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ABSTRACT

Seismic waves exhibit strong attenuation and velocity disper-
sion when they propagate in porous rocks saturated with a fluid.
The main cause of such energy dissipation is fluid flow in the
pore space, so called squirt flow. Squirt flow takes place between
interconnected pores and cracks or grain-to-grain contacts. The
corresponding theory can be used to characterize porous rocks
in the subsurface with noninvasive seismic methods. We extend
the analytical model for a classical pore geometry presented in
part 1 of our paper to more complex geometries of the pore space,
where the crack edge is partially connected to multiple pores.
This pore geometry is much more closely representative of rocks
than the classical geometry where the crack edge is fully con-
nected to a toroidal pore. We develop an approach to calculate
the model compliance taking into account the interconnectivity

of the crack and pores. We redefine a squirt flow length parameter
which takes into account the geometrical configuration of the
multiple connections between a crack and the surrounding pores.
This configuration will control the geometrical flow pattern
and thus the diffusion length scale or, in other words, the char-
acteristic frequency. We validate our analytical model against
inherently accurate 3D numerical solutions. The analytical
and numerical results are in excellent agreement for a range of
different pore geometries. Published analytical solutions expect
the user to know the dry stiffness (e.g., from laboratory measure-
ments), but in our work, we also provide a way to calculate
analytically the dry stiffness for the precise geometry that we
consider. The new analytical model redefines the quantitative
and qualitative description of seismic attenuation and velocity
dispersion due to squirt flow. We provide the MATLAB and
symbolic Maple routines to reproduce our main results.

INTRODUCTION

A passing seismic wave causes small deformations in rocks.
Because rocks are heterogeneous at all scales, such deformations
cause a heterogeneous strain field distribution in the rock. If a rock
is fluid saturated, the heterogeneous strain field causes fluid flow until
the fluid pressure equilibrates (Müller et al., 2010). Fluid flow can
take place at different scales; at the pore scale, it is called the squirt
flow and is known to cause strong wave energy dissipation and veloc-
ity dispersion. Many analytical models have been suggested to quan-
tify the squirt flow effects on propagating waves, e.g., squirt flow
between interconnected cracks (Mavko and Nur, 1975; O’Connell
and Budiansky, 1977; Palmer and Traviolia, 1980), between intercon-
nected compliant cracks and stiff pores (Murphy et al., 1986; Mukerji
and Mavko, 1994; Dvorkin et al., 1995; Pride et al., 2004; Gurevich
et al., 2010), and between interconnected small aspect ratio cracks and

spheroidal pores (Xu, 1998; Chapman et al., 2002; Chapman, 2003;
Jakobsen and Chapman, 2009). In real rocks, examples of compliant
pores having small aspect ratios are microcracks and grain contacts.
Several numerical approaches have been proposed to study squirt

flow (Zhang et al., 2010; Zhang and Toksöz, 2012; Quintal et al.,
2016, 2019; Das et al., 2019). Based on the approach proposed by
Quintal et al. (2019), several 3D numerical studies have been con-
ducted for several pore space geometries (Alkhimenkov et al.,
2020a, 2020b; Lissa et al., 2020). Lissa et al. (2021) study fre-
quency-dependent attenuation caused by squirt flow in a pore geom-
etry of a real rock derived from 3D images based on the
microcomputed X-ray tomography. Alkhimenkov et al. (2020a) com-
pare accurate numerical solutions against a published analytical
model for squirt flow (Collet and Gurevich, 2016) for the exact same
classical pore geometry and show that significant discrepancies
exist. The classical pore geometry consists of a penny-shaped
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(circular) crack fully connected to a surrounding toroidal stiff pore.
Recently, Alkhimenkov and Quintal (2021), in part 1 of this study,
propose a new analytical model which is in a good agreement with an
accurate 3D numerical simulation for the classical pore geometry.
In this contribution, we first improve the accuracy of the analyti-

cal model presented in part 1 (Alkhimenkov and Quintal, 2021).
Then, we extend the analytical model presented in part 1 (Alkhi-
menkov and Quintal, 2021) to more complex geometries of the pore
space, where the crack is only partially connected to one or more
spherical pores. For that, we propose a new approach to calculate
the model compliances for more complex geometries. We show that
the fluid flow directions and, consequently, the characteristic fre-
quency change dramatically compared with what happens in the
classical pore geometry. To take this into account, we present a
new parameter to characterize the characteristic frequency. We also
derive another solution for the crack stiffness relaxation. We validate
all the results against accurate 3D numerical solutions based on the
exact same model geometry. We provide MATLAB and symbolic
Maple routines to allow the reader to reproduce our main results
and/or to obtain results for other material properties and pore sizes
(Alkhimenkov and Quintal, 2021).

NUMERICAL ANALYSIS

For the numerical analysis, we explore several 3D numerical mod-
els consisting of a pore space saturated with a fluid and embedded in
an elastic solid grain material. The numerical method is described in
Quintal et al. (2019). The solid grains are described as a linear iso-
tropic elastic material and the fluid phase is described by the quasi-
static linearized compressible Navier-Stokes momentum equation. To
obtain all components of the stiffness matrix Cij (Voigt notation), we
perform direct relaxation tests by applying a displacement boundary
condition of the form u ¼ 10−8 × expðiωtÞ to a certain external wall
of the model, where ω ¼ 2πf is the angular frequency, f is the fre-
quency, t is the time, and i is the imaginary unit (Figure 1). A detailed
description of the applied boundary conditions is given in Alkhimen-
kov et al. (2020a, 2020b). The models considered here are as follows:

1) A model with a crack connected to fractions of a torus (crack
aspect ratio α ¼ 0.02).

2) A model with a crack connected to spherical pores (crack
aspect ratio α ¼ 0.01).

