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Abstract

Motivated by the literature on preference elicitation and welfare analysis, Chapter
I studies the properties of aggregators of choice datasets into preferences. Novel
normative principles and their theoretical implications are provided. I analyse nu-
merous approaches proposed by the literature in view of the introduced principles.
I also propose and characterize two counting procedures that are foundational for
the analysis.

Motivated by the theoretical framework of the first chapter, in Chapter II, I pro-
pose a novel experimental design to test two normative principles: (1) Informational
Responsiveness guarantees that no choice data is ignored; (2) Revealed Preference
constrains the preference elicitation process to a particular reorganization of data.
These principles are summarized by a method denoted as Counting Reveal Prefer-
ence procedure. I show that approaches founded on this procedure provide more
reliable results in terms of preference relation.

Motivated by the literature on stochastic choice, Chapter III studies the relation
between imperfect discrimination and the transitivity of preferences. I show that
the degree of transitivity depends on the degree of discrimination between pairs
of alternatives. I characterize the notions of Weak, Moderate and Strong stochastic
transitivity. The results allow us to organize a wide range of stochastic models in
accordance with Fechnerian models and imperfect discrimination.
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Introduction

This dissertation comprises three chapters organized as follows: Chapter I and II

study Behavioural Welfare Analysis from a theoretical and empirical point of view.

Throughout these chapters, numerous microeconomic topics are spanned: deter-

ministic and stochastic choice theory, aggregation theory, welfare theory, choice-

elicitation experimental design. Chapter III studies Choice Behaviour under Imper-

fect Discrimination. It spans two topics: stochastic choice theory and order theory.

Chapter I aims to reconcile welfare analysis with non-standard choice behaviour.

It is motivated by the following example: suppose a researcher wants to elicit pref-

erences from a group of individuals’ choices. They may behave inconsistently with

utility maximization. Therefore, the researcher faces the challenge of identifying

a preference relation for each of these individuals. As a further complication be-

haviour is heterogeneous. Namely, each individual violates utility maximization

differently. As a consequence, the researcher has to potentially identify numerous

different (correct) models, one for each individual. The literature has acknowledged

the complexity of this problem and proposed different solutions. An influential ap-

proach is due to Bernheim & Rangel (2009) and suggest to ignore inconsistent data

and apply standard theory on the remaining dataset. This approach highly sim-

plifies the problem, however at a considerable price: the elicited preferences may

be very coarse. I propose a theoretical solution that is a refinement of Bernheim &

Rangel (2009) and that is based on two requirements: an axiom called Informational

Responsiveness and a notion of frequency based on Revealed Preference. I, then,

consider numerous other requirements and completely characterize two notions of

frequency with datasets that may have both multiple observations and missing data.

Chapter II brings the theoretical results of the first chapter to the data. I design a

1



Introduction 2

novel choice-elicitation experiment. Two questions, that constitute the premise and

test of my theoretical study, are addressed: do subjects behave consistently with

utility maximization and do they exhibit heterogeneous modes of behaviour? If in-

dividual choices present inconsistencies, do my requirements improve the capacity

of the researcher to elicit preference relations? To both questions the answer is affir-

mative. I find that subjects show high inconsistent behaviour both in Time and Risk

preferences. Furthermore, many different behavioural models are adopted. I find

that even within the same subject, different modes of behaviour are displayed mov-

ing from Time to Risk environments. These findings pose a serious challenge to the

researcher who wants to elicit preferences. However, I show that when the require-

ments studied in Chapter I are satisfied, the preference elicitation capacity increases

significantly. I test the results both indirectly analysing approaches proposed by the

literature and directly creating a novel test for Informational Responsiveness.

Chapter III studies the topic of Imperfect Discrimination in relation to transi-

tivity of preferences and stochastic choice. I study how imperfect discrimination,

namely the inability to distinguish the utility of stimuli, have effects into transitiv-

ity of choices and binary relations. I build on threshold (Aleskerov et al., 2007) and

perturbed models (Fudenberg et al., 2015) to precisely characterize the connection

between imperfect discrimination and transitivity. As the main result, I character-

ize all notions of stochastic transitivity (Weak, Moderate and Strong) using only a

parameter η that measures the degree to which an individual departs from stan-

dard utility maximization. I show that a sufficient condition is related to the trian-

gle inequality. Finally, I provide a connection between deterministic and stochastic

transitivity completing a study initiated by Fishburn (1973).



Chapter 1

Behavioural Welfare Analysis and

Revealed Preference: Theory

1.1 Introduction

In recent years behavioural economics has developed a large number of models in

response to evidence of violations of the standard model of decision-making. This

growing literature raises the problem of selecting behavioural models to analyse

datasets and contribute to policy evaluation. More concretely, imagine a researcher

that possesses a choice dataset from multiple individuals that choose following dif-

ferent behavioural models. For instance, some are perfectly rational, others may face

cost of thinking (Ortoleva, 2013), (Fudenberg et al., 2015), (Frick, 2016), form consid-

eration sets (Manzini & Mariotti, 2014), (Brady & Rehbeck, 2016), use attention filters

(Masatlioglu et al., 2012), (Lleras et al., 2017), (Cattaneo et al., 2018), perception or-

ders (Echenique et al., 2018), checklists (Mandler et al., 2012) or sequential rationales

(Manzini & Mariotti, 2007). The researcher is interested in eliciting individual pref-

erences. Therefore, in each case, she has to identify the correct model and elicit the

preference relation accordingly.

The literature has acknowledged the complexity of the researcher’s task. Some

choices may not be in line with any model at disposal while others may be in

line with more than one. Some individuals may also be endowed with more than

one model and exchange them according to different situations. An influential ap-

3



Chapter 1 4

proach, that can be applied irrespectively of the model, and therefore overcome

these difficulties, is due to Bernheim & Rangel (2009). The authors develop a Pareto

relation that cautiously considers x preferred to y if and only if y is never chosen

when x is available. With this in mind, the researcher’s task is simplified. She does

not need to identify the different models. She has only to observe their choices and

apply the above definition. However, the simplification comes at a considerable

price: the elicited preference may be very coarse. This problem has been highlighted

by Rubinstein & Salant (2012) as follows: "The resulting Pareto relation is typically a

coarse binary relation that becomes even more so as the behavioural dataset grows".

Bernheim & Rangel (2009) were aware of the coarseness problem. Therefore,

they propose some reasonable refinements, each accompanied by some drawbacks.

The first proposal is related to the availability of further information. If the re-

searcher possesses data on imperfect information processing or clear mistakes she

can use them to enrich the choices. However, this is not always possible and in-

volves subjective decisions. The second proposal is to carefully consider only part

of the dataset for reasons of (i) simplicity or (ii) frequency. In the first case, the re-

searcher may think that choices from simpler problems (e.g. binary sets) are more

reliable in eliciting preferences. In the second case, she may think that an alternative

that is chosen more often is more probable to be preferred. As the authors notice,

both approaches leave the researcher with the issue of choosing which problems are

simpler or which definition of frequency to choose.

In this chapter, we propose a solution to the researcher’s problem that is a refine-

ment of Bernheim & Rangel (2009) approach. We acknowledge Rubinstein & Salant

(2012) critique and propose a normative principle that guarantees that "more data

lead to finer results".

Our normative principle states that a researcher that aims to rank two alterna-

tives x and y has to use all the relevant evidence about x and y. To formalize, we say

that when she considers x indifferent to y, more choices of x with y available should

turn the judgement in favour of x.1 We call this condition Informational Responsive-

1Note that this requirement can be weakened without losing its interpretation. This feature is in
line with Krantz et al. (1971): "One demand is for the axioms to have a direct and easily understood
meaning in terms of empirical operations, so simple that either they are evidently empirically true on
intuitive grounds or it is evident how systematically to test them." In our case, the reader may think
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ness.2 A violation would imply that she is not using all relevant data. Notice also

that we are adopting a particular notion of frequency. That is, we consider relevant

only the data that shows one element chosen when the other is also available, as in

standard revealed preference.

But, how can two such simple conditions provide a reliable solution to the com-

plex researcher’s problem? The answer lies in the monotonic connection between

preferences and choices that most models share. Behavioural models are made of

different components (e.g. mistakes, cost of thinking, alternatives attributes, lists of

rationales, perception orders, and many others). However, all of them are mono-

tonic in the underlying preference relation. Even models that seem to depart from

this principle, such as attention models, satisfy the property that x is chosen more

times than y if x is preferred to y and attention and preferences are not too con-

flictual.3 The monotonic component of behavioural models has been highlighted

by Apesteguia & Ballester (2015). The authors show that their approach, that sat-

isfy our conditions, constitutes a reliable solution to the researcher’s problem when

individuals adopt one of a broad family of models summarized by a property that

they call P-Monotonicity.4

We generally define the researcher’s problem as behavioural welfare analysis

(henceforth BWA). More formally, BWA maps individual choices into welfare or-

derings (binary relations) and aims to deal with non-standard patterns of choice.

To relate with the classic literature, standard welfare analysis is the subset of BWA

based on the assumption that choices satisfy the Weak Axiom of Revealed Prefer-

ence [WARP]5 and therefore that they are revealed to be maximized by a transi-

tive and complete preference relation (Sen, 1971). In this case, the welfare order-

ing is identified with the maximized preference relation.6 The literature has exten-

of requiring more than choice to break the indifference.
2To the best of our knowledge this property has been firstly introduced in voting theory by Goodin

& List (2006) under the denomination of "One Vote Responsiveness".
3For example, in Manzini & Mariotti (2014), if x is preferred to y then in order for y to be chosen

more frequently than x, the attention parameter (salience) of y has to be significantly higher than the
one of x.

4These results are summarized in Proposition 1 and Theorem 1 of Apesteguia & Ballester (2015).
5A non-formal definition of WARP is as follows: If an alternative x is chosen when y is available

then y is not chosen when x is available.
6An analogous argument can be applied to a stochastic choice that satisfies Independence from

Irrelevant Alternatives (Marschak & Block, 1960), (Luce, 1959). Note that, a stochastic choice function
is a refinement of a standard choice function where for each set we can observe the frequency of choice



Chapter 1 6

sively documented that individuals violate not only WARP (Echenique et al., 2011)

but also Independence from Irrelevant Alternatives (Tversky & Russo, 1969) and

weaker assumptions such as weak stochastic transitivity (Tversky, 1969) and regu-

larity (Huber et al., 1982), (Iyengar & Kamenica, 2010). Henceforth, we will refer

to each map constituting BWA as welfare methods. Informational Responsiveness,

Revealed Preference, and the other principles (or guidelines) that will be introduced

along the chapter come as restrictions on the welfare methods.

Focusing on Informational Responsiveness, we argue that its desirability as a

necessary condition is related to its weakness, non-triviality,7 and relevance. We

show that some very different welfare methods satisfy this axiom (weakness). How-

ever others do not (non-triviality). In such cases, we show that the violation can

potentially lead to paradoxical results (relevance). Particularly, for a broad family

of stochastic models of choice, Informational Responsiveness is necessary to in-

fer the underlying deterministic utility. As a consequence, some methods that do

not satisfy our requirement, such as (Bernheim & Rangel, 2009) and transitive core

(Nishimura, 2017) fail to infer the utility function of such models no matter how

large the dataset is.

Although, Informational Responsiveness keeps the spotlight; we propose other

normatively appealing axioms. We introduce two continuity requirements: stability

and robustness (note that no necessity is claimed here). In words, if the researcher

judges x to be better than y then a single piece of evidence in favour of y cannot

reverse the judgement (stability) and, if she judges x to be "much" better than y,

then again a single piece of evidence cannot make y either equally good or better

than x (robustness).

Continuity requirements are normatively of particular interest because they high-

light an intrinsic contrast between standard revealed preference analysis and the

widely accepted idea of choice overload (Iyengar & Kamenica, 2010), (Fudenberg

et al., 2015), (Frick, 2016), cost of thinking (Ortoleva, 2013), rational inattention

(Matejka & McKay, 2015) and considerations sets (Manzini & Mariotti, 2014). We

for each alternative.
7We use the term "trivial" in relation to its logic definition. In particular, we intend as "trivial", an

axiom that is satisfied by every method proposed by the literature and therefore always true in the
discipline.
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show how methods based on revealed preference may assign an excess weight on

data from large sets (Section 1.6.2). If these observations are noisier than those from

binary sets then it is unclear how they should be considered in terms of welfare rev-

elation.8 In Chapters II this question will be addressed empirically and answered

negatively. Standard revealed preference will be shown to be crucial to elicit prefer-

ences and therefore the continuity requirements, as here defined, to be too demand-

ing.

This chapter locates in the axiomatic approach recently proposed by Nishimura

(2017) and Horan & Sprumont (2016). However, it differs from both of them. From

the former because our primitive are choice observations and not preference rela-

tions. From the latter because, as a novelty, our axioms deal with the problems of

information and continuity. Furthermore, our approach allows for greater flexibility

in the structure of the dataset in terms of both missing data and multiple observa-

tions.

Overall we provide three main theoretical results:

• We show that Informational Responsiveness is the key axiom that gives rise to a

class of methods that can infer the deterministic utility underlying i.i.d. Ran-

dom Utility Models (Proposition 1 and 2). The results can be easily generalized

to a broader family of stochastic models.

• We provide a characterization of the Counting Choice Method (the best alter-

native is the one chosen most times; the second best is the one chosen second

most times and so on). Although this method seems naive, it constitutes an

important benchmark for our theoretical analysis. Furthermore, even though

counting procedures have been extensively studied a complete characteriza-

tion in the context of choice datasets is a novelty (Theorem 2).

• We provide a characterization of the Counting Revealed Preference Method (if

x is chosen when y is available more times than y when x available then x is

better than y) - (Theorem 3). We show that this method has at least two ap-

pealing properties: (1) in certain cases it is equivalent to the Minimum Swaps

8The definition of revealed preference plays a key role in this argument. An approach based only
on binary sets has been proposed by Arrow (1959) and Sen (1971).
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Method (Apesteguia & Ballester, 2015) - (Theorem 1) - which is related to a

well-known computational problem (Dean & Martin, 2015); (2) it can be used

as the foundation for other methods such as Eigenvector Centrality Method or

Transitive Core Method (Nishimura, 2017).

Our second and third results are connected with two axiomatizations of counting

methods in the class of tournament (Rubinstein, 1980) and directed graph (van den

Brink & Gilles, 2003). However, our characterization differs from the above. Firstly,

because it is the first application in the context of choice menus where we show

that a simple monotonicity requirement as in Rubinstein (1980) is not sufficient.9

Secondly, because our definition of welfare methods does not require the resulting

binary relation to be transitive, but only to be complete and reflexive. Dropping

transitivity is necessary to compare the two characterizations given that the revealed

preference relation can easily be cyclic.10 Importantly we show that the difference

between our results and Rubinstein (1980) is not due to transitivity since the non-

sufficiency of monotonicity is proven without any reference to transitivity.

The reader, in view of the proposal of Bernheim & Rangel (2009), may see the

dropping of the requirement of acyclicity of the welfare relation as problematic. As

we show, there is a trade-off between the requirement of acyclicity of the revealed

preference relation and the coarseness of the relation itself. In Section 1.6, in partic-

ular, we show how the proposal of Bernheim & Rangel (2009) imposes coarseness

almost everywhere through acyclicity. Differently from the ex-ante imposition of

acyclicity, we provide a series of methods that allows to break the cycles and re-

establish the acyclicity of the welfare relation ex-post. In Chapter II, we will show

that this approach allows for a better elicitation of the welfare relation.

1.1.1 Structure of the Chapter

Section 1.2 introduces the general framework. In Section 1.3, we present Informa-

tional Responsiveness as the main conceptual axiom and argue about its neces-

sity due to its weakness and relevance. In Section 1.4 there is a description of the

9A tournament is an asymmetric binary relation that can be also described using solely binary sets.
10A classical example: A is chosen from {A, B}, B is chosen from {B,C} and C is chosen from {A,C}.
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methods analysed in Chapter I and II together with the above mentioned equiva-

lence result between counting revealed preference and the minimum swaps method

(Apesteguia & Ballester, 2015). In Section 1.5 we show the non-triviality of Informa-

tional Responsiveness. Section 1.6 deals with the problem of sensitivity of methods

(continuity requirements). Finally, in Section 1.7 we propose the characterizations

of the two counting procedures: the counting choice method and the counting re-

vealed preference method. Auxiliary results and proofs, where not contained in the

text, are in Appendix A.

