictions has to be paid with computing time that quickly becomes

hopelessly draining for the hardware.

This chapter proposed Coreset-Based Conformal Prediction, a strategy for

dealing with large-scale data within the conformal prediction framework. To the

best of our knowledge, this is the very first attempt to use coresets along with

CP. Coreset-based conformal predictors can use a small fraction of the original

dataset, namely the coreset, and learn over it using conformal predictors. Our

protocol leaves CP unmodified, and completely decouples the acceleration logic

from the conformal predictors. We have observed that this was enough to accelerate

computations by orders of magnitudes while avoiding losing meaningful predictive

information. Furthermore, CBCP produces predictors that are valid, which shows

that the CP theory still holds when we are dealing with compressed input data.

We also observed that once the data is large, the time it takes to build the coreset

is small compared to the time needed to learn over the full dataset; and that CBCP

could potentially aid us in challenging scenarios where storage space is crucial.



The machines of nature, namely, living bodies, are
still machines in their smallest parts ad infinitum.

— Gottfried Wilhelm Leibniz
Monadology and other philosophical writings ([112])

5
Inductive Venn-Abers Predictors with

Enclosing Balls

5.1 Introduction

Chapter 4 has introduced the new learning protocol of Coreset-based Inductive

Conformal Prediction (C-ICP), and it has shown that such protocol works well

when one needs to measure uncertainty in classification problems using Conformal

Prediction, and assuming input data of moderate size. In fact, for some data-sets,

C-ICP was the only viable approach for using CP at all.

One fundamental step in CP is to define a non-conformity measure for the

underlying machine learning predictor we are interested in using within the CP

framework. Section 4.2.7 presented MEF (Margin Error Function) as a standard

approach for defining non-conformity measures for single-point classifiers, such as

LR and SVM. If one inspects the MEF definition, it becomes clear that probability

estimates for points in the calibration set are needed in order to compute the

respective non-conformity scores. Some single-point classifiers, like LR, output

models that provide probabilistic interpretations for their predictions. Other

predictors, like SVM, however, cannot be interpreted in terms of probabilistic

estimates and hence a calibrator algorithm needs to be used as a mean to generate

probability-type results. Venn-Abers Predictors (VAP) ([14]) is a framework within

93
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the family of Reliable Machine Learning that can be used to produce well-calibrated

probabilistic predictions using virtually any single-point classifier as a baseline.

Furthermore, VAP does not only give us a probability estimate that, say, y is the

correct label for object x; but it also reveals lower and upper bounds for the ground

truth probability that y is the correct label for x.

As mentioned in Section 4.2.7, the computational cost of using VAP as calibrator

can become exhaustive for input data of moderate size, which is the reason why

Chapter 4.2 used a more rudimentary calibrator to obtain probability estimates

for the non-conformity scores computations 1. Thus, this issue raises the following

research question: “Will VAP still produce well-calibrated probabilities if we

instantiate it over a compressed version of its input data?”

This chapter is devoted to answer the above question when the problem of

support vector machines is instantiated within the VAP framework. Loyal to the

line of thinking presented in Chapter 4.2, the chapter advocates for the idea of

focusing on reducing the volume of input data in order to achieve computational

acceleration, instead of following the more traditional approach of focusing on

the algorithms themselves. The result is a calibration protocol called Venn-Abers

Predictors with Enclosing Balls (VAP-WEB), an approach that, analogous to what

C-ICP does for CP, solves the computational struggle of the VAP framework by

replacing the input data for SVM with a data summary that acts as a proxy to all

the information we possess. To reduce the input data to a manageable size, we will

apply once more the theory of coresets. Specifically, the AVM method, presented

in Section 3.5.1, will be used to provably correctly approximate the input data for

SVM by splitting the input space into a small number of enclosing balls.

The holy grail for the VAP-WEB protocol is to retain the high-quality calibration

provided by standalone VAP, while at the same time saving as much computing

time as possible.
1it is important for the reader to notice that we have indeed attempted to use VAP as calibrator

for CP in the previous Chapter. This proved to be computationally infeasible, however. Hence
the use of the simpler Platt’s scaling method.
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5.2 Background

The chapter starts with an overview of the theoretical background of IVAP. It may

also be useful to revisit the main machine learning problem of this chapter: SVM;

the details for this single-point predictor can be found in Section 2.3.2. Similarly,

all the specifications regrading the enclosing-balls method for compressing data

for SVM, implemented in the AVM (approximation vector machines) algorithm,

can be consulted in Section 3.5.1.

5.2.1 Single-point Classifiers and Probabilities

It will be useful to start the presentation of Venn-Abers Predictors from the most

atomic part of the framework: the embedded single-point classifiers. To refresh our

discussions from previous chapters, we call single-point classifiers, or single-point

predictors, to any machine learning method that can be used to find a solution

to a classification problem. The advantage of this naming convention is that it

emphasises the difference between standard predictors, that is, classifiers whose

output is a single label ŷ from the label space Y , and conformal predictors, classifiers

whose output is a set of predictions, with each member of the set being a p-value

offering information on the labels in Y that the conformal predictor cannot reject,

given the information the predictor obtained from the training data.

VAP, just like CP, allows for virtually any single-point predictor to be plugged-

in for the sake of enriching the outcome of the classifier. Let us focus on the

underlying classifier. Following the definition of SVM in Chapter 2, we can see

that the single-point predictor is, mathematically, a hyperplane 2 defined by θ ∈ Θ,

and in the most basic classification scenario, we want to use it to classify a test

object, call it xn+1. To do so, we would need to compute a scalar sn+1 = θ · xn+1

and then typically use some threshold to decide which label from Y will be chosen

as the prediction ŷn+1. We have seen in Chapter 2 that, for example, SVM

uses sign(sn+1) to make its prediction, where sign(a) outputs 1 if a > 0 and −1
2Remember that, as in the previous chapters, the bias term b is included in θ.
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otherwise. This is the reason why single-point predictors are scoring classifiers

([14]), where the score is the scalar sn+1.

Even though scoring classifiers are very useful, the information provided by them

is somehow limited as they do not tell us much about the probability associated

with each label in the label space.

In the next subsection, we describe the Inductive Venn-Abers (IVAP) method,

a framework designed to complement scoring classifiers with well-calibrated proba-

bilities on the labels; and as we shall see in Section 5.2.3, this extra information

comes at a high computational cost.

5.2.2 Inductive Venn-Abers Predictors

The Venn-Abers method3 is a machine learning framework designed to transform,

or calibrate, the output of scoring classifiers into probabilities. It relies on the

method of Isotonic Regression to calibrate the prediction scores obtained by a

scoring classifier ([16]). For a more compact notation, let σ : X → R be the scoring

function that characterises a scoring classifier i.e. in our case, this function could

be of the form σ(x) := x · θ, where θ is our kernel SVM solution. In order to

transform the scores produced by s(·) into well-calibrated probabilities, the Venn-

Abers procedure, in its inductive version, follows the below steps ([16]), which can be

noticed to be reminiscent, to some extent, to those followed in ICP (Chapter 4.2.6):

1. Divide the input data into a proper training set of size k, and a calibration

set of size l. Since our input size is n, we have k + l := n.

2. Train a scoring classifier on the proper training set and obtain a scoring

function σ.

3. Find the scores s1, s2, . . . , sl of the calibration objects x1, x2, . . . , xl.

4. For a test object x, compute its score s.
3“Venn” because the method is a form of Venn Machine ([13]), “Abers” after the surnames’

initials of the authors in [113], which proposed the underlying technique used in the method.
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5. Fit an isotonic regressor on (s1, y1), (s2, y2), . . . , (sl, yl), (s,−1) to obtain the

function f0. Fit another isotonic regressor on (s1, y1), (s2, y2), . . . , (sl, yl), (s, 1)

to obtain the function f1. The multi-probability prediction for observing the

positive label y = 1 as the label for test object x is returned as the pair

(p0, p1) := (f0(s), f1(s)).

Algorithm 7: The IVAP protocol.
Input: Zn : input data, Zt : test data
Output: Bag R with multi-probability predictions for examples in Zt

1 begin
2 Define Zk and Z l s.t. Zk ∪ Z l = Zn and k + l = n
3 σ ← trainClassifier(Zk)
4 S = Hs1, s2, ..., slI← computeScores(Z l, σ)
5 Define I = H(s1, y1), (s2, y2), ..., (sl, yl)I, where si ∈ S and yi ∈ Z l

6 R = ∅
7 for x ∈ Zt do
8 Compute the score for x as s = σ(x)
9 Extend I with tuple (s,−1) and call it I− i.e. I− = I ∪ H(s,−1)I

10 Extend I with tuple (s, 1) and call it I+ i.e. I+ = I ∪ H(s, 1)I
11 Fit the isotonic regressors f0 = trainIsotonoicRegressor(I−) and

f1 = trainIsotonoicRegressor(I+)
12 (p0, p1)← (f0(s), f1(s))
13 R = R ∪ H(p0, p1)I
14 end
15 end

Notice that IVAPs give us multi-probabilistic predictions for each test object.

We can interpret p0 and p1 as the lower and upper bounds, respectively, for the

probability of predicting the positive label. Hence, ideally, we would like p0 and

p1 to be close to each other. Algorithm 7 shows the formal protocol for the

method. Also, IVAP is non-parametric when compared, for example, to conformal

predictors; this is in the sense that IVAP does not expect any parameters as CP

requires the significance level.

It is not obvious how to compare this kind of results against traditional point-

probability results, or even how to apply standard probabilistic metrics to a multi-

probabilistic output. We will see in Section 5.4.1 that there are well-defined

procedures for turning the pair (p0, p1) into a point-probability p.
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5.2.3 The Computational Cost

With the formal definitions for IVAP in place, we can now look into the central

issue of this chapter: computational efficiency. Even though IVAP is the most

computationally efficient version of VAP, we have indeed observed that scalability

is a drawback when data-sets of moderate sizes are considered.

It is not hard to see that the computational efficiency of IVAPs depends heavily

on the computational efficiency of the underlying scoring classifier. That is, an

acceleration of the underlying classifier, SVM in this case, by definition implies

acceleration for VAP.

Consider training our SVM classifier, for example, using the widely popular

LIBSVM algorithm ([114]), which is the most famous implementation of Platt’s

Sequential Minimal Optimization (SMO) algorithm ([115]). Even though we

are guaranteed to obtain a high quality solutions for support vector machines,

and hence potentially good probability calibration via IVAP, the computational

burden of LIBSVM will most likely overwhelm the IVAP framework for relatively

large data-sets.

A reasonable alternative to LIBSVM is to attempt to train our underlying

scoring classifier using the approach of Stochastic Gradient Descent (SGD) ([37]),

which has seen substantial success in large-scale learning; however, even though

the computations involve are quite fast, convergence can be very slow due to the

noise introduced by its randomised nature ([51]).

In the next Section, we bring the already presented AVM algorithm, which is

strongly based on SGD, but with the crucial difference that it learns over coresets.

5.3 Inductive Venn-Abers Predictors With En-
closing Balls

As anticipated, we address the computational bottleneck of the Venn-Abers frame-

work by embracing the data-compression paradigm of coresets, which allows for

the improvement of the computing time of algorithms, not by re-designing the
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algorithms or even replacing them for faster ones, but by carefully reducing the input

data size. Hence, the same potentially inefficient algorithm will surely terminate

faster over reduced data. We call our method Inductive Venn-Abers Prediction with

Enclosing Balls (IVAP-WEB); that is, IVAPs-WEB are IVAPs that learned the

underlying SVM classifier over summarised data via the enclosing balls provided

by the AVM algorithm, which was introduced in Chapter 3 and used on Chapter

4 as a plug-in coreset construction for the CBCP protocol. More specifically, the

SVM model is learned over core points, each living in its own enclosing ball, as

depicted in Figure 3.1 from Chapter 3.

In the IVAP-WEB protocol, as in C-ICP, it may seem counterproductive, and

even dangerous, to restrict the underlying scoring classifier to small data given

that we have bigger data as we know that in machine learning more data implies

better predictive generalisation. In other words, we can see once more the big data

paradox, discussed in Chapter 1.1, arising within the confines of VAP. However, this

is the reason why we propose the small data summary of the big proper training

set to be a coreset, and not just any arbitrary representation.With their strong

theoretical guarantees, coresets will protect the underlying single-point predictor,

a SVM model, from unpredictable decreases in predictive power. Coresets give

us a systematic framework under which we can reduce our input data by keeping

the most important data points with respect to an objective function f . In this

Chapter, f is the hinge loss as defined on chapter 1.1.

5.3.1 IVAP-WEB Protocol

Algorithm 8 formalises the new IVAP-WEB protocol. Here, the scoring function

for producing the classification scores is the approximated scoring function σ̂, which

was obtained via the enclosing balls approach implemented in AVM. Notice that

the function that computes the approximated scoring function is parameterised by

B; in SVM language, B is the budget size for the SVM model. In the context of

IVAP-WEB, B is in fact the size of the coreset. By inspecting the details of the

algorithm used to construct the coreset (Chapter 3), we see that B tells us the
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number of balls i.e. hyper-spheres, that we are using to discretise the input space

for the SVM problem. Furthermore, each of the B points in the coreset, the core

points, is indeed the representative point for its particular ball.
Algorithm 8: The IVAP-WEB protocol.
Input: Zn : input data, Zt : test data
Output: Bag R with multi-probability predictions for examples in Zt

1 begin
2 Define Zk and Z l s.t. Zk ∪ Z l = Zn and k + l = n
3 σ̂ ← learnWithEnclosingBallsB(Zk)
4 S = Hs1, s2, ..., slI← computeScores(Z l, σ̂)
5 Define I = H(s1, y1), (s2, y2), ..., (sl, yl)I, where si ∈ S and yi ∈ Z l

6 R = ∅
7 for x ∈ Zt do
8 Compute the score for x as s = σ̂(x)
9 Extend I with tuple (s,−1) and call it I− i.e. I− = I ∪ H(s,−1)I

10 Extend I with tuple (s, 1) and call it I+ i.e. I+ = I ∪ H(s, 1)I
11 Fit the isotonic regressors f0 = trainIsotonoicRegressor(I−) and

f1 = trainIsotonoicRegressor(I+)
12 (p0, p1)← (f0(s), f1(s))
13 R = R ∪ H(p0, p1)I
14 end
15 end

The main research questions of this chapter ask about the computing time saved

by IVAP-WEB and whether the probability calibration obtained is comparable

to that obtained from the full proper training set. In the next section, we

provide our answers.

