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Abstract

Interest in lattice structures has soared in recent years thanks to the advances in the field of additivemanufacturing, which has led to increasingly complex designs and the production of parts which wasimpossible up to not long ago. These advances enabled the consistent manufacturing of smaller and smallerfeatures, reaching submilimetric scales and opening a path to create structures that mimic the cellularsolids of nature. This possibility attracted broad attention due to its applicability in the aerospace andbiomedical industries. On the one hand, lattice structures allow to create parts with outstanding stiffnessto weight ratios. On the other hand, these structures can be designed to have predefined stiffness andstrength values, which enables the production of parts with engineered mechanical properties.This is especially useful in the design of novel orthopedic implants. Traditionally, the implants havebeen monolithic parts of biocompatible metals such as Ti6Al4V, CoCr, pure Ti, etc. One problem of thisconcept is the mismatch between the stiffness of the host bone and the metallic implant, which createsthe so called stress shielding. Stress shielding occurs when the bone adjacent to the implant does nothave to withstand the main physiological loads because the much stiffer implant bears them in its place.Bone is a living tissue, which is created or resorbed (diluted in blood) depending on the loads to optimizeits functionality. Thus, the stiffness mismatch between bone and the implant leads to the bone resorptiondue to the lack of mechanical stimuli on the host bone. The bone surrounding the implant loses densityand weakens, which causes pain to the patient, affects implant stability, and may lead to the looseningof the implant.Lattice structures offer the possibility to create porous implants with tailored mechanical propertiesto match the stiffness of the surrounding bone, thus avoiding stress shielding and subsequent bone loss.Furthermore, lattice structures form porous parts with high surface to volume ratios, and this porosityenables the bone ingrowth within the implant, improving its fixation and long-term stability.Research of lattice structures for load bearing applications has been mainly devoted to understandtheir mechanical properties and to explore design possibilities that were not available with solid materials.This work is devoted to the development of tools to design lattice structures with controlled mechanicalproperties, as well as to deepen into the factors that affect such properties. Thus, the main purpose ofthis dissertation is to create lattice structures that mimic bone stiffness and could be implemented inorthopedic implants to avoid the stress shielding. In addition, orthopedic implants must withstand millionsof load cycles throughout the lifetime of the patients, thus the fatigue behavior of the structures was alsostudied in this thesis. Finally, the small feature sizes required to implement such structures in orthopedicimplants requires to reach the manufacturing limits of current additive manufacturing technologies, whichinduces important deviations from the actually designed geometry and in turn the mechanical properties.Another goal of this work is to understand the impact of such manufacturing deviations on the stiffness ofthe structures.

i



ii
The obtained results show that there are different possibilities to design structures with stiffness levelscomparable to bone. The developed analytical or semi-analytical models predict and enable to design themechanical properties of the structures for different topologies. These models can be used with personalizedbone data to mimic the bone stiffness of each patient, and the modeling of the complete stiffness matrixenables to implement such structures in optimization algorithms. Furthermore, the anisotropy of thestructures can also be controlled to adapt it to the complex loads that arise in various anatomical sites.Regarding dynamic loads, fatigue life prediction tools in literature were compared and adapted to improvetheir applicability, and a fatigue failure surface was developed to easily predict the fatigue life of thestructures. Moreover, it was concluded that hot isostatic pressing enhanced the fatigue strength of thestructures. Finally, the manufacturing deviations were studied, developing a methodology to consider theproximity to the nodes in the analysis of the imperfection level, and to include such imperfections in anumerical model that predicts the change of anisotropy in the structure.
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Chapter 1

Introduction

This introductory chapter gives a brief overview of what lattice structures are. First, the chapter introducesthe cellular solids, to give context and to better understand the origin of the lattice structure designs. Inaddition, some examples of such structures and their classification are presented. Afterwards, a literaturereview is carried out to have an idea of the current state of the research on lattice structures and themain topics and challenges.
1.1 Lattice structures

Cellular solids are defined as an assembly of cells with solid edges or faces, packed together so that theyfill space. Cellular solids are very common in nature, and can be found in very different environments [1].Some good examples of such natural materials are wood, cork, bone, or sponge (see Figure 1.1).

(a) (b)

(c) (d)
Figure 1.1: a) cancellous bone [2], b) structure of cork [3], c) balsa wood [1] and d) sponge [1].
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2 Chapter 1. Introduction
Additive manufacturing (AM) is the process of joining materials to make objects from 3D modeldata, usually layer upon layer, as opposed to subtractive manufacturing methodologies [4]. The advancesin AM in recent years have enabled the manufacturing of parts with increased complexity and smallerfeature sizes, mimicking some of the functionalities of cellular solids with mesoscale structures. Mesoscalestructures are cellular solids small enough to be modeled as an homogeneous continuum from themacroscopic point of view, therefore creating a metamaterial whose mechanical properties depend on thearchitecture of the structure. Thus, the higher control over the geometry has resulted in a new paradigm,bringing the possibility to rationally design mesostructures that can be used as metamaterials.These metamaterials can be considered composites made of a constituent material and void, andthey offer the possibility to design mechanical properties out of range of their constituent materials [5].These might include negative Poisson’s ratio [6, 7, 8] or negative thermal expansion coefficient [9, 10].Furthermore, these structures also enable to tailor mechanical properties with a high stiffness to weightratio, while implementing functionally graded metamaterials that can be adjusted according to specificloads [11, 12]. This has led to a growing interest in cellular structures in various fields such as biomedicalor aerospace, among others [13]. Figure 1.2 depicts some examples of their applications.

(a) (b)

(c)
(d)

Figure 1.2: a) Titanium aerospace part (Materialise) [14], b) heat exchanger (Ansys) [15], c)acetabullar cup [16] and d) cantilever beam [17].
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Cellular solids are commonly referred to as lattice structures in literature when they are engineeredfeatures for technological applications. Lattice structures can be classified according to two differentcriteria: periodicity and constituent element type. Lattice structures can be divided by the followingconstituents:
• Struts: The structures are formed by beams called struts, which connect node pairs to form thestructure.
• Shells: The structures are formed by a 3D shell with low thickness that fills the space.
• Plates: Intersecting plates in different orientations form the lattice structure.
• Skeletal: Structures formed by elements that do not fit in the previous categories, such as an equationthat describes the parts of the structure filled with material, or natural bone-like structures.
On the other hand, according to their periodicity, lattice structures can be divided in two groups:
• Stochastic: These structures do not follow a clear pattern in 3D space, but are formed by stochasticpatterns.
• Periodic: The structures are formed by a unit cell that is repeated in the 3D space to create thestructure.
Table 1.1 depicts some unit cells corresponding to periodic 3D lattice structures.

Struts Shells Plates Skeletal

Table 1.1: Periodic lattice structure types based on their constituent features [18, 19, 20, 21].
This work focuses on periodic lattice structures based on struts due to their capacity to mimic themechanical properties of various types of bones, making them suitable for orthopedic implant designs. Onthe other hand, the design of strut based structures is simpler than for other types, due to the complexnature of trigonometric functions used to define shell based and skeletal structures. In addition, they arealso easier to manufacture compared to the plate based structure because of the open pores of strut basedstructures. Figure 1.3 depicts some strut based unit cells which repeat in space to form structures. Thesewere were studied as metamaterials.
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(a) (b) (c)
Figure 1.3: Lattice structures manufactured by SLM [22, 23, 24].

1.2 Literature review

This section is devoted to analyze many of the aspects that influence lattice structures and theirapplicability in bone tissue engineering. Firstly, the use of AM is discussed to produce lattice structures,including the analysis of different types of AM technologies. Afterwards, the manufacturing deviations thatcommonly arise in AM are presented, as well as their impact on the accuracy of the structure geometry.Furthermore, some general considerations about the quasi-static and fatigue mechanical properties ofstrut based lattice structures are analyzed, along with different modeling approaches to predict suchproperties. This is the basis to understand the main contributions of this work. Finally, the architecture ofbone, its mechanical properties, and the challenges of orthopedic implants are presented to understandthe potential of lattice structures in the field of bone tissue engineering.

1.2.1 Additive manufacturing of lattice structures

AM consists in manufacturing a three-dimensional part layer by layer, so that each layer is a thin slicecontaining a cross-section of the part, which is obtained from the CAD model [25, 26]. This additive natureof the manufacturing process, in contrast to subtractive manufacturing (e.g. milling, cutting) or formativemanufacturing (e.g. forging, injection molding), enables to produce more complex parts, as it is the caseof lattice structures. Moreover, the digital workflow from design to manufacturing allows to automate thedesign process of complex systems for mass-customization, and the efficient use of material reduces thewaste and material cost even for very complex geometries. On the other hand, digital files can be easilyshared globally, reducing lead-time and transport costs [27].Figure 1.4 shows a representation of the unit cost for traditional manufacturing (TM) and AM, underthe simplified assumption that the unit cost for AM is independent from production volume and productcomplexity. There are two possible scenarios in which the unit cost is lower for additively manufacturedparts: Small production volumes, for which manufacturing of specific tooling is not cost effective, or highlycomplex parts, such as topologically optimized geometries, functional systems, or lattice structures [27].
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Figure 1.4: AM and TM unit cost as a function of production volume and product complexity [27].
The general process from the design to manufacture a part with an AM technique is described inFigure 1.5 [26]:

1. CAD: Design of the part geometry in a CAD modelling software.
2. STL convert: Transform the external closed surface of the part to STL format, and fix the errors theSTL might arise in the creation of the file. The STL format is the basis for the calculation of theslices.
3. File transfer to machine: STL file is transferred to the machine, and some manipulation might beneeded for correct size, position and orientation part. Orientation is critical for the final mechanicalperformance of the part and the support structures.
4. Machine setup: manufacturing parameters like material constraints, energy source, layer thickness,timing, etc. must be specified.
5. Build: automated process of the actual layer by layer manufacturing. Nonetheless, supervision isrecommended to ensure correct function.
6. Remove: removing the parts from the machine should be done ensuring temperature is sufficientlylow. Afterwards, the part should be detached from the build plate and support material must beremoved. Depending on the AM technology EDM may be necessary to detach the part from thebuild plate.
7. Post-process: parts might need post-treatments before they are ready to use. These treatments canbe heat-treatments to change the microstructure of the material, surface treatments, machining toensure tolerance compliance, etc. If required, support structures should be removed.
8. Application: Parts are ready to use, and they may require to be assembled with other componentsor parts.
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Figure 1.5: Different steps of AM from design phase to final part [26].

There are many different types of AM technologies, but this work is focused on powder bed fusion(PBF) technology because it offers the highest resolution, and it is the most suitable for the manufactureof metallic lattice structures [28]. However, other technologies can also be used for metal AM, such asBinder Jetting and direct energy deposition (DED), and are reviewed below.Binder Jetting uses a liquid-based binding agent to selectively join the material in a powder bed [29].Two dimensional layers are stacked to build the part. For that, a layer of powder is spread on the buildplate by means of a roller, and afterwards the print-head jets the liquid to bind the powder particlestogether [30]. This process is repeated until the completion of the part, and the result is named greenpart (Figure 1.6a depicts the building process). This part has to be post-processed for its final use: excesspowder has to be removed, binder is decomposed upon heating, and sintering of the particles results in adensified and strong part. This densification process also contracts the part, which makes it more difficultto control its final geometry.DED melts the material at the same time as it is being deposited layer by layer (see Figure 1.6b).In this process, a deposition head is used to deliver the material in a substrate, which can be done inpowder or wire format. The laser and material feeding nozzles are usually integrated in the head, as wellas inert gas protection of the molten metal before solidification. This enables the use of this technology asa tool in CNC milling machines [26]. However, the manufacturing of lattice structures with this technologyis not always possible, specially for complex lattice structures.In PBF the powder of the material is spread in thin layers, and it is exposed to an energy source thatmelts the slice according to the cross section of the part. Once a layer is melted, the building platform islowered a certain amount, and a new layer of powder is placed on top of the melted layer, repeating theprocess (see Figure 1.7). This process allows the manufacturing of parts of very different materials, andvarious types of polymers, ceramics and metals can be produced.
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(a) (b)
Figure 1.6: a) Binder Jetting and direct energy deposition simplified processes [26].

Figure 1.7: Layout of a SLM machine [31].
The energy source of PBF technologies can be a laser or an electron beam. The technology that usesa laser beam to melt the powder can be referred to as selective laser melting (SLM). In this process, thepowder is contained in an inert atmosphere to prevent oxidizing. On the other hand, in electron beammelting (EBM) the powder absorbs the electron beams by transforming their kinetic energy into heat.EBM is carried out in a vacuum chamber, and the powder is preheated at much higher temperaturescompared to the SLM process. As a result, the parts produced by EBM cool at much lower rate, leadingto a coarser microstructure, with lower tensile strength and higher ductility, and lower residual stresses[28]. In both technologies the energy input as well as the scanning strategy and the layer thickness canbe adjusted to optimize the structural integrity and the geometrical accuracy of the produced parts [32].PBF allows to manufacture structures in many metallic materials such as titanium and its alloys,aluminum alloys, maraging steel, stainless steel, cobalt chrome, nickel super alloys, copper, magnesiumand its alloys, precious metals, etc. [28, 33]. However, the metals used for orthopedic implants need tobe biocompatible, and depending on their main constituent they can be divided in four groups: stainlesssteels, cobalt-based alloys, titanium-based alloys, and others [34]. This last group includes many recentlydeveloped materials such as NiTi, and alloys of Ta. Furthermore, recently biodegradable lattice structuresof Mg, Fe and Zn alloys were developed [35], which are promising to treat large bone defects, since theypromote bone ingrowth while degrading in human body, ideally at the same rate [36]. Nonetheless, thiswork will focus on the non-biodegradable alloys most commonly used in orthopedic implant applications.
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The design freedom provided by AM enables the mass-customization of parts. This is very helpful todesign parts that adapt to the anatomy and specific need of each patient in case of orthopedic implants.Moreover, this capacity can be combined with the use of lattice structures so that implants are optimizedfor better performance and osseointegration. Figure 1.8 shows some examples of orthopedic implantsproduced by AM and including lattice structures.

(a) (b) (c)
Figure 1.8: Orthopedic implants with lattice structures for a) skull [37], b) femoral stem [38] andc) hip [37].

1.2.2 Imperfections and manufacturing deviations

The parts produced by PBF commonly have a set of defects directly related to the manufacturingtechnology [39, 40, 41]:
• Porosity: voids can be formed during the process due to the gases trapped because of the highcooling rates, as depicted in Figures 1.9a and 1.9b.
• Lack of fusion: incomplete fusion can appear as a result of insufficient input energy, leaving unmeltedpowder in the part.
• Surface roughnes and stair step effect: parts produced by PBF have high surface roughness. Surfacesdirectly supported by the powder bed (down-skin surfaces) are more irregular, since the powderdoes not properly conduct heat, hindering the proper cooling of the part (dross formation). This isnot the case for surfaces facing upwards (up-skin surfaces) because the heat is evacuated throughthe solidified part. Stair step effect is formed by discontinuities between layers, also increasingsurface roughness (see Figure 1.9).
• Residual stresses: high thermal gradients create residual stresses that might affect the integrity ofthe part by creating cracks, delamination between layers or dimensional inaccuracies
The manufacturing of lattice structures with the required detail level in order to meet the designrequirements entails a major challenge. The porosity and pore sizes that optimize osseointegration andvascularization of the scaffolds require feature sizes that both SLM and EBM technologies hardly achievewith the desired accuracy. Thus, the inspection of the manufactured structures has become as importantas the design itself in order to predict their mechanical behavior, and a whole research topic has emergedfrom the analysis of the differences between the designed and produced structures, and their implications.Strut based lattice structures may have different manufacturing deviation types as a result of theabove mentioned effects, combined with the required small feature sizes:
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(a) (b)

(c)
Figure 1.9: a) internal porosity of a Ti6Al4V part, b) porosities in a unit cell of a lattice structure[42], c) stair step effect and up-skin vs. down-skin surfaces [43].

• Strut diameter: manufacturing a strut with the given diameter is complicated, and deviations beyond40% can be observed in many structures and across different studies in which the nominal diameteris below 1 mm [44, 45, 46]. For example, Figure 1.10a depicts a distribution of strut diameterdeviations. The inaccuracy varies with the orientation of the strut, as depicted in Figure 1.10d: forvertical struts the deviation is the lowest, and the error increases as the angle with respect to thebuilding platform reduces, reaching the highest imperfection levels in horizontal struts [47, 48, 49].• Cross-section shape: the shape of the cross section does not remain as designed, since drossformation in down-skin surfaces commonly leads to elliptical cross sections [50]. This effect isobserved in Figure 1.10c, which shows some superposed cross sections of a strut with ellipticalcross-sections. This dross formation also depends on orientation of the strut with respect to thebuilding plane, with horizontal struts having the worst quality.• Strut waviness: the center of gravity of the strut does not follow a straight line along the strut, butit deviates from the nominal axis, as shown in Figure 1.10b [51].
The characterization of the above mentioned manufacturing deviations and imperfections can be carriedout with different techniques. A very widely used method is to obtain a µ-CT model of the manufactured
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(a) (b) (c)

(d)
Figure 1.10: a) Relative deviation from the nominal strut diameter [48], b) strut waviness [51], c)axial view of a strut, with its core highlighted [49], d) manufactured struts for different diametersand angles [52].

structures, as done in [48, 49, 53, 50]. Depending on the resolution of the scan this method might besuitable to measure the internal porosity of the struts or to study the shape and waviness of the struts.This technique provides a lot of information about the actual quality of the structure, but it is costlyand analyzing the large amount of obtained data is time consuming [39]. On the other hand, SEM andoptical microscopy can also be used to easily obtain dimensional measurements and analyze the surfacetexture of the structures, providing valuable information. Finally, Archimedes’ principle is commonly usedto calculate the internal porosity of the structure, by comparing the weight difference of the structure inair and a fluid [54].
1.2.3 Mechanical properties of lattice structures

The use of lattice structures in orthopedic implants allows to tailor effective mechanical properties, beingthe Young’s modulus and yield strength of the structures two of the most important parameters. It must benoted that the effective properties of a structure are not the actual properties of its constituent material,but instead they describe the behavior of the structure from the perspective of an homogeneous material.This process of modeling an heterogeneous medium with its equivalent effective properties is calledhomogenization [55].
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Figure 1.11: Some common strut based topologies used to design lattice structures [28].
The effective mechanical properties of lattice structures are mainly defined by the base material ofthe structure, strut topology and relative density:
• Base material: also named constituent material, is the material the structure is made of.• Strut topology: the strut topology refers to the configuration of the struts, i.e., the number of struts,their orientation and how they are interconnected between each other. This gives name to the unitcell, and Figure 1.11 shows different common topologies of strut based lattice structures.• Relative density: the relative density (ρ/ρs) of a structure is the proportion of actual mass in thespace that the unit cell fills.
Once a topology is chosen for the lattice structure, the design parameters that define the structure’srelative density are the diameter of the struts and unit cell size. From the definition of the relativedensity, it follows that it is a function of the ratio between the diameter of the struts and unit cell size:(ρ/ρs = f (D/L)). The unit cell size is defined as the length of the imaginary cube that each unit cell takesin space. Furthermore, it is possible to change the aspect ratio of the unit cell, i.e. change its dimension insome principal orientations, or to have different strut diameter values within the structure to better adaptthe effective mechanical properties to certain loads.

Quasi-static mechanical properties

There is no clear consensus on how to characterize the effective mechanical properties of lattice structures.There are relatively few studies regarding the bending [56, 57], shear [46] or tensile [58, 59] properties oflattice structures, and uniaxial compression tests are by far the most commonly performed tests to obtainthe quasi-static mechanical properties of any type of structure. Figure 1.12 shows some of the effectivecompressive stress-strain curves of lattice structures with different relative densities.In order to obtain the stiffness of the structures, one option is to use the gradient of the linear partof the curve [60, 61, 62, 63]. On the other hand, the ISO 13314 [64] standard for porous metals also
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(a)

(b)
Figure 1.12: a) Effective stress versus effective strain curve of a octet-truss lattice structure withrelative densities of 11.6%, 15.9%, 21.1% and 23.3% and b) compression process of the structure[22].

proposes to obtain the gradient by means of a hysteresis loop between the points at the 20% and 70% ofthe maximum stress level, and this approach was followed in [65]. Others [66, 67], also use the gradientbetween 20% and 70% without specifying if it was obtained in a hysteresis loop, or directly from monotoniccompression.Regarding the strength of the structures, yield strength is commonly defined as 0.2% offset stressas in solid materials [68, 69, 70], although 1% offset can also be found [65, 71]. Furthermore, somestudies use yield strength and plateau stress indistinctly [72, 66]. Plateau stress is defined in the ISO13314 standard as the mean stress between the 20% and 40% or between 20% and 30% strain rates [64].These inconsistencies when defining the quasi-static mechanical properties of the structures hinder thecomparison across different studies.Lattice structures can be divided into bending dominated and stretch dominated [1]. Bending dominatedlattice structures carry the load mainly by the bending of the struts, while in stretch dominated structuresthe load is carried axially along the struts. This is determined by the topology of the structures: Maxwell’snumber establishes the degrees of freedom of a pin jointed structure [73]:
M = b − 3j + 6 (1.1)

In Equation 1.1 M represents the Maxwell’s number, an equivalent to the degrees of freedom, j is thenumber of joints, and b is the number of struts. For structures with M < 0, mechanisms could be formed
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with perfect pin joints, while M ≥ 0 ensures that there are no degrees of freedom within the structure.For additively manufactured lattice structures the joints between struts are rigid, thus, with M < 0 thestiffness of the structure is dependent on the bending load at the joints to prevent rotation. Generally, thismeans that the structure is bending dominated, while M ≥ 0 ensures the structure is stretch dominated.Hashin and Shtrikman already established in 1963 the bounds of the elastic properties that isotropicheterogeneous materials should fulfill [74]. This established a theoretical maximum efficiency to carry loadfor any isotropic lattice structure, which is very related to the concept of relative density. Nonetheless,lattice structures are usually not isotropic, and their stiffness varies considerably depending on the loaddirection. Furthermore, in most of the cases it is not relevant to reach maximum stiffness to weight ratiosin the design of orthopedic implants, since the design goal is to mimic the stiffness of the bone tissue.Therefore, although they are a good reference to measure the efficiency of the structures, Hashin-Shtrikmanbounds are not critical in the design process.Gibson and Ashby [1] thoroughly studied cellular structures, and stated that stiffness and strength oflattice structures can be described by a power law of their relative density, such that:

E
Es

= Cn

(
ρ
ρs

)n (1.2)
σ
σs

= Cm

(
ρ
ρs

)m (1.3)
In Equations 1.2 and 1.3, E and σ are the stiffness and strength of the structure, while Es and σscorrespond to the stiffness and strength of the constituent material, and ρ/ρs is the relative density. Thus,the equations describe the stiffness and strength of a structure with respect to the values correspondingto the solid material the structure is made of. Apart from the described variables, Cn, n, Cm and m varywith the topology of the structure.Since stretch dominated structures are more efficient, the exponent n in Equation 1.2 is close to 1,whereas for bending dominated structures n tends to take values close to 2 (note that ρ/ρs < 1). Severallattice structures have been widely studied, and their Gibson-Ashby curves are already known. Amongthe bending dominated, body-centered cubic (BCC) [75], diamond [67] and rhombic dodecahedron [56] arecommon. For the stretch dominated structures, simple cubic (SC) [72] and octet truss [76] are the mostrepresentative examples.Figure 1.13 depicts the Gibson-Ashby curves of several lattice structures with different relativedensities, unit cell types and constituent materials. This shows the high variability of the stiffness andstrength of the structures, which is very useful for the design of metamaterials. Furthermore, in order toreduce the uncertainty arising from different experimental results, and to have a comprehensive data setassociated to each unit cell and its possible design spaces, Hanks et al. [77] gathered a very extensiveset of experimental data and simulations for 18 different unit cell topologies.Nonetheless, the Gibson-Ashby curves will strongly depend on the load direction. For example, SCis considered stretch dominated because it is usually loaded vertically, which only creates axial loadsin the vertical struts. If loaded in another direction, such as [111] using Miller indices, the Gibson Ashbycurve would be close to other bending dominated curves. The opposite occurs with the BCC structure,commonly regarded as bending dominated.In general, the stiffness and strength of the lattice structures vary depending on the orientation ofthe load. Xu et al. [78] numerically obtained the directional stiffness of a set of unit cells (depicted inFigure 1.14a), and also developed some combinations of unit cells that resulted in an isotropic elastic
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(a) (b)
Figure 1.13: a) Effective Young’s moduli, and b) effective yield strength of several representativelattice structures and comparison to Gibson-Ashby predictions [13].

behavior. On the other hand, Munford et al. [71] developed an experimental method to better describe theanisotropy of a lattice structure (Figure 1.14b). Isotropy has been a design objective in several studies[19, 79, 80]. Furthermore, Tancogne-Dejean and Mohr [81] analytically described the necessary conditionsthat isotropic strut based lattice structures should fulfill.

(a) (b)
Figure 1.14: a) Effective stiffness of a BCC structure depending on the load direction [78] obtainednumerically, and b) approximation of effective stiffness of a stochastic structure based on 10experimental points [71].

Nevertheless, bone tissue is generally anisotropic, since it is oriented with respect to the load itwithstands in order to optimize its morphology [82, 83]. This suggests that the lattice structures to be usedas bone substitutes can also be anisotropic, and the lower strength and stiffness in unloaded directions can
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be beneficial to reduce the weight of the implant and increase its permeability and material transportationcapabilities.
Fatigue mechanical properties

Orthopedic implants must withstand millions of cycles of stress [84] every year as a result of the everydayactivity of the patients. For permanent implants, the scaffolds should endure tens of years [5], therefore,the study of lattice structures under fatigue loading conditions is of utmost importance.Most of the musculoskeletal loads are compressive loads. Fatigue under compressive loads is not aproblem for solid metals, but due to the complex geometries of the lattice structures tensile loads arise inscaffolds even under pure compression. This has a very negative effect on the fatigue strength of latticestructures, and thus the fatigue strength of the scaffolds is far below their solid non-porous counterparts[85].Compression-compression fatigue has been widely studied for several lattice structures and materials[24, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96]. These works try to understand the fatigue behavior of latticestructures to predict the fatigue life under different load levels. This is based on the S-N curves as shownin Figure 1.15a, where the fatigue life is plotted against the maximum stress. The so called S-N curvesare obtained from a regression similar to the Basquin’s law [97], where σ represents the either stressamplitude or maximum stress of the cycle, N corresponds to the number of cycles, and A and B are thefitting parameters:
σ = ANB (1.4)

The compression-compression or tension-tension tests in literature induce a mean stress on the sample(σmean = (σmax + σmin)/2) with a ratio R , defined in Equation 1.5 [98].
R = σmin

σmax
(1.5)

The type of unit cell greatly affects the fatigue behavior of the structures (see Figure 1.15a), sinceit determines the stress distribution within the lattice. The fatigue life of the structures is mainly drivenby the tensile stresses that arise under global compression stress [89, 88]. In the case of the SC unitcell, the endurance limit is above the 80% of the yield strength of the structure, since no tensile stressis developed under global compression [89]. On the other hand, the relative density also determines thefatigue behavior of the structures as shown in Figure 1.15b. Furthermore, the S-N curves of the same unitcell for different relative densities are commonly normalized with the yield strength of the structure, asdepicted in Figures 1.15c and 1.15d. In some cases, this allows to obtain an approximation of the fatiguelife of a structure regardless the relative density, and based on quasi-static mechanical properties, whichare easier to obtain (Figure 1.15d). Nevertheless, the normalized curves are not always consistent, as thenormalized fatigue strength increases with relative density for some unit cell types (Figure 1.15c) [24, 93].This occurs because fatigue failure is a phenomenon locally driven by the tensile stress concentrationsites, while the obtained yield strength is related to more global plastic deformation.To overcome this problem, Van Hooreweder et al. [99] developed a local stress method to predict thefatigue failure of a structure. In this method the maximum tensile stress of the structure is analyticallyobtained with an Euler-Bernoulli beam model of the strut, and the tensile stress is used as a predictorof the failure of the structure, that is, S1 as depicted in Figure 1.16.
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(a) (b)

(c) (d)
Figure 1.15: a) Global S-N curves of different NiTi unit cell types [86], b) global S-N curves ofTi6Al4V diamond unit cell with different relative densities (relative density increases from D-1 toD-4 specimens) [24], c) normalized S-N curves of Ti6Al4V auxetic metamaterial [93], d) normalizedS-N curve of Ti6Al4V diamond unit cell [24].

