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ABSTRACT 
International Journal of Exercise Science 15(1): 1306-1316, 2022. 3-D inertial measurement units (IMUs) 

have advantages over other types of motion capture systems, as IMUs cannot be obstructed by equipment and gear. 
Therefore, the purpose of this study was to assess the reliability of IMUs in measuring joint angles at the hip, knee, 
and ankle during two types of single-leg landings: 1) drop-landing (DL) and 2) leap-landing (LL). Nineteen subjects, 
both males (n = 9, 21.88 ± 1.64 yrs, 178.36 ± 9.68 cm, 185.68 ± 16.63 kg) and females (n = 11, 22.45 ± 4.32 yrs, 171.57 ± 
6.55 cm, 70.95 ± 14.99 kg) participated in this study. Participants performed three trials of both tasks. The DL 
required the participant to drop onto their dominant leg from a 30 cm box onto force plate. The LL task required 
participants to leap over a 20 cm hurdle onto the force plate. ICC values and SEM calculations were used to assess 
the IMU’s reliability. Overall, IMUs displayed fair-to-excellent reliability for both tasks (ICC = 0.442-0.962), aside 
from ankle inversion (ICC = 0.290) & ankle abduction (ICC = 0.216) at initial ground contact and ankle abduction 
(ICC = 0.234) at maximum vertical ground reaction force, both during the LL task. IMUs can be a reliable 
measurement tool for lower extremity motion during dynamic landing, so long as factors related to reliability at 
the ankle are considered. 
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INTRODUCTION 
 
Traditionally, scientists have employed the use of tethered, or infrared camera motion capture 
systems when exploring human motion. While these types of motion capture systems are 
reliable (27), valid (10), and considered by many to be the gold standard of motion capture, (24) 
they do have several limitations (28). As it relates to tethered systems, they require the 
attachment of sensors with leads connected to a data acquisition module. This may result in 
restriction of the subject’s pattern of movement while also confining them to a small area in 
order to maintain an appropriate distance from the source of the leads (12). With regard to 
infrared motion capture systems, the use of reflective markers on top of, or underneath garments 
is often a limiting factor. This is because placing the reflective markers underneath clothing 
would result in concealment of the markers from the cameras. Placing reflective markers on top 
of clothing would result in the creation of artifacts, due to the shifting or movement of garments, 
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which would skew the measurements (28). It is for these reasons that 3-D inertial measurement 
units (IMU) have become prominent in the biomechanical research field for the measurement of 
joint angle and acceleration data (22).   
 

Three-dimensional inertial measurement units (IMU) are a cost-effective alternative to large 
laboratory setups, such as tethered or infrared systems, when taking biomechanical 
measurements during movement tasks (16, 21). IMUs use accelerometers, gyroscopes, and 
magnetometers to measure joint acceleration and rotation in 3 planes of motion (sagittal, frontal, 
transverse) (7). This technology gives the researcher freedom to perform measurements under 
a variety of different testing conditions. As readings from IMUs are typically transmitted via 
radio signals directly to a receiver, IMUs can also be placed under garments or protective 
equipment and attached directly to the skin at specific anatomical landmarks. This unique 
attribute lends itself well to research applications within tactical populations, as workers 
employed in tactical occupations often wear restrictive garments and equipment, which may 
affect their patterns of movement during job-related duties. This necessitates the use of valid 
and reliable instrumentation capable of capturing alterations in movement patterns. Such 
instrumentation is necessary to determine the influence this specialized equipment and gear 
may have on a tactical operator’s quality of movement and its potential for increasing injury 
susceptibility. 
 

IMU sensors have been found to be valid when measuring joint angles during, simple rotational 
movement, trunk movement, jumping, squatting, craniocervical movement, and during gait 
analysis tasks (1, 4, 7, 9, 11, 25, 29). As it specifically relates to the measurement of joint angles, 
IMUs have been found to produce valid measurements at the hip, knee, and ankle in the frontal, 
sagittal, and transverse planes of motion (1, 9, 11, 29). Prior research has compared the ability of 
IMU sensors in capturing lower body joint angles, to those of infrared and reflective marker-
based systems (3, 5, 14). This earlier research has reported that the two systems produce 
comparable results (3, 5, 14).  
 