5.4 Experiments and Results

In this section we present the results obtained with IVAP-WEB and contrast it

with those obtained using traditional IVAP, which deals with non-summarised

data. As in the previous Chapter, we have tested our protocol over the data-

sets presented on Chapter 2

Before jumping into the details on our experiments, let us refresh some important

points. The purpose behind this set of experiments is to show that our protocol

IVAP-WEB, described in Section 5.3, improves the running time of inductive Venn-

Abers predictors when SVM is used as the underlying scoring classifier. Hence, our
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experiments compare two approaches: IVAP, which considers inductive Venn-Abers

prediction in the traditional sense as described in Section 5.2.2 i.e. we use the

whole proper training set to train a SVM classifier; and IVAP-WEB, which is

our proposed protocol to speed up IVAP.

Notice that each of the two approaches above needs an optimisation solver to

train the SVM classifier. In the IVAP case, we used the previously mentioned

LIBSVM solver ([114]) which has seen tremendous success in efficiently solving

the SVM objective function, and indeed it is the state-of-the-art algorithm for

computing a high quality SVM model for large data-sets. For IVAP-WEB, we

obtain an approximately correct SVM solution using the AVM algorithm, which

allows us to use enclosing balls to summarise the input data to find a SVM solution.

Finally, for the sake of completeness, we include computations of obtaining a

SVM model from an uniform random sample (URS) of the input points; the

idea is to compare the coreset-based approach against the simpler URS method.

Theoretically, coresets should perform better than URS, and in the worst case,

these methods should perform equally.

5.4.1 Metrics

Our notion of performance is captured by the below three measures. It is useful to

remember at this point that IVAP produces multi-probability outputs i.e. (p0, p1),

and as anticipated in Section 5.2.2, we need to adapt these outputs to point-

probability type of results. We followed the minimax approaches suggested by

Vovk et al. ([14]). In particular, the authors give two strategies for combining

(p0, p1) into p depending on the metric to be used 4; for measuring MLE, we can

obtain point-probability predictions by using p := p1
1−p0+p1

; and for Brier score, the

minimax probability is p := p̄+ (p1 − p0) (1
2 − p̄), where p̄ := (p0 + p1)/2. Finally,

notice that for all the metrics considered, small values are preferred over large ones.
4The MLE and Brier score formulations assume that labels are either 0 or 1; of course, we

adapted this for our case i.e. yi ∈ {1,−1},∀i.
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• Computing Time: this is the number of seconds elapsed from the starting

of the method till the end of its execution.

• Mean Log Error (MLE): this is the average of the per-point log loss suffered

by some probabilistic predictor over a test set. Mathematically, the per-point

log loss is defined as Llog(yi, pi) := −(yiln(pi) + (1− yi)ln(1− pi)), where yi is

the true label for a test object xi, and pi is the predicted probability of the

true label.

• Brier Score: this is the average of the per-point squared loss suffered by a

probabilistic predictor over a test set. Formally, the per-point squared loss is

defined as: (yi − pi)2, where yi is the true label for a test object xi, and pi is

the predicted probability of the true label.

SVM Parameters

We designed our experiments considering that our underlying scoring classifier,

SVM, is very sensitive to its input parameters. Hence, for the sake of fairness, we

decided on the parameters’ value as follows: for each method to be tested, and

for each data-set, we performed a cross-validation phase over the proper training

set to set all the involved parameters. The final parameters used, after doing

a 5-fold cross-validation, were the best ones from the following values as in [35]:

λ ∈ {2−4

n
, 2−3

n
, ..., 216

n
} and δ ∈ {1.0, 2.0, ..., 10.0} for AVM 5, where n is the size of the

proper training set; C ∈ {2−2, 2−1, ..., 210} for LIBSVM, and γ ∈ {2−8, 2−7, ..., 28}

for both AVM and LIBSVM i.e. both need the kernel coefficient. Table 5.1 gives a

summary of the values used for each parameter of each method. Interested readers

can refer to Appendix C for information regarding how the AVM parameters affect

the final calibration obtained when using the IVAP-WEB protocol.

5LIBSVM always sets λ to 1/2.
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Table 5.1: Parameters for IVAP and IVAP-WEB. IVAP uses the well-known LIBSVM
solver while IVAP-WEB apply the coreset-based solver AVM.

Parameter Algorithm(s) Description
λ LIBSVM | AVM L2 Regulariser.
γ LIBSVM | AVM RBF Kernel coefficient.
δ AVM Diameter of balls in input space.
B AVM Budget size for SVM model.
C LIBSVM Dual SVM Regulariser.

5.4.2 The Evaluation

The evaluation of IVAP and IVAP-WEB were done following the below steps. As

mentioned previously, we also include a third approach which consists in applying

IVAP over a small Uniform Random Sample (URS) of the proper training set.

We call this method IVAP-URS and the size of the small sample is set to the

same size as B in AVM.

• Data splitting: we leave 20% of the total number of data points for the test

set. Then, we proceed to further divide the remaining 80% of points into 20%

for calibration and 80% for proper training set.

• Cross-validation: we then perform 5-fold cross-validation for each of the

three approaches. Due to computing limitations, we cross-validate using 1%

of the proper training set. The parameter values were taken from the ranges

discussed above, in Section 5.4.1.

• Methods: we run IVAP, IVAP-WEB and IVAP-URS with the best parame-

ters found.

• Metrics: the metrics detailed in Section 5.4.1 are applied and their output

are stored.

We repeat the above experiment 10 times and report averaged values for each

of the metrics. For the sake of time, we have imposed a time budget for the

IVAP and IVAP-WEB methods; we allowed a total of 7200 seconds for each
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of the protocol to converge to a solution. If this threshold was exceeded, the

computation of that algorithm was stopped and we reported that the time necessary

for convergence was unbounded.

Regarding the implementations, all the methods and experiments were coded

using the Python programming language. For LIBSVM and SGD, we used the well-

known Scikit-Learn library https://scikit-learn.org/stable/. For computing

IVAP, Toccaceli’s implementation https://github.com/ptocca/VennABERS was

used. Finally, our experiments were performed on a single desktop PC running

Ubuntu Linux, equipped with an Intel(R) Xeon(R) 3.30GHz processor and 32

Gigabytes of RAM.

5.4.3 Results

Table 5.2: Performance comparison using the covertype data-set. δ and B are set to
5 and 1% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the
proper training set.

Measure IVAP IVAP-WEB IVAP-URS
Mean Log Error - 0.5785 0.6795
Brier Score - 0.1965 0.2433
Computing Time (s) - 133.9570 43.0821

Probability Loss and Computing Time

In this section, we present and discuss the results obtained on probability calibration

and computing time. Tables 5.2, 5.3, 5.4, 5.5, 5.7 and 5.6 show the performance of

IVAP, IVAP-WEB and IVAP-URS for the six data-sets presented in Table 2.1. The

most preferable results, for each measure, are highlighted in bold fonts.

First, it is important to mention that the numbers in the tables are the medians

computed over 10 runs of the methods; thus, they are resistant to outliers or

variances that could mislead the analysis. Also, notice that IVAP-URS always uses

a sample size that matches the maximum number of core points allowed in IVAP-

WEB i.e. B. This allows this method to be the fastest one in all cases; however,

https://scikit-learn.org/stable/
https://github.com/ptocca/VennABERS
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since it trains SVM on a small arbitrary random sample of size B, the points chosen

do not necessarily represent the proper training set adequately. This clearly affects

the probability-type results of the Venn-Abers framework as it can be seen that

IVAP-URS always obtains the worst MLE and Brier measures. IVAP-WEB, on

the other hand, is not as fast as IVAP-URS, but its performance is in all cases

preferable. Interestingly, despite using a very small fraction of the proper training

set for learning a SVM classifier, IVAP-WEB incurs in smaller losses compared to

IVAP for two out of the three data-sets for which VAP did not violate our time

budget of 7,200 seconds. Namely, for a9a the results show that IVAP-WEB has

a better performance in both MLE and Brier metrics; and for ijcnn1, we see that

IVAP-WEB performs better with respect to the Brier score, although the difference

is small. This phenomenon is aligned with some of our observation in the previous

chapter i.e. it seems that coresets can sometimes help in removing noise from

the data, leaving only the most important information for the learning problem

in question. We believe this issue should be the baseline for future investigations

on the empirical performance of coresets.

Table 5.3: Performance comparison using the higgs data-set. δ and B are set to 5 and
1% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the proper
training set.

Measure IVAP IVAP-WEB IVAP-URS
Mean Log Error - 0.6864 0.6913
Brier Score - 0.2467 0.2491
Computing Time (s) - 1146.58 266.39

For w8a, LIBSVM obtains the best quality solution by a large margin. Even

in this case, it might be very useful in some applications to consider IVAP-WEB

for a faster solution with a compromise in quality.

For the larger data-sets in Tables 5.2, 5.2 and 5.2, we can only compare IVAP-

WEB against IVAP-URS as standalone IVAP was too expensive to converge within

our predefined time budget. As we mentioned earlier, in all cases IVAP-WEB

performs better than IVAP-URS; however, in the case of higgs, the difference



5. Inductive Venn-Abers Predictors with Enclosing Balls 106

between the two methods is very small. This fact can reveal some interesting

aspects regarding this particular data-set: it seams that its data points are close

to a uniform distribution with respect to SVM objective. Thus, in this case,

compressing the input data seems to almost degenerate into taking a uniform

random sample. The situation is very different for webspam, where IVAP-WEB

substantially improves the results of the simple URS approach.

Table 5.4: Performance comparison using the webspam data-set. δ and B are set to
5 and 1% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the
proper training set.

Measure IVAP IVAP-WEB IVAP-URS
Mean Log Error - 0.1177 0.6516
Brier Score - 0.0343 0.2298
Computing Time (s) - 940.4043 22.6922

Table 5.5: Performance comparison using the a9a data-set. δ and B are set to 9 and
10% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the proper
training set.

Metric IVAP IVAP-WEB IVAP-URS
Mean Log Error 0.373 0.351 0.547
Brier Score 0.117 0.112 0.180
Computing Time (s) 586.6 37.0 18.0

Table 5.6: Performance comparison using the w8a data-set. δ and B are set to 21 and
10% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the proper
training set.

Metric IVAP IVAP-WEB IVAP-URS
Mean Log Error 0.0465 0.0710 0.135
Brier Score 0.0100 0.0136 0.0291
Computing Time (s) 226.6 136.3 78.6
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Table 5.7: Performance comparison using the ijcnn1 data-set. δ and B are set to 9 and
10% for IVAP-WEB, respectively. IVAP-RUS uses a randomly chosen 10% of the proper
training set.

Measure IVAP IVAP-WEB IVAP-URS
Mean Log Error 0.149 0.166 0.547
Brier Score 0.117 0.112 0.180
Computing Time (s) 585.4 16.21 18.0

(a) a9a data-set. (b) ijcnn1 data-set.

(c) w8a data-set.

Figure 5.1: Calibration plots for a9a, w8a and ijcnn1. They demonstrate that IVAP-
WEB predictions are well-calibrated.
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Calibration Curves

We then evaluate the calibration of IVAP and IVAP-WEB, which can be seen in

Figures 5.1 and 5.2. Notice that the former groups the smaller data-sets while the

latter contains the bigger ones. As a result, Figure 5.2 does not show information

regarding IVAP as the time necessary for computing it surpassed the time budget

defined for the experiments.

(a) covertype data-set. (b) webspam data-set.

(c) higgs data-set.

Figure 5.2: Calibration plots for covertype, webspan and higgs. They demonstrate that
IVAP-WEB predictions are well-calibrated.
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As mentioned in a previous section, Venn-Abers outputs an upper and lower

bound, namely p0 and p1, for the probability of the positive class. We then need to

combine these bounds for the analysis, obtaining a single value p. A calibration

graph tells us how the predicted probability for the positive class matches the

actual fraction of positives observed in the test set. The closer the curve gets to the

perfect diagonal line, the better its calibration is. We can then appreciate that even

though IVAP-WEB observes far less training points than IVAP, it still provides

very well-calibrated probabilities. We can also see that w8a is a particularly difficult

data-set for both methods as the two of them obtain poor calibration. We speculate

that this has to do with the fact that w8a is a very sparse data-set i.e. 96% of its

entries are zero. We further complement the calibration plots with histograms that

show the distribution of p for our test set. Ideally, one would want the values of p

to be concentrated near zero or one as this means the predictions are more certain.

Multi-probability Efficiency

Finally, the efficiency of both IVAP and IVAP-WEB are shown in Figures 5.3

and 5.4, respectively. In this context, the notion of efficiency is defined as the

difference between p0 and p1; that is, the closer they are from each other, the

more certain our predictor is and the more efficient the prediction is. We call the

width of the prediction to the difference |p1 − p0|. In the figures, we can see that

both methods achieve good efficiency and thus we can conclude that IVAP-WEB

also largely retains the efficiency of IVAP.

5.5 Chapter Summary

This chapter discussed the usefulness of probability calibrators and presented the

VAP framework, a systematic method for using a single-point classifier to produce

well-calibrated probability-type results. We showed that the cost of running VAP

follows directly from the computational efficiency of its underlying predictor. The

SVM classifier is a fundamentally important method for classification in machine

learning as its rule of finding large-margin data separators, combined with its
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(a) a9a data-set (b) ijcnn1 data-set.