Figure 1.16: Beam model of a strut and its stress diagram for a bending and compressioncombination.
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With this approach the S-N curves depict the maximum tensile stress according to the beam modelwith the number of cycles, as in Figure 1.17. Therefore, structures can be compared by observing theirstrength under the local tensile loads that actually cause the fatigue failure. This is particularly useful tocompare different types of post processing techniques or load cases.

(a) (b)
Figure 1.17: S-N curves obtained from local stress method to compare a) two different relativedensities [99] and b) different load cases [100].

Furthermore, it has been found that the material of the structure does not only affect the global S-Ncurve, but it also has a great influence on the normalized S-N curves. In fact, the material has a greaterinfluence than the unit cell type for normalized S-N curves [24], contrary to what occurs in normalizedquasi-static mechanical properties, which are more affected by the topology of the structures rather thanby the material [69]. This might be explained by the different response to the surface roughness and cracktip plasticity for different material types, and thus, this difference is greater for high cycle fatigue. As aconsequence, the endurance limit of AM lattice structures may vary between < 20% and ≈ 60% of theiryield strength [24].This also means that for the same material, fatigue life is greatly influenced by post-treatments. Ingeneral, hot isostatic pressing (HIP) or heat treatment (HT) processes change the microstructure of thespecimens, creating a more ductile material [101]. In the case of Ti6Al4V, the martensitic α ′ is replacedwith a α + β microstructure [102]. In addition, HIP process also closes some pores due to the highpressure, reducing its internal porosity. The increased ductility has beneficial effects in the fatigue life ofthe structures [99, 87, 95], even if the added effect of the pressure in the HIP does not increase the fatiguestrength compared to HT [103]. This might occur because of the importance of the surface geometricalimperfections, which dilutes the effect of the reduced internal porosity. In order to capture this benefit,HIP has to be combined with some sort of surface treatment [103]. Regarding the fatigue of other metalssuitable for orthopedic implant such as CoCr [91, 104] among others [105, 106, 86, 107], the evidence isscarce compared to Ti6Al4V, and more studies are required.Surface treatments, such as chemical etching, sand blasting, or electrochemical polishing, usuallyremove the attached powder particles and reduce the surface roughness, which is beneficial for thefatigue properties of the structures [99, 91, 108, 109]. Moreover, sand blasting also generates local plasticdeformation on the surface, retarding micro-crack nucleation and growth [90, 87]. Figure 1.18 shows theisolated and combined effects of some different post-treatment options for enhancement of fatigue life inlattice structures.
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Figure 1.18: Effect of post-treatments on the compression-compression fatigue strength for 106cycles of Ti6Al4V lattice structures. SEM micrographs of (A) as-built, (B) sand-blasted, and (C)HIPed and chemichal etched diamond lattice. (D) Microstructure of HIPed lattice. HTsub andHTsuper: heat treatment below and above β-transus, respectively. SB: sand-blasting. HIP: hotisostatic pressing. HIP+SB: HIP followed by sand blasting. HIP+CE: HIP followed by chemicaletching. Figure obtained from [103].

1.2.4 Modeling of lattice structures

In order to design the properties of a lattice structure it is very useful to use models that describethe mechanical behavior of the structures. These models can be analytical or numerical, and offer thepossibility to analyze the impact of the design parameters on the resulting mechanical properties of thestructures before their manufacturing.

Analytical models

Analytical models are the simplest method to predict the mechanical properties of the structures, avoidingcomputational or experimental costs. These models can describe the stiffness and strength of latticestructures in any direction, and can be easily implemented in optimization algorithms. Furthermore, theyhave proved to be useful in determination of fatigue life.Analytical models offer a good approximation for structures with slender struts, thus for structureswith low relative densities. While experimentally obtained data is dependent on variables such as thematerial of the structure, the building quality, the size of the structure, etc., the analytical models offer anobjective tool to compare the properties of different structure topologies.These models are commonly based on Euler or Timoshenko beam theory [110], and the axial andbending loads of the struts are modeled, as depicted in Figure 1.19. Timoshenko beam theory considersshear deformation of the struts, in contrast to Euler beams, which makes the Timoshenko beam moreaccurate for higher relative densities, when struts are not as slender [110].
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Figure 1.19: Beam model of a diamond unit cell, adapted from [67].
Analytical models were developed for a wide range of structures: the BCC structure [111], diamond unitcell [67], rhombic dodecahedron [112], truncated cuboctahedron [113] and truncated cube [114]. Furthermore,Zadpoor and Hedayati collected many of the models for different structures in a review article [110], whichalso includes buckling analysis, and these models are depicted in Figure 1.20.The analytical models obtained in literature can be limited to the stiffness of the structures inone principal direction, or can also include the yield strength of the structures or the Poisson’s ratio.Furthermore, in some cases it is relevant to obtain these parameters for different load orientations. Thisis done in some studies for BCC and its variations [115, 116] and rhombic dodecahedron [116].Apart from Timoshenko and Euler beam models, for some stretch dominated structures the bendingof the struts can be neglected, and thus the struts can be modeled as simple truss elements [76]. Thiswas done by Tancogne-Dejean and Mohr [81], who modeled the struts as simple truss elements andobtained the stiffness matrix of any stretch dominated elastically isotropic lattice structure (Equation 1.6)as a function of the relative density (ρ∗) and the Young’s modulus of the material (Es), provided that thebending of the beams could be neglected. Moreover, Messner et al. [117] developed an analytical yieldsurface for stretch dominated lattices with Eq. 1.7, which relates the axial stress in each strut (σ (i)) withthe Young’s modulus of the material, the compliance matrix of the structure (S), the direction of the strut(n(i)) and macroscopic stress (σ ).

C = ρ∗Es15


3 1 1 0 0 03 1 0 0 03 0 0 01 0 0
sym 1 01

 (1.6)

σ (i) = Esε(i) = Es

[
S : (n(i) ⊗ n(i))] : σ (1.7)

Finite Element models

Finite element (FE) models enable a more accurate representation of the lattice structures comparedto the analytical models. Instead of a unit cell, the whole structure can be simulated and compared tothe experimental values to validate the numerical model. Furthermore, manufacturing deviations can be
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(a) (b)

(c)
Figure 1.20: Analytical models of lattice structures with different unit cell topologies based onEuler-Bernoulli beams for a) relative stiffness, b) Poisson’s ratio, and c) relative yield strength[110].

included in the models, and other variables such as stress concentrations, material plasticity, contact andtime dependent properties can be implemented for a more comprehensive study of the mechanical behaviorof the structures. FE models can be made of beam elements or 3D continuum elements.Beam models have very low computational cost due to their reduced degrees of freedom. However,beam models do not consider overlapping volume domains at the nodes, or the excess of material at nodes[118]. Nonetheless, the low computational costs of beam elements enable to simulate entire structureswith hundreds of unit cells, as it is usually the case with experimental specimens. This allows to includeboundary effects in the simulation. Boundary effects arise in the free surfaces of the structures, and onthe contact surface of the structure with the clamps, creating a nonuniform stress state. Minimizing sucheffects is necessary to obtain the effective macroscopic properties of the structures accurately [52].The beam models can be implemented as-designed, with increased thickness at the nodes orincluding the aforementioned manufacturing imperfections. The accuracy of as-designed beam models(see Figure 1.21a) varies across different works: while in some studies the numerical models agree withthe experimental data [119, 67], in others the experimental stiffness and strength are below the numericalvalues [114, 113, 120], or even the opposite [111].
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One method to account for the higher stiffness of strut intersections is to artificially increase thediameter of the numerical beams at both ends [121, 122, 123], as shown in Figure 1.21b. Nevertheless,the increase in thickness to match the experimental values is arbitrary, and therefore it is not suitable forthe prediction of mechanical properties previous to manufacturing.

(a) (b)
Figure 1.21: a) Beam model structure of diamond unit cell [67] and b) modified beam model ofBCC unit cell to account for the effect of strut intersection at the nodes [121].

One of the sources of the discrepancies between the numerical and experimental values is the useof ideal struts. As already stated, there can be very significant manufacturing deviations in the producedlattice structures, and including these imperfections in the FE beam models improves their accuracy. Thiscan be done by using a µ-CT to measure the actual shape of the struts, as well as their waviness. Differentlevels of imperfections can be introduced:
• Variation of strut diameter: different strut diameters can be assigned to each element along thestrut, as done in [124, 125, 126] (see Figure 1.22a).
• Variation of strut diameter and waviness: apart from the cross-section variation, the center of gravityof each node along the strut is displaced according to previously measured statistical data, as in[48, 53, 23] (see Figure 1.22b).
One advantage of the beam models is that they are suitable to create models for fatigue prediction.The rapid computation time allows to create algorithms that simulate the degradation process of thestructure by introducing the failure of individual struts. Thus, the simulations are carried out again andagain considering the damage of previous cycles to capture loss of stiffness of the whole structure, untilthe total collapse. This approach was used by Hedayati et al. [127] with ideal struts, while Zargarian etal. [128] also included manufacturing imperfections.
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(a)
(b)

Figure 1.22: a) Beam model with variable diameter along its length [125], and b) reconstructedbeam model of an octet-truss structure including diameter variation and waviness [48].
The use of 3D elements allows a more precise representation of the actual geometry for anyrelative density, including the strut intersections and any manufacturing deviations. Nevertheless, thecomputational cost is much higher due to the great number of degrees of freedom of the models. FEmodels are mostly used to simulate the monotonic unidirectional compression experiments, as done in[129, 61], rather than to fully characterize the effective mechanical properties of the structures. Therefore,commonly the FE model of the experiment consists of the structure and two rigid plates as in Figure1.23a. Some studies focus on the effect of boundary conditions, and the minimum amount of unit cellsrequired to dilute the boundary effects and obtain the Young’s modulus and yield strength at the minimalcomputational cost [130, 131]. Compression tests can be simulated establishing a frictionless contactbetween the struts and the platens [123], giving a friction coefficient [130], or completely restricting thelateral displacement of both ends of the specimen [89].

(a) (b)
Figure 1.23: a) FE model of a BCC structure with tetrahedral elements [123] and b) FE model ofa unit cell with PBC [59].
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One way to reduce the size of the model is to simulate a single unit cell and apply periodic boundaryconditions (PBC), as done in Figure 1.23b. PBC establish constraints in the displacement fields of oppositefaces of a unit cell, imposing a periodicity that simulates an infinite continuum formed by periodical arraysof the unit cell [132]. This is a very computationally cost effective method, since a single unit cell representsthe whole structure, and is especially used to obtain the effective stiffness matrix of the structures as in[116, 78, 133]. Even if boundary effects can not be modeled by this approach, these models offer a goodapproximation of the behavior of the actual structures [131, 59].Nevertheless, as for beam elements, the modeling of the manufacturing imperfections plays a key rolein reducing the difference between the simulations and experiments. In this case one option is to simulatea numerical model directly obtained from the µ-CT data. The FE model can be built by using an STL filethat defines the surface of the structure, as in [134, 42, 48, 53], or by creating a voxel mesh [135] and usingefficient finite cell methods as in [136, 137]. Another option is to build a FE model based on statisticaldata of the strut measurements [51, 138, 48]. Figure 1.24 depicts some of the models generated by usingsuch methods.

(a)

(b) (c)
Figure 1.24: a) The CAD model and two manufactured unit cells of a SC unit cell [53], b) 3x3x3lattice structure of reconstructed struts [138] and c) reconstruction from µ-CT scan to imperfectCAD model [51].

Even if these methods include the manufacturing deviations of the structures, their capability ofeffectively mimicking the experimental mechanical properties is limited, and depends on many factorssuch as the dimensions of the structure, the surface roughness, or the internal porosity, which are difficultor very inefficient to take into account in a single model. As an example, Doroszko et al. [139] showedthat the resolution of the CT scan has an important effect on the capability to capture the actual behavior
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of a lattice structure: a resolution of 127µm clearly overestimated the mechanical properties, whereas a2.94µm resolution offered an accurate estimate, as shown in Figure 1.25.

(a) (b)
Figure 1.25: a) Stress of CT scanned FE models with 127µm (left) and 2.94µm (right) resolutionsand b) stress strain curves of the FE models compared to the experimental curve.

One method to implicitly include the manufacturing deviations in the numerical analysis withoutmodeling the actual complex geometry of the structure is to reduce the stiffness and strength values ofthe constituent material. In some studies individual struts were manufactured and tested, showing muchlower mechanical properties than for the bulk material [130, 140, 141]. These material properties werethen assigned to FE models to improve the accuracy of the simulations.

1.2.5 Lattice structures for orthopedic implants

The use of lattice structures in orthopedic implants has a promising prospect, and interest has grown inrecent years in this research field. Lattice structures, together with AM, enable the patient-specific designof implants. This means that the bone replacement can be adjusted to the patient anatomy, considering theprecise geometry of the bone defect. In addition, lattice structures are capable of mimicking the mechanicalproperties of bone they are substituting, which avoids the problematic major disruptions in the stress andstrain fields of the adjacent bone.Bone is a natural composite, formed by two main phases: collagen and hydroxyapatite (HA) crystals[142]. The HA crystals give the bone its strength and toughness, while the collagen holds the structuretogether and gives flexibility [143]. With this basis, bone is formed in a hierarchical structure, organizedfrom macroscopic scale to sub-nanoscale, as depicted in Figure 1.26. From the macroscopic point ofview, bone can be divided in trabecular bone and cortical bone. Trabecular bone, also named cancellousbone, is a bone structure with high porosity (between 50% and 90%) to leave space for bone marrow.Cortical bone is highly dense, leaving only 3-5% porosity for osteocytes, canaliculi, blood vessels, etc[143]. Furthermore, bone continuously adapts its structure to ensure optimal functionality with minimalmetabolic cost [144, 145, 146]. The functional adaptation of bone is achieved by morphology variationsthat depend on the strain stimulus of the bone [145]. The mature or damaged bone tissue can be resorbed(bone tissue is broken down to release its minerals to the blood [147]) by osteoclasts and new bone tissueis created by osteoblasts, in a continuous process to ensure optimal morphology according to the load.
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Figure 1.26: Hierarchical structure of trabecular and cortical bone [143].

Both trabecular bone and cortical bone have different properties depending on anatomical site, age,sex, physical activity level, etc [148]. The mechanical properties of bones are still a field of study, and theelastic modulus is the main studied variable due to its importance in characterizing bone pathologies andin implants development [143]. The strength of bones is the other major variable, which is also important inthe design of orthopedic implants. Figure 1.27 shows some values for bone in different sites, and accordingto different studies. The high variablity can be attributed to the aforementioned variables that determinebone properties.The mean stiffness of trabecular bone is in the range between 22 MPa [152] and 1091 MPa [149],with strength values varying between 0.37 MPa [151] and 5.83 MPa [149]. On the other hand, corticalbone is much stiffer and stronger due to its compact nature, with Young’s modulus between 6 GPa [158]and 22.4 GPa [107], and compressive yield strength between 83 MPa and 225 MPa [158]. Apart fromthe variability between bone locations and studies, Figure 1.27 also shows the high anisotropy of bonetissue. Cortical bone is usually considered a transversely isotropic material [154, 160], i.e. its stiffness ishigher in the axial direction aligned with osteons (see Figure 1.26), and has a lower isotropic stiffness inthe transverse plane perpendicular to the osteons. On the other hand, trabecular bone also has variablelevels of anisotropy, as a result of the functional adaptation to the complex physiological loads in eachbone site.As mentioned above, bone is a natural tissue that is able to reconstruct itself when a bone defectis induced. This bone defect can occur as a fracture with bone loss, high energy trauma, blast injuries,infection requiring debridement of bone or resection of bone tumors [161]. A critical size defect (CSD)is a defect that bone is not able to reconstruct by itself due to its size [162]. Autogenous bone grafts(autografts) are bone pieces of the same patient taken from other anatomical sites, and used to fill theseCSD, enabling the reconstruction of bone [163]. This procedure is considered the gold standard to treatCSD, but it is complicated and has drawbacks like donor site morbidity, limited graft volume, anesthesiatime or need for additional surgical resources [162]. One alternative is to use implants to substitute theabsent bone. Furthermore, implants are also used in joint replacements such as ankle, knee or hip, andcan be also used for spinal fusion, among others [164, 165]. Figure 1.28 shows some examples of implantsthat also have lattice structures.



26 Chapter 1. Introduction

Prox. Tibia Spine Femur Calcaneus
101

102

103

Y
ou

ng
's

 m
od

ul
us

 [M
P

a]
Stiffness of trabecular bone

E
1

E
2

E
3

(a) Femur Tibia

5

10

15

20

25

30

Y
ou

ng
's

 m
od

ul
us

 [G
P

a]

Stiffness of cortical bone

E1

E2

E3

(b)

Prox. Tibia Spine Femur Calcaneus
10-1

100

101

S
tr

en
gt

h 
[M

P
a]

Strength of trabecular bone

<
y,1

<
y,2

<
y,3

(c)
0

50

100

150

200

250
S

tr
en

gt
h 

[M
P

a]

Strength of cortical bone

Femur Tibia

<1

<3

(d)
Figure 1.27: Literature values in various bone sites for a) stiffness of trabecular bone, b) stiffnessof cortical bone, c) strength of trabecular bone, and d) strength of cortical bone. Obtained from[71, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 107, 159].

Traditional metallic orthopedic implants are made of bulk parts, based on alloys of titanium, stainlesssteel or cobalt, among others [169]. Nonetheless, these dense implants are at least one order of magnitudestiffer than the hosting bone. As a result of this mismatch of stiffness, the mechanical stimulus in the boneadjacent to the implant is reduced, as the implant carries most of the load. This phenomenon is referredto as stress shielding. The lack of long term strain stimulus caused by the stress shielding can result inbone resorption in areas adjacent to the implant, as it is depicted in Figure 1.29 [170, 171]. Moreover, thevascularization (creation of blood vessels) is more difficult in areas surrounding solid implants, leading toa deficit of nutrients for the bone [172]. The loss of bone density can result in the implant loosening fromthe bone, which in turn affects to the fixation and longevity of the implant. In fact, stiff metal devices leadto additional and more extensive revision surgery [173, 171].
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(a) (b) (c)
Figure 1.28: Lattice structures in orthopedic implants for a) a segmental bone defect in rat femur[166], b) vertebral implant for spinal fusion in sheep [167] c) proximal tibia in knee replacement[168].

Figure 1.29: Bone resorption caused by the stress shielding after 10 years of total hip arthroplasty[174].
Moreover, the pores of open-cell lattice structures can host new bone tissue [169], while also allowingvascularization and mass transport [175], promoting bone ingrowth. The shape and size of the pores, aswell as the porosity, determine the extent to which the structure can support the creation of new bonetissue [176, 177]. Two mechanisms compete in the creation of new bone tissue. On the one hand, small poresize and higher specific surface allow a higher initial cell attachment on the structure, while larger poresenhance vascularization and transport of nutrients to the implant, resulting in a better osteogenesis afterthe initial stage [177]. In general, pore sizes higher than 300µm are recommended for full osseointegration,and some studies also set optimum upper bounds around 600 or 800µm, although there is not a clearconsensus in literature [172, 178, 176, 179].Overall, lattice structures provide a set of properties that makes them suitable as alternative toconventional solid implants. Through the topology design, structures with an effective Young’s modulusclose to the one of the hosting bone can be obtained to mechanically stimulate hosting bone, and thus
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mitigate stress shielding [180]. In this way, apart from providing structural support, the lattice structurecan also guide the formation of new bone tissue due to its porous nature, improving the osseointegrationof the implant and bone healing capacity [171]. Furthermore, the geometrical as well as the mechanicalproperties of the structures can be tuned and graded within the implant depending on the properties ofthe adjacent bone tissue and patient specific data, thus enabling the design of novel metamaterials forbone substitutes and orthopedic implants [181].



Chapter 2

Objectives

Lattice structures have the potential to improve the existing monolithic orthopedic implants by reducing thestress shielding and promoting osseointegration, hence leading to more durable implants that reduce thenumber of revision interventions. Nevertheless, the available knowledge of this type of structures is stillscarce. The main motivation of this dissertation is to expand the available knowledge on the mechanicalproperties of additively manufactured lattice structures under static and dynamic loads and the modelingof these structures to provide new possibilities for the design of orthopedic implants. To this end, threemain objectives were defined:
Develop analytical models to define the elastic response under different loads of lattice
structures that can potentially be implemented into orthopedic implants

As discussed above, one of the main problems of current orthopedic implants is the stress shielding-effectdue to the mismatch between bone and implant stiffness. Bone properties might be very different dependingon patient characteristics (gender, aging or skeletal pathologies) and the implant site, thus the implantsshould be able to adapt to a wide range of mechanical properties. To experimentally determine the optimalstructure for the implant is costly and time consuming, and numerical simulations are not a rapid tool todesign the mechanical properties of the structures. In contrast, analytical models are fast and they canbe implemented into optimization algorithms to design implants that adapt to each load type.Hence, the first objective of this work is to develop novel analytical models that describe the mechanicalproperties of lattice structures. Since the loads of an implant can be complex, the analytical models canalso be a design tool to efficiently adapt the morphology of the structures to such loads. This includescontrolling the isotropy or anisotropy of the structures for optimal load carrying capacity.
Characterize the fatigue behavior of lattice structures

Orthopedic implants will be subjected to dynamic loads during daily activities, therefore the fatigue lifeand endurance limit of these structures is of utmost importance. The fatigue behavior of the structurewill depend on the structure topology, material, post-build treatment and relative density. The secondobjective of this work is to study the fatigue behavior of lattice structures considering the effect of post-buildtreatment and the relative density. This information will in turn be used to develop tools that effectivelypredict the fatigue life of the structures.
29
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Study the effect of manufacturing deviations on the mechanical properties of the structures

The development of additive manufacturing opens the possibility to produce complex lattice structures withvery small features suitable for orthopedic implant applications. However, there are some imperfectionsintrinsic to the manufacturing process such as dross formation, waviness, or strut shape and diametervariation that affect to the resulting mechanical properties of the structures. Therefore, another objectiveof this work is to study the manufacturing deviations that arise when producing such small meso-structures,and to develop a numerical framework that is capable of simulating the quasi-static mechanical propertiesof lattice structures while considering such deviations within the model. This enables a faster designprocess of new structures and a more precise analysis of the response of the implant under physiologicalloads.



Chapter 3

Structure

This dissertation encloses four research papers, namely Paper A, Paper B, Paper C and Paper D, andeach work contributes to the stated objectives in a different manner.
Paper A is entitled ’Analytical model of the elastic behavior of a modified face-centered cubiclattice structure’. This work analyses a modified face-centered cubic (FCCm) unit cell, and the analyticalexpression of the stiffness matrix was obtained based on geometric variables of the structure. In addition,this model was validated through a FE model of beam elements. Thus, the analytical model is a toolto tailor specific mechanical properties to mimic bone stiffness by adjusting its geometric parameters,contributing to objective 1. The stiffness of the unit cell was also compared to other analytical models inthe literature, to have a better insight on the similarities and differences with the FCCm structure, and astudy of the pore size was also carried out due to its importance for the osseointegration of the structure.
Paper B is entitled ’Influence of relative density on quasi-static and fatigue failure of lattice structuresin Ti6Al4V produced by laser powder bed fusion’. This work also studies the FCCm unit cell, but takesa more experimental approach. Manufactured FCCm structures with different relative densities weretested under quasi-static and fatigue uniaxial compression. The Gibson-Ashby curves were obtained formacroscopic stiffness and strength of the structures, contributing to objective 1. The experimental valueswere compared to the numerical simulation of a solid FE model with periodic boundary conditions (PBC)to assess the prediction capacity of the FE model and to study the relationship between macroscopic andmesoscopic stress phenomena.Furthermore, a fatigue analysis was carried out to assess the durability of the structures. A stiffnessbased failure criterion was proposed, and an analytical expression was developed to relate the cyclic load,fatigue life and relative density of the structures. In addition, other methods for fatigue life prediction inliterature were assessed and modified to increase their accuracy. Thus, this paper also contributes toobjective 2 of this dissertation.
Paper C is entitled ’Additively manufactured lattice structures with controlled transverse isotropy fororthopedic porous implants’. This paper presents a set of unit cells that have elastic transverse isotropy inone plane, and a higher stiffness in the direction perpendicular to the plane. One particular unit cell waschosen due to its suitability for additive manufacturing, and the numerical and experimental validationof the analytical model were carried out. Transversely isotropic lattice structures offer the possibility tobetter mimic the anisotropy of some bone tissue in locations where the load is primarily oriented in asingle direction. Thus, this paper contributes to objective 1.
Paper D is entitled ’Understanding elastic anisotropy in diamond based lattice structures producedby laser powder bed fusion: Effect of manufacturing deviations’. In this work the anisotropy of the diamondstructure was analyzed considering the manufacturing deviations, which corresponds to the objective 3.
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The isolated and combined effects of the errors in diameter, cross-section shape and waviness were studiedand compared to the ideal stiffness of the diamond structure. Furthermore, a method was developed toanalyze the manufacturing imperfections along the strut and to include such deviations in a FE model.