The material parameters used in all models are shown in Table 1.
The elastic solid grain material is represented by a rectangular cu-
boid with the dimensions of 0.4 m × 0.4 m × 0.2 m in all simula-

tions. The geometric properties of the pore space are given in the
corresponding sections. The geometry in all models is scalable;
i.e., the numerical solution remains unchanged if all the geometrical
properties are rescaled by any fraction. An illustration of the model
with a crack connected to fractions amounting to 4/9 of a torus is
shown in Figure 1.

Fractions of a torus

In part 1 (Alkhimenkov et al., 2020a), we perform a 3D numerical
study to compute the stiffness moduli dispersion and attenuation due
to squirt flow for a classical geometry, where a crack (flat cylinder)
connected to a toroidal pore. The numerical results of the effective
stiffnes modulus ½C�

33ðωÞ�sat (Voigt notation) show that the slopes of
the high-frequency asymptote of the attenuation curve are propor-
tional to ≈ω−4=10, whereas a published analytical model (Collet
and Gurevich, 2016) suggests ≈ω−1. Note that, in part 1, we propose
that the attenuation curve is proportional to≈ω−1=2, which is indeed a
good approximation and allowed us to provide simple closed-form
expressions of the analytical model. However, the reason for such an
asymptote of the attenuation curve (≈ω−4=10) has remained unex-
plored. To further investigate the shape of the dimensionless attenu-
ation 1=Q for different geometries, we present the results for a crack
connected to different fractions of a torus (Figure 2). They include the
fluid pressure snapshots at different frequencies (low frequency —
10 Hz, high frequency — 5.6 × 106 Hz, and the characteristic fre-
quency) and the real part of the ½C�

33ðωÞ�sat complex-valued compo-
nent of the stiffness matrix and the dimensionless attenuation (1=Q).
The geometrical properties of the model with crack aspect ratio α ¼
0.02 are shown in Table 2. Figure 2 provides us with several insights
into the physics of squirt flow and the shape of the attenuation and
dispersion curves, as described next. The fluid pressure snapshots of
a model at three different frequencies (Figure 2b–2f) help us to better
understand the physics of squirt flow. The fluid pressure snapshots of
a model corresponding to the configuration where a zero fluid pres-
sure boundary condition (Figure 2a) is applied to the edge of the
crack (representing a pore having an infinite volume while the pore
is absent) are shown for comparison (Alkhimenkov et al., 2020a).

Low-frequency limit

At low frequencies, the fluid pressure is low and uniform in all the
models representing the so-called relaxed state (Figure 2a–2f). One
can observe that the fluid pressure at the low frequency is the highest
for the 1=9 torus model (Figure 2b), the fluid pressure magnitude is

reducing as the volume of the pore is increasing
(Figure 2c–2f) and is the lowest for the Pf ¼ 0

model. In other words, the volume of the stiff pore
acts as a “storage volume” for the fluid pressure
diffusion from the crack. This trend shows that
the volume of the stiff pore has a significant impact
on the overall attenuation magnitude, as shown in
Figure 2h.

The characteristic frequency

At the characteristic frequency, the fluid pres-
sure is high at the center of the crack but low
close to the edge of the crack. This configuration
corresponds to the maximum gradients of the

Figure 1. Sketch illustrating the model geometry of a crack connected to fractions of a
torus. The displacement boundary condition u ¼ 10−8 × expðiωtÞ is applied to the top
boundary of the model to calculate the C33 component of the effective stiffness matrix
(Voigt notation).
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fluid pressure in the crack. Thus, the crack stiffness is high at the
crack center but low at the edge, except for the 1=9 torus model,
where the crack stiffness is high at the crack edge opposite to
the pore. The transition from the low-frequency limit to the char-
acteristic frequency is approximately the same in all the models
(Figure 2a–2f), that is why the behavior of the attenuation curve
1=Q and its asymptote is the same in all models for frequencies
below the characteristic frequency (Figure 2h).

High-frequency limit

At high frequencies, the fluid pressure snapshots are different in all
the models (Figure 2a–2f) as well as the shapes of the attenuation
curves 1=Q (Figure 2h). One can observe a region of a high fluid
pressure close to partially connected pores, which are indicated as

“anomaly” in Figure 2b–2f. For the big torus model, the fluid pres-
sure anomaly is present along the whole circumference (“red ring” in
Figure 2f). However, there is no such anomaly in the Pf ¼ 0 model
(high frequency in Figure 2a), explaining why this model is in agree-
ment with the analytical model of Collet and Gurevich (2016) and
Alkhimenkov et al. (2020a). These high pressure anomalies are

Table 1. Material properties used in all models.

Material parameter Solid Fluid

Solid bulk modulus K (GPa) 36 4.3

Solid shear modulus μ (GPa) 44 0

Fluid shear viscosity η (Pa · s) 0 1.414

Figure 2. (a) The Pf ¼ 0model, (b) 1=9 torus model, (c) 4=9 torus model, (d) 6=9 torus model, (e) 8=9 torus model, and (f) the big pore model.
Results of numerical simulations for (g) the real part of the C33 component and (h) corresponding dimensionless attenuation. The crack aspect
ratio is α ¼ 0.02.

Table 2. Geometric properties for the big pore model, which
is the model where the crack is connected to a toroidal pore.