The reliability of IMUs has also been examined in prior studies. Most of the research assessing 
the reliability of IMU sensors for monitoring lower extremity motion has focused on gait (1, 8, 
9, 11, 17, 16). Cho et al. examined the reliability of an IMU system in measuring hip, knee, and 
ankle motion in the frontal, sagittal, and transverse planes during a walking task, finding ICC 
values ranging from 0.864-0.999 for the measures of knee valgus/varus and flexion/extension 
(9). Other studies have reported similarly high reliability of IMU sensors when measuring 
walking gait (1, 11). As it relates to tasks other than walking gait, Al-Amri et al. examined the 
reliability of IMU sensors in measuring knee, ankle and hip motion in the frontal, transverse, 
and sagittal planes during both a counter-movement jump and squatting task (1). It was 
observed that for all planes of motion, except transverse, ICC values were between 0.6 and 0.95. 
(1). This contrasts with their findings at the transverse plane, in which ankle motion was 
observed to have poor reliability (ICC < .6) for both tasks. They also observed that for the squat, 
hip and knee motion in the transverse plane also demonstrated poor reliability. The group 
reported that ankle abduction in transverse plane demonstrated poor reliability for the 
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measurement of both tasks (1). For the squat task, transverse plane measures for knee ROM, 
knee maximum angle, and hip minimum angle displayed ICC values less than .06 (1). The results 
of these studies suggest that IMU sensors may be less reliable in measuring transverse plane 
motion. To date there is no evidence suggesting similar reliability outcomes with the 
measurement of lower body landing kinematics.  Arguably, the mechanical shock imposed on 
the human body at ground contact during single leg landing tasks as compared to normal 
walking gait could cause artifacts resulting in greater measurement error (17, 20). It remains to 
be seen whether IMUs can produce reliable data when performing higher order movement 
tasks, which involve landing from a jump or height. Therefore, the purpose of this study was to 
assess the reliability of IMUs in measuring joint angles at the hip, knee, and ankle during two 
types of single-leg landings: 1) drop-landing (DL) and 2) leap-landing (LL).  Based on earlier 
research, we hypothesize that IMU sensors will demonstrate fair to excellent reliability, with the 
exception of ankle motion. 
 

METHODS 
 

The study was a cross-sectional design. All data were collected at the University of Tulsa 
biomechanics laboratory by the same evaluator. The University of Tulsa Institutional Review 
Board (Protocol 19-28) granted approval for this study. All participants read and signed an 
approved Institutional Review Board consent document prior to participation. This research 
was carried out fully in accordance to the ethical standards of the International Journal of 
Exercise Science (19). 
 
Participants 
Nineteen subjects, both males (n = 9, 21.88 ± 1.64 yrs, 178.36 ± 9.68 cm, 185.68 ± 16.63 kg) and 
females (n = 11, 22.45 ± 4.32 yrs, 171.57 ± 6.55 cm, 70.95 ± 14.99 kg) were recruited for this study. 
All subjects were 18 or older. Post hoc power analysis determined that, with a minimal 
acceptable reliability of ICC = 0.40 and expected reliability of ICC = 0.74, 19 participants was 
sufficient to achieve 80% power (2). 
 