1.2 Framework

1.2.1 Dataset

Let X be a finite set of alternatives. Let X be the set of all non-empty subsets of X.

Assign to any set S ∈ X a non-negative integer n that denotes the number of times

the set S is observed in the data. The set of observed S−sets is denoted as Sn. A

domain D is the collection of all the S−sets. Formally, D =
⋃

S∈X Sn. We denote as

D the set of all possible domains. The domain D∅ denotes an empty dataset.

A choice function is then defined as C : D→ X s.t. C(S) ∈ S for all non-empty

S ∈ D. Denote C (D) as the set of choice functions over a given D. For simplicity we

denote CD any C ∈ C (D). Let C be the set of all choice functions over all possible

domains.

A dataset is a tuple (D,C) where D is a domain and C is a choice function defined

over the domain. We define two counting measures:

1. Cx is the number of times an element x ∈ X is chosen from any set. Formally,

Cx = |{S ∈ D : x = C(S)}|.

2. Cxy is the number of times an element x is chosen when y is available. For-

mally, Cxy = |{S ∈ D : x = C(S),y ∈ S}|.

1.2.2 Welfare method

Let B(X) be the set of strict total orders defined over X (denoted as P∗), letR(X) be

the set of complete, reflexive but not transitive binary relations and T (X) the set of
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transitive, reflexive but not complete binary relations (as usual we refer to P as the

asymmetric part and to I as the symmetric part).

A welfare method, or simply a method, maps choice functions into binary rela-

tions. Hence, a method can be defined differently with respect to the class of binary

relations in the codomain. Throughout the chapter, we use three definitions:

1. A method f is a correspondence f : C ⇒ B(X) and F is the family of all these

methods. Given a generic method f ∈F , a choice function C and two elements

x,y ∈ X then if (x,y) ∈ P∗ ∈ f (C) we write xP∗f (C)y.

2. A method g is a function g : C →R(X), let’s denote the family of these meth-

ods as G. Given a generic method g, a choice function C ∈ C and two elements

x,y ∈ X then if (x,y) ∈ R = g(C) , we write xRg(C)y (we write xPg(C)y for the

asymmetric part and xIg(C)y for the symmetric part).

3. A method t is a function t : C →T (X). We denote the family of these methods

as T .

The welfare methods introduced by the literature are covered by these three fam-

ilies F ,G,T . In order to compare them, we define one methodology that will be ex-

tensively used throughout Chapters I and II. If for all C ∈ C and g(C), Pg is acyclic,

then we can connect the families of methods F ,G in the following way: suppose

R = g(C) such that for x,y ∈ X, (x,y), (y, x) ∈ R then we can rewrite R as two dis-

tinct P∗1 , P∗2 ∈ f (C) with (x,y) ∈ P∗1 , (y, x) ∈ P∗2 . In other words, indifferences in R are

broken using two strict total orders P∗1 , P∗2 . If Pg is cyclical we adopt the convention

of substituting the cycles with indifferences. Conversely, suppose P∗1 , P∗2 ∈ f (C) such

that (x,y) ∈ P∗1 and (y, x) ∈ P∗2 then we can rewrite two P∗1 , P∗2 as a single R ∈ g(C)

such that (x,y), (y, x) ∈ R∗.

The axioms and definitions in the following sections are defined over a complete

and reflexive binary relation R ∈ g(CD). By abuse of notation, we will denote RD
g (C)

as RCD ; RD∪{S}
g (C) as RCD∪S and RD\{S}

g (C) as RCD\S for a generic set S ∈ D.

It is crucial to remember the reader that the axiom of Completeness plays a de-

cisive role in all the results. However, since it is embedded into the definition of g

methods, it won’t be explicitly recalled in the statements.
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Axiom 1 (Completeness).

For any x,y ∈ X, either xRCD y or yRCD x.

1.3 Informational Responsiveness

This property guarantees that a method that ranks two alternatives x,y ∈ X uses

all the relevant choice observations regarding x and y. In the case of choice-based

welfare analysis it is natural, and hardly questionable, to consider relevant for x,y

at least those observations where x is chosen and y is available or vice versa. This

axiom tests if an observation is "key" to solve indifferences. In other words, if a

method ranks x indifferent to y, then an additional observation carrying x chosen

and y available should make the method rank x better than y. If this does not hap-

pen, we infer that the method is not using that observation11.

Shortly, given a method g ∈ G and a choice function C, for all x,y ∈ X and D ∈D:

Axiom 2 (Informational Responsiveness [IR]).

If xICD y and x = C(S), y ∈ S then xPCD∪S y. If also S ∈ D then yPCD\S x.

The definition of Informational Responsiveness must care specifically about adding

and removing a piece of information. The necessity is due to the extreme weakness

of the antecedent (xICD y) that doesn’t allow to guarantee an equivalence. In Ap-

pendix A.1.2, in the proof of Claim 1, we provide a counterexample that shows the

independence of adding and removing data.12

1.3.1 Weakness and relevance of Informational Responsiveness

We argue that Informational Responsiveness should be a necessary condition for

welfare methods. We show that it has two characteristics that are desirable for a
11This idea is not new in the literature. In a totally different context, a similar approach has been

used by Dekel et al. (2001) in order to give a definition of "relevant" state of the world.
12It is interesting to see that such a requirement is redundant for an axiom called (Strong) Positive

Responsiveness, which is similar to the one proposed by Rubinstein (1980):

Axiom. If xRCD y and x = C(S) then xPCD∪S y.

It is immediate to see the equivalence between this definition and the following: if xRCD y and
y = C(S) then xPCD\S y.
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necessary axiom: weakness and relevance. Namely, it is crucial to avoid paradoxical

results (relevance), but the restriction it imposes on the family of methods is not

strong enough to identify even indisputable welfare relation (weakness, i.e. x al-

ways chosen and y never chosen). This task requires the introduction of two axioms:

Neutrality13 and Choice non-negativeness. The first requires that welfare analysis does

not depend on the label of the alternatives; the second requires that choices are not

negative evidence of the goodness of the alternatives.

Let Π(X) be the set of all the permutations π : X→ X. Then, for all π ∈ Π(X),

define π(CD) ∈ C (D) as π(C(S)) := π(C(π−1(S))) for all S ∈ D.

Axiom 3 (Neutrality [NEU]).

xRCD y if and only if π(x)Rπ(CD)π(y) for all π ∈Π(X).

Axiom 4 (Choice non-negativeness [CNN]).

If xICD y and x = C(S) then xRCD∪S y. If also S ∈ D then yRCD\S x.

If xPCD y and x = C(S) then xPCD∪S y.

If xPCD y, S ∈ S and y = C(S) then xPCD\S y.

One could note that Choice non-negativeness and Informational Responsiveness

together provide a sort of monotonicity (Positive Responsiveness - Rubinstein (1980))

over the sets S where x = C(S) and y ∈ S. However, we split them for two reasons:

(1) Choice non-negativeness, unlike Informational Responsiveness, is satisfied by

all methods proposed by the literature; (2) Choice non-negativeness doesn’t provide

any insights about the informational capacity of welfare methods.

The role of the monotonicity provided by Informational Responsiveness and

Choice non-negativeness has an important impact on preference elicitation. We

analyse monotonicity more in details in Section 1.8. Here, however, it is interest-

ing to note that several behavioural models proposed by literature can be captured

by our monotonicity assumption as noted by Apesteguia & Ballester (2015). In the

results that follow, we focus on one specific model, however, as we will discuss

13As highlighted by Apesteguia & Ballester (2015), Neutrality can be considered trivial in an ab-
stract setting where there is no additional information on the alternatives. In the case where such
information is available (e.g. monetary values, attributes, etc...) one could prefer to treat alternatives
differently.
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in Section 1.4 introducing the counting revealed preference procedure, the results

hold at a higher generality level. Even models that generally do not satisfy our

monotonicity assumption, such as attention models, may be captured if the tension

between preferences and attention parameters is not too high (Manzini & Mariotti,

2014).

To show that Informational Responsiveness avoids paradoxical results we con-

sider a case in which the resulting preference order is indisputable and show that it

can be inferred only by methods that satisfy such property.

Thus, we introduce Random Utility Models with independent and identically

distributed error components as follows. Suppose an individual evaluates the alter-

natives according to a utility function u : X→ R++. However, at the act of choice this

utility is perturbed by an additive error component such that the choice depends on

the random utility U(x) = u(x) + ε(x) where ε(x) is continuously distributed. The

probability that x is chosen from a set S ∈ D is Pr[x = argmaxx∈SU(x)].

Furthermore, suppose that the collection of observations is restricted to multiple

observations over a single set S such that D = Sn. We show that given this particular

restriction on the domain, our three axioms can correctly identify the underlying

deterministic utility u and consequently the correct welfare relation.

Proposition 1. Given an i.i.d. RUM, a resulting collection of observations on a domain of

the type D = Sn and a method g that satisfies Informational Responsiveness, Neutrality and

Choice non-negativeness then xRgy if and only if u(x) ≥ u(y).

Proof. Since the collection of observations is produced by an i.i.d. RUM, the follow-

ing clearly holds: Cx ≥ Cy if and only if u(x) ≥ u(y) when the number of observa-

tions is large. The only if part is trivial. Hence, we will prove only the if part.

Given two generic elements x,y ∈ X we can divide the collection of observations

over the domain D = Sn in three disjoint sets with the following cardinality: Cx,

Cy and Cz where this latter is defined as: Cz = ∑z 6=x,y |{S ∈ D : z = C(S)}|. First,

focus on this latter set; by Neutrality we have xICD y. Suppose xPCD y; then take

π(x) = y, π(y) = x and π(z) = z for all z, then we have yPCD x but the collection of

observations hasn’t changed contradicting the definition of method as single-valued

function. Then, take the sets of observations where x,y are chosen. The proof is by



Chapter 1 14

induction on Cx + Cy. The inductive base is proved for Cx + Cy = 2. First suppose

Cx + Cy = 0 then xICD y by Neutrality. If Cx + Cy = 1 and x is chosen, then by In-

formational Responsiveness and Neutrality xPCD y. If Cx + Cy = 2 and Cx > Cy then

xPCD y by Choice non-negativeness; if Cx = Cy then xICD y by Neutrality. Suppose

this statement holds for Cx + Cy = n and add an additional observation such that

D = Sn ∪ T and x = C(T) (we don’t need to analyse the case if y = C(T), since the

result would hold by definition of method as a function). Then if Cx−Cy = 1, xPCD y

by Informational Responsiveness and the inductive hypothesis; if Cx − Cy > 1, then

xPCD y by Choice non-negativeness and the inductive hypothesis. Finally, if Cx = Cy

then xICD y by Neutrality.

The reader may note that the weakness of Informational Responsiveness comes

not only from the use of Choice non-negativeness and Neutrality but also from the

strong restriction imposed on the domain. This restriction is indeed extremely se-

vere. Hence, a similar result is proven for a larger set of domains at the cost of

requiring the resulting binary relation to be transitive. Nonetheless, a weaker re-

striction has to be maintained. Particularly, a domain D is homogeneous if it assigns

to all S ∈ X the same natural number n. Equivalently, D is homogeneous if any

non-empty subset is observed the same, large enough, number of times.

Proposition 2. Given an i.i.d. RUM, a resulting collection of observations over a homo-

geneous domain and a method g that satisfies Informational Responsiveness, Neutrality,

Choice non-negativeness and Transitivity then xRgy if and only if u(x) ≥ u(y).

Proof. See Appendix A.1.1

The following example shows the independence of Transitivity from the other

axioms.

Example 1. Let Dxy = |{S ∈ D : z = C(S), x ∈ S,y 6∈ S}|. Define the following method:

Fxy ≥ Fyx⇔ xRCy

where Fxy = δ · Cxy + Dxy with δ ∈ <++.
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This method satisfies Informational Responsiveness, Neutrality, Choice non-negativeness

but not Transitivity. If δ is small then we have yPCD x with u(x)> u(y) on a homogeneous

domain. For instance, suppose we observe 60 choices from {x,y}, {y,z}, {x,z}, {x,y,z}.

Furthermore, suppose u(x) = 3, u(y) = 2, u(z) = 1 and the decision maker follows a stan-

dard Luce Model. Then, the following dataset is observed (note that (n,m) from {x,y}

indicates that x is chosen n times and y is chosen m times):

 S {x,y,z} {x,y} {y,z} {x,z}

C(S) (30,20,10) (36,24) (40,20) (45,15)


Cxy = 66, Cyx = 44, Dxy = 15, Dyx = 20. Setting δ small gives Fxy < Fyx. In this

example, for instance, setting δ = 0.3: zPCD
g xPCD

g yICD
g z violating transitivity.

The reader may note that this example relies on a very unusual method. In

fact, the axiom of Transitivity has a limited role in proving the result and can be

substituted for instance by the axiom of Independence:

Axiom 5 (Independence).

For all S ∈ D if z = C(S) then xRCD y⇔ xRCD\S y.

The tight restriction on the domain together with the assumption of choice ob-

servations based on i.i.d. RUMs guarantee that most methods are in fact transitive

on this subspace of C . An example is the method based on Cxy, which is clearly

not transitive over C . Importantly, both Bernheim & Rangel (2009) [Theorem 1]

and Apesteguia & Ballester (2015) [Theorem 1] implicitly rely on the restriction of

homogeneous domains.

Corollary 1. Given an i.i.d. RUM, a resulting collection of observations over a homo-

geneous domain and a method g that satisfies Informational Responsiveness, Neutrality,

Choice non-negativeness and Independence then xRgy if and only if u(x) ≥ u(y).

1.4 An overview of methods

This section contains concise descriptions of the methods that will be analysed in

the following sections and in Chapter II. A reader interested in specific results can

skip the section and eventually refer to it at a later time.
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The methods are denoted as follows: CC ∈ G is the counting choice method, CRP

∈ G is the counting revealed preference method, SEQ ∈F is the sequential method (Horan

& Sprumont, 2016), BR ∈ G is the Bernheim, Rangel method (Bernheim & Rangel,

2009), MS ∈ F is the minimum swaps method (Apesteguia & Ballester, 2015), EIG

∈ G is the eigenvector centrality method and TC ∈ T is a variation of the transitive core

method (Nishimura, 2017).

Counting choice

For all domain D ∈ D, the counting choice method CC ∈ G is simply defined as

follows:

xRCD
CCy if and only if Cx ≥ Cy

Counting revealed preference

So far we haven’t assumed neither acyclicity nor transitivity defining the class of

methods G. The reason is that this allows us to apply the counting procedure to the

standard revealed preference relation as a method of type g.14 Its inclusion in G is

driven by the following arguments: (1) CRP is the foundation for other important

methods such as MS, EIG and TC; (2) the acyclicity of PCD
CRP can itself be empirically

tested and, in Chapter II, we observe that it is almost always satisfied in a laboratory

environment; (3) in a stochastic environment this condition is implied by an axiom

called Item Acyclicity15 which characterizes an important subset of the general family

of Additive Perturbed Utility Models (Fudenberg et al., 2015).

We denote this method as CRP ∈ G. It is then defined as follows:

xRCD
CRPy if and only if Cxy ≥ Cyx

14If P is cyclic the welfare relation has no maximal elements; therefore it is hard to consider the
counting revealed preference as a good welfare method.

15Consider a stochastic choice rule p as a mapping that assigns a measure p(A)∈∆(A) to each menu
A ∈ X . Let x � y if p(x, A) > p(y, A) for some A 3 x,y and x ∼ y if p(x, A) = p(y, A). A stochastic
choice rule p satisfies Item Acyclicity if there exists no sequence (x1, . . . , xm) such that:

x1 � x2 � · · · � xm � x1
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Sequential

The sequential solution SEQ ∈ F has been characterized by Horan & Sprumont

(2016). This method behaves straightforwardly as a function SEQ : C (X )→ B(X).

It works recursively such that w.l.o.g. xP∗CXSEQy for all y ∈ X, if x = C(S) and S =

argmaxS∈D |S| (note that since D = X we have always S = X); then yP∗CXSEQz for all

z ∈ X, with z 6= x if y = C(S \ {x}); then zP∗CXSEQw for all w 6= y, x if z = C(S \ {x,y})

and so on.

If D ⊂ X , given a choice function CD ∈ C (D), the resulting order is defined as

follows: take the set of choice functions Ĉ(X ) ∈ C that extend CD to X s.t. C(S) =

Ĉ(S) for all S ∈ D. Then, SEQ(CD) is the intersection of the orderings SEQ(ĈX )

assigned to these choice functions. Clearly, the resulting order could be incomplete.