Geometric parameter Big pore model

Flat cylinder (crack) radius b (m) 0.1

Flat cylinder (crack) thickness h (m) 0.004

Crack aspect ratio α ¼ h=ð2bÞ 0.02

Major radius of torus bþ r (m) 0.124

Minor radius of torus r (m) 0.024

Total porosity ≈0.0478
Crack porosity ≈0.0039

Major radius — the distance from the center of the tube to the center of the torus.
Minor radius — the radius of the tube (our isometric pore). The volume of the
fractions of the torus correspond to 1=9, 4=9, 6=9, and 8=9 of the torus volume.
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responsible for different shapes of the attenuation curves 1=Q at high
frequencies in the considered models (Figure 2h).
The characteristic frequency is shifted to lower values as the frac-

tion of the torus is reduced (Figure 2h). However, the characteristic
frequency of the 1=9 torus model is approximately one order of
magnitude lower compared with the model with the full torus. Note
that the crack aspect ratio is the same in all simulations which means
that the crack aspect ratio does not control the characteristic
frequency of squirt flow as it was believed until now. Instead, a dif-
ferent parameter controls the characteristic frequency, which is
explored in the next sections.

Spherical pores

To further understand which parameters control the characteristic
frequency fc of squirt flow and to what extent the pore shape affects
the shape of the dispersion and attenuation curves, we present
numerical results for models with a crack partially connected to
spherical pores in comparison with that of a crack fully connected
with a torus (Figure 3). The geometrical properties of this set of
models with crack aspect ratio α ¼ 0.01 are shown in Table 3.

Low-frequency limit

At low frequencies, the fluid pressure is low and uniform in all the
models (Figure 3a–3d) similar to the model with a crack connected to
fractions of the torus (Figure 2). The fluid pressure magnitude is the
lowest in the four spheres model (Figure 2b) and increases in the
models with one and two spheres (Figure 2c and 2d). Obviously,
the model with four spheres has the largest volume of stiff pores com-
pared with other models; thus, there is sufficient volume to store the

fluid flowing from the crack resulting in low fluid pressure. The big
pore model with crack aspect ratio α ¼ 0.01 has approximately the
same volume of the stiff pores as the model with two spheres; how-
ever, the attenuation peak (and the cumulative attenuation) of the big
pore model is the greatest among other models. This means that the
volume of the stiff pores and the model compliances are the key
parameters determining the attenuation magnitudes. The difference
between the dry moduli of the interconnected crack and pore and the
moduli of the interconnected dry pore and saturated crack (i.e., modi-
fied frame) defines the attenuation magnitude. This difference is the
largest for the big pore model, which is why the attenuation also is the
largest. The volume of the stiff pores is another important parameter,
which controls the attenuation magnitude — the volume should be
sufficiently large, two orders of magnitude larger than the crack vol-
ume (Alkhimenkov et al., 2020a), to keep the fluid pressure low in
the pore at low frequencies.

The characteristic frequency

At the characteristic frequency, the fluid pressure is high at the
center of the crack (Figure 3) similar to the previous models (Fig-
ure 2). The shape of the central region of the high fluid pressure in
the crack is slightly different in all models. Nevertheless, the shape
of the attenuation curve 1=Q at low frequencies is the same in all
models (Figure 3f).

High-frequency limit

At high frequencies, the fluid pressure snapshots (Figure 3a–3d)
and the shape of the attenuation curve 1=Q (Figure 3f) exhibit sim-
ilar behavior compared with that of the fraction of the torus models

Figure 3. (a) The big pore model and the models with (b) four spheres, (c) two spheres, and (d) one sphere. Results of numerical simulations
for (e) the real part of the C33 component and (f) corresponding dimensionless attenuation. The crack aspect ratio is α ¼ 0.01.
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(Figure 2f). The shape of the attenuation curve of the big pore model
with α ¼ 0.01 (Figure 3a–3f) is the same as in the big torus model
with α ¼ 0.02 (Figure 2h); the “ring” anomaly of fluid pressure at
high frequencies also is similar. The anomalies of high fluid pres-
sure at high frequencies due to the connectivity with spheres (Fig-
ure 3a–3d) exhibit similar behavior as in the models with fractions
of the torus (Figure 2). The high pressure anomalies also are similar
to those presented for the models with a crack connected to fractions
of the torus (Figure 2).
The characteristic frequency is shifted to lower values as the con-

nected portion of the crack circumference is reduced. This portion is
equal to the whole crack circumference for the big pore model, is
lower for the models with spherical pores, and is the lowest for the
one sphere model.

ANALYTICAL MODEL

Here, we extend the analytical model presented in part 1 (Alkhi-
menkov and Quintal, 2021) to the geometries involving cracks which
are partially connected to one or multiple stiff pores. In addition, we
improve the accuracy of the high-frequency re-
gime of the analytical model presented in part 1
(Alkhimenkov and Quintal, 2021). The workflow
is similar to part 1; however, we provide more
general approaches to calculate dry model compli-
ances and the crack stiffness relaxation functions.
For consistency, we present the workflow in a
similar way as was done in part 1 (Figure 4).

1) First, we calculate (or measure) the moduli
of the dry rock (step 1 in Figure 4). We need
the moduli of the dry model with intercon-
nected pore and crack as well as the moduli
of the same model but with the crack nor-
mal compliance equal to zero (or equal to a
small number for the finite thickness crack).

2) Second, we calculate the crack stiffness re-
laxation function due to squirt flow and use
that expression as the frequency-dependent
crack stiffness. As a result, we obtain the fre-
quency-dependent moduli of the modified
frame (the stiff pore is still dry).

3) Finally, we apply anisotropic Gassmann’s
equations (Gassmann, 1951) to calculate the
moduli of the fully saturated model.

The methodologies to calculate the model
compliances (step 1), the crack stiffness relaxa-
tion function (step 2), and the moduli of the fully
saturated model (step 3) are given next.