Chapter 4

Publications

This Chapter encloses the four publications made along this thesis, which are the main contributions ofthis work to the field of lattice structures.
4.1 Paper A

This article is entitled ’Analytical model of the elastic behavior of a modified face-centered cubic latticestructure’. It develops an analytical model of the stiffness of a modified face-centered cubic structure(FCCm) based on Timoshenko beam theory. These are the main contributions of this work:
• The struts were modeled considering their axial elongation, bending and torsion, thus, a perfectcorrelation between the model and numerical simulations with beam elements can be guaranteed.
• The complete stiffness matrix was modeled to identify stiffer and more compliant directions, and toenable the implementation of the analytical model in optimization algorithms.
• A variable height to width ratio (R) of the unit cell was included to expand the design possibilitiesand to adjust the anisotropy of the structure.
• The design space of the FCCm unit cell is explored to mimic the stiffnss of bone, and a pore sizeanalysis is included to assess the osseointegration capability of the structure.
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A B S T R A C T

As result of the advances made in additive manufacturing in recent years, the design of porous materials with
controlled mechanical properties has gained importance due to their capability to offer case-specific solutions in
multiple applications. In terms of biomaterials, the use of lattice structures provides a considerable variety of
mechanical and geometric properties that can enhance osseointegration and reduce stress shielding. In this
paper, the elastic response of a modified face-centered cubic (FCC) unit cell was studied, and analytical ex-
pressions for macroscopic effective Young's moduli, shear moduli and Poisson's ratios were obtained, thus
providing the necessary parameters for the homogenization of the unit cell. The analytical expressions of the
homogenization parameters open the possibility for implementation in other research fields, such as topology
optimization. Timoshenko beam theory was used to model the struts of the modified FCC unit cell and a finite
element analysis using shear flexible beam elements was performed to assess the accuracy of the analytical
expressions. In addition to modelling the bending of the beams, axial and torsional displacements were also
considered for a more detailed analysis. It can be concluded that the expressions obtained represent the elastic
behavior of the modified FCC unit cell with high accuracy. Finally, the elastic response was further analyzed by
introducing variability in the aspect ratio in order to enable the design of unit cells with controlled anisotropy.

1. Introduction

Advances in the field of additive manufacturing (AM) in recent
years have enabled the development of cost-effective applications for
additively manufactured parts in several research fields due to the high
flexibility and low fixed costs of AM (Merkt et al., 2015). One of the
main advantages AM offers is the possibility of manufacturing light-
weight and high-porosity lattice structures, which are built from con-
nected struts that repeat a geometric pattern (Ashby, 2006).

Lattice structures are of interest to researchers due to their superior
specific mechanical properties (Crupi et al., 2017; Kadkhodapour et al.,
2017; Carlton et al., 2017; Wadley et al., 2003). They are also relevant
because of their energy absorption properties (Brennan-Craddock et al.,
1088; Mines et al., 2013; Maskery et al., 2017; Tancogne-Dejean et al.,
2016; Al-Saedi et al., 2018), and their capacity to act as heat exchangers
(Wong et al., 2009) and noise reducers, and to transmit vibrations
(Wang et al., 2018; Matlack et al., 2016). These properties greatly de-
pend on their relative density and the geometry of the space-filling unit
cells, which can form stretching or bending dominated lattice structures

(Deshpande et al., 2001a).
Lattice structures have also become relevant in the design of bio-

materials due to their porous nature and the adaptability of their me-
chanical and geometric properties, which enables the design of meta-
materials that reduce stress shielding while considering other
parameters such as permeability (Ali and Sen, 2017; Montazerian et al.,
2017; Zhang et al., 2018a). This makes it possible to design metama-
terials that avoid bone resorption and at the same time promote bone
ingrowth. Therefore, lattice structures offer considerable promise for
creating optimal biomaterials for bone replacement (Zhang et al.,
2018b; Wang et al., 2017).

Due to the importance and variety of applications of lattice struc-
tures in health, civil and aerospace industries, among others, recent
research has focused on understanding the mechanical behavior of
many unit cells, both experimentally and numerically. Such research is
focused on static behavior (Crupi et al., 2017; Leary et al., 2016), en-
ergy absorption (Al-Saedi et al., 2018; Tancogne-Dejean et al., 2016),
deformations (Carlton et al., 2017; Kadkhodapour et al., 2017), fatigue
(Ahmadi et al., 2018; Zhao et al., 2016; Lietaert et al., 2018; Amin
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Yavari et al., 2015), dynamic properties (Xiao et al., 2017) and the
effect of imperfections (Amani et al., 2018; Takano et al., 2017; Liu
et al., 2017; Campoli et al., 2013), among other features.

However, experiments are costly and time consuming. Therefore,
analytical models are also required in order to make it easy to predict
the mechanical behavior of lattice structures prior to their fabrication.
For this reason, much of the research is focused not only on studying
the lattice structures numerically and experimentally, but also on ob-
taining analytical models that can predict their mechanical properties.
Thus, several analytical models have been developed for many unit
cells: cubic (Gent and Thomas, 1963), body-centered cubic (BCC) and
its variations (Smith et al., 2013; Ushijima et al., 2011a, 2011b;
Tancogne-Dejean and Mohr, 2018a; Gümrük and Mines, 2013; Zhang
et al., 2018c), diamond (Ahmadi et al., 2014), rhombic dodecahedron
(Babaee et al., 2012; Zhang et al., 2018c), truncated cuboctahedron
(Hedayati et al., 2016a), truncated cube (Hedayati et al., 2016b), octet-
truss (Deshpande et al., 2001b), truncated octahedron (Roberts and
Garboczi, 2002), octahedron (Hedayati et al., 2017). Additionally, Ta-
cogne-Dejean et al. (Tancogne-Dejean and Mohr, 2018b) calculated the
mechanical properties of elastically isotropic truss-lattices.

Some of the existing literature is limited to analyzing the Young's
moduli of the unit cells, excluding shear moduli or Poisson's ratios, and
for analytical studies the mechanical responses are simplified, thereby
neglecting torsion or potential axial deformations in the struts. The
present work analyzes the elastic behavior of a modified FCC unit cell
by taking into consideration bending, axial and torsion deformations,
which results in a very high correlation between the finite elements
analysis and the analytical solutions. Moreover, the unit cell was
homogenized by obtaining 9 parameters that correspond to the effec-
tive Young's and shear moduli, and the Poisson's ratios of an orthotropic
material and their analytical expressions were obtained. Furthermore,
an additional geometric parameter was introduced: the aspect ratio of
the unit cell. This parameter defines the ratio between the height and
width of the unit cell, thus allowing the type of load in the struts (axial
or bending) to be adjusted for a given external load and enabling
control over the degree of anisotropy in the unit cell. This analytical
model was then validated with FE analyses.

2. Materials and methods

2.1. Geometry of the FCC lattice

The FCC unit cell is formed by 12 struts crossing at the center of
each face of the unit cell. The analyzed FCC was modified and the struts
corresponding to two parallel faces were eliminated. For the sake of
clarity, the modified FCC unit cell is referred to as FCCm in the text.
Both geometries are illustrated in Fig. 1.

In order to analytically calculate the elastic response of the unit cell,
the best representative volume element (RVE) must be chosen so that
the forces and moments of adjacent unit cells are considered in the
analysis. For the convenience of a mechanical analysis, an appropriate

RVE is taken from the lattice structure, as shown in Fig. 2. In addition,
as previously stated, the aspect ratio R represents the fraction between
the height and the width of the unit cell.

In contrast with the BCC unit cell, in the FCCm unit cell some nodes
are connected to 8 struts, while others are connected to just 4. This
results in a more compliant unit cell and a different arrangement of the
pores, which allow bigger pore sizes than in BCC unit cells, as shown in
Fig. 3.

The length of each strut, denoted by l , depends on the width of the
unit cell (L) and its aspect ratio (R), as shown in Fig. 2 and defined in
Eq. (1). The angle ϑ of the struts with respect to the global Cartesian
coordinates can also be determined with parameter R (Eqs. (2) and (3)).
The struts considered for the analysis were modelled as beams of a
circular cross section of diameter D.

= +l L R
2

1 2
(1)

= =
+l
R

R
sin

1

RL
2

2 (2)

= =
+l R

cos 1
1

L
2

2 (3)

Equation (4) determines the relative density of the FCCm unit cell,
which was calculated by integrating the volume of the struts and di-
viding it by the total volume of the unit cell. The relative density, as a
function of D L/ and R, is illustrated in Fig. 4.
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2.2. Analytical model

The aim of this section is to determine the equations that relate the
elastic response of the FCCm unit cell with the elastic modulus (Es) and
Poisson's ratio ( s) of the matrix material and the FCCm unit cell geo-
metry. It is assumed that the FCCm is a repeating unit cell of a larger
structure, and therefore it is useful to homogenize its mechanical be-
havior by describing it in terms of effective Young's moduli, shear
moduli and Poisson's ratios. In this case, the FCCm is considered or-
thotropic, and thus, nine variables are needed to define its elastic re-
sponse.

The Timoshenko beam model, which is shear flexible, was used to
calculate the elastic response of the FCCm unit cell. The behavior of the
beam was modelled with 12 degrees of freedom, corresponding to the
three displacements and the three rotations of both beam ends in the
three components of the local coordinate system. The material was
considered isotropic and linear elastic, thus = +G E /[2(1 )]s s s holds for
the matrix material. Moreover, as previously stated, the cross section of
the struts was considered circular.

Fig. 5 shows a simple cantilever beam under several loads applied at
the end of the beam. The deformations caused by these loads are also
given under the assumption that there are small deformations, and the
principle of superposition was applied to calculate the displacements
and rotations under combined load states. I represents the second mo-
ment of inertia of the cross section, A is the area of the cross section, Es
corresponds to the Young's modulus of the matrix material, Ip is the
polar moment of inertia of the section, Gs is the shear modulus of the
matrix material, and k is the correction factor for shear deformation
( = + +k 6(1 )/(7 6 )s s for circular cross section (Cowper, 1966)). Note
that in the case of the force F, the shear deformation is also included in
the expression of the F displacement.

The equivalent Young's and shear moduli are determined as theFig. 1. FCC unit cell (left) and FCCm unit cell (right).
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relation between the force applied to the upper vertices and the cross
section area of the chosen RVE. This means that the total area con-
sidered in the RVE is much larger than the actual cross section of the
beams, and therefore the equivalent stress is not the real one of the
beams. Nonetheless, these equivalent material parameters make it ea-
sier to compare between different lattices and the implementation of
lattice structures in other fields. In addition, the equivalent Poisson‘s
ratios correspond to the ratio between the displacements of the vertices
located at the outer surfaces of the RVE.

The displacements in Fig. 6 can be related to the macroscopic strains
by assuming periodic boundary conditions, thus obtaining the following
relationships:

= = =u
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The axial and bending stiffness (Ka and Kf respectively) are defined
so that the total energy of a strut can be defined as
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Depending on the load case, factor M varies because of the different
boundary conditions that the unit cell is subjected to.

2.2.1. Strain energy under normal stress
Each strut of the FCCm unit cell can be modelled as a clamped strut

in order to describe its loads and deformations. Fig. 7 models such a

Fig. 2. FCCm unit cell with =R 1.25.

Fig. 3. Location of biggest pore for the FCCm unit cell with =R 1 (left) and for
BCC unit cell (right).

Fig. 4. Relative density of the FCCm unit cell as function of D L/ and R.

Fig. 5. Deformation under several simple loading conditions.
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beam, and it also shows the relation between the bending and axial
deflections and the global deformations wz and vy. Under normal
stresses there is no rotation at the joints of the beams, which means that

=M Fl /2. By introducing this moment in Eq. (8), the bending stiffness
can be obtained for a normal stress:

=
+

K 1
fn l

E I
l

kAG12 s s

3

(10)

In order to relate the local deformations of the beam ( an1 and fn1)
with the macroscopic stress and strains, first the local deformations
must be expressed as a function of the global displacements:
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Analogously, the same can be done for strut 2:
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By considering the number of struts in the unit cell and its volume,
the strain energy density can be obtained as:
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2
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Note that this expression depends on the macroscopic normal strains

defined in Eq. (6).

2.2.2. Strain energy under shear stress in XY
In this case the beams can be modelled as being clamped at one end,

while allowing some degree of rotation at the other end. This rotation is
limited by the bending of adjacent beams, which in turn also causes
torsion in the modelled beam. Fig. 8 shows the loads and displacements
of the beam.

From these diagrams the bending moment at the beam end (MB) can
be defined as a function of F. Note that the rotation of the beam on the Y
axis must be restricted for pure shear in XY.

= =RM M R,T B (14)
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Therefore, the bending stiffness can be defined as follows:
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Also, the deflection of the beam end is related to the macroscopic
strains in Eq. (7), since = =v ufxy x y. Therefore, the strain energy
density associated with the shear stress in XY is the following:

=U
RL

K4
xy fxy fxy0 3

2
(17)

2.2.3. Strain energy under shear stress in YZ and XZ
The stress in YZ causes two different stress states and deformations

in struts 1 and 2. The problem is solved for stress in YZ, and XZ can be
obtained analogously.

The loads and deflections of strut 1 are shown in Fig. 9. The de-
formations of the figure can be related to the macroscopic strain de-
formations as follows:
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fyz

z y
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The loads of each strut are depicted in Fig. 10 and by means of force
and moment equilibria the following equations can be obtained:

= =F T N F2 sin 2 cos 0z a( ) 1 1 1 (19)

= + =F T F N F2 sin 2 cos 2 0y b( ) 2 1 1 2 (20)

= = == =M M M Mx x x x0 21 2 1 2 (21)

=M RL F
22 2 (22)

From Eq. (19)–(22) and considering that =RT T2 1 must hold for

Fig. 6. Global displacements of the nodes.

Fig. 7. Loads and deformation of strut 1 under normal macroscopic stress.

Fig. 8. Model of a cantilever beam under XY shear stress.
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equilibrium, it is concluded that =M 01 . Therefore, the bending stiff-
ness of the strut 1 under shear stress in YZ is:

=
+

K 1
fyz l
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3 s s

3

(23)

Furthermore, if a uniform shear strain is considered, that is
=w Rvy z , the energy of strut 1 is defined as:
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For strut 2, the loads are analogous to the ones for the stress in XY,
as illustrated in Fig. 8. The difference in this case is that instead of there
being no rotation in the Y axis, there is no rotation in the Z axis. Thus,

Fig. 9. Shear loading in YZ plane, deformation of strut 1 and cantilever beam model of strut 1.

Fig. 10. Free body diagrams of struts under YZ shear stress.

Fig. 11. Singe unit cell (left) and lattice structure (N=5) for finite element
analysis (right).

Fig. 12. Normalized Ez of FCCm lattice structures and FCCm unit cell with PBC.
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the bending moment MB can be calculated as a function of F2:

= =R RM M, B T (25)
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s s
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The bending stiffness and energy of strut 2 can then be defined as:
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In addition, deflections fyz1 and , as well as rotation α, need to be
related to global displacements wy and vz. Fig. 9 illustrates the re-
lationship between displacement wy of strut 2 and its deformations, and
taking into account Equations (19), (20) and (29) and that =w Rvy z :
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Now the energy of struts 1 and 2 can be calculated exclusively as a
function of wy and vz, and therefore related to the macroscopic strain

yz. The total strain energy density in this case will be:
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2.2.4. Elastic moduli and Poisson's ratios
The total strain energy density is the sum of all the calculated va-

lues, which can be expressed as a function of the macroscopic strains as:

(a) (b)
Fig. 13. Comparison between analytical model and FEM of FCCm unit cell with R=1 for Young's moduli in Z (a) and X or Y (b).

(a) (b)
Fig. 14. Comparison between analytical model and FEM of FCCm unit cell with R=1 for shear moduli in XY (a) and YZ or XZ (b).

Fig. 15. Comparison between analytical model and FEM of FCCm unit cell with
R=1 for Poisson's ratios.
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The effective stiffness tensor can be defined by differentiating the
strain energy density with respect to the macroscopic strains.
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The elastic moduli and Poisson's ratios can then be calculated from
the stiffness matrix elements.

= =
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2.3. Finite element analysis

A finite element analysis was performed to check the accuracy of the
obtained model. Simulations were run in commercial software (Abaqus,
2018; Dassault Systems), each strut was discretized with 10 shear
flexible quadratic beam elements (B32 elements), and the same RVE as
the one used for the analytical model was chosen here in order to obtain
a better comparison. The material properties were those from the
Ti6Al4V-ELI alloy, with =E 122.3s GPa and = 0.342s , as in (Hedayati
et al., 2016b).

The effect of the quantity of simulated unit cells was studied in
order to determine the influence of the free surface in the overall be-
havior of a FCCm lattice structure. In order to do that, lattice structures
of NxNxN unit cells were built, where N represents the number of unit
cells in each orthogonal direction, and their elastic behaviors were
analyzed. In all the simulations, engineering strains of 0.1 were applied
for the load cases studied in Section 2.2. Then, the sums of reaction

(a) (b)

Fig. 16. Normalized effective Young's moduli of FCCm unit cell as a function of D L/ and R. Ez in (a) and =E Ex y in (b).

(a) (b)

Fig. 17. Normalized effective shear moduli of FCCm unit cell as a function of D L/ and R. Gxy in (a) and =G Gyz xz in (b).
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forces were divided by the total cross section area of the structure to
obtain the effective Young's and shear moduli. From these analyses the
Poisson's ratios were also measured. Moreover, a single unit cell was
studied by applying Periodic Boundary Conditions (PBC). To that end,
the Python script presented by Omairey (Omairey et al., 1007) was
adjusted for the FCCm unit cell.

Finally, the accuracy of the obtained analytical models was studied
by comparing the analytical expressions and the results obtained from
the FE analysis (see Fig. 11).

3. Results

3.1. Influence of the number of unit cells

Fig. 12 represents the normalized elastic modulus for different
numbers of unit cells. The results show that Ez is independent of how
many unit cells are simulated (difference below 0.1%). The unit cell with
PBC is also represented in the diagram, and, as can be seen, no differ-
ence is observed. The same results were obtained for =E Ey x , Gxy,

=G Gyz xz, =xy yx , =xz yz and =zx zy. Therefore, it can be con-
cluded that the selected RVE represents the elastic behavior of an FCCm
structure regardless of the number of unit cells. Furthermore, it has

(a) (b)

(c) (d)

Fig. 18. Poisson's ratios of the FCCm unit cell as a function of D L/ and R. =xy yx (a), =xz yz (b), =zx zy (c) and variability of Poisson's ratios with R (d).

(a) (b)
Fig. 19. =E E E E/ /z y z x ratio with variable R (a) and Young's moduli with variable R (b) for two different / s ratios.
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been found that for the selected RVE there is no significant difference
between applying and not applying the PBC. As a result, the accuracy of
the analytical model was tested by comparing it with the FE analysis of
a single unit cell with PBC.

3.2. Comparing the analytical model and numerical results

As Figs. 13–15 show, the numerical analysis shows very good
agreement with the developed analytical curves for any of the calcu-
lated moduli or Poisson's ratios. The models with different aspect ratios
(R= 0.5, R=2) were also compared, yielding similar results.

4. Discussion

The main contribution of this work is a set of analytical solutions for
a modified FCC unit cell with variable geometry in order to easily
predict its mechanical behavior. The analytical solutions determine the
elastic moduli, shear moduli and Poisson's ratios in the 3 directions of
the FCCm unit cell, and the obtained expressions show very good cor-
relation with numerical studies. Although the analytical model was not
experimentally validated, other works (Gümrük and Mines, 2013;
Ahmadi et al., 2014; Hedayati et al., 2016a, 2016b) have already shown
the high correlation between the Timoshenko beam model and ex-
perimentally obtained values for different unit cells.

4.1. Variability of elastic behavior

Having ensured the correlation between the analytical and the FE
models, the obtained expressions can be further analyzed. The two
geometric factors affecting the elastic properties of the FCCm unit cell
are D L/ and aspect ratio R. Both factors have a significant influence on
the Young's moduli in the Z and the X or Y directions, as can be ob-
served in Fig. 16. As expected, while increasing the D L/ term, the
Young's modulus increases in all cases, and the variation of R affects
whether the struts withstand an axial or bending load depending on the
direction in which the effective stress is applied. Therefore, the increase
of R has variable effects depending on the loading direction.

Regarding the shear moduli for the XY plane, a small R benefits the
shear stiffness. In contrast, for the XZ and YZ planes, the shear modulus
is at its maximum when R is close to but below 1, since the struts are
axially loaded in this configuration. This also results in a much higher
shear moduli in the XZ and YZ planes than in the XY plane for the same
D L/ and R, as shown in Fig. 17.

The effective Poisson's ratios also present high variability when D L/
and R are modified. In general, the increase of D L/ always brings the
Poisson's ratios closer to zero. On the other hand, the variability is
different with respect to R for every Poisson's ratio, as shown in Fig. 18.
Both xy and xz decrease with the increase of R, while zx increases.
Nonetheless, since xy is negative its decrease supposes that the mag-
nitude of the displacement in the perpendicular cross section is actually
increasing. Thus, it makes more sense to note that for any given D L/ , if
R increases it is only xz that tends to zero, while xy and zx increase

Fig. 20. Young's modulus surface for FCCm lattices with =/ 0.1s and =R 0.6 (a), =R 1 (b) and =R 1.5 (c).

(a) (b)
Fig. 21. Aspect ratio and relative density of FCCm for Young's modulus between 20MPa and 830MPa (a), and design space as in (Arabnejad et al., 2016) of FCCm
unit cell for =R 1.5 with the relative densities that equal the cancellous bone stiffness (b).
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their absolute values, the variability of xy being much smaller than the
variability of zx .

Fig. 19a shows how E E/z y varies with respect to R for two different
values of / s. Thus, the change of relative density has a minimal effect
on the E E/z y ratio, while R has a major influence. Moreover Fig. 19b
shows that it is possible to design a FCCm unit cell fulfilling

= =E E Ex y z for a range of different / s values.
Using the obtained parameters, the elastic behavior of the FCCm

unit cell can be represented in space and the 3D effective Young's
moduli can be analytically calculated. Fig. 20 shows how the variability
of R affects the overall shape of the effective Young's modulus. For any
R, the anisotropy of the FCCm unit cell is very high, as the struts change
from bending to axial loads with the direction of the macroscopic load,
as is also the case in other unit cells such as BCC and Simple Cubic.

4.2. FCCm as bone replacement

In order to avoid the stress shielding effect, it is crucial that the
elastic properties of the materials used in load bearing bone replace-
ments are close to the ones of the bone being replaced. The mechanical
properties of bones show great variability depending on the type and
location of the bone, and other factors, such as age or gender, also have
an influence. The elastic modulus of the cancellous bone varies between
20MPa and 830MPa, while for the cortical bone the elastic modulus is
between 13.6 GPa and 35.3 GPa (Zhang et al., 2018b).

The FCCm unit cell can adjust its elastic properties by changing the
diameter to cell size ratio or the aspect ratio. Therefore, for a given
range of Young's moduli, there is a range of relative densities of the unit
cell for every aspect ratio matching these elastic properties. Fig. 21a
shows the possible relative density values for every aspect ratio that
matches the stiffness range of the human cancellous bone.

(a) (b)

(c)
Fig. 22. Comparison of analytical Young's modulus (a), Poisson's ratio (b) and shear modulus (c) of FCCm unit cell and other unit cells, as well as Hashin-Shtrikman
bounds.
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Once the aspect ratio is fixed, the geometry of the unit cell is de-
fined, and the relative density and cell size can then be related to the
pore size and strut diameter, while considering the upper and lower
bounds of the prescribed limits for the Young's modulus, as in Fig. 21b.

4.3. Comparison with other unit cells

The obtained results were compared with the analytical expressions
of other unit cells. Although Euler-Bernoulli beams are widely used to
model the elastic behavior of similar bending dominated unit cells, in
order to ensure the validity of the comparison, only those modelled as
Timoshenko beams were taken into account. This limits the number of
unit cells to compare, especially in the case of shear moduli. In addition
to the bending dominated unit cells, an isotropic unit cell was also
considered from (Tancogne-Dejean and Mohr, 2018b), which models
the beams of a stretch dominated unit cell as trusses. Fig. 22 shows the
elastic parameters of different unit cells, as well as the Hashin-
Shtrikman bounds (Hashin and Shtrikman, 1963), as a function of the
relative density, including the FCCm unit cell with two different aspect
ratios ( =R 1 and =R 1.5).

Fig. 22a shows that the Young's moduli of FCCm are in the range of
other bending dominated unit cells for =R 1. Nevertheless, as R
changes, the axial load of each strut also varies depending on the load
case, which increases the difference between =E Ex y and Ez. This
variability, although noticeable, is slightly lower for the shear moduli.
The biggest difference with respect to other unit cells can be seen in the
Poisson's ratio (Fig. 22b), where there are much higher values com-
pared to the rest of the studied unit cells, and even a negative xy. This
particularity of the behavior of the Poisson's ratios occurs because some
nodes are connected to 4 struts, while others are connected to 8 struts,
which results in different elastic responses lacking cubic symmetry.

5. Conclusions

The mechanical properties of lattice structures made of a modified
FCC unit cell were studied and the analytical expressions can predict
the elastic moduli, shear moduli and Poisson's ratios in the 3 directions
as a function of the bulk material properties and 2 geometric para-
meters: the D L/ ratio and aspect ratio R of the unit cell. This can be of
paramount importance in designing biomaterials with the prescribed
mechanical properties and for some applications such as topology op-
timization, where the analytical calculation of the compliance matrix
for different relative densities decreases the computational cost.

Parameter R makes it possible to regulate not only the elastic
modulus, but also the degree of anisotropy of the lattice structure, and
thus it is possible to design a FCCm unit cell such that = =E E Ex y z.

The modelling of the shear and torsion deformation, apart from
axial and bending displacements, increases the accuracy of the analy-
tical expressions, which show a very high correlation with the FEM
calculations of beam elements.
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46 Chapter 4. Publications
4.2 Paper B

The title of the Paper B is ’Influence of relative density on quasi-static and fatigue failure of latticestructures in Ti6Al4V produced by laser powder bed fusion’. The article continues with the analysisof the FCCm structure, and its mechanical behavior is analyzed in more depth both numerically andexperimentally:
• FCCm structures were manufactured with different relative densities and hot isostatic pressing (HIP)was applied, while keeping some as-built structures to study the effect of HIP.
• Gibson-Ashby curves of FCCm structures were obtained, and comparison with numerical simulationswas carried out to study the failure under quasi-static load.
• S-N fatigue curves were obtained for different relative densities, and fatigue failure of the structureswas studied based on stiffness evolution, establishing a restrictive failure criterion.
• Fatigue failure prediction methods from literature were compared and modified to improve theirfatigue life prediction capabilites.
• A fatigue failure surface was proposed to explicitly include relative density in the cyclic loadprediction.
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ABSTRACT

Lattice structures produced by additive manufacturing have been increasingly studied in recent years due to their potential to
tailor prescribed mechanical properties. Their mechanical performances are influenced by several factors such as unit cell
topology, parent material and relative density. In this study, static and dynamic behaviors of Ti6Al4V lattice structures were
analyzed focusing on the criteria used to define the failure of lattices. A modified face-centered cubic (FCCm) lattice structure
was designed to avoid the manufacturing problems that arise in the production of horizontal struts by laser powder bed fusion.
The Gibson-Ashby curves of the FCCm lattice were obtained and it was found that relative density not only affects stiffness and
strength of the structures, but also has important implications on the assumption of macroscopic yield criterion. Regarding
fatigue properties, a stiffness based criterion was analyzed to improve the assessment of lattice structure failure in load bearing
applications, and the influence of relative density on the stiffness evolution was studied. Apart from common normalization of
S-N curves, a more accurate fatigue failure surface was developed, which is also compatible with stiffness based failure criteria.
Finally, the effect of hot isostatic pressing in FCCm structures was also studied.

