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Abstract—Advanced metering infrastructure (AMI) is the
backbone of the next generation smart city and smart grid,
it not only provides near real-time two-way communication
between the consumers and the energy systems but also
enables third parties to provide relevant value-added services
to the consumers to improve user satisfaction. However, the
existing services are implemented in a centralised manner
which has potential and associated security and privacy risks
also increased with Internet-of-things (IoT) devices. To better
balance the quality of the services and ensure users’ privacy, a
third-party AMI service model based on differentially private
federated learning is proposed in this paper. Instead of sending
the private energy data to the cloud server, the proposed service
model trains the neural network models locally, and only
model parameters are shared with the central server. Moreover,
the identity of individuals is eliminated by adding random
Gaussian noise during the secure aggregation. Furthermore, an
attention-based bidirectional long short-term memory neural
network model is adopted to solve the long-range dependency
problem of conventional neural networks. In the case study, a
residential short-term load forecasting task is implemented to
evaluate the performance of the proposed model. Compared
with other state-of-the-art energy service models, the proposed
one can achieve similar accuracy as the typical centralized
model and balances the trade-off between privacy loss and
prediction accuracy flexibly.

Index Terms—Advanced metering infrastructure, federated
service, energy cyber physical social system, differential pri-
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I. INTRODUCTION

ITH new models to help transition from Cyber-
Physical Systems (CPS) to Cyber-Physical-Social
Systems (CPSSs), there are challenges related to the active
participation of systems users (the social system). In areas
like energy, the Advanced Metering Infrastructure (AMI)
construction enables the energy consumers to get involved in
the demand response programme [1]. As the backbone of the
smart grid, AMI is an integrated system which consists of the
smart meter and smart sensors (physical), data management
system and communication network (cyber). AMI enable
two-way communication between the energy consumers and
energy control centres to transmit data from smart meters
reading electrical consumption and the Time-of-Use (ToU)
prices at a high frequency [2]. At the same time, new
value-added services introduce new market opportunities and
engage the innovation of the electricity market [3], and
smart meter crates opportunities to innovate in Business
to Consumer (B2C) and Government to Consumer (G2C)
projects [4]. Various value-added services are available to
consumers, including demand response, Nonintrusive Load
Monitoring (NILM), energy awareness and load forecasting.
The software companies may also try to link their smart
speakers (Echo [5], Google Home [6]) to the consumer’s
smart meter to help the consumers improve their energy
awareness [4]. These value-added services are operated by
Third Parties (TPs) representing non-license companies.
Furthermore, advanced data analytics and data mining
techniques help the TPs provide consumers with much
more innovative or revolutionary services and platforms than
originally intended. Such energy services require frequent
interaction between end users and the TPs, increasing the
risk of security and privacy. Sufficiently robust privacy
and data security strategy are required to protect sensitive
consumer data. Privacy and security problems related to AMI
and value-added services have been overlooked for a long
time. This is the case despite proposals for a Consumer-
Centred Energy System (CCES) which could help securely
connect consumers’ social worlds with physical power grids
and the cyberworld (computing and communications) [7]
and which could be implemented with the help of software
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algorithms and schemes like federated learning to protect
user’s relevant information (i.e., location) and other attributes
via differential privacy.

Traditional value-added services are based on a centralised
model, subject to severe concerns. Firstly, most value-added
services require consumers to send detailed Consumer En-
ergy Usage Data (CEUD) of their house or specific appli-
ances with timestamps. Attacks such as NILM attacks [8],
[9] can extract detailed behaviour patterns of consumers by
disaggregating power consumption into detailed appliance
usages. Secondly, there could be trade-offs to be achieved by
allowing more services to be implemented versus protecting
the data from these services from unauthorised use. Thirdly,
energy harvesting needs not to take up much equipment
space whilst allowing for adequate utilisation of renewable
energy, enabling other performance indicators and their
evaluation to be considered [10].

In this context, users’ privacy and security become key
issues to address. Energy consumers worry about their elec-
tricity data and how it could be inferred by CPSS attackers
when they share their smart metre data with energy utility
companies. The European Commission’s General Data Pro-
tection Regulation (GDPR) [11] states that data collected by
household smart metres belongs to personal data, and the
collection or storage of such information is strictly limited
by the data minimization principle and the consent principle
[12]. Moreover, the European Commission also suggested
that value-added services should have separate communi-
cation channels where the type of data to be collected
and stored should be specified [13]. However, the conflict
between the GDPR and the CEUD required by the service
cannot be a trade-off in the existing AMI. In [14], M. Asghar
et al. provided several suggestions and outlooks for future
privacy-preserving value-added services; these suggestions
can be concluded as follows: (1) implement value-added
services on customers’ private computing platforms (such as
mobile phones and personal computers). (2) Develop new
privacy-preserving distributed machine learning algorithms
to provide better privacy guarantees to consumers.

Therefore, the following knowledge gaps in the existing
literature on CPSS need to be addressed: (1) It is expected
smart grid network will be “100 or 1,000 times larger
than the Internet” [15], and traditional centralized energy
services are under great pressure of the communication and
computation overhead. (2) The flexibility and scalability of
value-added services should be considered for developing
the next generation AMI as CPSSs. (3) A dearth of research
looks at trade-offs between energy CPSS functionalities and
social systems users’ privacy. (4) There is a need to develop
and evaluate differential privacy deep learning algorithms
to process time-series data efficiently and securely in AML
(5) The existing smart metering system can only share
15-minute interval meter data with TP due to Department
for Business, Energy & Industrial Strategy (BEIS), U.K.
specifications [16], and only half-hourly data is stored.
However, value-added services may require multi-resolution

data, which needs data with intervals higher than 15 and 30
minutes. (6) Many value-added energy services need make
comparison of the data among different consumers, which
is unavailable with the existing localized service model.

To address these gaps discussed above and follow the
guideline in [14], this paper develops and evaluates a
privacy-preserving AMI value-added service model based on
Differential Private Federated Learning (DPFL) model. The
model can provide multiple services to consumers without
sharing their data (e.g., load demand data) to cloud servers
and other parties. The specific contributions are summarized
as follows:

1) A decentralized energy value-added service model.
In contrast to the traditional centralized cloud-based
service model which requires all consumers to up-
load their personal CEUD, the proposed decentralized
topological structure of the proposed method enables
edge computing, which reduces the computation and
communication capacity of the cloud server.

2) A hybrid DPFL operation scheme with an attention
mechanism. The decentralized service model employs
a federated learning framework to enable the com-
munication between the smart meters and the central
cloud server, the private CEUD is sent to the local
model only without sharing with the central cloud
server, which reduces the risk of personal informa-
tion being eavesdropped by the external attackers.
Moreover, random Gaussian noise is added during the
secure aggregation process to resist the honest-but-
curious TP utilizes inference and membership attacks
on the shared model parameters.

3) A malicious client detection algorithm to resist low-
quality local model update attack. This paper utilizes
a K-means clustering detection algorithm to detect
malicious clients before the training round start, which
protect the global model from collapse.

4) A case study of Short-Term Load Forecasting (STLF)
is implemented to assess the model performance. The
performance of the proposed model is fully evalu-
ated by comparing the proposed model with central-
ized/localized service models, whilst the influence of
the client number and privacy parameter on the model
performance is also investigated.

The remainder of this article is structured as follows. The
related work is introduced in Section II, and the preliminaries
are covered in Section III. Section IV introduces the pro-
posed decentralized energy value-added service model. The
implementation and experiment set-up details are presented
in V. The simulation methodology and experiment results
analysis are presented in Section Section VI. Finally, Section
VII gives the conclusion and shows the limitations of the
proposed method.
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II. RELATED WORK

A. Energy CPSSs: Privacy-Preserving AMI and Value-
added Service

Internet-of-Energy (IoE) combines the concepts of smart
grid and Internet-of-Things (IoT), which utilises the flexible
and integrated IoT structure to manage physical elements of
CPSS such as the smart grid, the smart sensors and meters.
The functionality of the electricity network can go beyond
providing energy to the consumers and include cyber and
social systems elements. The consumers also get involved
into the energy system actively by efficiently using their
home appliances and IoT devices like smart meters. The
assembly of physical, cyber (computing and algorithms) and
social elements, connected via IoT networks and devices,
can be considered a form of CPSS [1]. This configuration
is called the smart metering system or AMI in the energy
field.

