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ABSTRACT 
International Journal of Exercise Science 15(4): 1212-1221, 2022. There are limited data comparing the 

efficacy of resistance loads within the hypertrophy range for promoting muscular growth, particularly when 
similar training volumes are utilized. The purpose of this study was to determine if two similar volume-loads, 
utilizing different intensities, would produce dissimilar muscular damage and inflammation. Eleven resistance-
trained, college-aged males participated in this study. After testing 1RM barbell squats, participants completed two 
similar volume-load barbell squat sessions at two different resistance loads (67% and 85% of 1RM) on two separate 
visits. Venous blood samples were collected at baseline and one hour after completion of each exercise session. 
Plasma was isolated and analyzed for myoglobin and C-reactive protein (CRP) expression via ELISA. Plasma 
myoglobin expression was significantly elevated above baseline (BASE) values only after the 85% of 1RM (HHL) 

session (p =0.031), though the 67% (LHL) trial (p = 0.054; 2 = 0.647) was approaching significance (BASE: 1.42+.12 

ng/mL; LHL: 4.65+1.13 ng/mL; HHL: 5.00+1.01 ng/mL). No changes in plasma CRP were observed. Despite 
attempts to equate volumes between resistances, mean total volume-load was significantly higher during the 67% 
of 1RM trial than during the 85% trial. Resistance loads at 85% of 1RM inflict significantly increased muscle damage 
over baseline values, even when significantly less total volume was lifted during the 85% trial. Individuals looking 
to maximize strength and hypertrophy during general training or during rehabilitation may benefit from these 
findings when determining the appropriate training load. 
 

KEY WORDS: Resistance training, hypertrophy, muscle damage, inflammation, volume-
matched 
 
INTRODUCTION 
 
The inclusion of resistance training as part of a regular exercise routine provides many benefits 
such as increased strength, muscle mass, bone density, and greater ease performing activities of 
daily living.  These benefits are a primary reason why many health-related organizations such 
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as the American College of Sports Medicine (ACSM), American Heart Association (AHA), and 
the American Association for Cardiovascular and Pulmonary Rehabilitation (AACVPR) 
promote resistance training for all adults (11).  It is well established that resistance loads between 
65 and 85% of 1 repetition maximum (1RM) are ideal for progression of muscular hypertrophy 
(19). Previous research has compared performing a low number of repetitions (3 to 5) at a high 
percentage of a 1RM to a high number of repetitions (20 to 28) at a lower percentage of a 1RM, 
where the total volume lifted between the groups was similar (3).  The group that performed 
low repetitions at a higher percentage of their 1RM tended to have greater increases in their 
1RM than other groups, and the greatest increases of muscle fiber cross-sectional area (CSA), 
but the lowest increase of time to exhaustion and number of repetitions performed at 60% of 
1RM (3).  Conversely, the group training with a high number of repetitions at a lower percentage 
of their 1RM tended to have the greatest increase of time to exhaustion, a larger increase of the 
number of repetitions performed at 60% of 1RM, and decreased joint stress when compared to 
the higher percentage of 1RM groups. Although the high repetition, low weight training method 
demonstrated an increased 1RM, CSA does not appear to improve. This finding is supported by 
the well-established continuum of muscular strength vs endurance adaptations observed with 
variations of resistance training loads. This continuum states that heavier loads with fewer 
repetitions tend to elicit greater strength and hypertrophy adaptations, while lighter loads with 
higher numbers of repetitions promote greater muscular endurance, but provide lesser gains in 
absolute strength (22). 
 