Protocol 
Participants reported to the laboratory wearing athletic attire, and were issued appropriately 
sized military combat boots (Belleville 390 Hot weather boots, Belleville, IL) for one test session. 
This footwear was selected in order to reduce variability associated with differences in footwear, 
and to represent footwear donned by tactical athletes, for whom IMU measurements may be 
useful. Participants were allowed to move about the laboratory until they were satisfied with 
the comfort of the boots, in order to familiarize themselves with the footwear. Height and weight 
were collected for each participant. Height was measured using a portable stadiometer (Invicta 
Plastics ltd., Leicester, England). Weight was measured using the Tanita TBF-300A scale and 
body composition analyzer (Tanita Corporation of America, Inc., Arlington Heights, Illinois). 
Patients were then fitted with IMU sensors (myoMOTION Research Sensors, Noraxon U.S.A., 
Scottsdale, Arizona) at the pelvis, left and right thigh, left and right shank, and left and right 
foot that transmitted data to a receiver (myoMOTION Research Receiver, Noraxon U.S.A., 
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Scottsdale, Arizona) at a sampling rate of 100 Hz, the maximum sampling rate of the device used 
for this study. The foot sensors were placed on the dorsal aspect of the feet at the metatarsal 
region of the foot, equidistant between the head of the first and fifth metatarsals using a shoe 
adapter and rubber strapping system (Noraxon U.S.A., Scottsdale, Arizona) (18, 13). The shank 
sensors were placed according to a tibia fitting template (dorsaVi Ltd, New York, NY) (26). The 
tibia fitting template was used to standardize the sensor placement across participants. The tool 
was placed on the inferior edge of the medial malleolus and provided reference for sensor 
placement based on the height of the participant beginning at 16.5 cm (for those <165cm in 
height) and increasing sensor placement height on the shank by 2 cm for every additional 10 cm 
of participant height. The thigh sensors were placed halfway between the greater trochanter and 
the lateral condyle of the femur on the lateral portion of the thigh, while the pelvis sensor was 
placed posteriorly, equidistant between right and left posterior superior iliac spine. This 
placement protocol was developed within our laboratory to ensure consistency of sensor 
placement. IMU sensors were then calibrated using the Polhemus Patriot Calibration Stylus 
configuration (Polhemus, Colchester, Vermont), and Myomotion motion capture software 
version 3.14 (Noraxon U.S.A., Scottsdale, Arizona).  
 
The IMU sensors were calibrated by having the participants stand on a 30 cm box, with feet 
shoulder width apart and hands on hips. Following sensor calibration, the digital model was 
improved using anthropometrics obtained through the palpation, and subsequent digitization 
of bony landmarks using the Polhemus Patriot Calibration Stylus. These bony landmarks 
included the: anterior superior iliac spine, posterior superior iliac spine, medial and lateral 
femoral condyles, medial and lateral malleoli, as well as the 1st and 5th metatarsal joints on both 
sides of the body. Per the manufacturer, these readings were only reliable for 5 minutes post 
calibration. Thus, stylus calibrations were performed prior to each individual task. Joint angle 
measurements included hip flexion, hip abduction, hip external rotation, knee flexion, knee 
abduction, ankle dorsiflexion, ankle inversion, ankle abduction, pelvic tilt, and pelvic obliquity. 
Each of these measures were recorded at initial ground contact (IC), which was defined as the 
instant the vertical ground reaction force exceeded 10 N and at maximum vertical ground 
reaction force (VGRF) for each of the three trials. VGRF was collected using a 40 cm x 60 cm 
force plate (Bertec, Columbus, OH). Force plate data were sampled at 1500 Hz. All force plate 
data was filtered using a low pass Butterworth filter with 20 Hz cutoff frequency. Force plates 
were synchronized with IMUs using a synchronization system (MyoSync, Noraxon U.S.A., 
Scottsdale, Arizona). Synchronization allowed for joint angle analysis at the timepoints of IC 
and maximum VGRF. 
 
Following the placement and calibration of sensors, participants performed three DL trials 
(Figure 1). The DL task required the participant to drop onto their dominant leg from a 30 cm 
box placed approximately 10% of their height away from a 40 cm x 60 cm force plate (Bertec, 
Columbus, OH). Upon landing, the participants had to “stick” the landing by maintaining 
stability, and subsequently remained motionless for a ten-second period. If this condition was 
not met, trials were repeated until successfully performed. The participants performed three DL 
trials (13). 
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Following the DL task, participants were asked to complete three trials of a LL task (Figure 2). 
The LL task required participants to stand in a staggered stance placing their dominant foot at 
a distance of 60% of the participant’s height away from a force plate (Bertec, Columbus, OH), 
with their non-dominant foot at a distance of 40% of the participant’s height away from the force 
plate. A hurdle 20 cm in height was placed at 20% of the participant’s height away from the force 
plate necessitating a leap over the hurdle onto the force plate. Similarly, to the DL, the 
participants had to “stick” the landing and remain motionless for a ten-second period. 
 