In this context of AMI, the concept of social energy
was first proposed by F.-Y. Wang et al. in 2017 [17], [18],
the authors developed social energy as a complex socio-
technical system which has intensive interactions between
energy components and the social system of users and their
IoT devices. Authors in [19] regard energy as one key area
for improving CPSS visions. IoT networks can be viewed
as an effective medium to complete the interconnection of
multiply distributed CPSS. More CPSS cases and evaluations
are needed.

To date, however, implementation of existing energy ser-
vices via AMI follows a top-down hierarchy with centralised
authority and decision-making [20], [21], which requires
energy consumers to upload their smart meter data to central
servers for analysis. Centralized cloud-based value-added
service platform is introduced in [20], [22], [23]. M. Tao
et al. [20] develop a multi-layer cloud architectural model
which enables interaction between service providers and
household appliances; the cloud-enabled platform solves the
heterogeneity issues by employing the ontology method.
Lloret et al. [22] propose an integrated IoT AMI that can be
deployed in smart cities. The centralized architecture relies
on a cloud server which utilizes big data/machine learn-
ing technologies. The developed platform enables multiple
Value-added services, including consumption prediction, in-
cident detection, and customer characterization. In [23], A.
Meloni and L. Atzori introduce a virtualization middleware
to improve the capabilities and opportunities of the cloud-
based value-added service platform. However, for a city
with a large number of smart meters, the platform would
have a high demand for communication bandwidth and
cause serve latency which cannot be acceptable for real-time
services. Moreover, recent research has indicated that the
attackers can reveal personal information by eavesdropping
on the communication between the energy consumers and
the central server [24].

The localized value-added service model downloads the
model to the personal private devices (such as smartphones
and personal computers) from the cloud server, and the

consumer can send the inquiry to the offline local model.
X. Zhang et al. [25] designed a localized demand-side
management framework. The consumers will upload their
private electricity data to the cloud server while a random
Gaussian noise is added to protect the dataset, and then
the model trained by the server is sent to IoT devices
where the consumers can send a query and obtain feedback.
The limitation of the localized service is most value-added
services require to compare data from different customers,
hence distributed privacy preserving service model would be
essential for implementing value-added services.

B. Federated Energy Service

Due to the serious isolated data island problem and the
information leakage issue, the traditional centralized cloud
server cannot guarantee consumers’ privacy. The federate
service framework was first introduced by [26] in 2021,
aiming to guarantee the consumers’ privacy and security
while making intelligent management decisions. This frame-
work utilizes federated learning, blockchain, and Distributed
Artificial Intelligence (DAI) techniques to enable distributed
and edge computing. Federated learning is a decentralized
machine learning algorithm that shifts the learning process
from the centralized cloud server to decentralized clients
[27]. Moreover, federated learning has been employed in
various applications such as anomaly detection [28], [29] and
social media networks [30]. A FL-based samples exchange
mechanism is introduced in [31] to solve the data-hungry
issue. More specifically, in the power system and energy
area, FL has been applied in power system fields such
as solar irradiation forecasting [32], electricity consumer
characteristic identification [33], and energy management
[34]. However, these applications are limited to the inter-
actions between retailers/Photovoltaic (PV) stations and the
server; little work emphasizes customer-level applications.
Although a federated learning-based decentralized system
provides a privacy guarantee, there are still security issues
when the edge devices share the model parameters with the
cloud server. Techniques such as differential privacy [30],
multi-party protocol [35] are introduced to better defend the
personal data from the cyber attackers.

III. THE PRELIMINARIES

In this section, preliminaries of the proposed value-added
service platform are introduced, which include attention-
based bidirectional long short-term memory recurrent neural
network, differential privacy, and federated learning.

A. Differential Privacy

Differential privacy is a technology proposed by C. Dwork
in 2006 to protect an individual’s identification information
by adding random noise over the original aggregated data,
so that every individual has little effect on the result [36],
[37], [38]. In this case, the adversary cannot distinguish the
change of the aggregated data with/without one individual
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data point. There are several noise addition mechanisms
available in the literature [38], including the Laplace, expo-
nential, and Gaussian mechanisms. The privacy level, ¢, is
guaranteed via the above noise addition mechanism, and the
lower ¢ is, the higher the privacy level that can be achieved.

Definition 1. R is a random function that transforms input
B to a random output R(p).

Definition 2. d(3,') which is the distance between two
neighbouring datasets, represents the minimum number of
individual samples required to shift dataset 3 to (3.

Definition 3 (Global Sensitivity). For a random function
f, the global sensitivity, Sy, is the maximum difference
between the outputs of two neighbouring datasets 3 and
3.5y also determines the overall noise to be added into the
DP mechanism.

max

A =
/ d(8,p")=1

1£(B) = f (Bl (1)

Definition 4. The Gaussian privacy mechanism denoted R
is defined as f plus the noise term N.

R(B) £ £(B) + N(0,Af%0?)

where N is the Gaussian distribution with mean 0 and
standard deviation A f 252, The scale o is computed as

o =/2n((1.25/0) Ay /e 3)

Definition S. A randomized function R satisfies (,6) pri-
vacy P for any two neighbouring datasets 3 and (3':

2)

Pr[R(B) € e] < e*Pr[R(F) €] +9 “4)

where ¢ denotes all possible outcomes in range R, and §
is the possibility that the differential privacy is broken. In
this paper, we select 107> as J. The overall privacy cost
throughout the learning process is computed by the following
composition theorem:

Theorem 1 (Composition Theorem). If f is (e1,d1)-
differential privacy and g is (€2, d2)-differential privacy, then

f(D),g(D)is(e1 + €2,01 + d2) — Dif ferential Privacy (5)

B. Federated Learning

Federated learning is a decentralized machine learning
algorithm that shifts the learning process from the central-
ized cloud server to decentralized clients [12]. An FL model
contains K € N* clients indexed by k and one cloud server
denoted as S. The target of the FL algorithm is to minimize
a local objective function that can be expressed as:

m

min — > filw)
i=1

weRE M, “

(6)

For client £ € K, a local model will be trained with
their private data on an edge device (such as smartphone or
laptop):

Yk, wy, |+ wy — VL (wy) @)

The parameters of the local model wfﬂ for a client
are then sent to S, the parameters of all local models are
aggregated, and a data-weighted average over all parameters
is performed to update the global model w;1:

K on
k. k
W41 < Z ?wwl
k=1

where nj is the number of samples of client k, and n is
the number of samples of all clients. Then, the new global
model is broadcast to clients, and clients will retrain the local
model with their data. The above steps will be repeated until
convergence.

®

C. Attention-Based Bidirectional Long Short-Term Memory
Recurrent Neural Network

Attention-Bidirectional Long Short-Term Memory (ATT-
BLSTM) architecture improves the traditional LSTM
model’s accuracy by assigning the probability weights to
each previous hidden state to find the most informative for
the output at the current time step [39] (Fig. 1). Hence,
the utilization of the attention mechanism can improve the
output of the BLSTM and better solve the long-term memory
problem [39]. ATT-BLSTM model consists of two parts: the
conventional BLSTM and an attention layer, see Fig. 1. In a
BLSTM structure, given a minibatch input X, the forward
hidden state h; and backward hidden state ;1_t at time step
t can be expressed as Eqns. (9-10):

&)
(10)

- —
o= & (W X0+ Wi B+ o)
— —
hy=¢ (WghXt + Wi he1 + bZ)
where Wih, Wf:h, W_l;h, th represent the weights of
the model, and bﬁ,bz are the biases of the model. Then,
by integrating the forward and backward hidden states, the

hidden state is obtained as h;. Finally, h; is fed to the output
layer to compute the output oy:

(11)
(12)

T
hy = [’ZT;ET}
o, = h Wy, + b,

where W, is the weight and b, is the bias of the output
layer. As for the attention layer, denoting the current hidden
state as h; and the previous hidden state as h;(1 < ¢ < t).
Referring to the definition in [40], a context vector c; is
computed, which is the weighted sum of all hidden states:

-1
ct = E oy ih;
i=1

13)
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Fig. 1.

Structure of attention based bidirectional LSTM.

where o ; is the weight for the hidden state h; at timestep
t. An attention matrix oy, is obtained by adopting the
softmax function, as shown in Eqns. (14) and (15):

(14)

Q= [Oét,l,at,z, ~~~,Olt,t—1}
exp (eq,;)
Ot = =7,
> k1 €XP (etk)

In the above equations, e;; represents the score (or en-
ergy) of a feed-forward neural network (denoted as function
a), and the purpose of e;; is to capture the influence of
the previous hidden state h; on the current hidden state
h;. Three a functions are introduced in [41]: location-based
attention function (location), general attention function (gen-
eral), and concatenation-based attention function (concat)
[40]. Detailed functions are illustrated below:

15)

W.!h; +be Location
et =alegr) = hi W_.h; General (16)
v] tanh (W, [hs; hi])  Concat

where v, is the parameter to be learned by the neural
network. Referring to the experiment implemented by [42],
attention-based BLSTM achieves excellent performance in
processing power consumption data as its characteristic in
allocating the importance to the overall power consumption
data points that correspond to the state changes of appli-
ances. As a result, the model can better extract relevant
features from the collected data.