Muscular hypertrophy elicited by resistance training is induced through three primary 
mechanisms: mechanical tension, exercise-induced muscular damage, and metabolic stress (19).  
These mechanisms seem to play a significant role in the stimulation of inflammatory protein 
cascades that ultimately result in leukocyte chemotaxis, satellite cell mobilization, and enhanced 
protein synthesis (10). Acute exercise-induced muscular damage, promotes repair and 
hypertrophy through generation of inflammatory cytokines and subsequent chemotaxis of 
leukocytes to the site of injury (24).  Studies investigating the effects of different resistance 
exercise loads indicate that maximal strength and muscle protein synthesis, as determined by 
increased phosphorylation of p70S6K, an inducer of ribosomal protein synthesis, is enhanced at 
heavy resistance loads, but not with low resistance loads (13).  Additionally, greater resistance 
promotes mechanical signaling of protein synthesis. Using isometric contractions in a rat model, 
a two-fold increase in hypertrophy was observed with high load contraction when compared to 
low load contraction (5).  Elevated expression of syndecan-4 transmembrane receptor and 
myogenin mRNA was observed with high load, indicating enhanced mechanical signaling of 
satellite cell mobilization and hypertrophy.   
 
Myoglobin has emerged as a reliable, indirect maker of exercise induced muscular damage and 
delayed-onset muscle soreness (15, 17, 18). Plasma myoglobin concentrations are elevated 
rapidly post-exercise (immediately to 1 hour) due to its direct release through the cell membrane 
and into the blood stream (12, 15, 17). C-reactive protein (CRP) is a prominent marker of 
muscular inflammation and is known to be significantly elevated after extensive eccentric 
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resistance exercise (16). Therefore, myoglobin and CRP supply valuable information about the 
hypertrophying capacity and mechanisms of individual resistance training bouts.  
 
The previously discussed mechanisms support the ACSM’s recommendations that a resistance 
load of >65% of 1RM should be utilized to promote muscular hypertrophy (1).  However, since 
there is a vast discrepancy in load and mechanisms of hypertrophy within the >65% of 1RM 
range, it is important to delineate differences in efficacy between these loads for promoting 
strength and hypertrophy. It is logical that greater resistance load increases mechanical tension 
and, thus, enhanced mechanotransduction. However, distinguishing whether heavier loads 
within the hypertrophy inducing range increase exercise-induced muscle damage (EIMD) and 
inflammatory response is important for optimizing strength training. Therefore, the purpose of 
this study is to elucidate whether heavier hypertrophying resistance loads elicit greater 
myoglobin and CRP protein expression when compared to lighter hypertrophying resistance 
loads.  
 
METHODS 
 
The aim of this study was to determine the potential of two different hypertrophying loads for 
inducing mechanisms of muscular hypertrophy. To control for wide sample variability observed 
with between-subjects comparisons, a repeated measures, crossover design was used for this 
study. This study design included three sessions, with approximately seven days between 
sessions. During session one, participants were tested for barbell squat 1RM and were then 
asked to perform two volume-similar barbell squat exercise sessions over two additional trials, 
at least seven days apart. Each participant was evaluated for barbell squat 1RM to assess 
appropriate trial weight and performed the barbell squat experimental trials in a crossover 
design to ensure the results observed were not due to a training effect. Light hypertrophying 
load (LHL) and heavy hypertrophying load (HHL) conditions were randomly assigned to each 
trial, with participants completing both trials in random order. Participant randomization was 
performed using a numeric randomization function on Microsoft Excel (Microsoft Corporation, 
Redmond, WA). The measurements that were chosen for this study were centered on 
physiological responses (plasma myoglobin and CRP) that would indicate or promote muscular 
hypertrophy.  
 
Participants 
Eleven recreationally resistance trained (three times per week for ≥ 6 months) males (age 20.6 + 
0.9 years; height 178.2 + 10.3 cm; weight 83.3 + 10.9 kg) were recruited to examine the impact of 
two different, volume-similar, resistance loads during barbell squats on acute physiological 
responses related to muscular hypertrophy. Participants confirmed that they regularly (≥ 1 time 
per week) performed barbell squats in their training routine. Sample size estimation was 
conducted by employing an a priori analysis using G*Power 3.1.7 (Dusseldorf, Germany) 
software with a desired power of 0.8 and an effect size of 0.5 based on repeated-measures 
analysis of variance (RM-ANOVA) for within-subjects factors. An alpha level of 0.05 was chosen 
to determine statistical significance. All demographic data is represented by sample mean + 
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standard deviation. Outcome variables included biological markers of skeletal muscle damage 
and inflammation.  
 
