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Abstract—In a conventional power grid, energy theft is difficult
to detect due to limited communication and data transition.
The smart meter along with big data mining technology leads
to significant technological innovation in the field of energy
theft detection. This paper proposes a convolutional long short-
term memory (ConvLSTM) based energy theft detection (ETD)
model to identify electricity theft users. In this work, electricity
consumption data is reshaped quarterly into a two-dimensional
matrix and used as the sequential input to the ConvLSTM.
The convolutional neural network (CNN) embedded into the
long short-term memory (LSTM) can better learn the features
of the data on different quarters, months, weeks, and days.
Besides, the proposed model incorporates batch normalization.
This technique allows the proposed ETD model to support raw
format electricity consumption data input, reducing training
time and increasing the efficiency of model deployment. The
result of the case study shows that the proposed ConvLSTM
model exhibits good robustness. It outperforms the multilayer
perceptron (MLP) and CNN-LSTM in terms of performance
metrics and model generalization capability. Moreover, the result
also demonstrates that K-fold cross-validation can improve the
ETD prediction accuracy.

Index Terms—energy theft, smart grid, binary classification,
ConvLSTM, deep learning.
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I. INTRODUCTION

HE smart grid has made great progress as a mainstream

trend in the current development of electricity networks.
It effectively combines the electricity consumption of grid
service users with intelligent communication and monitoring,
enabling an evolution from automated meter reading (AMR) to
advanced metering infrastructure (AMI) [1]. AMI is a critical
part of the smart grid layout, integrating intelligent measure-
ment, collection, storage, and energy data analysis [2]. It also
marks a shift towards intelligent and digital communication
between utility companies and electricity consumers. As the
core equipment of the smart grid, smart meters not only
provide precise and synchronised measurement and collection
from end-users and provide efficient data guarantee for AMI
intelligent analysis [3]. As the information and communication
modules in smart meters continue to be integrated and iterated,
energy theft through physical approach is becoming more
advanced and covert. For instance, attacks go beyond tradi-
tional meter tampering by exploiting system vulnerabilities
to manipulate meter readings and execute cyber-attacks [4].
Energy theft is a serious social hazard, which can be illustrated
as illegal electricity customers using utility’s energy in breach
of contract or manipulating their meter reading to avoid paying
the bill [4]. This problem causes huge financial losses to utility
companies, seriously infringes on the legal rights of normal
electricity users and disrupts the fair market environment
for electricity consumption. Electricity theft has become one
of the main causes of non-technical losses (NTL) in smart
grids. According to the recent report, the global electricity
supply sector loses approximately US$25 billion annually to
nontechnical losses, including theft, fraud, etc. For example, in
India, annual losses due to electricity theft are approximately
US$4.5 billion [5]. The 2020s will be a critical period for
the development of smart grids globally, with North America,
Western Europe, and other countries already on the path to
building smart grids. However, this is still an area of massive
investment for emerging markets. The report states that the
50 emerging markets will invest over US$40.7 billion in the
coming years [6]. This is certainly a signal to drive the global
AMI layout’s development and implies a national commitment
in terms of smart grid NTL governance.
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NTL-based approaches to ETD can be divided into three
categories [7], data-oriented, network-oriented and hybrid
models. Network-oriented approaches are usually based on
localised AMR, and sensor ideas, e.g., [8], [9] propose smart
substations and network voltage sensitivity concepts to identify
theft states. Performance is based on high-cost equipment and
staff training, among other aspects, and there is a certain
inflexibility in future deployment and modality transformation.
The data-oriented approach is based on machine learning
techniques and proceeds through supervised and unsupervised
learning [7]. Jamaica is one of the first countries to use
machine learning to combat energy theft. Its public service
company identified electricity theft customers around 2017
by deploying an AMI-based machine learning model [10].
Machine learning allows for feature engineering and modelling
electricity consumption data, which also implies optimisation
of manual detection methods. Currently, classical machine
learning and deep learning are two data-oriented approaches
to electricity theft detection. In classical machine learning
for binary classification issues, for instance, support vector
machine (SVM) and extreme gradient boosting (XGBoost)
classifiers for ETD are supervised learning methods [11], [12].
They are based on labelling electricity consumption samples
to identify theft customers using electricity consumption data
features. Classical decision trees and random forests also show
good identification accuracy in ETD [13].