IV. PROPOSED VALUE-ADDED SERVICE MODEL

In this section, the proposed AMI value-added service
model is introduced. Detailed services and functionalities,
the adversary model, service model components, and the
service process are covered in this section.

A. Enabled Service and Functionality

Comparing to the basic functionalities such as billing
and grid operations, privacy-preserving value-added services
have received much less attention at current stage. The value-
added services enabled by the proposed service model are

data analytic and management services based on CEUD
measured by the smart meter. These services include STLF,
renewable energy forecasting (REF), NILM, energy manage-
ment, etc. An introduction of the representative services is
shown below.

1) STLF: STLF service aims to predict future household
power consumption from a few minutes to 24 hours [43].
STLF is a vital service for consumer to improve their energy
awareness and help them better manage their electricity
usage. Moreover, an accurate STLF result also provides pre-
knowledge to implement various demand response plans.

2) REF: In many countries, especially Europe countries
such as the U.K., many houses install rooftop solar panels
and energy storage systems. Such grid-connect generation
will not only supply the energy to the consumer’s house, but
the consumer will also sell the extra energy to the energy
market [44]. However, renewable energy generation is heav-
ily influenced by weather factors, and the high penetration of
such renewable energy introduces problems such as voltage
fluctuation, frequency deviation, etc. Hence, a precise REF
helps the consumer better schedule and manage the energy.

3) NILM: NILM service improves the consumer’s energy
awareness by extracting the power consumption of single
appliances out of aggregated power data. Especially, precise
estimation of the composition of Thermostatically Con-
trolled Loads (TCLs), including Heating, Ventilation and Air
Conditioning (HVAC), Air Conditioner (AC), heat pumps,
and furnaces, can optimize capacity bids into ancillary
services markets [45].

4) Energy Management: In a smart home, the smart meter
plays the role of an energy hub and connects with smart
appliances such as AC, washing machine, and refrigerator.
With such a large volume of CEUD generated, the smart
meter needs to optimize the energy consumption in collab-
oration with other smart homes.

B. Adversary Model

Privacy and security are the emerging issues of the AMI,
especially the value-added services. In this paper, both the
internal and external adversaries are considered, as shown in
Fig. 2. Internal adversaries indicate the threat/adversary in-
side AMI. Whilst Third Parties (TPs), which reparents non-
licence third-party service providers/commercial companies,
are considered the Honest-but-Curious (HBC) adversaries,
which are widely used in smart grid/ smart meter privacy
problems in the literature [46]. The definition of honest-but-
curious/semi-honest adversary is shown below:

Theorem 2 (Honest-But-Curious Adversary). The honest-
but-curious adversary represents a legitimate member of a
protocol who will not deviate from the defined protocol but
will attempt to study as much information as possible from
received messages.

The honest-but-curious TPs will follow the communica-
tion protocol honestly without malicious actions, and they
cannot obtain more information than they receive (honest),
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Fig. 2. Adversary model in AMI value added service channel.

but they would keep all information received from other
parties and try to infer individual measurements (curious).
In other words, all parties work properly to maintain the
system’s operation while they try to maximize the chance
of acquiring individual’ privacy. TPs can use membership
inference attacks [47] and model inversion attacks [48] to
infer private data from the system . Another internal adver-
sary is the malicious client. The malicious client may send
bad and low-quality updated parameters to the global model
(Low-quality local model update attack [49]). As a result,
the global model’s accuracy is influenced, and even worse,
the overall system may collapse. In the proposed system, the
system should defend against attacks from malicious servers
and clients.

AMI highly rely on the wireless communication network,
while the wireless communication channel is vulnerable to
cyber-attacks from the external adversary as the channel
is naturally a broadcast transmission medium [50]. The
external adversary in this paper is the eavesdropper who
can eavesdrop on the communication between the cloud
server and the consumer/TPs. The purpose of the external
adversary is to obtain the personal smart meter data from
the communication channel.

C. Model Components

As shown in Fig.3, the proposed service model contains
components: smart meters, the cloud server, an aggregator,
and the TP service provider.

1) Smart Meter: the smart meter is the fundamental
sensor/device in AMI which generates the CEUD of the
house. The smart meter in this paper also works as an edge
device and the gateway of the smart home [51]. The smart
meter can either communicate with the cloud server bidirec-
tionally via the Wide Area Network (WAN) or communicate
with the smart appliances and renewable generation (such as
PV panels, and and household energy storage systems) via
Home Area Network (HAN). The smart meter enables data
analytics, prediction, and energy management locally with a
computation and storage capacity. Denote the smart meters
set under the cloud server as H = {1,...,k,...,K}. For
each smart meter £ € K, it collects and owns a private
electricity consumption dataset Ry, which is employed to
train the local model.

2) Aggregator: aggregator, which locates in the cloud
server, is employed to receive the updated model parameters
and aggregate those parameters by implementing a weighted
averaging algorithm such as Federated Averaging (FedAvg).
Then the aggregated model parameters are sent from the
aggregator to the centralized server to update the global
model.

3) Cloud Server: cloud server is the central server which is
responsible for training the global model G. Compared with
the smart meter, the cloud server has much more powerful
computation and storage capacity.

4) TP Service Provider: TP service provider is a non-
licensed company, responsible for providing the energy
service of K energy consumers. TP service provider sends
the service tasks to the cloud server and receives the trained
global model provided by the cloud server.

D. Overview of the Service Model

The overall system is demonstrated in the block-diagram
shown in Fig. 3. The clients in this framework are the
consumers who install smart meters at home; they use IoT
devices such as smartphones and personal computers to train
local models and communicate with the cloud server. The
proposed framework contains six procedures that can be
concluded as follows:

e Procedure 1. Service Task Assignment. In the begin-
ning, the TP will determine the specific value-added
service and assign the task to the cloud server.

e Procedure 2. Global model initialization. Initially, the
global model at the TP cloud server is initialized
by allocating random values to its parameters. Then,
the model parameters are downloaded by clients and
broadcast to local models.

e Procedure 3. Local model training. After receiving the
parameters from the cloud server, the local model is
updated in the IoT device; then, the IoT device will
train the new model with private data locally.

e Procedure 4. Local model parameters upload. After the
training process, the parameters of all local models are
uploaded to the cloud server.

e Procedure 5. Secure aggregation with differential pri-
vacy. An aggregator is responsible for secure aggre-
gation once it receives a response from the required
number of clients. It aggregates the data with a random
mechanism to maintain client-level differential privacy.
After the aggregation of each round, the collected local
model parameters are discarded.

e Procedure 6. Global model update. The global model
is updated with the output of the aggregator.

e Procedure 7. Model broadcast. Parameters of the new
global model are broadcast to all local models that run
on IoT devices.

e Procedure 8. Report to TP. After the global model is
trained well and capable of making a precise prediction,
the global model is sent back to TP.
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Fig. 3. Overall differential private federated third-party service model.

E. Local Deep Neural Network Model

The local and global models employ the deep neural
network model, and the models have the same architecture.
As shown in Fig. 4, the structure of the local neural network
consists of seven layers:

o The input layer: The power consumption data collected
by the smart meter are fed into the model.

e Two BLSTM layers: BLSTM is adopted to extract
high-level representation from the input data. Although
more BLSTM layers enable the model to better extract
nonlinear features from the input sequences, too many
BLSTM layers will cause overfitting problems, and
the training time is also highly extended. Considering
the above issues, two BLSTM layers are easier to
implement with high efficiency.

o An attention layer: As introduced in Section III, the
attention layer utilizes the attention mechanism to rank
the importance of the previous hidden states and selects
the most informative hidden state to predict the output
values.

o A concatenated layer: As the optional layer, the func-
tion of the concatenated layer is to load data from
external databases that are related to the evaluation
of the desired value-added service. External databases
include meteorological, calendar, and electricity market
databases.

« A fully connected layer: The fully connected layer links
the recurrent layers with the output layer. The purpose
of the layer is to fully extract the nonlinear correlation
between all input variables and outputs.

o The output layer: For classification tasks, the proba-
bility of each category is generated as the output; for
regression tasks (such as load forecasting or NILM), the
prediction value at the current timestep is generated by
the output layer.
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Fig. 4. Structure of local neural network model.

