
MPhil Thesis

November 1, 2021

Title:

Cheat detection and security in video games

MPhil Thesis

By

Md Rashedul Hassan

Student ID: 100805742

Under the supervision of

Professor Dr. Konstantinos Markantonakis

ISG, RHUL

Contents

1 Introduction 6

1.1 Report Organisation . 7

1.2 Motivation . 8

1.3 Statement of objectives . 8

2 Firmware and Software 10

2.1 Introduction . 10

2.2 Background and requirement . 10

2.3 Related work . 11

2.4 Taxonomy and its justi�cation . 13

2.5 Framework . 14

2.5.1 Core . 14

2.5.2 Protection . 16

2.5.3 Interface . 17

2.6 Purpose . 19

2.6.1 Bridge . 19

2.6.2 Hardware semantic . 19

2.6.3 Operating System . 20

2.6.4 Driver . 20

2.7 Communication . 21

2.7.1 Protection . 21

2.7.2 Interface . 22

2.8 Update . 23

2.8.1 Types . 23

2.8.2 Process . 25

2.9 Summary . 26

2

3 Video Games and Security 27

3.1 Introduction . 27

3.2 Brief history . 28

3.2.1 Early games: Mainframe computers 28

3.2.2 Arcade games . 29

3.2.3 Console games . 29

3.2.4 PC Games . 30

3.2.5 Online games . 31

3.3 Evolution of attacks and piracy . 32

3.3.1 Motives . 33

3.3.2 Illegal distribution of games . 33

3.3.3 Illicit usage and modi�cation scenarios 33

4 Digital Rights Management (DRM) 36

4.1 Introduction . 36

4.2 Inspiration: Video game piracy . 36

4.3 DRM and copyrighting . 37

4.3.1 Browser-embedded games . 38

4.3.2 Free-to-play games . 38

4.3.3 Crowd funded games . 39

4.4 Industry Standardised DRM solutions . 39

4.4.1 SecuROM . 39

4.4.2 SafeDisk . 41

4.4.3 Denuvo . 42

4.4.4 Steam Client . 44

4.4.5 Watermarking . 49

5 Cheating in video games 50

5.1 Introduction . 50

3

5.2 Cheats . 50

5.3 Threat model . 51

5.3.1 Background . 51

5.4 Attack scope . 54

5.4.1 Cheating by modifying Client infrastructure 54

5.4.2 Cheating by Collusion . 54

5.4.3 Cheating by Escaping . 55

5.4.4 Cheating related to virtual assets 56

5.4.5 Cheating by exploiting machine intelligence 56

5.4.6 Cheating by modifying external software 57

5.4.7 Cheating by denying service to peer players 58

5.4.8 Timing cheat . 58

5.4.9 Cheating by compromising passwords 58

5.4.10 Cheating due to lack of secrecy . 58

5.4.11 Cheating by exploiting lack of authentication 59

5.4.12 Cheating by exploiting bug or loophole 59

5.4.13 Cheating by compromising game servers 59

5.4.14 Cheating by internal misuse . 59

5.4.15 Cheating by social engineering . 60

5.4.16 Cheating by impersonation . 60

5.5 Objective . 60

6 Future approach 61

6.1 Cheating detection . 61

6.2 Objective . 62

6.3 Background: Impostor cheat . 63

6.3.1 MMR calculation . 64

6.3.2 Problem Scope . 66

6.3.3 Motivation . 68

4

6.3.4 Objective . 68

6.3.5 Solution . 69

6.4 Related Work: Impostor cheats . 70

6.5 Problem statement and research questions 73

6.6 Potential solution . 74

7 Conclusion 77

7.1 Achievements . 77

7.2 Potential future works . 78

List of Figures

1 Taxonomy of �rmware . 14

2 Steam games are not bound to machines but are tied to user accounts . . . 45

3 MMR graph . 66

4 Details of one of the games from the latest games played 70

5 List of latest games played . 71

6 Timings of speci�c gameplay actions . 71

5

1 Introduction

Video games are a source of entertainment for a wide range of people, starting from children

to adults. There exist di�erent types and genres of game in the current industry, and these

games are available in multiple mediums. To go more in-depth, a typical video game can

be played in a hand-held device, such as the Nintendo DS or on a TV connected console,

such as the PlayStation 5. The software of the game can exist in multiple formats, ranging

from a hardware chipset, CD/DVD or simply an application package downloaded from the

internet.

Retro arcade-based video games contained the video game software within a chipset or

the read-only memory (ROM) itself. These consoles or devices are generally air-gapped and

have no connection to the internet or game developers. Once these games are manufactured

and sent out to the consumer, they are permanent. The permanent nature of the game is

not an issue when the game is played purely for entertainment purposes; however when

there is a competitive element to the game, this could yield unfair results. The permanent

nature of the game would mean that, should there be a gaming competition on that device

which could potentially award the winner with a lump sum of money or gift items, the

security of the device or the game would come into question.

Since the game is stored in ROM, any kind of security patch or update is out of the

question, other than replacing the whole device itself. This is a potential security �aw.

Beyond retro games, such as the games played on PlayStation or Xbox, the game con-

soles are usually connected to the internet, and the game developers have more �exibility

in patching security loopholes with intermittent updates. This methodology does solve the

problem to a large degree compared the games stored in ROM.

As we start discussing the variety of mediums of video games in di�erent types of de-

vices, e.g. retro arcade, hand-held devices such as an iPhone or even PlayStation, we can see

the video game part can be misconstrued to be sometimes referred to as �rmware (ROM)

based or just application based (PlayStation/Xbox).

6

In this thesis, we focus on the security of video games. However, the domain of video

games can be vast. It will be beyond the scope of this thesis to discuss all the variants of

video games. Therefore, we will begin by trying to categorise where the video game falls

into - software or a �rmware, or both - and then pick one of the smaller domain to discuss

in detail. To achieve this, we study the taxonomy of �rmware and shortlist the branches so

we can target a smaller portion of the game industry and move on to discuss the security

and vulnerability of that domain.

1.1 Report Organisation

The objective of the thesis is to represent the discussion on key topics pursued throughout

the MPhil period.

The �rst chapter will discuss the organisation of the thesis. The second chapter will

start by providing a detailed analysis of �rmware to justify the requirement of a taxonomy.

The third chapter will begin by analysing and evaluating security mechanisms provided in

video games.

The rest of the chapter will be based on this study, where we pick a smaller domain

from the taxonomy to discuss the security of video games in much more detail.

We will start by discussing video games, starting from history and a background of the

game industry. We will proceed towards the discussion of attacks and piracy of intellectual

property (IP).

Following this, chapter 4 will discuss Digital Rights Management (DRM) in video games.

The chapter will give an overview of the past techniques and current mechanisms for piracy

protection. Next, chapter 5 will discuss how cheating is done in video games. The impact

and the magnitude in real world will inform the reader about the importance of this study.

Following this chapter, we will discuss potential work that could be undertaken in the near

future.

7

1.2 Motivation

The motivation of this study arose from the international gaming competitions that are

hosted worldwide. Many companies host tournaments that are played by the best gamers

in the world. Most of these world events involve a large amount of cash money, usually in

millions of USD. A few notable companies hosting world events includes Electronic Arts

(EA), Valve, World Cyber Games (WCG) and many more. Professional gamers participate

in these events and win cash money; it is also a very prestigious honour for the country

they represent. Most of the winners end up being a gaming celebrity.

Gaining any small unfair advantage can be extremely valuable and can give the com-

petitors an advantage. One of the ways the games can be exploited is via taking advantage

of the weaknesses or limitations of the platform. On the client side, where the game is being

launched or played, there are multiple ways a gamer can exploit these advantages. These

methods are discussed in further detail later on.

Out of all the popular gaming tournaments and games, this study will mostly focus on

Valves’ world tournament, where the game ‘Dota 2’ is played.

1.3 Statement of objectives

The thesis will focus on short-listing the big domain of video games, where we will pick

a smaller domain to study the security vulnerability of the video game clients. These will

entail:

• An introduction to �rmware and software.

• A discussion of the work done by others in this domain.

• A proposed taxonomy on �rmware.

• A detailed analysis and justi�cation of the proposed taxonomy.

• An introduction of the current video game market.

8

• A discussion on the history and evolution of di�erent types of games and attacks.

• An introduction to DRM techniques and how they apply to protecting video games.

• A discussion on popular gaming clients and analysis of their limitations and weak-

nesses.

• An analysis of cheating in video games.

• A discussion on the work carried out on current cheating techniques.

• A discussion on future approach for the study.

9

2 Firmware and Software

This chapter will begin with discussion on �rmware, providing an overview of the current

domain. The discussion leads to a background analysis of �rmware and an in-depth analysis

on the taxonomy of �rmware.

We will start with a brief introduction and continue by discussing the speci�c aspects of

this term. This chapter will also discuss in detail speci�c branches and sections of the ter-

minology and provide a taxonomy. We will also discuss the classi�cations using examples

and justi�cation for placing the items into certain categories.

2.1 Introduction

Firmware is a very broad term when it comes to everyday usage of the terminology. In the

scienti�c community, the term is used very broadly and most of the time the usage depends

on its context. In computing, �rmware could be computer software that provides low-level

computer instructions to control the hardware. It can also mean the operating system of a

speci�c device. For the Internet of Things (IoT), �rmware could mean a complete operating

system for the full device that performs all kinds of control and functionality. Firmware in

general could also mean a simple piece of software. The everyday usage of this scienti�c

terminology is vague. In this chapter we discuss the classi�cation of this terminology in a

qualitative matter. The results of this study have been accepted for publication in ICEBE

2016 [1].

2.2 Background and requirement

Embedded devices exist at large in our ecosystem of computers and IoT devices. Devices

are getting smarter every day. The core underlying logic and the functionality are being

updated from day to day. Embedded systems comprise the majority of our global network

substrate. Smart appliances and IoT devices are very common in our everyday household

items. Using stock components, these devices are equipped and programmed to perform

10

certain actions. They are all equipped with certain capabilities that allow them to interact

with other general-purpose computers.

The work undertaken in this study draws a line between the diverse classi�cations of

�rmware. We provide a modularised, better understanding of their properties, functionali-

ties and security. We have examined the use of the terminology over a period of years and

found that �rmware is used in numerous situations in a range of contexts. In this chapter,

we propose a taxonomy of �rmware and provide a detailed analysis to classify the �eld to

understand it better.

2.3 Related work

In this section, we discuss previous work on �rmware and trends over the years. The section

is shared in our publication but has also been included in this section for reference and

connection to the taxonomy of �rmware to exhibit a detailed picture of the classi�cations.

We start by discussing the changes over the years. More discussion on trends follows

this section.

Year: 1967 - 1970 The usage of the word ‘�rmware’ began in 1967. It was �rst mentioned

by Opler [2]. Work conducted by Opler discusses the software portion that is saved in a

ROM, providing speci�c guidelines on how the software should behave. From 1967 to 1971,

there were no signi�cant work done on �rmware. In 1971, Barsamian and Dec mentioned

�rmware as programmed instructions stored in special ROM or read-write (RW) control

stores [3].

Year: 1971 - 1993 There was no major update from the year 1971 till 1993. In 1993,

Mange et al. used the term �rmware to visualise the concept of transforming software

logic into hardware instruction sets [4]. The idea was used to provide a bridge between

the hardware and software and vice versa. The software exhibited the idea of driving the

hardware to do a speci�c task. The author did not refer to the software itself as the �rmware;

11

however, he indicated the transformation process to be the �rmware, since it was bridging

the gap for establishing a communication platform.

Year: 1993 - 2012 According to work done by Chen [5], the software itself has been

called �rmware. From 1993 to 2012, much work has been done [6, 7, 8, 9, 10, 11, 12, 13]

on �rmware; however, the idea was addressed according to the context in discussion. It

ranged from an “in-between” layer to “software”, and nobody highlighted its position.

Early storage of �rmware was done in a ROM or permanent storage media. The practice

of writing �rmware in the ROM continues today. In 1971, �rmware was quoted as “micro-

instructions that could be saved in the ROM mostly to be used for read-only purposes” [3].

However, the convention did not remain stagnant and limited to ROM. The 1990s and be-

yond introduced the rise of integrated circuitry (IC). Instruction sets in IC were hard-coded

and installed in devices. Flash storage was introduced simultaneously. This introduction

provided more speed and convenience for the developers and manufacturers. Re-writing

the �ash storage became easier. Unlike the ICs’, which had to be manually removed to up-

date the programs, �ash storage did not require any removal and it was reused to overwrite

existing �rmware.

Upon introduction of �ash storage, the year 1993 referred to �rmware as “a way to

convert hardware instructions into software instructions” [4]. As discussed in the previous

section, the idea of a bridge was being highlighted. It has also been referred as a type of a

software loosely referring as “a form of software” known as �rmware [14].

The idea was not limited to software alone, but also focused on the area of hardware.

Work done by Schubert [15] described �rmware as a ‘chip-set’. The connection or the

‘layer’ that resides between software and hardware is typically referred to as ‘�rmware’,

as identi�ed in 2009 as the interface between the two [6]. Beyond the 1990s, �ash storage

was widely used, but the usage of ROM was still in existence. In 2010, the �rmware stored

in ROM was referred to as a de�ned ‘functionality’ that accomplishes a set of functions or

jobs [9]. Following the work, further research in 2012 on �rmware rede�ned it as being

software stored in certain memories [10].

12

Firmware has evolved to represent any programmable content of a hardware device;

it does not only represent software or binary code. It also exempli�es machine code for

a processor, but also con�gurations and data for application-speci�c integrated circuits

(ASICs), programmable logic devices and others. On the domain of processors, the �rmware

is being referred to as being “complicated logic which is stored as micro-instructions” [3]. In

an embedded system, Cesário described �rmware as programs that are stored in hardware

memories such as ROMs. The work deems the �rmware to be just ‘hardware” [14].

In work carried out in aviation and dealing with software engineering challenges, it

was quoted “It is sometimes not clear what constitutes a processor, for example, because

so much specialised electronics is involved. Similarly, software is sometimes in read-only

memories called �rmware rather than software” [7].

It can be clearly seen the understanding has varied over the years, where �rmware was

referred to as dedicated software and/or hardware-speci�c instruction set. The ways the

term has been de�ned was in context to the application or device under discussion.

2.4 Taxonomy and its justi�cation

While most of the material in this section is also present in the publication, the below

section also includes extra examples and justi�cations that we could not include in the

publication due to word and page limitations.

We need to establish a distinct understanding of what a video games can consist of.

Thus, it is vital for our video game security study to �nd out how many categories of video

game there are. Within those categories, we will simplify our scope. This will allow us to

conduct a qualitative analysis and present the �aws of that particular arena.

In this section, we will start by expanding on the landscape of �rmware. Then, we will

follow it by proposing a taxonomy structure of �rmware. We will end with a subsequent

section brie�y discussing the rationale behind the categorisation. The diagram of our tax-

onomy is illustrated in Figure 1.

13

Figure 1: Taxonomy of �rmware

2.5 Framework

The �rst family is named ‘Framework’ and highlights the basic structure and characteristics

of �rmware. This family tree has been further dissected into three branches, namely: ‘Core’,

‘Protection’ and ‘Interface’.

2.5.1 Core

We bisect the �rmware into multiple parts. The rationale behind naming this section ‘Core’

is to represent the major functionalities of the �rmware. This branch consists of three more

sub-children: ‘Hardware’, ‘Software’ and ‘HW SW Hybrid’.

Hardware We categorise ‘hardware’ where information to control a device runs on a

printed circuit board or a signal converter. An example of this classi�cation would be the

microchip inside a watch, table lamp, or toy cars [16]. The circuitry uses electricity to

convert electrical energy into di�erent forms of energy. In the case of a watch, it is con-

verted to mechanical and kinetic energy which helps with the movement of dials. In case

of a lamp, the electrical energy is converted to light and heat energy. The range of attacks

14

within this domain are limited, since they involve manipulating the hardware components

and are usually referred to as hacks rather than attacks [17].

Software We classify ‘software’ as the kind of �rmware where the programs are stored

programmatically inside a storage media e.g. ROM, EPROM, EEPROM etc. These are pro-

grams that have their existence in a digital format rather than a series of electrical signals.

Examples would include drivers for a printer [18], visual �rmware for customising a mouse

[19], etc. In work done by Maskiewicz et al. [20], a Logitech G600 mouse was programmed

by writing custom software to achieve a �le transfer task.

This is a typical branch of the taxonomy where our use-case of video game domain

could be targeted. This ‘software’ group could consist of video game clients where the client

can be vulnerable to attacks. Ideally, retro arcade video games should not fall under this

category and our target group of PlayStation games would fall here. The category where

retro arcade games would fall is discussed in the next paragraph of ‘HW SW Hybrid’.

Attacks in this domain usually involves manipulating the code to achieve extra bene�ts.

It has been shown in work by Yanlin et al. [21] that it is possible to reverse engineer the

�rmware of a network card and manipulate it. Using a package known as interactive dis-

assembler (IDA), it is possible to alter the function calls within a software program.

HW SWHybrid The device family which involves both characteristics of hardware and

software are enlisted in this category. If we consider BIOS, the chip set itself has a physical

existence, whereas it is not categorised as a hardware because there is a software program

within the chip. On the contrary, labelling it as mere software is not applicable, since it is

a chip which has physical existence and does not require power to store the information.

Another example for these criteria includes the set-top TV boxes. They convert direct but-

ton press signals into machine readable signals [8]. Furthermore, they have their storage

installed within their device that stores the �rmware content, and updating that content

can be done by connecting a cable and �ashing it [22].

Retro arcade games fall into this category. The video game part of the console is stored

15

in a chipset and doing an online update is not possible. One of the reasons would be that

the information stored in the chipset is not writable. However, the most important part is

that most retro arcade games are air-gapped and not connected to any network. As such, as

discussed previously, updating these would require a whole replacement of the units. More

on �rmware update is discussed in Section 2.8.