This extension is suggested by Horan & Sprumont (2016). Along the paper we apply

this extension in the following way: consider the same choice function CD over an

incomplete domain D ⊂ X ; then SEQ(CD) = B ⊆ B(X) where B = {P∗ ∈ B(X) :

P∗ = SEQ(ĈX )}.

Bernheim, Rangel

Bernheim & Rangel (2009) proposed the following method BR ∈ G16. For all x,y ∈ X

and for all D ∈ D, xPCD
BR y if and only for all S ∈ D s.t. x,y ∈ S we have x = C(S) for

some S and y 6= C(S) for all S. Otherwise, xICD
BRy. This method always maps into

acyclic binary relations if D = X - (Bernheim & Rangel, 2009)[Theorem 1]. However

since our domains admit multiple and missing observations, PCD
BR could be cyclic.

BR can be equivalently defined using the counting revealed preference measure as

follows: xPD
BRy if and only if Cxy > 0 and Cyx = 0. Otherwise, xID

BRy.

Minimum swaps

This method has been proposed by Apesteguia & Ballester (2015) and denoted as

MS ∈ F . For all domains D ∈ D, MS(C) is defined as follows:

16More extensively, they say x is strictly unambiguously chosen over y (denote as xP̂y) if and only if
for all S ∈ D s.t. x,y ∈ S; y 6= C(S). This asymmetric binary relation can be either considered as itself,
that would be the coarsest case, or it could be completed by a symmetric component R̂ where xR̂y if
and only if ¬yP̂x, this would be the finest case. We are going to refer to this latter case.
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MS(C) = argmin
P∗∈B(X)

ds(C, P∗)

where

ds(C, P∗) = ∑
S∈D
|{x ∈ S : xP∗C(S)}|

Transitive core

This method has been proposed by Nishimura (2017). Here, we introduce a varia-

tion of his proposal, that is a mapping from complete and reflexive binary relations

to transitive but possibly incomplete binary relations. The author wrote: "If she

chooses one alternative on some occasions and another on others, then we reveal

indifference between these two alternatives" (Nishimura, 2017). This approach is

totally in line with Bernheim & Rangel (2009); hence it won’t bring novelties with

respect to Informational Responsiveness. For this reason, it seems of more interest

to found his approach on the CRP method (complete and reflexive). Furthermore,

given its construction, it only makes sense if the completeness axiom is discarded

in the codomain. Consequently, the transitive core method, denoted as TC ∈ T , is

defined for all domain D ∈ D and x,y ∈ X as follows:

xRC
TCy ⇔

 zRC
CRPx⇒ zRC

CRPy

yRC
CRPz⇒ xRC

CRPz
∀ z ∈ X

Eigenvector centrality

This method exploits the definition of centrality in networks in order to define an

order of alternatives. The graph is constructed using the CRP method.

The adiacency matrix A = (ωxy)x,y∈X is defined as follows:

ωxy =

 Cxy if Cxy > 0

ε if Cxy = 0

with small ε > 0. The elements of the main diagonal are all equal to zero. The

eigenvector centrality of x ∈ X, denoted as ce
x, is:
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ce
x =

1
λmax

∑
y∈X

ωxyce
y

where λmax is the greatest eigenvalue of the adjacency matrix. Perron-Frobenius

theorem guarantees that ce
x is a positive real number.1718 Hence, the method EIG∈ G

is so defined: for all D ∈ D and for all x,y ∈ X we have xRCD
EIGy if and only if ce

x ≥ ce
y.

1.4.1 Counting Revealed preference and Minimum Swaps

The connection between CRP and MS has been already noted by Apesteguia &

Ballester (2015).19

We show that if PCRP satisfies acyclicity then the transitive closure of PCRP is

equivalent to the asymmetric part of the minimum swaps relation PMS. The argu-

ment exploits the equivalence between minimizing the number of swaps over all the

sets and maximizing the sum of Cxy − Cyx over all the elements given a strict total

order P∗ ∈ B(X). First, it is straightforward to see that a sum over sets is equivalent

to a sum over elements.

Lemma 1. ds(C, P∗) = ∑
S∈D
|{x ∈ S : xP∗C(S)}| = ∑

x,y∈X
|{S ∈ K : y = C(S), x ∈ S ,

xP∗y}|

Proof. Trivial.

By Lemma 1, the number of swaps can be rewritten as:

∑
x,y∈X

Cyx when xPy

In general the maximum number of swaps is:

17By Perron-Frobenius theorem, the constructed revealed preference digraph gives satisfactory re-
sults only if it is strongly connected. If it is not (i.e. an element is never chosen); one needs to define
a ε > 0 s.t. the eigenvector associated with λmax has strictly positive and real components (it happens
only if the adjacency matrix is irreducible; and it is irreducible if the associated digraph is strongly
connected).

18ε > 0 can be also interpreted as a degree of importance of those elements that are never chosen. If
ε = 0 this would mean that beating those elements is worthless. Suppose, for instance, x = C(x,y,z)
and y = C(x,y), intuitively xPCD

EIGy since x beat z. However, if ε→ 0 then the ranking between x,y
tends to xICD

EIGy because z becomes more and more irrelevant. Actually, if the digraph d1 is already
strongly connected, given the same digraph d2 but with ε > 0 we have that the limε→0 ce

x(d2) = ce
x(d1).

19Apesteguia & Ballester (2015) introduced the following property: A collection of observations
satisfies P-Monotonicity if xPy implies Cxy > Cyx. They then established the following result:

Theorem. If a collection of observations satisfies P-Monotonicity, then P is the unique minimum swaps pref-
erence.



Chapter 1 20

∑
x,y∈X

|{S ∈ K | x = C(S),y ∈ S}|+ |{S ∈ K | y = C(S), x ∈ S}| = ∑
x,y∈X

Cxy + Cyx

Let’s define a new measure ∆(C, P∗) that equivalently to the swaps distance de-

fines the degree of similarity between a choice function and an irreflexive order P∗:

∆(C, P∗) = ∑
x,y∈X

[Cxy − Cyx] when xP∗y

Lemma 2. ds(C, P∗1 ) ≤ ds(C, P∗2 )⇔ ∆(C, P∗1 ) ≥ ∆(C, P∗2 ) for all P∗1 , P∗2 ∈ B(X).

Proof. The proof is algebraic. Note that, given xP∗y:

∑
x,y∈X

[Cxy + Cyx] = ∑
x,y∈X

[Cxy + Cyx]

∑
x,y∈X

[Cxy − Cyx]︸ ︷︷ ︸
∆(C, P∗)

− ∑
x,y∈X

Cxy = − ∑
x,y∈X

Cyx︸ ︷︷ ︸
ds(C, P∗)

Hence, if ds(C, P∗) increase by n, then it must be that ∆(C, P∗) decreases by 2n.

Note that, the result is valid for all CD,CD
1 ∈ C (D) since:

∑
x,y∈X

CD
xy + CD

yx = ∑
x,y∈X

CD
1,xy + CD

1,yx

We now prove the result of Apesteguia & Ballester (2015). In this proof we de-

note P̂CRP as the transitive closure of PCRP. Recall that since MS ∈ F and CRP ∈ G,

the indifferences in RCRP are broken as described in Section 1.2.

Theorem 1. If PCRP is acyclic, then xP∗CRPy⇔ xPMSy.

Proof. By Lemma 2, we can run the proof showing that PCRP maximizes ∆(C, P∗).

In particular, note that if PCRP is acyclic and xPCRPzPCRPy and xICRPy, we have that

if xP̂CRPy then Cxy ≥ Cyx for all x,y ∈ X. Hence, P̂CRP maximizes ∆(C, P∗CRP). In

fact, suppose yPMSx, then by transitivity of PMS, either zPMSx or yPMSz. Hence,
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since Cxy = Cyx, Cxz > Czx and Czy > Cyz, we must have that ∆(C, PMS) < ∆(C, P̂CRP),

contradicting the definition of PMS. Note that the result holds for any sequence of

zi.

1.5 Non-triviality of Informational Responsiveness

Firstly, we recall the definition of trivial axiom adopted here. We define an axiom

trivial if all the welfare methods proposed by the literature satisfy it. The previous

section allows us to prove the non-triviality of Informational Responsiveness. The

following examples show that neither BR nor SEQ satisfy Informational Respon-

siveness.

Example 2. The following two datasets are observed:

 S {x,y,z} {x,y,w} {x,y}

C(S) (0,1,0) (1,0,0) (1,0)


 S {x,y,z} {x,y}

C(S) (0,1,0) (1,0)


The two dataset differs in only one observation x = C(x,y,w), however in both cases

xICD
BRy, suggesting that the observation x = C(x,y,w) does not produce any information.

Example 3. The following two datasets are observed:

 S {x,y,z,w} {x,y,z} {x,y,w}

C(S) (0,0,0,1) (0,0,1) (1,0,0)


 S {x,y,z,w} {x,y,z}

C(S) (0,0,0,1) (0,0,1)


The two dataset differs in only one observation x = C(x,y,w), however in both cases

xP∗CD
SEQy and yP∗CD

SEQx.

These two examples show that both BR and SEQ fail to satisfy the requirements

for Proposition 1 and 2. Therefore, they fail to infer the underlying utility of i.i.d.
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RUMs even when it is observed on a single set. The reader may verify that both

methods satisfy Choice non-negativeness and Neutrality (trivial axioms); but not

Informational Responsiveness. All the other methods introduced, on the contrary,

satisfy Informational Responsiveness. The verification of this claim is left to the

reader. It is nonetheless instructive to prove it in the case of TC.

Claim 1. TC satisfies Informational Responsiveness.

Proof. First of all we show that xPCD
CRPy implies either (1) xPCD

TC y or (2) ¬xRCD
TCy and

¬yRCD
TCx. (1) is by construction: suppose for all z 6= x the definition is satisfied, take

z = x then xRCD
CRPx by reflexivity and xPCD

CRPy by assumption; if z = y it is immediate

that ¬yRCD
CRPx, hence xPCD

TC y. (2) can be constructed as follows: suppose xICD
CRPz and

yPCD
CRPz then by definition ¬xRCD

TCy and ¬yRCD
TCx (note that this argument follows also

by Axiom 1, called Prudence, of Nishimura (2017)).

Consequently, xICD
TCy implies xICD

CRP. The converse is true only if the definition is

satisfied for all z ∈ X. But then, if we add one observation where x = C(S) and y ∈ S

we are in case (1). Thus, Informational Responsiveness is satisfied.

A different, stronger, and more naive version of Informational Responsiveness

is not satisfied by MS and TC. We require that if a method ranks x indifferent to y,

then an observation of x chosen, even without y available, should make the method

rank x better than y.

Axiom 6 (Strong Informational Responsiveness).

If xICD y and x = C(S) then xPCD∪S y and yPCD\S x.

The following two examples show that both MS and TC fail to satisfy Strong

Informational Responsiveness. In Chapter II, the methods are analysed empirically

and the data show that this property is too strong and methods that satisfy it, such

as CC or EIG, are outperformed by those that satisfy only Informational Respon-

siveness. This argument recalls the importance of standard revealed preference as

presented in the introductory section.
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Example 4. The following two datasets are observed:

 S {x,y,z} {x,y} {x,z}

C(S) (1,0,0) (0,1) (1,0)


 S {x,y,z} {x,y}

C(S) (1,0,0) (1,0)


The two datasets differ from the observation x =C(x,z). From the first dataset: xP∗CD

MS zP∗CD
MS y

and xP∗CD
MS yP∗CD

MS z and yP∗CD
MS xP∗CD

MS z. Hence, xP∗CD
MS y and yP∗CD

MS x. However, from the sec-

ond dataset also xP
CD\{x,z}
MS y and yP

∗CD\{x,z}
MS x. Hence, Strong Informational Responsiveness

is violated.

Example 5. The following two datasets are observed:

 S {x,y} {y,z} {x,z}

C(S) (3,2) (1,1) (1,0)


 S {x,y} {y,z} {x,z}

C(S) (3,1) (1,1) (1,0)


The two datasets differ from the observation y = C(x,y). From the first dataset yICD

TC z

since xPCD
CRPy, xPCD

CRPz and yICD
CRPz. From the second dataset, the same welfare relations hold.

Hence, Strong Informational Responsiveness is violated.

1.6 Sensitivity of methods

So far, the proposed conditions have constrained the methods in an informational

way. In this section, we focus on a different feature of methods: sensitivity. We define

two properties that bound the capacity of one observation to influence the welfare

relation.

Axiom 7 (Stability).

If xPCD y then ¬yPCD\S x for all S ∈ D.
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Axiom 8 (Robustness).

If there exists a z s.t. xPCD zPCD y then xPCD\S y for all S ∈ D.

1.6.1 Normative Interpretation of the axioms

Stability deals with the excessive sensitivity of the method to choice observations

around the indifference classes. The stated version, limited to a single observation, is

the strongest possible in the context of choice. It asserts that a single choice of y from

a set S ∈ D cannot reverse the judgement from xPCD y to yPCD∪S x. One can, alterna-

tively, propose weaker versions where the judgement is allowed to be reversed only

if the choice comes from sets that are considered particularly "important". However,

the reader may note that the level of abstraction limits the definition of "importance"

either to the cardinality of sets or to the element chosen.

Both BR and SEQ methods are stable. Instead both TC and MS are not stable

(the latter example is valid also in the case of EIG).

Example 6. The following two datasets are observed:

 S {x,y,z} {x,y} {x,z} {y,z}

C(S) (1,0,0) (1,1) (0,1) (1,1)


 S {x,y} {x,z} {y,z}

C(S) (1,1) (0,1) (1,1)


From the first dataset we have Cxy > Cyx, Cyz = Czy and Cxz = Czx. Applying the

definition of transitive core method we obtain xPCD∪S
TC zPCD∪S

TC y. From the second dataset we

have Cxy = Cyx, Cyz = Czy and Cxz < Czx, and by the same principle zPCD
TC yPCD

TC x. Hence,

Stability is violated since the two datasets differs from one observation x = C(x,y,z) .

Example 7. The following two datasets are observed:

 S {x,y,z} {x,z} {y,z}

C(S) (1,0,0) (0,1) (1,0)
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 S {x,z} {y,z}

C(S) (0,1) (1,0)


From the first dataset: xP∗CD

MS yP∗CD
MS z. However, the same method infers yP∗CD

MS zP∗CD
MS x

from the second dataset, hence Stability is violated.

Robustness reproduces the idea that if the researcher is "strongly" convinced that

x is better than y than a single choice observation cannot turn her judgement into

x indifferent to y. The version of this axiom previously stated translates the idea

of x being "strongly" better than y into the statement: there exists a z 6= x,y such

that xPCD zPCD y. In the characterization theorems of the last section, this axiom will

be shown to be redundant. However, its interpretation remains relevant because

it asserts a normatively important property of the method that will be analysed

more in detail in the following subsection. As for the previous axioms, the version

proposed can be weakened allowing more alternatives (zi)
n
i=1 to be between x and

y to judge x "strongly" better than y.

Examples 5 and 6 show that TC, MS and EIG violate Robustness. Examples 7

and 8 show that also BR and SEQ are not robust.

Example 8. The following two datasets are observed:

 S {x,y} {x,z} {y,z}

C(S) (1,0) (1,0) (1,0)


 S {x,y} {y,z}

C(S) (1,0) (1,0)


From the first dataset: xP∗CD

BR yP∗CD
BR z and xPCD

BR z. However, from the second dataset:

xICD
BRz violating Robustness.

Example 9. The following two datasets are observed:

 S {x,y,z} {x,y} {x,z} {y,z}

C(S) (1,0,0) (1,0) (1,0) (1,0)
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 S {x,y} {x,z} {y,z}

C(S) (1,0) (1,0) (1,0)


From the first dataset the sequential method infers xP∗CD

SEQyP∗CD
SEQz. However, from the

second dataset: xP∗CD
SEQz and zP∗CD

SEQ violating Robustness.

The violation of Robustness by BR is of crucial importance. The reader may note

that BR violates Robustness irrespectively of the number of elements z in between

x and y and even more strongly, irrespectively of the number of times x and y have

been chosen. In fact, since xPBRy if and only if y is never chosen, we have that xIBRy

almost surely on the set of all choice functions C . As mentioned in the Introduction,

this result shows the excessive cost imposed by the acyclicity of revealed preference

relation. In the next subsection, we discuss the topic of the violation of Robustness

more in details. We show that MS, but also EIG, are also highly not robust, but

crucially the violation does not hold almost surely as the reader will note from the

construction of the counterexample in Example 10.