F. Cloud Server

The central cloud server is responsible for secure ag-
gregation, and global model update. Although federated
learning models avoid sharing private data with a cloud
server or third parties, privacy is still a significant concern.
By continuously sharing the parameters of local models,
the adversary can still infer some sensitive information
from the parameters [52]. DPFL provides a strong privacy
guarantee and simultaneously reduces communication costs
[53]. Hence, a DPFL algorithm is adopted in this work to
provide a stronger privacy guarantee to the system. The
DPFL adopted in this paper is based on the randomized
Gaussian mechanism introduced in [54], detailed processes
are shown in Algorithm 1. Denoting the global model at
timestep ¢ as wy; the model is optimized by the local model
of client k, and we denote the optimized model as wk®. The
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mismatch between w; and w¥ is client k’s update and can
be expressed as:

Aw® = w* —wy,

a7

To reduce the sensitivity of Aw* with a considerable
value, a scaling function is applied to Aw"* to ensure that
the second norm HAwkH2 is limited by sensitivity S. Hence,
the scaled version of the updates is obtained as:

k
AwF = Aw® /maz(1, %)
where (¥ = ||Aw*||, and S is the median of norms of
clients’ update and can be expressed as:

(18)

S = median(¢) (19)

By adding random Gaussian noise scaled to S, N (0, 5% -
c?) into the sum of all scaled updates from K clients
Zszl Aw", the Gaussian mechanism approximating the
sum of updates is obtained. The new global model w;; is
computed by adding the original global model with averaged
approximation:

K
1
Wie+1 <—wt+? ZAwk+N<O,SQ'0'2) (20)

k=1

V. IMPLEMENTATION

This section presents the implementation details, including
data preparation, simulation setup, evaluation metrics, and
benchmark models.

A. Data Description

This paper used a real-world dataset from Pecan Street
Dataport (Dataport) [55] to evaluate the forecasting perfor-
mance. Dataport is a commercial electricity dataset, while
a part of the data is free to access for academic research.
The dataset contained over 1200 houses and was collected
in Austin, Texas, the United States (N 30° 15°, W 97°
43’) between January 1st and December 31st, 2018. Both
household and appliance power consumption in each house
was recorded with sampling frequencies of 1 min and 15
min, respectively.

Moreover, the corresponding weather and temporal infor-
mation at the same location are obtained from the National
Solar Radiation Database (NSRDB) [56]. Weather param-
eters include Dew point (°C), Temperature (°C), Pressure
(Pa), and Relative Humidity (%RH). As for temporal infor-
mation, four variables are introduced which are: Holiday (1
for holiday days and O for non-holiday days), Hour of the
Day (HOD) (index range from O to 23), Day of the Week
(DOW) (index range from O to 6), and Month of the Year
(MQY) (index ranges from 1 to 12). As categorical variables,
DOY, HOD, DOW, and MOY should be pre-processed by
one-hot encoding.

Algorithm 1:

Differential Private Federated

Learning-based Third-Party Service.

1
2
3

e ® 9

13
14

15

16

23

24

25

26
27
28
29

30

31
32

34

35

Input: Clients number K indexed by k; communication round ¢;
the maximum communication round 7'; the maximum
pre-train communication round T}; B is the mini-batch
size; q is the fraction of clients; € is the target differential
privacy; o is the Gaussian Mechanism parameter; §
represents the probability that e — D P is broken, and @ is
the threshold for 4.

Output: Local model paramters w

Function Pretraining (K, w¢):

if k < K then

wk «— Local (k) // Pretraining the local
models to obtain the weights

C + K — MeansClustering(2, Aw) // Cluster
clients into normal/abnormal clusters.

return C1, Cs, K, K // return the normal
clients cluster and client number Cj and
K, and abnormal clients cluster and
client number Cy and K.

Function DPFL (K, w¢) @

initialize the global model wq

initialize Accountant (g, K)

while » < R do

§ + Accountant(e, q)
privacy loss.

// accumulate the

if 0 > @ then
return w; // return the model when
the privacy threshold reached.

for client k in qK do
L Awf+1,ck « ClientUpdate(k,w)

// the client k’s update and norm
update on local model.

S = medianc® // compute the median of
norms of clients’ update as
sensitivity.

Wi41 < Wt + % (Zi‘{:l A?I}k +N(0,S2 . 0'2)>
// update the global model by adding
averaged approximation.

return wy 1

Function ClientUpdate (k, we):
w <— Wt
while r < rmaz do
for b € B do
| ww—nVL(wt)

// mini-batch gradient descent.
Awpr1 = wP —wy // client k’s local
model update.
¢k = [[Awgtall,

return Awyy 1, ¢k

// second norm update.

Function Clustering (X, Aw):

random place centroids C'1, C2 across Aw
repeat

for i € K do

’Yij{

// find the nearest cluster j for
model %.
for j € 2 do
nj =K v // assign the data
points to clusters.
| Ci = ity v Aws
until Convergence
// assign the average of points to
cluster j.
return C1, Co // assign the regular clients
to C; and the malicious clients to Ca.

1if j = argmin; [|Aw; — c;l12
0 otherwise
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B. Simulation Environment

In this paper, the case study is implemented in a virtual
environment. A workstation with a Core i7-7700HQ CPU,
NVIDIA GTX 1060 GPU (8 cores), and 8 GB RAM
is utilized for the simulation. The DPFL ATT-BLSTM is
operated on Python 3.6 with PyTorch [57], and the privacy
loss is computed via the TensorFlow-Privacy library [58].

To simulate the proposed DPFL service model, a subset of
K houses from the Dataport dataset is selected as the data for
simulation. Moreover, all houses are the same type (single-
family homes) and located in the same location (Austin,
Texas, U.S.). For each smart meter k¥ € K, a household
dataset from the subset is assigned. The data is pre-processed
(data cleaning, encoding, and feature scaling) before feeding
into the local model. Then the household training data were
split into 36-week data, and one-week data (672 samples)
were adopted for each communication round. When the
communication round reaches 36, it will start dragging data
from the first week again at the next communication round
until it reaches the threshold of §.

C. Evaluation Metrics

The performance of the scheme is evaluated with the
normalized mean absolute error (nMAE), mean absolute per-
centage error (MAPE), and root mean square error (RMSE).
The smaller the values of MAE, MAPE and RMSE are, the
better the model’s performance.

N N
nMAE = Zizt b @1
N ~
MAPE — 2i=1 |(ij BIYi | 100% (22)
N o a2
nRMSE = M (23)

N

D. Benchmark model

Several benchmark models are designed better to demon-
strate the accuracy and robustness of the proposed method.
First, the proposed model is compared with three different
service frameworks, such as the centralized framework,
localized framework, and FL framework, without adding
noise during the aggregation process:

1) Conventional centralized ATT-BLSTM model (de-
noted as a centralized model): Centralised service model
is developed in [20]. As the basic and conventional method,
this method is especially suitable when the smart meters
and private devices have limited computation capacity and
cannot operate the local model alone. In this model, the
cloud server collects information from all smart meters, and
then the collected data is used to train and update a global
model to make the prediction, and then the results are sent
back to the consumers.

2) Localized ATT-BLSTM model (denoted as Localized
model). A localized model is proposed in [25]. Rather than

sending personal data to the cloud server, the personal energy
data will be sent to the local model to make the prediction.
Firstly, the training data is loaded from the public electricity
database. Then the global model is trained with the training
data and broadcasted the trained model parameters to the
smart meters via Wide Area Network (WAN). The consumer
can send a query, and once the smart meter receives the
query, it will evaluate the local model with private electricity
data to compute the outputs of the query. Then a detailed
report is sent to the consumer via In-Home Display (IHD).
To simulate the Localized model in the virtual environment,
K smart meters are developed in Python, and all personal
datasets remain confidential and cannot be seen by other
smart meters and the cloud server under this model and the
training process of each smart meter is independent. Hence,
this model results in personalized deep learning models
tailored to each consumer. However, the local model cannot
learn the knowledge from other local models.

3) FL ATT-BLSTM model without DP (denote as FL
model). Similar to the proposed DPFL service model intro-
duced above, the FL service model is based on a federated
structure, and the FL service model’s hyperparameters are
exactly the same as the DPFL model. The only difference
between these two models is that no noise is added during
the data aggregation process.

Then, three benchmark models under the DPFL frame-
work utilizing different DNN algorithms (MLP, LSTM,
BLSTM) are selected. By comparing the proposed model
with the models listed below, the efficiency of ATT-BLSTM
can be validated.