There are attacks targeted to BIOS. Work done by Wojtczuk and Alexander [23] showed

a BIOS attack by manipulating several checksums. They used a BIOS building tool followed

by patching to compensate the checksum. Other work has shown how data can be hidden in

BIOS chips. BIOS has a capacity of storing 128k to 512k of data, and this storage can be used

by criminals [24]. Criminals could use this feature to manipulate a target computer to cause

damage or create data-loss in an organisation or a speci�c person. Fortunately, the modern

implementations of BIOS [25] have changed and stronger security primitives within BIOS

have been introduced with secure boot and uni�ed extensible �rmware interface (UEFI)

[26].

2.5.2 Protection

This sub-tree discusses the security mechanism that is available in any kind of �rmware. It

has been further elaborated into two more sub-children, namely:

Locked When describing �rmware, how the �rmware itself is utilised or stored in a

medium is a very important aspect. Firmware can be stored in a ROM [27], but not al-

ways, since it can also be stored in a hard disk drive, EPROM �ash drive or solid-state

drive (SSD). The protection of the storage is classi�ed as an attribute. Some �rmware has

a protective mechanism to restrain unauthorised modi�cation or alteration, whereas other

�rmware does not have any protection. By ‘Locked’ we refer to the family of �rmware

which is digitally signed by the manufacturer [28] and has their default administrator login

credentials encrypted.

Attacks involved in this domain include the successful ‘jailbreaking’ [29] of multiple

iOS versions. iOS jailbreaking removes the restrictions of the Apple’s iOS operating sys-

16

tem using software exploits. This allows the locked restriction of downloading additional

applications, music and themes that are not available through the o�cial AppStore [30].

Open Situations where the username and password to the administrator access portal of

the �rmware is not cryptographically protected or written in plain text falls into our branch

of ‘Open’. It has been discovered that manufacturers [11] do not take necessary precaution

to encrypt the default administrator login credentials within the �rmware. Rather, they

use speci�c company-title [11] and other �xed-place decimal value data linked with the

�rmware that can be easily brute-forced to retrieve the credentials. These types of devices

are termed as ‘Open’ in our taxonomy. For example, in a TP-Link TD-W8951ND V4 ADSL

router, it was observed that the username and password were stored in plain text when a

simple man-in-the-middle attack was performed using Cain [31]. Furthermore, it has also

been reported in speci�c software packages - e.g. Deploy Studio [32], which is used to

image and deploy Mac computers to manage workstations and servers - that the �rmware

passwords are stored in the log in plain texts. In addition to these, the telecommunication

giant EE’s BrightBox routers login page stores their customers credentials in a plain text

format [33].

2.5.3 Interface

The interface of a piece of �rmware is placed as a part of the �rmware’s framework capa-

bilities. It represents two di�erent types of �rmware that consist of an interface to allow

con�guration; there is another set of �rmware that comes with prede�ned characteristic

and functionality that does not allow any customisation and thus only behaves according

to the manufacturers’ pre-set instruction sets.

Visual Ideally, the interface makes way for con�guring the �rmware. It also allows the

control of the device. The BIOS of a computer machine has been considered as an example.

The BIOS is a type of �rmware that gives the user an option to customise the settings

of a computer [34]. The interface used is a graphical user interface (GUI) which allows

17

navigation via a keyboard that would allow the user to tweak settings, e.g. a primary or

secondary boot device.

Another example would include when a user of a computer would want to enable a

�rmware password to restrict the machine from booting from another hard drive. In an

Apple Macintosh, where there is a speci�c GUI that enables the usage of a �rmware pass-

word [28]. The presence of an interface enables the option to set up a password. The

interface allows the possibility to set up a password, and without it the user will not be able

to set it up. Only the manufacturer would be able to do so.

The visual category has been established to also represent messaging output. In a tele-

phone handset, the display that shows the digits input into the set can also be referred as

the visual interface. More examples would include tuning the thermostat in a home, where

the current temperature and other settings are displayed as a message or information to

the user.

None The family of �rmware that does not exhibit a con�gurable interface is included

in this section. The example clari�es the members of these sub-children. The hardware

content within a central processing unit (CPU) consists of processors [35], RAM [36] and

hard disk drive [37] to name a few. All of these devices have �rmware within them that

provides them with instruction on how to operate speci�c mechanical parts of that de-

vice. For example, the �rmware within the hard disk [38] drive controls the disk rotation

and read-write speed. It also contains information regarding how the allocation tables are

managed. Con�guring the �rmware is not possible, since the data is already set up by the

manufacturer and there is no interactive interface to tweak and con�gure the settings.

There have been attacks on some of these components, even though they lack a visual

interface.

Kaspersky researchers discovered that the hard drive �rmware could be compromised

[37]. They showed that subverting the �rmware allows the attacker to create invisible

storage space to hide data from the system. The data is not erased even when the hard

drive is formatted. This allows the attacker to retrieve the data at a later date.

18

The above section of our taxonomy discussed the basic structure and characteristics of

�rmware. Within the limited scope of this domain, we tried to explain the di�erent array

of �rmware that exists in the industry and highlight their respective positions.

2.6 Purpose

This category has been formed to ful�l our goal of categorising di�erent �rmware according

to their functional capabilities.

2.6.1 Bridge

It is known as an intermediary that allows the connection from the product itself to its

operator. An example is given to depict the usability of bridge.

One example is the �rmware of a battery: when the operating system of the computer or

a phone asks for the percentage left or the life cycle or capacity of the battery, the �rmware

within the battery replies with that information [39]. In this situation, the �rmware is acting

as a bridge providing a connection medium to establish work�ow between the software

and the hardware counterpart. Another example would include the mechanism in a touch

screen device in a supermarket till. The �rmware within the touch screen converts the

mechanical touch inputs into electrical output to be read by the system [40]. The software

or ‘�rmware’ here aids as a bridge connecting the input to convert into outputs.

2.6.2 Hardware semantic

A module of hardware that has micro-instructions [41] embedded into the chipset falls into

this category. It is a block originally created by the manufacturer and has the logic within

it to make the hardware work accordingly. An example would include an electric razor

by Philips SensoTouch. The power button is synchronised with the motor in a chipset.

When the power button is pressed, the logical instructions within the semiconductor chip

instruct the motor head to start rotating, hence achieving the task and making the device

useful [42]. A similar example would be the usage of a kitchen toaster. It has the same

19

architecture, where the button is programmed to push the bread and initiate the heating of

the �lament. This branch overlaps with our ‘HW SW Hybrid branch’ within ‘framework’.

However, we have still placed ‘Hardware Semantic’ here, since it is a speci�c quality of the

�rmware and cannot be ignored when it comes to categorise a purpose of the �rmware.

2.6.3 Operating System

The operating system, e.g. iOS, Android, Windows Embedded acts as �rmware to operate

the embedded device or a phone or kiosk. The �rmware allows the device hardware to be

used to produce a convenient output. i.e. processing a touch or processing a swipe of the

card in a kiosk. Operating system is closely related to a bridge. The di�erence comes in

its behaviour: the operating system provides a user interface to interact with the phone,

making the buttons on the phone do speci�c task, making the touch inputs process relevant

output, or allowing the ability to respond to force-touch [43]. When an iPhone software

fails to launch, the device needs to be reset to factory settings. The process is known as

recovery mode [44]. However, the technical terminology is referred to as device �rmware

upgrade (DFU) [45]. To update the operating system of iPhone, an iPod software �rmware

�le is required [46]. This can be obtained manually and injected into iTunes, or can be

automatically downloaded by iTunes itself. Once the software binary is acquired, iTunes

can initiate installation of the latest �rmware onto the device.

2.6.4 Driver

When there is hardware, there needs to be speci�c type of instruction set provided by the

manufacturer to make the device work desirably in another environment. For example, for

the printer HP LaserJet 4200 to be identi�ed properly by a computer or a network, there is a

need for a driver program that would help accomplish the e�ective communication [47]. In

addition, when an Apple computer is used to run a di�erent operating system, the hardware

should be given proper instruction to behave according to the new environment. An ex-

ample of this is the Bootcamp software from Apple, which makes the Macintosh hardware

20

compatible with the Microsoft Windows operating system, allowing all the peripherals to

work perfectly [48].

2.7 Communication

The �rmware requires transfer of data within other devices and with the outside world. We

have referred the process of data transfer as ‘Communication’. This branch consists of two

more sub-children that entail the functionality of our communication.

2.7.1 Protection

We refer to the ways the communication is monitored or allowed. Some communications

are followed with cryptographic security mechanisms, whilst others are not. Thus, the

sub-children of this branch represent:

Secure Channel The �rmware in a Logitech G600 mouse uses Rivest, Shamir, and Adel-

man (RSA) encryption [20] to communicate with the device. Gathering data from the mouse

and transferring the data to the operating system of the computer is done via a secure chan-

nel communication. The data communicated are not in plain text. This allows a secured

medium for communication that prohibits interception of data and adds more security.

The importance of security varies from use cases. Di�erent �rmware has di�erent levels

of security. When the application is a sensitive issue, for example in any medical equipment

that risks the well-being of the patient, security is a very important criterion. One example

is the pacemaker within a patient’s heart; the �rmware of any planted device should have

security since it is vulnerable [12] to malicious attacks [49] which could compromise a

human life.

There has been attacks reported that falls into our categorisation within a secured chan-

nel. As Maskiewicz et al. [20] reported in their work, the �rmware of the mouse can be

compromised to write custom malicious code executing other tasks. They have written

their own code to copy a �le while the mouse was in work. The study shows that the

21

�rmware in peripheral devices is not secure. In other work done by [50], they discussed

the manipulation of a network card which was using �awed �rmware that an attacker may

subvert remotely by sending packets on the network to the adapter.

Other However, there are cases such as the Nikon camera D3100 or other entertainment

devices, e.g. music players, where the �rmware could be easily manipulated to enable hid-

den features are termed as ‘none’ or ‘other’ in the protection category.

The Canon IXUS30 (SD200) camera’s �rmware can be easily modi�ed [51] to attain

pictures of higher resolution, taking RAW images, shooting self-capture images, time-lapse,

etc. The �rmware modi�cation allows all these, and the user may not have to buy a later

model to get those features. The tweak has more usage. In an experiment to capture images

of the Earth, the camera was modi�ed to capture pictures throughout the whole duration

of the experiment [52]. In addition to this, previous work [49, 53, 54] also discusses lacking

proper user authentication.

2.7.2 Interface

The branch has been dissected further to categorise di�erent mediums of communication

that take place within a �rmware. Typically, three interfaces are proposed.

Wired Firmware updates in the automotive industry are carried out using a wired in-

terface [55]. It can also be used to connect to the diagnostics port to retrieve information

about the vehicle. The �rmware diagnosis and update process is done o�-board, by con-

necting (hardwired) a diagnosis tool with the on-board network and performing �rmware

updates[56].

Wireless Other ways of communication include performing the whole data transfer over

a wireless connection e.g. WiFi, 4G, Bluetooth, infrared, etc. For example, in the automotive

industry the update to the �rmware can be patched via over-the-air (OTA) [57, 58]. The

wireless mechanism is not only limited to automotive domain, in a mobile phone OTA,

22

updates of the �rmware of a mobile telephone handset can also be done [59].

Hybrid However, some devices are not only limited to these two types of communication.

It is not possible to categorise them into the aforementioned wired and wireless category.

So we open up a new category named ‘Hybrid’. A smart-card is an example of this cate-

gory. The smart-card can operate two ways, as a chip-and-pin mechanism and also in a

contactless mechanism [60]. The example of smart card cannot necessarily be categorised

as having a ‘wired’ interface nor it can be categorised as having a ‘wireless’ interface. It

has the ability of performing both interfaces, and thus we have next sub-child: ‘hybrid’.

2.8 Update

This branch consists of two more sub-children that represent the ways the update of the

�rmware is conducted.

As discussed earlier, when �rmware used to reside on a ROM, it was di�cult to apply

updates. However, with recent improvements in technology, as of 2013, most �rmware can

be updated [61], but still there are risks. Upon a failed update, the whole device runs the

risk of being termed as ‘bricked’ where the update procedure is deemed to have destroyed

the device [62].

Applying �rmware updates on critical embedded systems can be cumbersome and daunt-

ing [13]: however, there are di�erent mechanisms that accommodate varying update mech-

anisms and techniques. As depicted in Figure 1, the ‘Update’ branch is dissected into two

further sub-children: ‘Types’ discusses the security mechanism of the updates and ‘Process’

the ways the updates take place.

2.8.1 Types

Types refer to the possible ways the update of a �rmware could be performed. Types has

been broken down into three simplistic branches that discuss the possible ways a user can

have their �rmware updated to get a newer version or revert back to a di�erent version.

23

Skilled This paragraph refers to the installation of �rmware that a normal user would

not be able to perform by themselves, e.g. to perform an update of the BMW 6 series auto-

mobile’s dashboard navigation system, the user needs to bring the car to BMW dealership

to apply an update. Here, the technician will use one of the communication mechanisms

as discussed earlier to perform the update.

In addition to this example, retro arcade video games fall into this category, where the

average gamer would not be able to update the video game themselves. A skilled person

would be required to replace the whole game module from the arcade and have the new

video game installed.

Non-Skilled Any sort of update that does not require special assistance or an unavail-

able toolset is referred to as a non-skilled update. Regarding our video game example of

PlayStation 5, if a speci�c video game has an update available, all the user would need to

do is click an update button using their game controller and the update would start. This

does not require any speci�c skillset.

Furthermore, if we consider the situation where the phone’s �rmware needs to be up-

dated, it can be easily done via the operating system’s interface. Phone manufacturers have

readily made this resource available to everyone for them to be able to perform it without

any skilled assistance. For example, any ‘Android’ user could update their phone software

by themselves clicking appropriate buttons from the user interface.

Non-intervention This type of update refers to those planned updates that are done au-

tomatically on a speci�c date, time or a period. As an example, when a new software update

is available in a Windows machine, if the user has agreed to apply the updates, they will be

downloaded and installed automatically onto the system [63]. Devices today are increas-

ingly equipped with WiFi components and the availability of WiFi hotspots has improved.

This means that devices can take advantage of free and fast connections to download web

content, e.g. pre-fetch web pages for o�ine use, update RSS feeds, or download podcasts,

new e-mails or updates for web widgets [63].

24

For example, when a user has set up an ‘auto-update’ in their machine, the update will

take place without any further input. It should carry on at a prescribed time. The situation

is also true when a user turns on the auto-update feature, e.g. Microsoft Windows Update.

2.8.2 Process

When an update is due, the manufacturer may choose to distribute the latest update to all

the devices under its ecosystem. The update option could be prompted, or if previously

recorded, it can initiate on its own.

Consecutively, in a situation where the update has failed, the machine may automati-

cally request the update to be performed again [64].

Pull To categorise the situation when updates are sent or received, we classi�ed a ‘Pull’

sub-child. The purpose of this sub-child is to include the kind of updates that take place

upon a request. When a new version of the �rmware is being released by the manufacturer,

the consumer might not be noti�ed straight away. This could be due to design issues of the

manufacturer or server tra�c once a new version is release. To obtain these types of update

materials, a user would have to query the network asking for new update. If an update

is available, the �rmware would then be downloaded or installed. For example, when a

�rmware update of nVidia GTX 650M graphics card driver is released, the noti�cation does

not pop up reminding the user to update it. However, when the user voluntarily prompts

‘Check for Updates’, the new �rmware version will appear [65]. Obtaining this kind of

update is referred as the ‘Pull’ mechanism in our tree.

Push In situations when new information or data needs to be sent to the subscribers or

customers, one of the ways used by companies or manufacturers is to dispatch or release

the data. The data from the central network are intended to reach the product as a part of

an update [66]. For example, in a Programmable Logic Controller in an industry, when it

is needed to provide changes to the current instruction set [67], the whole �rmware can be

patched in via a push update.

25

Relay In a very speci�c case, a resource does not necessarily have to be obtained via a

push or pull mechanism. A resource can sometimes be available via a third party. We have

termed this type of procedure as ‘Relay’. The source is obtained from multiple media, e.g.

a ROM, DVD or �ash storage, and then applied to the target media. For example, when a

user attempts to update the �rmware of an Apple Watch Sport, the user needs to obtain the

�rmware update via the iPhone rather than the Apple Watch itself [68]. The Apple Watch

does not have the mechanism or capability to download the new �rmware, and relies on

another device to apply the update. To make this update possible, the iPhone has to transfer

or ‘relay’ the data via Bluetooth to complete the update [69].

2.9 Summary

In this chapter, we discussed the details of a proposed taxonomy on �rmware. The dif-

ferences between software and �rmware have been discussed in detail and the need for a

taxonomy was mentioned.

A detailed analysis on the background of �rmware and the work undertaken by other

researchers was provided. Patterns of usage over the years were discussed. Conclusion of

the discussion lead to the development of a taxonomy for �rmware.

Furthermore, the proposed taxonomy of �rmware was accepted in a publication, and

the rest of the text discussed the branches of the taxonomy in detail together with examples.

The work done here will allow us to have a deeper understanding of how the di�erent

variants of video games can be categorised. This will enable us to pick a smaller domain

from the aforementioned branches and continue our work, which will be discussed in the

next few chapters.

26

3 Video Games and Security

This chapter will discuss security in video games. This section will start with a brief his-

tory of the evolution of gaming devices. Throughout this section, work done by other

researchers will also be discussed. The �rst section will conclude with discussion on the

evolution of attacks and piracy. The second section will continue the discussion on piracy.

This section will start with an introduction on DRM and continue to discuss industry stan-

dard solutions. This chapter discusses and analyses the limitations of the few popular anti-

piracy techniques currently employed by the gaming companies e.g. SecuROM, SafeDisk,

Denuvo and Steam.