With the development of AMI and advances in neural
networks, deep learning-based ETD methods has also been
introduced to combat energy theft. The advantage of AMI
is that it provides a large amount of data support and a
comprehensive approach to energy monitoring which caters
to the characteristics of deep learning that requires substantial
data support to prevent over-fitting models with optimal gen-
eralisation [14]. Neural networks as a concept in deep learning
have been widely used in computer vision, speech recognition
and anomaly detection [15]. Neural networks are robust to
noise in the input data and mapping functions and can even
support learning and prediction in the presence of missing
values. Also, neural networks do not make strong assumptions
about the mapping function and can easily learn linear and
non-linear relationships [16]. In addition to this, deep learning
allows for automatic extraction in terms of feature engineer-
ing compared to classical machine learning. It is oriented
toward data and demand pattern concepts, and cross-domain
techniques can be well applied to ETD problems [14]. For
example, convolutional neural network (CNN) is currently the
mainstream neural network for processing image classification
and computer vision [17], which can be good for automatic
feature extraction and global optimisation. Long short-term
memory (LSTM), as a variant of recurrent neural network
(RNN), controls the transmission state by gating the state and
can capture the relationship between time series effectively
[18]. More importantly, LSTM solves the problem of gradient
disappearance and gradient explosion problems during training
long sequences [19]. In [13], CNN and LSTM are analysed
separately for comparison and outperformed classical machine
learning techniques. In [20], [21], [22], hybrid deep learning
models showed better feature extraction and model structure

expansion in ETD. LSTM has successfully solved a number
of power system isssues, such as load forecasting [23], energy
dis-aggregation [24], etc.

[22] built an ETD model in a classical CNN-LSTM stack.
However, the CNN used for feature extraction in the front
segment is restricted to one-dimensional data as input. [20],
[21] are based on the CNN-LSTM with improvements such
as expanding and deepening the convolution layers and data
augmentation to optimise feature extraction and support 2D
electricity consumption data input. However, this method is
limited by the architecture of the underlying model, the CNN
layer feature extraction is not fully embedded in the whole and
can only be fed into the LSTM after feature extraction. Front-
end input limits the scaling of multi-dimensional data and can
affect the model to extract deeper and more subtle anomalous
features. In terms of model optimisation, [20], [21], [22] all
incorporate a dropout layer, which can effectively prevent the
over-fitting of the model. Rectified linear unit (ReLU) is used
as an activation function, which only activates positive values.
In the backpropagation process, each unit calculates its weight
based on the loss values emanating from the upper layer [25].
The optimiser Adam is also applied in [20], which adaptively
adjusts the learning rate.

Regarding imbalanced data, the classical synthetic minority
oversampling technique (SMOTE) is used in [20]. The tradi-
tional SMOTE runs the risk of overlapping samples from a few
classes and thus over-fitting the model. In the development of
deep learning, the novel ConvLSTM is proposed to be applied
to predict spatio-temporal sequences for regression issues
[26]. Compared to CNN-LSTM, it can optimise the excessive
redundancy in temporal data. Importantly ConvLSTM uses
LSTM instead of pooling layers in CNN to reduce the loss of
detailed local information and capture long-term dependencies
in sequences. In human behaviour recognition, ConvLSTM has
better recognition accuracy and false alarm rates when dealing
with multiple classification issues [27].

In this paper, our main contribution is adopting the Con-
VLSTM architecture on the proposed ETD model. It sup-
ports fully connected layers for convolutional computation,
replacing the matrix multiplication of traditional CNN-LSTM
stacked attributes. This allows CNN feature extraction to
be embedded throughout the model, allowing better extrac-
tion of local electricity usage features. On the other hand,
it also facilitates the LSTM further to capture the deeper
periodicity of the electricity consumption data. In addition,
a batch-normalisation technique is added to the proposed
model. It supports raw electricity consumption data input,
eliminating the need for tedious and time-consuming data pre-
transformation. We use an improved dataset balancing method,
borderline-SMOTE, which generates more realistic data on
electricity theft users for imbalanced datasets. Furthermore,
it can reduce the overlapping of data and prevent over-fitting
of the model.

The remaining sections of the paper are presented below.
Section II presents the overall approach and introduces the
proposed ConvLSTM model incorporating the data transfor-
mation component by comparing it with CNN-LSTM. Section
III presents the key steps throughout the experiment. Section
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IV assesses and compares the baseline and proposed models
through a more comprehensive set of metrics. In Section V,
we conclude with the results of the proposed model for the
continuation of future work.