Introduction
Additive manufacturing (AM), and laser powder bed fusion (LPBF) of metals specifically, enables the production of exception-
ally complex parts in a cost-effective manner, including architected lattice structures1. These structures offer a set of mechanical
property combinations unavailable until few decades ago. Lattice structures can be considered as metamaterials when analyzed
at macroscopic level2, 3. These metamaterials can be formed by a three dimensional pattern of a repeating unit cell (UC), or by
stochastic arrangements of structural units that fill a certain space to form a part4.

The large amount of available configurations makes lattice structures interesting for diverse applications, ranging from
structural components as well as in energy absorption, heat exchanger devices, vibration attenuators or for catalytic purposes5–8.
In terms of load carrying applications, the freedom that AM offers regarding the manufacturability of geometries enables the
design of lattice structures tailoring specific mechanical properties that meet specific needs9, 10.

Lattice structures can be categorized in stretching or bending dominated structures depending on the configuration of their
struts11. Along with the topology of the structures, relative density is an important driving factor of their mechanical properties,
defined by the proportion of the parent material within a Representative Volume Element (RVE) of the lattice structure.

The influence of relative density on the quasi-static lattice mechanical properties has been studied for different structures
like BCC12, diamond13, octet truss14, FCC15, rhombic dodecahedron16 or cubic17, among others18, covering a wide range of
stiffness and strength levels. Yield strength or plateau stress are in turn used to better predict the fatigue properties of those
structures, because they implicitly include the effect of variables such as material, microstructure, surface roughness, relative
density or manufacturing deviations17. Ahmadi et al.19 concluded that the accuracy of this approach was highly dependent on
the material and the unit cell topology. On the other hand, Van Hooreweder et al.20 developed a Local Stress Method (LSM) to
predict the fatigue behavior of lattice structures based on a beam model, and considering only local tensile stresses. In addition,



the effect of heat and surface treatments was also extensively studied, concluding that a combination of surface treatments like
chemical etching or sand blasting with Hot Isostatic Pressing (HIP) sensibly improves the lattice structures fatigue life20–22.

Most of the experimental work in fatigue is conducted under uniaxial compression-compression loads due to the simplicity
of the test configuration23, and as far as the authors know there is no standard failure criterion that defines the lattice specimen
failure in fatigue tests. Nevertheless, it is common to consider the failure of a specimen when it loses most or all of its
stiffness22, 24–26, e.g. 90% of stiffness reduction, or permanent displacement drops20, 21, 27. These criteria imply the loss of the
load carrying capacity of the specimen, yet in the case of parts integrating lattices for load bearing applications, the changes in
stiffness or deformations on the lattice might lead to the increase of stresses in the part. Thus, it is useful to consider other
criteria to determine the failure of lattice structures, as done by Boniotti et al.28, where a 10% stiffness loss failure criterion was
used to analyze the fatigue of AlSi7Mg lattice structures.

Horizontal struts produced by LPBF have an overall lower quality than inclined or vertical struts, with higher strut porosity
levels and lower dimensional accuracy29. This has significant effects on the mechanical properties of lattice structures, and
limits their capability to perform under certain load orientations30. In this work, a modified FCC lattice structure (FCCm) was
designed by removing the horizontal struts of the FCC unit cell. Lattice structures of several relative densities were produced
with LPBF Ti6Al4V. The fatigue behavior was studied for the different relative densities, analyzing the evolution of the stiffness
of the specimens, and assessing a stiffness based failure criterion for fatigue. A new method to predict the fatigue life of lattice
structures for a wide range of relative densities is also proposed, which can be used along with stiffness based failure criteria.
Furthermore, the interaction between the mesoscopic stress state and macroscopic metamaterial properties were numerically
investigated to explore in depth in the assumption of the 0.2% offset stress as the macroscopic yield strength of lattice structures.
Finally, a batch of as-built FCCm lattices was also produced to analyze the effect of heat treatment on the quasi-static and
fatigue properties of the FCCm structures.

Materials and Methods

Design and production of lattice structures
Lattice structures were designed based on the FCCm unit cell, which is formed by 6 nodes and 8 struts forming an angle of 45º
with respect to the build plate as in Figure 1. A unit cell size of 1.5mm was used, and structures of two different sizes were
produced. Lattices of 10%, 20% and 30% relative densities - referred as RD01, RD02 and RD03 - were designed using the
formula developed in Alaña et al.31, with diameters of 0.24 mm, 0.36 mm and 0.46 mm respectively, and a width of 15 mm and
height of 19.5 mm (left in Figure 1). These structures were HIP treated at 920°C for two hours with a pressure of 1000 bar after
production. On the other hand, structures of 12 mm size were also designed based in the same unit cell, and with a prescribed
relative density of 20% (right in Figure 1). These structures were not treated after production and are named AB (as-built). All
the samples were produced in Ti6Al4V by LPBF on a Mlab machine (Concept Laser).

Figure 1. Specimen geometry for 20% relative density design for HIP (left) and as-built (right) conditions.
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Morphological characterization and mechanical testing
For each of the produced specimens, the relative density of the structures was measured by dry weighing. The total volume of
the specimen was calculated from caliper measurements, and a theoretical density of 4.42 g/cm3 was assumed for Ti6Al4V.
Furthermore, the strut density was also measured by means of Archimedes method, submerging the specimens in ethanol.

Quasi-static compression tests were carried out on an Instron 3360 with a 30 kN load cell. A crosshead velocity of 0.9
mm/min was used, and Teflon sheets of 0.2 mm were used to reduce the friction between the specimen and the compression
plates. The strain was measured using the Instron Video Extensometer AVE2. For the RD03 structures an Instron 5982 was
used with a 100 kN load cell due to their higher strength. In this case, the crosshead displacement was measured, and strain was
calculated by compensating the compliance of the machine.

Load controlled compression-compression fatigue tests were performed on an Instron Electropuls E10000 machine, with a
frequency of 15 Hz and a load ratio (R) of 10. Tests were stopped when collapse of the specimen occurred, or after reaching
106 cycles. Furthermore, the stiffness of the samples was measured every 1000 cycles. After compensating the stiffness of the
machine, an additional failure criterion was established at 10% stiffness loss of the sample. Due to the high strength of the
RD03 specimens a Schenck equipped with a load cell of 160 kN was used for fatigue testing. The fatigue strength (FS) of the
structures at 106 cycles was obtained by means of the staircase method32. An arbitrary stress is applied to the specimen (σn),
and after the prescribed number of cycles is reached (Nlimit = 106) the stress level is increased and the same specimen is tested
again. The FS is obtained by means of Eq. 1.

σFS = σn−1 +
N f ailure

Nlimit
(σn −σn−1) (1)

Numerical models
In order to understand the effect of the relative density on the macroscopic properties of the FCCm lattice a Finite Element
(FE) analysis was carried out. The simulations were also performed to study the relationship between the lattice macroscopic
properties and the bulk material as the relative density varies.

Figure 2. FE model of a unit cell of the RD02 specimen.

The FE models were constructed with a single unit cell (Figure 2) with Periodic Boundary Conditions (PBC)33. On the one
hand, FE models were built with relative densities corresponding to the values obtained by dry weighing, in order to compare
directly with the experiments. Therefore, a part of the manufacturing deviation was already accounted for. On the other hand,
several numerical models with relative densities between 5% and 40% were also designed in order to analyze the interaction
between macroscopic and mesoscopic stress levels and their variability for different relative densities. Abaqus 2020 was used
for the analyses, with second order tetrahedral elements (C3D10) after conducting a sensitivity analysis, and the element size
was designed to be ten times smaller than the strut diameter for each model. Linear elasticity was assumed, and J2 plasticity
was used to model plastic behavior. The material was assigned a Young’s modulus of 129 MPa, a Poisson ratio of 0.342 and a
yield strength of 921 MPa.
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Normalization of fatigue curves
For each relative density the fatigue experimental data were used to derive specific S-N curves. These curves were normalized
with the global 0.2% offset stress obtained from the quasi-static compression tests to assess the variability of the normalized
curves for different relative densities and to analyze the effect of the HIP.

Moreover, the Local Stress Method (LSM) developed by Van Hooreweder et al.20 was implemented in the FCCm structures.
This normalization is based on a Timoshenko beam model of the struts, and considers only the tensile stress of the beam
model to assess the fatigue life of the structures. In order to apply the LSM for a wide range of relative densities the method
was modified to consider the variability of strut length (lstrut) apart from diameter (d) changes. Thus, this equation gives the
analytical tensile stress across the FCCm struts:

σLSM = F
(

16lstrut cosθ
πd3 − 4sinθ

πd2

)
(2)

Figure 3. Parameters to obtain the maximum tensile stress in each strut by using the Local Stress Method.

In which F is force applied on the single strut and θ is the angle between the strut axis and the horizontal plane, as shown in
Figure 3. For FCCm structures θ = 45◦. The relation between the strut diameter and the relative density for FCCm structures is
given by Eq. 3, where L represents unit cell size.

ρrel = α
(

d
L

)3

+β
(

d
L

)2

, with α =−3.91 and β = 4.44 (3)

Fatigue failure surface
The S-N curves were used to define a S-N-ρrel surface, which expresses the fatigue properties of the FCCm lattice structures for
a given relative density range. This surface is a result of two subsequent nonlinear regression fits, which were obtained by
means of the Curve Fitting Toolbox of MATLAB (2020a, MathWorks, USA). Firstly, an S-N curve was generated for each
tested relative density with the form of Eq. 4.

S =C1NC2 (4)

Once C1 and C2 values were obtained for the three batches, those values were used to fit two different exponential curves,
one for each variable. Hence, the relative density is explicitly introduced as the function variable to define C1 and C2. In this
case an offset was included in order to increase the flexibility of the variables.

C1 = aρb
rel + c, C2 = dρe

rel + f (5)

By introducing the expressions of Eq. 5 into Eq. 4, the next equation is obtained:
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S =C1NC2 =
(

aρb
rel + c

)
N(dρe

rel+ f) (6)

Eq. 6 describes the S-N-ρrel surface that contains the fatigue life of the FCCm lattices, explicitly including the relative
density in the equation of S-N curves.

Results and discussion
Manufacturing
The relative density of the scaffolds and their strut density are given in Table 1. For all the manufactured samples, the measured
relative densities were always higher than designed, with the deviations between 2.39% and 7.72%.

The internal porosity of the struts is significantly lower in the RD01 specimens compared to the other samples. Even for the
HIPed samples RD02 and RD03, the strut porosity is similar to as-built samples AB, indicating that the HIP process could not
close the internal pores of the struts.

RD01 RD02 RD03 AB
Designed relative density [%] 10 20 30 20
Manufactured relative density [%] 12.39±0.34 27.72±0.31 37.11±0.27 26.59±0.2
Strut density [%] 99.57±0.10 97.28±0.18 97.18±0.46 97.52±0.16

Table 1. Designed and manufactured relative densities.

Quasi-static compression
The values obtained from the quasi-static compression tests are given in Table 2, including the standard deviation.

Quasi-elastic
gradient [GPa]

0.2% offset
stress [MPa]

Strain at stress
offset [%]

Maximum stress
[MPa]

Strain at maximum
stress [%]

RD01 0.75±0.01 17.95±1.32 2.78±0.25 23.94±0.84 6.84±0.32
RD02 4.96±0.41 100.09±0.35 3.15±0.16 124.00±0.65 7.77±0.48
RD03 9.07±0.60 181.79±2.99 2.87±0.05 234.43±2.46 11.23±0.53
AB 5.38±0.39 121.00±0.79 3.64±0.23 138.40±0.44 5.29±0.29

Table 2. Experimental values of tested FCCm lattice structures.

Effect of relative density
Figure 4a shows the stress-strain curves of the HIP treated FCCm samples for different relative densities. The shaded area
corresponds to the 95% confidence interval, which was obtained by combining the curves of the tested samples in each batch.

The scatter of the curves is very low in the elastic and beginning of plastic regions, and it increases in the stiffness drop
region and afterwards. Moreover, even if the variability of the curves is rather small for RD01 and RD02, in the case of RD03
the curves of the samples show important differences, which leads to the wide shaded area of 95% confidence interval.

The fluctuation of the stress-strain curves varies depending on the relative density, and denser structures show a lower
number of peaks and valleys for the same compression level of the sample. This indicates that the higher relative density favors
a more homogeneous behavior of the structures, which do not collapse layer by layer or strut by strut, but more as a compact
material. This effect can be better observed in Figure 4b, which depicts the stress-strain curves normalized by the macroscopic
yield strength of each of the structures. The figure also indicates that the stiffness drop of RD03 occurs at higher strain levels,
and is more progressive than for RD01 and RD02.

The stiffness and strength of the structures increase exponentially with the relative density, and the Gibson-Ashby curves of
the FCCm lattices exhibit the typical bending dominated behavior. Figure 5 depicts the quasi-elastic gradient and macroscopic
yield strength of the FCCm lattice structure and other bending dominated topologies under a wide range of relative densities, and
the FCCm denotes superior stiffness and strength for the analyzed cases. These results are limited to a single load orientation,
and can be explained by the different angle of the struts with respect to the load in the case of the FCCm lattice.
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(a) (b)

Figure 4. Stress strain curves of FCCm structures with different relative densities for a) macroscopic stress and b) normalized
macroscopic stress.

(a) (b)

Figure 5. Gibson Ashby curves of FCCm and other bending dominated unit cells made of Ti6Al4V obtained from34 and35.

Effect of heat treatment
The HIP process has a strong influence on the structures’ mechanical properties. As reported in several studies, HIP treatment
of LPBF Ti6Al4V samples leads to residual stress relief, potential material porosity reduction and also a transition from the
more brittle martensitic α ′ material structure to a more ductile α −β structure20, 25. Figure 6 shows the difference between AB
and HIP conditions. The AB samples have higher maximum stress, and a slightly higher quasi-elastic gradient. Nonetheless,
the fracture of the structure is brittle, and occurs at lower strains compared to the samples after HIP treatment.

After the first stress drop, the HIPed structure is able to continue absorbing energy, while for the AB structure, the fracture
plane divides the structure in several parts with the consequent loss of the structural integrity needed to carry load and absorb
energy as shown in Figure 7. The difference in geometry between both structures may also play a role in this behavior, since the
AB samples have fewer unit cells in each direction, making the structure more unstable after the slip plane appears. Figure 7
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Figure 6. Stress strain curve of AB and RD02 structures.

also shows that the slip plane corresponds to the [111] orientation, which is a common property of the FCCm unit cell regardless
the relative density and heat treatment, under uniaxial load in [001] direction.

Figure 7. Fracture plane of the AB structure under compression load in [001].

Numerical simulation
The quasi-static mechanical properties of the numerical models are given in Table 3. The numerical model is capable of
predicting the strength of the FCCm structures consistently, with a maximum relative error of 12% in the case of the RD01
structure. Nevertheless, the quasi-elastic gradients of the numerical models are far from the experimental values obtained. It
is common to have significant differences between numerically and experimentally obtained mechanical properties of lattice
structures, since numerical models neglect many imperfections that reduce the stiffness of lattices, and can even cause changes
in their anisotropy36, 37. These imperfections include the dross formation, the waviness of struts, the surface roughness, internal
porosity, among others, and were not considered in the numerical models.

RD01 RD02 RD03
Exp. FE Exp. FE Exp. FE

Quasi-elastic
gradient [GPa] 0.75 1.54 4.96 10.45 9.07 20.89

0.2% offset
stress [MPa] 17.96 20.16 100.09 98.5 181.79 174.88

Table 3. Designed and manufactured relative densities.
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Yield stress of structure and design criteria

The 0.2% offset stress is a widely used stress criterion to assess the strength of lattice structures, and often referred to as yield
strength10, 34. Nevertheless, this criterion should be used with caution if applied to lattice structures. Whereas the yield strength
usually establishes the stress limit above which plastic deformation of the material begins, for lattice structures high plastic
deformations may occur in large regions before reaching the macroscopic yield strength. This phenomenon is caused by the
non-uniform stress fields that arise as the scaffolds are deformed.

Figure 8 depicts the distribution of the Von Mises stress for the numerical models corresponding to the tested specimens.
The macroscopic stress applied to each model corresponds to the half of the macroscopic yield strength, obtained as 0.2% offset
stress. The Von Mises stress corresponds to the actual stress of the bulk material within the structure, that is, the mesoscopic
stress. The effect of relative density can be observed in the different shape of the distributions. For low relative densities, the
proportion of low stress regions is much larger. The higher slenderness of the struts results in a more beam like load distribution,
with large regions of the struts under low stress levels. As the relative density increases, the probability distribution covers a
wider span of the stresses, and a larger proportion of the structure withstands higher stress levels for the same proportional
macroscopic stress. The exponential growth of the Gibson Ashby curves can be explained by this evolution of the load carrying
mechanism.

Figure 8. Probability distribution of Von Mises stress of the numerical models under same normalized macroscopic stresses.

The different stress distributions have significant implications when considering design criteria based on macroscopic
stresses, such as macroscopic yield strength. If the stress state of the numerical models is analyzed for different macroscopic
stress levels and different relative densities, it can be observed that the proportion of plastic deformation that occurs before the
macroscopic yield strength is highly dependent on relative density, as indicated in Figure 9a. The Figure depicts the percentage
of the bulk material of the lattice structures above yield stress, and the ratio between the applied macroscopic stress and the
macroscopic yield strength. σ/σy = 1 corresponds to the 0.2% offset stress, considered the macroscopic yield stress for each
model, after which macroscopic plastic deformation is assumed (blue area in Figure 9a).

Figure 9b indicates the percentage of the yielded volume of each structure at the macroscopic yield stress level corresponding
to the 0.2% offset stress. As the relative density increases, the proportion of regions with plastic deformation is larger at the
macroscopic yield stress level. For the FCCm lattice structures with relative density of 40%, above one quarter of the structure
is undergoing plastic deformation before reaching the macroscopic yield criterion.

This information should be considered when designing parts that include lattice structures in case the bulk material is
supposed to work only within the elastic region. Furthermore, the irregularities of the surface and manufacturing deviations
were not accounted for in these simulations. These effects increase the stress level of the lattice structures, thus enhancing the
probability to develop plastic strains before expected in the design process.
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Figure 9. a) Evolution of bulk material yielding for different relative densities, b) proportion of yielded bulk material at
macroscopic 0.2% offset yield stress for different relative densities.

Fatigue properties
Global S-N curves
Figure 10 depicts the S-N curves obtained from the experiments, including experimental data obtained using both the failure
criteria of 10% stiffness drop and collapse of the structure. The experimental points were adjusted to Basquin’s exponential
curves S =C1NC2 and the obtained coefficients are given in Table 4.

The variation of the relative density comprises a very wide range of fatigue resistance values for the FCCm structure,
across different orders of magnitude. This variability is suitable in order to tailor the mechanical properties of the structure
considering the required fatigue performance under different load cases, or to design graded lattice structures with fatigue
strength constraints. As expected, the HIP process significantly improves the fatigue life of the structures, even if in this case
the HIP process was not able to close the internal pores of the struts. Therefore, the change in microstructure can be considered
as the responsible for fatigue life enhancement20.
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Figure 10. S-N curves of FCCm lattice structures for two different failure criteria.
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10% stiffness loss Collapse failure
C1 C2 C1 C2

RD01 39.07 -0.160 46.24 -0.165
RD02 293.19 -0.178 455.32 -0.207
RD03 1078.7 -0.223 1102.6 -0.217
AB 761.35 -0.284 843.6 -0.279

Table 4. Coefficients for Basquin’s exponential S-N curves of FCCm structures.

Evolution of stiffness and failure criteria
The loss of stiffness of lattice structures during fatigue loading is a progressive degradation process in which the damage, the
failure or the local plastic deformation of each strut gradually reduces the macroscopic stiffness of the structure. This process
is depicted in Figure 11 for the different relative densities of FCCm lattice structures. The legends include the proportion of
maximum stress of the cycles with respect to the macroscopic yield strength of the structures.
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Figure 11. Evolution of stiffness under different loads and relative densities of a) 10%, b) 20% and c) 30%.

The damage that results in stiffness loss is accumulated at different rates depending on the load and the relative density.
The highest stress levels induce more pronounced stiffness losses from the beginning of the test, with small regions of stable
stiffness. Nonetheless, lower stress levels result in large stable stiffness regions before the accumulation of damage begins. This
trend is observed for all the analyzed specimens, however, the rate of damage accumulation and its stability also depends on the
relative density.

Establishing a fatigue criteria based on the 10% stiffness loss of the structure allows to guarantee the integrity of the lattice
structure, as well as it hinders the excessive loading of parts adjacent to the lattice structure in load bearing applications.
Nonetheless, it is important to notice that stiffness loss criteria for lattice structures imply different safety factors (SF) depending
on the relative density. SF is defined by the ratio between the cycles until collapse and the cycles elapsed until the established
fatigue criterion. Figure 12 presents the relationship between the elapsed cycles at the 10% stiffness loss, and the cycles left
until total collapse of the structure, for each of the tested specimens. The two dashed lines in the figure correspond to SF=2
(y=x line) and to SF=1.5 (y=0.5x line) respectively.

In low cycle fatigue (LCF) there is a correlation between relative density and SF: the RD01 specimens coincide with the
SF=2 line, the RD03 is in good agreement with the SF=1.5 line, and RD02 is between both lines, which means that a higher
relative density implies a lower SF. It must be noted that the tendency of RD02 is not linear and presents higher variability with
respect to the stress level compared to RD01 and RD03. On the other hand, for high cycle fatigue (HCF) the SF of RD01 and
RD02 decreases with respect to LCF, whereas for RD03 the SF increases. The increase for RD03 samples above SF=1.5 line
can be explained by the tendency change of the stiffness decrease as depicted in Figure 11c for the lowest stress levels. For the
AB samples, the SF is similar to the HIPed samples, nevertheless, the decrease of stress level tends to increase the SF, which is
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Figure 12. Cycles left until collapse for FCCm structures with different relative densities depending on cycles at 10% stiffness
loss.

a tendency contrary to the one observed in the RD02 samples.

The ratio between the SF and stiffness loss enables the prediction of cycles left for FCCm lattice structures and thus a safer
integration in load bearing applications. Furthermore, instead of establishing a certain stiffness drop as a failure criterion, it is
also possible to use a certain SF as failure criterion, which can be implemented by calculating the stiffness drop corresponding
to each relative density and stress level.

Strain accumulation must also be considered to consider the failure of the structure at 10% stiffness loss. For all the tested
stress levels, the mean accumulated strain at 10% stiffness drop was 0.36%, 0.39% and 0.32% for RD01, RD02 and RD03
structures respectively, which ensures structural stability.

Normalization of S-N curves
Figure 13 shows the normalized S-N curves of the FCCm structures based on the final collapse failure criterion. Figure 13a
depicts the S-N curves normalized with the macroscopic yield strength of each structure for different relative densities, and
the fitted dashed line corresponds to all the HIPed samples. A clear difference can be observed between the studied relative
densities, and the normalized fatigue strength increases with the relative density, which limits the fatigue prediction capability
of this method. The effect of heat treatment can be observed with the AB curve below all the normalized curves after HIP,
regardless the relative density.
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Figure 13. S-N curves of collapse of the structures normalized by a) yield strength and b) Local Stress Method.

It is common to normalize the S-N curves by dividing the stress with a quasi-static macroscopic property of the lattice
structure being analyzed, e.g. the macroscopic yield strength or plateau stress19, 38. The advantage of this approach is that
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very different factors such as the variation of relative density, microstructure, or manufacturing defects can be accounted in an
implicit manner, thus obtaining curves that enable the prediction of fatigue life. Nonetheless, the accuracy of this approach is
variable across different works and studied unit cell types19, 39, 40, and in the case of the FCCm unit cell it has only a limited
reliability.

The normalization based on local tensile stresses of the beam models is given in Figure 13b, and it shows a very good
agreement for all experimental data corresponding to HIPed specimens, regardless the relative density of the structures. The
level of accuracy is higher in HCF, presumably because the assumption of elastic behavior is more valid in this region. The
effect of heat treatment can also be observed in Figure 13b, indicating that the difference between AB and HIP increases from
LCF to HCF.

It is worth noting that an analytical beam model considering the tensile stresses exhibits a higher accuracy than the normal-
ization with the macroscopic yield strength, despite the latter implicitly considers more variables. This might be explained by
the fact that the macroscopic yield of lattice structures is a compression driven phenomenon under macroscopic compression,
while the fracture of struts and progressive damage accumulation is induced mainly by tensile stresses developed across each
strut under compressive loads.

On the other hand, these methods to predict fatigue life are not as accurate if 10% stiffness loss criterion is used, as depicted
in Figure 14. In the case of yield strength normalization, the R2 is even lower than for collapse, and three different tendencies
can be distinguished. Local Stress Method fits better, but the accuracy also decreases compared to Figure 13b. This loss of
accuracy arises because of the fact that a prescribed stiffness loss corresponds to different SF for each relative density and stress
level. Nonetheless, for a prescribed SF the normalization accuracy corresponds to the one in Figure 13. The fatigue failure
surface was developed in order to have more flexibility in the prediction of fatigue life with various failure criteria.
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Figure 14. S-N curves of 10% stiffness loss criterion normalized by a) yield strength and b) Local Stress Method.

Fatigue failure surface
The constants resulting from the exponential fits described in Eq. 6 are given in Table 5. For each of the considered failure
criteria a failure surface can be defined by introducing the constants in Eq. 6. The differences in sign for some constants for
different failure criteria arise from the very different behavior of the evolution of stiffness after the 10% loss for each structure.
This method provides an accurate tool (R2 = 0.991 and R2 = 0.983 for 10% stiffness loss and collapse criteria, respectively) to
predict the fatigue life of FCCm lattice structures within a wide range of relative densities.

The failure surface of Figure 15a corresponds to the 10% stiffness loss of the structures, while the Figure 15b depicts the
collapse of the structures for each relative density. As expected, the area corresponding to the 10% stiffness loss is smaller than
for the collapse, since the former criterion is more restrictive.

The failure surface is a highly flexible tool to predict failure of lattice structures under several fatigue criteria. In this work
the 10% stiffness loss was used apart from the collapse of the structure, but adopting any stiffness based criteria is also possible.
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10% stiffness loss Collapse
a 118600 22940
b 4.77 3.07
c 33.51 8.53
d -4.07 0.02
e 4.19 -0.74
f -0.16 -0.26

Table 5. Constants from exponential fits for stiffness loss and collapse fatigue failure surfaces.
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Figure 15. Failure surface after HIP for a) 10% stiffness loss and b) collapse of structure.

Furthermore, this method also allows considering different admissible stiffness loss values depending on the relative density:
for lower relative densities, higher stiffness losses are admissible before collapse (Figure 12).

Fatigue strength at 106 cycles
The resulting FS at 106 cycles for each of the tested structures is given in Figure 16. As expected, the fatigue strength varies
with the relative density following an exponential curve as the quasi-static mechanical properties listed in Table 2. Moreover,
the HIP treatment increases the FS of the structures as expected.

Figure 16. Fatigue strength at 106 cycles of FCCm structures for different relative densities and post treatments.

