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Abstract

Background

Non-coding RNAs (i.e., miRNAs) play a role in the development of obesity and related

comorbidities and the regulation of body weight.

Objective

To identify candidate miRNA biomarkers throughout omics approaches in order to predict

the response to specific weight-loss dietary treatments.

Design

Genomic DNA and cDNA isolated from white blood cells of a subset from the RESMENA

nutritional intervention study (Low-responders (LR) vs High-responders (HR)) was hybrid-

ized in Infinium Human Methylation450 BeadChip and in Illumina Human HT-12 v4 gene

expression BeadChips arrays respectively. A bioinformatic prediction of putative target sites

of selected miRNAs was performed by applying miRBase algorithms. HEK-293T cells were

co-transfected with expression vectors containing the 3’-UTR of candidate genes to validate

the binding of miRNAs to its target sites.

Results

134 miRNAs were differentially methylated between HR and LR in the methylation array,

whereas 44 miRNAs were differentially expressed between both groups in the expression

array. Specifically, miR-1237, miR-1976, miR-642, miR-636, miR-612 and miR-193B were

simultaneously hypomethylated and overexpressed in HR. miR-612 and miR-1976 showed

greatest differences in methylation and expression levels, respectively. The bioinformatic

prediction revealed that TP53 was a putative target gene of miR-612 and CD40 of miR-
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1976. Moreover, TP53 was downregulated in the expression array when comparing HR vs

LR expression levels adjusted by sex, diet, age and baseline weight, and CD40 showed a

statistical trend. Furthermore, gene expression levels of TP53 and CD40 in white blood

cells, when measured by qPCR, were also downregulated in HR. Finally, miR-612 and miR-

1976 potently repressed TP53 and CD40 respectively by targeting its 3’-UTR regions.

Conclusion

miR-612 and miR-1976 levels could be prospective biomarkers of response to specific

weight-loss diets and might regulate the gene expression of TP53 and CD40.

Introduction

The rates of obesity incidence have doubled in many countries since 80’s [1]. This growing

prevalence and the related disease burdens highlight the need to understand not only the

involved process but also to identify and evaluate biomarkers to address this problem. In the

last decades, several types of biomarkers have been investigated in relation to their potential

application in cardiovascular disease, infections, immunological and genetic disorders, and

cancer diagnosis and management [2]. Concerning obesity, different biomarkers of response

to different dietary approaches have been identified [3–5].

MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) of 18–25 nucleotides in length,

that bind to a 3’-UTR target mRNA resulting usually in post-transcriptional regulation of gene

expression [6] via transcript degradation (when the complementarity is nearly perfect) and/or

inhibition of translation or deadenylation (when there are some mismatches in the binding).

On the other hand, miRNAs isolated from white blood cells [7] or directly from the circula-

tion [8] are a good source of biomarkers, and their implication in obesity-related diseases has

been well documented [9]. The identification of reliable biomarkers of response to anti-obesity

treatments is of crucial importance in order to boost motivation, increase weight loss and

maintenance success, and save time and money [10]. In this context, the use of biomarkers

that predict the efficacy of weight loss treatments is considered a milestone in the design of

precision nutrition strategies against obesity and related comorbidities [11].

In this study, we aimed to identify miRNAs from blood white cells that could be predictive

of the outcome of a specific weight-loss intervention. For this purpose, in order to evaluate

the interaction between dietary patterns targeting obesity and related transcriptomic biomark-

ers (miRNAs), we used a miRNAomic approach including methylation and expression

microarrays.

Materials and methods

Subjects and study protocol

The current study was conducted in a subsample of the RESMENA (Metabolic Syndrome

Reduction in Navarra) nutritional intervention trial. In this study, 96 adults with metabolic

syndrome underwent two energy-restricted dietary patterns (AHA diet as reference diet, and

RESMENA diet as intervention diet) during 8 weeks, both with an energy restriction of -30%

of the studied requirements [12]. As no differences were found neither in anthropometric or

biochemical variables between groups after the intervention, both dietary groups were merged

for further analyses to increase the statistical power of the study, classifying subjects in “high-
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responders” (HR) when weight loss was�8%, and “low responders” (LR) when weight loss

was�8%, as previously published [4].