(c) w8a data-set. (d) covertype data-set.

(e) webspam data-set. (f) higgs data-set.

Figure 5.3: The histogram plots over the probability interval width for IVAP-WEB
demonstrates that most intervals are close to zero. Thus, IVAP-WEB retains efficiency.

capability of capturing non-linearity through the use of kernels, is one of the

greatest results in the field of machine learning in the last couple of decades.

Using the predictive accuracy of SVM within the framework of VAP, however,

requires tremendous computing power, and more often than not, this resource is
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(a) a9a data-set. (b) ijcnn1 data-set.

(c) w8a data-set.

Figure 5.4: The histogram plots over the probability interval width obtained by VAP.
Only a9a, ijcnn1 and w8a converged in our time budget.

simply not available. We believe that it is not necessary to modify an algorithm in

order to make it more computationally efficient. This general hypothesis was tested

with the protocol we have proposed in this chapter, IVAP-WEB. We have observed

that the IVAP-WEB indeed is able to retain good calibration thanks to the strong

theoretical guarantees of coresets. Quite interestingly, these guarantees seem to

transfer well into practical applications for the VAP framework, and we demonstrated

that, when the coreset is replaced with an arbitrary uniform random sample,

calibration is damaged in unpredictable fashion. Thus, our coreset-based protocol

sits at the sweet spot between computational efficiency and predictive accuracy.

A point that is worth highlighting here is that for moderate-sized data-sets

such as Covertype, Ijcnn1 and Higgs, enjoying probability-type results from SVM

with VAP proved to be computationally exhaustive and thus infeasible. Therefore,

in these scenarios, IVAP-WEB seems to be the best viable answer to VAP’s
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computational dilemma.



I believe that at the end of the century the use of
words and general educated opinion will have altered
so much that one will be able to speak of machines
thinking without expecting to be contradicted . . .

— Alan Turing [116]

6
Efficient Data Summarisation based on

Coresets

6.1 Introduction

In the previous chapters, we have shown that the use of the algorithmic framework

of coresets can bring substantial computational gains to Conformal Prediction and

to Venn-Abers Predictors. Thus, no matter how big the input data become, we

can rely on a coreset construction algorithm to approximately correctly reduce its

size and use the resulting compressed data to efficiently obtain prediction sets

that retain both the validity and efficiency, for CP, and well-calibrated probability

regions for VAP. Of course, the last statement holds, at least in our investigation,

for the ML methods of LR and SVM.

At many points in our previous discussions, we have mentioned that there

are more than one approach for constructing coresets. In chapter 4, we have

used two algorithms: the sensitivity-based probabilistic RCA and the geometric-

decomposition approach of enclosing balls through the AVM method. Fixing our

focus on the former, we can notice, from its definition in Section 3.5.2, that RCA

requires a clustering of the input data in order to determine the importance of every

input example for the LR problem. This might seem strange at first, as clustering

is not the main learning problem we are trying to solve in the first place. In fact,

113
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clustering is known to be a computationally challenging problem on its own right.

Furthermore, clustering is far more computationally expensive than LR ([117]).

It turns out that the above observation can effectively point us to the following

question: how can a computationally hard problem be used to accelerate the con-

vergence of an easier computational problem such as logistic regression? The short

answer is that, in order to compute a coreset for LR, we are not required to provide

an optimal clustering of the input data; a rough sub-optimal solution will suffice for

computing the importance of input points. However, this question does lead us to an

important issue: in some important scenarios, even the computation of a sub-optimal

clustering of the input data can substantially slow the data compression process.

The main topic of this chapter thus is to analyse the computational stress caused

by clustering in the computation of coresets for logistic regression. We will show

that the RCA method can paradoxically slow the learning of a logistic regression

classifier, defeating the purpose of using coresets to accelerate the learning process.

The most important contribution of this chapter is the discovery that it is not

necessary to cluster the full input data in order to obtain high-quality coresets 1.

Based on this fundamental claim, we will define two general procedures to save

computing time in the coreset constructions: the ACvS procedure, which is a direct

implementation of the research discovery mentioned; and the RDSF procedure,

which builds upon ACvS and attempts to use some of the computing time saved

to obtain extra information from the input data.

Finally, for this chapter, we leave the framework of Reliable Machine Learning on

the side, since the main computational issue is exclusively related to the construction

of coresets. This means, in principle, that the procedures proposed here can also

be applied to coreset-based inductive conformal prediction, proposed in Chapter 4,

and to inductive Venn-Abers predictors with enclosing balls, proposed in chapter 5.
1This chapter is based on two of our works: 1) the original work published in the 9th

International Conference on Data Science, Technology and Applications, Paris 2020, where the
article received the Best Student Paper award. See [118]; 2) An extended version of the original
article that is currently under review for publication in Springer’s Communications in Computer
and Information Science (CCIS) series.
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6.2 Computational Setting and Problem

As previously mentioned, we leave aside the methods from reliable machine learning

in order to focus specifically on the problem of constructing coresets for logistic

regression. To have a clear picture of the problem of logistic regression and of the

RCA method for constructing coresets, their definitions can be found in Chapter

2 and Chapter 3, respectively.

The computations we will discuss assume an offline setting, where we have the

whole input data D in advance i.e. as opposed to the online setting in which we

gradually receive the input examples as part of an incoming sequence.

Our contributions rely on the fact that, in order to accelerate the LR learning

process, the framework of coresets allows us to reduce the size of the input data

D to a small coreset C, where |C| � |D| holds. After C is obtained, |D| can be

safely disregarded and we can proceed to learn a LR classifier on the coreset only.

Notice that, by definition, the theory of coresets guarantees that, even though

model-training occurs over smaller data, the learning performance of the resulting

LR classifier will be approximately retained; this implies that the predictions made

with a classifier learned from a coreset are protected from arbitrary quality loss.

RCA takes as input the data D and a set of k-centres QD, the latter is the result

of applying a clustering algorithm to D, and outputs a coreset C. Even though

this works well in principle, we will see in the next section that the computation of

the k-centres in QD can be computationally infeasible for a coreset algorithm. The

problem of finding a clustering for a set of points is known to be computationally

hard [27]. This is why approximation and data reduction techniques are popular

approaches for accelerating clustering algorithms. In fact, the paradigm of coresets

has seen great success in the task of approximating solutions for clustering problems

(see [67], [70], [86], [69] and [98]).

The sensitivity framework for defining coresets, presented in Chapter 3, requires

a sub-optimal clustering of the input data D in order to compute the sensitivity

for each point in the set. This requirement transfers to the RCA algorithm. If we

assume a Bayesian setting as in[78], the time necessary for clustering D is dominated
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by the cost of running posterior inference algorithms. However, if we remove the

burden of posterior inference and consider an optimisation setting, such the one

we previously defined, then the situation is very different.

Figure 6.1 sheds light on the above phenomenon; here,we can see the time spent

on finding a clustering compared to all the other steps taken by RCA to construct a

coreset, namely: sensitivity computation and sampling. The time spent on training

the LR model on the coreset is included as well.

It is easy to see that applying a clustering algorithm, even to get a sub-optimal

solution as done here, can be dangerously impractical for computing a coreset in

the optimisation setting as it severely increases the overall coreset-construction

time. Even worse, constructing the coreset is slower than learning directly from D,

defeating the purpose of using the coreset as an acceleration technique.

Another interesting point that can be mentioned here is that any algorithm

used for computing coresets must give us summaries of data that are both quickly-

computable and quality-preserving. Disregarding one of these objectives makes the

task of summarising the input data much easier, but ultimately the summaries are

less effective; that is, we can simply take a uniform random sample from our input

data, which can be achieved in constant time; no compression algorithm will finish

faster, but we will suffer a quality loss that is out of our control. Similarly, on the

other side of the spectrum, we can just avoid performing any data compression

at all, and we will for sure be able to obtain a very high-quality solution; but

we should be ready to deal with lots of computational stress, storage overflows

and even loss of random access2.

Given the above discussion, we can ask the following research question: “Can

we still benefit from good coreset acceleration in the optimisation setting?”

We give an affirmative answer to this question through two approaches described

in the next section. The key ingredient for both methods is the use of Uniform

Random Sampling (URS) alongside coresets.
2we say we loose random access when the input data is so large that accessing some parts of

the data is more expensive, computationally speaking, than accessing other parts.
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(a) Webspam (b) Covertype

Figure 6.1: Comparison of the computing time needed for constructing LR coresets for
the Webspam and Covertype datasets. The clustering process consumed the majority of
the processing time.

6.3 The Computational Remedy

In this section, we propose two different procedures for efficiently computing coresets

for Logistic Regression in the optimisation setting. Both approaches are similar in

the following sense: they both make use of uniform random sampling for speeding

up coresets computation. URS is the most straightforward and simple way to reduce

the size of input dataset by picking as many points as permissible uniformly at

random. This is not the first time that the concept of URS comes up alongside

coresets; in fact, URS can be seen as a naive approach for computing coresets and

it is the main motivation for deriving a more sophisticated sampling approach [86].

In the following procedures, however, we see URS as a complement to coresets, not

as an alternative to them, which is usually the case in coresets works.

6.3.1 Accelerated Clustering via Sampling

Our first procedure, Accelerated Clustering via Sampling (ACvS), uses a straight-

forward application of URS. The procedure is described in Algorithm 9. First, we

extract b input points from D and put them into a new set S. We require that

b � n, where n := |D|. Then, we cluster S to obtain k cluster centres, namely

QS with |QS| := k. We finally run the RCA algorithm using QS as input and

compute a coreset. Since we have that |S| � |D|, obtaining QS is substantially

faster than obtaining QD. Notice that the coreset algorithm RCA is parameterised

by the coreset size M . As a simple example, say we have a large dataset that we
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Algorithm 9: ACvS procedure.
Input: RCA: coreset algorithm, D: input data, A: a clustering algortithm,

k: number of cluster centres, b� |D|: uniform random sample size
Output: C: coreset

1 S ← ∅;
2 B ← |S|;
3 while B < b do
4 s← SamplePoint(D) // Sample without replacement
5 S ← S ∪ {s} // Put s in S

6 end
7 QS ← A(S,k) // Run Clustering algorithm on S
8 C ← RCAM(D, QS) // Run Coreset Algorithm
9 return C

would like to classify using logistic regression, and to do it quite efficiently, we

decide to compress the input data into a coreset. The standard coreset algorithm

for LR dictates that we have to find a clustering of our dataset as the very first step;

then we use the clustering to compute the sensitivity of each point; the next step

is to sample points according to their sensitivity and to put them in the coreset,

and finally we compute the weight for each point in the coreset. What ACvS

proposes is: instead of computing the clustering of the full input data, compute

the clustering of a very small set of uniform random samples of it, then proceed

as the standard coreset algorithm dictates.

We designed this procedure based on the following observation: uniform random

sampling can provide unbiased estimation for many cost functions that are additively

decomposable into non-negative functions. We prove this fact below.

Let D be a set of points and let n := |D|; also, let Q be a query whose cost value

we are interested in computing. We can define a cost function which is decomposable

into non-negative functions as cost(D, Q) := 1
n

∑
x∈D fQ(x).

Many machine learning algorithms can be cast to this form. Here, we are

mainly concerned about k-Means clustering, where Q is a set of k points and

fQ(x) := minq∈Q||x− q||22. More details on k-means can be found in Section 2.4.1.

Let us now take a random uniform sample S ⊂ D with m := |S|, and define

the cost of query Q with respect to S as cost(S,Q) := 1
m

∑
x∈S fQ(x). To show
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that cost(S,Q) is an unbiased estimator of cost(D, Q) we need to prove that

E[cost(S,Q)] = cost(D, Q)

Claim. E[cost(S,Q)] = cost(D, Q)

Proof. By definition, we have that cost(S,Q) := 1
m

∑
x∈S fQ(x). Expanding this, we

get

E[cost(S,Q)] = E[ 1
m

∑
x∈S

fQ(x)] (6.1)

The crucial step now is to compute the above expectation. To do this, it is

useful to construct the set S that contains all the possible subsets S in D. The

number of such subsets has to be
(
n
m

)
, which implies |S| :=

(
n
m

)
. Then, computing

the expectation over S and re-arranging some terms we get

1(
n
m

) 1
m

∑
S∈S

∑
x∈S

fQ(x) (6.2)

Next, we get rid of the double summation as follows: we count the number of

times that fQ(x) is computed. By disregarding overlapping computation of fQ(x)

due to the fact that a point x can belong to multiple subsets S ∈ S, we can quickly

obtain that the count has to be
(

(n−1)
(m−1)

)
. Then, we can write (6.2) as

1(
n
m

) 1
m

(
(n− 1)
(m− 1)

) ∑
x∈D

fQ(x) (6.3)

Notice that now we have a summation that goes over our original set D. Finally,

by simplifying the factors on the left of the summation we have

1
n

∑
x∈D

fQ(x) = cost(D, Q) (6.4)

which concludes the proof.

The imminent research question here is: how does using the ACvS procedure

affect the performance of the resulting coreset? We shall show in Section 6.4

that the answer is indeed positive.
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6.3.2 Regressed Data Summarisation Framework

The second method builds on the previous one and it gives us at least two important

benefits on top of the acceleration benefits given by ACvS:

• sensitivity interpretability: it unveils an existing (not-obvious) linear relation-

ship between input points and their sensitivity scores.

• instant sensitivity-assignment capability: apart from giving us a summary of

the input data, it gives as a trained regressor capable of assigning sensitivity

scores instantly to new unseen points.

Before presenting the method, however, it is useful to remember the following:

the RCA algorithm (Algorithm 3) implements the sensitivity framework and hence

it relies on computing the sensitivity, a measure of importance, for each input point.

We call our second procedure Regressed Data Summarisation Framework (RDSF).

We can use this framework to (i) accelerate a sensitivity-based coreset algorithm; (ii)

unveil information on how data points relate to their sensitivity scores; (iii) obtain

a regression model that can potentially assign sensitivity scores to new data points.