4) The DPFL model utilizes LSTM as a training
algorithm (denoted as the DPFL-LSTM model). The
DPFL-LSTM model contains four hidden layers ( two LSTM
layers with 128 and 256 cells and two fully connected layers
with 1024 cells).

5) The DPFL model utilizes BLSTM as a training
algorithm (denoted as the DPFL-BLSTM model). The
DPFL-BLSTM model contains four hidden layers ( two
LSTM layers with 128 and 256 cells and two fully connected
layers with 1024 cells).

6) The DPFL model utilizes MLP as a training algorithm
(denoted as the DPFL-MLP model). The DPFL-MLP
model contains four layers ( two LSTM layers with 128 and
256 cells and two fully connected layers with 1024 cells).

E. Hyperparameters Configuration

The hyperparameters of the pretraining model and the
proposed DPFL ATT-BLSTM value-added service platform
are summarized in Table 1. The pretraining model is a
shallow MLP with only one dense layer. The number of
layers contains 16 cells, and the activation function of the
dense layer is the Rectified Linear Unit (ReLU), which
enables the model to learn nonlinear correlations better. The
optimizer is SGD with the learning rate 1 x 1073,

As shown in Fig. 4 and Table I, the ATT-BLSTM network
contains two BLSTM layers, with 128 and 256 cells, respec-
tively. This was followed by an attention layer with size 28
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and one dense layer with 128 cells. The activation function
of hidden layers is ReLLU, and the optimizer is Adam with
the learning rate 1 x 10~*. As the STLF task is a regression
task, the size of the output layer is one. Moreover, dropout
and L2 regularization are used to avoid overfitting problems.
0.3 and 0.2 are selected as the dropout rates of the BLSTM
layer and the dense layer, respectively. In addition, 1 x 1073
is selected as the weight decay value.

FE. Computation Cost

Computation complexity is evaluated in terms of the
overall runtime of the service. To quantify the computation
complexity, we define the following variables:

Phase I: Pre-train the model with a traditional DPFL
learning method.

Phase II: Cluster clients into several groups and implement
the proposed clustered DPFL model.

Phase III: Respond to the clients’ query with the updated
local model.

Tpre : Time for pre-training the clients to filter out
malicious clients.

Tiocal(t): Time for clients to train local model at commu-
nication round t.

Tagg(t): Time for the central server to aggregate the local
model parameters with differential privacy at communication
round t.

Tupioaa(t): Time for the clients to upload the local models
to the cloud server at communication round t.

Throadeast(t): Time for the central server to broadcast the
global model to the clients at communication round t.

Tyiobai (t): Time for the central server to update the global
model at communication round t.

Tyurey: Time for the local server responses to the con-
sumer’s query.

In Phase II, also known as clustered federated learning
period, we assume all cluster servers operate in parallel,
so the runtime of the proposed model with client k in a
communication round t can be estimated by the following
equation:

TphaseII (t) :j}ocal (t) + Tupload (t) + Taag (t)+
Tbroadcasl (t) + Talobal (t)

Then the total time cost during Phase II is calculated as:

(24)

T

TphaseH , total — E TphaseH (t)
t=1

(25)

Finally, the overall computation complexity of the pro-
posed model is evaluated by

Ttotal = TphaseI, Jtotal + TphaseII , total + TphaseIH , total

T
(26)
= Tpre + Z Tphasel[ (t) + Tqurey

t=1
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Fig. 5. Clustering results with K-means clustering algorithm.

VI. CASE STUDY

In this section, the accuracy and efficiency of the proposed
DPFL attention-BLSTM value-added service framework are
validated using the scheme for a typical value-added ser-
vice residential STLF task. Both the proposed scheme and
traditional centralized framework are tested with real-world
datasets. Moreover, the impacts of exogenous meteorological
and calendar features are also investigated. Finally, the
privacy performance, as well as the communication cost, is
studied.

A. Malicious Clients Detection

Malicious clients present the internal attackers who would
utilize low-quality local model update attack that the cloud
failed the FL. model, and the distributions of the parameters
from these malicious models were distinctive from the data
of regular clients. The cloud server should detect these
malicious clients efficiently to prevent the system from
collapsing. The clustering mechanism outputs two clusters:
the normal and the malicious client groups. A K-means
clustering malicious clients detection algorithm is proposed
to filter out the malicious clients based on the similarity of
the weights. This case study includes 50 regular consumers
(ID number between 0 and 49) and 10 abnormal consumers
(ID number from 50 to 59). The malicious clients will upload
fake weights to the central server; the generated fake weights
follow the Gaussian Distribution.

As shown in Fig. 5, the central server applies the K-
means clustering algorithm to the collected weights, and
the algorithm detects all the malicious clients and classifies
these models into the same group (the clients labelled with
light orange). Meanwhile, the rest of the clients are clustered
into another group (the clients labelled with light green).
The Euclidean Distance of the regular consumers is below
seven, which is considerably small compared to the distance
between malicious clients and normal clients.

B. Comparison of the Proposed Model with Centralized and
Localized Models

In this case study, to evaluate the accuracy and effec-
tiveness of the proposed DPFL service model, benchmark
models including centralized , localized and naive FL service
models are employed to compare with the proposed model.
All models utilize ATT-BLSTM as the algorithm of the
local/global models. The forecasting results are presented in
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TABLE I
HYPERPARAMETER CONFIGURATION OF DIFFERENTIALLY PRIVATE FEDERATED LEARNING MODEL

Hyperparameter Value/range

Lookback 4

Optimizer Adam

Loss MSE

Activation function ReLU

Layers 2 BLSTM layers with 128 and 256 cells, respectively; 2 fully connected layers with 1024 cells.

5
1,2,4,6,8, 10, 12

Epochs for each client in every communication round
Privacy budget

le-1, le-2, le-3, le-

The GM parameter o 1.12

Number of batches per client B 128
Dropout rate 0.5
Weight decay le-3
Attention size 28
Learning rate le-4
Total clients 5-100
Percentage of clients selected each round 30%

4, le-5, le-6, le-7, 1e-8

Table II. In Fig. 6, the prediction results in three houses of
the proposed service model as well as the benchmark models
are plotted. From this figure, solid blue line indicates the
ground truth load curve, and the red solid curve represents
DPFL model.

The conventional centralized model can access all indi-
viduals’ CEUD without any constraint and limitation, and
the model can better learn the characteristics of the loads
among all houses. Hence, in Fig. 6, the centralized model
achieves the highest prediction accuracy among all models.

The localized model can only train the local model with
an individual household dataset without the ability to obtain
knowledge from other household datasets and local models.
With such limited samples to train the service model, the lo-
calized model has the worst prediction performances among
all models. Although the localized model has the strongest
privacy guarantee and does not need to communicate with
other sectors, this model cannot provide a high quality
service to the consumers.

There are few limitations for the naive FL model: 1) the
cloud server cannot access the individual’s CEUD directly.
2) the global model can only be trained with the updated
local model parameters. With such strict constraints, the
naive FL. model still achieves an nRMSE of 6.67% when
K = 50, which is very close to the performance of the
centralized model. Based on this result, it is concluded that
the proposed decentralized service model achieves a trade-
off between functionality (prediction accuracy) and privacy
(prevent personal CEUD from being eavesdropped.

In the turn of the DPFL service model, the prediction
accuracy is limitted by the privacy constraints set by DP. The
privacy level of the DPFL model can be adjusted flexibly by
setting the two DP parameters, the privacy budget € and
the probability of information being leaked 4. Typically,
a smaller ¢ means a smaller distance between the two
neighbouring databases when sending a query. Hence, the
adversary has difficulty distinguishing these two databases
by observing the query output. Hence, a smaller € provides
better privacy but less accuracy. From the results shown in
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Fig. 6.  Short-term load forecasting results of three houses predicted

by the proposed differential private federated learning scheme and three
conventional schemes (¢ = 8,8 = 10~5).

Table II, when ¢ = 8 and 6 = 1075, the DPFL scheme’s
performance is 3.75% and 12.31% worse than that of the
FL scheme from the perspective of nRMSE and MAPE.
Although the accuracy of the DPFL scheme stays below
non-differentially private schemes, it is significantly better
than the Localized model, which only trains the model with
its data.