Prior to enrollment in the study, participants completed exercise, physical activity readiness 
questionnaires (PAR-Q), and medical history questionnaires to determine eligibility. 
Participants categorized as “moderate” or “high” risk classifications in accordance with 
guidelines set by the ACSM [26] were excluded from this study. Additionally, participants 
demonstrating any injuries, conditions, or surgeries within the last six months that could 
negatively impact their performance or the study results were also excluded. This includes, but 
was not limited to, knee replacement surgery, ligament reconstruction, arthritis, herniated 
vertebral discs, etc. In this study, none of the recruited participants met the exclusionary criteria 
and were all eligible to participate. Once participants were cleared for study eligibility, all 
participants were properly informed about study details and signed the University IRB 
approved consent form. All aspects of this study were in compliance with the ethical guidelines 
outlined in the Helsinki Declaration.  This research was carried out fully in accordance to the 
ethical standards of the International Journal of Exercise Science (14). 
 
Protocol 
See Figure 1 for visual representation of protocol. For the first session, participants formally 
consented, completed a 24-hour dietary history form and PAR-Q, and were evaluated for 
anthropometric measures. Following anthropometric evaluation, a 10mL baseline (BASE) 
venous blood draw was taken from the antecubital region of the arm. Next, the participants 
were evaluated for their barbell squat 1RM, according to guidelines suggested by the National 
Strength and Conditioning Association (NSCA) (7). Per standard protocol, the heaviest weight 
completed within 3 to 5 attempts was recorded as the tested 1RM for use in this protocol.  Mean 
relative 1RM for the barbell back squat was 1.77 + 0.34 x body mass, with an absolute 1RM of 
323.64 + 79.25 lbs.  
 
In session two, participants were randomly tasked with either LHL or HHL barbell squats, 
which were similar in volume. Participants completed the remaining condition on the third 
session, seven days later. Randomization of protocol order was conducted using Microsoft Excel 
software.  The LHL session consisted of 3 sets of 11 repetitions at 67% of tested 1RM, while the 
HHL session consisted of 5 sets of 5 repetitions at 85% of tested 1RM. Unless the calculated 
training load for each corresponding percentage was within one pound of the upper five-pound 
increment, training load was reduced to the nearest five-pound increment. For example, a 
calculated value of 224 would be rounded to 225, while a value of 223 would be reduced to 220. 
These protocols were designed to provide a similar amount of mechanical work by calculating 
volume-load (calculated as follows: 3 x 11 x 67 and 5 x 5 x 85) while also adhering to standard 
resistance training guidelines to achieve a specific training goal (i.e., hypertrophy vs strength, 
respectively) as suggested by the NSCA (7). Participants were given a rest period of three 
minutes between each set of barbell squats and all repetitions were monitored to ensure proper 
form was maintained during the duration of the exercise. Participants were actively monitored 
during the protocol by trained members of the research team to ensure proper squat form; 
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inability to maintain proper form resulted in cessation of that set.  Two participants were only 
able to complete four repetitions on the fifth set of the HHL trial. Additionally, one participant 
was only able to complete nine repetitions for the third set of the LHL trial. The remaining 
participants were all able to complete their full number of repetitions. Upon completion of the 
protocol, participants remained seated in the laboratory for one hour so a one-hour post exercise 
venipuncture could be performed.  For all three sessions of this study, participants were 
instructed to abstain from alcohol consumption for 24 hours prior to testing and to refrain from 
significant caffeine intake within six hours of testing.  Significant caffeine intake was defined as 
> 100mg of caffeine, such as a cup of coffee. This was verified based on responses from the 24-
hour dietary history form. Participants were also requested to maintain their typical dietary 
habits and exercise routines for the duration of the study. 
 