The study was performed following the CONSORT 2010 guidelines and properly approved

by the Ethics Committee of the University of Navarra (065/2009) and registered at www.

clinicaltrials.gov (NTC01087086). All participants provided written informed consent for

participation.

Microarray analyses

Genomic DNA isolated from white blood cells of a subpopulation (31 LR vs 16 HR) of the

RESMENA cohort was hybridized in an Infinium HumanMethylation450 BeadChip array

(Illumina HM450K). Also, RNA from the same cells (14 LR vs 10 HR) was reverse transcribed

and hybridized in an Illumina Human HT-12 v4 gene expression BeadChip array. Microarray

data were analysed using Limma package in R [13]. Corrections for multiple comparisons

were carried out in both microarrays (expression and methylation) by using the Benjamini-

Hochberg procedure.

Bioinformatic study

A bioinformatic study of putative target sites of selected miRNAs was performed by applying

miRBase algorithms (www.mirbase.org). For each miRNA, miRBase provides references in lit-

erature, genomic coordinates and links to databases of predicted and validated miRNA target

sites such as DIANA-microT, microRNA.org, miRDB, RNA22, TargetMiner and TargetScan

[14].

MassArray Epityper validation

In order to validate the results of the methylation microarray, miR-612 methylation levels of

47 subjects selected from the subpopulation sample were analyzed by MassArray EpiTyp0065r

(Sequenom, San Diego, CA, USA) after designing specific primers encompassing 6 CpGs sites

(F: GTTTTATGGTAGTGGGAAGGGATTT; R: AATAAAACCCAAACAACAAACAATC).
This method has been previously applied to validate methylation microarray data [15].

Luciferase reporter constructs

To verify if selected miRNAs regulate the 3’-UTR of the two predicted target genes, expression

vectors containing the 3’-UTR region of each gene provided by the bioinformatic prediction

were designed. To amplify the 3’-UTR region of TP53 and CD40 genes, specific primers in-

corporating NheI and XbaI restriction enzymes sites were designed. The PCR products were

subsequently cloned downstream of the firefly luciferase (luc) gene in the pmiR-GLO Dual-

Luciferase miRNA Target Expression Vector (Promega, Madison, WI, USA) (S1 Fig). Primer

sequences are shown in Table 1.

Table 1. Primer sequences used to amplify the 3’-UTR region of target genes and the amplicon length.

CD40-F 5’-TTAGCTAGCACTTTACATGGATGCCAACC-3’ 766 bp

CD40-R 5’-TTATCTAGACACCACTCTTCGAGCTGT-3’

TP53-F 5’-TTAGCTAGCGCCAAACCCTGTCTGACAA-3’ 1010 bp

TP53-R 5’-TTATCTAGAAACCCAGGTATCCTGCCA-3’

F: Forward. R: Reverse. Underlined: NheI and XbaI target sites

https://doi.org/10.1371/journal.pone.0201217.t001
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Cell culture

Human HEK-293T cells were purchased from the ATCC and maintained in Dulbecco’s Modi-

fied Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 U/

ml penicillin-streptomycin at 37ºC in a 5% carbon dioxide humidified atmosphere.

Dual-luciferase reporter assays

To assess miRNA-target interactions, HEK-293T cells were seeded in 96-well plates at a den-

sity of 20000 cells per well. After 8 h, cells were transiently co-transfected with either 0.25 μg of

empty pmiR-GLO, pmiR-GLO-TP53-3’-UTR, or pmiR-GLO-CD40-3’-UTR, and 7.5 pmol of

miR-612 and miR-1976 mimics using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

according to manufacturer’s protocol. Firefly and Renilla luciferase activities were evaluated 24

h after co-transfection using a Dual-Luciferase Reporter Assay System (Promega, Madison,

WI, USA). Firefly luciferase activity was normalized using Renilla luciferase activity. Determi-

nations were carried out in three independent experiments, each assayed in triplicate.