General expressions

The key result of part 1 (Alkhimenkov and
Quintal, 2021) is the general expression to calcu-
late the effective viscoelastic stiffness tensor for
any geometry of the pore space using the prop-
erty contribution tensors. The effective compli-
ance matrix for the dry model represented in
Figure 4a can be written as (in Voigt notation)

½S�mn�dry ¼ Sgmn þ ½Hmn�dry; (1)

where Sgmn is the compliance matrix of the solid grains and ½Hmn�dry
is the compliance contribution matrix of the dry pore space (a crack
connected to a pore or multiple pores). The effective compliance
matrix for the modified frame can be calculated as

½S�mnðωÞ�MF ¼ Sgmn þ ½Hp
mn�dry þ ½H 0

mnðωÞ�MF; (2)

where ½Hp
mn�dry is the compliance contribution matrix of the stiff

pore(s), ½H 0
mnðωÞ�MF is the additional compliance contribution ma-

trix due to the presence of a saturated crack connected to a dry pore
or multiple dry pores, and ω is the angular frequency; ½H 033ðωÞ�MF

is the frequency-dependent component with the moduli of the crack
stiffness relaxation (given next). Finally, the effective stiffness ma-
trix for the saturated model is calculated as

½C�
mnðωÞ�sat ¼ ð½S�mnðωÞ�MFÞ−1

þ ½fluid via Gassmann’s equations�; (3)

Table 3. Geometric properties for the models with one, two, and four spheres
and the big pore model with a crack aspect ratio α � 0.01.

Geometric parameter One sphere
Two

spheres
Four

spheres Torus

Flat cylinder (crack) radius b (m) 0.1 0.1 0.1 0.1

Flat cylinder (crack) thickness h (m) 0.002 0.002 0.002 0.002

Crack aspect ratio α ¼ h=ð2bÞ 0.01 0.01 0.01 0.01

Radius of sphere b=2 (m) 0.05 0.05 0.05 0.05

The volume (crack + pore,
interconnected)

≈5.832 × 10−4 ≈0.0011 ≈0.00214 ≈0.00145

Total porosity ≈0.0182 ≈0.0344 ≈0.0669 ≈0.0454
Crack porosity ≈0.002 ≈0.002 ≈0.002 ≈0.002

Figure 4. Sketch of the development of the present analytical model.
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where [fluid via Gassmann’s equations] denotes the application of
the anisotropic Gassmann’s equations (Gassmann, 1951) to saturate
the stiff pore space (pore) with a fluid at each frequency.

Step 1: Dry model compliances

Figure 5 shows three different geometries of the pore space: a
crack fully connected to a torus (Figure 5a), a crack partially con-
nected to a spherical pore (Figure 5b), and a crack with a spherical
pore in the center (“Saturn ring”). An analytical approach to calcu-
late the effective compliance matrices of the mentioned dry models
is briefly explained next. We exploit the approach used in micro-
mechanics to construct the property contribution matrix of complex
geometries (e.g., intersecting cracks, inclusions of “irregular”
shapes, chapters 4.3 and 4.4 in Kachanov and Sevostianov, 2018).
The main idea is that by using 3D numerical simulations for the
complex pore space, we find the structure and the symmetry of the
compliance contribution matrix, its principal directions, and the key
geometric characteristics of the complex pore space which control
the compliance of the model. Then, we are able to construct the
compliance contribution matrix of the interconnected pore(s) and
crack by using the known property contribution tensors for simple
geometries (Alkhimenkov and Quintal, 2021).

A crack connected to a torus

The method to calculate the compliance contribution matrices of
a dry model with a crack connected to a torus (the same as shown in
Figures 2f and 5a) is presented in Alkhimenkov and Quintal (2021).
The analytical approach to construct the property contribution
matrix for this complex geometry provides us with a very good
approximation (validated against accurate numerical solutions). The
disadvantage of this geometry is that this model is quite artificial: the
components ½H33�dry, ½H44�dry, and ½H55�dry are controlled by the to-
rus only, so the crack thickness does not affect the effective properties
of the dry model (see Figure 17 in Alkhimenkov and Quintal, 2021).
In real rocks, crack density and crack thickness do affect the effective
elastic moduli. That is why this widely used classical pore geometry
for squirt flow should no be longer used.

A crack with a pore in the center

Another end-member geometry is represented by a crack with a
pore in the center (Saturn ring) (Figure 5c). The analytical approach
to construct the property contribution matrix for this geometry is given
in Kachanov and Sevostianov (2018). In this configuration, the com-
ponents ½H33�dry, ½H44�dry, and ½H55�dry are controlled by the crack
only (if the crack radius is at least two times larger than the radius of
the sphere). Therefore, the compliance contribution matrix ½Hmn�dry
(expression 1) is calculated using the expressions for a spherical pore,
except for the components ½H33�dry, ½H44�dry, and ½H55�dry, which are
calculated using the expressions for a crack (Figure 5c).

A crack partially connected to a pore or multiple pores

To date, there is no accurate approach to construct the compliance
contribution matrices of a crack partially connected to a pore or multi-
ple pores using analytical expressions (Figures 3b–3d and 5b). Here,
we provide an approximate solution whose accuracy is lower com-
pared with the two previously mentioned geometries. This approxi-
mate solution can be used for the interconnected pore(s) and crack if
no precise numerical solution is available.
Our approximate solution is simple: the property contribution ma-

trix can be calculated using only analytical expressions. The general
idea is the same as for the pore space geometry consisting of a crack