Plasma Protein Analysis: Venipuncture was performed using a standard butterfly collection set 
and 10mL EDTA coated vacutainers (Beckton Dickinson; Franklin Lakes, NJ). Whole blood 
samples were centrifuged at room temperature at 2,000 x g for 15 minutes to separate plasma. 
Isolated plasma was aspirated and aliquoted into 1.5mL tubes and immediately stored at -80°C 
until needed for ELISA analysis. Once all eleven participants completed the study, plasma 
samples were thawed at room temperature and analyzed via enzyme linked immunosorbent 
assay for potential differences in plasma myoglobin (Abcam; Cambridge, MA; ab171580) and 
CRP (Cayman Chemicals; Ann Arbor, MI; #10011236). ELISAs were performed and analyzed 
according to manufacturer’s instructions. Assays were analyzed using a colorimetric microplate 
reader to obtain absorbance values (BioTek Instruments; Winooski, VT). 
 

 
Figure 1. Outline of Study Protocol and Events 
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Statistical Analysis 
A one-way repeated measures-ANOVA was performed to determine if differences in myoglobin 
and CRP plasma protein expression existed across the three time points. Bonferroni correction 
was utilized to determine which time points were significantly different. A dependent t-test was 
utilized to determine if there was a significant difference in mean total volume-load between the 
two trials. An alpha level of .05 was used to determine statistical significance for all statistical 
measures.  
 
RESULTS 
 
Plasma Myoglobin and CRP: For this study, the main outcome variables were assessment of 
plasma myoglobin and CRP across the three time points as indicators of exercise induced 
muscular damage and inflammation, respectively (Figure 2). A one-way repeated measures-

ANOVA demonstrated that a significant change between groups was observed (p = 0.015; 2 = 
0.647). Plasma myoglobin protein expression was significantly increased from baseline values 
after the HHL trial (p = .031), but was not significantly increased after the LHL trial, though it 

was approaching significance (p = .054; 2 = 0.647) (BASE: 1.42+.12 ng/mL; LHL: 4.65+1.13 
ng/mL; HHL: 5.00+1.01 ng/mL; F = 7.340). However, there was no significant difference 
between LHL and HHL for myoglobin (p > 0.995). For CRP, no significant differences (p = 0.74; 

2 = 0.073) were detected between time points (BASE: 346.93+58.67 pg/mL; LHL: 466.60+173.05 
pg/mL; HHL: 320.90+62.66 pg/mL; F = 0.313).  
 

 
Figure 2. Plasma Myoglobin and CRP.  a. Plasma myoglobin protein expression for baseline, LHL, and HHL.  b. 
Plasma CRP protein expression for Base, LHL, and HHL.  * indicates significant difference from Base (p< 0.05). Bar 
graph data represents mean value + SEM. 

 
Performance: Although the protocol was designed to be volume similar based on standardized 
training guidelines, there was a significant difference (p < .001; t=-15.150; Cohen’s d = 0.165) in 
mean total volume-load between the two trials (Figure 3). Using the training load calculated 
from the aforementioned protocol, participants lifted a mean of 7,084.1+515.21 pounds in total 
during the LHL trial, and 6,807.7+515.60 pounds during the HHL trial.  
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Figure 3. Total Weight Lifted.  Mean total weight lifted for LHL and HHL.   
# indicates significant difference from other trial (p< 0.05). Bar graph data represents mean value + SEM. 

 
DISCUSSION 
 
The primary purpose of this study was to determine if heavier loads within the traditional 
hypertrophying range (>65% of 1RM) inflict greater muscular damage and inflammation than 
lighter hypertrophying loads when performed with similar volumes. Although our study was 
designed to be volume similar, we observed statistically significant differences in average total 
volume-load between trials, with LHL (67% of 1RM) being higher than HHL (85% of 1RM).   
 