The full procedure is shown in Algorithm 10: RDSF starts by using ACvS to

accelerate the clustering phase. The next step is to separate the the input data

D in two sets: S, the small URS picked during ACvS, and R, all the points in D

that are not in S. The main step in RDSF starts at line 12: using the clustering

obtained in the ACvS phase, QS, we compute the sensitivity scores only for the

points in S and place them in a predefined set Y . A linear regression problem

is then solved using the points in S as feature vectors and their corresponding

sensitivity scores in Y as targets. Thus, RDSF poses the problem of summarising

data as the problem of ‘learning’ the sensitivity of the input points. The result

of such learning process is a trained regressor φ and RDSF uses it to predict the

sensitivities of all the points in R. Hence, RDSF uses S as training set and R

as test set for the inner regression problem.
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Algorithm 10: The Regressed Data Summarisation Framework (RDSF)
uses a coreset construction to produce coreset-based summaries of data.
Input: D: input data, A: clustering algortithm, k: number of cluster

centres, b� |D|: uniform random sample size, M : coreset size
Output: C̃: Summarised Version of D, φ: Trained Regressor

1 initialise;
2 S ← ∅;
3 N ← |D|;
4 while |S| < b do
5 s← SamplePoint(D) // Sample without replacement
6 S ← S ∪ {s} // Put s in S

7 end
8 QS ← A(S,k) // Run Clustering algorithm on S
9 R← D \ S;

10 Y ← ∅;
11 for i = 1, 2, ..., b do
12 mn ← Sensitivity(si, QS) // Compute the sensitivity of point

si ∈ S
13 Y ← Y ∪ {mn};
14 end
15 Ŷ , φ← PredictSen(S, Y,R) // Train regressor on S and Y ,

predict sensitivity for each r ∈ R
16 Y ← Y ∪ Ŷ ;
17 m̄N ← 1

N

∑
y∈Y y;

18 for i = 1, 2, ..., n do
19 pi = mi

nm̄n
; // compute importance weight for each point

20 end
21 (K1, K2, ..., Kn) ∼ Multi(M,(pi)ni=1) ; // sample coreset points
22 for i = 1, 2, ..., n do
23 wn ← Kn

pnM
; // calculate the weight for each coreset point

24 end
25 C̃ ← {(wi, xi, yi)|wi > 0};
26 return C̃,φ

We finally see that after merging the computed and predicted sensitivities of

S and R (line 16 in Algorithm 10), respectively, RDSF executes the same steps

as RCA i.e. compute the mean sensitivity (line 19), sample the points that will

be in the summary (line 22) and compute the weights (line 23).
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6.4 Experiments and Results

6.4.1 Strategy

In this section, evaluation results for the two procedures ACvS and RDSF are

presented. As before, we tested our procedures on the datasets in our master

table for data, presented in Chapter 2.

In order to test the effectiveness of the proposed methods, the experiments

compare the following five procedures:

• Full: no coreset or summarisation technique is used. That is, we simply train

a LR model on the entire training set and predict the labels for the instances

in the test set.

• RCA: we obtain a clustering of the input data and run RCA (Algorithm 3)

to obtain a coreset. We then train a LR model on the coreset to predict the

labels for the test instances.

• ACvS: we use the procedure ‘Accelerated Clustering via Sampling’, described

in Algorithm 9, to accelerate the coreset computation. Once we have obtained

the coreset in accelerated fashion, we proceed to learn a LR classifier over it.

• RDSF: summaries of data are generated via the ‘Regressed Data Summari-

sation Framework’, described in Algorithm 10. Hence, we compute sensitivity

scores only for a handful of instances in the training set. Then, we train a

regressor to predict the sensitivity scores for the remaining of the training

instances. We sample points according to the sensitivities, compute their

weights and return the data summary. We then proceed as in the previous

coreset-based procedures.

• URS: for the sake of completeness, we include ‘Uniform Random Sampling’ as

a baseline for reducing the volume of input data; we simply pick the required

input points uniformly at random and then train a LR classifier over them.
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Our evaluation pipeline can be described as follows: for each of the above

approaches, and for each dataset in Table 2.1, we take the below steps:

1. data shuffling: we randomly mix up all the available data.

2. data splitting: we select 50% of the data as training set and leave the rest

for testing purposes. Thus, the training set is the input data D.

3. data compression: we proceed to compress the input data. As previously

mentioned, the RCA approach computes a coreset without any acceleration,

ACvS computes a coreset by using RCA with an accelerated clustering phase,

RDSF compresses the input data into a small summary data in an accelerated

fashion, and URS performs a naive compression by taking an uniform random

sample of the input data. Full Data is the only approach that does not

perform any compression on the input data.

4. model training: we train a Logistic Regression classifier on the data obtained

in the previous step. RCA, ACvS, RDSF and URS produce a reduced version

of the input data while Full Data trains the classifier on the full input data D.

5. output assessment: we finally use the trained Logistic Regression classifiers

to predict the labels in the test set and apply our performance metrics, detailed

in Section 6.4.2.

The above steps are repeated 10 times for each of the five different approaches.

Hence, the results we will see in the next sections are averaged ones. One important

observation concerning the RDSF method is that the results in this chapter were

generated using the classic Ordinary Least Squares (OLS) as regressor. However,

any regressor could be used in order to make the sensitivity predictions. Appendix

D presents results obtained by using RDSF with regressors such as Ridge Regression

([119]), Lasso Regression ([120]) and Elastic-Net Regression ([121]).

All of our programs were written in Python. The method used for clustering the

input data is the well-known k-Means algorithm; and for RDSF, linear regression is
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used to learn the sensitivities of input points. Both k-Means and linear regression

were formally defined in Chapter 2.

6.4.2 Metrics

The empirical performance of coresets has mainly remained a grey area in the past

years. We apply the following performance metrics in order to shed light on, first,

the performance of coresets in general, second, the performance of the methods

proposed in this chapter. We shall consider the following five performance metrics:

1. Computing time (in seconds): here we measure acceleration in seconds.

To make a more meaningful analysis, we further break down time into 5

different stages :

(a) Clustering: the time needed to obtain the k-centres for coreset-based

approaches.

(b) Sensitivity: the time required to compute the sensitivity score for each

input point.

(c) Regression: the time needed for training a regressor in order to predict

the sensitivity scores for input points. The prediction time is also taken

into account.

(d) Sampling: the time required to sample input points.

(e) Training: the time required for leaning an LR classifier.

Notice that the Training phase is the only one present in all our approaches.

Hence, for example, the coreset approach does not learn any regressor and

thus it is assigned 0 seconds for that phase. The URS approach does not

perform any clustering or sensitivity computation, hence those phases get 0

seconds for this method, etc.

2. Classification Accuracy: this measure is given by the percentage of cor-

rectly classified test examples. It is commonly used as the baseline metric for

measuring performance in a supervised-learning setting.
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3. Area Under the Precision & Recall Curve (PREC/REC): Precision is

defined as TP
TP+FP and Recall can be computed as TP

TP+FN [122], where TP ,FP

and FN stand for the True Positives, False Positives and False Negatives

achieved by a binary classifier, respectively. The curve is obtained by putting

the Recall on the x-axis and the Precision on the y-axis. Once the curve has

been generated, the area under the curve can be calculated in the interval

between 0 and 1. The greater the area, the better the performance.

4. F1 Score: is the harmonic average of precision and recall [123] and hence

can be computed as F1 := 2 PR
R+P , where P is Precision and R is recall [123].

The greater the value, the better the classifier’s performance.

5. Area Under the ROC Curve (AUROC): provides an aggregate measure

of performance across all possible classification thresholds. The curve can be

computed by placing the False Positives Rate (FPR) on the x-axis and the True

Positives Rate (TPR) on the y-axis, with FPR := FP
FP+TN and TPR := TP

TP+FN ;

here, once more, TP ,FP and FN stand for the True Positives, False Positives

and False Negatives achieved by any binary classifier, respectively. Similar to

the area under the precision and recall curve, AUROC is obtained from the

curve.

6.4.3 Acceleration via ACvS and RDSF

We categorise our results according to the five different metrics we just described.

Notice that their values are shown as functions of the size of the summaries used

for training the LR classifier. Thus, if we look at Figures 6.3, 6.5, 6.4 and 6.6, we

can see that summary sizes on the x-axes correspond to very small percentages

of the training set. Specifically, for the Higgs dataset, which is the largest one,

the summary sizes are 0.005 %, 0.03 %, 0.06 % and 0.1 % of the input data. For

Webspam and Covertype, which are smaller then Higgs, we show results with

summary sizes of 0.05 %, 0.1 % , 0.3 %, 0.6 % and 1 % of the total input data.

Finally, for w8a and ijcnn1, which are the smaller datasets, the sizes shown are 1 %,
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3 % , 6 %, and 10 %. The reason why there are different summary sizes for some

of our datasets has to do with the difference in size across datasets. For example,

computing a summary of 0.005 % of the w8a or the ijcnn1 datasets is unfeasible

since these datasets are not very large and hence it is very likely to end up with a

extremely small summary of data that only contains points of one class. In other

words: the larger the dataset, the more we can compress it.

Computing Time

Figure 6.2 summarises our results in terms of computing time. We show in the

stacked-bars plots the time spent for each phase of the different approaches.

We can clearly see that the RCA approach, which clusters the full input data

in order to constructs coresets , is not suitable for the optimisation setting we

are considering. Specifically, with respect to the Full method, we notice that

for the Covertype dataset, the coreset approach gives a modest acceleration of

approximately 1.2 times. The situation becomes more severe for the Webspam,

ijcnn1, w8a and Higgs datasets, where using the traditional coreset approach incurs

in a learning process which is about 1.9, 2.6, 1.8 and 1.3 times slower than not

using coreset at all, respectively.

Hence, by removing the bottleneck produced by the clustering phase, our two

proposed methods show that we can still benefit from coreset acceleration to solve

our particular problem; that is, our methods take substantially shorter computing

time when compared to the RCA approach. In particular, and with respect to

Full Data approach, our approach ACvS achieves a minimum acceleration of 3.5

times (w8a) and a maximum acceleration of 34 times (Higgs) across our datasets.

Regarding RDSF, the minimum acceleration obtained was 1.15 times (w8a) and

the maximum was 27 times (Covertype).

Notice that our accelerated methods are only beaten by the naive URS method,

which should most certainly be the fastest approach.

Finally, notice that the RDSF approach is slightly more expensive than ACvS.

This is the computing price we pay for obtaining more information i.e. RDSF
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs (f) a9a

Figure 6.2: Comparison of the computing time of different methods.

outputs a trained regressor that can immediately assign sensitivities to new unseen

data points; this can prove extremely useful in settings when learning should be

done on the fly. According to our evaluations, RDSF’s time can be improved by

reducing the number of points used for training the underlying regression algorithm.

In general, using 1 % of the training set for training the regressor worked well;

however, depending on the data, this could be reduced (or increased) in order to

achieve better computing time (learning quality).
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The natural follow-up question is whether our methods’ resulting classifiers

perform well. We address this question in great detail in the following sections.

Accuracy

We first look into the baseline metric for measuring the success of a classifier:

the accuracy. Figure 6.3 shows how the accuracy of the methods changes as the

sample sizes increase on different datasets. To recall, each of the different methods

considered relies on reducing the input data via a coreset-based compression or

a random uniform sample, as described in Section 6.4.1. Hence, we here report

the different accuracy scores obtained by training our LR classifier on different

samples sizes. As reference, we also include the accuracy of the Full Data method

as a straight line.

The first observation is that all the methods perform better as the sample

sizes increase. Quite surprisingly, we see that in all cases, without exceptions,

the ACvS approach achieves the exact same accuracy that the RCA approach

achieves, for all sample sizes. Hence, for coresets, clustering over a sub-sample

of the input data does not seem to deteriorate the rate of correct predictions of

the resulting classifiers, and greatly accelerates the overall coreset computation,

as we could appreciate in the previous section.

We also see that the RDSF approach performs as good as the rest of the coreset-

based approaches, with accuracy never lower than the baseline approach (URS). It

is generally expected that coresets outperform the URS approach in most situations;

and RDSF summaries, even without being strictly a coreset 3, show this behaviour.

Finally, we see that, as sample sizes increase, the gap between coreset performance

and URS performance reduces i.e. they both get closer and closer to the Full Data

approach. A particularly interesting case is that of w8a, which shows a very similar

performance for all the methods. This could be an indicator that points in the dataset

contribute almost equally to the learning problem considered: LR, in this case.
3we carefully distinguish between a coreset and a coreset-based summary. The former requires

a theoretical proof on the quality loss.
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs (f) a9a

Figure 6.3: Comparison of the prediction accuracy of different methods.

F1 Score

We now present the results of applying the F1 score metric to our LR classifiers

for different sample sizes, see Figure 6.4.

The first observation we make is that, similar to accuracy results, ACvS and

RCA obtain exactly the same scores, and RDSF remains competitive against them.

Furthermore, it is fair to say that for the Covertype and Higgs datasets, RDSF

has preferable performance compared to the other compression approaches. Hence,

we once more see that the advantages of coresets are available in our setting as

long as we carefully accelerate the underlying algorithm.
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs (f) a9a

Figure 6.4: Comparison of F1 score of different methods.

Our experiments reveal that the performance gap between URS and the rest

of the approaches becomes even greater for the F1 Score; showing that classifiers

trained over coresets are more useful and informative than the ones trained over

uniformly randomly selected samples. Furthermore, if we look at F1 score for ijcnn1

(see Figure 6.6a) we can have a glimpse of an interesting phenomenon: we actually

obtain better results using coresets, and hence less data, than using the full dataset.