RNA isolation and quantitative real-time PCR

RNA from white blood cells was extracted using TRIzol reagent (Life Technologies, Carlsbad,

CA, USA) according to manufacturer’s protocol. cDNA was synthesized from 0.5 ug of total

RNA using random primers and MultiScribeTM MuLV reverse transcriptase (Applied Biosys-

tems, Foster City, CA, USA). For mature miR-1976, 20 ng of RNA were reverse transcribed by

using a Taqman MicroRNA RT kit (Applied Biosystems) and miRNA-specific primer sets sup-

plied by the manufacturer. Quantitative real time PCR (qPCR) was performed with the ABI

prism 7900HT Sequence Detection System (Applied Biosystems) using Taqman probes. Both

mRNAs and miRNAs relative expression was calculated with the 2-ΔΔCT method and normal-

ized using GAPDH and U48 mature miRNA, respectively.

Statistical analysis

Differences between groups were calculated using the Student’s t-test or an ANCOVA test

when indicated. Data are presented as mean ± SEM. p-values less than 0.05 were defined as sta-

tistically significant. Volcano plots were created by plotting the negative log10 of the p-value

(y axis) and the mean differences between groups for each variable (x axis). An effect size of

±1.5% in the methylation differences and an effect size of ±1% in the expression differences

were considered of interest. Statistical analyses and graphics were performed using SPSS 15.0

software (SPSS Inc., Chicago, IL, USA) and GraphPad Prism version 6.0C (La Jolla, CA, USA).

Results

miR-612 and miR-1976 are hypomethylated and overexpressed in HR

When analyzing array data, 134 miRNAs differentially methylated (87 hypomethylated and 47

hypermethylated), and 44 miRNAs differentially expressed (10 downregulated and 34 upregu-

lated) were identified when comparing HR and LR (S1 and S2 Tables). From them, miR-1237,

miR-1976, miR-642, miR-636, miR-612 and miR-193B were simultaneously hypomethylated

and overexpressed in HR (Fig 1A and 1B). miR-612 showed significant difference in expres-

sion levels (1.43% effect size; p = 0.019) and the greatest difference in methylation levels (10%

effect size; p = 0.003). Likewise, miR-1976 showed also significant difference in methylation

levels (3.24% effect size; p = 0.041) and greatest differences in expression levels (12% effect

size; p = 0.043). Although nominal statistically differences in miR-612 and miR-1976 between

HR and LR were found, they disappeared after correction for multiple comparisons
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(Benjamini-Hochberg). Nevertheless, as these miRNAs showed notable differences in both

methylation and expression microarrays, they were selected for further evaluation.

TP53 is a putative target gene of miR-612

To select putative miRNAs implicated in the response to the diet, a bioinformatic study using

miRBase algorithms assigning p-values to putative target binding sites of those miRNAs simul-

taneously hypomethylated and overexpressed in arrays was carried out. We then focused on

obesity-related genes and filtered the target sites of each miRNA. We noted that TP53 was pre-

dicted to be regulated by miR-612. EpiTyper analysis of the DNA methylation levels of miR-

612 in white blood cells showed a positive correlation (p< 0.001) with respect to the DNA

methylation levels measured by microarray (Fig 2A). Moreover, TP53 was downregulated in

the expression array (p = 0.024) when comparing HR vs LR expression levels adjusted by sex,

diet, age and baseline weight (Fig 2B). Furthermore, TP53 levels were also significantly lower

in HR than in LR when measured by qPCR (p = 0.04), supporting the idea that miR-612 might

affect TP53 gene expression (Fig 2C). Finally, cells co-transfected with the pmiR-GLO-TP53-

3’-UTR vector and miR-612 showed significantly lower firefly/Renilla activity (p< 0.001) than

controls transfected only with the pmiR-GLO-TP53-3’-UTR vector (Fig 2D), confirming that

TP53 is a target gene of miR-612.