Figure 5. Sketch illustrating the workflow to calculate analytically
the stiffness moduli for different configurations of interconnected
isometric pores and cracks.
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connected to a torus (Alkhimenkov and Quintal, 2021). For the
geometry shown in Figure 5b, the components ½H33�dry, ½H44�dry,
and ½H55�dry are controlled simultaneously by the crack and the
sphere. The compliance contribution matrix ½Hmn�dry (expression
1) is calculated using the expressions for a spherical pore, except
for the components ½H33�dry, ½H44�dry, and ½H55�dry, which are calcu-
lated using the expressions for the extended crack (Figure 5c). The
area of the projection of the crack partially connected to a pore on the
xy-axis will define the area of the circular (penny-shaped) extended
crack. The thickness of the extended crack can be the same as the
thickness of the crack itself. However, if the area of the projection
of the pore alone is comparable (or larger) than the area of the pro-
jection of the crack alone, then the thickness of the extended crack
should be increased. For this case, the appropriate dimensions of the
extended crack will be investigated in the future.
One can see that the extended crack radius (Figure 5b) is larger

than the radius of the initial crack of the model. As a result, the
compliance contribution matrix of a crack partially connected to
a pore ½Hmn�dry is constructed by using the obtained components
of a pore ½Hp

mn�dry and an extended crack ½HEcr
mn �dry:

½Hmn�dry¼2

2
666666664

½Hp
11�dry ½Hp

12�dry ½Hp
13�dry 0 0 0

½Hp
21�dry ½Hp

22�dry ½Hp
23�dry 0 0 0

½Hp
31�dry ½Hp

32�dry ½HEcr
33 �dry 0 0 0

0 0 0 ½HEcr
44 �dry 0 0

0 0 0 0 ½HEcr
55 �dry 0

0 0 0 0 0 ½Hp
66�dry

3
777777775
:

(4)
The compliance contribution matrix of the modified frame is

½HmnðωÞ�MF¼2

2
666666664

½Hp
11�dry ½Hp

12�dry ½Hp
13�dry 0 0 0

½Hp
21�dry ½Hp

22�dry ½Hp
23�dry 0 0 0

½Hp
31�dry ½Hp

32�dry ½HEcr
33 ðωÞ�MF 0 0 0

0 0 0 ½HEcr
44 �dry 0 0

0 0 0 0 ½HEcr
55 �dry 0

0 0 0 0 0 ½Hp
66�dry

3
777777775
;

(5)

where a new component ½HEcr
33 ðωÞ�MF is introduced (analogous to the

classical geometry presented in Alkhimenkov and Quintal, 2021).
Fluid flow takes place in the crack in one plane; therefore, the relax-
ation of the crack compliance is denoted by only the ½HEcr

33 ðωÞ�MF

component. The expression for the ½HEcr
33 ðωÞ�MF is given next.

To separate the compliance contribution of a pore, which is a
constant value across all frequencies, from the contribution of the
extended crack compliance, which is frequency dependent, we in-
troduce (Alkhimenkov and Quintal, 2021)

½H 0
mnðωÞ�MF ¼ ½HmnðωÞ�MF − ½Htp

mn�dry

¼ 2

2
66666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 ½H 0
33ðωÞ�MF 0 0 0

0 0 0 ½H 0
44�MF

dry 0 0

0 0 0 0 ½H 0
55�MF

dry 0

0 0 0 0 0 0

3
77777777775
: (6)

The structure of the compliance contribution matrix (equation 6) is
the same as the compliance contribution matrix of a crack embedded
into a homogeneous elastic material (Schoenberg and Douma, 1988;
Schoenberg and Helbig, 1997). (The crack compliance can bewritten
in terms of normal and tangential compliances.) However, the abso-
lute values of its components are completely different compared with
the values obtained for a crack embedded into a homogeneous elastic
material (Alkhimenkov and Quintal, 2021). Note that

lim
ω→þ0

½H 0
33ðωÞ�MF ¼ ½HEcr

33 �dry − ½Hp
33�dry ≡ ZAp

n ; (7)

where for simplicity we introduce the apparent normal crack compli-
ance ZAp

n . The apparent tangential crack compliance is ZAp
t ¼ ½H 0

44�MF
dry

≡½H 0
55�MF

dry .
If there are several pores (Figure 3b and 3c), the approach is still

the same. If the area of the stiff pores (not including the crack) pro-
jected into the XY-plane is comparable or larger than the area of the
crack alone, then the thickness of the extended crack can be increased
to make the model softer in ½H33�dry, ½H44�dry, and ½H55�dry com-
ponents.

Frequency-dependent crack stiffness

The derivation of the frequency-dependent normal component
½H 0

33ðωÞ�MF of the modified frame contribution matrix is provided
in Alkhimenkov and Quintal (2021). (Maple script also is provided
to reproduce and extend the derivation.) In this derivation, the aniso-
tropic Gassmann’s equations are used to calculate the moduli
considering the crack as being saturated, given that the compliance
contribution matrix of the thin crack is described by two parameters
only (see expression 7). Here, we directly report the resulting
expression (Alkhimenkov and Quintal, 2021),

½H 0
33ðωÞ�MF ¼ ðKg − K�

fðωÞÞϕcZ
Ap
n

ðKg − K�
fðωÞÞϕc þ K�

fðωÞKgZ
Ap
n

; (8)

where ϕc is the compliant porosity (crack porosity), ZAp
n is the nor-

mal apparent compliance of the crack, K�
fðωÞ is the frequency-

dependent fluid bulk modulus, and Kg is the bulk modulus of
the solid grains. The apparent tangential crack compliance is
ZAp
t ¼ ½H 0

44�MF
dry ≡ ½H 0

55�MF
dry . If the frequency of the applied strain

boundary conditions is low, then the crack is in a relaxed state and

½H 0
33ð0þÞ�MF ¼ ZAp

n : (9)

If the frequency is high, then the crack is in an unrelaxed state and

½H 0
33ðþ∞Þ�MF ¼ 0: (10)

The full expression to calculate K�
fðωÞ is given in the next section.