The �nal chapter will provide an analysis on cheating and discuss the work done in this

domain by other scientists.

3.1 Introduction

For the younger generations in society, computer games may turn out to be a source of

entertainment [70]. Besides the fun factor, over the decades, computer application seems

to have a bigger impact. The number of people that understand that computer games have

been a driving force when it comes to the development of the IT infrastructure is much

fewer. In early 1970s, it was a major funding source for the silicon industry because the

gaming industry provided good business. The demand for computer games meant that the

manufacturers could produce hardware at a cheaper price. This included the manufacturing

of monitors and any other hardware that was required for gaming.

The statistics at present have not changed much [71]: the gaming industry still leads

when it comes to manufacturing computer hardware, e.g. graphics cards, game pads, mon-

itors, etc. The gaming industry is still a billion-dollar market. The gaming market gener-

ated $9.4 billion in sales for the �rst time in 2001, competing with the US box-o�ce market,

which made almost $9 billion [72].

With emphasis on good-quality graphics and better and interesting gameplay, the com-

27

puter gaming industry has had a major impact over decades. It has risen so much, the online

gaming tends to be one of the most popular applications on the internet.

3.2 Brief history

The idea of gaming to begin with was a part of automation software. It can be traced back to

1884, when Charles Babbage discussed how a chess game can be played automatically [73].

The current gaming phenomena that exist at present with the use of modern computers

initially began in the 1940s. In 1940s, John Von Neumann and Oskar Morgenstern were

experimenting with the idea of general theory of games. They went on to devise their

min-max algorithm and applied this theoretical idea to a game of chess [74].

Computer intelligence was mostly the earliest research means for modern computer

games. In the research �eld, the game of chess was an excellent choice for study. There are

a great many scientists who excelled in the study of computer chess, and used this game as

a means for their research. To name a few, in 1950 Claude Shannon made a publication [75]

on a computer chess game. In the work done by Shannon, he mostly discussed strategies

for the game of chess. He also discussed anticipation of chess moves that could be made to

determine the future positions of a chess piece. Even though he never developed a computer

chess-playing game, to date, most of the chess games that have been developed follow

Shannon’s ideas. In 1953, Alan Turing published a work automating chess strategy.

3.2.1 Early games: Mainframe computers

The �rst computer game to have an impact was a military simulation. This was written

by Bob Chapman at the Rand Air defence lab in 1952 [76]. Apart from the military base

games, in 1954 a student from the University of Michigan developed a game of pool. At

MIT in 1962, Space War was developed by Russell et al. [77]. They developed it on the

PDP-1. During that time, the PDP-1 had an interactive cathode ray tube (CRT) monitor

which engaged the human on a physical level. The game was very interesting because it

had human-machine interaction, the sort we have at present. Development of these games

28

was very expensive in terms of resources, because most of these games were developed in

mainframe computers, and apparently these resources were available to researchers and

computer scientists only. The general population had no idea about these developments,

and it was a luxury to be playing games in a mainframe computer.

3.2.2 Arcade games

Nolan Bushnell in 1971 [78] developed a machine that accepted coins and only executed

certain programs. He was using a computer which would only launch a game. His �rst

development was a game called ‘Computer Space’. In terms of computer game and coin

operation, this was the �rst to have a video output. It was not a text-based terminal type

text game. To follow up with this game, Bushnell went on to make another successful game

known as Pong.

In 1996, Bushnell [79] went on making the publication about his Computer Space game.

He mentioned the Computer Space was not supposed to be a computer game. Rather, it was

supposed to be an electronic game based on a hardware state machine. Using logic gates

and counters, this was merely a state machine, but it gathered popularity unintentionally.

Arcade games were the norm until 1971, when microprocessors were not yet abundant.

Although it is quite di�cult to say when the �rst computer arcade game was developed,

Nintendo started selling a coined version of the game from 1978.

3.2.3 Console games

Historically console games were graphics simulations which were mostly created by com-

puter researchers to assist their research. The commercial aspect rose when Nolan Bushnel

[79] started the idea of gaming. Since it was very expensive to play at home, the commercial

aspect of the console games was not appealing. The development of console games allowed

the games to be played at home, which made it hihgly appealing, as it proved to be an al-

ternative entertainment device in addition to the TV. The console games were connected

to TV and only required usage of a small piece of hardware. ‘Odyssey’ was the �rst of its

29

kind. This was marketed by Magnavox and invented by Ralph Baer in 1971 [80]. These

consoles did not have an interchangeable cartridge and relied on factory-installed games.

It was not until 1976 that replaceable cartridges were introduced, which allowed the users

to play di�erent games within one console. Nintendo [81] made its mark with their eight-

bit NES console in 1980. The famous PlayStation console was released by Sony in 1995.

In 2001, to stay in the competition, Microsoft entered the market with their production of

the Xbox. To date, Microsoft and Sony has invested a huge sum of money and they are

competing the market to gain customers. These two gaming giants have had continuous

success with their products, so much that they have already acquired a huge loyal customer

base. The latest, as of 2021, is that console games for Microsoft are known as Xbox Series

X and for Sony as PlayStation 5. These consoles are equipped with quad core processors

which are capable of producing very smooth and realistic graphics. Console gaming is a

very popular market for the gaming industry and has inspired more and more developers

to keep on creating games and market them commercially.

3.2.4 PC Games

In 1976, Apple I and TRS-80 were the host for the �rst personal computer games. They

were initially developed by hackers mostly for entertainment purposes . Steve Wozniak

developed a game called ‘Breakout’ [79]: this was speci�cally designed for Atari and it

played a signi�cant role when Wozniak went on to create Apple II.

The Apple II machine dominated the �rst computer game market. Their competitors

became the computer giant IBM. Both Apple and IBM had good success when it came to

competing with Linux. Linux was already a popular operating system. However, when it

came to personal gaming, people preferred PC gaming over Linux. The PC games were

mostly known as MS-DOS and MS Windows Games.

30

3.2.5 Online games

Early computer games were developed to be played by one person. Even though it is still a

popular genre in gaming, it can be boring for some gamers, as they keep on playing with

virtual opponents. The virtual opponents are mostly arti�cial intelligence (AI) developed

by the developer [82]. Most of the time, the moves or the gameplay made by the AI can

be predictable and may make the game uninteresting. Multiplayer games were not popular

when gaming was constricted to mainframe games or console games. It was with the rise

of internet connectivity that people become interested in better communication and data

transfer. This in�uenced the game developers to create better versions of multiplayer games

that use internet connectivity or network connection [83]. With the online games, games

are no longer restricted to one-player games, and the number of players that can join the

single game could vary from two to even 200 players. The massive multiplayer game ‘Eve’

can host 200 human players in one single session of the game. There are even di�erent

genres for the multiplayer games, e.g. multiplayer online battle arena (MOBA), role-playing

game (RPG), �rst person shooter (FPS), sporting simulation, etc. These games are played

over the internet and the hardware could be anything ranging from a mobile device to a

personal computer powered by a microprocessor.

In 1979 at Essex University in England, Roy Trubshaw and Richard Bartle developed the

�rst online computer game, known as the MUD1 [84]. It was very popular and supported

multiplayer mode, which inspired them to make sequels of this version.

Gaming has evolved so much from 1979, that it has become a major sporting event.

The gaming giant also known as ‘Valve’ [85] has hosted a gaming competition every year

since 2000. In 2018, the total prize money for one computer game competition was $25

million. These days, the gaming industry is becoming a multibillion-dollar business. One

of the main reasons is that people like interacting with real human players compared to

an automated AI bot. They are even willing to pay a subscription fee or a one-o� fee to

purchase an online service. EverQuest, developed by Sony, gives the company a revenue

of $5 million dollars every month only from their subscription fee. This single game gives

31

a 40% pro�t margin for the company. Other online games known as Ultima online, World

of Warcraft, Diablo and Eve, have had similar success. The subscription fee for World of

Warcraft [86] started from as little as $2 a month has have increased to $20 a month with

its increasing popularity.

At present, there is also a di�erent variety of game developed by certain companies that

o�er the gamers to play for free [85]. There is no fee to play the game. However if the user

chooses, they can spend money to buy cosmetics that increase their gaming visuals to a

di�erent level. Even though there is no advantage the gamer gains by purchasing these

cosmetics or add-on items, it has still proved to be very popular; it gives gamers bragging

rights and lets them show o� quality amidst their peers. In the free-to-play game known

as Dota 2 [87], a single cosmetic item could cost from $1 to $1000. Surprisingly, people are

buying them, which makes the free-to-play game a continuous success for the developers

and an attraction for a bigger crowd due to its no-fee policy.

3.3 Evolution of attacks and piracy

The �rst PC games entered the commercial market in �oppy disks, cartridges, cassettes

etc. From 1980s, the commercial industry has been attacked by piracy. Hacking copy-

righted materials and pirating expensive movies and games have become hobbies or real

jobs for certain kinds of people. Society and the industry have had little success counter-

acting these hackers. Hacking the game source code, better known as modelling the game

environment, has become a playground for the gamers. Where a studio or the developers

are busy or constrained with resources to support the existing customers with support, the

hacking community has taken the edge to extend the current version of the games to a

better playable platform. At times, when a game patch or bug �x has become essential and

the limited resources of the company could take them a couple of months to provide a �x,

the hacking community has earned their popularity by providing that �x for the consumers

in a couple of hours’ time. These �xes are also provided for free and seem to have gained

consumers’ trust. Any illicit modi�cations the hackers make whilst patching or modifying

32

the game is very di�cult to identify, and can provide a huge security threat. They could

knowingly install keyloggers or trojans that could steal valuable information and send it

to the hackers. The user community has very little awareness about this and tends to care

less as long as they are receiving the patches or �xes on time and for free.

3.3.1 Motives

Apart from the incentive for the hackers to pirate a game, they also have other incentives.

Sometimes, hackers also take it as bragging rights to pirate a new release so they become

very renowned within the community. This could get gain them extra money or fame that

are useful when striving for new job o�ers in the black market.

3.3.2 Illegal distribution of games

One of the biggest reasons for pirated distribution of games is to obtain a copy of an ex-

pensive game for free. Over the years, many di�erent protection mechanics have been

employed by the industry to tackle this. These have ranged from �oppy disks or CD/DVDs

having special sectors to prevent illegal copying, but with the recent technological ad-

vances, it has become di�cult to prevent these attacks. In the early 1980s, a brand-new

game bought in DVD would require the insertion of the physical disc into the disc drive,

which will check for speci�c sector to be present or not to verify the genuineness of the

purchase. However, these protection mechanisms are not at all applicable with the devel-

opment of speci�c software known as Daemon tools. Daemon tools create a virtual copy

of the disc and let the operating system think the user has actually bought a genuine copy.

The software bypasses all the system calls made to the CD or DVD and imitates these calls

at a very low level to bypass this protection.

3.3.3 Illicit usage and modi�cation scenarios

Hacking or piracy of the game is also known as cracking. When a game is known to be

cracked, it tends to have fewer protective measures. A game could come with a pre-existing

33

license and require a new copy to be purchased when it wants to be played on a di�erent

machine. These protections are bypassed by editing the game code. To tackle this, code

obfuscation is employed by many companies, but most small companies do not tend to use

this, since it could require more production time or a bigger budget.

Call of Duty Modi�cations in games are also known as mods. In one of the popular

franchise developed by EA, the game ‘Call of Duty’ can be modded to not only play it for

free, but also to gain an unfair advantage. Hackers can use a status injector during an online

version of the game which shows a player’s false availability. These false representations

make it easier for gamers to get better ranks more easily whilst tarnishing the image or

statistics of the genuine player.

There are other modi�cations made ‘for’ the games without editing or modifying the

client itself; for example computer scripts can be written for a game which would allow

the users in a shooting game to shoot other users easily. This is also known as ‘Auto-aim

bot’ What this bot essentially does is automatically locate a player and point the mouse or

controller cursor on top of the enemy object. This makes it easier to account for human

error or human reaction times.

Diablo III In the section on game-modding, the game ‘Diablo 3’ is reported to have the

highest amount of modding. The gaming scenario involves a target to be destroyed by

a group of players. Players begin the game at the preliminary level, where their initial

damage is from 2 to 100, and progressively their damage could increase up to 500. As

they keep progressing in the game, the attack damage tends to increase in a controlled

manner. Hackers change the game code in the local client to have their damages increased

to 1,000,000 instead of 100 ,which allows them to �nish the game much earlier than other

teams. These hacks or cheats are not detected by the leaderboard server. As a result, the

modders ranked highly in the leaderboard and get nominated for special prizes or free entry

to prestigious events. This illicit usage of scripts has hindered the gameplay and annoyed

the legitimate users playing the game. This has also made the gaming competitions less fun

34

and led to poor quality matchups. An overall e�ect has ultimately deterred gamers from

playing this game and made them avoid future purchases from this franchise.

Pokémon Another famous title of the gaming industry is known as ‘Pokémon’. Special

hacking software known as PKX editor allows the user to edit the game’s inventory items.

The objective of the Pokémon game is to trade cards having special abilities to build a

personal �ghter. Accumulation of abilities is hard to acquire and usually expensive. A

modded Pokémon can make the game very unfair, as it will be very easy to win against a

legitimate Pokémon character having basic abilities. This hack or mod is very annoying for

gamers in the online portal where they compete with other real players for prize money and

fame. The developers of the game are aware of this modi�cation and have placed a Pokémon

validation server, known as PokéBank ,where all trading must go. However, hackers have

found a way to bypass this server and have their Pokémon with special abilities approved.

A famous scenario in the Pokémon gaming industry is when Ray Rizzo, the gamer who

has been crowned Pokémon champion three times, was caught cheating using modi�ed

characters. The PokéBank failed to detect this change, but later the gamer was �agged

by the user community who detected an anomaly in Rizzo’s Pokémon’s animation. Ray

was using a Pokémon with a modi�ed animation timer that allowed him to execute more

attack events while reducing the time to execute a complete attack animation. This yielded

him attacking three to four times faster compared to the time taken for a single attack.

Rizzo’s modi�cation technique proved how easy it was to counteract the PokéBank and

how di�cult it can be to detect such small detail change, i.e. attack animation time.

35

4 Digital Rights Management (DRM)

4.1 Introduction

Computer games developers or development studios continuously go through the ill e�ects

of unlawful theft and data spillage which are caused by customers or gamers. This happens

not long after the o�cial release or the publication of a computer game or piece of software.

The �ght to get rid of these illicit hackers or consumers destroying revenue and their IP is

a constant struggle. Systems to avoid or in any event delay this illicit marketing or pub-

lishing are DRM or copy protection mechanisms. The lengths to which these techniques or

protection are applied comes with a trade-o� cost for the end users. In any case, these sys-

tems are exceptionally disliked, on the grounds that they con�ne the clients in playing the

games and also request a high overhead in the organisation e�orts of the gaming company

or the studio.

The management of the striving companies does not end with these mediocre protec-

tion mechanisms. The techniques to overcome the digital copyright protections are contin-

uously being broken, and the proof is the continuous delivery of ‘patches’ from the gaming

company or the software company. These ‘patches’ are deemed to bring in a better experi-

ence and mend the existing security mechanisms that are in play.

4.2 Inspiration: Video game piracy

The market for computer games has been quickly developing and these days out�anks

the deals for di�erent sorts of mixed media, e.g. music charts, box-o�ce sales for movies.

Subsequently, video games fall into this genre and they can be copied e�ortlessly. This

activity can be observed some time before the o�cial market release of the product. During

the phase of release, where a game studio releases their ‘beta’ or ‘demo’ version as a taster

for the consumers, the piracy attacks are seen from there on. The computer game market

is especially helpless against theft like this. The time which the hackers take to pirate the

36

full and �nal version is within a couple of weeks to months. The initial few weeks upon a

product release is a signi�cant time for the developers or the company to win the market.

Furthermore, the leaked pre-releases can also have a major impact on the sales. This could

hinder the future of a company or the people employed there, since the production of ‘big

titles’ could cost up to several million dollars.

Very often, a so-called ‘cracked’ version of a video game wrongfully appears on the

internet as free downloads not long after its o�cial market release. These cracked versions

are the ones which would carry a implemented bypass mechanism for the digital copyright

technologies that may have been integrated by the developers. This release of ‘cracked’

version demonstrates the copyright techniques are a volatile medium of security. Crytek

computer game ‘Crysis 2’ was an unmistakable example: it was renowned as the most

pirated game of the year 2011. The number of illicit downloads for this version of the

game recorded only from the software BitTorrent was around 4,000,000. The title: ‘Crysis

2’, is a very renowned franchise from the gaming studio EA, who usually have budgets of

around several million dollars for their production of every single title. The loss of revenue

is hindering the development of the gaming industry.

There is a strong plea for better copyright policies for the development of video games,

which has forced a large number of studios or video game developers to strategise their

development and marketing policy.

4.3 DRM and copyrighting

The usual methods for piracy prevention were con�ned to certain copyright protections,

e.g. valid serial number or licence numbers. However, these days, with the aid of better data

connectivity and availability of internet, the technologies have been extended to integrate

online support. This includes online activation of a license key rather than a hard-coded

license key activation on the back-cover of the game disc, which could easily be hacked

or tackled by ‘cracking’ software like CheatEngine [88]. The online activation system was

used on a wider scale with the release of Ubisoft’s ‘Assassin’s Creed 2’ (2009/2010) and

37

Activision Blizzard’s ‘Diablo 3’ (2012).