We leave this as an open problem for future exploration.
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AUROC

We now present the AUROC score for each of our 5 approaches. Figure 6.5 shows

comparison of the AUROC scores for all methods. The picture is similar to that of

F1-score and Accuracy: coreset-based approaches consistently outperform URS. We

see indeed that ACvS and RDSF perform competitively traditional coreset approach,

achieving their performance in substantially less computing time than coresets (see

Section 6.4.3). An intriguing case is that of w8a, which shows that URS is actually

slightly better than coreset approaches for small sample sizes. As we previously

mentioned, it is highly probably that this is an indication that the input points in

the dataset are not very different in terms of their contribution to the LR objective

function; or, it could also be the case that the sensitivity distribution, as computed

by the coreset-based methods, does not fully account for the structure of the data.

Precision & Recall

Finally, we present the results concerning the precision and recall score. The

behaviour here is similar to that of AUROC. The performance of w8a seems to be

different from the rest of the data once more: we see that, for very small sample sizes,

URS is even slightly better that the coreset and coreset-based approaches. As the

sample sizes increase, the latter outperform the former, although not by much. As we

previously mentioned, this could mean that input points in w8a are more or similar

for LR and hence we cannot strictly distinguish between redundant and important

points. We also see that ACvS gets exactly the same scores when compared to its

non-accelerated version; which shows that clustering over the whole input data is

not necessary i.e. clustering over a small uniform random sample is sufficient.

Summary of Results

This section provides detailed performance information of our procedures, alongside

the rest of the methods, on the six data-sets in Table 2.1. Specifically, Tables 6.1, 6.2,

6.3, 6.4 and 6.5 show the different metric scores obtained over our set of datasets.
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs (f) a9a

Figure 6.5: Comparison of the area under the ROC curve of different methods.

Overall, and as shown in the plots in previous sub-sections, the empirical results

demonstrated that ACvS and RDSF do provide meaningful acceleration to the

traditional Coreset approach, while maintaining competitive performance, in all

datasets considered. One important observation is that, even though our procedures

give good speed-ups, the performance of coresets are dataset dependent. If the

structure of the data can be captured correctly by doing an uniform random sample,

then coreset performance should not be expected to be very different than URS.

We can see an example of this in w8a, where coresets in general do not give very

meaningful improvement. On the other hand, for the rest of the datasets, we
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs (f) a9a

Figure 6.6: Comparison of the area under the precision/recall curve of different methods.

can indeed see how compressing the input data in more involved fashion gives a

significant improvement over the naive URS.

6.5 Chapter Summary

As modern ever-growing sets of data overshadow our computing resources, scaling

up machine learning algorithm is not a trivial task. The most direct algorithmic

approach is to write new learning algorithms that overcome the inefficiencies of their

old counterparts. A less direct approach consists in using the well-known algorithms
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Table 6.1: Performance comparison on the Covertype dataset where size is the percentage
of training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
0.05 Full 0.76 0.83 0.76 3.35
0.05 RCA 0.69 0.75 0.69 2.78
0.05 ACvS 0.69 0.75 0.69 0.12
0.05 RDSF 0.70 0.76 0.69 0.12
0.05 URS 0.65 0.71 0.63 0.04

0.3 Full 0.76 0.83 0.76 3.31
0.3 RCA 0.73 0.81 0.73 2.78
0.3 ACvS 0.73 0.81 0.73 0.13
0.3 RDSF 0.74 0.81 0.74 0.13
0.3 URS 0.68 0.77 0.69 0.05

1 Full 0.76 0.83 0.76 3.71
1 RCA 0.75 0.82 0.75 3.38
1 ACvS 0.75 0.82 0.75 0.18
1 RDSF 0.75 0.82 0.75 0.18
1 URS 0.72 0.80 0.73 0.07

we currently possess over a reduced version of their input data: the coreset. We

have shown that for the optimisation setting, the algorithm for constructing coresets

for the problem of Logistic Regression relies on a clustering phase that, more often

than not, creates a bottleneck in the compression process.

To circumvent this, we proposed two methods that can ease this computational

bottleneck: Accelerating Clustering via Sampling (ACvS) and Regressed Data

Summarisation Framework (RDSF). Both methods achieved substantial overall

learning acceleration while maintaining the performance accuracy of coresets. This

implies that coresets can still be efficiently used to learn a logistic regression

classifier in the optimisation setting.

Interestingly, we observed that, even though RCA needs a clustering of the input

data, this can be relaxed in the practical sense. Furthermore, our calculations indi-
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Table 6.2: Performance comparison on the Webspam dataset where size is the percentage
of training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
0.05 Full 0.92 0.94 0.97 5.39
0.05 RCA 0.86 0.89 0.92 10.15
0.05 ACvS 0.86 0.89 0.92 0.31
0.05 RDSF 0.84 0.87 0.90 0.49
0.05 URS 0.70 0.79 0.88 0.05

0.3 Full 0.92 0.94 0.97 6.54
0.3 RCA 0.90 0.92 0.96 13.40
0.3 ACvS 0.90 0.92 0.96 0.41
0.3 RDSF 0.89 0.91 0.95 0.64
0.3 URS 0.80 0.85 0.92 0.06

1 Full 0.92 0.94 0.97 6.35
1 RCA 0.92 0.93 0.97 13.44
1 ACvS 0.92 0.93 0.97 0.45
1 RDSF 0.92 0.93 0.97 0.68
1 URS 0.88 0.90 0.95 0.08

cate that RCA must be used with the clustering done over a small subset of the input

data in the optimisation setting (i.e. the ACvS approach). Our empirical evaluations

confirm that, by doing so, one will not be sacrificing learning performance.

With respect to RDSF, I believe this opens a new direction for coresets: we

could pose the computation of data compression via coresets as solving a small-scale

learning problem in order to solve a large-scale one. It is interesting to see that the

sensitivities of input points can be explained by a simple linear regressor. Most

importantly, we believe that this method could be of powerful use in the online

learning setting [124]. This is because RDSF allows us to obtain a fully trained

regressor capable of assigning sensitivity scores to new incoming data points. We

leave as future work the use of these methods in different machine learning tasks.
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Table 6.3: Performance comparison on the Higgs dataset where size is the percentage of
training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
0.005 Full 0.68 0.69 0.64 89.22
0.005 RCA 0.62 0.62 0.59 112.44
0.005 ACvS 0.62 0.62 0.59 2.61
0.005 RDSF 0.62 0.64 0.60 4.16
0.005 URS 0.58 0.56 0.54 1.12

0.03 Full 0.68 0.69 0.64 92.22
0.03 RCA 0.67 0.68 0.633 121.25
0.03 ACvS 0.67 0.68 0.63 2.70
0.03 RDSF 0.67 0.67 0.63 4.46
0.03 URS 0.66 0.64 0.60 1.20

0.1 Full 0.68 0.69 0.64 90.18
0.1 RCA 0.68 0.68 0.64 123.97
0.1 ACvS 0.68 0.68 0.64 2.61
0.1 RDSF 0.68 0.68 0.64 4.50
0.1 URS 0.69 0.67 0.62 1.29
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Table 6.4: Comparison of coreset performance on w8a dataset where size is the percentage
of training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
1 Full 0.543 0.965 0.98 0.06
1 RCA 0.116 0.822 0.971 0.18
1 ACvS 0.116 0.822 0.971 0.02
1 RDSF 0.108 0.801 0.971 0.05
1 URS 0 0.826 0.97 0.007

3 Full 0.543 0.965 0.98 0.06
3 RCA 0.305 0.869 0.973 0.19
3 ACvS 0.305 0.869 0.97321 0.02
3 RDSF 0.249 0.876 0.97237 0.06
3 URS 0 0.877 0.97 0.01

6 Full 0.543 0.965 0.98 0.05
6 RCA 0.37 0.91 0.975 0.19
6 ACvS 0.37 0.91 0.975 0.02
6 RDSF 0.407 0.913 0.975 0.05
6 URS 0.0003 0.904 0.97 0.01
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Table 6.5: Comparison of coreset performance on ijcnn1 dataset where size is the
percentage of training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
1 Full 0.46836 0.93313 0.92462 0.18
1 RCA 0.47105 0.89755 0.92229 0.49
1 ACvS 0.47105 0.89755 0.92229 0.03
1 RSDF 0.49022 0.90092 0.92261 0.03
1 URS 0.00123 0.81114 0.90412 0.01

3 Full 0.46836 0.93313 0.92462 0.19
3 RCA 0.47487 0.92229 0.92391 0.45
3 ACvS 0.47487 0.92229 0.92391 0.04
3 RSDF 0.44788 0.92085 0.92305 0.03
3 URS 0.08715 0.89298 0.90677 0.02

6 Full 0.46836 0.93313 0.92462 0.19
6 RCA 0.47861 0.92658 0.92456 0.46
6 ACvS 0.47861 0.92658 0.92456 0.04
6 RSDF 0.47063 0.92630 0.92477 0.04
6 URS 0.25508 0.91849 0.91363 0.02
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Table 6.6: Comparison of coreset performance on the a9a data-set where size is the
percentage of training data.

Size (%) Method F1 score ROC Accuracy Time (seconds)
1 Full 0.65352 0.90178 85001 6.37423
1 Coreset 0.54603 0.87389 82500 0.42522
1 ACvS 0.54603 0.87389 82500 0.11467
1 RDSF 0.57807 0.87766 83000 0.11635
1 URS 0.58454 0.86766 82533 0.05234

3 Full 0.65352 0.90178 85001 7.37372
3 Coreset 0.61545 0.89065 84003 0.56512
3 ACvS 0.61545 0.89065 84003 0.23552
3 RDSF 0.61994 0.88761 83786 0.23287
3 URS 0.61978 0.88794 83889 0.13645

6 Full 0.65352 0.90178 85001 6.62791
6 Coreset 0.62880 0.89460 84228 0.75048
6 ACvS 0.62880 0.89460 84228 0.42837
6 RDSF 0.63791 0.89354 84257 0.42987
6 URS 0.63717 0.89554 84480 0.26902



It is not knowledge, but the act of learning, not
possession but the act of getting there, which grants
the greatest enjoyment. When I have clarified and
exhausted a subject, then I turn away from it, in
order to go into darkness again; the never-satisfied
man is so strange if he has completed a structure,
then it is not in order to dwell in it peacefully, but in
order to begin another. I imagine the world conqueror
must feel thus, who, after one kingdom is scarcely
conquered, stretches out his arms for others . . .

— Carl Friedrich Gauss
Letter to Bolyai, 1808. 7

Conclusion

This chapter summarises the findings of this investigation and places the contri-

butions herein within the frames of the current status quo in machine learning.

Viable future work on the line of research conisdered in the thesis will also be

presented and discussed, along with possible applications.

7.1 Thesis Summary

The contributions presented in this research target the computational overhead

imposed by conformal predictors and Venn-Abers predictors to traditional scoring

classifiers. This issue, is partially addressed by considering the inductive version

of these methods. The protocols defined in this thesis, C-ICP and IVAP-WEB,

however, can further improve this computational gain, in some instances, by orders

of magnitude. There are at least 3 interesting advantages of these propossed

coreset-based approaches:

• C-ICP and IVAP-WEB do not add any additional assumptions on the data

apart from those already required by CP and IVAP e.g. the IID property

should hold for the input data. Furthermore, our methods are application-

agnostic and hence they could be applied in any application where CP and

IVAP can be applied.

140
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• equipped with the aggregation properties of coresets, discussed briefly in

Section 3.8, C-ICP and IVAP-WEB can be extended to different computational

settings such as the streaming setting or the distributed setting. Furthermore,

considering that CP was defined as a purely online method, which resembles

the streaming setting very closely, this extension will be a natural fit for our

methods.

• CP and VAP are simple in principle and they have a modular nature in the

sense that they encourage a clear separation between the data summarisation

part and the learning process. Thus, the learning process does not need to

get informed about the existence of a compression step. This makes the task

of exploring different coreset algorithms straighforward.

During this research effort, it was also observed that the construction of coresets

could be very expensive, in terms of computational power, for the problem of logistic

regression in the optimisation setting. This brings to light an interesting observation

on the framework of coresets: the fact that there exists a theoretically proved

procedure for finding a coreset for a specific problem, does not necessarily imply

that there exists an efficient algorithm that implements the procedure. This work’s

response to such dilemma, for the specific problem of LR and its coreset construction

proposed by Huggins et al. ([78]), is to accelerate the intrinsic clustering step in

the coreset construction. This is achieved by the ACvS procedure, which exploits

the fact that, for the problem of clustering, taking a small uniform sample of the

data gives, in expectation, the same result. ACvS, overcoming the bottleneck in the

coreset construction algorithm, allows the compression of input data into a coreset

to happen substantially faster; at the same time, the procedure retains exactly the

accuracy of the coreset algorithm. This last observation points to the conclusion

that, for constructing a coreset for LR, a rough approximation to the clustering

of the input data is sufficient for obtaining a coreset.

Based on the AcvS method, the RDSF protocol was designed: a meta framework

that uses sensitivity-based coreset algorithms to produce high-quality summaries of
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data that are complemented with a regression model. Thus, each RDSF summary

is equipped with a regressor that retains valuable sensitivity information about the

input points that could be used to assign, in constant time, importance scores to

new data. RDSF hence uses the time saved by ACvS to apply machine learning

to learn and predict sensitivities; and as observed in the numerical experiments

presented, the sensitivities can be very accurately represented by a simple linear

model. This sheds light on the mathematical nature of sensitivity scores and,

interestingly, RDSF opens the research path for studying sensitivities as measures

of independent interest, even outside of the framework of coresets.

Finally, ACvS and RDSF are independent of the ML algorithms of LR and

SVM. This means that they could be applied to any problem that allows for a

clustering-based coreset construction. In addition, this also means that, in principle,

ACvS and RDSF can be used alongside our C-ICP and IVAP-WEB approaches,

to provide them with even further acceleration.

7.2 Related Machine Learning Approaches

It is worth mentioning, to complement the results exposition of the thesis, some

machine learning tools that can closely compare to the main ones used in this work.