C. Comparison of the Proposed Model with Other Algo-
rithms

In the first case study, the proposed DPFL. ATT-BLSTM
model is compared with DPFL models that utilize different
DNN algorithms (benchmark Models (4)-(5)). The forecast-
ing results of all models are shown in Table II. nMAE,
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nRMSE and MAPE were used to measure the accuracy of
the prediction results, and the communication and compu-
tational costs were recorded. The privacy budget £ ranged
from 1 to 8, and the client number K ranged from 5 to 50.
To visualize the performance of the proposed scheme and
benchmark models, 30-minute forecasting results of three
random houses are presented in Fig. 7 (under the condition
¢ =8 and § = 107°). In each communication round, only
30% of clients (e.g., 15 clients when K = 50) were selected
to participate in the training process. Unlike feeder-level
load forecasting, which has a regular peak load every day,
household-level load forecasting is more challenging, as the
load profile on different days varies greatly. As shown in
Fig. 7, the proposed DPFL-ATT-BLSTM model (solid red
curve) predicts with the highest accuracy among all four
algorithms. Moreover, the DPFL-ATT-BLSTM model tracks
the ground truth load curve (solid blue curve) almost all the
time: For both peak load period (between 7 am — 13 pm,
and 19 pm — 23 pm) when the load fluctuates significantly
and off-peak load (between 23 pm — 7 am) when load curve
is flat, the proposed model can track the ground truth load
curve precisely. The average nRMSE during the peak load
period is 8.37% and the average nRMSE during the off-peak
load period is 4.21%. Considering the evaluation metrics,
the proposed model had the lowest MAPE, nRMSE, and
nMAE values in the same comparison group. Referring to
the results shown in Table II, when ¢ = 8 and § = 1075,
the nRMSE and nMAE values of the proposed model were
reduced by 31.95% and 11.22%, respectively, compared to
DPFL-BLSTM.

DPFL-MLP (light green solid curve) had the worst per-
formance in most cases. It had very limited predictability in
forecasting time-series data without the memory cell. From
Fig. 6, DPFL-MLP tracked neither the peak nor off-peak
loads. However, this method also has an advantage: the com-
putational cost was the lowest among all algorithms. In the
situation when the computation ability of the edge devices is
limited, this method could be the priority choice. The DPFL-
LSTM (solid orange curve) and DPFL-BLSTM (solid pink
curve) models had similar prediction performances, while
the DPFL-BLSTM model was slightly better. When ¢ = 8
and § = 1075, the nRMSE values of DPFL-LSTM and
DPFL-BLSTM were 9.94% and 10.17%, respectively.

These results demonstrate that ATT-BLSTM is more effi-
cient in processing time-series data, especially when the data
are nonstationary and nonlinear. The ATT-BLSTM’s superior
prediction performance can be summarized as follows: (1)
The bidirectional structure enables the model to extract
features from both forward and backward directions; (2)
The attention mechanism helps the model find the essential
hidden state of the current output.

D. Influence of Client Number

Another vital parameter that influences the performance of
the proposed DPFL scheme is the client number K. Referring
to [59], the choice of DP parameter ¢ is influenced by K and
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Fig. 7. Short-term load forecasting results of three houses predicted by
four differential private federated learning algorithms (¢ = 8, § = 10~°).

should obey the following constraint:

1
6 -
<K

This condition is to avoid protecting the majority of con-
sumers’ privacy by revealing a few consumers’ [59]. Ac-
cording to this requirement, we set the threshold of §, @
as 1 x 1075, In this experiment, the value of K ranges
from 5 to 100, and the corresponding model performance
and computation cost are shown in Figs. 8 and 9, respec-
tively. From Fig. 8, when K = b5, the prediction error
was considerably high, and it is observed that the model
performance increases significantly from K =5 to K = 10,
and then the prediction accuracy increases steadily when K
is between 10 and 50. When K is larger than 50,it is find
that the performance improvement is not significant, and the
accuracy of the model almost reached the same accuracy as
non-DP schemes.

However, the computation cost raises dramatically when
the value of K keeps increasing (see Fig. 9), which results
in the extra investment in the cloud server which has
higher computation and storage capacity. Based on the above
simulation results, the conclusion was made that under the
same privacy budget, more clients can efficiently reduce the
accuracy cost, this is because during the secure aggregation
process, more clients will reduce the standard deviation of
the additive noise.

27

E. Influence of Privacy Parameter

In the DPFL scheme, the most important parameters to
make the trade-off between privacy and accuracy are the
two DP parameters ¢ and 6. Recall Algorithm 1: During the



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX 13

TABLE I
PERFORMANCES OF THE PROPOSED MODELS AND BENCHMARK
SERVICE MODELS

Model e K Round MAPE (%) nMAE (%) nRMSE (%)
5 1 2214 32,99 35.25
1 10 1 99.6 26.52 28.97
50 1 76.51 16.51 20.38
DPFL-MLP 5 6 78.67 25.16 26.16
4 10 3 70.82 9.06 11.59
50 3 70.41 7.68 10.99
5 36 162.87 20.32 21.64
8 10 15 69.58 8.08 10.85
50 18 63.68 8.32 10.5
5 1 257.2 29.51 31.87
1 10 1 146.04 15.08 19.39
50 1 75.12 10.63 13.06
DPFL-LSTM 5 6 94.83 14.14 17.41
4 10 3 71.55 74 10.65
50 3 71.43 11.61 13.3
5 36 73.88 15.65 21.91
8 10 15 68.31 7.57 10.97
50 18 62.43 7.24 9.94
5 1 176.51 21.41 24.6
1 10 152.1 12.13 17.11
50 1 102.31 11.54 16.72
DPFL-BLSTM 5 6 79.17 15.46 16.49
4 10 3 72.92 14.64 15.67
50 3 70.98 9.72 12.13
5 36 69.67 17.21 18.73
8 10 15 65.95 10.01 11.68
50 18 61.37 6.16 9.3
5 1 323.89 16.27 20.44
1 10 400.23 19.89 23.09
50 1 376.45 29.65 412
DPFL ATT-BLSTM 5 7 51.21 20.73 21.44
4 10 3 40.38 7.13 10.53
50 3 36.35 5.68 8.07
5 36 29.06 4.49 12.03
8 10 15 24.67 4.36 7.52
50 18 14.44 432 6.92
5 50 19.62 4.19 7.45
FL ATT-BLSTM - 10 50 17.2 3.76 6.7
50 50 12.59 3.7 6.67
Centralised ATT-BLSTM - - - 10.34 2.87 4.34
Localised ATT-BLSTM - - - 68.73 10.01 10.69
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Fig. 8.  (Comparison of total computation cost of proposed DPFL and
benchmark service models.

secure aggregation process in each communication round,
given ¢ and GM parameter o; the central server accoun-
tant evaluates d [54]. The central server will continue the
communication rounds until § reaches the threshold Q, then
the whole training process will be stopped, and the server
sends the well-trained model to all clients. As defined in
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Fig. 9. (Computation costs of the proposed DPFL and benchmark service
models.

Section V, Q is selected as 1 x 10~°. In this case study, the
influence of different values of ¢ (7 values chosen ranging
from 1 to 12) on the model performance was investigated.
From Fig. 7 (b), the DPFL-ATT-BLSTM scheme with small
e (1, 2, 4) reached the threshold Q quickly within just a
few communication rounds. However, the model accuracy
is undesirable, as the nRMSE maintains a high level, even
higher than the localized scheme, the benchmark model with
the worst performance. At this privacy level, although the
privacy of consumers is protected perfectly, functionality is
ultimately sacrificed. In contrast, when € is large enough
(such as 10 or 12 in our case), it takes more communication
rounds until § reaches the threshold. More communication
rounds allow the central model to be fully trained with
frequent updates of its model parameters. Consequently, the
model accuracy increases as € increases (as shown in Fig. 7
(a)). However, a large ¢ allows less similarity of the outputs
from different clients, the adversary can distinguish differ-
ent clients more effortlessly, and the model consequently
provides less privacy. Hence, when ¢ is between 6 and 8,
the proposed scheme can enable accurate load forecasting
and provide a good level of privacy protection at the same
time. In summary:

1) When ¢ < 4, the model provides strong privacy
guarantee but low prediction accuracy.

2) When 4 < ¢ < 8, the model reaches a balance between
privacy and accuracy.

3) When ¢ > 8, the model reaches a higher accuracy but
sacrifices privacy.

F. Privacy and Security Assessment

The privacy performance of the proposed scheme is dis-
cussed in the following aspects:

1) The proposed model resists inference and membership
attacks from HBC TP. As stated in adversary model, the
TPs are HBC adversary who would employ inference and
membership attacks to infer whether a client participated
during decentralized training. The proposed service model
utilizes a secure aggregation mechanism during the data
aggregation process and adds the Gaussian noise during the
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Fig. 10. (a) model performance of the differential private federated learning
scheme with different levels of privacy budget; (b) accumulation of total &
with increasing communication rounds under different privacy budgets.

aggregation. As a result, individual participant’s contribution
during the training process is obscured. Hence, the proposed
service model can resist inference and membership attacks
from HBC TPs.