With the constant evolving of better techniques, it has been seen these technologies

can also be di�cult for the developers. The stronger the DRM, the more resources are ex-

tinguished by the customer service to provide support for the end-users to resolve their

complaints. In addition to these, the usage of online DRM servers also meant a security

hazard due to the constant DoS (denial-of-service) attacks made on the online services. At

times, these servers had to be ‘taken o�’ for maintenance, and this creates chaos and confu-

sion within the gaming community, bringing deterioration of brand values. Some of these

attacks have been very successful, and millions of valuable and personal user information

and privacy details have been tarnished. The most renowned attack on the online servers

is the Sony PlayStation hack in 2011. Millions of credit card details, personal addresses and

user’s passwords and other sensitive information were hacked.

In spite of the vulnerable the distributors or the developers need to depend on DRM

because of limited choices or alternative security approaches.

4.3.1 Browser-embedded games

The market of the browser based games is still developing and has not reached notable

popularity; this is mostly due to the limited capabilities of a browser. However, security

on these browsers can be established by internet protocols. Since hardly any competitive

games worthy of a decent amount of prize money are played on this platform, the platform

is therefore at a lower risk compared to others.

4.3.2 Free-to-play games

Free-to-play games are also known as F2P. This is a very good mechanism to counteract

copyright piracy issues. The idea of this copyright mechanism is to provide the game free

of charge but provide the gamer with lucrative o�ers in game. The user can then purchase

speci�c contents or have access to exclusive o�ers and deals. The add-ons on a free-to-play

game are usually very cheap, but there are plenty to choose from. In general, the marketing

38

model is aimed to increase popularity rather than pro�t from the title sales.

4.3.3 Crowd funded games

Often, a gaming studio runs out of resources or does not have adequate resources to com-

plete a project. Some developers could reach out to their loyal fan base for help. The idea is

to ask for �nancial help from the projected future users, giving them a sneak peak of how

the actual product will look and allowing them exclusive rights. One example is ‘Kick-

starter’. This is a funding platform for projects that are funded by the general population.

This methodology of crowd funding is still a new phenomenon in the world of game devel-

opment.

The whole idea behind copyright and piracy protection is to provide a reasonable solu-

tion that provides better security while costing less of e�ort and money and also retaining

customers. If these features are available in a speci�c copyright protection mechanism, this

could in�uence potential developers and more studios to invest more and have a turnaround

pro�t from the sale of the product.

4.4 Industry Standardised DRM solutions

In the next section, we will be discussing industry solutions for DRMs. We will provide a

brief overview of the solutions that are accepted in the industry and the test cases where

each mechanism is being used to achieve copyright protection.

4.4.1 SecuROM

Sony Digital Audio Disc Corporation, also known as Sony DADC, has developed a copy-

right protection known as SecuROM [89]. The objective of this copy protection is to prevent

piracy in computer games. Sony does this by preventing unauthorised copying of the game

and also making it di�cult to reverse engineer the software. SecuROM is one of the most

common DRM mechanisms currently used in the market. Many major companies, such as

Atari, EA, Ubisoft, Microsoft, Sega, Konamy, Capcom, Lucas Arts, Eidos, etc., rely on this.

39

This copy protection is a very popular mechanism for computer games running commer-

cially under Microsoft Windows.

SecuROM uses the ideology of manipulating the hardware to provide better protection

mechanisms for the discs. The disc protection method in later versions of SecuROM is

known as a data position measurement, which can also be used in conjunction with online

activation DRM.

To di�erentiate between a copied material versus an original copy: (version 4.6) used

by Sony utilises the q-channel of the disc. Within the disc, nine speci�c locations of the

q-channel are broken by purpose, which acts as a �ag or a marker. This is done using a

vendor-speci�c key which can calculate and determine the exact locations. A calculation

function is then injected, which will verify later if the disc is a genuine or a fake copy. The

function is triggered when the game is launched: if the function is unable to read the speci�c

nine broken sections when the game is being played, it returns a ‘True’ value. This ‘True’

value is a token of genuine authenticity con�rmation. On the contrary, if the function is

able to read any of the speci�ed locations, the resulting verdict would be negative or ‘False’

and would mean, the user has a fake copy.

This mechanism by Sony was later enhanced to increase more durable protection (ver-

sion 4.7) via the usage of a new scheme called ‘Data Density Management’. A speci�c

pattern used by Sony which degrades over time is the main feature used in this new tech-

nology. This pattern is much stronger, as it has the ability to reconstruct via high-precision

time measurements. Compared to nine locations with the previous version, this version

makes use of 72 locations to calculate density discrepancies which are spread out all over

the disc.

In later versions, Sony also included a trigger function. This function always runs in

the background and keeps checking if any of the protection mechanisms were removed. If

a fault is detected, the function will trigger a negative value and disrupt the running of the

game. This disruption is also known as ‘crash’ or temporary suspension of the running of

the game. This can be particularly annoying for gamers, as it would persist in a fake copy.

This disruption is expected to intentionally destroy the gaming experience.

40

However ,di�erent franchises or di�erent game companies may choose to hide the fact

that the user is actually playing a fake copy and exhibit di�erent gameplay tactics to stop

the user from enjoying the game. Such an example is demonstrated by the game called

‘Serious Sam’. The developers have integrated a speci�c mechanism and instead of crashing

or quitting the game, the game-world gives the user an extremely di�cult challenge that

the user will not be able to accomplish at all. For example, when the trigger function has

veri�ed an unauthenticated copy, the game takes the user to �ght an impossible scorpion

that kills the gamer instantly, taking him to the ‘Game Over’ screen.

A similar but di�erent mechanism is used by the game ‘Batman Arkham Asylum’. The

developers strip away the users inventory that are required to get to the next level, thus

preventing them from proceeding with the game.

4.4.2 SafeDisk

Developed by Microvision Corporation, SafeDisk [90] aims to prohibit physical copying of

DVDs and inhibit reverse engineering technologies. SafeDisk uses cryptography together

with hardware protection of disc sectors. The technology behind SafeDisk implements the

usage of digital signature. Every single time the game is launched, the authenticator will

verify the digital signature on the disc. During replication of the disc, the digital signature

will be applied. It is designed so it is di�cult to obtain the digital signature from the optical

disc drive. As a result, for every iteration of running the game, the gamer would have to

reinsert the game disc.

With the rise of software like Daemon Tools, the �rst versions of SafeDisk were easy to

overcome. Since Daemon Tools can create a virtual disc drive within the operating system

and imitate the system calls, SafeDisk had to be improved.

Later versions of SafeDisk would refuse to execute if they were able to detect the pres-

ence of image-copying software such as Daemon Tools already installed in the system.

In version 1, SafeDisk started using encryption mechanisms to protect critical informa-

tion about the game in an .ICD �le extension. This �le is a prerequisite to run any game

41

under SafeDisk, as the optical drive will also have an executable that would decrypt the

ICD �le to parse the information.

However, hackers learned to easily decrypt the ICD �le and manufactured the famous

‘crack.exe’ for pirated games that allowed video games to be run without requiring a phys-

ical copy.

In version 2, SafeDisk overcame the ‘crack.exe’ issue via adding an extra layer of errors

from sector 822-10255. This caused di�culty in copying and introduced greater chances

during the copy to fail with errors. From version 2.5 to 2.9, SafeDisk implemented the

introduction of weak sectors to cause copy-failures within the bu�ers.

In version 3, digital signature usage was re-introduced. The game loader executable

was encrypted with a key to generate a digital signature which was integrated with the

physical disc itself. The size of the digital signature was variable depending on the strength

of the cryptographic encryption employed (3 MB-20 MB).

4.4.3 Denuvo

The team members behind Denuvo [91] were once a part of Sony DADC DigitalWorks. De-

nuvo was formed from ex-Sony members and provides an anti-tampering technology and

DRM for software and games. The core working mechanism of Denuvo is not revealed.

However, early reports suggested the anti-tampering technology used by Denuvo contin-

uously encrypts and decrypts itself so that it is impossible to crack.

O�cial documentation of the company did not con�rm any of the �ndings, since the

idea was to keep the anti-tampering technology classi�ed and hidden to provide better

security. However, the Denuvo games require an online activation when there is a change

in a hardware. Additionally, the number of times this change could be done was controlled

by Denuvo, limiting it to four hardware changes every 24 hours.

Denuvo caused a stir in the market with their strong technology and raised the rumour

of their technology of being secure compared to other DRM technologies in the market, but

the developers had been modest and realistic with their security.

42

According to Digital Spy, it used to take a maximum of 20 days to remove the security

protection of an average game within the hacking community. Upon initiation of Denuvo,

the game “Lord of the Fallen” took a record number of 273 days to crack. This stirred

rumours in the hacking community about Denuvo becoming the de-facto standard for DRM

protection. As no system is un-breakable, statistics for Denuvo were by far the best the

development community had in early 2014. To quote some �gures, Denuvo was focused

and developed with the top franchises in consideration e.g. the renowned FIFA sequels

from EA sports. FIFA 14 used SafeDisc and was ‘cracked’ within 21 days of its release date,

but FIFA 15, which used Denuvo, took 132 days upon release to be ‘cracked’ by the hacking

community.

The development strategy of Denuvo was highly con�dential and it was causing di�-

culties for the famous Chinese teams of hackers - Warez, PirateBay and more. Success of

Denuvo relied on the fact that it was an anti-tampering solution that secured the DRM.

The developers of Denuvo state Denuvo prevents reverse engineering and debugging

of the game. Denuvo was �rst hacked by a Chinese team named 3DM during late 2014

after a vigorous amount of e�ort and sophisticated techniques. The �rst failure of Denuvo

was the game ‘Dragon Age: Inquition’. The hacking community released information about

Denuvo and referred to it as a box-key mechanism. 3DM stated that, Denuvo is a box which

stores the game content along with its DRM and locks the box in a virtual environment.

The lock is an encryption and the key for the lock is generated uniquely per machine. This

meant that every single game had to be ‘cracked’ individually, adding more time to the

calendar days. 3DM also added, “Denuvo uses 64-bit encryption that gets it’s key from

several variable from the hardware itself, it will need speci�c cryptographic keys”. The

technology behind Denuvo meant no single key could be used in a wide-spread manner to

unlock a game anymore.

It has also been learnt that Denuvo generates a unique .exe �le itself from the encrypted

version of the game using a set of variables from the host machine. Nowadays, the hardware

con�guration of the machine can vary greatly, depending on subtle details, e.g. number of

processor cores, bus speed of RAM, processor type, CPU clock speed, graphics card vendor

43

company, cache size, etc. Using all this information, Denuvo generates its own key using

a set of variables and to break this lock would mean the hacking community had to work

with a bigger number of permutations and combinations. The key generated by Denuvo

using this combination is converted into cryptographic keys that are targeted to work on

a speci�c machine, thus making sure the same set of keys will not work on a di�erent

hardware.

It is an extremely prestigious endeavour to be able to ‘crack’ a di�cult DRM within

the hacking community, and Denuvo performed exceptionally to beat the hackers. Denuvo

ensured the reliability of ‘cracks’ and limited its failures greatly. Once a single machine

was ‘cracked’, it did not mean the full game was compromised as a whole, which added

extra e�orts for the pirating community. The development of ‘serial key generators’ by

developing unique algorithms did not help the hacking community at all.

The Chinese hacker 3DM, who was the �rst to break Denuvo, reached out to the user

community to collect data and establish a pattern to better understand Denuvo’s protection.

He published a small program online and shared within his loyal fan base to participate in

data collection to break Denuvo faster. His tool would collect speci�c hardware information

as discussed earlier, e.g. CPU cores, vendor information, cache size, etc. E�orts to break

Denuvo are di�cult, but not impossible. The developers have been successful in making it

di�cult for the hackers, thus ensuring a small grace period to do business with the release

of new titles.

4.4.4 Steam Client

Steam [92] is a gaming client developed by Valve [93] that provides a single roof for the

gamers to purchase their games without having to worry about any speci�c hardware or

ownership. With the constant struggle of having to own a physical copy of a game and

having to carry or store it, Steam’s digital solution has proved to be a very popular so-

lution amongst the gaming community. Steam is more like a platform having extremely

sophisticated DRM techniques embedded in them, which provides a bridge between the

44

Figure 2: Steam games are not bound to machines but are tied to user accounts

development community and the consumer base. Owning a game via Steam ensured the

users do not have to worry about getting licenses to be able to play on di�erent hardware.

It also meant less manufacturing and customer support costs for the developers.

Steam has its own security mechanism, which will be discussed in this section. It pro-

vides a seamless and easy-to-use interface for the gamers and peace of mind for the devel-

opment community. Once a user purchases or installs a game from the Steam market, the

game is linked to the user’s Steam account rather than the hardware the user intends to use.

This has also given this a new terminology and is widely known as ‘Steamworks CEG’. This

also means that manufactures can spend less resources worrying about hardware binding

and can also attract a bigger customer base who intend to play on multiple gaming plat-

forms e.g. PlayStation, Xbox, PC, etc. Steam pursuing the digital download pathway also

ensured that users did not have to own their personal physical retail copies of the game,

and this also mean that the games are never lost or damaged due to natural causes, e.g. bad

sectors, broken disc, lost or stolen, etc.

The idea behind Steam’s marketing is a better understanding of the security market.

Rather than focusing on developing a game itself, they worked on providing a platform

that developers and consumers can trust. Initially, Steam started with three gaming titles -

‘TeamFortress’, ‘Counter Strike’ and ‘Half-life’. However, to date their popularity has taken

45

them to store over 5,000 games and millions of user accounts.

Steam encrypts games, allowing developers to submit games to the Steam client without

having to run the risk of being pirated and leaked before release date. The core mechanism

behind Steam’s protection mechanism is known by ‘Custom Executable Generation’ (CEG).

It creates a unique .exe for every single user, linking it to their database without any hard-

ware bindings. This ensures that users are not limited to play their purchase from a speci�c

set machine; they have more freedom and scalability upon making a single digital purchase.

The developers of Steam have built a Steam 3 DRMS server which allows gaming studios

to submit their video game. Upon a successful purchase or an install made by the user, the

Steam engine will generate a set of metadata, uniquely identify it with its Steam 3 DRMS

server and link it with the speci�ed Steam account. The CEG technology of Steam ensured

the user has more freedom and is not tied to a speci�c set of hardware; instead, the game

is tied to the Steam account.

Steam enforces its own policy when a user chooses to install this client on their machine.

It will force the user to connect to the internet upon any update released by the developer.

This feature ensures that the security is kept up-to-date and the revenue loss is minimised.

Upon a preliminary installation, a new set of CEG is generated and the user do not need to

have internet connection for future o�ine sessions. However, once an update is released or

when the user intends to play the speci�c game on a di�erent hardware [94], the internet

connection is a requirement and a new set of CEG is generated. The above also applies

when a new update is being released.

The way it works is depicted in Figure 2: instead of conventional DRM techniques where

most developers tie their license key to a speci�c hardware, Steam works di�erently. We

have tested ourselves that Microsoft Windows 10 Professional is known to have their li-

cense key tied to the motherboard MAC address. As a result, when we tried to install a new

graphics card, Windows prompted the user to update the license key again. We have also

tested with removing other hardware e.g. hard disk, DVD-ROM drive from the mother-

board; however, on those occasions Windows 10 Pro DRM did not require us to apply our

license key again. The whole process can be inconvenient from the end-user point of view,

46

since we own the copy of Windows. Swapping out a graphics card and asking us to verify

the license can be annoying, since most of the time the license key is not available to hand.

Steam protection mechanism skips this inconvenience and works by tying the copy of

game to the user account itself rather than the hardware the gamer intends to run it on. As

a result, the gamer is able to play the game on multiple devices without being required to

verify their game copy every time. As discussed above, every time the user launches the

game via Steam on a speci�c device, Steam generates a unique executable that can only

be run on the speci�c machine the user requested the game to be run on. For example,

if the user wanted to play the game on their Mac, they could launch Steam and play the

game. However, if someone were to copy the executables and try it on a di�erent Mac with

the same user account logged in, it will not work. The user would have to login to Steam

server and launch the game via Steam interface; thus requiring Steam to re-generate the

unique executable for that speci�c machine. This protection mechanism makes Steam very

portable and quite lucrative to the customers and the potential developers.

The Steam community has multiple layers of protection embedded in theitm. CEG is one

of them. The Steam DRM is a scheme operated by Steamworks Digital Rights Management

(Steam DRM) which builds a wrapper on a game executable. It provides protection to the

game via deterring users to reverse engineer or debug the game.

The very �rst version of Steam DRM did not carry any encryption. It used a speci�c

set of data to generate metadata to authenticate the user to allow them to play the game.

However, from 2008, with the release of version 1.5, Steam started adding digital signa-

tures which are veri�able during launch time. This prevented users from launching any

unowned game not tied to their speci�c account. Encryption was introduced in a cipher

which used cipher block chaining (CBC) mode. From version 2 onwards, Steam DRM had

major improvements. The DLL library of Steam DRM is encrypted and is loaded using its

own API rather than using shared Microsoft’s Windows API. This ensured encapsulation

and also meant that the activity of the Steam DRM is not written on the disc which could

be reverse engineered.

This version of Steam DRM comprised of a three-stage procedure. Stage one decrypts

47

the required �les, mostly con�guration �les. The con�guration �les were encrypted using

the odd cipher CBC, and they contained a pointer which could locate game information,

application ID and speci�c details about the latter stages of the process.

In the second stage of this process, the outputs from stage one are used mostly as pa-

rameters for stage three. However, the second stage revolves around obfuscating this in-

formation or the output from stage one before executing stage three.

Third stage is decrypting the DLL to give away the control for loading the game. It

should be noted that in stage two, the developers have introduced obfuscation, which may

appear the data to be very small, 5-10 kilobytes.

However, it carries real data at di�erent o�sets, making it harder to distinguish between

a real and a fake set of data. In addition to this, to obtain the o�set embedded in the DLL,

they would have to be decrypted �rst. The whole process ensures the DLL �le is unique

to every piece of hardware rather than limiting itself to a single game. This is because

the o�sets are very random and used on a variety of .exe due to the pre-con�gured CEG

execution. Steam DLL also uses Public Key signatures, and this is veri�ed at execution time.