Extension for cracks with finite thickness

Here, we repeat the method presented by Alkhimenkov and Quin-
tal (2021) to calculate the normal apparent crack compliance for a
crack with a finite thickness. If the crack thickness is not so small
(i.e., if the aspect ratio is larger 0.0025), then the expression 10 is
not equal to zero. A small nonzero value of Zfth

n will be present:
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lim
ω→þ∞

½H 0
33ðωÞ�MF ¼ ½ZAp

n �fth: (11)

The normal apparent crack compliance becomes

½ZAp
n �f ¼ ZAp

n − ½ZAp
n �fth: (12)

The only modification that is needed is a slight change in expression
8 by including the additional compliance ½ZAp

n �fth:

½H 0
33�MF ¼ ðKg − K�

fðωÞÞϕc½ZAp
n �f

ðKg − K�
fðωÞÞϕc þ K�

fðωÞKg½ZAp
n �f þ ½ZAp

n �fth:

(13)

Step 2: Relaxation of the crack stiffness

Fluid pressure diffusion behavior in the crack strongly depends
on the portion of the crack circumference connected to the stiff pore
as shown in Figures 2 and 3. Furthermore, high fluid pressure
anomalies in the regions close to the connected stiff pores dramati-
cally change the shape of the attenuation curve 1=Q (Figures 2h and
3f). The characteristic frequency also is different for different pore
geometries even though the crack aspect ratio stays the same
(Figures 2h and 3f). All of these observations obtained from the
3D numerical solutions allow us to revise the previous qualitative
and quantitative description of the squirt flow physics. By analyzing
the numerical results (Figures 2 and 3), we find that the character-
istic frequency is different for radial and approximately 1D fluid
pressure diffusion. Then, we analyze analytical solutions for the
fluid pressure considering radial and 1D fluid pressure diffusion;
we find out that the solutions for crack stiffness considering 1D
fluid pressure diffusion provide us with an excellent approximation
for pore space geometries presented in the present study. Next, we
provide a new expression for the crack stiffness relaxation function.
Only if the pore space geometry uses radial fluid pressure diffusion
(big pore and 8/9 torus geometries), expressions for radial fluid
pressure diffusion should be used. (They are presented in Appen-
dix A). We also revise the parameters which control the character-
istic frequency of squirt flow.

Fluid pressure diffusion in a layer

For a 1D configuration, we assume that fluid flow takes place in
the x-direction in an infinite-strip layer (i.e., infinite length in the

y-direction); lsq and hsq are the width and thickness of the layer,
respectively. We set the following boundary conditions: the com-
pression sinusoidal strain ϵc as a function of frequency is applied
to the walls of the layer and the zero fluid pressure is applied at the
edge of the layer (see step 2 in Figure 4 for the 1D layer configu-
ration and applied boundary conditions). The solution for the fluid
pressure p in the layer is frequency dependent. The 1D version of
equation 23 in Alkhimenkov and Quintal (2021) for the fluid pres-
sure can be written as

∂2p
∂x2

− k2p ¼ −k2Kfϵc; (14)

where

k ¼ 2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3iωη=ðKf þ

4

3
iωηÞ

r
(15)

is a function of the rheology of the layer (e.g., Tsai and Lee, 1998)
andKf is the fluid bulk modulus. For the derivation of the solution 14
with zero stress at the x ¼ lsq boundary condition, we use the elastic-
viscoelastic correspondence principle (Hashin, 1970). A full deriva-
tion is available in a permanent repository (Maple script and a PDF
with derivations). The resulting solution is

K�
fðωÞ ¼ Kf þ

4

3
iωη −

ðKf − 2
3
iωηÞ2

ðKf þ 4
3
iωηÞ

tanhðk̄3Þ
k̄3

; (16)

where η is the fluid shear viscosity and

k̄3 ¼
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3iωη=

�
Kf þ

4

3
iωη

�s
: (17)

Note that solution 16 is the same as presented by Tsai and Lee (1998).

The squirt flow aspect ratio αsq

The squirt flow length lsq is the distance between the two points
p1 and p2; p1 is the most distant point (p1) in the crack from the
pore(s) and p2 is the point where crack is connected to a pore (see
Figure 6). The squirt flow thickness hsq is the crack aperture. For
realistic cracks, the aperture varies due to asperities, so the mini-
mum value of the aperture of the crack should be used (Lissa et al.,

2020). Finally, the parameter controlling the
characteristic frequency is the squirt flow aspect
ratio αsq:

αsq ¼ 1

2

hsq

lsq
: (18)

Figure 6 illustrates the definition of the squirt
flow length parameter lsq for different geometries.
For models with one sphere and four spheres, the
expressions 16 (i.e., 1D fluid pressure diffusion)
and 8 for the crack stiffness relaxation should
be used. Note that the squirt flow length in the
model with one sphere is twice that in the model
with four spheres (because lsq is the distance be-
tween the two points p1 and p2 [Figure 6]). For

Figure 6. Sketch illustrating the definition of the squirt flow length lsq for different
geometries.
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the big torus or 8/9 torus models, the expressions A-1 and 8 should be
used because the fluid pressure diffusion is mostly radial. The char-
acteristic frequency in the case of 1D fluid pressure diffusion (expres-
sion 16) is at slightly lower frequencies compared with the case of the
radial fluid pressure diffusion for the exact same squirt flow length
lsq. If the crack has finite thickness, then the expression 13 should be
used instead of the expression 8.

Step 3: Stiffness of the fully saturated model

Once the effective compliance matrix for the modified frame is
calculated using the expression 2, we saturate the modified frame
moduli with a fluid at each frequency using anisotropic Gassmann’s
equations (Gassmann, 1951) (see expression 3):

½C�
mnðωÞ�sat ¼ ð½S�mnðωÞ�MFÞ−1 þ αmαnM; (19)

αm ¼ 1 −
�X3

n¼1

CMF
mn

�
=Kg=3; (20)

for m ¼ 1; 2; 3 and α4 ¼ α5 ¼ α6 ¼ 0, and where

M ¼ ðϕ=Kf þ ð1 − ϕÞ=Kg − K�=K2
gÞ−1; (21)

K� ¼ 1

9

X3
m¼1

X3
n¼1

CMF
mn ðωÞ; (22)

where ϕ is the total porosity of the rock without the compliant
porosity (which is neglected because it is usually two or more orders
of magnitude lower than the stiff pore’s porosity), K� is the gen-
eralized bulk modulus of the modified frame, and αm is the
Biot-Willis coefficient.