II. METHODOLOGY

A. Overall system

The approach of this paper is to build a novel ETD model
based on ConvLSTM and verify its accuracy and robustness in
identifying electricity theft users by simultaneous comparison
and full validation with MLP and CNN-LSTM. The dataset
contains two categories of normal users and electricity theft
users and essentially deals with the binary classification issue
by employing supervised learning. The key processes are
shown in Fig. 1. The whole process is divided into three
main steps, which are data pre-processing; model training; and
model evaluation. The pre-processing step contains four sub-
steps: 1) Data cleaning, including removing and filling missing
values with k-nearest neighbours (KNN) imputation and filter-
ing outliers with inter-quartile range (IQR). 2) Visualise the
dataset by power curves and Pearson correlation coefficients
(PCC) to initially check for potential trends and correlations
between the data. 3) Train-test-splitting. The dataset is split
into 64% training, 16% validation and 20% test data. 4) Solv-
ing imbalanced classification issues in training and validation
datasets. The borderline-SMOTE sampling technique gener-
ates more realistic theft user data (for training and validation
datasets only). The second step contains five sub-steps: 1) Data
transformation and reshaping. The batch-normalisation tech-
nique is embedded in ConvLSTM and CNN-LSTM models
without additional transformation steps. The raw electricity
consumption data can be used directly in training and testing.
2) The optimal model is trained and selected using 10-fold, 5-
fold cross-validation and no cross-validation. 3) Tuning the
hyperparameters to find the optimal model parameters and
save the model which performs the best with training data. In
the final step evaluation, performance metrics are employed to
evaluate the proposed ConvLSTM ETD model.

B. Data Transformation and Reshaping

This paper uses a novel batch-normalisation technique for
all three models. This technique makes the training of deep
neural networks more efficient. As stated by loffe and Szegedy,
the batch-normalisation method can accelerate deep network
training by reducing internal co-variate shift [28]. It can be
embedded directly behind each input layer in the normalisa-
tion model without needing separate data transformation. In
practice, this saves the time and number of training sessions
consumed by changes in the fed data. More importantly, batch
normalisation has little effect on the initial weights and model
hyperparameter changes while reducing generalisation errors
[28]. The main equations are as follows, with v and /3 being
the initial training parameters and m and j being the sample
and batch values, respectively.
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Fig. 1.  Flowchart of the proposed ConvLSTM-based energy theft model
with detailed data processing, model training, and evaluation process.
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Prior to feeding the one-dimensional electricity consump-
tion data into the model, the data requires reshaping to match
the model input shape. In the CNN-LSTM model, a two-
dimensional matrix dividing the electricity consumption data
into 3 x 3 x 1 by quarter is used, which is essentially a stacked
structure of CNN and LSTM supporting three-dimensional
tensor inputs, in this paper i.e., user quarterly electricity
consumption data, number of quarters and number of samples.

To ensure consistency in model evaluation, the proposed
model reshapes the electricity consumption data into three
dimensions, i.e., samples, time steps and features, in the same
way as the CNN-LSTM model and according to quarters.
However, the novel ConvLSTM 2D layer [29] supports 5D
tensor inputs, i.e., samples, time, rows, columns, and chan-
nels, which can also be interpreted as the time step being
decomposed into rows X columns of image data points. In
this paper, Time is the number of quarters, Columns is the
quarterly electricity consumption data, and the time step is
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divided into quarterly quantities x quarterly data, i.e., each
sub-series contains a sequence of three months of electricity
consumption data. Rows and Channels are one because each
user’s raw electricity consumption data is one-dimensional,
and there are no additional raw features.

C. Stacking of Classical CNN and LSTM

The CNN consists of three main parts, the convolutional
layer, the pooling layer, and the fully connected layer [15],
[17]. In this paper, it can be elaborated as the convolutional
layer is responsible for extracting local features in 2D elec-
tricity data, i.e., features are extracted in sliding window mode
within each subsequence (2D matrix segmentation according
to quarter time). The pooling layer allows for more efficient
dimension reduction than the convolution layer, which reduces
the number of operations and effectively avoids overfitting.
In the classical CNN-LSTM structure, CNN layers can be
encapsulated in Time-Distributed layers [30], and the extracted
features are flattened for use in LSTM.