   
 
Figure 1. Drop Landing (DL) Task      Figure 2. Leap Landing (LL) Task 

 
Statistical Analysis 
Intra-class correlation coefficients (ICC3,1) were run to determine the inter-trial reliability of the 
IMUs. ICC values were calculated for hip flexion, hip abduction, hip external rotation, knee 
flexion, knee abduction, ankle dorsiflexion, ankle inversion, ankle abduction, pelvic tilt, and 
pelvic obliquity at IC (defined as the moment VGRF surpassed 10N) and max VGRF (as 
measured by force plates). These data points were grouped by trial for all participants, and 
compared between trials to calculate ICC. ICC values were interpreted according to the scale set 
forth by Shrout & Fleiss (23) which states that ICC ≥ 0.75 is excellent, ICC 0.40-0.74 is fair-to-
high, and ICC ≤ 0.39 is poor. Standard error of measurement (SEM) values were calculated to 
determine the precision of each measure (see Equation 1). SEM values less than 3º were 
considered excellent, SEM values less than 5º were considered acceptable (15). These analyses 
were completed for both the LL and DL tasks. Alpha level was set at a priori .05. All data was 
analyzed using SPSS Statistic 24 (IBM, Somers, NY). 
 
Equation 1. Standard Error of Measure 

𝑆𝐸𝑀 = 𝑆𝐷 × √1 − 𝐼𝐶𝐶 
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RESULTS 
 
Drop- Landing Task: At IC the inter-trial ICC values for the pelvis, hip, knee and ankle ranged 
from 0.943-0.959 (SEM = 0.271º-0.360º), 0.899-0.956 (SEM = 0.363º-0.770º), 0.896-0.949 (SEM = 
0.182º-0.552º), and 0.563-0.829 (SEM = 1.055º-2.257º) respectively (Table 1). At maximum VGRF 
the inter-trial ICC values for the pelvis, hip, knee and ankle ranged from 0.874-0.962 (SEM = 
0.690º-1.751º), 0.680-0.880 (SEM = 0.849º-1.875º), 0.796-0.823 (SEM = 0.598º-1.178º), and 0.569-
0.873 (SEM = 1.121º-2.535º), respectively (Table 1).  
 
Leap-Landing Task: At IC inter-trial ICC values for the pelvis, hip, knee and ankle ranged from 
0.927-0.956, (SEM = 0.326º-0.429º) 0.869-0.936 (SEM = 0.674º-1.105º), 0.796-0.823 (SEM = 0.627º-
1.188º), and 0.216-0.915 (SEM = 1.924º-6.657º), respectively (Table 2). At Maximum VGRF, the 
inter-trial ICC values for the pelvis, hip, knee and ankle ranged from 0.880-0.922 (SEM = 0.626º-
0.688º), 0.758-0.910 (SEM = 0.878º-1.789º), 0.715-0.884 (SEM = 0.533º-2.111º), and 0.234-0.960 
(SEM = 1.145º-6.846º), respectively (Table 2). Table 1 & 2 also report p-values associated with 
ICC tests. 
 
Table 1. Drop-landing Inter-trial ICC3,1 Results 

    95% CI     

Measure ICC Lower Upper SEM p-value 
  Initial Ground Contact 

Hip Flexion 0.956 0.909 0.981 0.363 < .001* 

Hip Abduction 0.905 0.810 0.959 0.461 < .001* 

Hip External Rotation 0.899 0.799 0.956 0.770 < .001* 

Knee Flexion 0.896 0.793 0.955 0.552 < .001* 

Knee Abduction 0.949 0.894 0.978 0.182 < .001* 

Ankle Dorsiflexion 0.776 0.589 0.898 1.901 < .001* 

Ankle Inversion 0.829 0.675 0.924 1.055 < .001* 

Ankle Abduction 0.563 0.297 0.781 2.257 < .001* 

Pelvic Tilt 0.943 0.883 0.976 0.360 < .001* 

Pelvic Obliquity 0.959 0.915 0.983 0.271 < .001* 
 Maximum Vertical Ground Reaction Force 