NUMERICAL VALIDATION OF THE
ANALYTICAL MODEL

Figure 7 shows results for the real part of the ½C�
33ðωÞ�sat complex-

valued component of the stiffness matrix for the big pore model ob-
tained with the present analytical model, the standard linear solid
model (equation 50 in Alkhimenkov and Quintal, 2021), the modified
model of Collet and Gurevich (2016) (model B, with correct limits),
the approximation of the modified model of Collet and Gurevich
(2016) (model B), and the numerical solution. The modified model
of Collet and Gurevich (2016) is presented in Appendix B of Alkhi-
menkov and Quintal (2021).
Figure 8 shows results for the real part of the complex-valued com-

ponent of the stiffness matrix for the big pore model and the models
with one sphere and four spheres. Our analytical models are in good
agreement with numerical solutions confirming that they can
adequately and accurately describe the frequency-dependent stiffness
and attenuation associated with squirt flow. We provide MATLAB
routines to reproduce Figures 7 and 8 in the “Data andmaterials avail-
ability” section.

Figure 7. Numerical and analytical results for the big pore model.
The crack aspect ratio is α ¼ 0.005. (a) Real part of the stiffness com-
ponent and (b) corresponding dimensionless attenuation. On the
right, the geometry of the pore space is shown. N is a parameter used
for the branching function and this is explained in Appendix A.

Figure 8. Numerical and analytical results for the big pore model
and the models with four spheres and one sphere. The crack aspect
ratio is α ¼ 0.01. (a) Real part of the stiffness component and
(b) corresponding dimensionless attenuation. On the right, geom-
etries of the pore space are shown.
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DISCUSSION

Do we need a distribution of crack aspect ratios for a
smooth transition?

Figure 9 shows results for the real part of the ½C�
33ðωÞ�sat

complex-valued component of the stiffness matrix for the big pore
model, the big pore model incorporating a sphere in the center, and
the crack with the sphere in the center. These results show that even
a single crack interconnected to one or several pores can produce
very smooth transition from low to high frequencies of 1=Q. (The
critical frequency is spread over some intervals.)

The characteristic frequency

Although the geometric crack aspect ratio is kept constant, the
effective crack aspect ratio may increase if the fluid path length de-
creases. We conclude that a key factor controlling the characteristic
frequency is a parameter that we call here the squirt flow length, which
corresponds to a 1D fluid pressure diffusion path in the considered
models. This parameter describes well the characteristic frequency
and is related to the crack length, and the number of connections
to other pores. For a more accurate description of the characteristic
frequency as a function of these geometric characteristics of the pore
space, a systematic analysis will be carried out in the future.

Applicability of the classical pore geometry

To date, most of the analytical models trying to quantitatively
model seismic dispersion and attenuation are based on the classical
geometry: a crack interconnected to a toroidal pore (Dvorkin et al.,
1995; Gurevich et al., 2010; Alkhimenkov and Quintal, 2021).
However, this pore geometry cannot be used to represent the pore
space of a rock due to a specific reason. The stiffness of a porous
rock (where cracks can be represented by grain-to-grain contacts)
can be parameterized by three components (for simplicity): a rock
matrix, pores, and cracks. Generally speaking, the more pores, the
softer the rock. At the same time, the more cracks, the softer the
rock. As a result, the pores and cracks independently control the
rock stiffness. However, the rock model represented by a crack in-
terconnected to a toroidal pore does not support this. Alkhimenkov
and Quintal (2021) show that the stiffness of a such model is mainly
controlled by the toroidal pore; if the crack thickness is increased by
a factor of 50, the resulting stiffness will stay the same. Therefore,
this model should no longer be used. Another disadvantage of this
geometry is that the accurate description of seismic dispersion and
attenuation requires cumbersome expressions, which are difficult to
analyze (Appendix A).
Instead, we present another rock model where a crack is partially

connected to several pores; in such configuration, the rock stiffness is
independently controlled by the contributions of a crack and pores,
which is in agreement with the observation from real rocks. Further-
more, the resulting analytical expressions of seismic dispersion and
attenuation are very simple and include only algebraic operations and
one trigonometric function. Nevertheless, this new analytical model
is in good agreement with the 3D numerical solution for the exact
same geometry.

Analytical model for isotropic rocks

The results presented in this paper can be directly applied to model
seismic attenuation and dispersion caused by squirt flow in fluid-sa-
turated isotropic rocks. A viscoelastic response of a fluid-saturated
isotropic rock can be described by the two parameters, bulk
KsatðωÞ and shear μsatðωÞ moduli. The expressions for the unrelaxed
moduli of a fluid-saturated isotropic rock (Kuf and μuf) can be found
in Mavko and Jizba (1991) (expression 10 for Kuf and expression 22
for μuf). Or, as an alternative, expression 5 for Kuf from Gurevich
et al. (2010) can be used. In the expressions for Kuf and μuf , one can
replace the fluid bulk modulus with the viscoelastic relaxation func-
tion presented in this study (expression 16). The resulting expressions
are, in fact, the moduli of the modified frame as a function of fre-
quency (KmfðωÞ and μmfðωÞ). Then, one can saturate the modified
frame moduli with a fluid at each frequency using isotropic Gass-
mann’s equations (Gassmann, 1951). As a result, bulk KsatðωÞ
and shear μsatðωÞ moduli of a fully saturated rock are derived. In this
model, the characteristic frequency is controlled by the squirt flow
aspect ratio αsq (expression 18). This isotropic model still requires
further validation against 3D numerical solutions.