2) The proposed model resists low-quality local model
update attack from the malicious clients. While the mali-
cious clients may employ low-quality model attack to send
low quality model parameters to the cloud server, the pro-
posed service model utilizes K-means clustering algorithm to
identify the malicious clients before the training round start.
Hence, the proposed service model can resist low-quality
model attack.

3) The proposed method resists eavesdropping attacks
from the external adversary. The proposed model is con-
structed based on the FL framework, CEUD which contains
sensitive information that never leaves the consumer’s house.
The external attacker cannot eavesdrop individual’s CEUD
from the communication channel.

VII. CONCLUSION

In this paper, we have proposed and validated a novel
decentralized privacy-preserving value-added service model
by considering both privacy and functionality requirements.
The platform is constructed based on the DPFL framework
and utilizes state-of-the-art ATT-BLSTM algorithm to train
the local models. In the case study of household-level
STLF, we evaluate the proposed scheme with six benchmark
models. After simulation, it is validated that the proposed
system achieves prediction accuracy with low computation
cost, and the privacy loss can be controlled flexibility by

adjusting privacy budget. Furthermore, the security of the
proposed system is evaluated as well, the case study shows
that the proposed DPFL based service model can resist
attacks from: 1) the malicious clients who can employ low-
quality local model update attack; 2) the HBC TPs who
can utilize inference and membership attacks on the shared
model parameters; and 3) the external attackers who want
to eavesdrop the communication channel between the smart
meter and the cloud server.

The limitation of this paper is this work is based on
the virtual environment, and the proposed service model
is not validated in the real world. For future work, a
hardware-based service platform is expected to be built, the
platform can better evaluate the proposed model especially
when transient faults happen (such as a large of smart
meters are offline due to a blackout). Moreover, we will
investigate other kinds of energy services such as demand
response, and renewable energy management. Furthermore,
other privacy-preserving techniques such as block-chain and
multi-party computation are expected to provide a better
privacy guarantee to the energy consumer.

REFERENCES

[1] Y. Xue and X. Yu, “Beyond smart grid—cyber—physical-social system
in energy future [point of view],” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2290-2292, 2017.

[2] 1. Kaur, “Chapter 29 - metering architecture of smart grid,” in
Design, Analysis, and Applications of Renewable Energy Systems,
ser. Advances in Nonlinear Dynamics and Chaos (ANDC), A. T.
Azar and N. A. Kamal, Eds. Academic Press, 2021, pp. 687-704.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128245552000307

[3] Z. Erkin, J. R. Troncoso-Pastoriza, R. L. Lagendijk, and F. Pérez-
Gonzdlez, “Privacy-preserving data aggregation in smart metering
systems: An overview,” [EEE Signal Processing Magazine, vol. 30,
no. 2, pp. 75-86, 2013.

[4] V.T.Hayashi, R. Arakaki, T. Y. Fujii, K. A. Khalil, and F. H. Hayashi,
“B2b b2c architecture for smart meters using iot and machine learning:
A brazilian case study,” in 2020 International Conference on Smart
Grids and Energy Systems (SGES). IEEE, 2020, pp. 826-831.

[5] Y. Gao, Z. Pan, H. Wang, and G. Chen, “Alexa, my love: ana-
lyzing reviews of amazon echo,” in 2018 IEEE SmartWorld, Ubig-
uitous Intelligence & Computing, Advanced & Trusted Comput-
ing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).  1EEE, 2018, pp.
372-380.

[6] K. Noda, “Google home: smart speaker as environmental control unit,”
Disability and rehabilitation: assistive technology, vol. 13, no. 7, pp.
674-675, 2018.

[7]1 Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Cyber-physical-social
systems: A state-of-the-art survey, challenges and opportunities,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 389—
425, 2019.

[8] X.-Y.Zhang, C. Watkins, C. C. Took, and S. Kuenzel, “Privacy bound-
ary determination of smart meter data using an artificial intelligence
adversary,” International Transactions on Electrical Energy Systems,
vol. 31, no. 9, pp. 1-1, 2021.

[9] M. Shateri, F. Messina, P. Piantanida, and F. Labeau, ‘“Real-time
privacy-preserving data release for smart meters,” IEEE Transactions
on Smart Grid, vol. 11, no. 6, pp. 5174-5183, 2020.

[10] X. Cheng, R. Zhang, and L. Yang, “Consumer-centered energy system
for electric vehicles and the smart grid,” IEEE intelligent systems,
vol. 31, no. 3, pp. 97-101, 2016.

[11] P. Voigt and A. Von dem Bussche, “The eu general data protection
regulation (gdpr),” A Practical Guide, Ist Ed., Cham: Springer
International Publishing, vol. 10, no. 3152676, pp. 10-5555, 2017.



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang,
Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge
networks: A comprehensive survey,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 3, pp. 2031-2063, 2020.

R. to the European Commission er al., “Essential regulatory re-
quirements and recommendations for data handling, data safety, and
consumer protection,” Technical Report version 1.0, 2011. https://ec.
europa. eu/energy/sites/ener ..., Tech. Rep.

M. R. Asghar, G. Déan, D. Miorandi, and I. Chlamtac, “Smart meter
data privacy: A survey,” IEEE Communications Surveys and Tutorials,
vol. PP, no. 4, pp. 1-1, 2017.

M. LaMonica, “Cisco: Smart grid will eclipse size of internet,”
Interview, May, 2009.

Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, L. Wei, et al.,
“Smart metering implementation programme: review of the data
access and privacy framework,” 2018.

F-Y. Wang, J. J. Zhang, R. Qin, and Y. Yuan, “Social energy:
Emerging token economy for energy production and consumption,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 3,
pp. 388-393, 2019.

J. J. Zhang, D. W. Gao, Y. Zhang, X. Wang, X. Zhao, D. Duan,
X. Dai, J. Hao, and F.-Y. Wang, “Social energy: mining energy from
the society,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3,
pp. 466-482, 2017.

J. J. Zhang, F-Y. Wang, X. Wang, G. Xiong, F. Zhu, Y. Lv, J. Hou,
S. Han, Y. Yuan, Q. Lu, et al., “Cyber-physical-social systems: The
state of the art and perspectives,” IEEE Transactions on Computa-
tional Social Systems, vol. 5, no. 3, pp. 829-840, 2018.

T. Ming, J. Zuo, Z. Liu, A. Castiglione, and F. Palmieri, “Multi-
layer cloud architectural model and ontology-based security service
framework for iot-based smart homes,” Future Generation Computer
Systems, vol. 78, no. PT.3, pp. 1040-1051, 2016.

S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decen-
tralized autonomous organizations: Concept, model, and applications.”
Jaime, Lloret, Jesus, Tomas, Alejandro, Canovas, Lorena, and Parra,
“An integrated iot architecture for smart metering,” IEEE Communi-
cations Magazine, vol. 54, no. 12, pp. 50-57, 2016.

M. Alessio and L. Atzori, “A cloud-based and restful internet of
things platform to foster smart grid technologies integration and re-
usability,” in 2016 ICC - 2016 IEEE International Conference on
Communications Workshops (ICC), 2016.

X.-Y. Zhang, S. Kuenzel, J.-R. Cérdoba-Pachén, and C. Watkins,
“Privacy-functionality trade-off: A privacy-preserving multi-channel
smart metering system,” Energies, vol. 13, no. 12, p. 3221, 2020.
X.-Y. Zhang and S. Kuenzel, “Differential privacy for deep learning-
based online energy disaggregation system,” in 2020 [EEE PES
Innovative Smart Grid Technologies Europe (ISGT-Europe). 1EEE,
2020, pp. 904-908.

F-Y. Wang, R. Qin, J. Li, X. Wang, H. Qi, X. Jia, and B. Hu,
“Federated management: Toward federated services and federated
security in federated ecology,” IEEE Transactions on Computational
Social Systems, vol. 8, no. 6, pp. 1283-1290, 2021.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated-learning-based anomaly detection for
iot security attacks,” IEEE Internet of Things Journal, vol. 3, no. 4,
pp. 2545-2554, 2022.

H. Liang, D. Liu, X. Zeng, and C. Ye, “An intrusion detection method
for advanced metering infrastructure based on federated learning,”
Journal of Modern Power Systems and Clean Energy, 2022.