Figure 17 indicates the FS of each structure after normalization with macroscopic yield strength, and using the LSM
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normalized by the yield strength of the bulk material. The normalized fatigue strength of HIPed samples increases slightly
with relative density, from 0.27 to 0.31, while the AB sample has a normalized FS of 0.15. The FS at 106 for several bending
dominated structures is reported to lay between 0.15 and 0.24 for AB condition41. The higher normalized FS for HIPed
structures is in line with results reported in literature42, 43, and the LSM also indicates that HIP treatment increases the FS of
the structures, regardless the relative density. This can be mainly attributed to the α +β microstructure of the HIPed samples
compared to the α ′ of the AB condition.
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Figure 17. Normalization of fatigue strength with yield strength and local stress method.

Conclusions
The relative density of the lattice structures is one of the most relevant parameters that enables the control and design of their
mechanical properties. This study analyzed the quasi-static and dynamic mechanical properties of lattice structures based on
the FCCm unit cell with different relative densities, and the interaction between macroscopic and mesoscopic variables. The
main conclusions are as follows:

• The quasi-static mechanical properties of FCCm lattice structures follow the expected exponential curve, and their
quasi-elastic gradient and yield strength are above the ones of other bending dominated unit cells in the tested direction.

• Macroscopic 0.2% offset stress does not represent the transition from elastic to plastic deformation of the bulk material
for lattice structures. In fact, the relative volume of the bulk material undergoing plastic deformation at macroscopic
0.2% offset stress varies with the relative density.

• The S-N curves of the FCCm unit cell made of HIPed Ti6Al4V were obtained under compressive load and R=10 for
different relative densities.

• The Local Stress Method, which has proved valuable for diamond lattices, is also able to predict the fatigue life of FCCm
structures within a very wide range of relative densities.

• A stiffness based fatigue failure criterion is presented to ensure structural integrity and load carrying capacity, showing
that the Safety Factor depends on the relative density of the structures as well as on stress level.

• The developed fatigue failure surface method accurately describes the fatigue life of FCCm lattices, and its flexibility
enables the use of stiffness based fatigue failure criteria.
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The title of this paper is ’Additively manufactured lattice structures with controlled transverse isotropy fororthopedic porous implants’. The article develops a semi-analytical model to create transversely isotropiclattices, and studies its applicability in bone tissue engineering, leading to the following contributions:
• The possible design space for transversely isotropic lattices is studied, obtaining a generalizedstiffness matrix for any structure under certain assumptions, and proposing three different designsfor transverse isotropy.
• The stiffness and strength of the so called VFCCBCC structure is analyzed semi-analytically andnumerically, showing good correlation between both models.
• Quasi-static compression experiments with different load orientations were carried out to validatethe model.
• The obtained model is able to mimic the anisotropy and stiffness levels of bone in various bonesites, which improves the osseointegration capability of the scaffold.
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Abstract

Additively manufactured lattice structures enable the design of tissue scaffolds with tailored mechanical properties,
which can be implemented in porous biomaterials. The adaptation of bone to physiological loads results in anisotropic
bone tissue properties which are optimized for site-specific loads; therefore, some bone sites are stiffer and stronger
along the principal load direction compared to other orientations. In this work, a semi-analytical model was devel-
oped for the design of transversely isotropic lattice structures that can mimic the anisotropy characteristics of different
types of bone tissue. Several design possibilities were explored, and a particular unit cell, which was best suited for
additive manufacturing was further analyzed. The design of the unit cell was parameterized and in-silico analysis
was performed via Finite Element Analysis. The structures were manufactured additively in metal and tested under
compressive loads in different orientations. Finite element analysis showed good correlation with the semi-analytical
model, especially for elastic constants with low relative densities. The anisotropy measured experimentally showed
a variable accuracy, highlighting the deviations from designs to additively manufactured parts. Overall, the proposed
model enables to exploit the anisotropy of lattice structures to design lighter scaffolds with higher porosity and in-
creased permeability by aligning the scaffold with the principal direction of the load.

Keywords: Lattice structures- Transverse isotropy - Orthopedic implants - Additive manufacturing

1. Introduction

The advances in additive manufacturing (AM) in recent years paved the way for the manufacturing of lattice
structures [1]. AM includes many different categories such as direct energy deposition (DED), material extrusion or
powder bed fusion (PFB), among others [2]. PBF in general, and selective laser melting (SLM) in particular, offers
the possibility to produce complex parts with very small feature sizes, which makes it ideal for the manufacturing of
scaffolds for bone tissue engineering [3]. Lattice structures may be formed by stochastic patterns or by predefined unit
cells that fill the space to form a part [4]. The mechanical properties of such parts can therefore be tuned by adjusting
the topology of the lattice structures forming them [5].

This has brought the attention of several fields, including the biomedical [6, 7], since lattice structures may be
used as meta-biomaterials for orthopedic implants or bone tissue scaffolds. Bulk metals used for orthopedic implants
have an elastic modulus 1 or 2 orders of magnitude higher than host bone [8]. This mismatch of stiffness creates a
stress shielding effect, which weakens the bone surrounding the implant, and might lead to implant loosening [8–10].
On the one hand, lattice structures prevent the stress shielding due to their lower stiffness level[11]; and on the other
hand, they promote bone ingrowth within the implant due to the interconnected pore network, improving its fixation
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and stability [12].

Bone tissue exhibits different levels of anisotropy depending on volume fraction and anatomical site [13–16]. Such
anisotropy is highly influenced by the mechanoadaptation in bone, which reflects the complex loading environment
the bone is subjected to. For example, it has been shown that anisotropy has a profound effect in peri-implant stress
and strain in personalized mandibles [17] and maxillas [18], or in the biomechanical behavior of the acetabular cup
implant [19]. Thus, matching not only the stiffness levels, but also anisotropy of host bone when designing a lattice
structure has the potential to better mimic the mechanical behavior of bone [20]. On the other hand, for bone substi-
tutes in a location where physiological load has a clear principal orientation (such as the proximal tibia [21], the spine
[22] or the femur [23], where the loading is predominantly compressive and along the anatomical axis), anisotropy can
be used to reduce the density of the lattice structure in the orientations other than the principal one, thus enhancing
permeability and mass transport of the scaffold, while maintaining the strength and stiffness levels in the principal
direction.

Many studies focus on the design of isotropic metamaterials [24–26], and numerical and experimental studies
have been performed to determine the mechanical properties of different lattice structures. Nevertheless, most of the
literature is focused on uniaxial load in a unique direction (commonly building direction), while this might not neces-
sarily coincide with the main load direction of the implant. Challis et al. [27] and Xu et al. [28] studied the anisotropy
of several lattice structures numerically, and developed some macroscopically isotropic structures. Cutolo et al. [29]
and Munford et al. [30] tested different lattice structures in several directions to derive their directional stiffness, and
Hossain et al. [31] also designed and tested isotropic stochastic structures. Some analytical models that define the
permeability [32] and stiffness [33, 34] of lattice structures have also been developed in the literature. These models
implemented together into optimization algorithms can be a powerful tool to design optimal implants considering both
the mechanical performance and the fixation of the implant.

One way to obtain lattice structures with a unique principal direction is to develop transversely isotropic lattice
structures, which also corresponds to bone tissue in certain locations [35, 36]. In this work a semi-analytical model is
developed to design transversely isotropic stretch dominated lattice structures, with prescribed ratios of Young’s mod-
uli. This model can be used to design scaffolds that better mimic the patient bone properties to maintain physiological
load transfer and to reduce the distortions in stress and strain caused by the implant. The model also enables the
design of personalized implants optimized for the anatomical site and patient characteristics. The model was based
on previous studies of Hutchinson and Fleck [37], Tancogne-Dejean and Mohr [25], and Messner et al. [24], which
were modified to set transverse isotropy as design objective.

2. Materials and Methods

2.1. Semi-analytical model
2.1.1. Elastic behavior

In order to describe the mechanical behavior of a periodic lattice it was assumed that the structures are stretch
dominated: the bending and torsion of the beams is neglected, and struts are considered to deform axially and rotate
freely at the joints. Under this assumption, the stiffness matrix of any strut based lattice structure can be defined as
done by Tancogne-Dejean and Mohr [25] and Messner et al. [24], with Eq. 1, where Es is the Young’s modulus of
the constituent material, l(i) is the length of each strut, unit vector n(i) represents the strut direction, A(i) is the constant
cross-section area of the strut, and V0 defines the volume of the unit cell.

C = Es

Nstruts∑

i=1

c(i) n(i) ⊗ n(i) ⊗ n(i) ⊗ n(i), where c(i) =
A(i)l(i)

V0
(1)

This tensor can be represented in the common 6x6 matrix notation, with each component of the matrix defined as
Ci jkl obtained from Eq. 1, and assuming an orthotropic material model. Fig. 1 defines the orthogonal directions used
as subscripts of the stiffness matrix, together with some important directions defined with the Miller indices [100],
[110], [101], [111] and [001], and the isotropic 1-2 plane.

2



C =



C1111 C1122 C1133 0 0 0
C2222 C2233 0 0 0

C3333 0 0 0
C2323 0 0

sym C1313 0
C1212



(2)

Figure 1: Coordinate system used to define 1, 2 and 3 orientations in the semi-analytical model, main directions according to the Miller indices
([100], [110], [101], [111] and [001]), and 1-2 isotropic plane.

Eq. 3 defines a relevant property of the stiffness matrix: for a stretch dominated lattice structure that fulfills the
stated assumptions it can be stated that Cii j j = Ci ji j. Thus, the equivalent homogenized metamaterial can be defined
with a maximum of six independent material constants, instead of nine as in any generalized orthotropic material.

C j jkk = Es

Nstruts∑

i=1

c(i)(n(i)
j )2(n(i)

k )2 = C jk jk (3)

On the other hand, Tancogne-Dejean and Mohr [25] show that under the stated assumptions, the sum of the
stiffness matrix components equals the simple relative density (ρsimple) of the structure multiplied by the Young’s
modulus of the material, as given in Eq. 4 (note that restrictions in Eq. 3 were included):

C1111 +C2222 +C3333 + 2C1122 + 2C1133 + 2C2233 = ρsimpleEs (4)

In Eq. 4 the parameter ρsimple is defined as the total sum of relative densities of each individual strut, without
considering the overlap at the nodes. A correction fit was applied with the form of an exponential curve to enhance
the validity of the model, considering that the fraction of the mass at the nodes is not negligible. This fit relates
the theoretical ρsimple obtained from the simple sum of volume fractions, and ρreal, which represents the real relative
density of the structures:

ρsimple = CD(ρreal)nD (5)

As stated above, the 1-2 plane is considered to be isotropic (see Fig. 1). This condition is enforced assuming that
the elastic components in direction 1 are equal to the direction 2 (C1111 = C2222 and E1 = E2), and that the elastic
components in plane 1-3 are equal to the plane 2-3 (C1133 = C2233, G13 = G23 and ν13 = ν23). Furthermore, the
transverse isotropy condition must hold Eq. 6, which can be simplified by using Eq. 3:

C1111 −C1122 = 2C1212 → C1111 = 3C1122 (6)

With the imposed restrictions for transverse isotropy, the stiffness matrix can be defined as a function of the
effective elastic constants of the structure (E1, E3, ν12, ν13 and G13) as done in Eq. 7. Note that for isotropy in 1-2
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plane G12 = E1/2(1+ ν12) must be fulfilled. Thus, Eq. 7 relates the elastic constants with the effective stiffness matrix
of the structure. Furthermore, Eq. 6 can also be rewritten in terms of elastic constants, as done in Eq. 8.

C = S−1 =



1
E1

−ν12
E1

−ν13
E1

0 0 0
1

E1

−ν13
E1

0 0 0
1

E3
0 0 0
1

G13
0 0

sym 1
G13

0
2(1+ν12)

E1



−1

(7)

4
E3

E1
ν213 + 3ν12 − 1 = 0 (8)

Equations 4 and 5 and the stiffness matrix symmetries for transverse isotropy can be introduced in Eq. 7 to obtain
the stiffness matrix of any stretch dominated transversely isotropic lattice as defined in Eq. 9. Thus, the stiffness of the
structures is defined as a function of the Young’s modulus of the constituent material (Es), the ratio between stiffness
in principal direction 3 and the transverse plane (E3/E1), the Poisson’s ratios ν12 and ν13 (note that Eq. 8 should also
be fulfilled), the relative density of the structure (ρreal), and the parameters CD and nD.

C =
3CD(ρreal)nD Es

4[2 + E3
E1

(1 − ν12 + 4ν13)]



1 1/3 4
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ν13 0 0 0

1 4
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ν13 0 0 0

4
3

E3
E1

(1 − ν12) 0 0 0
4
3

E3
E1
ν13 0 0

sym 4
3

E3
E1
ν13 0

1/3



(9)

For a given ρreal and E3/E1 ratio, there are infinitely many possible configurations that fulfill the transverse
isotropy condition, depending on ν12 or ν13. Fig. 2 depicts the directional stiffness for different values of ν12, with
constant ρreal and E3/E1.
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Figure 2: Directional stiffness for constant ρreal and E3/E1 = 2, and varying ν12.

The parameter ν12 was chosen so that the change of stiffness is as smooth as possible. Thus, the directional
stiffness fits an ellipse in the 1-3 plane with axes E1 and E3, and an equivalent ellipsoid in 3D space (green curve in
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Fig. 2). This was done by using the MATLAB Curve Fitting Toolbox, and the obtained results of ν12 for different
E3/E1 ratios are shown in Table 1. Note that E3/E1 = 1 is a particular case of the model that corresponds to elastically
isotropic behavior. The E3/E1 ratios were chosen to be of interest for bone substitutes in the proximal tibia, spine and
femur [20, 30].

E3/E1 [-] 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
ν12 [-] 0.2500 0.2518 0.2560 0.2612 0.2667 0.2722 0.2775 0.2824 0.2870

Table 1: Values of ν12 obtained by linear least square approximation as a function of E3/E1.

2.1.2. Unit cell design
Eq. 9 defines the stiffness matrix of any transversely isotropic stretch dominated structure, while Eq. 1 relates

the stiffness matrix with the geometric variables of the lattice structure: the orientation, length, and cross-section area
of the struts (n(i), l(i) and A(i), respectively). This can be used to design a unit cell that actually fits in the imposed
stiffness matrix. Before obtaining such geometric parameters it is necessary to define a strut configuration that might
comply with the imposed restrictions. Furthermore, the parameters CD and nD are morphology dependent, and strut
configuration must be known to define them. Fig. 3 depicts the process of the design of a transversely isotropic unit
cell, with E3/E1, ρsimple, Es and strut configuration as input values, and the diameters and aspect ratio (K) as output
parameters. The parameter ρreal is an input value once the CD and nD coefficients are obtained, but it also can be
considered an output value needed to obtain such coefficients for a set of given ρsimple values.

Figure 3: Design process of unit cells under the constraints of transversal isotropy.

Different combinations of well-known unit cells were used to build the structures, namely SC, BCC and FCC.
Fig. 4 depicts those unit cells, while each color represents a different diameter value. Note that for SC and FCC two
different diameters were assigned in each unit cell, whereas BCC has a unique diameter. These diameters are the
design variables that allow the combined unit cells to comply with stiffness matrix in Eq. 9. Furthermore, another
design parameter was included among the variables to widen the range of possible designs: the aspect ratio between
the height and width of the unit cell, represented as K.
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(a) (b) (c)

Figure 4: Basic unit cells to combine in order to form transversely isotropic lattices: a) SC, b) BCC, and c) FCC.

The arrangement of the diameter variables implicitly imposes C1111 = C2222 and C1133 = C2233. In addition, it can
be proved that any unit cell needs at least 4 design variables to comply with a transversely isotropic stiffness matrix
as defined in Eq. 9. Thus, the unit cells in Fig. 4 must be combined so that they offer 4 different design parameters.
These are some of the possibilities:

• SC2BCC: SC with 2 diameters, and BCC with a unique diameter. Thus, a variable height to width ratio K is
added to comply with transverse isotropy (Fig. 5a).

• SC2FCC2: A combination of SC and FCC unit cells, with two different diameters each (Fig. 5b).

• VFCCBCC: Combination of vertical struts (V), FCC struts out of the isotropic plane and BCC struts, also
considering variable height to width ratio K (Fig. 5c).

(a)
(b)

(c)

Figure 5: Unit cells of a) SC2BCC, b) SC2FCC2, and c) VFCCBCC, with each strut color representing a different cross-section variable.

It should be noted that one of the challenges of SLM technology is to fabricate horizontal struts (parallel to the
building plate) that guarantee the required quality from a structural point of view. In order to overcome this limitation,
the unit cell choice for this study was the VFCCBCC (Fig. 5c) which offers the possibility to orient the mass of the
unit cell so that the orientation of the BCC and FCC struts compensate the lack of horizontal struts with their lower
angle with respect to the building plane. Therefore, the VFCCBCC unit cell was chosen for the rest of the numerical
validation and experimental analysis.

2.1.3. Elastic constants
For a given ρreal, E3/E1, and ν12 (obtained as in Table 1, and provided that Eq. 8 holds), it is possible to an-

alytically obtain the transversely isotropic stiffness matrix of any of the proposed unit cells, as well as the design
parameters (diameters and K) that result in such elastic response.
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The elastic behavior of the proposed model depends on the unit cell of the structures due to the adjustment between
simple relative density (sum of volume of each strut) and actual relative density (Eq. 5). In order to derive CD and
nD parameters, different VFCCBCC configurations were designed with different relative densities and E3/E1 ratios
(it was observed that the latter could be neglected for the relative density adjustment).

Thus, the normalized elastic constants for the VFCCBCC lattice structure (also valid for the other unit cells) are
obtained as a function of ρreal, E3/E1, and ν12 as described below:

E1

Es
=

E2

Es
= CD(ρreal)nD

(1 + ν12)

4 + E3
E1

[2(1 − ν12) + 8ν13]
(10)

E3

Es
= CD(ρreal)nD

E3
E1

(1 + ν12)

4 + E3
E1

[2(1 − ν12) + 8ν13]
(11)

G13

Es
=

G23

Es
= CD(ρreal)nD

E3
E1
ν13

2 + E3
E1

[(1 − ν12) + 4ν13]
(12)

The model is semi-analytical because the parameters CD, nD and ν12 are obtained by least square approximations.

2.1.4. Yield strength
The strength of an implant has to be sufficient to withstand the physiological loads of each bone site, and a

predictive tool for the strength of the scaffolds is necessary for their application in orthopedic implants. Thus, a
semi-analytical model was developed to define the effective yield strength of the VFCCBCC structure. The stress
at each strut under an effective macroscopic stress was calculated using Eq. 13. In this equation the scalar values
with superscript (i) correspond to parameters of each strut: σ(i) and ε(i) are the stress and axial strain of the strut (i),
respectively, and n(i) defines the unit vector of the strut orientation. Es is the Young’s modulus of the constituent
material, S defines the macroscopic compliance matrix of the structure and σe f f corresponds to the macroscopic

effective stress applied to the structure.

σ(i) = Esε
(i) = Es

S : (n(i) ⊗ n(i))
 : σe f f (13)

Thus, each strut of the unit cell will have a different stress level, and it will be proportional to the macroscopic
effective stress (σe f f ). The effective yield strength of the structure is calculated as the macroscopic stress that brings

at least one strut to the yield strength of the constituent material (σy,s), that is σ(i)
max = σy,s. As occurs with stiffness,

the effective yield strength varies depending on the orientation of the load. To obtain the directional effective yield
strength of the structures, denoted as σe f f ,y, a uniaxial σe f f was applied in various orientations covering all the 3D

space, and the magnitude σe f f ,y was calculated to induce σy,s stress level in the struts.

2.2. Numerical validation

The accuracy of the semi-analytical model and the effect of the relative density on the unit cell was studied with
several numerical models built in Abaqus 2020 (Dassault Systems). 9 different unit cells were modeled for each
E3/E1 ratio with relative densities varying from 1% to 30%, and E3/E1 ratios of 1.5, 2, and 3. The relative density of
the structures was defined to ensure a high porosity range of the implants needed in scaffold design [38, 39]. Figure 6
depicts some of the analyzed structures with different relative densities. The models where meshed with second order
tetrahedral elements and after conducting a mesh sensitivity analysis, the diameter/element size ratio was set to 5 for
all the structures.
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Figure 6: Numerical models of the VFCCBCC unit cell with E3/E1 = 2 and varying relative densities of 0.09, 0.2 and 0.3.

The material properties of 316L stainless steel were modeled as a bilinear material model, with values given in
Table 2 [40].

Young’s modulus Poisson’s ratio Yield strength Tangent modulus
[GPa] [-] [MPa] [MPa]
190 0.3 453 260

Table 2: Material properties for FE model.

Periodic Boundary Conditions (PBC) were applied and the code of Omairey [41] was used to get the elastic
constants of the VFCCBCC unit cell. Apart from the elastic and shear moduli, the accuracy of the semi-analytical
model was also assessed by the E3/E1 ratio, as well as the Zener ratio in the 1-2 plane, which gives the measure of
elastic isotropy:

Z12 =
2C1212

C1111 −C1122
(14)

On the other hand, uniaxial stress was applied in directions [001], [110], [101], [111], [100] in the VFCCBCC
unit cell with different relative densities, and under PBC to numerically calculate the yield strength of the structure.

The criteria to numerically determine the yield strength of the structure had to be adapted from the one used for
the analytical model, where the struts were treated as axially loaded beams with a constant stress through the strut.
Instead, the criteria to numerically determine the yield stress of the structure was to find the macroscopic stress value
where the plastic dissipation energy exceeded 10% of the total energy of the structure, similarly to [25]. The results
were compared to the semi-analytically obtained yield strength values.

2.3. Manufacturing

VFCCBCC structures were produced with E3/E1 = 2 and two different relative densities, 12.5% and 25%, to be
tested in three different orientations, namely [100], [110] and [001]. To test 3 samples per density and load orientation,
a total of 18 parts were manufactured. Unit cell size was 3mm, and the manufacturing orientation was the same in
all cases to maintain the orientation of every strut with respect to the build plate and prevent unequal imperfection
distributions between batches.

All specimens were manufactured on an AM250 metal powder bed fusion machine (Renishaw Plc.) under an
inert argon atmosphere from Stainless Steel 316L directly onto a mild steel substrate. The parts were removed from
the plate by electro discharge machining. Build files for the specimens were generated from an in-house piece of
software, described previously in [42]. The software allows lattices to be defined in a beam format (start and end
x,y,z positions) with a desired diameter. Based on the strut angle and desired diameter, laser parameters are assigned
accordingly. Laser parameters were assigned to produce the struts of diameter described in Table 3.

The relative density of the produced specimens was measured by weighing the structures and dividing by the
theoretical weight of a solid part with the external volume of the structures. On the other hand, to measure strut
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Diameters [mm]
Structure Relative density [%] Vertical (angle) FCC (angle) BCC (angle)
A 12.5 0.47 (90.0) 0.22 (33.0) 0.23 (24.7)
B 25.0 0.70 (90.0) 0.33 (33.0) 0.35 (24.7)

Table 3: Diameters of manufactured structures for both relative densities.

density Archimedes method was used as done in other studies [43]. This method consists in measuring the weight
difference of the part when submerged into ethanol compared to a dry environment (in air) to determine the proportion
of internal pores. Eq. 15 defines the strut density (ρstrut) as a function of the weight of the structure in air (wair), the
density of ethanol (ρethanol), the density of 316L stainless steel (ρ316L) and the weight of the structure in ethanol
(wethanol).

ρstrut =
wair ρethanol

ρ316L (wair − wethanol)
(15)

2.4. Mechanical testing

Compression tests were carried out as per ISO 13314:2011 [44] in an Instron 3360 with a load cell of 30kN
except for the structure B in [001] orientation, which was tested in a Instron 5982 with a load cell of 100kN due to
its higher strength. The tests were performed in three different orientations for each relative density: [001], [100] and
[110]. For each relative density and orientation 3 specimens were tested. The strain was calculated after measuring
the compliance of the machines. For each specimen quasi-elastic gradient and 0.2% offset stress (yield strength) was
calculated.

3. Results

3.1. Semi-analytical model

Fig. 7 depicts the simple relative density (ρsimple) of the VFCCBCC structure as a function of its real relative
density (ρreal). The ρreal values were obtained from CAD measurements of models with different E3/E1 ratios. The
CD and nD values derived by least square approximation (R2 = 0.999 ) are 1.65 and 1.169, respectively. The values
for the SC2BCC and SC2FCC2 are displayed in Table S1 (supplementary material).
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Figure 7: Designed VFCCBCC structures with different relative densities and E3/E1 values, and adjusted curve.

Fig. 8 shows the yield surface of VFCCBCC unit cells for uniaxial loads in any orientation. The surfaces for
E3/E1 = 1.5, E3/E1 = 2, and E3/E1 = 3 are depicted, which are in the bone range (spine trabecular [22], proximal
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tibia [21] or femur cortical bone [23]). Effective yield strength (σe f f ,y) is obtained from Eq. 13, and normalized with
the density variable CD(ρreal)nD and the yield strength of the constituent material (σy,s). It can be observed that for any
E3/E1 ratio, the structure is weaker in the directions that coincide with strut orientations, because the load is primarily
carried by a single strut. On the contrary, in other orientations the load is more effectively distributed among struts.
The effective strength in the transverse plane reduces with the increase of E3/E1 ratio, while the strength in [001]
increases.

(a) (b)
(c)

Figure 8: Semi-analytical yield surface of VFCCBCC in 3D space obtained from Eq. 13 with a) E3/E1 = 1.5, b) E3/E1 = 2, and c) E3/E1 = 3.

Fig. 9 depicts the values of normalized yield strength of VFCCBCC for different E3/E1 ratios, under [001] and
[110] orientations, since the latter is the weakest orientation in the transverse plane. Thus, the effective yield strength
of the structure can be directly calculated for any relative density by multiplying the normalized strength value with
the yield strength of the constituent material. The strength ratio between the [001] and [110] plane is always lower
than the E3/E1 ratio, with values of 1.21, 1.60 and 2.41 for E3/E1 of 1.5, 2, and 3, respectively.
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Figure 9: Yield strength of VFCCBCC for [110] (weakest orientation in transverse plane) and [001] orientations, for different E3/E1 ratios.
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3.2. Finite element validation

3.2.1. Elastic behavior
The results of the numerical simulations of VFCCBCC unit cells with E3/E1 = 1.5, E3/E1 = 2, E3/E1 = 3 are

depicted in Fig. 10, showing the elastic constants E1, E3, G12, G13, ν12, and ν13, and comparing the obtained values
with the semi-analytical model obtained from Equations 8, 10-12. In general, a very good agreement between the FE
analysis and the semi-analytical model can be observed, especially for low relative densities, and the error increases
with the relative density.