LSTM network is an RNN trained by time backpropagation
[18]. It has a unique formulation that avoids the problem
that other RNNs cannot be trained and scaled, while it also
overcomes the problem of vanishing and exploding gradients.
Truncated backpropagation through time (TBPTT) [31] is a
key concept in the training LSTM model. Unlike neurons, the
memory blocks of LSTM networks contain states and outputs
and are connected in layers [19]. Each block has three gates: a
forget gate, an input gate, and an output gate [31]. In this paper,
the CNN-LSTM model can be used to control whether they
are triggered or not by a sigmoid [25] activation function that
produces an output between 0 and 1 in binary classification.
The classical LSTM equations [18] can be derived as follows,
the input gate is Eqn. (4), the forget gate is Eqns. (5) and
(6), and the output gate and mainline generation output are
Eqns. (7) and (8), respectively. Where the hidden state and
cell state are h; and C;, respectively. f,i; and o; are the
activation vectors of forget gate, input gate and output gate,
respectively. ¢ denotes the sigmoid function, o denotes the
Hadamard product, and b is the bias vector parameter.

it = 0 (Waixt + Whihi—1 + We; 0 Cioq + by) 4
Jo =0 Wepat + Whphi—1 +Wep 0 Coo1 + by) (%)
Cy = fr 0 Ci—1 + iy o tanh (Waeat + Wihchi—1 +be)  (6)
0t = 0 (Waoxt + Whohi—1 + Weo 0 Ot + bo) (7
ht = ot o tanh (C) (8)

A sliding window is a method to transform time series into
supervised learning [17]. A maximum pooling layer is added
after two consecutive CNN layers, and a 40% dropout layer
is added after each CNN and LSTM. The dropout layer [32]
uses adaptive regularisation to prevent the model’s overfitting
and ensure that the model is in an optimal state. A comparison
of the architecture of CNN-LSTM and the proposed model is
shown in Fig. 2.

D. Proposed ConvLSTM Model

Unlike the structure of the CNN-LSTM stack, the LSTM
replaces the pooling layer in ConvLSTM and discovers deeper
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Fig. 2. Architecture of (a) 1D CNN-LSTM ETD model; (b) ConvLSTM
ETD model.
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Fig. 3. Block-diagram of the ConvLSTM block with the operations inside
the block.

relationships between time-series data through the embedding
structure. ConvLSTM uses convolution computation in the
fully connected layer, which means that ConvLSTM replaces
the matrix multiplication of each gate in the LSTM cell with
convolution operations. In other words, the parameters learned
are convolution kernel weights and can be used to capture
the underlying spatial features by performing convolution
operations in multi-dimensional data. Electricity consumption
data with time-series properties can be fitted with sequential
input in ConvLSTM. ConvLSTM has been proposed to solve
regression issues using its temporal memory properties [26],
and it is mainly used for forecasting with multi-dimensional
time-series properties and spatial expansion. As shown in
Fig. 3, the network structure of the ConvLSTM is a variant of
the LSTM with feedforward features of input transformations
and recursive transformations implemented by convolution

[29].
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In the proposed model, each user’s electricity consumption
data can be divided into 2D image M x N in terms of quarters,
i.e., quarterly electricity consumption data x the number of
quarters. Each image X € RP>*M*N which has one pixel P,
and then the observed feature value can be as follows, with R
being the domain of the observed data [26].

2D data can be seen as the spatial dimension of the image,
and features are captured mainly by the convolutional layer.
3D has an extra-temporal dimension, and the temporal features
are captured by the LSTM, as shown in Fig.4. While the
internal structure of the ConvLSTM, C and X represents
the unit output, H is the hidden state, and the example uses
the structure convolution operation present and new values as
shown in Fig. 5.

P 3D Tensor

2D Image

Fig. 4. Transformation of 2D image to 3D tensor.
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H., C. ;

Fig. 5.

The internal structure of ConvLSTM.

In contrast to CNN-LSTM, H and X in ConvLSTM use
convolutional operations instead of parametric matrix multipli-
cation, and the learned parameters are the weights of the con-
volution kernel. * denotes the convolutional operation, which
can have multiple convolvtional filters. The main equations
can be derived as follows [26]:

i =0 (Wai* Xe +Whix Hi—1 + We; 0 Ci1 + by) (©)]
ft—cr( Wapx Xe +Whypx Hi—1 4+ WepoCypo 1+bf) (10)

= ft 0 Cy_1 + iy o tanh (Wye % Xy + Whe x Hi—1 +be)  (11)
0t =0 (Wao % Xt + Who * Hi—1 + Weo 0 Cr + bo) (12)
H; = ot o tanh (Ct) (13)

Even without the multi-channel features, the proposed
model can still dig deeper than the baseline model in the
convolutional operation into the temporal features between the
number of electricity consumption data. As shown in Fig. 2
(b), the structure of the proposed model becomes clearer and
more concise after embedding batch-normalisation. A point
worth noting is that the output still needs to be flattened to a
long vector before the dense layer can be interpreted.