Hip Flexion 0.884 0.771 0.949 0.850 < .001* 

Hip Abduction 0.851 0.712 0.934 0.849 < .001* 

Hip External Rotation 0.680 0.448 0.848 1.875 < .001* 

Knee Flexion 0.796 0.621 0.908 1.178 < .001* 

Knee Abduction 0.823 0.665 0.921 0.598 < .001* 

Ankle Dorsiflexion 0.873 0.751 0.944 1.155 < .001* 

Ankle Inversion 0.569 0.304 0.785 1.121 < .001* 

Ankle Abduction 0.610 0.354 0.809 2.535 < .001* 

Pelvic Tilt 0.874 0.705 0.932 0.690 < .001* 

Pelvic Obliquity 0.962 0.921 0.984 1.751 < .001* 

*p<.05      

 



Int J Exerc Sci 15(1): 1306-1316, 2022 

International Journal of Exercise Science                                                          http://www.intjexersci.com 
1312 

Table 2. Leap-landing Inter-trial ICC3,1 Results 

  95% CI  

Measure ICC Lower Upper SEM p-value 

 Initial Ground Contact 

Hip Flexion 0.936 0.869 0.973 0.674 < .001* 

Hip Abduction 0.869 0.743 0.942 0.859 < .001* 

Hip External Rotation 0.895 0.792 0.955 1.105 < .001* 

Knee Flexion 0.794 0.618 0.907 1.188 < .001* 

Knee Abduction 0.812 0.646 0.915 0.627 < .001* 

Ankle Dorsiflexion 0.915 0.829 0.964 1.924 < .001* 

Ankle Inversion 0.290 0.012 0.592 4.331 0.020* 

Ankle Abduction 0.216 -0.052 0.531 6.657 0.061 

Pelvic Tilt 0.956 0.908 0.981 0.326 < .001* 

Pelvic Obliquity 0.927 0.851 0.969 0.429 < .001* 

 Maximum Vertical Ground Reaction Force 

Hip Flexion 0.910 0.820 0.961 0.878 < .001* 

Hip Abduction 0.758 0.561 0.889 1.798 < .001* 

Hip External Rotation 0.889 0.781 0.952 0.930 < .001* 

Knee Flexion 0.715 0.497 0.867 2.111 < .001* 

Knee Abduction 0.884 0.770 0.949 0.553 < .001* 

Ankle Dorsiflexion 0.960 0.916 0.983 1.145 < .001* 

Ankle Inversion 0.442 0.160 0.703 2.221 0.001* 

Ankle Abduction 0.234 -0.029 0.554 6.846 0.042* 

Pelvic Tilt 0.922 0.843 0.967 0.626 < .001* 

Pelvic Obliquity 0.880 0.764 0.948 0.688 < .001* 

*p<.05     

 

DISCUSSION 
 
The main findings of this study were that IMUs displayed fair to excellent inter-trial reliability 
for all variables, except LL ankle abduction at IC and maximum VGRF, as well as ankle inversion 
at IC. To the authors’ knowledge, this was the first study to evaluate the reliability of IMU 
sensors while performing drop landing and leap landing tasks. In the present study it was 
hypothesized that IMU sensors would demonstrate fair to excellent reliability, with the 
exception of ankle motion. This hypothesis was supported. Aside from the three variables at the 
ankle during the LL task, the IMU sensor system displayed fair to excellent reliability overall. 
Various prior studies have examined the reliability of IMU sensors while performing simple 
movement or gait analysis tasks, and have found overall reliability to be fair to excellent (7, 9, 
11). However, this is the first study to the authors’ knowledge which has investigated higher 
order movement tasks involving landing such as the LL and DL. Al-Amri et al. examined the 
reliability of IMUs during squatting and jumping tasks, which are more functional in nature 
than some other tasks examined in prior research, but do not involve the same levels of dynamic 
control or landing as are observed in the DL and LL tasks (1).  
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The findings of this present study indicate that the reliability of angular measurement of IMUs 
at the ankle may deteriorate as higher order movement tasks are performed. This is likely 
because the foot sensor is the only one which cannot be adhered directly to the skin but must, 
instead, be strapped to the shoe. Mechanical shock created as a result of ground contact may 
cause sensor movement, resulting in the creation of artifacts, and therefore, sensor readings may 
become less representative of motions occurring at the ankle joint as the tasks performed 
increase in complexity. Due to the ankle sensor’s proximity to the point of ground contact, it 
likely experiences the mechanical shock of landing to a greater degree than sensors which are 
more proximal. Future research should continue to focus on the reliability of IMU sensors while 
performing complex movement tasks in order to detect excess variability which could skew the 
findings of research involving these sensors. It is also possible that the footwear worn in this 
study was restrictive, and contributed to the poor reliability at the ankle. These factors should 
be considered when using IMUs to measure higher order body transport tasks. 
 