1.6.2 (Weak) Robustness, large sets and choice overload

As mentioned in the previous section, one can think of a family of weaker versions

of Robustness. In particular, define ε as a measure of robustness; then define a se-

quence (zi)
ε
i=1 for some ε < |X| − 2: if xPz1P . . . PzεPy then xPCD\S y for all S ∈ D.

In words, less robust axioms require more elements between x and y to guarantee

that the asymmetric relation is preserved. In the introduction, we described Stability

and Robustness as continuity requirements. The reader may note how this defini-

tion resembles the one of ε − δ continuity. We extensively discuss this intuition in

Appendix A.2.

This new definition allows us to measure the degree of Robustness of welfare

methods. Here, we propose an example that is illuminating with regard to the min-

imum swaps welfare relation. That is, for any ε, MS is not robust. The origin of this

result is the excessive weight assigned by CRP to large sets. The following example,

which exploits the result of Theorem 1, not only shows that Robustness is violated,

but even more strongly that even Stability is violated.
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Example 10. Let X = {x,y,z1,z2,z3}. The first graph describes CRP on some choice func-

tion C. The second graph is its transitive closure.
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Suppose that following observation y = C(x,z1,z2,z3,y) is added to the dataset:
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A comment has to be made concerning an intrinsic problem connected with re-

vealed preference. Methods based on revealed preference tend, by construction, to

attribute a larger weight to observations from larger sets. However, this tendency

seems to be in contrast with the literature of choice overload.20 For instance, if one

assumes that individuals do more mistakes in large sets, then he can think that the

inference of welfare should be less influenced by such observations. We will empir-

ically test this hypothesis in Chapter II.

1.7 Counting Procedures

In this section, we show how the introduced axioms play a role in characterizing the

two counting procedures CC and CRP.

20Examples of models that produce more inconsistencies in bigger sets are Frick (2016) and Fuden-
berg et al. (2015).
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1.7.1 Counting choice method

Firstly, we characterize the counting choice method [CC]. This characterization has

some similarities with the one proposed by Rubinstein (1980) for scores in tourna-

ments and van den Brink & Gilles (2003) for outdegrees of digraphs. However, we

deal with the higher complexity of a domain of choice menus. For this reason, the

axioms proposed are stronger. Strong Informational Responsiveness and Stability

imply Strong Positive Responsiveness (axiom used by both Rubinstein (1980) and

van den Brink & Gilles (2003)); and this latter is shown to be not sufficient to char-

acterize CC. We refer to Strong Positive Responsiveness as defined in Section 1.2. in

the footnote to the definition of Informational Responsiveness.

Theorem 2. A method g satisfies Stability, Independence, Strong Informational Respon-

siveness and Neutrality if and only if g = CC.

Proof. The only if part is trivial. We prove only the if part.

Step 1 (Induction base).

The proof is by induction over the cardinality (number of non-empty sets in

the domain) of the domain D given a generic choice function CD. Let’s prove the

statement for |D| = 2. Suppose D = ∅, we have xICD∅ y. In fact, suppose xPCD∅ y

then by Neutrality yPπ(CD∅ )x if π(x) = y and π(y) = x; but g : C → R(X) and we

would have two orders R1, R2 associated with the same choice function s.t. xP1y

and yP2x, hence by Completeness xICD∅ y.21 Suppose D = {S}. If z = C(S) then by

Independence xICD y and clearly Cx = Cy. If x = C(S) then by Strong Informational

Responsiveness xPCD y and Cx = 1, Cy = 0. Note that |D| = 1 is not enough for

our purpose. In particular, we have to prove also that Cx = Cy = 1 ⇔ xICD y with

|D| = 2 since we need x,y chosen in the domain to make the base general over all

the possible domains.22 So, suppose D = {S, T}. If z = C(T) the result holds by

21If we rewrite the subsequent of Stability as xRCD y, instead of ¬yPCD x; then the role of Neutrality
and Completeness is restricted to implying: D = ∅ ⇒ xICD∅ y for all x,y ∈ X. One can eventually
assume this condition as axiom and prove the theorem without using these two axioms.

22In order to see why this last part is necessary, let’s suppose to prove the base for induction using
Strong Positive Responsiveness. Clearly, if |D| = 1 the statement is proved to be true. Suppose we
take a domain |D| = n where the statement is true and |D ∪ {T}| = n + 1. We can prove that Cx > Cy

⇒ xPCD y. However, Example 7 provides a method, different from the counting choice method, that
satisfy Strong Positive Responsiveness, Neutrality and Independence but not the last statement. This
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Independence. If x = C(S) = C(T) then by Stability we have ¬yPCD x. Suppose, by

Completeness, xICD y then by Strong Informational Responsiveness we should have

yPCD\T x contradicting the result at |D| = 1; hence xPCD y with Cx = 2 and Cy = 0. If

C(S) = x and C(T) = y then we have yPCD\S x and by Stability ¬xPCD y and xPCD\T y

and by Stability ¬yPCD x; hence by Completeness xICD y with Cx = Cy = 1.

Step 2 (Cx ≥ Cy ⇒ xRCy).

Suppose |D|= n and the statement holds. Take then |D∪ {T}|= n + 1. Suppose

that Cx = Cy. If z = C(T), xICD∪T y by Independence and the inductive hypothesis.

Suppose x = C(T) then if we take out T by inductive hypothesis we have yPCD x and

by Stability ¬xPCD∪T y. But then, since Cx = Cy there exists a set S such that y = C(S).

Hence by inductive hypothesis xPCD∪T\S y and so ¬yPCD∪T x by Stability, which means

by Completeness xICD∪T y.

Suppose Cx > Cy. If z = C(T), xPCD∪T y by Independence and the inductive hy-

pothesis. If x = C(T) then if we take out T, we have two scenarios: if xICD y then

xPCD∪T y by Strong Informational Responsiveness (note that this is the case when

Cx − Cy = 1). If xPCD y (when Cx − Cy > 1) then ¬yPCD∪T x by Stability. However,

suppose by contradiction xICD∪T y, then taking out x = C(T) we should have yPCD x

contradicting the inductive hypothesis, so by Completeness xPCD∪T y. If y = C(T)

then if we take out T, by inductive hypothesis xPCD y and by Stability ¬yPCD∪T x.

However, since Cx > Cy there exists a set S s.t. x = C(S) and so by the previous

argument xPCD∪T y.

Claim 2. Strong Informational Responsiveness and Stability ⇒ Strong Positive Respon-

siveness.

Proof. Strong Informational Responsiveness proves Strong Positive Responsiveness

when the antecedent is xICD y. Suppose xPCD y; if we add x = C(S) then by Stability it

cannot be yPCD∪S x. Suppose, by Completeness xICD∪S y, then by Strong Informational

Responsiveness we have yPCD x which contradicts the initial condition xPCD y.

suggest that the strategy of the proof is fallacy in some parts. In fact, if Cx = Cy and we focus on
|D| = 1 we do not cover all the choice functions where x or y are chosen. Hence, since the base must
have a universal quantifier, the proof would be incomplete.
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The following examples provide two methods that satisfy Independence, Neu-

trality, Strong Positive Responsiveness (Nxy ≥ Nyx) and Transitivity (Qx ≥ Qy) but

are not the counting choice method.

Example 11. Given two elements x,y ∈ X and a choice function CD ∈ C (D):

Nxy ≥ Nyx⇔ xRCD y

where Nxy = Cxy + δ · |{S : x = C(S),y 6∈ S}| with δ ∈ (0,1).

Example 12. Given an element x ∈ X and a choice function CD ∈ C (D):

Qx ≥ Qy⇔ xRCD y

where Qx = ∑
S:x=C(S)

|S|.

However, if we restrict the domain on binary sets then Strong Positive Respon-

siveness and Transitivity become sufficient.

Proposition 3 (Theorem 1 - Rubinstein (1980)). Let D be a domain of solely binary

sets. A method g satisfies Strong Positive Responsiveness, Independence, Neutrality and

Transitivity if and only if g = CC.

Proof. See Appendix A.1.

Independence of the axioms

Stability  S {x,y,z} {x,y} {x,z} {y,z}

C(S) (1,0,0) (1,0) (0,2) (2,0)


 S {x,y,z} {x,y} {x,z} {y,z}

C(S) (1,0,0) (1,0) (0,1) (2,0)


Following the method proposed in Example 10 and setting δ = 0.5 we obtain:

Nxy = 2 > Nyx = 1; Nxz = 1.5 < Nzx = 2; Nyz = 2 > Nzy = 1. Hence, xPCD
g yPCD

g zPCD
g x
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(Transitivity is violated). From the second dataset Nxy = 2 > Nyx = 1; Nxz = 1.5 >

Nzx = 1; Nyz = 2 > Nzy = 0.5, hence xPCD
g yPCD

g z, xPCD
g z violating Stability since the

two datasets differ only from one observation z = C(x,z).

Strong Informational Responsiveness

CRP satisfies Stability, Neutrality, Independence but only the weaker version of In-

formational Responsiveness.

Cxy ≥ Cyx⇔ xRCD
CRPy

Independence

Let Txy = |{S ∈ D : x ∈ T,y 6∈ T, x 6= C(T)}|. The following method g is defined:

Cx + Txy − Cy − Tyx ≥ 0⇔ xRCD
g y

Note that this method satisfies Stability because a single observation from a set

S ∈ D can increase the score by maximum one. If x = C(S) then |Txy|, |Tyx| and

Cy don’t change. Similarly if y = C(S). If z = C(S) and either x,y ∈ S or x,y 6∈ S

the order between x,y is not affected. If x ∈ S and y 6∈ S then only |Txy| increases.

However, as the following example shows, Independence is violated:

 S {x,y,z} {x,y} {x,z} {y,z}

C(S) (1,0,0) (1,0) (0,2) (2,0)


 S {x,y,z} {x,z} {y,z}

C(S) (1,0,0) (0,2) (2,0)


From the first dataset we infer xPCD

g yPCD
g zPCD

g x, while from the second dataset

zPCD
g xPCD

g y and yICD
g z. Hence, the observation x = C(x,y) has modified the welfare

relation between y,z violating Independence.
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Neutrality  ∀x,z 6= y ⇒ [Cx ≥ Cz⇔ xRCD
g z]

∀x ⇒ xPCD
g y

1.7.2 Counting Revealed Preference method

Additional axiom

It is straightforward to see that the CRP method doesn’t satisfy Strong Informational

Responsiveness. However, it satisfies Informational Responsiveness. But, this is not

the only difference between the two. If it was, then there would be an inclusion

relation between the methods, which is not the case. Hence, the following axiom is

introduced.

Axiom 9 (Connection).

For all S ∈ D s.t. {x,y} 6⊆ S then xRCD y⇔ xRCD\S y.

The interpretation of this axiom is quite clear. Intuitively it makes Informational

Responsiveness much stronger. In fact, together, they don’t only require that each

set S s.t. x = C(S) and y ∈ S produce some information about x,y; but they require

that these are the only sets doing that.

Theorem 3. g satisfies Neutrality, Stability, Informational Responsiveness and Connection

if and only if g = CRP.

Proof. See Appendix A.1.

The reader may note that Independence is implied by the other axioms and so

redundant. It is clearly not true that Connection and Independence are equivalent

under the other axioms. As shown in the subsection about the independence of the

axioms, CC satisfies Neutrality, Informational Responsiveness, Stability, Indepen-

dence but not Connection.

Corollary 2. Neutrality, Connection, Informational Responsiveness and Stability imply

Independence.
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Remark 1. Note that CC and CRP are not nested. In particular, CC satisfies Strong

Informational Responsiveness while CRP does not. Conversely, CRP satisfies Con-

nection while CC does not. Nonetheless, both satisfy Neutrality, Stability, Indepen-

dence and Informational Responsiveness.

Independence of the axioms

The reasoning behind these examples is the same discussed forCC.

Stability

Similarly to Example 10, define the following method:

Qxy ≥ Qyx⇔ xRCD y

where Qxy = ∑
S:x=C(S),y∈S

|S|.

This method does not satisfy Stability since the value attached to the sets de-

pends on their cardinality:

 S {x,y,z,w, t} {x,y}

C(S) (1,0,0) (0,2)


 S {x,y}

C(S) (0,2)


From the first dataset Qxy = 5 > Qyx = 4 while from the second dataset Qxy =

0 < Qyx = 4.

Informational Responsiveness

The following method satisfies Connection, Neutrality and in a vacuous way also

Stability. However, it violates Informational Responsiveness.

xICD y ∀ x,y ∈ X
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Connection

CC satisfies Neutrality, Stability and (Strong) Informational Responsiveness, how-

ever it doesn’t satisfy Connection.

Cx ≥ Cy⇔ xRCD y

Neutrality  ∀x,z 6= y ⇒ [Cxz ≥ Czx⇔ xRCD z]

∀x ⇒ xPCD y

1.8 Summary

Figure 1.1 summarizes the characteristics of the methods analysed in Chapter I.

It is important to notice that for reasons of simplicity of exposure, especially in

view of Chapter II, we substitute incompleteness with indifference. These process,

that allows a consistent comparison across methods, can undermine the theoretical

foundations of some of these methods. Particularly, MS and TC are affected; al-

though differently. Both methods satisfy IR. However, MS satisfies it even when

indifferences are introduced; while TC does not. Therefore, we treat MS with indif-

ferences and TC with incompleteness. Hence, TC satisfies both transitivity [T] and

quasi-transitivity [QT];23 while MS satisfies only QT.

NEU CNN IR SIR IND ST ROB CON QT T

CRP
√ √ √

×
√ √ √ √

× ×
MS

√ √ √
× × × × ×

√
×

TC
√ √ √

× × × × ×
√ √

EIG
√ √ √ √

× × × ×
√ √

CC
√ √ √ √ √ √ √

×
√ √

SEQ
√ √

× × × × ×
√ √ √

BR
√ √

× ×
√ √

×
√

× ×


Figure 1.1. Summary of the properties of welfare methods.

23A binary relation R is quasi-transitivity if the asymmetric part P is transitive (Sen, 1969).
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IRSIRSPRST ∧ SIR

ST ∧ IR ∧ CON CNN IR = IR+

Figure 1.2. Implication Diagram "Monotonicity"

Figure 1.2 presents an implication diagram that deconstruct the property of mono-

tonicity in observations in order to understand its full implications. We denote

(Strong) Positive Responsiveness as SPR. This axiom is a strong monotonicity ax-

iom in choices and has been defined at footnote 12. We denote IR as IR+ when only

adding observations is considered in the definition.

The diagram is divided into two levels. The first is related to CC. The sim-

ple counting satisfies SPR via ST and SIR. Consequently, it also satisfies CNN. We

highlight how CNN guarantees that we can only focus on adding observations to a

dataset when we define IR. This result can be found as Claim 1 in Appendix A.1.2.

We report a nice counterexample in the absence of CNN. The second level is re-

lated to CRP. As clear from Theorem 3, CRP does not imply SIR, hence also SPR.

However, it implies CNN. In this case, it is easy to prove that CNN is redundant in

Theorem 3, and that CNN is implied by ST, IR and CON.

1.9 Conclusion

In Chapter I, we analyse the problem of a researcher that wants to elicit the prefer-

ences of individuals that have heterogeneous behavioural models. Given the com-

plexity of the task, we propose some simple and normatively appealing properties.

Firstly, we show that a property called Informational Responsiveness has important

empirical implications since it is crucial to infer the underlying utility of a broad

family of stochastic models of choice. Secondly, we propose some "continuity" re-

quirements that constrain the importance of single observations in determining the

elicited preference relation. We analyse all the welfare methods proposed by the

literature in view of the introduced normative principles. Finally, we completely

characterize two counting procedures on datasets with missing data and multiple
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observations. These procedures will be an important theoretical base for the experi-

mental study that will constitute Chapter II.



Chapter 2

Behavioural Welfare Analysis and

Revealed Preference: Experiment

2.1 Introduction

In this Chapter, we test our theoretical contribution using novel experimental data.

The researcher’s problem here is brought to data. We elicit preferences from a group

of 145 subjects and then test if Informational Responsiveness1 and standard Re-

vealed Preference constitute a solid base for welfare analysis.