TABLE 1
RAW DATA STATUS

SGCC dataset

Description Quantity Class Tag  Duration Days
Normal users 38757 0

Theft users 3615 1 1/1/ 2014 to 31/10/2016 1034
Total users 42372 /

Total Data Missing Values Zero Values

43812648 11233528 5788603

III. EXPERIMENTAL SETUP

In this paper, all experiments are based on Python (Version
3.7.6) programming, in which the deep learning framework is
based on TensorFlow (Version 2.4.0). The hardware platform
is a laptop computer, the processor is 2.6 GHz 6-core Intel
Core 17, and the graphics are AMD Radeon Pro 5300M 4
GB. Meanwhile, with the support of free cloud GPU, 30GB
RAM, and 8 CPUs.

A. Data Description

1) Preview of Raw Dataset: The dataset selected for
this paper is obtained from real electricity consumption data
published by the State Grid Corporation of China (SGCC)
[21]. The dataset contains the daily electricity consumption in
kilowatt-hour (kWh) of 42,372 customers between 1 January
2014 and 31 October 2016 (1034 days). 38,757 of these
customers are normal electricity users (labelled 0), and 3,615
are customers who have been identified as electricity thieves
(labelled 1). An example of the dataset is presented in Table 1.

2) Electricity Consumption Data Visualization: The
anomalous manifestations of electricity theft are not only
present on the surface of the data, but the underlying patterns
and trends are equally characteristic. While machine learning
can replace manual detection of potential electricity theft, we
also need to communicate with the data, which is what data
analysis is all about. As Fig. 6 shows, electricity usage data for
normal customers tends to be more stable and less volatile in
months other than summer, with July, August and September
showing significantly stronger usage and fluctuations than
other months. However, the data for electricity theft customers
appears unusually chaotic, with a very large drop in December
and an overall trend that does not conform to natural patterns.

In [21], data from four weeks can be extracted for further
analysis, for example, plotting the data between the two
types of users again and plotting PCC. These methods show
correlations and potential regularities between the data in each
of the two categories of users. The two categories of users can
first be plotted again weekly, as shown in Fig.7. Normally,
normal users show good cyclical and seasonal patterns, but
electricity theft users continue to have mixed chaotic electricity
usage characteristics. Thus, annual, quarterly, monthly, weekly,
and daily electricity usage characteristics can be used as a
benchmark for extracting features. Fig.8 clearly shows that
the data correlation of normal users is much stronger than
electricity theft users. The correlation coefficient for electricity
theft customers does not exceed a maximum of 0.3 and has
a negative correlation. However, the correlation coefficient
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Fig. 6.  Average monthly electricity consumption in 2015. (a) normal energy
users (b) energy theft users.

for normal customers is generally higher than 0.8 and shows
a strong positive correlation. In the PCC, values above 0.5
or below -0.5 represent a relatively significant correlation.
Positive values closer to 1 indicate a stronger direct correlation.
A negative value closer to -1 represents a strong indirect
correlation [33].
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B. Data Preparation

1) Missing Data Filtering and Imputation: This paper
sets a rejection baseline of 3%, i.e., users with more than
one month of missing data will be removed. The minimum
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Fig. 8. Pearson’s correlation coefficient (PCC). (a) normal energy users (b)

energy theft users.

threshold of missing data is also used for monthly data to retain
certain characteristics of the raw data. The dataset used for this
paper involves continuous missing data. Therefore the KNN
imputation is a more efficient method. Its algorithm is based on
similarity and relies on a distance metric, the default of which
is the Euclidean distance metric. KNN imputation is effective
for handling missing values in continuous and ordered data,
and its imputation accuracy and reduction of statistical errors
are typically better than 1NN (e.g., two neighbouring data)
[34]. The main point is that the imputed values are the actual
values that occur rather than the constructed values, which also
allows for better preservation of the original data structure. In
this paper, number of nearest neighbors % is selected as 5.