The protection mechanism is not limited to pointers only. Steam DRM encrypts game

code using AES-256. Version 3 enhanced the Steam DRM into a new level via merging both

stages one and two, enhancing better performance. Not to mention, Steam also requires

the client to be run �rst before allowing the game to be executed. This also adds to the

protection scheme.

Limitations Limitations of Steam mostly comprise of bypassing the server instead of

qualifying Steam as it shortcomings or �aws.

Usually, Steam is the housing wrapper which hosts the games. Once the games are

launched, a speci�c game can have its own set of gaming servers. Since Steam is acting as

a wrapper which provides a secure environment to launch the game, they do not have any

control over how the game is being played. For example, if Steam hosts Dota 2 game within

their boundaries, they will provide all the necessary set of protections to stop illicit users

from starting a tampered version of the game.

48

The way Dota 2 and most other games work is that once the game is launched either

via Steam or any other gaming client, the gaming server or the Dota 2 game has their own

set of local servers that they use to host gaming sessions. These could be for many speci�c

purposes. Mostly, game servers do it, to host gamers who would like to play a speci�c game

mode or when the gamers are in a speci�c geographic location, e.g. gamers in Asia are most

likely to be hosted on a speci�c server to avoid latency or connection issues. The limitation

of Steam comes in here, where the gamers could hack the speci�c game-mode servers and

have their own set of rule-set. This does not violate Steam architecture but acts as more of

a ‘bypass’ mechanism and mostly relies on the detection ability system of the game-mode

server.

The protection mechanism of Steam is very popular within the online multiplayer com-

munity. Purchasing a game via Steam means that the users connect to Steam’s user server

�rst and then log in to the speci�ed game server. The limitation we discussed here mostly

summarises the fact that if users download or purchase a game via Steam’s portal but con-

nect to a private server of their own creation, they can control the game in their own way

and have added advantage.

4.4.5 Watermarking

In the domain of multimedia and modern art, a seamless solution is given by digital wa-

termarking protection [95]. Watermarking speci�c copies of the speci�c user with an ap-

propriate opaque marker has become an industry standard to reduce illicit distribution.

Videogames are also seen and considered a subset of this multimedia domain. However, it

is very di�cult to provide similar protection, as it is done from movies and other digital

arts. This is due to the fact a videogame may consist of using manuals, graphical images,

videos, audio content, 2D and 3D models and many more. To provide watermarking in

every single stage is a very challenging task.

Despite it being a challenging task, the motivation to pursue more and more secure

algorithms has not stopped.

49

5 Cheating in video games

5.1 Introduction

Gaming is a multibillion dollar entertainment industry that manufactures products for a

very large population throughout the globe. ‘Fun’ feature was the primary focus when the

games were designed initially; however, with the growth of competitive gaming, security

has become a very important issue. The fun feature is diminished when illicit players or

gamers poisons the gaming environment with ‘cheats’, which lets them establish a domi-

nating and unfair advantage over honest gamers.

This chapter discusses the current game cheating techniques deployed in the industry.

It discusses the possible branches of cheating and elaborates on the planning and research

of a speci�c branch on the cheating.

As per our study, we will only be focusing on the ‘software’ part of the video games

as the full domain of video game can be quite vast. In addition to this, there is much more

stake in this domain of the video game instead of the retro-based games. The frequency

of competitions that involve a lump sum money are mostly hosted on the ‘software-based’

video games. Therefore, we have decided to cover this domain.

5.2 Cheats

We identify all cheating forms known to us, as they have occurred or might occur in video

games. We also brie�y discuss some general properties of these cheats. Our initial task is to

�nd the known forms and shortlist them to identify a reasonable target to work throughout

the next few years. We identi�ed sixteen common cheating forms in this document. While

continuing our study on game cheating, however, we have seen the need to re�ne this

list, since some cheating forms are identical to others, and having a lower number reduces

ambiguity.

50

5.3 Threat model

The main motivation of this work to understand how massively multiplayer online games

(MMOGs) actually allow large groups of people to play a single online game simultaneously,

with fair gameplay. In addition to that, we ask what are the problems that are still faced

by the players playing this game. We can never rely on a client machine, since it is not

under supervision by any human referees and there are numerous chances of cheating; the

machine can be altered and made to perform to user’s accord. Our motivation for the study

is to set up an infrastructure on the client which may allow us to measure the integrity of

the client prior to running a game. With extra and added assurance set on a client side, the

mechanisms of cheating and unfair plays are expected to fall.

5.3.1 Background

In MMOGs, developers of the games have to make sure the gaming experience is kept

interesting to keep players engaged in the game and make sure they return. However, with

incremental updates focusing on new features, very often the security mechanisms of these

gaming platforms are overlooked. Companies tend to invest more on their active users and

the security concerns are not prioritised unless there is a stake in their revenue.

In a client-server architecture, most states are stored on the server. Upon receiving

information from the client, the server processes it at its end based on the server local state

and time. In these situations, the server has the most control, since updates and information

processing are compared with the data that are stored on the server despite clients’ sending

falsi�ed information.

Despite the secure infrastructure of client-server architecture, it does not stand as a

foolproof protection architecture. A number of vulnerabilities exist. Servers cannot prop-

erly detect time-cheats, packet modi�cation, etc. More of these kinds of threat are detailed

in a taxonomy proposed by Yan and Randall [96]. There is also another taxonomy proposed

by Ki et al. [97], but this taxonomy mostly deals with organisation in a hierarchical manner,

e.g. client, server, network, environment, etc., rather than classifying the types of cheats.

51

Di�erent cheating techniques have been implemented to hack into games [98] and gain

unfair advantage. A few of them include:

1. AimBots, this is where a client is modi�ed by an external running program that aims

the mouse cross-hair automatically to focus on the enemy. This reduces the reaction

time and makes the gameplay easier.

2. WallHacks, this is where the video graphics driver is tweaked to display hidden con-

tents across the wall which other legit players cannot see.

3. MapHacks, this is where the local client obtains information about a map they are not

subscribed to.

4. Speed and movement hacks, where through a variety of mechanisms, a client enables

their avatar to move more quickly and in ways not intended by the game publisher.

Some countermeasures have been proposed already in the academia. They are focused

on the elimination of cheating in networked games. ORTS [99] is a security approach for

client-server real-time strategy (RTS) games. The server stores and updates all the impor-

tant and crucial state changes. It also calculates the minimum distribution of state infor-

mation that the client needs to render the gaming view.

Fung [100] proposes detecting movement cheats such as speed-hacks by the inclusion of

a trusted third party, which will validate the legality of each move reported by participants,

rather than simply accepting those moves without veri�cation.

Gamers’ behaviour is also a major attribute when the topic of cheating is discussed.

Validation of the input stream for virtual environments [101] allows detection of player

skill augmentation cheats, such as ‘AimBots’. RET [102] is a scheme for pro�ling gamers

activities, then observing an activity stream of a control and measuring if the outputs could

have been generated by the same player. Chen et al. [5] analysed ‘Quake 2’ traces to show

that computer intelligence (bots) can be di�erentiated from human players 98% of the time

with a 12-minute trace. This phenomenon can be used to separate the usage of bots in

MMOGs and increase fairness.

52

Laurens et al. [103] pro�le the behaviour of gamers to di�erentiate between a cheating

character and a fair gamer. They show an example where ‘WallHacks’ cheats are detected

by examining the fraction of time a client aims at an occluded opponent. Players with

‘WallHacks’ can see opponents who should be occluded by walls, and aim at those oppo-

nents more often than non-hacked clients. In a similar vein, DeLap et al. [104] propose

a scheme for performing runtime validation of transactions in games, �agging validation

errors upon receiving a falsi�ed data from the player performance statistics. For example,

an avatar which earned a huge amount of gold per unit time would have their transaction

histories audited using this scheme.

Aggarwal et al. [105] took a step away from server-based virtual environment security

by empowering proxies. These proxies mostly share the security load. Their authoritative

proxies can also cache the game state and validate some client state changes on behalf of

the central server.

Some virtual environment security solutions are intended to work with peer commu-

nities. They mimic some of the properties of client-server architectures by electing partic-

ipants into privileged roles, and trusting those participants to behave correctly.

The public server approach [106] allows massive multiplayer online (MMO) gamers to

set up their own game servers. Centrally issued certi�cates protect critical states - such as

distribution of valuable virtual property - to prevent replication cheats. Additional calcula-

tions are performed to provide evidence that player-owned servers are obeying the virtual

environment rules, rather than distributing disproportionate amounts of virtual resources.

This is a promising phenomenon, but this architecture has scalability issues in terms of the

PKI used as evidence and proof of ownership.

Kabus et al. [107] present a variety of mechanisms for detecting cheating, such as elect-

ing auditors to verify event streams provided by participants, and using trusted computing

bases to protect data streams and executable code.

Some solutions can work in peer-to-peer environments as well as hybrid and client-

server environments.

Chambers et al. propose a round-based bit commitment protocol [106]. ‘Warcraft III’

53

[86] adversaries periodically send hashes of their moves to each other, then exchange full

move logs after game completion [108]. When the full logs are received, each player can

validate that the sequence of moves provided corresponds to the hashes received during

play, and that the movement sequences are valid.

5.4 Attack scope

Listed below are the 16 di�erent types of cheating techniques.

5.4.1 Cheating by modifying Client infrastructure

With complete control over the client, cheaters can hide their presence by modifying the

operating system, or disabling or spoo�ng anti-cheat software [109]. They can also remove

the cheat from the system just before anti-cheat software runs. On top of these techniques,

the adversary can employ memory tampering, anti-debugging, obfuscation, and evasion

techniques that make the gaming client untrusted.

Analysis In [110] the authors propose the use of tamper-resistant hardware to detect

cheaters. They [111] provide an empirical study of online game cheating. On the attack side,

in [112], is presented “The Supervisor, a kernel-level rootkit made speci�cally to bypass The

Warden, Blizzard Entertainments anti-cheating technology”. In the Defcon talk “So Many

Ways to Slap A Yo-Ho: Xploiting Yoville and Facebook for Fun and Pro�t”, the authors

showed how to cheat on the Yoville game. It has been discovered amongst all these papers,

the most popular [88] tool to tamper with game memory is called ‘Cheat Engine’.

5.4.2 Cheating by Collusion

Collusion cheating has also been widely seen in online card games, e.g. online poker. On-

line poker is a game played between a number of persons ranging from two to eight. Unlike

chess, in which all pieces are on the board and known to each side, poker is a game with

hidden information. Each player knows only the subset of cards they have access to. How-

54

ever, by illicitly exchanging card information over the telephone, instant messenger or the

like, collusive cheaters can gain huge advantages over honest players.

Analysis Reiter and Rubin [113] has shown how they collect users in a group and call

‘crowd’ to browse the web anonymously. To enter the group, a user contacts the server

to gather more information about other members. A user that is interested in a web page

forwards the request randomly to another member in the group. Upon receiving the request

from another member, a random choice is being made to either forward the page to another

member or process it themselves. Later, the server provides same pathway to create a

seamless interaction to hide the fact that it has been routed to other members and has

reached the intended client.

In my point of view, the work done was done long time ago and its relevance to the

gaming world is not adequate enough.

Work done by Freedman and Morris [114] focused on creating an anonymised layer. It

provides anonymous e�ort IP service and is transparent to applications. Their system uses

layered encryption and �xed-length messages and obfuscates tra�c to make sure there are

no attack in transit.

The work done seemed reasonable; however implementation details and the success rate

of the paper was not mentioned, and taking the idea on board would not lead to further

work.

5.4.3 Cheating by Escaping

This form of cheating may be carried out without any technical expertise. A cheater simply

abuses the operating procedure of a game. One common case that we have observed in

many online games is escaping: a cheater disconnects themselves from the game system

when they are going to lose. In cases, disconnection results in a match being not scored

and a legitimate player loses.

55

Analysis Ideas connecting to this domain are quite vague. Several ideas suggested un-

plugging the connection with the ethernet port, thus switching o� the machine. However,

due to the network connection issues in consideration, it is di�cult to distinguish between

an intentional disconnection and a genuine network �aw.

5.4.4 Cheating related to virtual assets

Virtual characters and items acquired in online games can be traded for real money. A

cheater might order a virtual item, receive real money for the item, but never deliver it as

agreed. Alternatively, the cheater might get hold of another’s personal pro�le by illicitly

gaining access.

Analysis It has been thought that the idea of Blockchains could be implemented in this

scenario. There is a study done by ‘Hunter Coin’ [115] which establishes the idea. However,

the work done is for a turn-based game and discussed limitations of real-time games. This

is because of the time that is needed for a block to be added on the chain, and to provide a

seamless experience, the gamer might be frustrated to wait that long.

However, the idea could be extrapolated to provide attestation for items or valuables

within the inventory that does not require a real-time collaboration.

5.4.5 Cheating by exploiting machine intelligence

Using a robot to gain advantage is a new form of cheating. For example, the advancement

of computer chess research has produced many programs that can compete with human

players at the highest level. When playing chess online, a cheater can replicate their moves

on a strong chess machine and reproduce the results against their opponent.

Analysis There are multiple number of studies done [116, 117, 118, 119] on this domain.

Di�erent machine-learning techniques have been put into use to achieve the best results.

Usage of WEKA was used in most cases. The papers did not speci�cally specify which MLA

(Machine Language Algorithm) suited best in the situation, rather they did an experimental

56

analysis and showed the results of a speci�c algorithm e.g. Naive Bayes, SVM (Support

Vector Machine) to be the best algorithms.

In [120], authors discussed about behavioural analysis to detect cheaters in Online First

Person Shooter games. The game was developed using Unity3D game engine and it had

client-server architecture. The game logs were stored in the server side. Data were analysed

using implemented machine learning classi�ers in WEKA.

In [121], party play log analysis, work done included with establishment of threshold

levels for the activities that may be performed by game bots. Based on this, they built a

knowledge base of detection rules. The rules are generic.

Basically party play was used to analyse user behaviour. Other work involved users

moving or aiming. They went on discussing, party bots will have di�erent patterns when it

comes to �ghting or moving. Human players may not stick to their style of play, and over

a period of time the patterns re�ect the usage of bots.

5.4.6 Cheating by modifying external software

Without modifying game programs, con�gurations or data on the client side, a player can

cheat by modifying the device drivers in his operating system. For example, he can modify

a graphics driver to make a wall transparent so that he can see through the wall, locating

other players who are supposed to be hidden behind the wall.

Analysis There is a real-time map-hack study being proposed in a very good conference,

S&P [122]. Authors discuss a generic tool, Kartograph which they have made - it lifts the

fog of war in online real-time strategy games by snooping on the memory used by the game.

Their main idea is based on the fact; they share the game state amongst the other players

using a distributed mechanism.

More focus to be had on this paper and see if it can be improved or the idea taking

forward.

57

5.4.7 Cheating by denying service to peer players

A cheater can gain advantages by denying service to his peers. For example, a cheater could

delay the responses from his opponent by �ooding his network connection. This may allow

the cheater to gain extra lives and speci�c game servers may allow this considering network

�aws.

Analysis No study is available in the academia to analyse in detail.

5.4.8 Timing cheat

In some real-time online games, a cheating player can delay his own move until he knows

all the opponents moves, and thus gain a huge advantage. This look-ahead cheat is one

kind of timing cheating.

Analysis No study is available in the academia to analyse in detail.

5.4.9 Cheating by compromising passwords

A password is often the key to much of or all the data and authorization that a player has

in an online game system. By compromising a password, a cheater can have access to the

data and authorization that the victim has in the game system

Analysis No study is available in the academia to analyse in detail.

5.4.10 Cheating due to lack of secrecy

When communication packets are exchanged in plain text format, one can cheat by eaves-

dropping on packets and manipulating them to gain advantage.

Analysis No study is available in the academia to analyse in detail.

58

5.4.11 Cheating by exploiting lack of authentication

If there is no proper mechanism for authenticating a game server to clients, a cheater can

collect many ID-password pairs of legitimate players by setting up a bogus game server.

Similarly, if there is not a proper mechanism authenticating a client, a cheater can also

exploit this to gain advantages. For example, in Asia paci�c, where the usage of game cafes

are abundant, people tend to login to public computers and their details are easily captured.

Analysis No study is available in the academia to analyse in detail.

5.4.12 Cheating by exploiting bug or loophole

This form of cheating exploits a bug or loophole in-game programs or the game design

itself, without involving any modi�cation of game code or data. Once discovered, such

a bug/loophole will give knowledgeable players a major advantage. Sometimes, this type

of cheating is debatable in the gaming community since the bug can also be referred as a

feature in-game.

Analysis No study is available in the academia to analyse in detail.

5.4.13 Cheating by compromising game servers

A cheater can tamper with game server programs or change their con�gurations once he

has obtained access to the game host systems.

Analysis No study is available in the academia to analyse in detail.

5.4.14 Cheating by internal misuse

A game operator usually has the privileges of a system administrator. It is easy for an

insider an employee of the game operator to abuse this privilege. For example, the admin

could easily increase the number of coins in any account without others noticing.

59

Analysis No study is available in the academia to analyse in detail.

5.4.15 Cheating by social engineering

Often cheaters attempt to trick a player into believing something attractive or annoying

has happened to him and that as a result his ID and password are needed. It is also known

as phishing-scam

Analysis No study is available in the academia to analyse in detail.

5.4.16 Cheating by impersonation

A gamer could hire another gamer to compete or play on behalf of him. If it is an online

gaming competition, the other users will not be able to understand who is actually playing

the game.

Analysis No study is available in the academia to analyse in detail.

5.5 Objective

Following the types mentioned above, our main objective is to better distinguish and cat-

egorise the types of cheats which manipulates the client. This would help disintegrate the

broad challenge of tackling protection against cheating and allow modularisation to provide

solutions.