All the difficulties of the researcher problem expressed in Chapter I are present

here. We study two environments: time and risk preferences. Henceforth we re-

fer to the environments as "Time" and "Risk". We observe a high heterogeneity in

behavioural models not only across subjects but also within subjects and across en-

vironments. We do not adopt a model-driven approach because even for our simple

experimental setting the literature has proposed several models, often mutually ex-

clusive, to explain some of the patterns in the data.2 Each model provides a different

way to construct a so called "revealed" preference relation. Therefore, as discussed

in length in the previous chapter, we rely on our simplified model-free approach

1We refer to Section 1.3 of Chapter I for an analysis of this axiom.
2The existence of different models that explain similar situations regards, for instance, how indi-

viduals deal with complex choice problems, in particular when the number of alternatives is high.
Both in deterministic and stochastic literature two main lines of models have been developed: (i) (de-
generate) attention models has been developed among many by Masatlioglu et al. (2012), Lleras et al.
(2017), Manzini & Mariotti (2014), Echenique et al. (2018), Cattaneo et al. (2018); (ii) (uniform) attention
models by Frick (2016), Fudenberg et al. (2015).

37
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and test its effectiveness.

We aim particularly to answer the following questions that constitute together

the premise and the testing of our theoretical proposals.

• Premise: Do individuals consistently reveal welfare in different choice prob-

lems, e.g. in Time and Risk?

• Test: If not, how should a researcher measure welfare when individuals violate

the Weak Axiom of Revealed Preference? Particularly: is Informational Respon-

siveness effective in discriminating welfare methods? And how important are

revealed preference relations?

To address these questions, we design a new choice elicitation experiment. Sub-

jects are asked to choose from sets that include delayed payment plans (Time) or

lotteries (Risk). As in Manzini et al. (2010) we collect choices regarding four alterna-

tives in every subset. Henceforth we refer to them as MAIN alternatives and to the

subsets as MAIN sets.3 The remaining questions contain either problems of asym-

metric dominance4 or choice overload.5 This structure allows us to test if choices

from sets that are potentially doomed by behavioural effects are relevant to elicit

preferences.

In order to test the capacity of eliciting preferences, at the end of the experiment,

we ask subjects to rank the four MAIN alternatives. We consider this relation as

a benchmark for evaluating how welfare methods perform on the dataset. The re-

liability of the reported preference relation is empirically strong.6 In an exercise,

that we call "Identification", we measure the proportion of subjects for whom each

3In Appendix B.1 and B.2 the reader can find descriptions of the alternatives and questions with
particular reference to the MAIN ones.

4Asymmetric dominance deals with ternary sets where one alternative is clearly dominated by
one of the other while the remaining ones have similar value. In this cases subjects typically show
attraction effect, e.g. Huber et al. (1982) and Natenzon (2019).

5With choice overload we intend a situation where the number of alternatives in a choice set makes
it difficult for the decision maker to evaluate all of them. An empirical example can be found in
Iyengar & Kamenica (2010).

6The reliability of the reported ranking is confirmed by the following statistics: in time preferences
69 out of 70 rational subjects reported the correct optimal alternative and 61 out of 70 reported correctly
the entire welfare relation. This statistic is repeated in risk preferences with respectively 10 out of 12
subjects reporting the correct optimal alternative and 9 out of 12 the correct welfare relation. Two sub-
jects reported the opposite ranking to the one they rationally employed in their choices. This probable
mistake does not affect our results since every method will clearly fail to identify these subjects.
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welfare method, that relies only on choices, can elicit either the entire reported pref-

erence relation or simply the reported best alternative.

To the best of our knowledge, this is the first paper that compares elicited pref-

erences with a benchmark. The choice of this benchmark requires some discus-

sions. Previous papers, (Bouacida & Martin, 2020), (Manzini et al., 2010), focused

on the properties of the elicited preference relation. However, as discussed in Chap-

ter I, difference methods map into different binary relations, therefore the analysis

of the properties of the resulting binary relations is a biased indicator of their effi-

cacy. Another approach may be to measure two similarity measures: (1) among the

elicited preference relations across methods with the assumption that methods that

report more similar results are more likely to report the true preference; (2) among

choice functions, with the assumption that more similar choice functions should be

mapped into similar preference relations. However, even these two analysis are de-

batable. The first one because methods based on similar assumptions mechanically

elicit more similar preference relation. The second one because it relies on the choice

of the similarity measure on the space of choice functions.

To overcome these difficulties, we decide to use the directly reported preferences

as benchmark. This choice is in line with liking-rating tasks as in Reutskaja et al.

(2011) where they have been used as measures of values, with the only difference

that our liking-rating task is ordinal and not cardinal. Two main issues regard this

choice.

First, there may be some misalignments in the reporting between choices and

preferences also due to the fact that the latter are not incentivized. Incentives are

unlikely to play a role as shown recently by Enke et al. (2021), and are often miss-

ing in liking-rating tasks (Reutskaja et al., 2011). However, we control for possible

effects. In Section 2.3.5, we discard what Fudenberg et al. (2019) called irreducible

error. Namely, those subjects that cannot be identified by any methods because,

for instance, they chose according to one preference relation and reported the exact

opposite. In this way, our analysis on the performance of methods is constrained

on the subjects that show a certain degree of alignment between choices and pref-

erences. Conditional on this set of subjects, the comparison between methods is
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hardly affected by the incentive mechanism.

Second, the reader may ask why the reported preferences should be considered

as the true ones, and why if so, we cannot just elicit preferences asking directly for

them. The first concern is well-posed but it relies on the problem of deciding what is

the "true" preference, which can be answered only by assumption. In fact, the prob-

lem has been generally avoided by the literature. For instance, Bouacida & Martin

(2020) evaluate "goodness" of methods using properties such as: number of cycles

or completeness of the resulting welfare relation. Here we rely on the assumption

that the direct report of the ranking, at the end of the experiment, and when the

information about the alternatives have been processed, creates a credible bench-

mark. Given the tautological nature of the question, we do not argue in favour of its

truthfulness, however it allows to overcome the above mentioned biases that char-

acterize the mere comparison of methods. Finally, note that avoiding the question

(e.g. focusing on the properties of the inferred preferences) would imply implicit

assumptions on the properties of the "true" preferences. The second concern re-

gards the question: "why not asking instead of inferring from choices?". Outside

the experimental setting asking for direct reporting of preferences is not an option

since often only dataset of choices are available. In an experimental setting, we go

back to our previous point on what we believe to be the "true" preference. In Caliari

(2020), we investigate the relationship between the characteristics of the elicited and

reported preferences and a series of observables such as response times, cognitive

abilities, elicited heuristics, etc... In this paper, we open the black box of the decision

process and investigate why people prefer certain objects and why eventually they

reported different ones. Nonetheless, even though these are fundamental questions,

they outside the scope of this Chapter.

Finally, we address questions regarding which choice problem better reveals

preferences and what is the connection between consistency and preference rev-

elation. In doing so, we face the well-known problem of comparing consistency

of choice among different and non-symmetric parts of the dataset.7 We solve this

problem by developing a measure of consistency that is robust to the structure of

7See Andreoni et al. (2013) for a survey of the literature.
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the dataset.

2.1.1 Preview of the results

First, we find that a good proportion of subjects never violate WARP in Time (37%).

Conversely, and in line with the literature (Agranov & Ortoleva, 2017), almost no

subjects satisfy WARP in Risk (6%). The average number of violations of WARP re-

flects this finding: the average in Time is 11.26 while in Risk is 24.65 (the difference is

significant with p≈ 0), and robust if we focus only on subjects that violate WARP at

least once. In both environments, subjects are not behaving randomly (the average

number of violations for a random chooser is 56.70).

Second, we observe that methods that satisfy Informational Responsiveness (IR)

outperform the other welfare methods. When asked to uniquely identify the best

reported alternative, the Pareto approach (BR) is outperformed by 30% in Time and

50% in Risk.8 When limited to a set identification exercise, more in line with its

conservative approach, it is still outperformed by 15% in Time and 20% in Risk.

These results are robust when we limit ourselves to the sets that contain only the

MAIN alternatives. Similarly, when asked to uniquely identify the entire welfare

relation, the Pareto approach is outperformed by 20% in Time and 25% in Risk.

Third, we compare the identification power of the simple counting (CC), that

satisfy a stronger version of Informational Responsiveness (SIR), with the counting

revealed preference procedure (CRP). We find that the former is outperformed by

6% in Time and 4% in Risk. This suggests on one hand that IR is not sufficient and

that a stronger version could have negative effects; on the other hand, that a notion

of frequency in line with standard revealed preference plays an important role in

the identification process.

Four, we analyse these results using a measure of completeness for models de-

veloped by Fudenberg et al. (2019). The main advantage of this measure is to pro-

vide a power of methods with respect to the most naive and most sophisticated

method. We use Bernheim & Rangel (2009) approach (BR) as most naive method

8These percentages are calculated on the total number of subjects. For example, in Time the method
proposed by Bernheim & Rangel (2009) uniquely identifies the correct best alternative of 59% of the
subjects while the counting revealed preference method of 87%.
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and an optimal weighting algorithm (OW - Section 2.3.5) as most sophisticated one.9

The idea is as follows: subjects that are not identified by OW are considered an ir-

reducible error; while subjects that are identified by BR are considered trivial. We

confirm that methods that satisfy IR and are based on standard revealed preference

are significantly more complete.

Five, we directly test IR. We combine results on preference elicitation from the

optimal weighting algorithm and on consistency of choice from our index of ratio-

nality. We find that, in Time, asymmetric dominance particularly increases incon-

sistency and these sets are the only ones to which the algorithm assigns negative

weights. To all other sets, the algorithm associates positive weights confirming the

importance of IR.

2.1.2 Related Literature

This Chapter firstly relates to the few choice elicitation experiments such as Manzini

et al. (2010) and Barberá & Neme (2017). From those it differs in two main ways: (i)

we collect choices on a much richer set of questions to test how behavioural effects

affect welfare revelation; (ii) we ask subjects to directly report their preference re-

lation. The experiment by (Manzini et al., 2010) has been analysed from a welfare

perspective by Bouacida & Martin (2020), but their analysis is limited to BR meth-

ods and therefore does not focus on the comparison between different methods.

Secondly, our experimental design relates to the literature on stochastic choice and

choice deferral. However, even if our design shares some features with existent ex-

periments, none of the following elicit both choices and preferences, is based on

both time and risk preferences, and collects choices regarding all non-empty sub-

sets of the MAIN alternatives as well as sets with behavioural effects. Some are re-

stricted to binary comparisons: Agranov & Ortoleva (2017), Hey & Carbone (1995),

Danan & Ziegelmeyer (2006), Hey (2001), Cavagnaro & Davis-Stober (2014), Sopher

& Narramore (2000), Chabris et al. (2009). Others collect data only on particular sets:

Harbarugh et al. (2001) elicited choices from 11 different sets with cardinality from

3 to 7; Iyengar & Kamenica (2010) elicited choices from sets of either 3 or 11 gam-

9The optimal weighting algorithm is a data-driven method. We optimally set the weights of the
questions in order to maximize the Identification exercise.
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bles; Haynes (2009) collected response times but he elicited choices only from sets

of either 3 or 10 prizes; Iyengar & Lepper (2000) elicited choices from sets of either

6, 24 or 30 alternatives; Sippel (1997) elicited 10 choices from budget sets regarding

8 alternatives.

The index of rationality (Section 2.3.2) based on the perturbation of a data gener-

ating process such as the logit model is connected with the literature on rationality

indexes and power measures. The most prominent example is the Selten measure

(Selten, 1991). Examples of power tests against random behaviours have been pro-

posed by Becker (1962) and Bronars (1987). Our index is robust to the dataset struc-

ture. An example clarifies this statement. Imagine to have a series of datasets of

choices ordered by the number of sets involved; bigger is the dataset and higher

is the probability of making a mistake or violating WARP. Therefore, if we simply

compare the number of mistakes in the different datasets we incur in a clearly biased

comparison. Our proposal allows for these comparisons, solving a problem that is

common to other indexes such as Afriat’s index (Afriat, 1972), minimum number

of observations to remove to rationalize the data (Houtman & Maks, 1985), num-

ber of violations of consistency axioms (Swofford & Whitney, 1987) and (Famulari,

1995), minimum number of swaps (Apesteguia & Ballester, 2015). A comprehensive

review of the literature is offered by Andreoni et al. (2013), and an example of prob-

lematic estimates of violations of consistency can be found in Beatty & Crawford

(2011).

2.1.3 Experimental Hypothesis

Figure 2.1 reports the characteristics of the welfare methods10 introduced in Chapter

I and constitutes the reference point for the experimental analysis. We test the joint

importance of Informational Responsiveness (IR) and Revealed Preference (RP). For

this latter, we intend that the foundation of the welfare methods is CRP. The reader

may note that on one hand two methods, BR and SEQ, do not satisfy IR with the

former based on RP. On the other hand, CC satisfies IR but it is not based on RP.

In the experimental analysis, we show that these two conditions are both neces-

10Descriptions of the requirements and the welfare methods are explained in detail in Chapter I.
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sary. Together, they guarantee better solutions to the preference elicitation problem.

Furthermore, the variety of methods that satisfy both conditions prove that the re-

searcher has still a high degree of discretion in performing welfare analysis.

The RP assumption requires two comments. Firstly, it contains the trade-off be-

tween the very strong ex-ante acyclicity requirement that BR imposes on CRP and

methods that allow to break cycles in CRP such as MS, TC and EIG, therefore re-

establishing acyclicity ex-post. Secondly, the reader may note that these methods are

differently robust. In particular, as shown in Section 1.6, BR is infinitely nor robust,

while MS, TC and EIG, even if all violate Robustness (and Stability), they do it with

different degrees, with EIG being the less robust among the three. In Section 2.3.4,

we will report a measure of the different degree of continuity of these methods and

their consequences on the empirical results.

NEU CNN IR RP

CRP
√ √ √ √

MS
√ √ √ √

TC
√ √ √ √

EIG
√ √ √ √

CC
√ √ √

×
SEQ

√ √
× ×

BR
√ √

×
√


Figure 2.1. Properties of welfare methods.

2.2 Experimental design

The experiment follows a standard choice elicitation design, e.g. Manzini et al.

(2010), Barberá & Neme (2017). The complete instructions and screenshots are pre-

sented in the Appendix B.4 and B.5. Subjects received instructions both on screen

and on paper such that they could consult them during the experiment.

The experiment is divided into three parts: (1) Choice elicitation; (2) Question-

naire; (3) Raven Test. The choice elicitation part has 50 questions; half regarding

choice among lotteries (Risk Preference Elicitation) and half regarding choice among

delayed payment plans (Time Preference Elicitation). No question was repeated. At

the beginning of each part, subjects answered three trial questions in order to make
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them familiar with the experimental environment.

For both Time and Risk, the alternatives were divided into two groups: four

MAIN alternatives, which are presented in Table 2.1 and Table 2.2, and some "con-

founding" alternatives that are described in Appendix B.1. Each individual solved

all the 11 choice problems (6 binary, 4 ternary and the quaternary set) involving

the MAIN alternatives, denoted as MAIN sets. The other questions were set in or-

der to obtain particular information about rationality: Monotonicity, Impatience,11

Stochastic Dominance; and about possible behavioural effects: choice overload,

compromise effect, attraction effect. The structure of the questions is presented in

Appendix B.2. The positions of the alternatives were randomized. The subjects

could face two orders of questions and also we inverted Time and Risk elicitation

such that we had a total of four treatments (Appendix B.2.).12

One of the fundamental feature of the design is the collection of all the non-

empty subsets of the MAIN alternatives with cardinality greater than two. Its im-

portance can be summarized into two motivations: (1) this part of the dataset is

symmetric and therefore allows for immediate comparisons across alternatives and

environments (Time and Risk). Such comparisons are not straightforward as it will

be clear in Section 2.3.3.13 (2) beyond the symmetry, that is also satisfied by the

collection of binary sets, the MAIN sets allow to infer welfare on sets that do not

contain behavioural effects and are also different from the binary sets which are

often considered as benchmark (Manzini et al., 2010), (Agranov & Ortoleva, 2017).

Furthermore, since certain methods such as MS, TC and EIG are based on CRP,

sets with 3 and 4 alternatives provide evidence on the capacity of these methods to

break cycles in the CRP relation.

After the choice elicitation part subjects were asked, non-incentivized, to rank

the four MAIN alternatives. No indifferences were permitted, hence the reported

11By Impatience we intend the violation of discounting models. The term "impatience" has been
used by Fishburn & Rubinstein (1982) to denote Axiom A3.