2) Outlier Processing: To maintain a true state of the
electricity consumption data, we use Boxplots to screen for
outliers. It uses the quartiles of the data to identify outliers
among them. The boxplot shows the distribution of data
based on a summary of five numbers (minimum, first quartile
(Q1), median, third quartile (Q3), and maximum), and the
maximum value is Q3 + 1.5xIQR and the minimum value
Q1 - 1.5xIQR. However, due to the characteristic nature of
electricity consumption data, the statistics can be conducted
in such a way as to create ’false’ outliers. Q3 + 1.5xIQR/Q1
-1.5xIQR can be defined as a minor or moderate outlier,
and Q3 + 3xIQR/Q1 -3xIQR as an extreme outlier [35]. By
screening the minor and extreme outliers for all users over
1034 days, a partial sample is shown in Fig.9.

3) Imbalanced Classification Sorting: Borderline-SMOTE
is an improvement on SMOTE. For example, the overlap
between the minority and majority classes in the raw dataset or
statistical observations of electricity data is possible. SMOTE
may confuse the two classes of data, resulting in inaccurate
classification data. However, borderline-SMOTE will classify
observations in this minority class as noise points when the
data adjacent to the minority class are all in the majority class
and ignore them when generating the data [36]. It is equivalent
to creating boundaries in the vicinity of some outliers, which is
more conducive to the accuracy of the generated data. Fig.10
compares the theft users generated by borderline-SMOTE and
the original data (for the training and validation datasets only),
with the trend matching the real theft user’s status.
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C. Hyperparameter

To ensure the reliability and authenticity of the experimental
evaluation, the activation functions and main hyperparameters
of the three models are maximally kept consistent. More
specifically, to further validate the superiority of the Con-
vLSTM ontology in mining time-series depth features, we
intentionally align the training parameters of the CNN-LSTM
with the ConvLSTM, as shown in Table II. In this paper, the
output layer activation function is sigmoid [25], which is more
stable for scaled data. Sigmoid is suitable for this paper’s
binary classification prediction output (0 represents the label
of normal users, 1 represents the label of electricity theft users)
because it exists between 0 and 1.

1

=1 e

(14

The other activation function is ReLU [25], which trains
the model faster, ensures near-global weight optimisation, and
increases the non-linearity of the network. It is more conducive
to backpropagation and avoids gradient explosion or vanishing
issues.

TABLE II
HYPERPARAMETER SELECTION

Hyperparameter MLP CNN-LSTM Proposed ConvLSTM
Output layer activation  Sigmoid Sigmoid Sigmoid

Other activation ReLU ReLU ReLU

Batch size 250 250 64

400/30
Binary_crossentropy

400/30
Binary_crossentropy

Epochs/Early stopping
Loss

400/30
Binary_crossentropy

Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001
Dropout 0.8 0.4 N/A
f (z;) = max (0, z;) (15)

The optimiser is Adam (initial learning rate 0.001) [37], an
optimisation algorithm that can replace the classical stochastic
gradient descent method to update the network weights in the
training data iteratively. In short, Adam can adaptively adjust
each network’s learning rate. Furthermore, the logarithmic
loss is also the first to deal with binary classification issues,
namely the binary_crossentropy in Keras. Binary cross-entropy
compares each predicted probability with the actual category
output, which can be either O or 1. It then calculates a score
that penalises the probability based on the distance from the
expected value. To ensure training and modelling efficiency,
’Early Stopping’ is applied to the model so that the network
could be better generalised. The dropout layer is only applied
to MLP and CNN-LSTM, as the proposed ConvLSTM model
did not show overfitting performance during the experiments.

D. Validation Strategy

This paper selects the optimal model during the training
and validation process and is applied it to a separate dataset
for testing. Unlike the traditional training-to-test process, this
approach increases the test results’ stability, optimally, and
reliability. K-fold cross-validation is applied to the validation
process, where the training-validation dataset is divided into
K copies, with K-1 copies used as training data and one copy
as validation data on a rotating basis [38].

To further ensure the impartiality of the test results, three
validation strategies are used simultaneously for the three
models, i. e. the classical 10-fold and 5-fold cross-validation
and no cross-validation. A total of nine test results are used
for the final comparison and analysis.

IV. RESULT
A. Metrics Description

For model evaluation, comprehensive performance metrics
were used on the test dataset (20%) to validate the accuracy,
reliability, and robustness of the proposed model in identifying
electricity theft users.

1) Loss (Binary cross-entropy/Log loss): The loss function
can be used to judge the predicted outcome of a classification
model, i. e. the difference between the predicted value and the
actual value. The loss function in binary classification is the
binary cross-entropy, where y; represents O or 1 in the label.
The larger the prediction deviation, the higher the log-loss
value. The equation is shown below:
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TABLE III
TYPICAL BINARY CLASSIFICATION CONFUSION MATRIX.