In the case of effective Young’s modulus, E3 is more accurate than E1 for any E3/E1 ratio. The R2 coefficients
for E1 lay between 0.885 and 0.941, whereas for E3 the R2 values are higher than 0.989 for any E3/E1 ratio. This
occurs because the assumption of pure axial stress is better fulfilled in [001] orientation due to the vertical struts of
the VFCCBCC unit cell, while for [100] this assumption is not as valid for moderate relative densities. As a result,
the maximum relative error arises for the highest studied relative density of 0.3. In this case, the maximum error of
E1 is 22.8% for E3/E1 = 3, and in the case of E3 the maximum relative error is 7.8% for E3/E1 = 1.5.
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Figure 10: Semi-analytical and FEM comparison of the elastic behavior of VFCCBCC unit cell for E3/E1 = 1.5, E3/E1 = 2 and E3/E1 = 3: a)
Young’s moduli, b) shear moduli, c) Poisson’s ratios. d) is the directional homogenized stiffness for E3/E1 = 2.

The accuracy of the shear moduli is lower than for Young’s moduli. For G12 the R2 value is between 0.878
(E3/E1 = 3) and 0.938 (E3/E1 = 1.5), while G13 has R2 coefficients between 0.930 (E3/E1 = 3) and 0.954
(E3/E1 = 1.5). For ρreal = 0.3, the maximum relative error for G12 is 23.8% and for G13 equals 17.7% (E3/E1 = 3
in both cases). For Poisson’s ratios, the maximum error values of ν12 are 7.9%, 6.7% and 6.1% for E3/E1 = 1.5,
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E3/E1 = 2 and E3/E1 = 3, respectively, and 7.2%, 10.7% and 17.8% for ν13. Fig. 10d depicts the 3D stiffness of the
FE model with a ρreal = 0.2 and E3/E1 = 2. The directional stiffness has the expected ellipsoidal shape, the change in
stiffness is smooth and the variability in the 1-2 plane is very small (below 0.1%).

As depicted in Fig. 11a, the accuracy of the E3/E1 ratio is very high for low relative densities, but decreases with
increased relative density for any of the studied cases. This is a consequence of the bending that increases the stiffness
more in direction [100] compared to [001], as also observed in Fig. 10a. Furthermore, as prescribed E3/E1 increases,
the error of the semi-analytical model also increases. For ρreal = 0.3, the relative errors of E3/E1 are 10.7%, 20% and
33.1% for E3/E1 = 1.5, E3/E1 = 2, and E3/E1 = 3 respectively. On the other hand, the Zener ratio in the 1-2 plane,
which measures the elastic isotropy in the plane, and defined in Eq. 14, is depicted in Fig. 11b for the three E3/E1
ratios, showing that the transverse isotropy is maintained with a relative error below 2.8% for any studied relative
density and E3/E1 ratio. This suggests that the stiffness added by the bending of struts acts uniformly in the 1-2 plane.
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Figure 11: Semi-analytical and FEM comparison of the elastic behavior of VFCCBCC unit cell for E3/E1 = 1.5, E3/E1 = 2 and E3/E1 = 3: a)
E3/E1 ratio, and b) Zener ratio.

Fig. 12 depicts the Von Mises stress of the VFCCBCC unit cell under pure shear load in the 1-2 plane for two
relative densities. The stress of the loaded struts is closer to the assumption of uniaxial uniform stress for thin struts,
while in thick struts the bending loads induce non-uniform stresses along the struts. Furthermore, the strut joints have
more relevance for higher relative densities, and triaxial stress states arising there affect a larger part of the structure.
This explains the gradual loss of accuracy as the relative density increases.

The relative importance of the bending load also depends on the load type and orientation: the loads or defor-
mations aligned with struts result in lower bending loads, which explains the variability of the accuracy for different
elastic constants and yield strengths for the same relative density.
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Figure 12: Von Mises stress of VFCCBCC unit cells with different relative densities under shear load in 1-2 plane.

3.2.2. Yield strength
The accuracy of the semi-analytical model (Eq. 13) to predict the yield strength of the VFCCBCC unit cell varies

depending on the load orientation, the E3/E1 ratio and the relative density. Fig. 13 shows the yield strength for 5
different orientations, defined as in Fig. 1, and for E3/E1 = 1.5, E3/E1 = 2, and E3/E1 = 3. The semi-analytical yield
model has the highest accuracy for [001] and [110] orientations, with R2 values above 0.993 and 0.997, respectively,
regardless E3/E1 ratios. In orientations [101] and [111] the semi-analytical model slightly underestimates the strength
of the structures, but the R2 coefficients indicate high correlation with minimum values of 0.969 for [101] and 0.955
for [111] for any E3/E1 stiffness ratio. On the other hand, the semi-analytical model overestimates the strength in
[100] orientation, and the R2 coefficient increases with E3/E1 ratio, with R2 = 0.888 for E3/E1 = 1.5 and R2 = 0.919
for E3/E1 = 3.
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Figure 13: Effective yield strength of VFCCBCC unit cell in various orientations, normalized with constituent material yield strength, and for
different E3/E1 ratios: a) E3/E1 = 1.5 b) E3/E1 = 2, c) E3/E1 = 3.

3.3. Mechanical testing

3.3.1. Morphology of specimens
Specimens of two prescribed relative densities were produced, 12.5% and 25%, and the resulting relative density

and strut density properties are given in Table 4. The average differences between the designed and manufactured
relative densities were of 2.2% in batch A and 7.3% in batch B. Even if the manufacturing parameters were the same
within each batch, a significant variability (relative variability above 10% with respect to the designed value) of the
produced relative densities can be observed in batch B. The strut density is above 98% in all cases, indicating some
prevalence of internal pores.
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Specimen Relative density [%] Strut density [%]
A-[001] 9.77 ± 0.46 98.67 ± 0.58
A-[100] 10.27 ± 0.40 98.45 ± 0.22
A-[110] 9.28 ± 0.40 98.63 ± 0.61
B-[001] 19.44 ± 0.06 99.15 ± 0.17
B-[100] 16.47 ± 0.27 98.88 ± 0.12
B-[110] 17.30 ± 0.69 98.98 ± 0.02

Table 4: Relative density and strut density values for produced specimens.

Fig. 14 depicts the actual morphology of the struts, indicating clear deviations from the designed CAD geometry.
An important waviness can be observed, especially in the struts with lower angles with respect to the build plate.
Moreover, in the thinnest struts the staircase effect that arises from the layer by layer manufacturing process is clearly
visible, and this effect is enhanced by the fact that the struts were produced point by point.

(a) (b)

(c) (d)

Figure 14: Manufactured specimens of VFCCBCC structures for loading in [001] corresponding to batch A a) and b), and batch B c) and d).

3.3.2. Quasi-static compression
The curves obtained from quasi-static compression tests are given in Fig. 15. Fig. 15a and 15b correspond to

the batch A, and Fig. 15c and 15d depict the compression curves of batch B. The shaded areas in Figures 15a and
15c represent the 95% confidence interval, and Fig. 15b and 15d depict a close-up of the compression curves up to
a strain of 0.06, in order to give a better insight into the elastic response of the structures. The stress-strain curves
present a expected shape for ductile metals, with a linear region, followed by the yielding of the structures and an
energy absorption process up to densification of the structures. The variability within each sample is much higher in
the batch A as shown in Fig. 15a. Furthermore, its lower relative density results in a compression process dominated
by buckling with more peaks and valleys.
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Figure 15: Stress-strain curves of specimens under [001], [100] and [110] load directions for batch A a) until densification and b) until ε = 0.06;
and batch B c) until densification and d) until ε = 0.06.

A B

[001] [100] [110] [001] [100] [110]
Quasi-elastic
gradient [GPa] 1.55 ± 0.22 1.00 ± 0.07 0.70 ± 0.03 2.94 ± 0.28 1.51 ± 0.03 1.37 ± 0.05

σy [MPa] 6.04 ± 0.24 5.83 ± 0.39 3.83 ± 0.47 17.37 ± 0.2 10.64 ± 0.7 9.77 ± 0.8

Table 5: Results of quasi-static compression tests for batches A and B in directions [001], [100] and [110].

The obtained mechanical properties are listed in Table 5. For both relative densities the quasi-elastic gradient in
direction [001] clearly exceeds the gradient in directions [100] and [110], as would be expected from the design of the
structures.

Fig. 16 depicts the anisotropy characteristics of the semi-analytical and numerical models, compared to the ex-
perimental values in structures A and B. The E110/E1 and E3/E1 ratios are lower than the analytical values for both
manufactured structures, nonetheless, the structure B is in good agreement with the prescribed values (relative error
of 3% for E3/E1 and 10% for E110/E1). While the accuracy of the numerical model decreases with higher relative
densities (see E3/E1 ratios in FEM), this also enables a reduced imperfection level of the manufactured structures,
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thus reducing the error of the anisotropy with respect to the semi-analytical model (experimental E3/E1 and E110/E1
ratios).
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B

B
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1

1.5
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Figure 16: Elastic moduli ratios for semi-analytical model and numerical and experimental values of structures A and B.

4. Discussion

4.1. Validity of semi-analytical model

In this work a semi-analytical model was developed to design transversely isotropic porous structures. The model
shows good correlation with numerical results, even if the overall accuracy decreases for higher relative densities and
E3/E1 ratios. This deviation can be attributed to the arise of bending loads and stress triaxialities as the slenderness
of the struts decreases.

Experimental tests were also carried out with structures A and B, but the absolute mechanical properties are not
compared directly to the values predicted by the semi-analytical and numerical models, since the manufacturing imper-
fections of the VFCCBCC unit cell cause an important decrease of stiffness and strength. These imperfections include
strut waviness, dross formation, surface roughness, etc. These types of deviations are more common when manufac-
turing thin struts or small unit cell sizes and their detrimental effect on mechanical properties has been broadly studied
[45–47]. Moreover, these imperfections may change the anisotropy characteristics of the lattice structures [29, 48], as
can be observed by comparing the A and B structures.

The similarity of the experimental anisotropy levels of structure B with designed values compared to the structure
A might be attributed to lower imperfection levels due to larger strut diameters for structure B. This indicates that the
semi-analytical model can be used to design unit cells with prescribed anisotropy. Furthermore, the good agreement
between analytical and numerical models suggests that reducing the level of imperfection e.g. increasing unit cell
size, the absolute mechanical properties of the structures can be better predicted.

4.2. Patient-specific scaffold design

The developed semi-analytical model enables to design scaffolds that mimic various stiffness ratios that appear in
bone tissue. Thus, patient-specific bone volume fraction and anisotropy can be used as input values to design implants
with equivalent stiffness in different directions, reducing peri-implant stress and strain distortions. Furthermore, with
the obtained model, different elastic moduli can be achieved in the principal direction for a prescribed porosity by
varying the E3/E1 ratio, while for regular lattice structures each porosity value corresponds to a unique value of elas-
tic modulus (Gibson-Ashby model [49]).
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This feature can be used to implement the model in the biomedical sector, specifically for the design of patient-
specific implants. To show the utility of this model for implant applications, three case studies are depicted in Fig.
17: a) knee replacement in proximal tibia, b) spine cancellous bone, and c) load bearing cortical bone in different
sites, such as femur. The colored surfaces represent the possible E1 and E3 values of the semi-analytical model for
each value of relative density, while the grey areas correspond to the stiffness of bones in literature. A different parent
material was chosen for each site to better match the target elastic properties, while also considering biocompatibility
of the materials: Ti6Al4V for knee replacement, PEEK for spine cancellous bone, and CoCr for various cortical bones.
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Figure 17: Stiffness values in main and transverse orientations in implants for a) proximal tibia [30], b) spine [16, 22, 50, 51], and c) load bearing
cortical bone [9].

Knee replacements are in the increase due to the prevalence of osteoarthritis in the knee joint. The proximal tibia,
which is replaced by this surgery, is mainly loaded in compression along the anatomical axis; thus, the design of knee
implants should be based on bone elastic modulus in that direction (81 and 1500 MPa) with a degree of anisotropy
ranging from 1.3 to 3.4 [21]. Fig. 17a shows the possible design space of the semi-analytical model to match the
stiffness range of the proximal tibia in E1 and E3. The model covers a great part of the proximal tibia stiffness range,
even if the manufacturing below relative densities of 0.1 can be challenging, and possibly larger unit cell sizes are
required for such designs. It must be noted that a Young’s modulus of 37.5 GPa was given to the Ti6Al4V parent ma-
terial. This low modulus is a result of tensile tests of micro-struts to implicitly consider the manufacturing deviations
of strut-based lattice structures [52].

The spine is also mainly loaded along its anatomical axis, and its cancellous bone can have a wide range of stiff-
ness values according to different studies, with E3/E1 ratios as high as 7.3 [16, 22, 50, 51]. In this case, PEEK (E = 4
GPa) was chosen as parent material to match the elastic behavior of the spine. The design space of the semi-analytical
model covers most of the E3 stiffness ranges within relative densities between 0.1 and 0.3, as depicted in Fig. 17b.
On the other hand, some of the E3/E1 ratios of the spine exceed the design space of the transversely isotropic model.
In these cases it is possible to match the E3 stiffness along the anatomical axis, at the cost of having a higher E1 value
in the transverse plane.

The cortical bone is transversely isotropic due to its microstructure, which is formed by aligned osteons that give
superior stiffness along the diaphyseal axis, and inferior isotropic stiffness in the transverse plane [9, 23, 53]. For
Fig. 17c CoCr (E=200 GPa) was assigned as parent material to enhance the stiffness of the design space of the semi-
analytical model and mimic the elastic behavior of cortical bone. Thus, the model perfectly covers the E3 and E1
values found in literature, even if in some cases high relative densities above 0.3 are required. On the other hand,
these stiffness values are expected for perfectly manufactured structures, which is rarely the case in additively man-
ufactured scaffolds. The unit cell size should be increased to have larger features to be manufactured with a reduced
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imperfection level to reach stiffness levels predicted by the model.

The transversely isotropic scaffolds aligned with the main load direction allow the design of lighter implants due
to the reduced mass in the transverse direction. This also means that higher permeability can be achieved, enhancing
bone ingrowth and vascularization within the implant while ensuring necessary stiffness and strength in the direction of
the main load. This model could be implemented into optimization algorithms with other analytical models describing
the permeability of the structure to design optimal and personalized implants based on the bone site and characteristics
of the bone patient [32]. Moreover, the established relationship between the morphology of stretch dominated lattice
structures and their orthotropic effective stiffness matrix enables optimization-based design to tailor the stiffness of
different bone sites while also considering bone site specific anisotropy.

5. Conclusions

A semi-analytical model was developed to design transversely isotropic lattice structures with prescribed stiffness
ratios between the longitudinal and transverse directions. Numerical and experimental analyses were performed to
test the validity of the designs, and the main conclusions are as follows:

• The developed semi-analytical model effectively describes a transversely isotropic elastic behavior, with ellip-
soidal directional stiffness, which enables the design of unit cells with prescribed anisotropy.

• The obtained semi-analytical model is capable of mimicking the stiffness and anisotropy of different bone sites
such as proximal tibia, spine or femoral cortical bone. By correctly aligning the scaffold with the principal di-
rections of the bone, a higher porosity of the scaffolds can be achieved compared to other isotropic counterparts.

• Many possible strut configurations are available to obtain a prescribed transverse isotropy. This work analyzed
the VFCCBCC unit cell in more detail, and SC2BCC and SC2FCC2 were also presented as viable for transverse
isotropy.

• The elastic constants obtained from numerical models of VFCCBCC unit cell are in good agreement with the
semi-analytical model. The accuracy of the model decreases with an increase of relative density, and higher
E3/E1 ratios also have a detrimental effect.

• Quasi-static compressive tests indicate that prescribed anisotropy can be achieved with the VFCCBCC unit cell,
even if for lower relative densities the deviations from designed parameters increase due to the manufacturing
defects.
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4.4 Paper D

Paper D is entitled ’Understanding elastic anisotropy in diamond based lattice structures produced bylaser powder bed fusion: Effect of manufacturing deviations’. This article is the follow-up of a previouslypublished article, which analyzed the stiffness and strength of the diamond lattice structure under variousorientations. In this work, the aim was to study the causes of the mismatch between the theoretical andactual anisotropy characteristics of the structures, considering the effect of the manufacturing deviations.These were the main studied aspects:
• A methodology was develop to analyze the imperfection level of the struts, while also consideringthe magnitude of such deviations along the struts.
• Different imperfection types were studied: the cross-section mismatch, the shape difference fromcircularity, and offset deviation of the center of gravity of the strut.
• A methodology was developed to create numerical models that included isolated and combinedimperfection types.
• The combined effect of the studied imperfections led to a change in anisotropy that coincided withthe experimental results.
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• Manufacturing imperfections are
aligned with the building direction and
thus affect the anisotropy of the lattice
structures.

• Probability distributions of the imper-
fections were obtained depending on
the position of the cross-sections along
the strut.

• The FE model with imperfections pre-
dicts the stiffest direction to change
from [111] to [110] as reported in litera-
ture.

• The offset of the center of gravity of the
strut cross section had the greatest ef-
fect in the anisotropy variation.
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Laser powder bed fusion (L-PBF) allows the production of metal lattice cellular structures with tailoredmechan-
ical properties. In order to generate the specific structural behavior it is of utmost importance to understand the
response of the unit cells when different load conditions are considered. In this article themechanical response of
diamond based cellular structures has been investigated focusing on the impact of geometrical inaccuracy gen-
erated by the manufacturing process on the elastic anisotropy of the mentioned unit cell. The μ-CT analysis of
the structures shows that the manufacturing deviations occur in certain orientations that depend highly on the
building direction and proximity to nodes. The measured imperfection types were implemented in a finite ele-
ment model in order to predict their single and combined effects in the elastic directional response. The results
indicate that the L-PBF process can induce a significant change of elastic anisotropy in the diamond unit cells, in-
cluding a substantial variation of the optimal orientation for minimal compliance. Methods are presented to cal-
culate this anisotropy such that it can be taken into account when designing and using such lattice structures in
real-life applications with multi-axial load conditions.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Metal additive manufacturing (AM) refers to the production of me-
tallic components in a layer by layer fashion from a specific computer-
aided design (CAD) model. Among the AM processes the laser powder
bed fusion (L-PBF) process uses a focused and computer controlled
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laser beam to selectively melt metal powder. This technique offers an
attractive method for producing complex near net-shape geometries
with an efficient material use [1]. One of the big advantages of using
this AM technique is the possibility to produce parts with almost unlim-
ited freedom in terms of geometrical design. This allows the integration
of lattice structures in the design phase to target specific mechanical
properties in designated locations while reducing the total weight of
the component. Apart from their load bearing applications, lattice struc-
tures are also used in other fields for energy absorption, heat transfer
devices, vibration attenuation or as cellular catalysts, among others
[2–4].

Lattice structures are defined in this work as a class of cellular solids
formed by beam like members named struts that connect nodes [5–7].
The struts are arranged in a fixed topology to generate the unit cell
(UC) that is replicated in the 3D space to fill the volume of the structure.

According to Maxwell's stability criterion, UCs can be classified in
stretching dominated and in bending dominated structures [8]. This
paperwill focus on the diamond unit cell, which is a bending dominated
structure. The mechanical properties of lattice structures depend on
several factors: (i) the type, size and topology of the UC; (ii) the relative
density of the lattice structure defined as the quantity of material in the
volume of the lattice structure; (iii) theparentmaterial used for thepro-
duction; and (iv) the material porosity and surface quality. Moreover,
during recent years, in order to better integrate cellular lattice struc-
tures in load bearing applications, several authors have introduced the
importance of understanding the UC elastic anisotropy behavior and
the effect of load directions on static and dynamic properties of lattice
structures [9–13].

In addition, some inherent geometrical imperfections may occur
during the manufacturing process leading to deviations from the ideal
structure. This phenomena can bemore pronouncedwhen the struts di-
mensions (length and/or diameter) approach the laser spot diameter
[14]. Therefore it is essential to evaluate the impact of these geometrical
imperfections on the structural response of the final component.

Several authors investigated the impact of geometrical imperfection
on mechanical properties of metal lattice structures [15–17]. Dallago
et al. [18] usedmicro X-ray computer tomography tomeasure and clas-
sify the types ofmorphological imperfections in terms of deviation from
the CAD model of regular cubic Ti6Al4V cellular lattices. The authors
highlighted that struts with a small angle with respect to the building
platform are systematically affected by dross formation that increases
the struts thickness and offsets the center of gravity of the cross-
sections from the imaginary axis that connects the two nodes introduc-
ing a sort of “waviness”. The data gathered from μ − CT were used to
build different FE models with increasing level of complexity. From
these simulations, Dallago et al. concluded that the higher thickness of
the as-produced struts increased the overall stiffness of the cellular
structure while the bending actions introduced by the waviness re-
duced the elastic stiffness. A comparable study with similar conclusions
wasmade by Lei et al. [19] inwhichX-raymicro-computed tomography
(μ − CT) was employed to extract the geometrical deviations and to
quantify the statistical distribution of strut diameter of two different
unit cells, i.e. the BCC and the BCCZ producedwith AlSi10Mg. The recon-
structed models were used to analyze the impact of the distribution of
the imperfections on the structure's response. Lozanovski et al. [20]
followed a similar procedure to design very detailed geometrical
models that included shape variation and “waviness” obtained from μ
− CT scans.

On the other hand, Liu [21] and Xiao [22] simulated the mechanical
properties of octet truss, rhombic dodecahedron and ideal rhombi-
cuboctahedron along different directions, accounting formanufacturing
deviations with respect to the ideal geometry. Liu and Xiao concluded
that the manufacturing induced deviations had an important effect on
the anisotropy of the studied lattices structures. Nevertheless, tests
were performed with a fixed orientation between the load and the
unit cell.

Wauthle et al. [9] were among thefirst researchers to investigate the
elastic anisotropy of the cubic diamond UC produced with L-PBF in
Ti6Al4V. However, due to the high level of internal defects generated
during the manufacturing process i.e. pores and lack of fusion defects,
the authors were not able to conclude on the effective anisotropic be-
havior of the diamond UC. Cutolo et al. [11] investigated the same
topic highlighting a high level of elastic anisotropy of the diamond UC
by testing the same lattice structure along different load directions.
However, none of the above-mentioned studies included an investiga-
tion on the effect of the different morphological imperfections on the
anisotropic behavior of the lattice structure.

The objective of the present study is to understand both the individ-
ual and combined impact of the different types of geometrical devia-
tions on the elastic anisotropy response of Ti6Al4V diamond UC
produced by L-PBF. In order to do so, a detailed analysis of the inherent
geometrical imperfections was carried out. The morphology of the as
produced lattice structures was reconstructed via μ − CT and different
manufacturing imperfection types were classified in terms of deviation
from the CAD model. The novelty of this research is that the deviation
types were analyzed by considering their statistical distribution along
the strut axis. From statistical analysis of μ − CT data, different beam
FE models were created, with different levels of complexity to isolate
the impact of the different types of geometrical deviations on the anisot-
ropy of the diamond unit cells.

An overview of the methodology used to generate the different FE
models is presented in Fig. 1. Experimental results obtained by Cutolo
et al. that were reported in [11] show that the produced diamond
based lattice structures have different anisotropy behavior with respect
to the idealized UCmodel. The numerical results of this study are in line
with thepreviouswork byCutolo et al., and indicate that the variation in
the anisotropic response can be mainly attributed to the offset of the
center of gravity of the struts cross-sections with respect to the ideal
strut axis.

2. Materials and methods

2.1. Manufacturing

The samples considered in this investigation have been described in
the recent work from Cutolo et al. [11] in which a diamond unit cell has
been used for the creation of Ti6Al4V lattice structures to investigate the
effect of load direction on the mechanical properties of diamond based
cellular structures. A diamond unit cell can be described as an assembly
of struts and nodes with an angle of 109.48 deg between each pair of
struts connecting one node. From a manufacturing point of view, the
main advantage of using this unit cell is that the strut angles with the
build platform of the L-PBF machine is always 35.26 deg. This angle is
high enough to guarantee a production of these struts via L-PBFwithout
using support structures.

The studied samples were prisms with a square cross-section and
with a side D of 10mm and height H of 15mm. A unit cell size of 1mm
was used with a prescribed relative density of 25%. The authors divided
the samples in three batches according to the orientation between the
load direction and UC orientation, i.e. [001], [111] and [011] as shown
in Fig. 2. The orientation of all the diamond unit cells (XU, YU, ZU) with
respect to the L-PBF base plate (XL, YL) was chosen constant and equal
for all samples, such that indeed all unit cell struts of all samples were
at the same angle of 35.26 with respect to this base plate (XL, YL). This
guarantees equal unit cell quality and morphology for all samples. The
orientation of the samples surrounding all unit cells (i.e. the lattice
structures, XS, YS, ZS) with respect to the L-PBF base plate (XL, YL) was
varied as indicated in Fig. 2 to enable different load directions with re-
spect to the unit cell orientation, and the obtained manufactured sam-
ples are shown in Fig. 3. A detailed description of sample design,
production and testing is reported in [11].
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2.2. Analysis of manufactured structures

From each batch, two samples were analyzedwith a Nikon XT H225
ST CT-system to evaluate the morphological differences between the
CAD geometry and the produced samples. AW target and 1mm Cu filter
were used during the scanning and the machine was set to a voltage of
[135− 165]kV and a current of [5070]μA. The voxel size was 12μm. μ−
CT data were exported in terms of stacked images parallel to the XS, YS
plane of the samples with a frequency of 84 images per millimeter
along the ZS direction.

The morphological information extraction was performed using μ−
CT scan data from the [111] oriented specimens. In this case, the
resulting stacked images are perpendicular to 4 struts per unit cell
(Fig. 2-e). The topology of the diamond unit cell and the fixed

orientation of the unit cell with respect to the L-PBF build-platform, en-
sure strut-to-strut homogeneity in terms ofmorphology for all the spec-
imens and thus the same distribution of imperfections can be
considered.

For every sliced image, ImageJ software was used to extract the area
and the center of gravity of each strut cross-section, as well as the best
ellipse fit with the dimensions and orientation of the major and minor
axes with respect to the XS and YS axes, as shown in Fig. 4. These data
were processed with Matlab to isolate the morphology of every single
strut by means of the following procedure:

• each strut was identified by the position of its center of gravity;
• a deviation tolerance from the center of gravity was used to create a
region of interest;

Fig. 1. Procedure for generating FE models.

Fig. 2. Samples orientationwith respect to the build platform XL, YL for a) [001], b) [111], c)[011] orientation Force directionwith respect to theUC for d) [001], e) [111], f) [011] orientation
[11].
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• all the strut cross-sections whose center of gravity reside in the de-
fined region of interest were assigned to a single strut.

In this way, it was possible to isolate the evolution of the cross-
section along the length of every strut. Three representative strut
cross-sectional area distributions are presented in Fig. 5a.

Furthermore, in order to perform the statistical analysis, the isolated
struts were transposed to a common reference system, as it is shown in
Fig. 4-b for three representative struts. The use of this procedure
allowed the analysis of the morphological evolution of more than
1000 struts along the strut axis with a robust and systematical
procedure.