12Given the high number of questions we apply "structural randomization". Namely, we divide
questions into groups by similarity and then we completely randomize with the constraints that simi-
lar questions could not appear clustered together.

13For, example these comparisons are possible in Multiple Price Lists designs that are common in
the literature of structural estimation of risk and time parameters (Andersson et al., 2016), (Andersen
et al., 2008).
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Table 2.1. List of Main Delayed Payment Plans

0 3 6 9 12
160 0 0 0 0
110 50 25 0 0
50 50 50 50 0
0 15 40 170 0Increasing (I)

ALTERNATIVES
MONTHS

One Shot (OS)
Decreasing (D)
Constant (K)

Table 2.2. List of Main Lotteries

50 0 1 0 50
65 25 0.8 0.2 57
90 25 0.5 0.5 57.5

300 5 0.2 0.8 64

Degenerate (D)
Safe (S)

Fifty-Fifty (50)
Risky (R)

ALTERNATIVES TOKEN PROBABILITIES EV

welfare relation is always a linear order.14 Subsequently, subjects filled a question-

naire containing questions about the comprehension of the experimental design and

criteria of choice in both Time and Risk. The questionnaire is presented and anal-

ysed in Appendix B.3. Finally, two well-known tests of cognitive abilities were pre-

sented: (i) Frederick Test - (Frederick, 2005); (ii) a selection of ten Raven matrices.

Response times were collected for each question in the choice elicitation part and

the cognitive abilities tests.15

The average reward was about 19 pounds per subject and the experiment lasted

on average 1:15 hours. The reward was measured in Token with an exchange rate of

1:10 for lotteries and 1:20 for delayed payment plans. Subjects received no feedback

about their earnings during the experiment. At the end of the experiment computers

randomly picked from chosen delayed payment plans and lotteries, this latter was

played out, and in the last screen informed subjects of their earnings in each part.

All sessions were conducted at the University of St. Andrews between June

and September 2019. Subjects were recruited voluntarily among undergraduate and

14A linear order is a complete, transitive and antisymmetric binary relation.
15Since this experiment is part of a larger project, the analysis of cognitive abilities, response times

and structural axioms is treated in a compendium paper (Caliari, 2020).
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postgraduate students. Eleven sessions were run for a total of 145 subjects. No sub-

ject participated in more than one session. The earnings had been paid via bank ac-

count at the end of the experiment and in successive dates in the future as specified

both by the instructions and by the experimenter. The experiment was completely

anonymous and all subjects signed a consent form where they agreed in providing

UK bank account number and sort code.

2.3 Results

2.3.1 CRP and BR

We begin showing the main result of the chapter. Table 2.3 presents the identification

power of CRP and BR as the fraction of subjects for whom the methods can correctly

identify either the reported best element or the entire welfare relation. As mentioned

previously, both methods are founded on standard revealed preference, however

the latter does not satisfy IR. CRP performs significantly better along all dimensions

both in Time and Risk. Notably, BR is a lower bound for the identification since

when a violation is observed data are simply ignored. This means that the difference

is performed on subjects that violate WARP and therefore is not trivial.

Table 2.3. CRP and BR - Identification

METHODS WRI UI EI WRI UI EI
CRP 0.61 0.87 0.88 0.24 0.59 0.61

BR 0.42 0.59 0.74 0.06 0.14 0.43

RISK

NOTES -- CRP is the counting revealed preference method; BR denotes Bernheim & Rangel method.
The numbers represent the fraction of subjects for whom the two welfare methods provide the following
three identification: (1) "WRI" - Welfare Relation Identification and it refers to the unique identification
of the entire reported welfare relation; (2) "UI" - Unique Identification of the reported best element; (3)
"EI" - Expected Identification of the reported best element.

TIME

2.3.2 Premise: do individuals consistently reveal welfare?

Figure 2.2 presents the distribution of WARP violations in Time, Risk and random

behaviour.16 For each subject i, WARP violations are determined as the number of

16Two comments on random behaviour. First, given that the questions in Time and Risk were
slightly different, random subjects may have different numbers of violations; however, the difference
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cycles of length 2 in the graph of revealed preference.

WARPi = ∑
x,y

Cxy · Cyx

Two observations catch the eye: (i) subjects violate WARP less in Time than in

Risk and the difference in mean is statistically significant (t-test, p = 0.000); (ii) sub-

jects do not behave randomly, again significantly (t-test, p = 0.0000).

The difference is not based only on the presence of a higher number of rational

individuals in Time. If we restrict our test on those subjects that violate WARP

at least once we find that the difference in mean is still highly significant (t-test,

p = 0.0002). This suggests a fundamental difference in the behaviour of the agents

in the two environments.

The suspicions are confirmed in Figure 2.3 where we show a scatter plot of the

number of WARP violations. As the reader may notice the correlation is very low

and driven mainly by a small fraction of consistent individuals. Given this pre-

liminary evidence, we will treat Time and Risk separately in both consistency and

preference elicitation analysis.

Figure 2.2. Distribution of the violations of WARP.

is negligible. Second, in order to provide a fair comparison we focus solely on the MAIN alternatives
since they account for the vast majority of subjects’ choices.
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Figure 2.3. Scatter plot of the violations of WARP.

2.3.3 Consistency across the dataset

The first question that we investigate is: do different choice problems imply differ-

ent levels of consistency? An answer will be crucial to draw a connection between

consistency and welfare revelation. We divide the dataset into three parts called

MAIN, AD, and BIG. The MAIN sets have been described in the previous section.

AD refers to four sets doomed by asymmetric dominance, while BIG refers to the

five (six in Risk) sets with more than eight elements.

Unfortunately, a simple comparison of the number of WARP violations across

the dataset does not apply because this measure depends on the number and struc-

ture of the questions under scrutiny. In other words, we face the problem of: "...

comparing the power of potentially different experimental designs. For a given

choice setting, some experimental designs may be more likely to reveal violations of

GARP than others." - Andreoni et al. (2013). The problem can be rephrased as fol-

lows: suppose one subject makes 10 inconsistent choices among 40 binary choices

while another subject makes 10 inconsistent choices among 30 ternary choices. How

can we compare these subjects in terms of consistency?

A standard approach in evaluating consistency of individuals given different

experiments is to compare them with random behaviour - see Becker (1962) and
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Bronars (1987). Some recent applications are Beatty & Crawford (2011) and Echenique

et al. (2011). We address the problem constructing an index of consistency or "power

index". We adopt the approach of perturbing a data generating process to create in-

consistencies and compare the magnitude of the perturbation across domains.

As data generating process we build on the logit model as follows: let A =

{x,y,z,w} be the set of MAIN alternatives ordered by a linear order � and u a

utility function with u(i) = u(j) + 1 with i, j ∈ A being consecutive elements in �.

Note that, only differences in utility are important;17 however, the parameter iden-

tification is not invariant to positive affine transformations of u (not cardinal). The

standard logit formula is the following:

p(x, A) =
eu(x)

∑
y∈A

eu(y)

As in Train (2009)18 we can modify the logit formula using a scale parameter λ

connected to the variance of the unobserved error (a subject who chooses randomly

behaves as if λ = ∞ but given our parameters for λ ≈ 5 we substantially observe

random behaviour); such that the formula becomes:

p(x, A) =
e

u(x)
λ

∑
y∈A

e
u(y)

λ

The parameter λ can be also interpreted as the cost of acquiring information

regarding the utility of the elements, e.g. Caplin & Dean (2015) and Fudenberg et al.

(2015).

We run a Monte Carlo simulation to estimate the parameter λ that match the

average number of violations of WARP that the subjects make in the different part of

the dataset. We only consider the MAIN alternatives since, as presented in Table 2.4

17Since in some part of the dataset the domain is not symmetric, namely some alternatives are more
present than others. We adopt the convention of setting the utility difference of D and I (respectively
S and R) equal to two. This is based on the fact the most of the subjects indicated in the ordinal
ranking that these alternatives are divided by two positions; in particular, either OS � D � K � I or
I � K � D � OS. We also ignore confounding alternatives since they account for a marginal part of
the choice distribution in any sets where MAIN alternatives are also present.

18An example of maximum likelihood estimate of the paraemter λ can be found in McKelvey &
Palfrey (1995). They show that in a game theoretical experimental (quantal response equilibria) setting
subjects tend, with experience, to make less noisy choices.



Chapter 2 51

and 2.6, most of the violations, and choices, regard these alternatives.19 Importantly

this is not an estimation exercise (we do not believe that, when aggregated, subjects

can be studied using a logit model). We provide an intuitive index that can be used

for meaningful comparisons across domains. Given the strong assumptions made

we also report the percentage of rational individuals and the standard deviation of

our logit simulations such that the reader may have an idea of how close they are

to the real data. We now present and comment on the consistency analysis in Time

and Risk.

Time

The first part of Table 2.4 shows the mean and standard deviation of the distribution

of WARP violations within different parts of the dataset, as well as the percentage

of rational individuals, namely those with zero violations. In the second part, we

present the logit index. The data show that AD questions present a relatively higher

number of violations (λ = 0.787). The difference between BIG (λ = 0.555) and MAIN

sets (λ = 0.515) is instead very small. To understand the importance of the λ mea-

sure, the reader may note that AD sets have both a low number of WARP violations

and a high number of rational subjects.20

19This result is evidenced by the small difference between the violation in ALL** and ALL datasets.
This assumption is conservative; in fact, in AD or BIG sets the identification of the parameter λ is
lower than it would be.

20The simulation in AD and BIG sets ignores dominated alternatives. In the former we focus on four
binary sets of the type {D, I} with the assumption of u(D)− u(I) = 2, or vice versa. The assumption
is based on the reported ranking of the high majority of individuals.
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Table 2.4. WARP Violations I - Time

BIG AD MAIN ALL** ALL
Mean 1.4897 0.8138 1.9586 10.0621 11.2621

Std 1.9189 1.4577 2.9009 14.2099 14.5263
Rational 54% 75% 59% 48% 37%

Logit - λ 0.555 0.787 0.515 0.569 -
Logit - std 1.6406 1.3738 2.0355 7.768 -

Logit - Rational 48% 74% 40% 16% -

NOTES -- The mean of WARP violations is reported for different parts of the dataset: "BIG" denotes sets
with more than 8 elements; "AD" denotes sets with potential asymmetric dominance effect; "MAIN" denotes
the 11 non-empty subsets of the four main alternatives; "ALL" denotes the entire dataset. ALL** refers to
WARP violations in the entire dataset that regard only the four main alternatives. We also report the
following statistics: the information parameter of a logit model that match the data mean, the standard
deviation and percentage of rational subjects in the resulting distribution.

Table 2.5. WARP Violations II - Time

MAIN/BIG MAIN/AD  BIG/AD
Mean 3.2897 1.3724 1.9172

Std 4.6682 2.5568 2.8052
Rational 56% 73% 56%

Logit - λ 0.515 1.062 1.124
Logit - std 2.8921 2.0696 2.508

Logit - Rational 34% 66% 59%

NOTES -- The mean of WARP violations is reported between difference
domains: "MAIN/BIG" denotes violations observed between MAIN and
BIG sets; "MAIN/AD" denotes violations between MAIN and AD sets;
"BIG/AD" denotes violations between BIG and AD sets. These numbers
are calculated, for instance, taking the total number of violations on MAIN
and BIG sets and subtracting the violations within the two domains.

Two observations are worth noting. First, higher is the number of sets and worse

is the logit approximation to the data. For instance, on the entire dataset, we should

observe 16% of rational subjects while we observe 48% and the standard deviation

is also significantly higher. Second, the coefficient of variation is everywhere above

one. These observations suggest that there are, at least, two different groups of sub-

jects: one rational and the other irrational. Importantly this latter has been shown

to behave not randomly.

Table 2.5 reports the number of violations of WARP between different domains.

For instance, when x is chosen over y in a MAIN set and y over x in a BIG set. The re-
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sults show that not only the level of rationality is similar within MAIN and BIG sets

(Table 2.4) but also the types of violations are similar (λ = 0.515). On the other hand,

AD sets present a different behaviour from both MAIN and BIG sets (resp. λ = 1.062

and λ = 1.124). Notice that to match the number of WARP violations between AD

sets and the other domains we would require a level of perturbation higher than all

levels within the domains. Furthermore, Table 2.5 confirms the presence of at least

two groups of individuals since the standard deviation of the logit simulations is

everywhere below the standard deviation in the data.

Risk

Table 2.6 reports the results regarding WARP violations within domains in Risk. The

number of violations is, on average, higher than in Time across all the domains and

everywhere significantly (t-test, p = 0.0000 in MAIN, p = 0.015 in AD, p = 0.0000 in

BIG). In this case, the comparison between Time and Risk is meaningful given the

approximate symmetry of the datasets. This evidence suggests that the difference

in behaviour between the two environments is not due to a particular incidence of

behavioural effects. The difference in the shape of the distribution, expressed in

Figure 2.2, is confirmed by the coefficients of variation. If in Time they were ev-

erywhere above one, confirming that left skewness is a common property across

domains, in Risk they are almost everywhere below one, confirming the generality

of the uniform shape of the distribution. Surprisingly, Table 2.6 shows that in BIG

sets (λ = 0.756) subjects appear more rational compared to both MAIN (λ = 1.009)

and AD sets (λ = 1.003).2122 Data also confirm that when the number of sets in-

creases the percentage of rational subjects becomes higher than the one in the logit

simulation.
21In a compendium paper (Caliari, 2020), we report evidence of deliberate randomization as mod-

elled by Cerreia-Vioglio et al. (2019) and reported by Agranov & Ortoleva (2017). Behavioural effects
may reduce the capacity of subjects to deliberately randomize, therefore reducing WARP violations.

22This evidence may be related with attention models such Masatlioglu et al. (2012), Manzini &
Mariotti (2014), Lleras et al. (2017) and Cattaneo et al. (2018), and could confirm previous experiments
such as Iyengar & Kamenica (2010). On the contrary, models that assume more uniform stochastic
choice in BIG sets such as Fudenberg et al. (2015) and Frick (2016) seem to be not backed by the data.
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Table 2.6. WARP Violations I - Risk

BIG AD MAIN ALL** ALL
Mean 4.6690 1.2621 4.9862 21.7172 24.6552

Std 2.8700 1.4955 3.4237 13.6314 14.3170
Rational 15% 54% 14% 8% 6%

Logit - λ 0.756 1.003 1.009 0.774 -
Logit - std 2.9899 1.5672 2.6606 9.6465 -

Logit - Rational 22% 60% 7% 2% -

NOTES -- The mean of WARP violations is reported for different parts of the dataset: "BIG" denotes sets
with more than 8 elements; "AD" denotes sets with potential asymmetric dominance effect; "MAIN" denotes
the 11 non-emtpy subsets of the four main alternatives; "ALL" denotes the entire dataset. ALL** refers to
WARP violations in the entire dataset that regard only the four main alternatives. We also report the
following statistics: the information parameter of a logit model that match the data mean, the standard
deviation and percentage of rational subjects in the resulting distribution.

Table 2.7. WARP Violations II - Risk

MAIN/BIG MAIN/AD  BIG/AD
Mean 9.0276 2.3241 2.3862

Std 5.9224 2.7267 2.5888
Rational 14% 44% 40%

Logit - λ 0.688 1.125 1.581
Logit - std 4.7995 2.2564 2.3141

Logit - Rational 9% 37% 32%

NOTES -- The mean of WARP violations is reported between difference
domains: "MAIN/BIG" denotes violations observed between MAIN and
BIG sets; "MAIN/AD" denotes violations between MAIN and AD sets;
"BIG/AD" denotes violations between BIG and AD sets. These numbers
are calculated, for instance, taking the total number of violations on MAIN
and BIG sets and subtracting the violations within the two domains.

Table 2.7 reports a higher similarity in the behaviour of subjects in MAIN and

BIG sets (λ = 0.688) compared to both MAIN/AD and BIG/AD sets (resp. λ = 1.125

and λ = 1.581). It is particularly interesting to notice the extremely high logit index

associated with violations between BIG and AD sets. Speculations would lead us

to conjecture that choice overload and asymmetric dominance, although both in the

family of behavioural effects, have very different implications on the consistency of

behaviour in choice among lotteries.
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2.3.4 Identification of reported welfare

This subsection contains the main results of Chapter II. We measure the power of

identification of different welfare methods in both Time and Risk using ALL dataset,

MAIN sets, and BINARY sets. This latter is considered as a benchmark to under-

stand how much information can be extracted from a dataset that does not present

any potential behavioural effect. Two results emerge in both Time and Risk: (1)

methods that satisfy IR performs significantly better than BR; (2) the identification

power of methods that satisfy IR improves when more data are collected. This re-

sult, as expected, is reversed in BR.