True Class
Negative (normal user)  Positive (theft user)
. Negative (normal user) TN FN
Predicted Class b, Give (theft user) ~ FP TP

N
Loss =~ > s -1og (p (5)) + (1= y3) - og (1 = p () (16)
i=1
2) Confusion Matrix:The confusion matrix is a technique
used to summarise the performance of a classification algo-
rithm by providing a more intuitive indication of the cor-
rectness and error types of the model [39]. It also reduces
false positives and increases true positives to ensure that the
model efficiently fits a real-world usage scenario. TP (True
Positive) refers to the number of theft users correctly classified
in this paper. TN (True Negative) is the number of normal
users correctly classified. FP (False Positive) is the number of
normal users incorrectly predicted as theft users. FN (False
Negative) is the number of theft users incorrectly predicted as
normal users. A typical confusion matrix is shown in Table III.

Accuracy is a straightforward and meaningful metric in a
state where the number of data set classes is balanced. It refers
to the frequency of correct predictions out of all predictions
made by the model.

TN +TP
TN+ FN+TP+FP

Precision indicates the ability of the model to correctly predict
positives from all positive predictions, while recall indicates
the ability of the model to correctly predict positives from
actual positive samples, i.e., representing the classification
accuracy of theft users and actual theft users respectively.

Accuracy =

a7

TP

Precision — — 1L {

recision = P (18)
TP

Recall TP FN (19)

Fl-score gives equal weight to precision and recall and
captures trends in them. It is an important measure of a
classification model in the presence of false positives and false
negatives.

Fl -score — 2 x Precision x Recall

20
Precision + Recall (20)

Cohen’s kappa can be used to judge the strength of the model’s
classification predictions. The Kappa value C'K is a metric for
comparing the observed accuracy with the expected accuracy.

2X (TP xTN — FN x FP)
(TP + FP)(FP+TN)(TP + FN)(FN + TN)

The receiver operating characteristics (ROC) curve is com-
posed of TP and FP, and the area under the ROC curve (ROC-
AUQC) is the area of the ROC curve and FP. The larger the
ROC-AUC, the better the classification ability of the model.
The PR curve consists of precision and recall and is evaluated

CK =

@n

similarly to the ROC-AUC. The ROC-AUC is independent
of threshold selection and reflects the characteristics of the
model, while the PR-AUC can be considered as the average
of the precision calculated for each recall threshold. The focus
of the PR curve on the minority class makes it an effective
diagnostic for imbalanced binary classification models.

B. Case Study

In this section, the performance of the proposed
ConvLSTM-based ETD method is evaluated by comparing
with related deep learning based ETD models (MLP and CNN-
LSTM models). Three cross validation methods as introduced
in III.D are applied for each model. The ETD performance is
shown in Tables IV. From the table, the proposed CovnLSTM
model outperforms other models in prediction. Especially, the
ConvLSTM with 10-fold cross-validation shows the highest
values of almost all metrics, expect for Loss. The result
demonstrates that K-fold cross validation can optimize the
deep neural network model and reduces the overfitting at the
same time. It is also noticed that the benchmark model, MLP,
shows the worst performance in all cases. MLP model has
the simplest structure without the memory cell to store the
historical information. Hence, MLP is inefficient in time-series
tasks such as the ETD in this paper.

The PR and ROC curves for the proposed ConvLSTM ETD
method and other related ETD methods are plotted in Figs. 11
and 12. PR curve is a plot of the precision (y-axis) and the
recall (x-axis) for different probability thresholds and a model
with perfect skill is depicted as a point at a coordinate of (1,1),
a no-skill classifier will be a horizontal line with value 0.5 on
the plot (blue with dashes in Fig. 11). In turns of the ROC
curve, it plots of False Positive Rate vs. True Positive Rate, a
point in the top left of the plot indicates a perfect prediction,
while the no skill classifier is presented as a diagonal line (blue
with dashes in Fig. 12). The ConvLSTM with 10-fold cross-
validation has the best performance in terms of both ROC and
PR curves. It has the largest AUC (a value close to 1), which
indicates the performance of ConvLSTM is very close to the
perfect point. It is also observed that CNN-LSTM with 10-
fold cross-validation has similar performance as ConvLSTM
model on the ROC and PR curves. In TP and FP recognition,
it can achieve prediction accuracies of 47.37% and 1.63%,
which is close to the performance of ConvLSTM with 10-
fold. This indicates that CNN-LSTM with 10-fold also has a
strong ability to identify and discriminate against normal users
but is not as good as ConvLSTM in predicting electricity theft
users.