60

6 Future approach

This chapter discusses about the possible future work that could be completed based on

the research carried out. We start by discussing an analysis on cheating detection scheme

and how this can be provide a baseline to carry out the tasks in the future. With the nature

of thesis being an MPhil instead of a PhD, the outlines are discussed which can provide a

guideline for the forthcoming future.

6.1 Cheating detection

Detection of cheating varies widely. The accuracy of the detection is of paramount impor-

tance, since professional players can be deemed to be cheating whilst in reality they are

just very good players with very high activity rates and tremendous re�exes and reactions.

However, speci�c companies have created their algorithm to protect their platform to

try and ensure adequate measurements to provide a means of fairness. Annoying traits of

these companies are documentation. These companies are not keen on releasing any infor-

mation or whatsoever about how they operate their cheat detection engines. The famous

one being valve anti-cheating (VAC) [123] adopted by the gaming giant Steam. More cheat

detection engines follows, Warden [124], Punkbuster [125].

Detection techniques dealing with cheating in P2P games can be classi�ed such as Game

Log Veri�cation which is an analysis technique to �nd anomaly or detect bots, in other

words, a common technique is that all actions are audited and veri�ed for security breaches

[126]. One of the forms of veri�cation that can detect cheaters is comparing hash messages

of future updates with the actual updates. For example, at the start of the game, each player,

it is necessary to replace the hash value of the initial state of the game, at the end of the

game, each player exchanges all the operations he issued and then to con�rm the validity

of the hash value and the state or operations to simulate the game again [126].

But for speci�c hacks like memory exploits and code injections, there are no speci�c

go to methods adopted by the hacking community. There is ‘CheatEngine’ available to the

61

gamers, which has a memory traversal software together with decrypting mechanisms.

There is also a peer based detection mechanism. It is a centralized authority in each

region, that is, the super-peer; some peers are elected to be super-peers, which operate both

as a server to a set of clients, and as an equal in a network of super-peers. On the other hand,

this node can perform most of the security checks, assuming it to have a high reliability

[127]. Another hybrid approach is invigilation reputation security (IRS) for purposes of

controlling and eliminating game cheaters. This is where communication is handled by the

server and update execution is managed by peers. In this approach the server assigns a

proxy peer to each peer [128]. Proxy peers are selected at random, and will be assigned on

a regular basis. All the executed updates and returning results of the peers are done by the

proxy peer. The server is responsible to relay the message between the peer and its proxy.

The checks are such that, the server runs a quick revision test to see if the result is returned

while if it is possible according to the threshold limit. Con�icting updates and a percentage

of updates randomly chosen are then re-executed by a selected monitor peer to verify the

results and detect cheating [126]. Moreover, Mobile Guards are used to ensure the integrity

of the protection mechanism, which aims at preventing cheating through modi�cation of

game client. Mobile guard is a small code segments downloaded from a trusted server, game

client will be veri�ed using a checksum and encryption game data [126].

6.2 Objective

Following the types mentioned above, our main objective is to prohibit cheats and restrict

a gamer from gaining advantages over honest players.

We plan to reach our goal via following a set of objectives.

• Prepare a shortlisted scope from the Cheat Types

- Cheating by modifying client infrastructure

- Cheating by Impostors

• Narrow the scope and work on a speci�c problem

62

- Detecting Impostor Cheats

• Follow up on the next shortlisted topic

- Modifying Client infrastructure

– AimBots

– WallHacks

– MapHacks

6.3 Background: Impostor cheat

There are certain game genre within the gaming industry, MOBA, massively multiplayer

online role-playing games (MMORPG), FPS, strategy, simulation, puzzles, etc. The problem

scope is being narrowed down to focus one of the major popular genre - MOBA. An appli-

cation of this domain - Dota 2 [85] has been chosen as the preliminary game application,

however the scenario could also be applied to other famous franchises e.g. Starcraft, League

of Legends, etc. For the purpose of this study, we have chosen Dota 2. This is due to the

fact, we have experience of playing this game over a span of 12 years with over 9,000 hours

of game time logged in Steam. This statistic means we have seen the game develop over

the years on a �rst hand basis. The game mechanics of Dota 2 can be exploited easily to

implement the impostor cheat. Furthermore, there is evidence to suggest impostor cheating

has been successfully executed in a gaming tournament where the prize money was worth

tens of thousands of dollars.

Dota 2 developers have created a mode that is aimed at experienced players who want to

play in a more competitive environment and know their matchmaking rating (MMR) . Dota

2 matchmaking [129] has always calculated MMR and used it to form matches, established

prerequisite values to attend and participate tournaments and develop oneself. The current

prize pool for the gaming competition has made the gaming giant Valve to earn 80 M USD

[130] this year entirely from one tournament known as ‘TI6’.

63

Any competitions for this game is hosted by multiple sponsors, companies, start-ups,

local organization and more. Big prize money is given out on Valve-hosted competitions

where the prize money is usually a very large amount. Valve hosts one major big event

known as ‘The International’ (TI) every year [130] and numerous small events that build

up to the TI. Valve has earned 80M USD [131] from their TI6 and have given out a quarter

of their earning as prize money to the participants which was a remarkable - 20.6M USD.

Our work done in this domain will concentrate on Valve-only events that are conducted

both online and on main-stage key arena. We will mostly focus on the online tournament

however we shall also keep the main-stage key arena cheats under consideration. The focus

on online is due to the probability of having an impostor attack on an online tournament.

Furthermore, before a team is being allowed to participate in a main-stage key arena event,

they have to qualify through multiple online tournaments. The initial online tournament

begins via tier management system. Players of a certain MMR rating tier will play with

similar tier before reaching to main-stage arena where MMR do not matter anymore.

The journey to qualify for a Valve tournament begins with creating a new account with

Steam. Steam is the gaming client that helps connect the gamers to the Dota 2 servers.

A new gamer starts with a locked MMR rating where the gamer is required to complete

approximately one hundred and �fty games to acquire a rating. Each game lasts an average

of �fty minutes, played with other nine players.

6.3.1 MMR calculation

Dota 2 uses standard techniques to quantify and track player skill. Each player is assigned

an MMR, which is a summary metric that quanti�es the gamers skill at Dota 2. After each

match, Dota 2 updates MMR based on what happened in that match. In general, when a

gamer wins, MMR will go up, and when they lose, MMR will go down. Win/loss is the pri-

mary criteria used to update MMR, but individual performance also plays a role, especially

when the uncertainty about MMR is high. It is possible for an individual MMR to increase

after a loss or decrease after a win, but in general the winning team’s average MMR will

64

increase and the losing team’s MMR will decrease.

They also track their uncertainty about MMR. New accounts and those playing in Ranked

Matchmaking for the �rst time will have high uncertainty. Higher uncertainty allows larger

adjustments after each match, and lower uncertainty leads to smaller adjustments. To-

gether, the MMR and uncertainty can be interpreted as a probability distribution of perfor-

mance for the next game: the MMR itself serves as the mean of this distribution and the

uncertainty is its standard deviation. If the match outcomes (both the win/loss and indi-

vidual performance) repeatedly match the server’s expectations, the uncertainty tends to

decrease until it reaches a �oor. A surprising match outcome will tend to cause an increase

in uncertainty. This methodology is only for a gamer when he is playing with nine un-

known players publicly and is referred as ‘solo MMR’. There is another MMR calculation

known as ‘Party MMR’ where the gamer plays with a friend, and the value is calculated

similarly.

For the purpose of simplicity, we would like to focus only on games played ‘solo’ or with

nine complete strangers. This is because, the MMR calculation and the game mentality is

quite di�erent between each other. Very often, friends will join up over a weekend night

to have some fun and enjoy their time rather than playing competitively. This adds extra

noise in the study and would require much more sophisticated �ltering to pick the games

that were played to earn MMR. The ‘Party MMR’ section is something that can be pursued

as an extension to this research work.

In a ‘solo’ game, players being by creating game accounts. When skilled players create

new accounts, they follow a di�erent trajectory than amateur players. Their MMR rises

relatively quickly, placing them into the upper left-hand corner of the diagram in the MMR

graph as shown in Figure 3, where they will be matched with other players whose skill is

high relative to their experience level. However, throughout the Dota 2 journey, the skilled

players �nd their position levelled out upon playing more games.

Measuring success in matchmaking is di�cult. Players’ appraisals of matchmaking

quality are highly correlated with their recent win rate. The developers make design deci-

sions objectively using data. The gaming giant gathers lots of data and uses a statistical tool

65

Figure 3: MMR graph

known as logistic regression, which essentially works by trying to create a function that

predicts the odds of victory. This function contains several coe�cients which determine

the MMR bonus given to players in a party. Then they use numerical techniques to solve

for the coe�cients that produce the function which is most accurately able to predict the

match outcome.

6.3.2 Problem Scope

Building up a good pro�le and playing in the elite league of players (having high MMR)

is a challenging task. Higher MMR requires a great deal of gameplay hours. The bene�ts

of having higher MMR values are also rewarding. Players turn out to be gaming celebri-

ties where they stream their playing style in popular streaming websites like YouTube and

Twitch. This acts as a very big source of revenue for a lot of gamers as they get to show-

case their skilful playing style to the world. Apart from monetary bene�ts, they come with

bragging rights within friends and peers. This also gives a message out to the community,

who are actively looking to hire new players in their team roster.

Gaming events are mostly de�ned of two types: minor events and major events [132].

Minor events [133] are mostly any tournaments where the competitions could happen in

a small local region or at best a country-wide event. They tend to vary in prize money

66

from $100-$20,000. Major events tend to be organised as a broader event, where people

from continents will join together to represent their teams. Major events have always been

organised by Steam and Valve together and their prize money is in millions of dollars. They

usually happen once every year and is famously known as the internationals (TI).

In big major events like ‘The International 6’ (TI6), the gaming arena would be moni-

tored by human referees. The human referee would monitor cheats and can easily prohibit

an impostor by establishing their presence.

Impostor cheating problem arises mostly with minor events where the games are hosted

and played online. Players could compete from all parts of the country. To keep the costs

low and �lter out unskilled players, these events do not happen in a physical venue where

there could be human referees. This gives the scope to an impostor to apply some cheats.

The lucrative part of applying an impostor cheat is, the champions from these minor events

are guaranteed a spot in the major event. This means, the participating team is guaranteed

a small sum or a minimum sum from the prize pot of the major event. Therefore, in most

semi-major events, just getting to qualify or barely would secure a minimum of thousands

of dollars. The prize money for the last place of a semi-major event ‘The Manila Major

2015’ [134] was 50,000 USD. The total prize pool for the gamers were 3M USD split within

16 teams, with the last team guaranteeing a prize pool of at least 50,000 USD.

If all genuine honest players were to participate, the tournament would be very com-

petitive. ‘Wings Gaming’ are the proud champion of TI6, winning 10M USD themselves

out of the 20M USD prize pool.

In a scenario, if the players of ‘Wings Gaming’ were to play the quali�ers game, as im-

postors, let’s say for a team called ‘IGN gaming’, the players would most likely win a spot

in the majors [135] for IGN gaming and thus a guaranteed share in the prize pool. This

would secure 2 objective. 1) Monetary bene�t and 2) For ‘Wings gaming’, they are guaran-

teed to face vs easier opponents. Because, ‘IGN gaming’ is incapable of getting quali�ed by

their own skillset. This also means, a genuine spot for another worthy team is also being

occupied.

67

6.3.3 Motivation

Team VP has been caught [93] in the act of performing an impostor cheat during an ongoing

semi-event, ‘Summit 5’ grand �nal quali�ers [87]. Suspicions began when one of the players

of VP lost internet connection. Later on the match was analysed by the community to raise

speci�c concern about the gameplay behaviour of the player. Later on, to preserve further

hearing and investigation, the team succumbed to the cheat themselves and withdrew their

participation.

In another major Valve event, it was discovered one of the gamers shared their compe-

tition login details and 3 out of 5 games were played entirely by another person. This event

had physical existence of human referee and the gamer was still able to cheat. The cheat

was later con�rmed via rewinding CCTV camera footage.

The news of this new kind of cheating has surfaced in the gaming community and it

draws the possibility of more undiscovered cheats gone un-noticed. Competitive gamers

expend their life, time, e�ort and money to prepare for these events. Having unfair plays

done via an impostor based cheating makes it extremely di�cult for the genuine players

to pursue their career. It may also destroy their life and lower their self-esteem and cause

social problems.

The current software-based cheat detection is done via Valve’s Anti-cheating system

(VAC) [123]. However, VAC is unable to �ag any of these cheats due to the reason that the

entire game is being played fairly but by a di�erent person, with their own consent.

6.3.4 Objective

Following the problems mentioned above, our main objective is to devise an algorithm that

will analyse the player’s in-game behaviour taking into account of the data of the players

previous games. We plan to use a combination of in-game variables to create a pattern that

would depict and raise �ags to certain users who could be aiming for an illegal competitive

advantage.

68

6.3.5 Solution

Apart from the ability to enrol a team into a competitive tournament, the bragging rights for

certain gamers are also expensive. Gamers would pay money to speci�c online companies

who would ramp up their MMR to a higher value so they would be able to gain bragging

rights within their peers. Due to the well-designed MMR system of Valve, these gamers

would fall back to their designated MMR levels upon spending more hours and we have

been able to gather data that these gamers would return to the same companies again to

use their service to enhance their MMR more than one time.

This gives us access to good data and bad data. We have also been able to gather gen-

uine legitimate data from 60 players over a period of an average gameplay of 2,000 hours

each. There has been previous solutions designed with the usage of Machine learning al-

gorithms [119, 120, 5] that generates success rate upon using speci�c algorithm Bayes, k-th

neighbour, etc. However, these results are tailored to verify a hypothesis. We plan to create

a hybrid algorithm that takes into account of behavioural pattern together with machine

learning technique which would allow us to detect an impostor.

Our hybrid algorithm would require experimentation with di�erent machine learning

algorithm to determine success rates. The game of Dota 2 publishes above 100 in-game

parameters as a statistical update upon �nishing a game. The target is to cater as many of

the variables possible to determine if there is a recurring pattern for an impostor cheater.

Figure 4 below represents the in-game data from a speci�c player ‘Carlos Brathwaite’. In-

game speci�c parameters are listed as Gold Per minute (GPM), Kills, death, assist (K/D/A),

experience earned per minute (XPM), etc. as depicted in Figure 4. Data discussed here are

from one of his latest matches. Figure 5 shows the list of latest games being played by the

same gamer. Figure 6 shows the speci�c clock times of a milestone that has been reached

within the game. There is a lot of information available from one single game, which gives

very detailed data-set. Comprehending the gaming activity based on this data will allow us

to analyse gamers behaviours. The next bit is experimentation and implementation.

69

Figure 4: Details of one of the games from the latest games played

6.4 Related Work: Impostor cheats

There are multiple types of work done on the domain of behaviour analysis. Work done

with the involvement of behavioural biometrics have been done by Al-Khazzar [136]. Three

unique virtual worlds are designed and implemented with di�erent 3D environments and

avatars, they simulated the di�erent environments of virtual worlds. They were used to

identify the users of a virtual world based on their behaviour within these environments.

For example, if we look at an example of a game called Sims, the game creates a virtual world

with people, where the gamer can choose to do anything with the people. They can make

them interact with other people, make them dance, eat food, or even use the washroom.

The series of events a gamer can choose will not be the same as the other gamer. i.e. one

gamer could create a people in the game and make them eat food all the time, whereas

another game could opt in to make the people eat less food. The patterns of how they

interact or play the game can re�ect a gamers style of play or mentality.

Jain [137] reported that biometric systems based on the usage of �ngerprints [138]. It

70

Figure 5: List of latest games played

Figure 6: Timings of speci�c gameplay actions

71

can be used as an authentication to detect the honest user. More work done in this domain

include pointer device authentication, user veri�cation via web interfaces and recognis-

ing keystrokes. The pointer device based recognition provided a mechanism to use user

interactions with a pointer device such as mouse for identi�cation and veri�cation. They

also proposed [139], a biometric system based on user interaction with a web page. They

propose integrating this biometric feature into a conventional login web page to enhance

the security of their system. Most games also use keyboard as the primary input device.

Biometric recognition systems based on keystroke dynamics were conducted by [140]. He

outlined keyboard biometric features (events) that can be used in keystroke recognition

systems, e.g. key-down, up, hold time, delay, etc.

Apart from biometrics analysis, distance measure algorithms have also been used to

determine the presence of bots during games. Work has also been done to determine the

behaviours of user within virtual worlds. A distance measure algorithm allows a biometric

system to compare the newly submitted samples with the samples in the biometric enrol-

ment database. A human user may divert from his pathway to investigate interesting items,

whereas a bot may not. Work has also been done user behaviour on virtual worlds. [141]

proposed a model to predict user’s intentions to return to a virtual world. They suggested

that these intentions can be determined based on a state of deep involvement that the users

tend to lose the time track.

Other behavioural techniques have been used to distinguish the gamers between bots

and humans. Yampolskiy [142] suggested that a behavioural biometric signature can be

generated from the strategy of an individual when playing a game of poker. The generated

behavioural signature is continuously compared with players’ current actions and signi�-

cant changes in behaviour are reported as security breaches.

Multiple work has been done on analysing a human gamer’s behaviour using MLA and

techniques. These techniques can be applied to detect the presence of a bot. One of the

earliest work involving a bot was done by Thurau et al. [143], where they used di�erent

approaches to develop human-like AI agents using the analysis of human player behaviour.

This was done by introducing a neural-network-based bot that learnt human behaviour

72

[144], and dividing players actions into strategies and tactics using Neural Gas Waypoint

Learning algorithm to represent the virtual world [143]. They also used Bayesian imitation

learning instead of Neural Gas Waypoint Learning algorithm in [145] in order to improve

performance [143].