7.2.1 Related to Coresets

Chapter 3 presented coresets as a young approach to data compression in machine

learning. There are some alternative approaches to coresets that are worth

mentioning in this section. The first one is Principal Component Analysis (PCA)

([9], Ch. 14.5), which is an instance of an unsupervised machine learning problem

that aims to project the dimensions of a data-set onto the so called principal

components. The advantage of PCA is that it is a well-studied method in the ML

community and it is widely available in modern software packages e.g. Python’s

Scikit-learn 1, R’s factoextra 2. On the other hand, PCA cannot offer a guarantee
1https://github.com/scikit-learn/scikit-learn - last accessed 20/05/2022
2https://cran.r-project.org/web/packages/factoextra/ - last accessed 20/05/2022
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on the quality of the obtained projections and thus, the performance obtained on

the reduced data-set could vary arbitrarily with respect to that obtained on the

original data-set (see [125] and [126], and references therein, for some examples

of this). It is important to mention, however, that computing PCA itself can be

approximated with a coreset i.e. instead of computing the PCA of a large data-set

one could compute the PCA for its coreset ([67]), and thus, PCA can also benefit

from the approximations guaranteed by coresets.

Another technique that is widely used for representing data is t-distributed

stochastic neighbor embedding (t-SNE), propossed by Van der Maatenet al. ([127]).

This method projects the original input points to low-dimensional embeddings

and it has been successfully used to understand high dimensional data ([128]).

Furthermore, it is even possible to combine t-SNE with some kernel methods to

improve data representation in some applications ([129]). However, interpreting

t-SNE representations seems to be more an art than a science (see [130] and

[131]), and thus considerable work has to be put in tuning t-SNE adequately for

representing input data. Also, as PCA, t-SNE does not provide any theoretical

guarantees for the quality of the obtained representations. Therefore, its use is

mainly restricted to data visualisation.

Finally, an important method for representing data that comes from theoretical

computer science is that of Property Testing (PT) ([132]), which defines some formal

tests in order to decide whether some well-defined properties hold in the given

data-set. Thus, each test can be seen as a decision problem. The main difference

between PT and coresets relies in their assumption on the availability of data.

Coreset algorithms need to inspect every input point in the data-set at least once in

order to define their relative importance with respect to some optimisation problem.

PT methods, on the other hand, only look at a portion of the data, and they make

an approximate decision, via the tests they apply, regarding some properties of

interest. PT hence has the freedom of allowing fast sub-linear time algorithms,

while coresets need at least linear time algorithms. The tests PT methods use,

however, are challenging to design, and coreset algorithms are easier to implement.
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Furthermore, PT does not perform any data compression; it can only approximately

tell the user whether some structural properties hold in the data-set ([133]).

7.2.2 Related to Conformal Prediction

Conformal Prediction is a set of tools designed as a response to the lack of practical

approaches for measuring uncertainty in ML. As stated in Chapter 4, CP sits at a

level of abstraction which is higher than traditional machine learning methods i.e.

ML algorithms are used within CP to obtain significance levels for the predictions

made. Alternatives to CP, then, can be considered from two perspectives:

• a theoretical alternative is to just rely on the error bounds given by standard

Statistical Learning Theory ([105]). More specifically, one can obtain a

Provably Correct Approximation (PAC) ([2], Ch. 3) of the performance

of the machine learning algorithms of interest.

• a practical alternative is to simply rely on the traditional hold-out estimate

for obtaining some confidence on the performance of the machine learning

model trained over the training set one possesses ([13], p. 4) i.e. one splits

all the available data into a training set and a test set, and the performance

of the learning model, constructed over the training set, over the test set will

indicate the confidence that one can expect from the model.

The downside of PAC theory is that error bounds given are usually too loose

to be useful in practice ([104]). One important advantages of CP is that the error

bounds obtained are tight and hence allow the user to reveal informative properties

of the data-set she possesses e.g. whether the data is truly randomly generated.

Therefore, CP can answer a more intricate question when compared to PAC: it

tells us how approximate and how correct the predictions are.

Regarding the practical aspect, CP can give the ML practitioner significance

levels for the predicted values evenbefore looking at the ground-truth label of the

test object in question. Furthermore, these significance levels are guaranteed to

hold as long as we are learning over IID samples. This formal measure of trust
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in the predictions is an advantage one cannot get from the traditional hold-out

estimate approach.

7.2.3 Related to Venn-Abers Prediction

The most straightforward alternative to VAP is Platt’s scaling, which is a simple

calibrator that can prove useful when one does not worry about obtaining any

measure of proximity to the ground-truth probabilities for observing the correct

labels of the classification objects at hand. In fact, Chapter 4 gives an example

of this kind of situations. Specifically, Section 4.2.7 highlights the fact that high

probability calibration is not necessary when one is interested in computing non-

conformity scores using the MEF approach in conformal prediction. This is because

CP only uses non-conformity scores αi to compare whether they are bigger, smaller

or equal with respect to each other i.e. it does not care how close they are to their

ground-truth probabilities (see Equation (4.4)). A somewhat similar approach to

Platt’s scaling is that of isotonic regression, which is also widely used as calibrator

(see the study in ([134]) for details). However, just like Platt’s scaling, isotonic

regression cannot tell us how far the obtained probabilities are from the true

probabilities. That piece of information on the proximity to the true probabilities is

what makes VAP a quite unique and powerful calibrator. Unlike the just-mentioned

alternatives, VAP outputs multi-probabilistic results, which are in fact bounds; and

the VAP user is guaranteed that the ground-truth probability of observing the

positive label for a given object is contained within those bounds. The comparison

among Platt’s Scaling, isotonic regression and VAP is well-documented in [16] and

references therein, and also in the work of Vovk et al. ([14]).

7.3 Future Work

This investigation leaves the door open for many follow-up research works. A subset

of them are formulated below in the form of research questions.
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• What is the performance of coreset-based approaches when applied

to other members of the RML family? - This is a natural question to

ask after observing the results of C-ICP and IVAP-WEB. Even though we

have covered the two fundamental methods of Conformal Prediction and

Venn-Abers Prediction, an interesting research to undertake is that of testing

this idea with frameworks such as Venn Predictors ([13], Ch. 6, p. 158),

Mondrian-conformal Predictors ([13], Ch. 4, p. 114) and Cross-conformal

Prediction ([135]).

• Can the concept of non-conformity measure from Conformal Pre-

diction and the concept of sensitivity from Coresets be reconciled?

- Based on our observations, despite being proposed for entirely different

problems at very different communities, it seems that developing a connection

between these two topics can be an interesting research project. For example,

if we manage to obtain a good approach for computing sensitivities bringing

the notion of non-conformity from CP, we could produce an interesting method

for compressing input data.

• What would the performance of the RDSF framework be in the

streaming setting? - Given that RDSF allows one to retain a regression

model based on the sensitivities of input points, an interesting question to ask

is whether RDSF will help us decide quicker, in a streaming setting, which

incoming points are the most important ones. With this knowledge, we can

develop a strategy to retain data that favours points with high sensitivity.

• Can labelling information be incorporated in the computation of

coresets to, at least empirically, make them robust to pathological

input data? - The obtained results showed that imbalance can severely

hurt the performance of machine learning algorithms, and thus handling

this situation is crucial. Since coreset-construction algorithms available for

classification usually rely on primitive coreset algorithms for unsupervised

problems, label information is not taken into account in the compression
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process. Thus, coresets are vulnerable to imbalance data in supervised

settings. Making a balanced compression of imbalanced input data could

hence potentially improve the performance of classifiers.
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The oldest and strongest emotion of mankind is fear,
and the oldest and strongest kind of fear is fear of
the unknown.

— H.P. Lovecraft

A
Complementary Results on the C-ICP

Protocol

Contents
A.1 Validity and Efficiency Measures for Different Signifi-
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This appendix offers some further results obtained with the new learning protocol

of Coreset-based Inductive Conformal Prediction (C-ICP). The results cover the

same list of data-sets used in Chapter 4, and described in Chapter 2. Section A.1

shows results of validity and efficiency of ICP and C-ICP for different significance

levels for the SVM problem. Section A.2 tables showing results for some specific

significance levels.

Finally, Section A.3 shows results of instantiating C-ICP with a coreset algorithm

as an heuristic. To remind the reader, a coreset construction algorithm can be

used for any problem of interest at the expense of losing the theoretical guarantees

they offer as they only provide guarantees for the problem they were designed.

Therefore, we will use AVM, originally designed for SVM, for summarising data
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for LR within the context of C-ICP. Similarly, we will instantiate C-ICP for the

problem of SVM using the RCA algorithm, originally designed for the problem of

LR. These results show hence the modular nature of C-ICP, and also they shed

light on using coresets as general-purpose compression technique.

A.1 C-ICP and ICP for SVM

Figures A.1, A.2, A.3, A.4, A.5 and A.6 complement the results shown in Section

4.4.4 with those obtained for the SVM problem, for all the data-sets in Table 2.1.

A.2 Validity and Efficiency Tables for C-ICP, ICP
and URS

It is useful to consider the performance of training ICP over a random uniform

sample (URS) of the proper training set. As we have mentioned on Section 3, the

most computationally efficient approach for reducing the size of data-set is to simply

assume equal probability for all input points and take as many points as necessary

uniformly. Even though this approach cannot provide us with small summaries

that consistently approximate sets of data with strong theoretical guarantees, it

is still useful, specially for assessing the practical performance of coresets. Hence,

we are also interested in showing how the results obtained from URS compares

to those obtained from coresets, within the framework of CP. This information

is presented in the tables from this section.

Table A.1 and Table A.2 present the validity and efficiency results for the

data-sets in the Desirable group. Each table present the measures as rows and the

methods as columns. Furthermore, each row shows the result of the methods for

both LR and SVM. Underscores signify that measures could not be taken for the

specific method due to a violation of our time budget. When the nature of the

metric allows it, we present in the table both the rates and the non-normalised

numbers, signified with R and #, respectively, in order to make comparisons easier.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.1: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the covertype data-set for the SVM problem.

Fixing our focus to the results on covertype for LR on Table A.1, we can start

by mentioning a very important observation: to our surprise, C-ICP shows the
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.2: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the webspam data-set for the SVM problem.

best performance of the three methods. That is, by using only a coreset of 1% of

the full input data, C-ICP obtained not only better performance than URS, but
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.3: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the higgs data-set for the SVM problem.

also better performance than standalone ICP. This can be seen by inspecting (i)

the number of singleton predictions (S); (ii) the number of erroneous singleton
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.4: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the ijcnn1 data-set for the SVM problem.

predictions (E (S)). By comparing the performance of C-ICP against that of ICP,

we see that C-ICP makes more singleton predictions (104,365 for C-ICP, 104,274
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.5: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the a9a data-set for the SVM problem.

for ICP), and also, a smaller number of those predictions are mistaken (23,091

for C-ICP, 34,809 for ICP). Furthermore, C-ICP returns less empty predictions
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.6: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the w8a data-set for the SVM problem.

when compared to ICP. We find this result stimulating as they can impulse new

research lines into directions where coresets could be used to boost accuracy. This



A. Complementary Results on the C-ICP Protocol 157

Table A.1: Validity and efficiency measures for covertype. E signifies errors, in the CP
sense; S and E (S) represent singleton predictions and errors in singleton predictions.
E is empty predictions, N is the average size of the prediction sets obtained and S is
the average sum of p-values. #|R means number of predictions | rate of predictions,
respectively.

covertype ε = 0.3
Measure Problem ICP C-ICP (1%) URS-ICP (1%)
E : #|R LR 34,886 | 0.3002 34,929 | 0.3005 34,877 | 0.3001

SVM - 35,092 | 0.3019 34,809 | 0.2996
S: #|R LR 104,274 | 0.8973 104,365 | 0.8981 113,325 | 0.9752

SVM - 107,368 | 0.924 76,623 | 0.6593
E (S): #|R LR 23,131 | 0.222133 23,091 | 0.222125 31,999 | 0.2824

SVM - 34,809 | 0.3258 35,092 | 0.4613
E: #|R LR 11,929 | 0.1026 11,838 | 0.1018 2,878 | 0.0248

SVM - 0 | 0 0 | 0
N LR 0.8973 0.8981 0.9752

SVM - 1.0760 1.3406
S LR 0.3367 0.3370 0.3596

SVM - 0.3946 0.4748

phenomenon seem to contradict the norm in ML, as generally more data means

better predictive accuracy. However, one possible explanation we can offer is that

coresets, by definition, tend to retain input points that contribute more toward the

objective function at hand. Thus, in this particular case, it could be the case that

coresets get rid of some noise present in the input data. For higgs (Table A.2), we

can only compare C-ICP against URS as ICP is too computationally expensive

for our time budget. The patterns seen between C-ICP and URS are similar for

both covertype and higgs: for both LR and SVM, the URS method seem to be

dangerously overconfident when making predictions; this is specially true for SVM

on the coverype data-set, where the predictions by URS are 65.93% singleton, from

which 46.13% are erroneous. C-ICP, on the other hand, makes predictions from

which 92.4% are singleton, and only 32.58% of those predictions are mistaken. For

LR on covertype, URS generates a larger number of singleton predictions (97.52%)



A. Complementary Results on the C-ICP Protocol 158

Table A.2: Validity and efficiency measures for webspam. E signifies errors, in the CP
sense; S and E (S) represent singleton predictions and errors in singleton predictions.
E is empty predictions, N is the average size of the prediction sets obtained and S is
the average sum of p-values. #|R means number of predictions | rate of predictions,
respectively.

higgs ε = 0.35
Measure Problem ICP C-ICP URS-ICP (1%)
E : #|R LR - 771,020 | 0.3504 771,398 | 0.3506

SVM - 769,840 | 0.3499 770,930 | 0.3504
S: #|R LR - 2,170,041 | 0.9866 215,0537 | 0.9775

SVM - 2,041,537 | 0.928 1,648,178 | 0.7491
E (S): #|R LR - 771,156 | 0.3548 771,398 | 0.3585

SVM - 770,930 | 0.3777 769,840 | 0.4670
E: #|R LR - 0 | 0 0 | 0

SVM - 0 | 0 0 | 0
N LR - 1.0133 1.0225

SVM - 1.0720 1.2508
S LR - 0.404 0.4062

SVM - 0.4219 0.4823

compared to C-ICP (89.81%); however, a larger portion of the URS predictions

(28.24%) are mistaken, compared to the C-ICP predictions (22.21%). In this case,

C-ICP is more conservative and thus produce more accurate predictions. Finally, the

performance of URS is much closer to that of C-ICP for higgs for the LR problem;

still, C-ICP does give preferable solutions when analysing the metrics values.