By using this procedure it was possible to isolate three morphologi-
cal imperfection categories:

• Cross-section area: difference between the nominal cross-section and
actual cross-sectional area

• Shape of the cross-section: cross-section deviation from the theoreti-
cal circular shape

• Offset fromaxis: distance between the center of gravity of the scanned
cross-section and the axis of the designed strut

2.3. Finite Element modeling and homogenization

In order to study each type of deviation and their combined ef-
fects on the diamond UC anisotropic behavior, several finite element
models were built. These models consist of beam elements gener-
ated using Abaqus 2019 (Dassault Systems). The material was
modelled as linear elastic with typical AM Ti6Al4V properties: a
Young's modulus of 113GPa and Poisson's ratio of 0.342 were con-
sidered. Each strut was modelled with 35 Timoshenko first order
beam elements, to be consistent with the resolution of the μ − CT
scan. From the distributions of the deviations along the struts, the
mean values were used to model the deviation according to its po-
sition along the strut.

For each position along the strut axis the mean values of the imper-
fection distribution (i.e. variation in cross-section shape, area and offset)
were extracted. These values were used to model beam elements along
the strut axis. This process allowed the generation of strut FE models
that reproduce the mean value trends of geometrical inaccuracy. How-
ever, the variability of the data was not considered in modeling (and
thus also not in the simulations), and therefore all the lattice structure
models were built using the same strut FE model.

Fig. 3.Manufactured samples in (a) [001], (b) [011], (c) [111] orientations [11].

Fig. 4. (a) Stacked image from μ − CT scan, (b) detection of each cross-section, (c) best ellipse fit for every cross-section.
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The FE strut models were used to create 10×10×10 diamond unit
cells with unit cell size of 1mm. Considering the type of imperfections,
differentmodelswere built in order to assess both the isolated and com-
bined effects of each type of deviation:

• Nominal: Circular and constant cross-sections, obtained as average of
all mean values at each position along the strut.

• Variable Circular Cross-Section (VCCS): Circular cross-sections with
variable area as measured in the μ − CT.

• Constant Ellipse Cross-Section (CECS): Elliptical cross-section with
constant area along the strut. The area corresponds to the average
area of the ellipses.

• Constant Circular Offset Cross-Section (CCOCS): Circular and constant
cross-sections as inNominalmodel, inwhich every beamhas an offset
with respect to the theoretical strut axis.

• Variable Ellipse Cross-Section (VECS): Variable elliptical cross-section
with values obtained from μ − CT scan.

• Variable Elliptical Offset Cross-Section (VEOCS): Elliptical cross-
sections distribution as measured by the μ − CT scan, combined
with the offset distribution from the strut axis. This model includes
the combined effects of all measured imperfections (see Fig. 6).

The effects of the different imperfections on UC anisotropy were
studied by homogenizing each FE model. This technique consists of
treating each structure as if it was a homogeneous material and getting
its equivalent mechanical properties. Periodic Boundary Conditions
(PBC) are applied in order to analyze the behavior of the structures as
if they were part of an infinite medium. In the PBC, the displacement

of nodes in opposite faces of a representative volume element is
constrained by relating the degrees of freedom to themeanmacroscopic
displacement (a detailed explanation can be found in [23]). Thus, effec-
tive elastic constants of the Eq. (1) can be obtained for each FEmodel ac-
cording to Hooke's law for anisotropic bodies [24].

σ ¼ C½ �ε⇒
σ1
⋮
σ6

2
4

3
5 ¼

C11 ⋯ C16
⋮ ⋱ ⋮
C61 ⋯ C66

2
4

3
5

ε1
⋮
ε6

2
4

3
5 ð1Þ

A plugin developed by Omairey [23] was used to obtain the effective
elastic constants of the simulated structures. This plugin applies six in-
dependent stress states, and for each case the resulting macroscopic
strain tensor is obtained for the structure under PBC. As an example,
for a normal macroscopic stress in direction 1, σ = [σ100000]T, and
the resultant macroscopic strainmatrix ε=[ε1ε2ε3ε4ε5ε6]T, the follow-
ing elastic constants can be obtained for an orthotropic material:

E1 ¼ σ1

ε1
ν12 ¼ −

ε2
ε1

ν13 ¼ −
ε3
ε1

ð2Þ

For shear stresses, if stress σ = [00000σ6]T is applied, the shear
modulus can be obtained as in Eq. (3), and the applied stresses and
the equations are adjusted for each stress state and orientation.

G12 ¼ σ6

ε6
ð3Þ

Once the stiffness matrix [C] is obtained for each FE model it is pos-
sible to evaluate the following ratios that can be used to compare the
different levels of anisotropy:

Young0smodulus ratio ¼ E3
E1

ð4Þ

Poisson0scoefficient ratio ¼ ν13

ν12
ð5Þ

Shear modulus ratio ¼ G13

G12
ð6Þ

Anisotropy coefficient1 ¼ A23 ¼ 4C44

C22 þ C33−2C23
ð7Þ

Anisotropy coefficient2 ¼ A12 ¼ 4C66

C11 þ C22−2C12
ð8Þ

The anisotropy coefficients are a variation of the Zener ratio. Their
use allows the evaluation of non-cubic stiffness tensors. In the context
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Fig. 5. (a) Absolute position of three struts (b) Relative positioning of struts along their axis.

Fig. 6. VEOCS diamond unit cell model, with cross-sections scaled at 0.5.
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of this research, the anisotropy coefficients are used to compare levels of
isotropy in different planes. Thus, in this case, coefficient values of 1 are
a necessary but not sufficient condition for isotropy. For actual isotropy
Cii = Cjj must also hold for i, j = 1,2,3.

3. Results and discussion

3.1. Metrological analysis

In a previous work, Cutolo et al. [11] defined a novel sample prepa-
rationmethodwith particular focus on orienting the unit cell coordinate
system, the sample coordinate system and the L-PBF reference system.
The authors fixed the UC coordinate system parallel to the L-PBF refer-
ence system. By changing the orientation of the samples with respect
to the L-PBF base plate, the authors were able to investigate the aniso-
tropic behavior of the diamond UC. Fixing the orientation of the dia-
mond UC with respect to the L-PBF reference system ensures that
each strut axis forms the same angle of 35.26 deg with the build plat-
form and, consequently, a high level of strut-to-strut consistency in
terms of strut dimensions is guaranteed. This has been confirmed by
the results of the metrological analysis performed on the μ − CT data.
Therefore, it can be assumed that all the struts in each unit cell of the lat-
tice structure exhibits the same mechanical response.

Each strut has been isolated from the reconstructed model and sec-
tioned with 35 planes perpendicular to the strut axis. From the cross-
sectional analysis, several properties were extracted regarding themor-
phological differences with respect to the idealized strut.

The histograms in Fig. 7 show the distributions of morphological
characteristics of the struts over 3 successive slices. A representation
of the location of each cross-section along an ideal strut is also given
in the figures: Slice 1 corresponds to the closest slice to the node, slice
8 is about the quarter of the strut length, and slice 15 is close to the cen-
ter of the strut. Fig. 7a shows the very large difference in the cross-
sectional area distribution along the different sections of the strut.
Apart from the changes in the mean value, the data dispersion is also
very different depending on the cross-section along the strut. As a result
the data distribution type is not uniform and it would not be accurate to
adjust all the cross-sectional area values to a single probability
distribution.

Fig. 7b shows the eccentricity distribution across three sections. The
eccentricity is the normalized distance between the center and the focus

of an ellipse, and is defined as follows: ecc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2−b2

p
=a, with a and b

being the major and minor semi-axes, respectively. For a circle, the
focus and the center are the same (ecc=0), which is the case of the de-
signed lattice structure. Therefore, eccentricity indicates how close an
ellipse is to circularity, and can be used to assess the struts cross-
section shape quality.

Even if the cross-sectional area distributions of sections 8 and 15 are
similar, Fig. 7b indicates that the eccentricity distributions have signifi-
cant differences, which means that even in the regions where the area
values are relatively stable, the shape of the cross-section changes.

Fig. 8 shows the evolution of the eccentricity along the strut axis.
Each boxplot represents the statistical distribution of the eccentricity
at the specific section, and the markers represent the 5th, 25th, 50th,
75th, and 95th percentiles. The eccentricity distributions indicate that
the cross-section is not circular at any section along the strut. Further-
more, the circularity is higher close to the nodes, where the cross-
sectional area deviates more from prescribed values. This means that
the circularity is caused by the manufacturing deviations themselves
rather than by the design.

Fig. 9 shows the probability distribution of the center of gravity off-
set of each cross-section. Contrary to the cross-sectional area, the offset
data distribution types are quite uniform along the strut, although a
clear difference in mean values can be noticed along the strut sections.

In Fig. 10 the cross-sectional area distributions are presented in
terms of boxplots for each section along the strut axis. Themost notable
result is that the cross-sectional area decreases towards the middle of
each strut indicating that less material is present in this region. On the
other end, a cross-sectional area increase with a consequent mass in-
crease can be observed approaching the two end nodes. From these
data, it was possible to extract the equivalent radius distribution for
each section. The VCCS strut model was generated using the mean
value of the distributions presented in Fig. 10.

From themorphological analysis of the cross-section it has been no-
ticed that the geometry of the strut cross-section deviates from the de-
signed circular shape and tends to become elliptical. In Fig. 11 the
distribution of the minor and major axis of the best fitting ellipses are
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Fig. 7. Histogram of area distribution (a) and eccentricity (b) in three different sections along the strut.

Fig. 8. Distribution of cross-section eccentricity along the strut.
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presented. Data are presented for each section along the strut axis in
terms of boxplots. Both major and minor axes have a minimum value
close to the center of the strut and higher values are reported for sec-
tions close to the nodes.

Another important feature extracted for each cross-section, was the
orientation of themajor andminor axis of the ellipses. From the analysis
of the data it is shown that the major axis of each cross-section is ori-
ented along the building direction. The elongated cross-section along
the building direction indicates that this geometrical difference from

the nominal circular shape is caused by the dross formation occurring
underneath down-facing surfaces. It is also important to note that the
dispersion of the data is much higher in the case of the major axis,
which indicates that the dross formation is not uniform and has a high
variability. The CECS FE model was created by assigning constant ellip-
tical cross-section to the 35 Timoshenko beams for every strut. The
area of the elliptical cross-section is equal to the mean value of the
area distribution of Fig. 10. The VECS FEmodel was defined by including
the information of Figs. 10 and 11 to account for the combined effect of
the change in cross-section geometry and area along the strut axis.

The offset of the cross-sections follows a sort of wave distribution
along the strut axis as indicated in Fig. 12. The center of gravities are
shown for each section, and the 0 offset is assumed as the mean of 10
slices along the strut with lowest cross-sectional area. These cross-
sections are less affected by the dross formation, and therefore their
center of gravity is closer to the design values. For each strut the center
of gravity offset results positive for the node that is closer to the built
platform, decreasing along the strut longitudinal axis. This produces a
lower strut inclination, leading to an angle between the horizontal
plane and the axis of the strut smaller than 35.26 deg.

Fig. 13 shows the centers of gravity of each strut element projected
on the plane perpendicular to the strut axis. It is interesting to notice
that the drift of the center of gravity lies along a direction that is parallel
to the building direction.With this information theCCOCS FEmodelwas
created consisting of 35 beam elements per strut, with circular cross-
section. The centers of gravity were drifted following the distribution

-0.2 -0.1 0 0.1
Offset deviation [mm]

0

0.05

0.1

0.15

0.2

Pr
ob

ab
ilit

y 
de

ns
ity

 [-
]

S-5
S-15
S-25

Fig. 9. Probability distribution of the offset of the center of gravity.

Fig. 10. Distributions of the cross-sectional area along the strut.

Fig. 11. Distribution of the (a) minor axis and (b) major axis of the elliptical cross-section along the strut axis.

Fig. 12. Center of gravity deviation with respect the ideal strut axis.
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of mean values shown in Fig. 12. Combining the information of Figs. 10-
12 the VEOCS FE model was generated.

3.2. FE results

The VCCS, CECS and CCOCS strut models were used to generate FE
models of the diamond based lattice structure to evaluate the impact
of a single geometrical imperfection on the anisotropic behavior of the
diamond unit cell. The VECS and VEOCS strutmodels were used to eval-
uate the combined effect of the geometrical deviations on the aniso-
tropic behavior of the diamond UC.

The homogenization process was performed on all the FE models
generated to evaluate their directional stiffness and anisotropic coeffi-
cients from Eq. (2). Results of this analysis for different directions (i.e.
[100], [001], [110], [011] and [111]) are reported in Fig. 14. Moreover,
in order to visually express the impact of the different imperfections on
the anisotropic behavior of the diamond unit cell, the homogenized
Young'smoduliwere also plotted as 3 dimensional surfaces. These repre-
sentations were used to clearly identify the strong and weak directions.

Fig. 15b plots the homogenized Young's modulus of the Nominal FE
model showing the elastic anisotropy of the ideal diamond unit cell. The
3D surface plot clearly indicates a cubic anisotropic behavior, with shear
directions (i.e.[111] directions) presenting the higher value of the
Young's modulus and the orthonormal directions (i.e. [100], [010] and
[001]) resulting the weaker directions. The principal planes XY and YZ
present the same anisotropy. The high level of anisotropy is also indi-
cated by the anisotropy coefficients A23 and A12.

These results have been used as reference case and compared with
the outcomes of the homogenization process performed on the other
FE models. The comparisons have been made by means of polar plots
obtained as indicated in Fig. 16: (i) the xy polar plot has been obtained
intersecting the 3D directional stiffness surfaces with an ideal XY plane;
(ii) the YZ polar plot has been obtained intersecting the 3D directional
stiffness surfaces with an ideal YZ plane; (iii) the Ï€ polar plot obtained
by intersecting the 3D directional stiffness surfaces with the plane
formed by [111] and [110] directions.

3.3. Effect of change of cross-sectional area

The change of the cross-sectional area along the strut axis (Fig. 10)
was used to generate the VCCS lattice structure. The homogenized
Young's modulus surface presents a similar anisotropic behavior com-
pared to the Nominal model. The polar plots shown in the first row of
Table 1 indicate cubic anisotropywith equal stiffness in orthonormal di-
rections and in shear directions. Comparing VCCS and Nominal results it
can be noticed that VCCS presents higher stiffness along all the direc-
tions. The reason for this can be attributed to the fact that the nodes
have bigger cross-section. As indicated by Van Hooreweder et al. [25],
the maximum tensile and compressive stresses develop in regions
close to the nodes of the struts. Higher dimensions of the cross-section
in the nodal regions generate lower value of the nodal tensile and com-
pressive stresses. Therefore, the distribution of the cross-section area
along strut axis (Fig. 10) has a beneficial impact on the overall stiffness
of the structure. Variation of the cross-sectional area also has an impact
on the anisotropy of the diamond UC. As indicated in Fig. 13, the
Young's, Poisson's and Shear ratios remain constant while A23 and A12

are reduced indicating a lower degree of anisotropy.

3.4. Effect of the constant elliptical cross-section

The homogenized Young's modulus surface of the CECS presents
some difference with respect to the Nominal. The CECS doesn't present
cubic anisotropy as the Nominal model. In fact, along the orthonormal
directions different values of the Young's modulus are reported with
[001] being stiffer than [100] direction as shown in Fig. 14a. The polar
plots of the second row of Table 1 show that CECS possesses a lower
stiffness and a lower anisotropy level across the YZ plane. This behavior
is confirmed by the decrease of A23 coefficient and the increase of A12.

The Poisson's and the shear ratios shown in Fig. 14b are systemati-
cally lower than the Nominal ones highlighting a shear stiffness transfer
from YZ plane to XY plane.

These stiffness changes are the result of the change in cross-sectional
shape. In fact the orientation of the major axis of the ellipse plays an
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important role to explain this behavior. When the major axis is parallel
to the load direction the structure is able to better absorb the external
loads due to the higher inertia of the cross-section around the minor
axis. On the contrary, if the load direction has the same orientation of
the minor axis, the lower inertia makes the structure weaker.

3.5. Effect of the offset of the cross-section

The change in the position of the cross-section's centers of gravitiy
has a significant impact on the mechanical properties of the lattice
structure. The CCOCS directional stiffness of Fig. 13 and the polar plots
of the third row in Table 1 indicate that this model does not present
cubic anisotropy. The orthonormal directions perform differently with
[001] direction being weaker than [100]. Moreover, the stiffer direction
changes from the shear [111] direction to [110]. More information re-
garding the anisotropic characteristics of the CCOCS model can be ex-
tracted from Fig. 14. First of all, the decrease of A23 suggests higher
isotropy on XZ and YZ planes whilst the increase of A12 indicates a
higher level of anisotropy on XY plane. Secondly, v13/v12 and G13/G12 ra-
tios suggest a stiffness transfer from plane YZ and XZ to XY plane.

The stiffness surface distribution of CCOCS differenceswith the nom-
inal model can be attributed to the reduced inclination of the struts axis
with respect to the building direction resulting from the wave distribu-
tion of the cross-sections offsets. According to the local stress method
developed by Van Hooreweder et al. [25] for bending dominated dia-
mond unit cells, the angle between the horizontal plane and the strut
axis determine the stress distribution across the node. For diamond
unit cells this angle is equal to 35.26deg. A reduction of this angle causes
a change of the distribution of the total load in axial and bending com-
ponents. The axial load is a more efficient way to carry the loads, thus,

the directions which maximize this component have a higher stiffness
and lower bending stresses. The opposite happens for directions with
a higher bending load component with respect to the nominal.

3.6. Combined effects: elliptical variable cross-section

The homogenized Young's modulus for the VECS model are shown
in the fourth row of Table 1. The polar plots follow the same trend as
the CECS indicating that the effect of the change in cross-section geom-
etry largely impact the mechanical behavior of the diamond lattice
structure. On the other hand, a general increase of the stiffness in all
the direction can be observed. This is the result from the variability of
the cross-sectional area.

The combined effect of the variable elliptical cross-section is also af-
fecting the anisotropy coefficient expressed by Eq. (2). The anisotropy
level across XZ and YZ planes decreases with respect to the nominal
model as well as for the CECS model. On the contrary, the anisotropy
level across XY plane increases but not as much as for the CECS model.
This attenuation is due to the different stress distribution along the
strut axis generated by the variation of cross-sectional area.

3.7. Combined effects: offset elliptical variable cross-section

The VEOCS homogenized stiffness presents the combined effect of
the three different deviation typologies as shown in the last row of
Table 1. The maximum directional stiffness is expressed by [110] direc-
tions and the weakest direction being [100] as effect of the offset of the
cross-sections. The orthonormal stiffness are enhanced because of the
effect of the change in cross-sectional area distribution. If compared
with the nominal model, the VEOCS anisotropic behavior results

Fig. 15. (a) Unit cell of Nominal FE model and (b) its directional stiffness.

Fig. 16. Plane identification for (a) XY polar plot, (b) XZ polar plot, (c) π polar plot.
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different: the YZ polar plot shows a very low degree of anisotropy, con-
firmed by the low value of A23; on the other hand, XY and Ï€ polar plots
indicate a very high anisotropic behavior. These two combined effects
are the result of the lower struts inclinationwith respect to the horizon-
tal plane superimposed to the change of the cross-sectional geometry.

3.8. Comparison with experimental results

Table 2 shows the homogenized stiffness evaluated for all the differ-
ent FE models. Considering that the as-produced samples suffer from
the three types of morphological imperfection, i.e. variation of cross-

Table 1
Comparisons of VCCS, CECS, VECS, CCOCS and VEOCS directional stiffness with the Nominal.
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sectional area, geometry and center of gravity, the FE model that better
replicates the anisotropic behavior of the lattice structures is the VEOCS.
In fact, the stiffest direction of the VCOCS structure changes from [111]
in the ideal case to [110]. This result is in line with the experimental re-
sults presented in [8] in which [110] oriented structure was reported to
have the highest stiffness.

This behavior is related to the combined effect of the center of grav-
ity offsets and change in cross-sectional shape. These types of imperfec-
tions are mainly developed during the manufacturing process of the
lattice structure due to dross formation underneath unsupported struts.
As a matter of fact, during the L-PBF production of inclined struts, the
laser tends to melt more powder than needed, elongating the strut
cross-sectional shape along the build direction. Struts with small diam-
eters and high diameter/length ratios, as the ones produced by Cutolo
et al., are more affected by this phenomena. The change in cross-
sectional shape produces also a change of the cross-section center of
gravity with respect to the ideal case.

This phenomenon is not exclusive for Ti6Al4V nor for the diamond
unit cell, and it can affect any lattice structure manufactured by L-PBF.
Therefore, qualitatively similar effects are expected for other materials
and unit cells, which are still to be studied. The procedure explained
in this work can be used for other cases to assess themanufacturing de-
viations and predict their effect in the anisotropy by combining μ − CT
data and FE simulations.

Therearedifferent approaches toovercome themorphological imper-
fections of these lattice structures: manufacturing parameters can be
changed to try to reduce the dross formation in down-facing zones. On
theotherhand, the circularity of the cross-section canbe improvedbyde-
signing elliptical struts with reversed major and minor axes, in order to
compensate the dross formation in manufacturing. Similarly, the cross-
sectional area close to the nodes could be reduced in the design phase.

Finally, since these imperfections are more prevalent in small strut
diameters, and with high diameter/length ratios, increasing the unit
cell size while maintaining the relative density can be an option to ob-
tain a lattice structure with equivalent mechanical properties and
smaller deviations. Nonetheless, there are applications that require
very small pore sizes, such as in the biomedical field. In this case, in-
creasing unit cell size is not an option, and therefore, understanding
the anisotropy of the lattice structures with small unit cell size and
manufacturing deviations is of great importance.

4. Conclusions

Manufacturing imperfections have a significant impact on the an-
isotropy of lattice structures produced by L-PBF, and their effect is not
limited to a uniform decrease of the stiffness and strength. These devia-
tions change the elastic response of the lattice structure in a variable
way depending on the load direction, and each of the studied imperfec-
tion types have a specific impact on the directional stiffness of the lattice
structure.

The variation of the cross-sectional area increases the efficiency of
the load carrying capacity for bending dominated lattice structures in
any direction. This is caused by a higher bending load close to the
nodes compared to the central part of the strut. On the other hand,

the elliptical cross-section and the offset of the center of gravity have
very direction dependent effects. The elliptical cross-section is espe-
cially significant in bending dominated lattice structures, since the di-
rectional stiffness change is driven by the higher inertia of the major
axis compared to the minor axis. Regarding the offset of the center of
gravity, the trend of the deviation is uniform enough to consider it as
a change of the orientation of the strut axis and reduction of its angle
with respect to the building plane. This varies the proportion of axial
and bending load compared to the nominal structure. Thus, the anisot-
ropy is affected because of the difference between the axial and bending
stiffness of the beam.

Very clear trends can be observed on every deviation type depend-
ing on their proximity to the nodes. Therefore, it is necessary to take
into account the position of the manufacturing deviations along the
strut in order to explain their effect in the anisotropy. Moreover, these
imperfections are highly dependent on the diameter to length ratio,
unit cell size and relative density, as well as manufacturing parameters,
and the observed trends are more significant when working closer to
manufacturability limits.

The offset of the center of gravity has themost remarkable impact on
the anisotropy because it changes the stiffest direction from [111] to
[110], which can also be observed in experimental data. This has
major implications when using this type of lattice structures in load
bearing applications in which the structure needs to be oriented so as
to minimize compliance.
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Chapter 5

Discussion

Replacement surgery of the hip, knee or spine has not ceased to increase in recent years in OECDcountries [182, 183, 182]. This increase is more pronounced in younger age groups (<65 years old), andthe implants used in such interventions have only a limited lifespan [184]. This results in higher risk ofrevision surgery for younger age groups, and the combined trends of more interventions at earlier lifestages is foreseen to greatly increase the number of revision surgery in years to come [185]. Therefore,novel implants are required to ensure longer durability.The monolithic metallic implants used nowadays have stiffness values that are orders of magnitudehigher compared to the bone stiffness. The result of this mismatch is the stress shielding effect, whichoccurs when the implant withstands most of the load, and causes bone resorption. This affects implantstability and osseointegration, which are essential for the durability of the implant. Furthermore, the lackof stability causes pain to the patient and may lead to the loosening of the implant or a fracture ofbone. Replacing solid implants by porous ones enables the use of well-known biocompatible materialswhile drastically reducing the stiffness of the implant, avoiding the stress shielding and subsequent boneresorption. Thus, lattice structures offer the possibility to design such porous implants that can improveimplant longevity.While several challenges remain unsolved so far, continuous progress is being made in the applicabilityof additively manufactured lattice structures in orthopedic implants. This has enabled new design conceptsthat were unprecedented, and the research in manufacturing as well as in modeling techniques bringsus closer to personalized scaffolds with tailored mechanical properties. The primary goal of this work isto contribute to this purpose by creating new tools to enable the design and manufacturing of suitablelattice structures with controlled mechanical properties. The three main issues that were planned to becovered in this thesis are:
• Develop tools that enable the optimal design of porous structures based on patient-specific bonerequirements.
• Analyze the behavior of porous structures under cyclic loads.
• Understand the effect of manufacturing deviations on the mechanical properties of lattice structures.

Develop tools that enable the optimal design of porous structures based on patient-specific
bone requirements

As explained above, lattice structures that match the bone properties reduce the stress shielding effectand have the potential to avoid bone resorption and the loss of long-term implant stability. DICOM
99



100 Chapter 5. Discussion
images and CT scans of the bone can be used to derive patient- and site-specific bone geometry andmechanical properties [181], and this data can be the starting point for the patient-specific implant design.This underlines the necessity of a design tool of lattice structures that enables to tune their mechanicalproperties according to bone data.To do so, a more thorough analysis of the elastic behavior of the lattice structures must be carriedout, by modeling the whole macroscopic stiffness matrix. Advanced analytical and numerical models arerequired to perform such an analysis, as well as experimental procedures necessary to validate suchmodels.The analytical and numerical models can be used to predict or to design the effective mechanicalproperties of lattice structures. Exhaustive analytical solutions can replicate the results of FE beammodels, thus providing a useful tool for lattice structure design. Nonetheless, these expressions can becumbersome to calculate, and their accuracy is limited in theory due to the reduced slenderness of thestruts when the relative density increases, as the assumptions made in beam models do not hold.Nevertheless, these analytical expressions are often closer to experimental stiffness values comparedto other more complex numerical models, as it occurs in [67, 69, 186]. Even if analytical models do notconsider the stiffness at the nodes and the struts are not slender enough to hold the assumptions of theTimoshenko beam model, the manufacturing deviations reduce the stiffness so that these two effects canceleach other.In Paper A, a new analytical model was developed for a modified FCC unit cell, namely FCCm,accounting for beam stretching, bending and rotation. This enabled to obtain a very accurate orthotropicmodel with the elastic constants of the structure, so that its elastic behavior could be predicted in anyorientation or under complex load conditions, which is the case in many anatomical sites.In addition, the variability of its aspect ratio (unit cell height-width ratio ) gives the designer somefreedom to modify the mechanical properties of the structure depending on the load case, enabling to havethe same stiffness in the three orthogonal directions, or some stiffer directions at the expense of the othercounterparts. The FCCm structure was compared to other structures, showing a stiffness in the range ofother bending dominated unit cells, and lower than for stretch dominated structures.Transversely isotropic structures are another type of structures that may be of interest for implantsdesign. Because of its architecture, cortical (dense) bone is stiffer and stronger along the anatomical axisof the bone, while it is more compliant and weaker in the transverse plane. On the other hand, trabecularbone in specific locations may also have a principal load orientation. As a result of the mechano-biologicaladaptation, the stiffness and strength in such direction are higher than in the transverse plane. Therefore,mimicking the transverse isotropy of bones can increase the efficiency of the lattice structure.In Paper C a novel semi-analytical model was presented, which enables the tuning of the elasticbehavior of some stretch dominated structures to be transversely isotropic. It is shown that the orthotropicstiffness matrix of any stretch dominated structure under affine deformation can be modelled with amaximum of 6 independent elastic constants. Some structures were proposed, and an ellipsoidal directionalstiffness was set as a design objective, with a prescribed anisotropy ratio between the principal directions.Even if the stiffness matrix was the same for different topologies, the transverse isotropy was not fulfilledfor strength, neither the strength ratios in the main orthogonal directions. The semi-analytical modelwas validated for the proposed VFCCBCC structure by means of numerical models, showing very goodcorrelation of elastic constants for low relative densities, and the accuracy decreased for higher densities.On the other hand, the semi-analytical model predicted the strength of the structures consistently in [001],and [110], the accuracy was a bit lower in [100], [101] and [111].