Kuan-Ta Chen et al. [5] provided a bot detection method using manifold learning. Al-

though their method was very accurate, it was based only on the avatar’s movement po-

sition and thus only worked for detecting a moving bot. Yeung et al. [146] provided a

scalable method that uses a dynamic bayesian network (DBN) to detect ‘AimBots’ in FPS

games. Their method provided good results, although if more features were used, better re-

sults could have been obtained. Galli et al. [147] used di�erent classi�ers to detect cheating

in ‘Unreal Tournament III’.

6.5 Problem statement and research questions

Focus has shifted more to the side of a speci�c cheat. The background study of the literature

yielded two speci�c cheats that are discussed in the academia: WallHacks and MapHacks.

There are several good papers published on MapHacks in very good conference e.g. S&P.

With the narrowed focus of WallHack and MapHack, the initial target is set to work on

WallHack cheats. WallHacks are cheats that are employed utilising three entities: 1. Game

application, 2. Graphics driver toolkit, 3. Graphics processing API, e.g. OpenGL, Direct X.

The cheat is employed in the industry via multiple mechanisms. Of these mechanisms,

three ways are deemed popular and are used in the industry.

ModifyingAPI calls OpenGL is an open source API; games employ the usage of multiple

function calls within the API to draw objects. One of the easiest and most popular wall

usage is used via these code patch:

gl_begin()

gl_Draw(gl_Quads)

73

...

gl_end()

An attacker can attack the processing of quads, where four parameters are used to draw

a quadrilateral. Quadrilaterals are easier to employ in drawing of walls and this is the norm

when games initiate wall drawings. The attacker can override the gl_quad calls and make

them appear translucent.

There are certain drawbacks with this method, as other game objects could be used via

the gl_quad calls and eventually they would start appearing translucent too.

Mesh - wireframe view model Via the usage of graphics card driver, the drivers are

tweaked to not draw the full game 3D object. The graphics model is restricted in only the

drawing of a wire mesh. This mesh-based drawing allows the gamer to see through walls

and other objects. However, the viewing could become very messy to an end user; to help

avoid this problem, speci�c trainer programs are created by hackers. These trainers have

a switching on-o� option which lets the cheater switch between environments to gain a

competitive advantage.

Z- vector OpenGL draw calls are overridden via DLL (dynamic link library) �le injection.

When a 3D object is drawn, x-y-z components are required to draw the full position of the

object. The DLL injection attack allows the z-vector to be not drawn, resulting in a false

depth of objects.

The �attening of 3D objects makes it easy for cheaters to detect enemies and gain ad-

vantage.

6.6 Potential solution

Three potential good solutions have been considered to date.

74

Watermarking The simplest of the ideas include watermarking of the three entities that

are involved in drawing a graphical object in-game: the client, graphics driver and the API.

The development of the game client would bear the source of the solution.

Since the map of a game is pre-loaded and is common knowledge to the game client, the

game would be able to render the scenario within itself, embedding speci�c watermarks.

During the runtime of the game, the map or the scenario will not change. The variable

entities would be the positioning of the gamers.

The solution lies in comparison. The pre-set solution would be executed by the game

client and loaded. Once this step is accomplished, the client would request with speci�c

parameters a screen cast of the current situation of the map that is drawn or displayed in

the gamers’ screen. The displayed screen should have mapped watermarking. Once the

data is received, the watermarked images should be compared for the correct anticipated

positioning of the watermarkings. If the marks match, the gamer was not cheating. If the

opposite is found, the gamer could be �agged for malicious behaviour and reported.

Assumption The game client is to be trusted.

The solution is unique as the usage of trusted platform module (TPM) chip are not being

used here. The usage of TPM provides static attestation and protection that the client has

not been tampered with. However, this solution does not involve TPM for reasons:

TPM chips are not widely available in all machines, so the solution does not carry

any inter-dependencies.

Despite having TPM chips, very few gamers use that chip, so by not involving TPM,

we are creating a solution that can be widely adopted.

Integrity of Graphics API Since the API is open source, the codebase of the API is

available. If we could attest the code and protect the execution pathways of the API, then

WallHacks would be prohibited.

The method would involve having a monitor running on the client that would check

75

for any changes on the API during runtime. The monitor could be run in an Intel SGX

environment. This would ensure runtime attestation on the API.

Graphics card driver Performance analysis The graphics card driver has to be veri�ed

for any unauthorised modi�cation. If the graphics card driver is tweaked to not display real

3D objects, the driver would end up drawing only wire-frames. This solution needs to be

applied as an addition to the previous solutions.

The graphics card driver needs to be attested prior to running the game, which would

ensure the graphics driver is not tampered with. This would allow the client to display

legitimate game objects in the screen.

Another method to go beyond this solution is the comparison of e�ective performance.

The idea is to analyse the overhead in the system performance when the cheat is used and

when it is not, i.e. storing or measuring the system-calls during the execution of normal

world (non-cheating environment) and measuring the number of system-calls when a cheat

is being used. Implementing this performance measurement would act as a solution to

determine a cheating user. However, a threshold has to be taken into account, since the

system may be involved in other performance-incentive tasks.

76

7 Conclusion

This thesis documented work on video games and focused on client-side security. We ini-

tially studied the domain of the video game and re�ned the area we planned to focus our

work on.

The work done on this thesis details the whole MPhil journey. The initial pathway was

aimed towards studying the full spectrum of cheating in video games. However, as the

research started to take a longer time than expected, we limited our focus to the client side

security only.

The security analysis and the �ndings from the game clients provide multiple opportu-

nities that can be worked on in the near future. Amongst the choices, the impostor cheating

study has the highest amount of potential. This is partly due to the fact that any good impos-

tor cheat detection mechanism will be very useful for the gaming community. Furthermore,

as discussed in the chapters, there will be fair-play re-established in the gaming community,

making the gaming competitions more competitive and much more entertaining.

7.1 Achievements

This document summarises all the work undertaken throughout the journey of the MPhil

degree. Analysis of the �rmware and software allowed us to taxonomise the scope of

�rmware. The taxonomy of the �rmware would hopefully allow for a greater understand-

ing of the terminology and reduce the confusion between �rmware and software. This

allowed the study to be focused towards the ‘software’ part of the video game territory.

From the work carried out in the gaming world, we have achieved a greater understand-

ing of the security in video games. The background analysis discussed the work done in the

previous years and the types of cheats that are available and implemented. The background

study of cheats over the years has helped us categorise a model of the types of cheats that

are implemented in the gaming world. This modularisation of the cheat types helped us

understand the scope of the problem of cheating and allowed us to isolate our problem

77

scope.

The idea of impostor cheating was chosen to be studied in greater depth. To accommo-

date this study, we have also chosen a MOBA game, Dota 2, to discuss how the cheating

of impostors �ts into a real-world scenario and provided possible solutions. The access to

the volume of Dota 2 game data provided by Steam [92] helped us understand and make

progress on the impostor cheating study.

7.2 Potential future works

Future work could lead the work done for impostor cheating to be implemented to derive

results for Dota 2, applying and collecting more data. The study could involve collecting

more user data and experimenting with the gaming variables. The experiments could be

tweaked to enforce a recurring pattern to detect the impostor cheating gamers.

Similar methods could be extended and put to use to try on a di�erent game other than

Dota 2, but in the same genre of MOBA. Furthermore, once a pattern has been exhibited

that allows a pattern to detect impostor cheaters, this can be further extrapolated to try on

di�erent genres of video game, e.g. FPS, strategy, puzzles, etc.

78

References

[1] R. Hassan, K. Markantonakis, and R. N. Akram, “Can you call the software in your

device be �rmware?,” in 2016 IEEE 13th International Conference on e-Business Engi-

neering (ICEBE), pp. 188–195, IEEE, 2016.

[2] H. W. Lawson, “Programming-language-oriented instruction streams,” IEEE Transac-

tions on Computers, vol. 100, no. 5, pp. 476–485, 1968.

[3] H. Barsamian and A. DeCegama, “Evaluation of hardware-�rmware-software trade-

o�s with mathematical modeling,” in Proceedings of the May 18-20, 1971, spring joint

computer conference, pp. 151–161, ACM, 1971.

[4] D. Mange, “Teaching �rmware as a bridge between hardware and software,” Educa-

tion, IEEE Transactions on, vol. 36, pp. 152–157, 1993.

[5] K.-T. Chen, H.-K. K. Pao, and H.-C. Chang, “Game bot identi�cation based on man-

ifold learning,” in Proceedings of the 7th ACM SIGCOMM Workshop on Network and

System Support for Games, pp. 21–26, ACM, 2008.

[6] T. Eisenbarth, R. Koschke, and D. Simon, “Incremental location of combined features

for large-scale programs,” in International Conference on Software Maintenance, 2002.

Proceedings., pp. 273–282, IEEE, 2002.

[7] J. C. Knight, “Software challenges in aviation systems,” 2002.

[8] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor soc for advanced

set-top box and digital tv systems,” IEEE Design & Test of Computers, pp. 21–31, 2001.

[9] K. Kursawe and D. Schellekens, “Flexible mutpms through disembedding.,” in Pro-

ceedings of the 2009 ACM Symposium on Information, pp. 116–124, 01 2009.

[10] L. McMinn and J. Butts, “A �rmware veri�cation tool for programmable logic con-

trollers,” 2012.

79

[11] G. Ramesh and R. Umarani, “Data security in local area network based on fast en-

cryption algorithm,” 2010.

[12] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Morgan,

K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and implantable cardiac de�brilla-

tors: Software radio attacks and zero-power defenses,” in 2008 IEEE Symposium on

Security and Privacy (sp 2008), pp. 129–142, IEEE, 2008.

[13] A. Bellissimo, J. Burgess, and K. Fu, “Secure software updates: Disappointments and

new challenges.,” in HotSec, 2006.

[14] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, L. Gau-

thier, and M. Diaz-Nava, “Multiprocessor soc platforms: a component-based design

approach,” IEEE Design & Test of Computers, vol. 19, no. 6, pp. 52–63, 2002.

[15] K.-D. Schubert, “Improvements in functional simulation addressing challenges in

large, distributed industry projects,” in Proceedings of the 40th annual Design Au-

tomation Conference, pp. 11–14, ACM, 2003.

[16] S. C. Jacobson, A. W. Moore, and J. M. Ramsey, “Fused quartz substrates for microchip

electrophoresis,” Analytical Chemistry, vol. 67, no. 13, pp. 2059–2063, 1995.

[17] xda devleopers, “Smart watch hack forum,” 2011. https://forum.xda-

developers.com/smartwatch, [Accessed: 2015-01-22].

[18] A. Cui, M. Costello, and S. J. Stolfo, “When �rmware modi�cations attack: A case

study of embedded exploitation,” in NDSS, 2013.

[19] R. R. Plant, N. Hammond, and T. Whitehouse, “How choice of mouse may a�ect

response timing in psychological studies,” Behavior Research Methods, Instruments, &

Computers, vol. 35, pp. 276–284, 2003.

80

[20] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham, “Mouse trap: Exploiting

�rmware updates in usb peripherals,” in 8th USENIX Workshop on O�ensive Tech-

nologies WOOT 14, 2014.

[21] Y. Li, J. M. McCune, and A. Perrig, “Viper: verifying the integrity of peripherals’

�rmware,” in Proceedings of the 18th ACM conference on Computer and communica-

tions security, pp. 3–16, ACM, 2011.

[22] Top�eld, “Updating the �rmware on your top�eld,” 2015.

https://support.icetv.com.au/ [Accessed: 2019-10-19].

[23] R. Wojtczuk and A. Tereshkin, “Attacking intel bios,” BlackHat, Las Vegas, USA, 2009.

[24] P. Gershteyn, M. Davis, and S. Shenoi, “Forensic analysis of bios chips,” 2006.

[25] R. Wilkins and B. Richardson, “Ue� secure boot in modern computer security solu-

tions,” 2013.

[26] D. Cooper, W. Polk, A. Regenscheid, and M. Souppaya, “Bios protection guidelines,”

NIST Special Publication, vol. 800, p. 147, 2011.

[27] L. Zhang, S. gang Hao, J. Zheng, Y. an Tan, Q. xin Zhang, and Y. zhang Li, “De-

scrambling data on solid-state disks by reverse-engineering the �rmware,” Digital

Investigation, vol. 12, pp. 77–87, 2015.

[28] Apple, “How to set a �rmware password on a mac,” 2018.

https://support.apple.com/en-us/HT204455 [Accessed: 2019-10-18].

[29] iDB, “How to jailbreak ios,” 2018. https://www.idownloadblog.com/jailbreak/ [Ac-

cessed: 2019-10-18].

[30] Apple, “Find the apps you love,” 2019. https://www.apple.com/uk/ios/app-store/ [Ac-

cessed: 2019-10-19].

81

[31] TheHackerNews, “Some d-link and comba wi� routers leak their passwords in plain-

text,” 2019. https://thehackernews.com/2019/09/router-password-hacking.html [Ac-

cessed: 2019-09-19].

[32] Anonymous, “Firmware passwords in plaintext,” 2013.

http://www.deploystudio.com/Forums/viewtopic.php?id=4974 [Accessed: 2013-

09-17].

[33] J. Scott, “Ee routers vulnerable to incredibly easy hack,” 2014.

https://www.computerweekly.com/news/2240212815/EE-routers-vulnerable-to-

incredibly-easy-hack [Accessed: 2014-01-11].

[34] M. Predko and M. Predko, PC PhD: Inside PC Interfacing. McGraw-Hill Professional,

1999.

[35] D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment for hard-

ware/software co-simulation,” in [1992] Proceedings 29th ACM/IEEE Design Automa-

tion Conference, pp. 129–134, IEEE, 1992.

[36] C. Bernard and F. Clermidy, “A low-power vliw processor for 3gpp-lte complex num-

bers processing,” in 2011 Design, Automation & Test in Europe, pp. 1–6, IEEE, 2011.

[37] Wired, “How the nsa �rmware hacking works and why it is so unsettling,” 2015.

https://www.wired.com/2015/02/nsa-�rmware-hacking/ [Accessed: 2015-10-11].

[38] I. Sutherland, G. Davies, and A. Blyth, “Malware and steganography in hard disk

�rmware,” Journal in computer virology, vol. 7, pp. 215–219, 2011.

[39] C. Miller, “Battery �rmware hacking,” Black Hat USA, pp. 3–4, 2011.

[40] G. Barrett and R. Omote, “Projected-capacitive touch technology,” Information Dis-

play, vol. 26, pp. 16–21, 2010.

[41] R. G. Ragel, S. Parameswaran, and S. M. Kia, “Micro embedded monitoring for se-

curity in application speci�c instruction-set processors,” in Proceedings of the 2005

82

international conference on Compilers, architectures and synthesis for embedded sys-

tems, pp. 304–314, ACM, 2005.

[42] Philips, “User manual of philips sensotouch 3d,” 2014.

[43] Apple, “Human interface guidelines,” 2019. https://developer.apple.com/design/human-

interface-guidelines/macos/user-interaction/mouse-and-trackpad/ [Accessed:

2019-10-19].

[44] S. Morrissey and T. Campbell, IOS forensic analysis for iPhone, iPad, and iPod Touch.

Apress, 2010.

[45] A. Hoog and K. Strzempka, iPhone and iOS forensics: Investigation, analysis andmobile

security for Apple iPhone, iPad and iOS devices. Elsevier, 2011.

[46] E. Sadun, M. Grothaus, and S. Sande, “Putting your data and media on your ipad,”

2011.

[47] Hp, “Hp laserjet - update the �rmware,” 2019. https://support.hp.com/gb-

en/document/c01711356 [Accessed: 2019-10-19].

[48] C. Seibold, Big Book of Apple Hacks: Tips & Tools for unlocking the power of your Apple

devices. " O’Reilly Media, Inc.", 2008.

[49] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, J. Blocki, K. Fu, and D. Song,

“Take two software updates and see me in the morning: The case for software secu-

rity evaluations of medical devices.,” in HealthSec, 2011.

[50] L. Du�ot, Y.-A. Perez, and B. Morin, “What if you can’t trust your network card?,”

in International Workshop on Recent Advances in Intrusion Detection, pp. 378–397,

Springer, 2011.

[51] S. Sta�ord, Nikon. Sterling Publishing Company, Inc., 2008.

83

[52] S. Sta�, “Teens put lego man in ’space’ (actually stratosphere),” 2012.

https://www.space.com/14397-teens-lego-man-space-stratosphere.html [Accessed:

2012-10-19].

[53] A. Aviv, P. Cerny, S. Clark, E. Cronin, G. Shah, M. Sherr, and M. Blaze, “Security

evaluation of es&s voting machines and election management system,” USENIX, 2008.

[54] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of embedded network

devices: Results of a wide-area scan,” in Proceedings of the 26th Annual Computer

Security Applications Conference, ACSAC ’10, (New York, NY, USA), pp. 97–106, ACM,

2010.

[55] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weyl, “Security

requirements for automotive on-board networks,” in 2009 9th International Conference

on Intelligent Transport Systems Telecommunications,(ITST), pp. 641–646, IEEE, 2009.

[56] M. S. Idrees and Y. Roudier, “Computer aided design of a �rmware �ashing protocol

for vehicular on-board networks,” 2009.

[57] D. K. Nilsson and U. E. Larson, “Secure �rmware updates over the air in intelligent

vehicles,” in ICC Workshops-2008 IEEE International Conference on Communications

Workshops, pp. 380–384, IEEE, 2008.

[58] M. Shavit, A. Gryc, and R. Miucic, “Firmware update over the air (fota) for automotive

industry,” 2007.

[59] M. Guven and M. Lorang, “Automated over-the-air �rmware update for a wireless

phone,” 9 2007.

[60] K. Markantonakis et al., Smart cards, tokens, security and applications. Springer Sci-

ence & Business Media, 2007.