CONCLUSION

We have extended the analytical model for seismic dispersion and
attenuation caused by squirt flow that was presented in part 1 to
more complex geometries of the pore space, where the crack is
partially connected to one or multiple spherical pores. This geometry

Figure 9. Numerical results for the big pore model, the big pore
model incorporating a sphere in the center, and the crack with the
sphere in the center. The crack aspect ratio is α ¼ 0.01. (a) Real part
of the stiffness component and (b) corresponding dimensionless at-
tenuation. On the right, the geometries of the pore space are shown.
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is much more closely representative of a rock pore space geometry
than the classical geometry where the crack edge is fully connected to
a toroidal pore. Our analytical model is in good agreement with ac-
curate 3D numerical simulations for a range of different geometries
of the pore space. In our analytical model, we provide a general ap-
proach to calculate the elastic moduli of interconnected crack and
pores. Even though this approach is an approximation, the result
is much more accurate compared with previously published solutions
where the interconnectivity of cracks and pores is ignored in the cal-
culation of the model compliances. We also provide a good approxi-
mation for the relaxation of the crack stiffness due to fluid pressure
diffusion, which makes our model accurate for the whole frequency
band for different geometries. We observe that the key factor control-
ling the characteristic frequency is the squirt flow aspect ratio, which
is the ratio between the squirt flow thickness and two times the squirt
flow length, where the latter corresponds to a 1D fluid pressure dif-
fusion path that can be different in the considered models, and not
simply to the crack length as in the classic model of a crack connected
to a toroidal pore. More precisely, the squirt flow length is the length
between the point in the crack at the maximum distance from all pores
and the point where the crack edge is connected to a pore. The squirt
flow thickness is equal to the crack aperture if this one is constant.
This study redefines the quantitative and qualitative description of
seismic attenuation and velocity dispersion due to squirt flow.
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APPENDIX A

RADIAL FLUID PRESSURE DIFFUSION
IN A CRACK

Fluid pressure diffusion in a penny-shaped crack due to the ap-
plied strain to the walls of the crack can be radial. For such a con-
figuration, the solutions are given by Murphy et al. (1986) for a
boundary condition to the crack edge taking into account a finite
volume of the pore, and the solutions are given by Chalhoub and
Kelly (1990) and Tsai and Lee (1998) for zero fluid pressure boun-
dary condition to the crack edge. However, if the sinusoidal strain is
applied to the walls of the full model consisting of a crack con-
nected to a torus and embedded into a solid material, the resulting
fluid pressure diffusion in a crack is different due to the presence of
the torus (high pressure “ring anomaly” in Figure 2f). Alkhimenkov
and Quintal (2021) propose an approximation to the relaxation of
the fluid pressure for the classical geometry by using the solution
for a crack from Murphy et al. (1986), Chalhoub and Kelly (1990),
and Tsai and Lee (1998) with a modified high-frequency asymptote.
Our numerical analysis for a pore represented by fractions of a torus

(Figure 2b–2f) shows that the high-frequency asymptote is different
for models with different fractions of a torus. In the present study,
we extend and improve the solution of Alkhimenkov and Quintal
(2021) to include the models having a crack connected to fractions
of a torus (Figure 2b–2f). We approximate the solution for crack
stiffness relaxation via the frequency-dependent fluid bulk modulus
K�

fðωÞ using the following branching function:

K�
fðωÞ ¼ Kf − ðKf − y · KLF

f Þ=½1 − ζ þ ζð1þ iωτ=ζ2ÞN �;
(A-1)

where y ¼ 0 for the solution considering zero fluid pressure at the
crack tip or y ¼ 1 for the solution considering nonzero fluid pres-
sure boundary condition at the crack tip. The parameter N denotes
the slope of the high-frequency asymptote 1=Q of the fluid bulk
K�

fðωÞ relaxation. If N ¼ 0.5, then the expression A-1 reduces
to the expression 33 from Alkhimenkov and Quintal (2021), which
is approximately valid for a toroidal pore. If N ≠ 0.5, then the high-
frequency asymptote of K�

fðωÞ relaxation is different; N is a func-
tion of the fraction of the crack circumference which is connected to
a (few) pore(s). A better result for a toroidal pore is achieved by
taking N ¼ 0.45, resulting in the slope of the 1=Q high-frequency
asymptote of ≈ω−4=10 (Figures 7 and 8). For 8/9 torus model,
N ¼ 0.55, resulting in the slope of the 1=Q high-frequency asymp-
tote of ≈ω−4.5=10 (Figure A-1). If N > 0.55, then the resulting slope
is> ≈ω−4.5=10. However, already for 6/9 torus model, the character-
istic frequency shifts to lower frequencies and the expression 16 for
a 1D fluid pressure diffusion should be used.

Figure A-1. Numerical and analytical results for the 8/9 torus
model: (a) Real part of the stiffness component and (b) correspond-
ing dimensionless attenuation. On the right, geometries of the pore
space are shown.
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We have derived the expressions for ζ and τ analytically using the
Maple symbolic environment. The resulting expressions are simple
but cumbersome; they are given in material listed in the “Data and
materials availability” section (MATLAB and Maple scripts, a PDF
with a derivation). The characteristic frequency of K�

fðωÞ in the
crack is

fcrackc ¼ 4ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KfKLF

f

q
η

α2: (A-2)

The apparent fluid bulk modulus at low frequencies KLF
f is

KLF
f ¼ VcrKf

Vcr þ Vpor

: (A-3)

A more accurate (and more cumbersome) expression for KLF
f also is

provided in material listed in the “Data and materials availability”
section.
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