We found no significant differences for CRP between trials or from the baseline measurement.  
This is in contrast to other research that demonstrated an increase in CRP after resistance 
exercise (2). However, the protocol from that study was a circuit training protocol that engaged 
many muscle groups with very brief rest periods between sets. This is in agreement with other 
protocols which show high-intensity or prolonged physical activity results in acute increases in 
CRP (9). CRP is known to be stimulated by interleukin-6 (9), which increases in abundance with 
greater volume of repeated muscular contraction (21). Therefore, the single exercise associated 
with our study was likely not of sufficient volume to stimulate this mechanism.  
 
It was also found that HHL (85% of 1RM) caused a significant elevation in plasma myoglobin, a 
biomarker of muscular damage, when compared to baseline. When comparing the calculated 
myoglobin concentrations, HHL and LHL increased plasma myoglobin levels approximately 
3.52-fold and 3.28-fold above baseline values, respectively. This indicates that although LHL did 
not cause a statistically significant increase from baseline, it may be practically significant with 
respect to signaling mechanisms induced by EIMD and how this affects training adaptations.  
However, HHL was able to cause a significant increase in plasma myoglobin and do so with less 
total volume than LHL, indicating that HHL is likely more efficient at causing EIMD for 
induction of muscular protein synthesis. It is important to note that these findings were in 
resistance-trained participants, who were likely to experience an attenuation of EIMD within 
three weeks of regular resistance training (4).  Since our participants had been engaged in 
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regular lower-body resistance training for at least 6 months prior to the study, any increase in 
muscle damage would likely be quite impactful for upregulating muscle fiber protein synthesis.  
 
Fink et al. demonstrates that eight weeks of low load (20 RM) resistance training, but not high 
load (8 RM), caused a significant increase in hypertrophy in well-trained athletes (6). However, 
this increase in hypertrophy was not associated with any increase in maximal strength. 
Moreover, the high load group did experience gains in strength, despite the lack of hypertrophy.  
The findings by Fink et al. are likely explained by an increase in sarcoplasmic hypertrophy rather 
than myofibrillar hypertrophy. Haun et al. demonstrated that six weeks of high-volume 
resistance training results in sarcoplasmic hypertrophy only, with an observed decrease in actin 
and myosin protein (8).  Thus, it appears that strength gain and, ultimately, myofibrillar 
hypertrophy, may be more dependent on higher resistance loads (20, 23).  The findings from our 
study are important for understanding the mechanisms through which heavy resistance loads 
enhance strength and functional muscle hypertrophy.  
 
Limitations: As with any research study, there are several limitations to the design of this study.  
First, although the study was designed as a practical, isovolumic barbell squat protocol based 
on National Strength and Conditioning Association guidelines, there was still a significant 
difference in total load lifted between trials. Second, the sample size for this study was small, 
given the wide variation that is observed with resistance training research between participants. 
However, a repeated measures design was implemented to limit the effects of inter-participant 
variability on the data. Additionally, this was an acute study investigating the effects of two 
different resistance loads on biological markers of muscle damage and inflammation, so results 
are just inferring what could potentially happen in a longitudinal training setting. Future 
research will focus on a comparison of these loads in a longitudinal design.  
 
Conclusions: The primary findings from this study indicate that, when similar volumes are used, 
resistance loads at 85% 1RM significantly increase an indirect marker of muscular damage above 
baseline values. Although the 67% 1RM trial did not cause a statistically significant increase 
above baseline values, it induced a 3.28-fold increase in plasma myoglobin, which is likely 
practically significant for inducing muscular adaptation. Despite the volume-similar protocol 
design, participants lifted a greater total volume during the 67% 1RM protocol, indicating that 
the 85% trial caused a significant change with less total volume. Though inconclusive, our results 
suggest that even within the hypertrophying load range (>65% 1RM), choice of load during 
resistance exercise could markedly impact observed training adaptations. Further research is 
needed to determine which resistance loads, within the hypertrophying range, can optimize 
muscle strength and hypertrophy. This information can be utilized by individuals such as 
strength coaches and physical therapists to ensure appropriate training load for their clients.  
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