101
Experiments were carried out, and specimens were compressed in directions [100], [110] and [001].The absolute values of stiffness and strength were not comparable to the semi-analytical model due tothe manufacturing defects of the specimens. Nevertheless, the transverse isotropy and the E3/E1 ratiowere close to the designed values for one of the structures. Finally, the semi-analytical model was usedto analyze the stiffness of the structures in different orientations and for three constituent materials,comparing them with the stiffness ranges of different bone sites.

Analyze the behavior of porous structures under cyclic loads

Increasing the fatigue life of porous scaffolds is one of the current challenges in AM, and the strength ofthe structures under cyclic loading is of paramount importance for their use in orthopedic implants. Thesurface roughness, internal defects and complex geometries of the scaffolds lead to complex stress statesand stress concentrations that dramatically reduce the fatigue strength of lattice structures compared totheir solid counterparts [103]. One method to increase the fatigue resistance of the structures is to applypost heat-treatments that reduce residual stress and internal porosity, and change the microstructure ofthe material. Therefore, the study of AM lattice structures under cyclic loads is also one of the objectivesof this thesis. Paper B analyses the quasi-static and fatigue behavior of FCCm structures with differentrelative densities to study its effect. The effect of hot isostatic pressing (HIP) on the mechanical propertiesof the structures was also studied, and the stiffness based fatigue failure criterion is presented as a moreuseful criterion for load bearing applications, which is the case of orthopedic implants.Furthermore, many different tools for fatigue life predictions were compared. In the literature, S-Ncurves are commonly normalized with the yield strength. However, in this work it was observed that thismethod is inaccurate as the normalized curves do not fit well into a single one. Thus, in this paper thefatigue life prediction based on the analytically obtained maximum tensile stress (local stress method) wasmodified from the literature to cover a wide range of relative densities and it shows very good agreementwith the experimental data. Finally, a fatigue failure surface was presented to integrate the effect ofrelative density, stress level and elapsed cycles in a single expression, and it showed good correlationwith the experiments.
Understand the effect of manufacturing deviations on the mechanical properties of lattice
structures

As mentioned in the previous chapters, and discussed in more detail in the next section, a differencebetween numerical and experimental results can be found in this work in particular, and in literaturein general. Some of the errors are due to the geometry deviations intrinsic to the current metal additivemanufacturing process. The small features required to design meta-biomaterials push the limit of the SLMmachines, and the restrictions imposed by the arising inaccuracies need to be addressed as a necessarystep prior to the widespread application of this technology.The Paper D focuses on the role of manufacturing deviations in the quasi-static mechanical propertiesof the lattice structures in different directions and is based on previous work by Cutolo et al. [63]. In theirwork, Cutolo et al. compressed diamond structures in [001], [110] and [111] directions, and they concludedthat the [110] direction was the stiffest and strongest one for their structure. Nonetheless, it can be easilyconcluded from numerical analyses that the stiffest and strongest one should be the [111] orientation foran ideal diamond structure. To understand the underlying phenomena, the µCT scans of the structureswere used to gather data of the cross-section of the struts and to create a beam finite element model ofthe manufactured structure.
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Each cross-section was fitted to an ellipse, while also accounting for the deviation of the center ofmass of the cross-section along each strut. The effect of each imperfection type was studied as well as thecombined effects. It was observed that the major axis of the ellipse was aligned with the building directionof the structure, concluding that this lack of accuracy resulted from the dross formation in the down-skinsurfaces. Furthermore, this deviation affected the position of the center of mass, so that the center of massdeviated also in the building direction. Another aspect of the manufacturing imperfections was that theygreatly depended on their position along the strut: the closer to the nodes, the greater the deviation fromthe theoretical values. In addition, the shape of the statistical distribution of the imperfections was alsodependent on the proximity to the nodes.Due to their clear directionality, the elliptical cross-section and the offset from the center of gravityaffected not only the absolute values of the mechanical properties, but also the anisotropy of the structure.The elliptical cross-section adds inertia in the building direction, which is particularly relevant in bendingdominated structures. On the other hand, the offset from the center of gravity was so stable that couldbe compared to a change of the orientation of the strut, thus modifying the axial and bending load ratio,with great influence on anisotropy.When all the deviations were considered and implemented in the finite element model, the stiffestdirection changes from [111] to [110], as in the experiments of Cutolo et al. [63]. Therefore, the imperfectionsdo not reduce the stiffness of the structures uniformly, but they affect their anisotropy, and thus thesedeviations should be studied to design lattice structures with tailored anisotropy. In the design process,this helps to identify stiffer and more compliant directions, and to orient the structure to better adjust tophysiological loads.

5.1 Analytical vs Numerical vs Experimental results

As already stated, the differences between the analytical or numerical and experimental values are animportant research topic for lattice structures. Apart from the mentioned manufacturing imperfections,analytical and numerical models have limitations to accurately describe the mechanical properties of thestructures, and different possibilities are available with a wide range of complexity.Analytical models for lattice structures are based on beam models, both Euler-Bernouilli andTimoshenko beam models. These models are commonly used for slender elements and they can be usedto model lattice structures. In general, the struts are not too slender and shear deformations are notnegligible, thus Timoshenko beam model is preferred. These analytical models can be accurate for lowrelative densities, but as the relative density of the lattice structure increases, the strut cannot be modeledas a beam anymore, and the models tend to underestimate the lattice structure stiffness.When it comes to numerical models, beam FE models are equivalent to analytical models, with thepossibility of increasing the complexity of the model to consider manufacturing deviations, or to study theenergy absorption or the buckling of structures in more detail. Nevertheless, the limitations of the beammodel concerning high relative densities and non-slender struts are equivalent to the analytical models.FE models with 3D elements, on the other hand, have the potential to predict the effective mechanicalproperties of lattice structures with greatest accuracy (specially for high relative densities), and can beuseful to validate analytical models such as in Paper C.It should be noted that many numerical and analytical models consider lattice structures with idealgeometries and properties. However, it is well known that the additively manufactured structures havesome geometric errors which are intrinsic to the manufacturing process, and they do affect the mechanical
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properties of the structures. In fact, one of the major challenges is to achieve the target relative densityof the scaffolds. The imperfection types are various (discussed in Paper D), and highly dependent onmanufacturing strategies. The final shape of the struts will be different if they are manufactured bymelting a single point in each layer, as in VFCCBCC, in which some struts resemble to interconnectedspheres rather than to a cylinder; or if the laser actually follows the contour of the cross-section of thestrut, as in FCCm, in which a lot of excess energy created dross that unintentionally increased the relativedensity of the structure.The imperfections potentially affect more to stretch dominated structures, because such deviations maychange the loading type of the strut from pure axial load to combined axial and bending. If bending loadappears in a supposedly pure axially loaded strut the stiffness loss is much higher than simply havinglower bending stiffness due to manufacturing deviations in a bending dominated structure. Furthermore,since the main load of the structures are compressive, buckling plays an important role in the strengthof the structures, and the imperfections in manufacturing can dramatically reduce the buckling load ofstretch dominated structures.The manufacturing deviations can also affect the anisotropy of the structures, as explained in Paper
D, because the imperfections are usually orientation dependent. This issue also arises in Paper C, inwhich the anisotropy of structure A was different from structure B, which was closer to design values.Furthermore, in Paper B very different outcomes were observed in the comparison between solidFE models and quasi-static experiments: while the stiffness values show bad correlation, the strength ispredicted with acceptable accuracy. In addition, the development of plastic deformation was analyzed inthe compression process, showing that plasticity appears way before the 0.2% offset stress criterion. Thisis the most used criterion in literature, and it must be considered that the concept of yield strength hasdifferent implications compared to solid materials. Hence, the acceptable macroscopic stress values mightbe lower than the calculated yield strength if plastic deformation is to be avoided.Figure 5.1 shows the analytical, numerical and experimental results for the FCCm unit cell (Paper
A and Paper B) and the VFCCBCC unit cell (Paper C). It can be appreciated in Figure 5.1a, that forlow relative densities the analytical model is in good agreement with the solid finite element model,while for large relative densities the difference is greater. In theory, analytical models and beam FEmodels should be accurate for low relative densities , while for large relative densities solid FE modelsshould be more accurate. However, solid FE models based on the designed geometry rather than inthe manufactured one are not sufficiently accurate when comparing with experimental values as it canbe observed in Figure 5.1a. This is due to the stiffness reduction of the experimental structures due tomanufacturing imperfections. FE simulations can be considered a sort of upper bound of the stiffness forperfectly manufactured structures, while the analytical model gives a better approximation of the actualbehavior.However, the semi-analytical and numerical models of Paper C are not able to predict the experimentalYoung’s moduli of the VFCCBCC structure, as depicted in Figure 5.1b. The semi-analytical model clearlyoverestimates the stiffness of the actual structures, as occurs with the solid FE model. Note that in thiscase, as opposed to Figure 5.1a, semi-analytical model is in good agreement with the solid FE model.This occurs because whereas in the semi-analytical model the relative density was adjusted to excludethe double counting of mass at the nodes, for FCCm the length of the struts was considered constantregardless the relative density.Thus, the accuracy of the analytical model of the FCCm structure is based on the undesirable effectof the manufacturing imperfections, and this situation is expected to change as the manufacturing qualityof lattice structures increases, limiting the use of the model for high relative densities. In addition, the
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Figure 5.1: Young’s moduli of a) FCCm and b) VFCCBCC structures for (semi) analytical andnumerical models compared to experimental values.

semi-analytical model of VFCCBCC is only able to model the mechanical behavior of ideal structures,and the model will not be accurate as long as the manufacturing limitations are not overcome. Therefore,analytical models can be useful to design structures with prescribed elastic properties and orthotropiccharacteristics, but these models need to be adjusted according to an experimental validation process.Regarding strength, the numerical model of VFCCBCC also overestimates the yield strength of thestructure, while the numerical FCCm structure gives a good approximation of the yield strength. Thismight be explained because the manufactured structures do not have sharp edges at the intersections ofthe struts, which compensates the rest of the irregularities of the geometry.In any case, the lack of robustness of as-designed numerical models present a significant challengeto design structures with tailored properties, and manufacturing and experimentation are necessary so farto confidently assess mechanical properties of the structures.There are different methods to consider these imperfections in simulation tools to better predict themechanical behavior of lattice structures. Methods that explicitly account for the actual shape of thestructure are based on µCT data as in [139, 136, 124]. These methods are able to predict the actualbehavior of the structures, but require costly equipment and handling of large sets of data. Moreover, it isdifficult to use this information in the design phase to create scaffolds with tailored mechanical properties,and they are a mere sort of accurate descriptive tool for the structures.On the other hand, it is possible to implicitly account for the manufacturing deviations by testingsingle struts and obtaining their E modulus and yield strength, which is much lower than that of thebulk material, as done in [187, 130, 188], and using those values as constituent material parameters. Theadvantage of this procedure is that the numerical models can be very simple, and it can be applied in thedesign process to predict and tailor the mechanical properties of the structure. Furthermore, the simplicityof the method enables its use in analytical models as done in the case study of the knee replacementwith stiffness characteristics of proximal tibia of Paper C.This method was applied in the models of Figure 5.1, assigning a Young’s modulus of 37.5 GPa forTi6Al4V (instead of 129 GPa) and 67.5 GPa for SS316L (instead of 190 GPa) [49]. The results for analyticaland numerical models are depicted in Figure 5.2, compared with the same experimental values. For theFCCm structure (Figure 5.2a) the solid FE model is closer to the experimental values after the adjustment,at the expense of totally losing the accuracy of the analytical model for large relative densities. On the
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other hand, in the case of VFCCBCC structure (Figure 5.2b) both the FE model and the semi-analyticalmodel are closer to the experimental values compared to Figure 5.1b. In any case, it can be seen that evenif numerical results are closer to the experiments, they are still not completely accurate, and obtaining thealternative stiffness values should be done considering strut dimensions and their manufacturing strategy.Another drawback of this method is the limitation to include anisotropy variations in the models, andassuming that all struts experience the same degradation of properties in manufacturing, regardless theirorientation or diameter. Furthermore, the previous analysis of individual struts must be carried out, whichadds complexity to the design process.
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Figure 5.2: Young’s moduli of a) FCCm and b) VFCCBCC structures for (semi) analytical andnumerical models with adjusted Young’s modulus from [49], compared to experimental values.

In summary, the numerical and analytical models give valuable information about the mechanicalproperties of lattice structures, even if the ideal models alone are not accurate enough. Therefore, it isstill necessary to include the manufacturing deviations in such models to have a complete picture of themechanical behavior of the structures and to design metamaterials with engineered mechanical properties.As discussed, it is still a challenge to include the manufacturing deviations within the design process ina cost-effective manner while accounting for all the effects of such deviations on the mechanical propertiesof the structures. One alternative would be to reduce the impact of such imperfections by building largerunit cells, which has the cost of increasing the pore sizes within the structure, and this has a detrimentaleffect on the capacity of the bone to grow within the implant.Another possible solution, which would be the optimal one, is to improve the lattice structure AMprocess to reduce the imperfections. The optimization of the parameters used in the manufacturing process,such as laser power, velocity, hatch distance or scan strategy are a necessary preliminary step to ensurequality and repeatability of the process. In addition, this optimization process should be specific not onlyfor each unit cell, but also for each relative density, since the morphology has great variations in eachcase. This greatly increases the cost of the implementation of lattice structures in functional load bearingparts as the iterative process of manufacturing the structures, inspecting and assessing the accuracy, andadjusting manufacturing parameters is a very resource intensive process.



106 Chapter 5. Discussion
5.2 Lattice structures for orthopedic implants

The aim of this work is to propose lattice designs that can be used for bone tissue engineering, focusingon their mechanical properties to try to mimic bone tissue. The suitability of lattice structures asporous biomaterials depends on various aspects concerning the biocompatibility, capacity to promotebone ingrowth and vascularization, and mechanical properties of the scaffold. While biocompatibility canbe ensured by using certain materials (pure titanium and its alloys, CoCr, SS316, tantalum, PEEK,etc.), depending on the bone site and its mechanical requirements, the optimal configuration to promotebone ingrowth and vascularization within the implant remains unclear. Nevertheless, it has been welldocumented that the relative density and pore size are key factors apart from permeability and curvatureof the scaffold [189, 190].The capacity of the structures for bone ingrowth and vascularization depends on the the pore size. Evenif the literature is controversial on the topic, pore sizes between 300 µm and 800 µm are recommendedto ensure nutrient transport within the scaffold [190, 179]. While smaller pores offer an improved cellattachment, larger pores avoid pore occlusion and enhance cell growth [191, 177].In Paper A, due to manufacturability reasons, the pore sizes of the unit cells were above 1 mm.However, it must be said that the FCCm structure does not have a unique pore size, as depicted inFigure 5.3. Therefore, it can be considered as a hierarchical porous structure with different pore sizes,and considering only the biggest pore size (as done in Paper A) might be a simplistic approach to assessits bone ingrowth and vascularization capabilities. Regarding the VFCCBCC unit cell, the manufacturingconstraints impose larger unit cell sizes than for FCCm to ensure manufacturability. Nonetheless, the highstrut interconnection in the VFCCBCC structure results in smaller pores compared to the unit cell size(see Figure 5.3), and therefore they can be in the range suitable for bone formation.

Figure 5.3: Pores of FCCm (left) and VFCCBCC (right) unit cells.
When it comes to the quasi-static mechanical properties of the scaffolds, it is known that matchingimplant stiffness to bone stiffness can reduce the stress-shielding effect. This work provides some solutionsto match the stiffness of bone tissue in different sites, as already shown in Paper A and Paper C. Moreover,bone tissue is usually considered an orthotropic material [154, 71], with variable stiffness in differentdirections to optimize its functionality under the complex loads it withstands. The proposed structures donot have elastic cubic symmetry, which is the case of the commonly studied simple cubic, BCC, diamond,etc. Instead, the developed mechanical models of FCCm and VFCCBCC structures allow more variabilityof their mechanical behavior to adapt to different requirements.Thus, a more detailed characterization of the elastic response of the lattice structures is providedto account for such variability, considering stiffness in various directions and obtaining the effective
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orthotropic stiffness matrix of the unit cells. This is relevant for a more comprehensive analysis of thestructures under realistic conditions, with complex loads of bone tissue in different sites. This thoroughanalysis is useful even for supposedly more simple unit cells such as diamond, which was proved not tohave cubic symmetry of the elasticity due to manufacturing deviations.Figure 5.4 shows the stiffness and yield strength values of the FCCm and VFCCBCC unit cells fordifferent relative densities, as well as some other unit cells in the literature, comparing them with trabecularand cortical bone. The semi-analytical model of VFCCBCC was assigned different constituent materialsas done in Paper C, with Young’s modulus equal to 37.5 GPa for Ti6Al4V, 61.5 GPa for 316L stainlesssteel (implicitly considering manufacturing deviations), and 4 GPa for PEEK [192, 49]. The strength valuesare 610 MPa, 450 MPa and 70 MPa for Ti6Al4V, 316L stainless steel and PEEK, respectively [192, 49].

Figure 5.4: Young’s modulus and yield strength of different unit cells in this dissertation andliterature [69, 121], compared to bone range obtained from [152, 153, 71, 193, 143].
The semi-analytical model of VFCCBCC unit cell shows how different stiffness ranges can be achievedvarying the constituent material. For Ti6Al4V and 316L the stiffness values are in general higher thantrabecular bone, without reaching cortical bone stiffness. On the other hand, PEEK covers a wide range ofstiffness of trabecular bone. For FCCm unit cell the analytical model of the stiffness in building direction(E3) was included for 3 different aspect ratios (R=0.5, R=1, R=1.5), showing that R=0.5 can cover allthe range of trabecular bone, and R=1.5 even reaches cortical bone stiffness for high relative densities(ρ∗>0.4). These results are in line with other structures and materials found in literature, with diamondCoCr reaching cortical bone stiffness, and BCC made of Ti6Al4V very close to FCCm with R=0.5.Regarding strength, the analytical models of metallic VFCCBCC structures are stronger thantrabecular bone in general, or at the upper part of the bone range, without reaching the cortical bonevalues. However, the experimental values of VFCCBCC are below the expected values, and fall withinthe trabecular bone strength. PEEK structures are in the range of trabecular bone. On the other hand,experimental FCCm structures are stronger than trabecular bone, and even reach the strength of corticalbone in denser structures. The yield strength values in literature have similar tendencies, with structuresin the bone range for low relative densities, and above for intermediate and high relative densities.Stiffness and strength must be considered together with design scaffolds for tissue engineering. Theobjective of the structures is to mimic the stiffness of the bone, while the strength needs to be equal orhigher than the host bone to ensure structural integrity. Furthermore, these variables are highly dependenton bone site. Figure 5.5 depicts the stiffness and strength of various types of bone in the direction of theirprincipal load, and compares them to the stiffness and strength of the FCCm and VFCCBCC structures,along with some other examples in the literature. Stiffness is represented in the X axis, and strength is
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Figure 5.5: Associated stiffness and strength values for different unit cells studied in thisdissertation and literature [69, 121]; and various bone sites [152, 153, 71, 193, 143].
given in Y axis. Thus, an ideal lattice structure for bone substitution should lay above the line in thefigure.The semi-analytical model of VFCCBCC shows how the suitability may change with base material.The strength/stiffness ratio of 316L stainless steel is lower than any trabecular bone site, which is notideal for bone tissue engineering. Furthermore, the experimental strength/stiffness ratio is slightly belowthe analytical one (bear in mind that only corresponds to [001] orientation). On the contrary, the strengthof the Ti6Al4V VFCCBCC structures is always above the bone strength for the same stiffness level, evenif only a small portion of the bone stiffness is covered. PEEK is more suitable for bone sites with verylow stiffness values, and the strength of the scaffold exceeds the one of any trabecular bone sites exceptthe calcaneus. Therefore, Ti6Al4V and PEEK are better constituent materials compared to 316L stainlesssteel for stiffer and softer trabecular bone, respectively. On the other hand, the experimental values of theFCCm structure indicate that this structure is suitable for orthopedic implants due to its higher strengthin stiffness levels corresponding to trabecular bone. Regarding other lattice structures in literature, BCCcan be considered a suitable candidate for trabecular bone substitution. It must also be noted that theTi6Al4V diamond lattice has a higher strength to stiffness ratio compared to its CoCr counterpart.Apart from quasi-static yield strength, the strength of lattice structures under cyclic loads is a crucialparameter to assess the applicability of such structures in orthopedic implants. The use of 106 cycles as ameasure for required fatigue strength is widely spread in literature, considering that the average patientwalking activity is around 2 million cycles per year (52 weeks), and that the mean bone fracture is healedin around 16 weeks for healthy patients. Therefore, bone tissue is expected to grow within the implantbefore reaching 106 cycles [175, 194, 84].The complex geometric features of strut based lattice structures create stress concentrations thatgreatly diminish the fatigue strength of structures compared to their constituent material. Thus, the fatiguestrength of the FCCm structure lays between 27% and 31% of the yield strength of the structures, somewhatabove most of the reported fatigue strength at around 20% [195] for Ti6Al4V strut based structures, even ifit can be enhanced through different post-treatments [87]. Furthermore, Hedayati et al. [196] analyzed howthe fatigue strength increased for lattice structures embedded in various resins, e.g. epoxy or polyurethane,
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to simulate the joint strength of the structures with newly formed bone, and concluded that the fatiguestrength increases up to 8 fold.However, it is yet to be determined if new bone formation can fill the porous scaffolds in an equivalentmanner and cause a comparable increase in fatigue strength, and a comprehensive assessment of fatiguelife based on the bone ingrowth and its characteristics is very complex and time-consuming [196]. Inaddition, the fatigue strength required for a scaffold will greatly depend on its location and the loads itwithstands, which are patient and injury specific. Therefore, numerical and analytical tools have to bedeveloped to study the fatigue life of porous scaffolds in specific bone sites. In the case of load bearingapplications, the 10% stiffness loss criterion presented in Paper B as well as the modelled failure surfacecan be useful to determine the suitability of different scaffolds as porous biomaterials.All things considered, the proposed structures can be used in orthopedic implants and bone tissueengineering by adjusting the material properties, the topology of the structures, and their relative density,to create scaffolds suitable for different bone sites. Nonetheless, more research is still necessary to obtainoptimal designs that consider quasi-static and fatigue mechanical properties on the long term, as well asvariables like the permeability and the osseointegration capabilities of the structures.
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Conclusions

The main goal of this work is to expand the set of tools available to create lattice structures that aresuitable to be implemented in orthopedic implants. Thus, the main contributions of this work regardingtheir applicability are as follows:
Analytical models to design lattice structures to be applied in orthopedic implants

The analytical model of the effective stiffness matrix was obtained for FCCm and VFCCBCC unit cells,including design variables that enable a more flexible design of the structures to match the mechanicalproperties of bone. These models can be implemented in optimization algorithms to design implants withgraded properties and adjusted to each patient. The analysis of the FCCm lattice structure shows that itis suitable to be used in orthopedic implants due to its stiffness level, which is in the range of trabecularbone. Furthermore, the strength of the structure is higher compared to different bone sites.On the other hand, stretch dominated structures with high connectivity of struts can be designed to havemacroscopic elastic transverse isotropy, enabling to align the main load of bone with the principal directionof the structure to improve osseointegration of the implant. Furthermore, the semi-analytical model canbe used to match stiffness values of bone sites with high anisotropy. The anisotropy of the manufacturedVFCCBCC structure has a variable accuracy, which underlines the importance of manufacturing deviations.Apart from the VFCCBCC structure, a set of possible unit cell designs are proposed to create transverselyisotropic structures.
Characterization of the fatigue behavior of lattice structures

A set of tools was developed for an improved prediction of fatigue life of lattice structures, and a morerestrictive fatigue failure criterion was established for load bearing applications based on the stiffnessloss of the structures. The analytical model based on local tensile stress was adjusted to implement it ina wide range of relative densities. Furthermore, a failure surface was proposed for fatigue life predictionof the structures. These tools enable a easier implementation of fatigue constraints in the design of latticestructures for orthopedic implants.
Effect of manufacturing imperfections

The manufacturing deviations have a very important effect on the final mechanical properties of thestructures, and severely limit the predictive capabilities of analytical and numerical models based on
111
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designed geometries. Apart from decreasing the absolute stiffness and strength values, the imperfectionshave a clear directionality, and they also affect the anisotropy of the structures. Thus, a procedure topredict such anisotropy changes was implemented in a diamond structure, showing good correlation withexperimental values.
6.1 Future work

Despite the potential benefits of using lattice structures in orthopedic implants to prevent stress shieldingwhile enhancing osseointegration, their complex nature and the uncertainties regarding some of theirproperties are still a barrier for the widespread adoption of lattice structures in the medical field. Evenif this work has been devoted to shed some light on the mechanical complexities of the structures, someimportant aspects are still unknown, and should be further studied for a more comprehensive understandingof the nature of lattice structures:
• The discrepancies between the analytical or numerical models of FCCm and VFCCBCC structureswith their experimental values should be addressed to safely design and use them in implantapplications. This can be achieved by analyzing the actual manufactured structures, and bycontrolling the whole workflow from design, manufacture, defect analysis and testing, so that themodels and defects can be iteratively adjusted.
• This work is limited to compressive loads, while bending or shear loads may also arise in manybone sites. The behavior of lattice structures under those types of loads (or their combinations) isstill not very well understood, and studying the quasi-static as well as the fatigue properties undersuch loads is required.
• A study of bone ingrowth within the FCCm and VFCCBCC structures needs to be carried out beforeintroducing them in an implant design. More generally, bone ingrowth has a very positive impacton the stability of the implant, and more extensive research, with in vitro and in vivo studies areneeded to solve some of the discrepancies between different studies regarding optimum pore size,shape, porosity and permeability.
• The effect of bone ingrowth in the mechanical characteristics of the implant-bone ensemble wasnot considered in this work. As bone grows within the implant, load carrying capacity is increased,as well as its fatigue strength. This increases the available design possibilities, and biodegradableporous implants can be considered in cases where bone is capable of healing completely.
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