CD40 is a putative target gene of miR-1976

Similarly to miR-612, we carried out the same approach to identify putative obesity-related tar-

get genes of miR-1976. According to miRBase, CD40 could be regulated by miR-1976. First,

we found that miR-1976 expression profile in white blood cells was statistically different

between HR and LR (p = 0.019) and also showed a positive correlation (p = 0.012) with miR-

1976 expression levels measured by microarray (Fig 3A–3B). CD40 expression level showed a

trend toward significance (p = 0.069) when comparing HR vs LR adjusted by sex, diet, age and

baseline weight (Fig 3C). Interestingly, gene expression levels of CD40 were also significant

negatively correlated (p = 0.023; R = -0.505) with miR-1976 expression profile (Fig 3D).

Fig 1. Identification of miR-612 and miR-1976 in the methylation and expression microarrays. A) Volcano plot of miRNAs differentially methylated between HR

and LR. B) Volcano plot of miRNAs differentially expressed between HR and LR.

https://doi.org/10.1371/journal.pone.0201217.g001
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Furthermore, CD40 expression in white blood cells, when measured by qPCR, were signifi-

cantly lower in HR than in LR (p = 0.02) (Fig 3E), suggesting an interaction between miR-

1976 and CD40. Similarly, cells co-transfected with the pmiR-GLO-CD40-3’-UTR construct

and miR-1976 showed also a significantly reduction in firefly/Renilla activity (p = 0.014) than

controls transfected only with the expression vector (Fig 3F), confirming that CD40 is a target

gene of miR-1976.

Discussion

In this study, a miRNAomic approach was performed in order to find transcriptomic bio-

markers (especially miRNAs) associated to the response to specific weight loss diets. It is well

established that miRNAs can regulate the expression of genes by binding to its target sites, usu-

ally resulting in degradation or translation inhibition [6]. miRNAs have been implicated in

many development and diseases processes [16], including obesity and associated comorbidities

[17]. For example, in type 2 diabetes, a well-known obesity-related disease, several miRNAs

are down or upregulated [18]. miR-103 and miR-107 have been reported to contribute to adi-

pose growth by accelerating adipocyte differentiation, and both are upregulated in obese indi-

viduals [19]. Moreover, several miRNAs have been defined as important modulators in human

Fig 2. Validation of miR-612 and its target gene TP53. A) Correlation between miR-612 methylation levels by microarray and EpiTyper. B) Gene expression of TP53
in HR and LR in the microarray. C) Validation of TP53 expression profile in HR and LR white blood cells by qPCR, adjusted for age, sex, diet and baseline body weight.
� p< 0.05 from ANCOVA test. D) Luciferase activity assay of pmiR-GLO-TP53-3’-UTR after co-transfection with miR-612. Normalized luciferase activity is presented

as the mean ± SEM of three separate triplicate experiments. ��� p< 0.001 from Student t-test.

https://doi.org/10.1371/journal.pone.0201217.g002
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obesity-related inflammation [20] or white adipose tissue inflammation [21], adipogenesis and

adipose tissue signaling [22]. Additionally, changes in miRNA levels in plasma, serum, urine

and other fluids have been associated with different diseases such as prostate cancer [23], blad-

der cancer [24] or cell carcinoma [25]. Thus, the identification of circulating miRNAs could

serve as useful clinical biomarkers of diagnosis and prognosis of several diseases [26].

The present study has demonstrated that miR-612 and miR-1976 bind to TP53 and CD40
respectively and regulate their expression. TP53 gene encodes p53 protein, a tumor suppressor

whose deficiency enhances the initiation and/or progression of cancer [27]. Noticeably, Mina-

mino et al. found that the expression of proinflammatory cytokines in mice decreased and

insulin resistance improved after inhibition of p53 in adipose tissue, suggesting an important

role of p53 in the regulation of obesity-related inflammation and insulin resistance [28]. Fur-

thermore, they also evidenced that adipose tissue from subjects with diabetes showed higher

levels of p53 protein compared with tissue from nondiabetic subjects, and that the expression

of inflammatory cytokines was also significantly increased in adipose tissue.