Our identification exercise is threefold. Firstly, we uniquely identify the reported

best element. Secondly, since BR is a conservative approach, it is reasonable to imag-

ine that this method performs better in a set identification exercise; namely when

the reported best element is in the set of maximal elements. We assume that a risk-

neutral policy maker has to pick from the set of maximal elements endowed with a

uniform distribution. Given this assumption, we perform an expected identification

exercise. Finally, we uniquely identify the entire reported welfare relation.

Let N be the set of subjects and fi(D) be the preference elicited by the welfare

method f given the choices of subject i over the dataset D. The reported welfare

relation by subject i is denoted as REPi(�). The proportion of correctly identified

subjects given the three approaches is as follows:

• Unique Identification [UI]:

#{i ∈ N : max[REPi(�)] = max[ fi(D)]}
#N

• Expected Identification [EI]:

∑
i∈N:max[REPi(�)]∈max[ fi(D)]

1
#{max[ fi(D)]}

#N

• Welfare Relation Identification [WRI]:
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#{i ∈ N : REPi(�) = fi(D)}
#N

Note that, the reported welfare relation is necessarily asymmetric. Hence, meth-

ods that map into linear orders such as SEQ or EIG are theoretically favoured in the

identification of the entire welfare relation. To solve this issue we also investigate

how close methods are to identify reported welfare relation even when these are not

perfectly identified. The similarity of solutions is measured using the sum over all

subjects of:

• Symmetric Difference [SD] between the resulting binary relations and the re-

ported order. The symmetric difference4 between two binary relations R1, R2

is defined as follows23:

R14 R2 = (R1 \ R2) ∪ (R2 \ R1)

• Reverse Asymmetry [RA], denoted here as 5, is defined as the number of

times the asymmetric part of the reported order is reversed. Namely, given

two asymmetric binary relations P1 and P2:

P15 P2 = |{(x,y) ∈ P1 : (y, x) ∈ P2}|

Using both measures is crucial. The symmetric difference considers equally the

symmetric and asymmetric part of the binary relation, hence punishing coarse meth-

ods such as BR. The "reverse asymmetry" measure allows us to disentangle those

differences that are in principle worse; namely when a subject reports x better than

y but the method ranks y better than x. This measure punishes particularly methods

that map in linear orders such as EIG and SEQ; while the conservative nature of BR

creates a lowest bound. This analysis, together with the three identification exer-

cises, provides a comprehensive picture of the identification power of each method.

23For instance, let R1 = {(x,y), (y, x), (y,z), (x,z)} and R2 = {(x,y), (y,z), (z,y), (x,z)}we have R14
R2 = |{(y, x), (z,y)}| = 2.
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The empirical role of Robustness and Stability

Before introducing the identification results using experimental data, it is impor-

tant to highlight how Robustness [ROB] and Stability [ST] can affect the results. To

understand the issue the reader can refer to the connection that has been drawn

between ROB, ST and continuity (see Appendix A). In particular, we would like to

measure how a method is sensitive to perturbations in the choice space. In order to

do that, we use the above introduced concept of Reverse Asymmetry. We analyse

the set of single-valued choice functions (see Chapter 1 for a formal definition) with

four elements on our MAIN sets. The dimension of this space is of 20736 choice

functions. Then, we adopt a Leave-one-out test for continuity. We eliminate one set

from the dataset and observe how the inference of welfare relations changes. Below

we report the average number of RA per choice function for each method.

BIN TER QUAT

CRP 0 0 0
MS 0.0187 0.1076 0.2384
TC 0 0.0584 0.1493
EIG 0.2521 0.6357 1.0729
CC 0 0 0

SEQ × × ×
BR 0 0 0


Figure 2.4. Degree of Continuity of methods

From the figure above shows, in line with the theory, that CRP, CC and BR are

stable methods. The remaining methods instead are ranked TC, MS, EIG with the

latter being the most discontinuous. As it will be clear in the next section, higher is

the level of discontinuity and higher is the probability that new information will re-

verse the judgement. Hence, on one hand, in contexts where few inconsistencies are

observed and the behaviour of the subjects is homogeneous across domains (Time

preferences) a discontinuous method may wrongly overestimate rare mistakes. On

the other hand, when more inconsistencies are observed and the behaviour of sub-

jects is less homogeneous a discontinuous method may still be able to provide a

point estimate and to be sensitive to new information (Risk preferences).
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Time

Table 2.8 shows that methods that satisfy IR perform significantly better than BR

both uniquely (≈ 30%) and in expectation (≈ 15%). It is crucial to notice that BR is a

lowest bound in the identification exercise since it identifies only those subjects that

rationally reveal their best element. Therefore, the 30% gap is not trivial because it

is performed on irrational individuals.

Table 2.8. Unique and Expected Identification - Time

ALL MAIN BINARY ALL MAIN BINARY

CRP 0.87 0.81 0.77 0.88 0.84 0.77

MS 0.87 0.81 0.79 0.88 0.85 0.80

EIG 0.87 0.83 0.81 0.87 0.83 0.81

TC 0.88 0.81 0.77 0.88 0.83 0.77

IR CC 0.81 0.83 0.77 0.84 0.86 0.81

SEQ - 0.83 - - 0.83 -

BR 0.59 0.67 0.77 0.74 0.79 0.77

OW 0.89 - - 0.89 - -

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the reported best
element. On the right, the expected portion of subjects for whom each method identify the reported best element. The
measure is expected because for some subjects methods may set identify the best element; in these cases we assume to
pick uniformly from the set of identified elements.

UNIQUE EXPECTED
METHODS

IR
 &

 C
R

P
N

o-
IR

The power of identification for methods that satisfy IR is increasing in the num-

ber of sets in the dataset which suggests that individuals reveal information about

welfare along all the dataset. Only exception is CC. We interpret this as evidence in

favour of the importance of standard revealed preference as a foundation for welfare

methods.

Finally, SEQ performs particularly well; the difference is only 4-6%. The reason

is that the best element of SEQ is the one chosen from the set with all the four MAIN

alternatives. It turns out this choice is a good predictor of the reported best element,

although the two elicitations are not equivalent.
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Table 2.9. Iden. Welfare Relation, SD and RA - Time

ALL MAIN BINARY
- - - SD RA SD RA SD RA

CRP 0.61 0.57 0.59 180 78 191 73 220 110

MS 0.62 0.59 0.61 182 82 188 76 218 88

EIG 0.54 0.60 0.61 222 111 208 104 218 109

TC 0.61 0.58 0.59 180 73 188 68 234 71

IR CC 0.54 0.58 0.59 214 91 186 74 218 78

SEQ - 0.60 - - - 194 97 - -

BR 0.42 0.50 0.59 264 45 226 54 220 110

OW 0.66 - - 170 85 - - - -

METHODS

IR
 &

 C
R

P
N

o-
IR

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the entire reported welfare
relation. On the right, "SD" and "RA" denote respectively symmetric difference and reverse asymmetry.

WRI SD & RA
ALL MAIN BINARY

Table 2.9 reports the identification of the entire welfare relation. We present it

together with symmetric difference and reverse asymmetry measures. We confirm

that methods that satisfy IR perform better than BR by 10-15% when we look at the

left part of Table 2.9, namely the percentage of total subjects that have been uniquely

identified. However, as mentioned before, this observation is not enough to judge

the methods. For instance, the performances of SEQ and EIG are positively biased

by the feature that they map into linear orders. Since the reported preference rela-

tions are linear orders by construction, the probability that this latter are uniquely

identified is higher. As mentioned in the previous subsection, we use SD and RA to

measure the distance between the reported and elicited binary relations.

First, we observe that as theoretically predicted BR provides on one hand a

lower bound on RA given its cautious approach described by its stability and in-

finitely non-robustness. On the other hand, it provides an upper bound on SD given

its coarseness. Considering the other methods in comparison with BR(SD,RA) =

(264,45), we can see that SEQ and EIG are significantly outperformed both in SD

and in RA by both MS and TC.

The monotonicity of the identification power in the size of the dataset is not

straightforward here. However, if we observe the SD of methods that satisfy IR we

notice that it is decreasing for any method apart from EIG and CC. The latter re-

sult confirms the weakness of IR and the necessity of focusing on methods based
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on CRP. The former instead is based on the excessive non-robustness of EIG, and

in particular, the excessive weight that this method poses on observations from BIG

sets, that by construction, induce a higher change in CRP as shown in Figure 2.4.

Furthermore, as we will show in Section 2.3.7, AD sets in Time preferences are not

important to infer the welfare relations, hence when added they may cause a prob-

lem in the inference of non-robust methods. Finally, Binary sets are shown to be

very important and therefore a highly non-robust method such as EIG, may lose

power of identification when less important observations are added.

Risk

Table 2.10 reports the identification results in Risk. Data show that methods that sat-

isfy IR perform significantly better than BR both uniquely (50%) and in expectation

(20%). We also confirm that the power of identification is generally (note that CC is

still an exception) increasing in the size of the dataset.

The choice from the set of MAIN alternatives is again a good predictor of the

reported best element since the loss of SEQ is only 4-8%.

Table 2.10. Unique and Expected Identification - Risk

ALL MAIN BINARY ALL MAIN BINARY

CRP 0.59 0.52 0.42 0.61 0.59 0.42

MS 0.59 0.52 0.46 0.61 0.60 0.50

EIG 0.61 0.61 0.51 0.61 0.61 0.51

TC 0.61 0.51 0.42 0.62 0.55 0.42

IR CC 0.55 0.56 0.42 0.57 0.61 0.50

SEQ - 0.55 - - 0.55 -

BR 0.14 0.25 0.42 0.43 0.49 0.42

OW 0.63 - - 0.63 - -

METHODS

IR
 &

 C
R

P
N

o-
IR

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the reported best
element. On the right, the expected portion of subjects for whom each method identify the reported best element. The
measure is expected because for some subjects methods may set identify the best element; in these cases we assume to
pick uniformly from the set of identified elements.

UNIQUE EXPECTED

The left part of Table 2.11 again shows that methods that satisfy IR outperform

BR in the entire identification exercise (15-20%). We also confirm that SEQ and EIG
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performances are only apparently good; in fact, when controlled for RA measure,

and normalizing for the RA measure of BR, we see that they perform worse than

MS by respectively 25% and 17%. Looking at the SD we observe that SEQ is clearly

outperformed while EIG performance is relatively superior to the one in Time pref-

erences. We also note that the monotonicity of the identification in the size of the

dataset is confirmed everywhere IR is satisfied, hence also in EIG. This result sug-

gests that AD and BIG sets add very valuable information in this case, and on the

other hand that Binary sets are not as important as they are in Time preference to

predict the reported preference relation. Both these results are confirmed in Section

2.3.7.

Table 2.11. Iden. Welfare Relation, SD and RA - Risk

ALL MAIN BINARY
- - - SD RA SD RA SD RA

CRP 0.24 0.19 0.20 436 186 455 168 556 278

MS 0.24 0.20 0.21 440 190 452 179 569 241

EIG 0.30 0.27 0.23 446 223 448 224 576 288

TC 0.24 0.19 0.20 434 182 446 157 570 184

IR CC 0.21 0.19 0.20 453 200 452 185 569 218

SEQ - 0.25 - - - 478 239 - -

BR 0.06 0.10 0.20 592 86 545 115 556 278

OW 0.32 - - 421 210 - - - -

METHODS

NOTES -- On the left we show the portion of subjects for whom each method uniquely identify the entire reported welfare
relation. On the right, "SD" and "RA" denote respectively symmetric difference and reverse asymmetry.

N
o-

IR
IR

 &
 C

R
P

ENTIRE IDEN. SD & RA
ALL MAIN BINARY

2.3.5 Optimal Weighting

So far, we have shown that methods that satisfy Informational Responsiveness and

are based on revealed preference guarantee better performances in the identifica-

tion exercises. From now on, we aim to solve two possible drawbacks. First, the

reader knows only a relative measure of the performance of these methods. Namely,

that they perform better than the alternative ones. However, we aim to provide a

more general measure of performance confronting them with a data-driven welfare

method the we call Optimal Weighting method [OW]. Second, so far we have tested
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IR only indirectly, namely using methods that do or do not satisfy it. OW allows us

to test if IR directly binds for the identification exercises. In words, does a method

that differently weight observations in order to optimize the identification exercise,

assigns strictly positive weights to all observations where x is chosen and y is avail-

able, therefore satisfying IR?

To define OW we divide the dataset in five parts: binary sets [B], ternary sets

[T], quaternary set [Q], sets with asymmetric dominance [AD], big sets [BIG]. For

each part the revealed preference is collected creating, for each x,y ∈ X, a vector

Cxy = (CB
xy,CT

xy,CQ
xy,CAD

xy ,CBIG
xy ). The weights vector is w = (wB,wT,wQ,wAD,wBIG).

We define the method OW as follows:

xRD
OWy if and only if OWxy ≥OWyx

where OWxy = ∑
l∈Γ

wlCl
xy and Γ = {B, T, Q, AD, BIG}.

Weights are calculated optimizing the sum of two measures: (1) expected iden-

tification of maximal element [EI]; (2) unique identification of the entire welfare re-

lation [WRI]. To recall, the former measures the expected number of subjects for

whom the method can identify the reported best element; the latter measures the

number of subjects for whom the method uniquely identify the entire reported wel-

fare relation.24 The optimization problem is as follows:

max
w∈[−0.4,1]5

EI + WRI

where for each subject i:

xRD
fi

y ⇔ w ·Cxyi ≥w ·Cyxi

Two main features of the OW method allows us to understand its relevance.

First, the objective function is a distance between the reported and the elicited pref-

erence relations. Therefore, it would be as if we knew the reported relations (data-

driven) and we are trying to get closer to them optimizing on the importance of the

choices made by the individual in different parts of the dataset. Given the generality

of the weighted average adopted, OW will have a better performance compared to

24The optimality problem is performed using different objective functions in Section 2.3.7
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the other methods that are instead not data-driven. Second, the weights attached

to different parts of the dataset may be negative. Consider the following example,

from the MAIN sets, a subject always chooses x when available, y if x is not avail-

able, and in the binary set {z,w} he chooses z. Then, he reports x � y � w � z. In

this case, it may be that since x,y are clearly best, binary sets receive a small negative

weight that guarantees w � z, and does not change the other preferences.

2.3.6 Completeness of the methods

In this section, we compare the identification results of welfare methods with the

data-driven method and refer to the distance between them as the completeness of

the methods. We borrow the term "completeness" from Fudenberg et al. (2019). In

their paper, the authors use machine learning to measure the amount of variation

in the data that a theory can capture. Their notion of completeness aims to an-

swer the following question: "How close is the performance of a given theory to the

best performance that is achievable in the domain?" (Fudenberg et al., 2019). In our

framework, we define completeness, denoted as Com( f ) for some welfare method f ,

as:

Com( f ) =
ε( fL)− ε( f )

ε( fL)− ε( fU)

where ε( fL) is the proportion of non-identified subjects by the method that de-

fines a lower bound on the domain; ε( fU) is the best achievable residual proportion

and ε( f ) is the residual proportion of the model under study. In our framework, we

set fL = BR and fU = OW. Table 2.12 shows the completeness of the methods using

ALL sets across different types of identification procedures in both Time and Risk.
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Table 2.12. Completeness of the methods

METHODS UI EI WRI UI EI WRI
CRP 0.93 0.93 0.79 0.92 0.90 0.69

MS 0.93 0.93 0.83 0.92 0.90 0.69
EIG 0.93 0.86 0.50 0.96 0.90 0.92
TC 0.95 0.93 0.79 0.96 0.95 0.69

CC 0.74 0.66 0.50 0.84 0.70 0.58

SEQ 0.81 0.59 0.75 0.84 0.60 0.73

BR 0.00 0.00 0.00 0.00 0.00 0.00
OW 1.00 1.00 1.00 1.00 1.00 1.00

NOTES -- This table reports the completeness of all methods in cases of unique (UI), expected (EI) and
entire (WRI) identification procedures.