Fig. 13 shows the Loss and Accuracy of the three models
by taking 10-fold validation strategy as examples. ConvLSTM
performs the best in generalisation ability and convergence
efficiency. As shown in Fig. 13, its generalisation gap is
around 0.1. In addition, ConvLSTM only requires around
60 epochs to converge to the best model state, while MLP
and CNN require 150 and 125 epochs, respectively. MLP
and CNN-LSTM reach smooth convergence at around 100
and 80 epochs, respectively. Furthermore, ConvLSTM still
outperforms the other two models in noise control without
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TABLE IV
ENERGY THEFT DETECTION PERFORMANCE

Models Accuracy Loss Precision Recall Fl-score CK ROC-AUC PR-AUC
MLP with 10-Fold 0.915 0.336 0.95 0.876 0911 0.83 0.959 0.963
CNN-LSTM with 10-Fold 0.957 0.204 0.967 0.947 0.957 0.915 0.976 0.982
ConvLSTM with 10-Fold 0.966 0.23 0.984 0.948 0.966 0.932 0.977 0.98
MLP with 5-Fold 0.896 0.315 0.949 0.838 0.89 0.7921 0.95 0.957
CNN-LSTM with 5-Fold 0.944 0.201 0.972 0.914 0.942 0.887 0.972 0.978
ConvLSTM with 5-Fold 0.958 0.288 0.975 0.947 0.957 0.916 0.974 0.974
MLP without K-Fold 0.891 0.363 0.92 0.856 0.887 0.792 0.944 0.947
CNN-LSTM without K-Fold 0.941 0.202 0.958 0.922 0.94 0.969 0.969 0.974
ConvLSTM without K-Fold 0.942 0.221 0.972 0911 0.94 0.884 0.974 0.978

1.0 e
0.9
% 0.8 || — ConvLSTM with 10-fold
RZ) —— ConvLSTM with 5-fold
3 —— ConvLSTM without k-fold
£0.7 CNN-LSTM with 10-fold
: —— CNN-LSTM with 5-fold
—— CNN-LSTM without k-fold
—— MLP with 10-fold
0.6 MLP with 5-fold
MLP without k-fold
-== No Skill
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Fig. 11. PR curves for the proposed ConvLSTM ETD method and other

related ETD methods.

1.0 -
208
e -
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'E 0 '6 ConvLSTM with 10-fold
A —— ConvLSTM with 5-fold
o ConvLSTM without k-fold
[oF) 0.4 CNN-LSTM with 10-fold
(0] CNN-LSTM with 5-fold
a CNN-LSTM without k-fold
= 02 MLP with 10-fold
MLP with 5-fold
MLP without k-fold
0 .O = No Skill

0.2 0.4 0.6

False positive rate

0.8 1.0

Fig. 12. ROC curves for the proposed ConvLSTM ETD method and other
related ETD methods.

dropout. This result demonstrates that ConvLSTM has strong
predictive robustness, and its model structure can effectively
avoid over-fitting.

V. CONCLUSION

In this paper, a hybrid ConvLSTM ETD method is proposed.
The proposed method combines ConvLSTM and a batch-
normalisation to improve the flexibility of the training and
testing phases. Moreover, the ETD model utilizes borderline-
SMOTE to generate synthetic energy theft samples to bet-
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Fig. 13.  Accuracy and loss of the proposed ConvLSTM-based ETD method

and related ETD models (a) MLP ETD model; (b) CNN-LSTM ETD model;
and (c) proposed ConvLSTM ETD model.

ter solve the imbalanced classification problem. From the
simulation, the ConvLSTM shows excellent identification of
electricity theft users under all three validation strategies
and has significant advantages in model robustness, conver-
gence efficiency and generalisation ability. This paper also
demonstrates that the model with 10-fold cross-validation
outperforms the models with the 5-fold cross-validation and
no-cross-validation methods.

The extension of multi-dimensional electricity usage data
is an issue to consider in future work. Multiple features can
be added to the dataset to better match the input of a multi-
dimensional tensor, e.g., weather, geographical location, etc.
This is also a way for the ETD model to incorporate objective
factors to detect potential electricity thieves.
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