Moreover, ob/ob mice show higher levels of p53 than wild type mice, and the disruption of

p53 in ob/ob mice restores the expression of lipogenic enzymes [29]. Conversely, Molchadsky

et al. showed that p53 may exert either a positive or negative effect according to the adipogenic

differentiation program [30]. In our study, those subjects who responded better to the diet had

lower expression of TP53 than LR. It can be speculated that LR had higher inflammatory state

than HR, and that this inflammation could trigger an activation of TP53.

Fig 3. Validation of miR-1976 and its target gene CD40. A) miR-612 expression levels by qPCR in HR and LR, adjusted for age, sex, diet and baseline body weight. �

p< 0.05 from ANCOVA test. B) Pearson’s correlation between miR-1976 expression levels in the microarray and by qPCR, adjusted by sex, age, baseline body weight

and diet. C) Gene expression of CD40 in HR and LR in the microarray. t p = 0.069. D) Pearson’s correlations between miR-1976 expression levels and its target gene

(CD40) in the microarray, adjusted by sex, age, baseline body weight and diet. E) Validation of CD40 expression profile in HR and LR white blood cells by qPCR

adjusted for age, sex, diet and baseline body weight. � p< 0.05 from ANCOVA test. F) Luciferase activity assays of pmiR-GLO-CD40-3’-UTR after co-transfection with

miR-1976. Normalized luciferase activity is presented as the mean ± SEM of three separate triplicate experiments. � p< 0.05 from Student t-test.

https://doi.org/10.1371/journal.pone.0201217.g003
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In white blood cells, TP53 is downregulated in obese subjects with type 2 diabetes after bar-

iatric surgery, suggesting that TP53 is upregulated in white blood cells of obese subjects [31].

Taking all these data together, our findings of decrease whole blood TP53 mRNA in HR are

consistent with these studies.

Several TP53-directed miRNAs have been experimentally and in silico identified. Some of

these miRNAs that target TP53 are miR-125b, miR-504, miR-1285, miR-92, miR-141, miR-380-

5p, miR-15a, miR-16, miR-25, miR-30d, miR-200a, miR-453, miR-98, miR-19b, miR-518c and

miR-638 [32]. Interestingly, miR-1285 has the same seed sequence as miR-612. In a previous

study, Tian et al. tried to validate the binding of miR-612 to TP53 and found that the luciferase

activity of the p-LUC-p53-3’-UTR reporter did not change when transiently transfected with

miR-612 [33]. However, in the present study, our data show that miR-612 binds to the 3’-UTR

of TP53 and that there exists a negative relationship between miR-612 levels and TP53 expres-

sion (in blood and in the microarray), indicating that miR-612 could regulate TP53 expression.

On the other hand, CD40 is a surface glycoprotein expressed in hematopoietic and nonhe-

matopoietic cells, and has an important role in the ability to stimulate adaptive immunity [34].

Concerning obesity, CD40 is highly expressed in leukocytes, adipocytes and the stromal cells

of adipose tissue [35], and is involved in the regulation of adipose tissue metabolism [36]. Fur-

thermore, soluble CD40L levels have been positively correlated with obesity and metabolic

syndrome [37,38], and studies in rodents have shown that vascular inflammation and athero-

sclerosis could be prevented by CD40 deficiency [39,40]. There exists evidence that CD40
could be regulated by miRNAs [41,42], even though to date there are no articles showing a

miRNA-regulation of CD40 in obese subjects.

To our knowledge, this is the first study to explore the relationships between miR-612 and miR-

1976 and TP53 and CD40, respectively, and was able to connect the expression of these miRNAs

and genes with the response to a dietary intervention in obese subjects. However, further studies

are needed to better understand the complex regulation of these miRNAs on their target genes.

Transcriptomic biomarkers of the response to specific dietary strategies are a first step towards the

personalization of weight-loss treatment, being miRNAs particularly relevant for this purpose.
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