Tables A.3, A.4, A.5 and A.6 show results for the webspam, ijcnn1, a9a and

w8a, respectively. First, it is important to notice that these data-set suffer from

different degrees of imbalance (see the information in Table 2.1), and this seem

to impact the performance of conformal predictors in general. The main pattern

observed on the data-sets in the Pathological group is that the three methods seem

to either output prediction sets that are empty or full i.e. the two extremes of

non-informative efficiency. When this is the case, the performances of standalone

ICP, C-ICP and URS become indistinguishable. This means that the p-values for
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Table A.3: Validity and efficiency measures for webspam. E signifies errors, in the CP
sense; S and E (S) represent singleton predictions and errors in singleton predictions.
E is empty predictions, N is the average size of the prediction sets obtained and S is
the average sum of p-values. #|R means number of predictions | rate of predictions,
respectively.

webspam ε = 0.01
Measure Problem ICP C-ICP (1%) URS-ICP (1%)
E : #|R LR 719 | 0.01027 715 | 0.01021 721 | 0.0103

SVM - 721 | 0.0103 705 | 0.010
S: #|R LR 0 | 0 0 | 0 0 | 0

SVM - 0 | 0 0 | 0
E (S): #|R LR 0 | 0 0 | 0 0 | 0

SVM - 0 | 0 0 | 0
E: #|R LR 719 | 0.01027 715 | 0.01021 721 | 0.0103

SVM - 721 | 0.0103 705 | 0.0101
N LR 1.9794 1.9795 1.9794

SVM - 1.9794 1.9799
S LR 0.5004 0.5007 0.5011

SVM - 0.5006 0.5007

each prediction on this datasets are too close to each other that the methods either

accept or reject both of them. We can interpret this as CP telling us that, from the

data seen, it is not possible to find meaningful patterns to distinguish objects from

different classes. Thus, from the information obtained in the Pathological cases,

it is not possible to decide which method performs better. It might be tempting

to assume that the results on the Pathological group will not help much in our

analysis. However, these results very useful as CP is warning us about potential

pathological patterns in the input data that might require closer inspection.

A.3 C-ICP with Coresets as Heuristics

In this section, we show the results of instantiating C-ICP with a coreset algorithm

as a heuristic. Specifically, Section A.3.1 presents Figures A.7, A.8, A.9, A.10,
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Table A.4: Validity and efficiency measures for ijcnn1. E signifies errors, in the CP
sense; S and E (S) represent singleton predictions and errors in singleton predictions.
E is empty predictions, N is the average size of the prediction sets obtained and S is
the average sum of p-values. #|R means number of predictions | rate of predictions,
respectively.

ijcnn1 ε = 0.05
Measure Problem ICP C-ICP (1%) URS-ICP (1%)
E : #|R LR 1,404 | 0.049543 1,403 | 0.049507 1,406 | 0.0496

SVM 1,379 | 0.0486 1,444 | 0.0509 1371 | 0.0484
S: #|R LR 0 | 0 1 | 3.5e-05 1 | 3.5e-05

SVM 912 | 0.0321 0 | 0 0 | 0
E (S): #|R LR 0 | 0 0 | 0 0 | 0

SVM 449 | 0.5021 0 | 0 0 | 0
E: #|R LR 1,404 | 0.049543 1,403 | 0.049507 1,405 | 0.0496

SVM 950 | 0.0335 1,444 | 0.0509 1371 | 0.0484
N LR 1.90091 1.90098 1.9007

SVM 1.9025 1.8980 1.9032
S LR 0.50079 0.50072 0.5007

SVM 0.5010 0.5000 0.5012

A.11 and A.12, which show that C-ICP can effectively use RCA to compress data

for the SVM problem. Finally, Section A.3.2 shows the results of instantiating

C-ICP with a coreset algorithm as a heuristic for the problem of LR. In this

case, AVM is used to construct the coreset. Figures A.13, A.14, A.15, A.16, A.17

and A.18 show these results.
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Table A.5: Validity and efficiency measures for a9a. E signifies errors, in the CP sense; S
and E (S) represent singleton predictions and errors in singleton predictions. E is empty
predictions, N is the average size of the prediction sets obtained and S is the average
sum of p-values. #|R means number of predictions | rate of predictions, respectively.

a9a ε = 0.05
Measure Problem ICP C-ICP (1%) URS-ICP (1%)
E : #|R LR 497 | 0.0508 505 | 0.0516 463 | 0.0474

SVM 509 | 0.0521 495 | 0.0506 470 | 0.0481
S: #|R LR 0 | 0 2 | 0.2e-03 0 | 0

SVM 1 | 0.1e-03 0 | 0 0 | 0
E (S): #|R LR 0 | 0 1 | 0.5 0 |0

SVM 0 | 0 0 | 0 0 | 0
E: #|R LR 497 | 0.0508 500 | 0.05011 463 | 0.0474

SVM 509 | 0.0521 494 | 0.0505 469 | 0.048
N LR 1.8982 1.8970 1.9052

SVM 1.8956 1.8987 1.9039
S LR 0.5012 0.5011 0.4997

SVM 0.5012 0.5025 0.5016

A.3.1 Plugging-in RCA to C-ICP for SVM
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Table A.6: Validity and efficiency measures for w8a. E signifies errors, in the CP
sense; S and E (S) represent singleton predictions and errors in singleton predictions.
E is empty predictions, N is the average size of the prediction sets obtained and S is
the average sum of p-values. #|R means number of predictions | rate of predictions,
respectively.

w8a ε = 0.9
Measure Problem ICP C-ICP URS-ICP (1%)
E : #|R LR 11,648 | 0.9001 11,612 | 0.8973 11,638 | 0.8994

SVM 11,599 | 0.8963 11,622 | 0.8981 11633 | 0.899
S: #|R LR 533 | 0.0411 475 | 0.0367 482 | 0.0372

SVM 491 | 0.0379 527 | 0.0407 0 | 0
E (S): #|R LR 262 | 0.4973 230 | 0.5030 251 |0.5207

SVM 246 | 0.4927 262 | 0.4868 0 | 0
E: #|R LR 497 | 0.0508 500 | 0.05011 11,448 | 0.8847

SVM 11,362 | 0.8780 11,362 | 0.8780 11,633 | 0.899
N LR 0.2019 0.2052 0.2018

SVM 0.2059 0.2037 0.2020
S LR 0.5009 0.5004 0.4999

SVM 0.5002 0.5010 0.4999

A.3.2 Plugging-in AVM to C-ICP for LR
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.7: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the covertype data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.



A. Complementary Results on the C-ICP Protocol 164

(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.8: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the webspam data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.9: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the higgs data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.10: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the ijcnn1 data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.11: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the a9a data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.12: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the w8a data-set for the SVM problem. C-ICP uses RCA as a
heuristic for compressing the data for SVM.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.13: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the covertype data-set for the LR problem. C-ICP uses AVM as a
heuristic for compressing the data for LR.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.14: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the webspam data-set for the LR problem. C-ICP uses AVM as a
heuristic for compressing the data for LR.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.15: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the higgs data-set for the LR problem. C-ICP uses AVM as a
heuristic for compressing the data for LR.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.16: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the ijcnn1 data-set for the LR problem. C-ICP uses AVM as a
heuristic for compressing the data for LR.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.17: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the a9a data-set for the LR problem. C-ICP uses AVM as a heuristic
for compressing the data for LR.
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(a) Errors (b) Average Size of Prediction Sets
(N Indicator)

(c) Singleton Predictions (d) Singleton Errors

(e) Empty Predictions

Figure A.18: Validity and efficiency measures obtained by C-ICP and ICP at different
significance levels on the w8a data-set for the LR problem. C-ICP uses AVM as a heuristic
for compressing the data for LR.
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Cor animalium, fundamentum eſt vitæ, princeps
omnium, Microcoſmi Sol, a quo omnis vegetatio
dependet, vigor omnis & robur emanat.

The heart of animals is the foundation of their life,
the sovereign of everything within them, the sun of
their microcosm, that upon which all growth depends,
from which all power proceeds.

— William Harvey

B
Insight on the Sensitivity Measure using

the RCA Algorithm

This appendix attempts to shed some light on the nature of sensitivities in the

context of randomised algorithms for constructing coresets. We believe that the

concept of sensitivity could be an interesting topic on its own right, and it could

be of independent interest even beyond the confines of coresets. Since sensitivities,

to the best of our knowledge, have not been empirically analysed nor explained in

coreset works, mostly because these works are interested in theoretical aspects of

coresets; we attempt here to show how the sensitivity captures the main structure

of the input data. We also believe that this kind of analysis could serve as a starting

point for linking sensitivities to labelling information in the input data. That is, we

have seen in Chapters 4 and 6 that coresets are vulnerable to unbalancedness, and

thus, we believe that an antidote to this problem could be to introduce labelling

information in the compression process. In randomised approaches like the RCA

algorithm, presented on Section 3.5.2 and used extensively on Chapters 4 and

6, this idea could mean to incorporate some of the unbalancedness information

in the sensitivities scores. Thus
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B.1 Covertype Sensitivity Structure

B.2 Webspam Sensitivity Structure



It is the mark of an educated mind to be able to
entertain a thought without accepting it.

— Aristotle. Metaphysics.

C
Complementary Experiments for

IVAP-WEB

This appendix aims to shed some light on how the parameters of the AVM coreset-

construction algorithm correlate to each other. For this demonstration, we have

decided to use three datasets from our master table of data found in Chapter

2: ijcnn1, a9a and w8a. The rationale for this decision is strictly computational:

their sizes are suitable for running many instances of avm with different parameter

settings in order to demonstrate how they relate to each other. In principle, this

relation should hold for every input data, although the values themselves will of

course change from dataset to dataset.

We mentioned in Chapter 3 that AVM is non-parametric with respect to the

number of core points. Theoretically, the algorithm is designed to deal with an

unbounded number of input points, always creating a new ball whenever a new

point does not fall inside the existing ones. In practice, however, one would want to

have some control over the number of core points allowed on the system, specially

because the model size of SVM, and hence the overall computing time, grows with

each new core points. We use a parameter B, which is a positive integer specifying

the maximum number of core points allowed in the coreset, to regulate AVM’s

trade-off between performance and computational efficiency. Then, if a new point
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arrives and it does not fall inside the existing balls, we only construct a new ball if

the number of core points, or equivalently the model size, is less or equal to B; if

not, the point is simply discarded; we call such points out-of-balls (OOB) points. It

is not hard to see that there must be an important relationship between the budget

size B and the diameter of balls δ. For example, a small δ will cause the number of

core points to increase rapidly, and hence the role of B will be more critical. On

the other hand, large values of δ will make the model size grow very slowly, and it

is likely that all the points will fall inside existing balls before B takes effect.

Figures C.1, C.2 and C.1 show in great detail how the interplay between these

two parameters influence different aspects of the final outcome of IVAPs-WEB

for the a9a, w8a and ijcnn1 datasets, respectively; in particular, we see how the

Brier score, the model size, the number of OOB points and the computing time

change with different values of δ and B. It is important to state that the values

for B are represented as percentages of the proper training set; specifically, we

consider budget sizes of 0.5%, 1%, 5%, 10%, 20%, 50% and 80% of the proper

training set. For δ, we considered the following distances in Euclidean space: 1,

5, 9, 13, 17, 21, 25, 29, 33 and 37.

In the 3D plots, we can clearly see the fundamental trade-off between performance

and computing efficiency which are typical of coreset-based methods: for both

datasets, the peak performance can be achieved by setting δ very low and B very

high; in this case, the balls are so small that each input point becomes a core

point and hence the AVM degenerates into an instance of SGD for SVM. In other

words, our coreset becomes as big as our original proper training set. However, if

we look at the subplots showing the computing time (Sub-figures C.1d,C.2d and

C.3d), we can clearly notice that the computing time becomes very high; this can

be matched with the growth of the model size as well i.e. we can easily see that

the time plots and the model-size plots are directly proportional. Furthermore,

we can also see how using both small δ and B inevitably leads to a large number

of out-of-ball points, making the overall computation really fast at the expense

of worsening predictive performance (Brier score).
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(a) Brier score for different diameter and budget-
size values.

(b) Model size for different diameter and budget-
size values.

(c) Disregarded (out-of-balls) points for different
diameter and budget-size values.

(d) Computing time for different diameter and
budget-size values.

(e) The MLE score for different diameter and budget-size values.

Figure C.1: Interplay between δ and B for the a9a dataset.
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Figure C.2: Interplay between δ and B for the w8a dataset.

(a) Brier score for different diameter and budget-
size values.

(b) Model size for different diameter and budget-
size values.

(c) Disregarded (out-of-balls) points for different
diameter and budget-size values.

(d) Computing time for different diameter and
budget-size values.

(e) The MLE score for different diameter and budget-size values.
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Figure C.3: Interplay between δ and B for the ijcnn1 dataset.

(a) Brier score for different diameter and budget-
size values.

(b) Model size for different diameter and budget-
size values.

(c) Disregarded (out-of-balls) points for different
diameter and budget-size values.

(d) Computing time for different diameter and
budget-size values.

(e) The MLE score for different diameter and budget-size values.



Wonder is the desire of knowledge.

— Thomas Aquinas.