[61] M. E. Soper, D. L. Prowse, and S. Mueller, CompTIA A+ 220-701 and 220-702 Cert Guide.

Pearson Education, 2011.

84

[62] H. Mansor, K. Markantonakis, R. N. Akram, and K. Mayes, “Don’t brick your car:

Firmware con�dentiality and rollback for vehicles,” in 2015 10th International Con-

ference on Availability, Reliability and Security, pp. 139–148, IEEE, 2015.

[63] E. Vartiainen, V. Roto, and A. Popescu, “Auto-update: a concept for automatic down-

loading of web content to a mobile device,” in Proceedings of the 4th international

conference on mobile technology, applications, and systems and the 1st international

symposium on Computer human interaction in mobile technology, pp. 683–689, ACM,

2007.

[64] O. M. Alliance, “Firmware update management object,” Open Mobile Alliance Ltd.,

Version, p. 1, 2006.

[65] Google, “How to update android smartphone,” 2015.

https://support.google.com/android/answer/7680439?hl=en-GB [Accessed: 2012-10-

15].

[66] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman, “Hybrid push-pull

query processing for sensor networks,” Informatik 2004, Informatik verbindet, Band 2,

Beiträge der 34. Jahrestagung der Gesellschaft für Informatik eV (GI), 2004.

[67] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modi�cation attacks on pro-

grammable logic controllers,” International Journal of Critical Infrastructure Protec-

tion, vol. 6, pp. 76–84, 2013.

[68] Apple, “Updating the software on your apple watch,” 2019.

https://support.apple.com/en-gb/HT204641 [Accessed: 2019-10-19].

[69] S. Biddle, “The secret history of bluetooth,” 2019. https://gizmodo.com/the-secret-

history-of-bluetooth-5899082 [Accessed: 2019-10-19].

[70] H. Wang, C. Shen, and U. Ritterfeld, “Enjoyment of digital games: What makes them

“seriously” fun?,” in Serious Games, pp. 47–69, Routledge, 2009.

85

[71] B. B. C. Timelines, “How british video games became a billion pound industry,” 2015.

[72] P. A. de Catalunya, “The video games’ industry is bigger than hollywood,”

2018. https://lpesports.com/e-sports-news/the-video-games-industry-is-bigger-

than-hollywood [Accessed: 2018-06-12].

[73] I. Grattan-Guinness, “Charles babbage as an algorithmic thinker,” IEEE Annals of the

History of Computing, no. 3, pp. 34–48, 1992.

[74] H. W. Kuhn and A. W. Tucker, “John von neumann’s work in the theory of games

and mathematical economics,” Bulletin of the American Mathematical Society, vol. 64,

no. 3, pp. 100–122, 1958.

[75] C. E. Shannon, “Xxii. programming a computer for playing chess,” The London, Ed-

inburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 314,

pp. 256–275, 1950.

[76] D. H. Ahl, K. S. Reid-Green, and A. L. Zobrist, “Computer games,” 2003.

[77] S. Russell, M. Graetz, and W. Witaenem, “Spacewar,” Computer software, 1962.

[78] M. J. Wolf, “Inventing space: Toward a taxonomy of on-and o�-screen space in video

games,” Film Quarterly (ARCHIVE), vol. 51, no. 1, p. 11, 1997.

[79] N. Bushnell, S. Bristow, and S. Wozniak, “Breakout,” A video game, Atari Inc, 1976.

[80] G. Lastowka, “Copyright law and video games: A brief history of an interactive

medium,” Available at SSRN 2321424, 2013.

[81] J. E. Gamble, “Competition in video game consoles: Sony, microsoft, and nintendo

battle for supremacy,” McGraw-Hill/Irwin=>?, 2008.

[82] D. Weibel, B. Wissmath, S. Habegger, Y. Steiner, and R. Groner, “Playing online games

against computer-vs. human-controlled opponents: E�ects on presence, �ow, and

enjoyment,” Computers in human behavior, vol. 24, no. 5, pp. 2274–2291, 2008.

86

[83] J. Je� Yan and H.-J. Choi, “Security issues in online games,” The Electronic Library,

vol. 20, no. 2, pp. 125–133, 2002.

[84] R. Trubshaw and R. Bartle, “Mud1,” Essex, United Kingdom, 1978.

[85] Valve, “Dota 2 players now outnumber World of Warcraft subscribers,” 2016.

http://www.gamespot.com/articles/dota-2-players-now-outnumber-world-of-

warcraft-subscribers/1100-6419431/ [Accessed: 2016-01-20].

[86] Blizzard, “World of warcraft,” 2011. http://www.worldofwarcraft.com/pvp/battlegrounds,

[Accessed: 2015-03-20].

[87] Valve, “The Frankfurt Major Grand Finals,” 2016. http://blog.dota2.com/2015/11/the-

frankfurt-major-grand-�nals/ [Accessed: 2016-05-20].

[88] D. Byte, “Cheat Engine,” 2015. http://www.cheatengine.org/aboutce.php, [Accessed:

2015-09-03.

[89] A. Pedgaonkar and P. M. Bhat, “R�d based software protection,”

[90] L. D. McMichael, B. B. Khoo, and V. J. Sabella, “Simultaneous tamper-proo�ng and

anti-piracy protection of software,” Aug. 7 2012. US Patent 8,239,967.

[91] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, M. Hammoudeh, and G. Epiphaniou,

“Security in online games: Current implementations and challenges,” in Handbook of

Big Data and IoT Security, pp. 367–384, Springer, 2019.

[92] Steam, “Steam engine,” 2016. https://support.steampowered.com/, [Accessed: 2016-

11-25].

[93] Valve, “The International,” 2016. http://www.dota2.com/international/overview/

[Accessed: 2016-07-11].

[94] A. Clements, Principles of computer hardware. Oxford University Press, 2006.

87

[95] R. Ohbuchi, H. Masuda, and M. Aono, “Watermaking three-dimensional polygonal

models,” in ACM multimedia, vol. 97, pp. 261–272, Citeseer, 1997.

[96] J. Yan and B. Randell, “A systematic classi�cation of cheating in online games,” in

Proceedings of 4th ACMSIGCOMMworkshop onNetwork and system support for games,

pp. 1–9, ACM, 2005.

[97] J. Ki, J. H. Cheon, J.-U. Kang, and D. Kim, “Taxonomy of online game security,” The

Electronic Library, vol. 22, pp. 65–73, 2004.

[98] G. Armitage, M. Claypool, and P. Branch, Networking and online games: understand-

ing and engineering multiplayer Internet games. John Wiley & Sons, 2006.

[99] M. Buro, “Orts: A hack-free rts game environment,” in International Conference on

Computers and Games, pp. 280–291, Springer, 2002.

[100] Y. S. Fung and J. C. S. Lui, Hack-proof synchronization protocol for multi-player online

games. Springer, 2009.

[101] T. Schluessler, S. Goglin, and E. Johnson, “Is a bot at the controls?: Detecting input

data attacks,” in Proceedings of the 6th ACM SIGCOMM workshop on Network and

system support for games, pp. 1–6, ACM, 2007.

[102] K.-T. Chen and L.-W. Hong, “User identi�cation based on game-play activity pat-

terns,” in Proceedings of the 6th ACM SIGCOMM workshop on Network and system

support for games, pp. 7–12, ACM, 2007.

[103] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers, “A novel approach to the detection

of cheating in multiplayer online games,” in 12th IEEE International Conference on

Engineering Complex Computer Systems (ICECCS 2007), pp. 97–106, IEEE, 2007.

[104] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky, I. Lee, C. Tsarouchis, et al., “Is runtime ver-

i�cation applicable to cheat detection?,” in Proceedings of 3rd ACM SIGCOMM work-

shop on Network and system support for games, pp. 134–138, ACM, 2004.

88

[105] S. Aggarwal, J. Christofoli, S. Mukherjee, and S. Rangarajan, “Authority assignment

in distributed multi-player proxy-based games,” in Proceedings of 5th ACM SIGCOMM

workshop on Network and system support for games, p. 5, ACM, 2006.

[106] C. Chambers, W.-c. Feng, and W.-c. Feng, “Towards public server mmos,” in Proceed-

ings of 5th ACM SIGCOMM workshop on Network and system support for games, p. 3,

ACM, 2006.

[107] P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann, “Addressing cheating in

distributed mmogs,” in Proceedings of 4th ACM SIGCOMM workshop on Network and

system support for games, pp. 1–6, ACM, 2005.

[108] Blizzard, “Warden wiki,” 2013. http://www.worldofwarcraft.com/, [Accessed: 2015-

01-22].

[109] G. Hoglund, “Hacking world of warcraft: An exercise in advanced rootkit design,”

Black Hat, 2006.

[110] W.-c. Feng, E. Kaiser, and T. Schluessler, “Stealth measurements for cheat detection

in on-line games,” in Proceedings of the 7th ACM SIGCOMMWorkshop on Network and

System Support for Games, pp. 15–20, ACM, 2008.

[111] S. De Paoli and A. Kerr, “The cheating assemblage in mmorpgs: Toward a sociotechni-

cal description of cheating,” Breaking NewGround: Innovation in Games, Play, Practice

and Theory. Proceedings of DiGRA 2009, pp. 1–12, 2009.

[112] G. Hoglund, “Hacking world of warcraft: An exercise in advanced rootkit design,”

Black Hat, 2006.

[113] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,” ACMTrans-

actions on Information and System Security (TISSEC), vol. 1, pp. 66–92, 1998.

89

[114] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer anonymizing network layer,”

in Proceedings of the 9th ACM conference on Computer and communications security,

pp. 193–206, ACM, 2002.

[115] D. Kraft, “Game channels for trustless o�-chain interactions in decentralized virtual

worlds,” Ledger, vol. 1, pp. 84–98, 2016.

[116] T. C. Smith and J. Miles, “Continuous and reinforcement learning methods for �rst-

person shooter games,” GSTF Journal on Computing (JoC), vol. 1, 2014.

[117] K. Balci and A. A. Salah, “Automatic analysis and identi�cation of verbal aggression

and abusive behaviors for online social games,”Computers in Human Behavior, vol. 53,

pp. 517–526, 2015.

[118] N. Alshurafa, J.-A. Eastwood, M. Pourhomayoun, S. Nyamathi, L. Bao, B. Mor-

tazavi, and M. Sarrafzadeh, “Anti-cheating: Detecting self-in�icted and impersonator

cheaters for remote health monitoring systems with wearable sensors,” in 2014 11th

International Conference on Wearable and Implantable Body Sensor Networks, pp. 92–

97, IEEE, 2014.

[119] M. Stevanovic and J. M. Pedersen, “An e�cient �ow-based botnet detection using su-

pervised machine learning,” in 2014 international conference on computing, networking

and communications (ICNC), pp. 797–801, IEEE, 2014.

[120] H. Alayed, F. Frangoudes, and C. Neuman, “Behavioral-based cheating detection in

online �rst person shooters using machine learning techniques,” in 2013 IEEE Con-

ference on Computational Inteligence in Games (CIG), pp. 1–8, IEEE, 2013.

[121] A. R. Kang, J. Woo, J. Park, and H. K. Kim, “Online game bot detection based on party-

play log analysis,” Computers &Mathematics with Applications, vol. 65, pp. 1384–1395,

2013.

90

[122] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh, “Opencon�ict: Preventing real

time map hacks in online games,” in 2011 IEEE Symposium on Security and Privacy,

pp. 506–520, IEEE, 2011.

[123] Steam, “Valve anti-cheating ,” 2016. https://support.steampowered.com/kb_article.php?ref=7849-

RADZ-6869, [Accessed: 2016-11-25].

[124] W. b. hackmag, “Hackmag,” 2015. https://hackmag.com/uncategorized/deceiving-

blizzard-warden/ [Accessed: 2015-03-13].

[125] E. Balance, “Punkbuster ,” 2000. http://evenbalance.com/faq.php [Accessed: 2016-12-

15].

[126] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively multiplayer on-

line games: A survey,” ACM Computing Surveys (CSUR), vol. 46, p. 9, 2013.

[127] B. B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in Proceedings

19th International Conference on Data Engineering (Cat. No. 03CH37405), pp. 49–60,

IEEE, 2003.

[128] A. Yahyavi, K. Huguenin, J. Gascon-Samson, J. Kienzle, and B. Kemme, “Watch-

men: Scalable cheat-resistant support for distributed multi-player online games,” in

Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on,

pp. 134–144, IEEE, 2013.

[129] Valve, “Matchmaking - Dota 2,” 2016. http://blog.dota2.com/2013/12/matchmaking/

[Accessed: 2016-10-02].

[130] Valve, “The international,” 2016. https://liquipedia.net/dota2/The_International/2016

[Accessed: 2016-01-20].

[131] Valve, “The international - 2011 dota 2 champions,” 2011.

http://www.dota2.com/international/overview/ [Accessed: 2017-09-10].

91

[132] Valve, “The frankfurt major grand �nals,” 2016.

https://liquipedia.net/dota2/Frankfurt_Major/2015 [Accessed: 2016-03-11].

[133] A. Esanu, “Virtus.Pro admit they’ve cheated in the Summit 5 Grand Finals quali-

�ers ,” 2016. http://www.gosugamers.net/dota2/news/35692-virtus-pro-admit-they-

ve-cheated-in-the-summit-5-grand-�nals-quali�ers, [Accessed: 2016-11-25].

[134] Valve, “Manila Major 2016,” 2016. http://dota2.gamepedia.com/Manila_Major_2016,

[Accessed: 2016-08-23] .

[135] Valve, “The International - 2011 Dota 2 Champions,” 2011.

http://cdn.dota2.com/apps/dota2/international2011_static/index.html, [Accessed:

2016-03-20].

[136] A. Al-Khazzar and N. Savage, “Biometric identi�cation using user interactions with

virtual worlds,” in 2011IEEE 10th International Conference on Trust, Security and Pri-

vacy in Computing and Communications, pp. 517–524, IEEE, 2011.

[137] A. K. Jain, “Biometric recognition: overview and recent advances,” in Iberoamerican

Congress on Pattern Recognition, pp. 13–19, Springer, 2007.

[138] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of �ngerprint recognition.

Springer Science & Business Media, 2009.

[139] H. Gamboa, A. Fred, and A. Jain, “Webbiometrics: User veri�cation via web interac-

tion,” in 2007 Biometrics Symposium, pp. 1–6, IEEE, 2007.

[140] R. D. Labati, A. Genovese, V. Piuri, and F. Scotti, “Wild�re smoke detection using

computational intelligence techniques enhanced with synthetic smoke plume gen-

eration,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 4,

pp. 1003–1012, 2013.

[141] L. Goel, N. A. Johnson, I. Junglas, and B. Ives, “From space to place: predicting users’

intentions to return to virtual worlds,” MIS quarterly, vol. 35, pp. 749–772, 2011.

92

[142] A. A. Mohamed and R. V. Yampolskiy, “Wavelet-based multiscale adaptive lbp with

directional statistical features for recognizing arti�cial faces,” ISRN Machine Vision,

vol. 2012, 2012.

[143] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-like movement behavior

for computer games,” From Animals to Animats, vol. 8, pp. 315–323, 2004.

[144] C. Thurau, C. Bauckhage, and G. Sagerer, “Combining self organizing maps and mul-

tilayer perceptrons to learn bot-behaviour for a commercial game.,” in GAME-ON,

p. 119, Citeseer, 2003.

[145] C. Thurau, T. Paczian, and C. Bauckhage, “Is bayesian imitation learning the route to

believable gamebots,” Proc. GAME-ON North America, pp. 3–9, 2005.

[146] S. F. Yeung and J. C. S. Lui, “Dynamic bayesian approach for detecting cheats in multi-

player online games,” Multimedia Systems, vol. 14, pp. 221–236, 2008.

[147] L. Galli, D. Loiacono, L. Cardamone, and P. L. Lanzi, “A cheating detection framework

for unreal tournament iii: A machine learning approach,” in 2011 IEEE Conference on

Computational Intelligence and Games (CIG’11), pp. 266–272, IEEE, 2011.

93

	Introduction
	Report Organisation
	Motivation
	Statement of objectives

	Firmware and Software
	Introduction
	Background and requirement
	Related work
	Taxonomy and its justification
	Framework
	Core
	Protection
	Interface

	Purpose
	Bridge
	Hardware semantic
	Operating System
	Driver

	Communication
	Protection
	Interface

	Update
	Types
	Process

	Summary

	Video Games and Security
	Introduction
	Brief history
	Early games: Mainframe computers
	Arcade games
	Console games
	PC Games
	Online games

	Evolution of attacks and piracy
	Motives
	Illegal distribution of games
	Illicit usage and modification scenarios

	Digital Rights Management (DRM)
	Introduction
	Inspiration: Video game piracy
	DRM and copyrighting
	Browser-embedded games
	Free-to-play games
	Crowd funded games

	Industry Standardised DRM solutions
	SecuROM
	SafeDisk
	Denuvo
	Steam Client
	Watermarking

	Cheating in video games
	Introduction
	Cheats
	Threat model
	Background

	Attack scope
	Cheating by modifying Client infrastructure
	Cheating by Collusion
	Cheating by Escaping
	Cheating related to virtual assets
	Cheating by exploiting machine intelligence
	Cheating by modifying external software
	Cheating by denying service to peer players
	Timing cheat
	Cheating by compromising passwords
	Cheating due to lack of secrecy
	Cheating by exploiting lack of authentication
	Cheating by exploiting bug or loophole
	Cheating by compromising game servers
	Cheating by internal misuse
	Cheating by social engineering
	Cheating by impersonation

	Objective

	Future approach
	Cheating detection
	Objective
	Background: Impostor cheat
	MMR calculation
	Problem Scope
	Motivation
	Objective
	Solution

	Related Work: Impostor cheats
	Problem statement and research questions
	Potential solution

	Conclusion
	Achievements
	Potential future works