S. Salim, B. Turnbull, and N. Moustafa, “A blockchain-enabled
explainable federated learning for securing internet-of-things-based
social media 3.0 networks,” IEEE Transactions on Computational
Social Systems, pp. 1-17, 2021.

D. Potap, G. Srivastava, J. C.-W. Lin, and M. Wozniak, “Federated
learning model with augmentation and samples exchange mecha-
nism,” in Artificial Intelligence and Soft Computing, L. Rutkowski,
R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, and J. M.
Zurada, Eds. Cham: Springer International Publishing, 2021, pp.
214-223.

X. Zhang, F. Fang, and J. Wang, “Probabilistic solar irradiation
forecasting based on variational bayesian inference with secure feder-

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

ated learning,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 11, pp. 7849-7859, 2021.

Y. Wang, I. L. Bennani, X. Liu, M. Sun, and Y. Zhou, “Electricity con-
sumer characteristics identification: A federated learning approach,”
IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3637-3647,
2021.

S. Lee and D.-H. Choi, “Federated reinforcement learning for energy
management of multiple smart homes with distributed energy re-
sources,” IEEE Transactions on Industrial Informatics, vol. 18, no. 1,
pp. 488-497, 2022.

A. K. Roy, K. Nath, G. Srivastava, T. R. Gadekallu, and J. C.-W. Lin,
“Privacy preserving multi-party key exchange protocol for wireless
mesh networks,” Sensors, vol. 22, no. 4, 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/5/1958

C. Dwork, “Differential privacy: A survey of results,” in International
Conference on Theory and Applications of Models of Computation,
2008.

T. Ha, T. K. Dang, T. T. Dang, T. A. Truong, and M. T. Nguyen,
“Differential privacy in deep learning: An overview,” in 2019 In-
ternational Conference on Advanced Computing and Applications
(ACOMP), 2019.

Muneeb, Ul, Hassan, Mubashir, Husain, Rehmani, Jinjun, and Chen,
“Differential privacy techniques for cyber physical systems: A survey,”
IEEE Communications Surveys and Tutorials, vol. 22, no. 1, pp. 746—
789, 2019.

M. Yang, W. Tu, J. Wang, F. Xu, and X. Chen, “Attention based Istm
for target dependent sentiment classification,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao, “Dipole:
Diagnosis prediction in healthcare via attention-based bidirectional
recurrent neural networks,” in ACM, 2017.

V. Piccialli and A. M. Sudoso, “Improving non-intrusive load disag-
gregation through an attention-based deep neural network,” Energies,
vol. 14, 2021.

X. Zhang, S. Kuenzel, N. Colombo, and C. Watkins, “Hybrid short-
term load forecasting method based on empirical wavelet transform
and bidirectional long short-term memory neural networks,” Journal
of Modern Power Systems and Clean Energy, Jan. 2022.

X. Zhang, S. Kuenzel, and C. Watkins, “A hybrid data-driven online
solar energy disaggregation system from the grid supply point,”
Complex & Intelligent Systems, July 2022.

X. Zhang, C. Watkins, and S. Kuenzel, “Multi-quantile recurrent
neural network for feeder-level probabilistic energy disaggregation
considering roof-top solar energy,” Engineering Applications of Ar-
tificial Intelligence, Apr. 2022.

A. Moradi, N. K. Venkategowda, S. P. Talebi, and S. Werner,
“Distributed kalman filtering with privacy against honest-but-curious
adversaries,” in 2021 55th Asilomar Conference on Signals, Systems,
and Computers. 1EEE, 2021, pp. 790-794.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). 1EEE, 2017, pp. 3-18.
M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322-1333.

L. Zhang, G. Ding, Q. Wu, Y. Zou, Z. Han, and J. Wang, “Byzantine
attack and defense in cognitive radio networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1342-1363,
2015.

L. Zhu, M. Li, Z. Zhang, X. Du, and M. Guizani, “Big data mining of
users’ energy consumption patterns in the wireless smart grid,” IEEE
Wireless Communications, vol. 25, no. 1, pp. 84-89, 2018.

S. Zhang, J. Rong, and B. Wang, “A privacy protection scheme
of smart meter for decentralized smart home environment based on
consortium blockchain,” International Journal of Electrical Power &
Energy Systems, vol. 121, p. 106140, 2020.

N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural
networks,” in Proceedings of the 28th USENIX Conference on Security
Symposium, ser. SEC’19. USA: USENIX Association, 2019, p.
267-284.



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX 16

[53]

[54]

[55]

[56]

[571

[58]

[591

N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan,
“cpsgd: Communication-efficient and differentially-private distributed
sgd,” Advances in Neural Information Processing Systems, vol. 31,
2018.

Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing
in urban informatics,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 3, pp. 2134-2143, 2019.

O. Parson, G. Fisher, A. Hersey, N. Batra, J. Kelly, A. Singh,
W. Knottenbelt, and A. Rogers, “Dataport and nilmtk: A building
data set designed for non-intrusive load monitoring,” in 2015 ieee
global conference on signal and information processing (globalsip).
IEEE, 2015, pp. 210-214.

N. Oceanic and A. A. (NOAA), “National centers for environmental
information (ncei).” Historical Palmer Drought Indices., 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

C. Radebaugh and U. Erlingsson, “Introducing tensorflow privacy:
learning with differential privacy for training data,” Medium. com
(accessed 2022-01-27). https://medium. com/tensorflow/introducing-
tensorflowprivacy-learning-with-differential-privacy-for-trainingdata-
b143c5e801b6, 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20-22 Apr 2017, pp. 1273-1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

Xiao-Yu Zhang received the B. Eng. degree from
the North China Electric Power University, Bei-
jing, China in 2016. The M.S.degree with distinc-

A= =" tion in electrical power system from University
S & of Birmingham, Birmingham, U.K., in 2017, and
= the Ph.D. degree in electrical engineering from the

Royal Holloway, University of London, London,
4 U.K., in 2022. He is currently a lecturer in School
? of Artificial Intelligence, Anhui University, Hefei,
China. His research interests include deep learning
technology & data analytics in smart grids, smart

grid privacy and security, and, demand-side management.

José-Rodrigo Cordoba-Pachén obtained a com-
puter science and systems engineering degree at
Universidad de los Andes in Bogota, Colombia.
The MA (Master of Arts) degree with distinction
in Management Systems at the University of Hull,
Hull, U.K.. And was offered a fully funded PhD
scholarship to research on critical systems think-
ing and information systems at Hull’s centre for
systems studies. José-Rodrigo is currently a senior
lecturer in information and technology manage-
ment at the School of Business and Management

of Royal Holloway, University of London, London, U.K.. José-Rodrigo’s
research interests lie at the intersection between technological, ethical
and social systems. He currently serves as application area editor (social
responsibility) of the journal Systems Research and Behavioural Science.
and as international researcher at the Social and Business Research Lab
(SBRLab) of Universitat Rovira i Virgili in Tarragona, Catalonia, Spain.

Peigian Guo received the B.S. and the M.Sc.
degrees in Electrical and Electronic Engineering
from the University of Birmingham, Birming-
ham, UK. in 2015 and 2017. He is currently
an Assistant Researcher (medium level) with the
Department of Electrical Engineering, Tsinghua
University, where he has been since 2018. His
research interests include power system opera-
tion and control, renewable integration, voltage
sourced converter-based direct current transmis-
sion and distribution systems, power quality re-
search, energy storage system, and FACTS.

Chris Watkins received the Ph.D. degree from
University of Cambridge, U.K.. He is a world-
class authority on reinforcement learning & evo-
lutionary theory and professor of Artificial Intel-
ligence at Royal Holloway, University of London,
U.K.. He coined the Q-Table algorithm approach
that spurred the resurgence in reinforcement learn-
ing (this approach was at the heart of Google’s
recent successful Al projects). Prior to returning
to academia, Chris was employed as a quant at
a hedge fund firm in London for several years.
Chris is presently working on how to make generally intelligent machines,
along with abstract models of evolution, and statistical visualization.

Stefanie Kuenzel (S’11-M’14-SM’19) received
the M.Eng.and Ph.D. degrees from Imperial Col-
lege London, London,U.K., in 2010 and 2014,
respectively. She is currently the Head of the
Power Systems Group and a Senior Lecturer with
the Department of Electronic Engineering, Royal
Holloway, University of London, London, U.K..
Her current research interests include renewable
generation and transmission, including HVDC as
well as Smart Meters. Dr Kuenzel also functions
as editor for IEEE Transactions on Sustainable
Energy, IEEE Power Engineering Letters.