D
The RDSF Technique with Different

Regressors

The RDSF tehcnique allows for different regresssors to be used as the main

mechanism for predicting the importance of the input points for the LR problem.In

this appendix, we report the results obtained when using RDSF with different

regressors in a plug-in/plug-out fashion. More concretely, we consider four different

regression approaches: Ordinary Least Squares (OLS), Ridge Regression (RR),

Lasso Regression (LSR) and Elastic Net (EN). To remind the reader, RR consists

in fitting an OLS regressor with a L2 regulariser; on the other hand, LSR trains an

OLS regressor using a L1 regulariser. Finally, EN finds an OLS regressor by using

a convex combination of both L1 and L2 as its the regularisation term.

Depending of what regression algorithm was used to predict the sensitivities

of input points, we can have one the following four RDSF instances:

• RDFS-OLS: an RDSF instance in which the input points’ sensitivity scores

were predicted using the ordinary-least-squares regression method. It is worth

mentioning that this is the RDSF instance used in [118] and in Section 6.4.3.

• RDFS-RR: an instance of RDSF where the sensitivity for input points was

predicted using the ridge regression method.
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• RDFS-LSR: an RDSF instance that uses the lasso method for regression for

predicting sensitivity scores.

• RDFS-EN: an instance of RDSF in which the sensitivity scores for input

points are predicted via the elastic net regression method.

It is important to mention that for this study we only consider three metrics:

Precision & Recall, AUROC and F1 Score. The reason for this decision already

sheds the first lights on using different regressors for RDSF: different regressors

give summaries of data that, when used to solve the LR problem, give classifiers

that do not meaningfully differ in their accuracy score. However, we will see

that when more involved performance metrics are considered, the difference in

performance becomes more meaningful.

We also highlight that the point of this set of experiments is not to find

out which of the RDSF instances considered is faster as the OLS method is by

definition the fastest regression algorithm of all, and ridge regression is known

to be faster than lasso. Instead, the aim of these experiments is to see whether

more involved regression algorithms can help us obtain RDSF summaries that

obtain better learning performance.

Figures D.1, D.2 and D.3 show the performance obtained when compressing

the input data using different instances of the RDSF framework, specifically in

terms of the precision & recall, AUROC and F1 score, respectively. Notice that

these plots, as the ones found in the previous subsection, have the different sample

sizes of the (RDSF) summaries on the x axis and the corresponding performance

value on the y axis.

Quite surprisingly, RDSF trained with the simple OLS method seems to be the

preferable approach for computing RDSF summaries in general: it is not always the

best. but more often than not it gets really close to the best performing method.

This is an enlightening result as OLS is the simplest method of the ones considered,

and is seems to provide a very good explanation of the relationship between the

input points and their sensitivities. Furthermore, we can make the conclusion
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that regularisation does not help us much with the task of predicting sensitivities.

If we also add up the fact that OLS has a closed-form solution and hence it is

computationally very efficient, it becomes really hard to justify the use of any of

the other regression algorithms to compress input data via the RDSF framework.

Finally, it is useful to mention that we also considered different sample sizes

for the regression problem of sensitivity prediction i.e. different values for the

parameter b in Algorithm 10; specifically, we tested setting b to 0.01%, 0.05%,

1%, 5%, 10% and 15% of the input data size; however, the behaviour observed

is very similar to the results presented here.

(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Figure D.1: Comparison of the areas under the precision & recall curve obtained from
LR classifiers learned over RDSF summaries. The summaries were computed using
different underlying regressors.
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Figure D.2: Comparison of the AUROC obtained from LR classifiers learned over RDSF
summaries. The summaries were computed using different underlying regressors.
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(a) ijcnn1 (b) w8a

(c) Webspam (d) Covertype

(e) Higgs

Figure D.3: Comparison of the F1 scores obtained from LR classifiers learned over
RDSF summaries. The summaries were computed using different underlying regressors.
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[96] Sashank J Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and
Alex Smola. “AIDE: fast and communication efficient distributed optimization”.
In: arXiv preprint arXiv:1608.06879 (2016).

[97] Sariel Har-Peled and Akash Kushal. “Smaller coresets for k-median and k-means
clustering”. In: Discrete & Computational Geometry 37.1 (2007), pp. 3–19.

[98] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. “StreamKM++: A cluste ing
algorithm for data streams”. In: Journal of Experimental Algorithmics (JEA) 17
(2012), pp. 2–4.

[99] Qi Zhang, Jinze Liu, and Wei Wang. “Approximate clustering on distributed data
streams”. In: 2008 IEEE 24th International Conference on Data Engineering.
IEEE. 2008, pp. 1131–1139.

[100] Dan Feldman, Andrew Sugaya, and Daniela Rus. “An effective coreset
compression algorithm for large scale sensor networks”. In: 2012 ACM/IEEE 11th
International Conference on Information Processing in Sensor Networks (IPSN).
IEEE. 2012, pp. 257–268.

[101] Jon Louis Bentley and James B Saxe. “Decomposable searching problems I.
Static-to-dynamic transformation”. In: Journal of Algorithms 1.4 (1980),
pp. 301–358.

[102] Charles Ziegler. “Edward Teller: Giant of the Golden Age of Physics. Stanley A.
Blumberg, Louis G. PanosThe Advisors: Oppenheimer, Teller, and the
Superbomb. Herbert F. YorkAtom and Void: Essays on Science and Community.
J. Robert Oppenheimer”. In: Isis 82.3 (1991).

[103] Glenn Shafer and Vladimir Vovk. “A tutorial on conformal prediction”. In:
Journal of Machine Learning Research 9.Mar (2008), pp. 371–421.

[104] Alexander Gammerman and Vladimir Vovk. “Hedging predictions in machine
learning: The second computer journal lecture”. In: The Computer Journal 50.2
(2007), pp. 151–163.



References 195

[105] Vladimir Vapnik. Statistical learning theory. 1998. Vol. 3. Wiley, New York, 1998.
[106] Vladimir Vovk. “Conditional validity of inductive conformal predictors”. In: Asian

conference on machine learning. 2012, pp. 475–490.
[107] JC Platt. Probabilities for SV Machines, Advances in Large Margin Classifiers.

1999.
[108] Vladimir Vovk, Valentina Fedorova, Ilia Nouretdinov, and Alexander Gammerman.

“Criteria of efficiency for conformal prediction”. In: Symposium on Conformal and
Probabilistic Prediction with Applications. Springer. 2016, pp. 23–39.

[109] Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk.
“Conformal prediction under hypergraphical models”. In: IFIP International
Conference on Artificial Intelligence Applications and Innovations. Springer. 2013,
pp. 371–383.

[110] Ulf Johansson, Rikard König, Tuve Löfström, and Henrik Boström. “Evolved
decision trees as conformal predictors”. In: Evolutionary Computation (CEC),
2013 IEEE Congress on. IEEE. 2013, pp. 1794–1801.

[111] Nery Riquelme-Granada, Khuong An Nguyen, and Zhiyuan Luo. “Fast
probabilistic prediction for kernel SVM via enclosing balls”. In: Conformal and
Probabilistic Prediction and Applications. PMLR. 2020, pp. 189–208.

[112] Gottfried Wilhelm Leibniz. The monadology and other philosophical writings.
1898.

[113] Miriam Ayer, H Daniel Brunk, George M Ewing, William T Reid, and
Edward Silverman. “An empirical distribution function for sampling with
incomplete information”. In: The annals of mathematical statistics (1955),
pp. 641–647.

[114] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. In: ACM Transactions on Intelligent Systems and Technology 2 (3
2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm,
27:1–27:27.

[115] John Platt. “Sequential minimal optimization: A fast algorithm for training
support vector machines”. In: Microsoft Research Technical Report (1998).

[116] Alan M Turing. “Computing machinery and intelligence”. In: Parsing the turing
test. Springer, 2009, pp. 23–65.

[117] T Velmurugan and T Santhanam. “Computational complexity between K-means
and K-medoids clustering algorithms for normal and uniform distributions of data
points”. In: Journal of computer science 6.3 (2010), p. 363.

[118] N. Riquelme-Granada, Khuong An Nguyen., and Zhiyuan Luo. “On Generating
Efficient Data Summaries for Logistic Regression: A Coreset-based Approach”. In:
Proceedings of the 9th International Conference on Data Science, Technology and
Applications - Volume 1: DATA, INSTICC. SciTePress, 2020, pp. 78–89.

[119] Gary C McDonald. “Ridge regression”. In: Wiley Interdisciplinary Reviews:
Computational Statistics 1.1 (2009), pp. 93–100.

[120] J Ranstam and JA Cook. “LASSO regression”. In: Journal of British Surgery
105.10 (2018), pp. 1348–1348.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


References 196

[121] Hui Zou and Trevor Hastie. “Regression shrinkage and selection via the elastic net,
with applications to microarrays”. In: JR Stat Soc Ser B 67 (2003), pp. 301–20.

[122] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and
ROC curves”. In: Proceedings of the 23rd international conference on Machine
learning. 2006, pp. 233–240.

[123] Cyril Goutte and Eric Gaussier. “A probabilistic interpretation of precision, recall
and F-score, with implication for evaluation”. In: European Conference on
Information Retrieval. Springer. 2005, pp. 345–359.

[124] Shai Shalev-Shwartz et al. “Online learning and online convex optimization”. In:
Foundations and Trends® in Machine Learning 4.2 (2012), pp. 107–194.

[125] Daniela Brauckhoff, Kave Salamatian, and Martin May. “Applying PCA for
traffic anomaly detection: Problems and solutions”. In: IEEE INFOCOM 2009.
IEEE. 2009, pp. 2866–2870.

[126] FESL Husson, Sébastien Lê, and Jérome Pagès. “Variability of the representation
of the variables resulting from PCA in the case of a conventional sensory profile”.
In: Food quality and preference 18.7 (2007), pp. 933–937.

[127] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In:
Journal of machine learning research 9.11 (2008).

[128] Paulo E Rauber, Alexandre X Falcão, Alexandru C Telea, et al. “Visualizing
Time-Dependent Data Using Dynamic t-SNE.” In: (2016).

[129] Andrej Gisbrecht, Alexander Schulz, and Barbara Hammer. “Parametric
nonlinear dimensionality reduction using kernel t-SNE”. In: Neurocomputing 147
(2015), pp. 71–82.

[130] Dmitry Kobak and Philipp Berens. “The art of using t-SNE for single-cell
transcriptomics”. In: Nature communications 10.1 (2019), pp. 1–14.

[131] Angelos Chatzimparmpas, Rafael M Martins, and Andreas Kerren. “t-visne:
Interactive assessment and interpretation of t-sne projections”. In: IEEE
transactions on visualization and computer graphics 26.8 (2020), pp. 2696–2714.

[132] Oded Goldreich. Introduction to property testing. Cambridge University Press,
2017.

[133] Oded Goldreich. “Property Testing”. In: Lecture Notes in Comput. Sci 6390
(2010).

[134] Rich Caruana and Alexandru Niculescu-Mizil. “An empirical comparison of
supervised learning algorithms”. In: Proceedings of the 23rd international
conference on Machine learning. 2006, pp. 161–168.

[135] Vladimir Vovk. “Cross-conformal predictors”. In: Annals of Mathematics and
Artificial Intelligence 74.1 (2015), pp. 9–28.


	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Machine Learning
	 Supervised and Unsupervised Learning
	Reliable Machine Learning
	Problem, Research Questions and Contributions
	Thesis Structure

	 Machine Learning Methods 
	Introduction
	The Big Data Paradox
	Classification
	Logistic Regression
	Support Vector Machines

	Other Machine Learning Problems
	k-Means Clustering
	Linear Regression

	Input Data
	Data-sets

	Chapter Summary

	Coresets
	Introduction
	Background
	The Framework of Coresets
	Related Work on Coresets for Machine Learning
	Coreset Construction
	Deterministic Coreset for SVM
	Randomised Coreset for LR

	The Size and Error Trade-off
	Adequate Data Representation with Coresets
	The theoretical aspect
	The practical aspect

	Aggregations via Merge & Reduce
	Chapter Summary

	Coreset-based Inductive Conformal Prediction
	Introduction
	Conformal Prediction
	CP Notation and Assumptions
	Non-conformity
	P-values as Reliability Measures
	Validity and Efficiency
	The Transductive Computational Setting
	Inductive Computational Setting
	Non-conformity Measures for LR and SVM
	Performance Metrics

	Strategy: Compress the Proper Training Set
	Coreset-based Inductive Conformal Prediction
	C-ICP Protocol

	Experiments and Results
	Experiments Description 
	Evaluation Criteria
	Computing Time
	Efficiency and Validity

	Chapter Summary

	Inductive Venn-Abers Predictors with Enclosing Balls
	Introduction
	Background
	Single-point Classifiers and Probabilities
	Inductive Venn-Abers Predictors
	The Computational Cost

	Inductive Venn-Abers Predictors With Enclosing Balls
	IVAP-WEB Protocol

	Experiments and Results
	Metrics
	The Evaluation
	Results

	Chapter Summary

	Efficient Data Summarisation based on Coresets 
	Introduction
	Computational Setting and Problem 
	The Computational Remedy
	Accelerated Clustering via Sampling
	Regressed Data Summarisation Framework

	Experiments and Results
	Strategy
	Metrics
	Acceleration via ACvS and RDSF

	Chapter Summary

	 Conclusion
	Thesis Summary
	Related Machine Learning Approaches
	Related to Coresets
	Related to Conformal Prediction
	Related to Venn-Abers Prediction

	Future Work

	 Complementary Results on the C-ICP Protocol
	C-ICP and ICP for SVM
	Validity and Efficiency Tables for C-ICP, ICP and URS
	C-ICP with Coresets as Heuristics
	Plugging-in RCA to C-ICP for SVM
	Plugging-in AVM to C-ICP for LR


	Insight on the Sensitivity Measure using the RCA Algorithm
	Covertype Sensitivity Structure
	Webspam Sensitivity Structure

	 Complementary Experiments for IVAP-WEB
	 The RDSF Technique with Different Regressors 
	References