The present study is not the first to report poor ICC values at the ankle joint using IMUs. In their 
examination of the reliability of the Xsens MTw Awinda IMU sensor system, Al-Amri et al. also 
reported poor repeatability (ICC<0.01) of transverse plane ankle angle in the heel strike phase 
of gait (1). Standard error of measure for transverse ankle angle at heel strike was reported to be 
acceptable (between 3º and 5º) (1). The group noted that the poor ankle repeatability was one of 
only two variables which were categorized as poor, the other being frontal plane knee angle at 
heel strike (ICC < 0.04; SEM < 3º) (1). In the present study, no ICC values were reported below 
0.2, however, SEM values above 5º were found for ankle abduction angle at both time-points 
during the LL task. These findings suggest that the IMU system used in the current study 
produced better repeatability for the tasks and angles observed, but also created a greater 
standard error of measure, indicating a lower level of absolute reliability for these specific 
measurements. Conversely, Cho et al. reported excellent ICC values (all greater than 0.912) 
using the Motion Track IMU sensor system in measuring angular change at the ankle in the 
frontal, sagittal, and transverse planes, when performing gait analysis (9). These excellent ICC 
values could be related to differences in the IMU systems. Both Cho et al. and Al-Amri et al. 
used straps to secure IMUs to the foot, similar to the methods used in the present study.  
 
Charlton et al. examined the reliability of an IMU sensor which was embedded in participants’ 
shoes during a walking task, and reported excellent reliability when measuring foot progression 
angle, a term for the average transverse motion at the ankle throughout the gait cycle (toe-
in/toe-out) (8). However, it should be noted that this was the only angle measured in the study, 
and only one sensor was required to measure foot progression angle (8). Prior research has 
found that IMU sensors may become less reliable as more sensors are added to the configuration 
(6) Differences between these prior studies and the present one may be due to the IMU system, 
the methods of sensor placement, placement position of sensors, and the researcher 
administering the test. Any of these factors could influence the reliability of IMU readings. 
Future research should continue to focus on the validity of IMU sensors for measures at the 
pelvis, hip, knee and ankle.  
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Two main practical applications can be taken from the present study. First, because pelvis 
markers were always concealed under clothing, depending on the length of shorts worn, as were 
thigh markers, high ICC values in these locations suggest that IMU sensors may be a viable 
option in testing scenarios in which reflective markers may be occluded from infrared cameras 
by clothing, gear or equipment (e.g. firefighters, military, police). However, further IMU 
research is required within tactical populations to assess reliability while wearing personal 
protective equipment. Second, IMU sensors’ mobility may allow for more flexibility as 
compared to infrared camera systems with regard to types of the testing environments. This 
aspect of mobility provides the ability to reliably capture motion in more natural settings than 
the controlled environment of a laboratory, leading to more applicable findings, particularly 
within tactical occupations and other athletic populations. 
 
Two limitations should be noted within the present study. First, the calibration tool used to 
improve the IMU anatomical model (Polhemus Patriot Calibration Stylus, Polhemus, 
Colchester, Vermont) was only valid, per the manufacturer, for 5-minutes post-calibration. This 
should be noted for future studies using the device, as results may vary if this time limit is not 
observed. The calibration method used in the present study is also time intensive and should be 
considered by clinicians wishing to use the IMU sensor system. Calibration time may vary (5-7 
minutes) based upon the clinician’s calibration experience and proficiency. Second, reduced 
sensor reliability at the ankle could be due to sensor placement, or attachment technique. This 
presents a future area of study to determine a method of sensor placement at the ankle which 
produces more reliable results. 
 
The findings of this present study indicate that IMU devices are a reliable tool for measuring 
kinematics during single leg drop landing and leap landing tasks, so long as factors related to 
the ankle are taken into consideration. Further research should examine methods for reducing 
the variability of readings at the ankle during higher order movement tasks via different 
placement strategies or improved wearable options. 
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