TIME RISK

Since BR and OW are respectively lower and upper bound for our identifica-

tion analysis they take respectively value zero and one. Methods that satisfy IR and

are based on the revealed preference approach have generally higher completeness

than other methods. Note that, even though we do not report completeness for the

measures of symmetric difference and reverse asymmetry in the entire identifica-

tion approach, that favours SEQ over other methods, there always exists at least

a method among those that satisfy IR and are based on revealed preference that is

more complete than SEQ.

2.3.7 A direct test of Informational Responsiveness

We propose a direct test for IR that exploits the data-driven method OW. We focus

on the family of methods that are weighted sums of CRP, depending perhaps on

the sets in which the choice has been observed. If each choice receives a strictly

positive weight independently from the set where the choice happened then IR is

satisfied.25 In this sense, our construction of OW allows us to test whether IR binds

in an optimal identification problem.

We generalize our previous analysis where the convention was to optimize the

sum of expected identification of the reported best element and unique identifi-

cation of the entire welfare relation. In this section, we report results based on

25This implication is immediate. See Meyer & Mongin (1995) for a comprehensive study of affine
aggregation.
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six different objective functions. Before introducing them, some clarifications are

needed. First, the optimization problem described in Section 2.3.5 may clearly have

non unique results. Namely, there may be multiple set of weights that optimize the

objective function. In such cases, we report the minimum and maximum weights

for each part of the dataset such that there exists a system of weights that solve the

optimization problem. Importantly, this does not imply that any vector of weights

that is in the Cartesian Product of the intervals guarantees optimal identification.

Second, as it may be clear from the example about negative weights at Section 2.3.5,

if choices from a particular set are irrelevant then this set may receive positive, neg-

ative or a zero weight without changing the result. This observation has important

consequences in the interpretation of the results. For instance, in Table 2.13 and Ta-

ble 2.14, AD sets receive both negative and positive weights ([−0.2,1] in Time and

[−0.2,0.9] in Risk) when we try to optimize on the identification of the best element

(UI and EI). This is due to the fact that only two alternatives, in Time and Risk,

are represented in AD sets and often these alternatives are not reported and cho-

sen as best alternatives. Therefore, from this interval we cannot conclude anything

about the importance of AD sets in eliciting preferences and we need to focus on the

weights assigned to AD sets under the remaining four objective functions.

Time

Table 2.13 shows the intervals of weights that guarantee optimality for the six dif-

ferent objective functions. For completeness of information, we split the MAIN sets

into three parts: Binary sets, Ternary sets, and Quaternary set.
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Table 2.13. Optimal Weights - Time

IDENTIFICATIONS BIN TER QUA BIG AD

UI [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]
EI [0.6,1] [0.2,1] [0.1,0.2] [0.6,1] [-0.2,1]

WRI [0.2,0.9] [0.3,1] [0.3,1] [0.4,1] [-0.2,-0.1]
SD [0.5,0.8] [0.6,1] [0.4,0.8] [0.4,0.7] -0.2

SD & RA 0.6 0.6 0.6 0.6 -0.2
EI & WRI 0.9 1 0.4 0.8 -0.2

TIME

NOTES -- The table contains intervals of weights that optimize the identification of different objectives. "UI" and "EI"
denote respectively unique and expected identification of the best element; "WRI" denotes entire welfare relation
identification; "SD" and "RA" denote respectively minimization of the sum of symmetric difference and [two times]
reverse asymmetry against the reported welfare relation; "EI & WRI" denotes the sum of EI and WRI. This latter is the one
used along the paper to define OW.

We observe that strictly positive weights are associated to any part of the dataset

apart from AD sets. This latter is found to be irrelevant in the identification of the

reported best element (weights can be negative, zero, or positive), while they have

negative weights when we identify the entire welfare relation. As above mentioned,

the first result is expected, while the second result is somewhat surprising since it

shows that subjects wrongly reveal their welfare in this part of the dataset. Nonethe-

less, it confirms the findings of Section 2.3.3, where we show that subjects are not

only more irrational in these sets (Table 2.4); but also they have a different behaviour

(Table 2.5) if compared to MAIN and BIG sets.

We also find that binary sets are particularly important throughout all the possi-

ble objective functions. This explains both the relatively good performance of meth-

ods on these sets (Table 2.8) and the fact that the identification power of EIG de-

creases in the size of the sets as observed in Table 2.9. This is due to the high weight

put to bigger sets by the EIG method.

Risk

Table 2.14 shows that, in Risk, IR binds everywhere since strictly positive weights

are attached to any domain. There are two exceptions. Firstly, AD sets are irrele-

vant when we focus only on the reported best element, but again this observation

is not relevant from an empirical perspective. However, in the remaining cases, AD
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sets receive strictly positive weights, differently from Time, showing that in Risk

behavioural effects such as attraction effect and compromise effect seem not to un-

dermine the elicitation of preferences.

Table 2.14. Optimal Weights - Risk

IDENTIFICATIONS BIN TER QUA BIG AD

UI [-0.2,0] [0.4,0.7] [0.7,1] [0.5,0.9] [-0.2,0.9]
EI -0.1 [0.3,0.8] [0.5,1] [0.4,0.9] [-0.2,0.9]

WRI [0.2,0.7] [0.4,1] [0.8,1] [0.3,0.8] [0.3,1]
SD 0.4 0.4 1 0.3 0.4

SD & RA 0.5 [0.4,0.5] [0.8,1] [0.4,0.5] [0.4,0.5]
EI & WRI [0.1,0.3] [0.4,0.5] [0.8,1] [0.4,0.6] [0.3,0.6]

RISK

NOTES -- The table contains intervals of weights that optimize the identification of different objectives. "UI" and "EI"
denote respectively unique and expected identification of the best element; "WRI" denotes entire welfare relation
identification; "SD" and "RA" denote respectively minimization of the sum of symmetric difference and [two times]
reverse asymmetry against the reported welfare relation; "EI & WRI" denotes the sum of EI and WRI. This latter is the one
used along the paper to define OW.

Secondly, when we focus only on the identification of the reported best element

we observe that binary sets receive weakly negative weights. These weights are

also strictly positive but close to zero in the other cases. This confirms the findings

of previous sections. In fact, in Table 2.10 we find that methods perform poorly

on binary sets. We also found (Table 2.11) that the EIG method has an increasing

identification power in the size of the sets. And again in Table 2.11 we find that,

throughout all methods, the differential of both symmetric difference and reverse

asymmetry between binary sets, MAIN and ALL datasets is positive and significant.

The low importance of binary sets is striking. Especially, if we compare the

weights associated with BIG sets where supposedly we should observe choice over-

load effect. This seems to suggest that, in Risk, the irrational behaviour in MAIN

sets is mostly driven by binary sets.26

2.4 Conclusion

Using a novel experimental design, we test the hypothesis that Informational Re-

sponsiveness and Revealed Preference are necessary conditions for behavioural wel-

26This evidence suggests further research on attention in choice among gambles and it is in line with
stochastic models such as Manzini & Mariotti (2014) and Cattaneo et al. (2018).
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fare analysis. Firstly, we show that individuals repeatedly violate the Weak Axiom

of Revealed Preference both in time and risk preferences. We develop a new in-

dex of rationality and show that inconsistency is a general phenomenon, namely

it is common to sets with different cardinality and with or without behavioural ef-

fects. Secondly, we find that welfare methods that satisfy Informational Responsive-

ness and are based on a Revealed Preference approach perform significantly better

in identifying both the best reported element and the entire reported welfare rela-

tion. The results are strong in both time and risk preferences and in any part of

the dataset. We show that these welfare methods are more complete theories in the

sense of Fudenberg et al. (2019). Finally, using an optimal weighting algorithm we

directly test Informational Responsiveness. We show that subjects reveal welfare in

all parts of the dataset. Therefore, we argue that welfare analysis should not ignore

data doomed by behavioural effects but only eventually give different weights to

such observations. Our analysis does not solve the elicitation problem entirely. The

researcher’s problem, though much simplified, still requires a correct evaluation of

these welfare weights.
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Imperfect Discrimination and

Stochastic Transitivity

3.1 Introduction

Imperfect discrimination is a widely studied feature of human cognition. In choice

theory, it forms the behavioural foundations of deterministic models such as Luce’s

semiorder (Luce, 1956)1 and stochastic models such as the Fechnerian model (Thur-

stone, 1927).2

In this Chapter, we analyse the behavioural consequences of imperfect discrim-

ination when it is allowed to vary with the alternatives under scrutiny. As an illus-

trative example, we refer to the so-called "similarity hypothesis" (Tversky & Russo,

1969). The authors conjecture that more similar alternatives are easier to compare,

and therefore, keeping fixed the utility of the alternatives, higher the similarity and

easier is the choice of the best alternative. Tversky (1972) describes this idea in the

famous Paris-Rome example. He imagines a decision maker than has to choose be-

tween a trip to Paris [P], a trip to Rome [R] and a trip to Paris with $1 bonus [P+].

He notices that a decision maker may find hard to decide between P or P+ and R,

but he would not have any doubts when deciding between P+ and P. Choice situ-

1Luce (1956): "The nontransitiveness of indifference must be recognized and explained on any
theory of choice, and the only explanation that seems to work is based on the imperfect powers of
discrimination of the human mind whereby inequalities become recognizable only when of sufficient
magnitude."

2McFadden (1980) wrote, referring to Thurstone (1927): "To accommodate the demonstrated inabil-
ity of individuals to discriminate perfectly... utility is a random function."

69
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ations of this kind induce particular properties of the resulting choices in both the

deterministic and stochastic environment.

More specifically, we show that different notions of transitivity of preferences

can be characterized using the idea of imperfect discrimination. In the previous

example, assume a decision maker prefers P+ to P but he is uncertain of his prefer-

ences (e.g. incomplete preference) between P and R. Assume also that there exists a

measure of discrimination that can be interpreted as the uncertainty regarding the

utility of the alternatives. One result from the deterministic choice literature states

that if the uncertainty between P+, R is smaller than the sum of the uncertainties be-

tween P+, P, and P, R then the preference relation is transitive - (Nakamura, 2002).

Assuming no imperfect discrimination between P+ and P, it becomes easy to ex-

plain a situation in which the only clear preference is between P+ and P (e.g. the

uncertainty regarding the difference in utility between P+, P and R is high). If, for

example, the decision maker prefers P to R, then he will also prefer P+ to R due to

the transitivity property.

Our main result is to generalize the above example to the stochastic choice liter-

ature. We provide a complete characterization of all the main notions of stochastic

transitivity: Weak [WST], Moderate [MST] and Strong [SST]. These conditions are

pervasive in the literature of stochastic choice models. The table below shows the

connection between a series of models and each stochastic transitivity property.
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Models that may violate WST

Random Utility models Marschak & Block (1960)

Attribute Rule Gul et al. (2014)

Random Consideration Set Rule Manzini & Mariotti (2014)

Random Consideration Choice Set Rule Brady & Rehbeck (2016)

Dual Random Utility model Manzini & Mariotti (2018)

Deliberate Randomization Cerreia-Vioglio et al. (2019)

Focus, then compare Ravid & Stevenson (2019)

Models that satisfy WST

Item Invariant Additive Perturbed Utility Fudenberg et al. (2014)

Gradual Pairwise Comparison Rule Dutta (2020)

Models that satisfy MST

Tversky EBA Tversky (1972)

Menu Invariant Additive Perturbed Utility Fudenberg et al. (2014)

Single-Crossing Random Utility Model Apesteguia et al. (2017)

Moderate Utility He & Natenzon (2018)

Bayesian Probit Natenzon (2019)

Models that satisfy SST

Fechnerian Model Thurstone (1927) - Debreu (1958)

Luce model Luce (1959)

Simple scalable model Tversky & Russo (1969)

Additive Perturbed Utility Fudenberg et al. (2015)

Symmetric Random Utility Model Marschak & Block (1960)


We model imperfect discrimination as a property of pairs of alternatives in both

a deterministic and stochastic model. We refer to the former as Binary Threshold

model and to the latter as Binary Additive Perturbed Utility model. According to
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the former, the chosen elements from a binary set of alternatives {x,y} ⊆ A are de-

termined as follows:

c({x,y}) = {x ∈ {x,y} : u(y)− u(x) ≤ ε(x,y)}

where u is a utility function and ε : A× A→<+ is a threshold function. In the

stochastic model the probability distributions over binary sets are determined as

follows:

p({x,y}) = argmax
p∈∆({x,y})

∑
z∈{x,y}

u(z)p(z)− η(x,y) · c(p(z))

where again u is a utility function, c is a strictly convex function, and η : A× A→

<++ represents imperfect discrimination between pairs of alternatives.3 Both ε and

η are symmetric.

Some preliminary comments. Intuitively, the BAPU model can be seen as a re-

finement of the BT model in the sense that a stochastic choice function resulting

from BAPU contains more information about both utility and imperfect discrimina-

tion than the choice correspondence resulting from BT. We will show this connec-

tion relying on the properties that characterize the two models. The literature had

already started to build this connection even though it went often unnoticed. The

BT model is equivalent to the maximization of an acyclic binary relation (Aleskerov

et al., 2007, Theorem 4.1). The BAPU model is instead characterized by a stochastic

choice function satisfying WST (Fudenberg et al., 2014).4 The reader may not seen

an immediate bridge between the two models. However, the connection will be

made explicit in Section 3.4.2 via the completion of the results of Fishburn (1973).

For instance, limited to the above mentioned, Fishburn (1973) showed that WST is

the stochastic analogue of acyclicity.5

Our main results are twofold. First, we show that ε and η are metrics if and only

3The assumption of strict positivity of η is assumed to provide a connection to Fechnerian models
as described in Section 3.4.1, however it is not necessary for the main results in Section 3.3 to hold.

4The result is an immediate corollary of (Fudenberg et al., 2014, Proposition 8). The reader may
note that our model enriched with η is equivalent to the Item Invariant model of Fudenberg et al.
(2014) restricted to binary sets. The restriction of cA to η(A) in binary sets is without loss of generality.

5More precisely, the property is called Acyclic Stochastic Transitivity [AST], which is equivalent to
WST under the assumption of antisymmetry that will be described at the end of Section 3.2, and if all
binary sets are observed.
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if deterministic choices are outcomes of the maximization of a transitive binary re-

lation and stochastic choices satisfy MST (Theorem 1 and 2). Second, ε and η are

not metrics (the triangle inequality is violated) at particular triples of alternatives if

and only if deterministic choices are outcomes of the maximization of a binary rela-

tion that satisfies a new property called Lower Negative Transitivity, and stochastic

choices violate SST at the considered triples (Theorem 3 and 4). These results to-

gether provide a complete characterization of all notions of transitivity.

3.1.1 Related Literature

This Chapter is related to the deterministic choice literature on Threshold mod-

els: such authors include, among many, Luce (1956), Fishburn (1970) and, more

recently, Frick (2016) and Dziewulski (2018). A comprehensive survey is provided

by Aleskerov et al. (2007). Importantly, Theorem 1 has been proved using a contra-

diction argument by Nakamura (2002). In the conclusion of the paper, the author

wrote: "It remains an open problem to give a constructive proof, which may also

answer the question of whether arbitrary posets have quasi-metric threshold repre-

sentations." We address part of the author’s conclusion by providing a constructive

proof for finite posets.

Regarding the stochastic choice literature, this Chapter relates mainly to Fu-

denberg et al. (2015), who characterize Additive Perturbed Utility models (APUs).6

However, these models have also been studied by, among many, Machina (1985) and

Mattsson & Weibull (2002) and they are the foundation of rational inattention liter-

ature (Matejka & McKay, 2015). Theorem 2 is new, albeit connected with a recent

paper by He & Natenzon (2018).

Finally, this Chapter contributes to the literature on the connection between de-

terministic and stochastic choice theory. This topic requires a brief comment. The

link between the two environments is far from straightforward. It seems natural to

think that the only difference between deterministic and stochastic choice functions

is the presence of probabilities, and that the former is a degenerate case of the latter

6In the published version, Fudenberg et al. (2015) only focus on APUs. Our model would be the
restriction of theirs on binary sets if η(x,y) = 1 for all x,y. However, in the unpublished version,
Fudenberg et al. (2014) characterize an extension of APUs, called Item Invariant APUs. Our model is
a restriction of Item Invariant APUs on binary sets.
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as in (Fudenberg et al., 2015, Proposition 6), in several results by Dasgupta & Pat-

tanaik (2007) and as stated among others by Kalai et al. (2002), Gul & Pesendorfer

(2006), and Cerreia-Vioglio et al. (2019). However, this is not the case as shown by

Fishburn (1978) and Ok & Tserenjigmid (2019). The key distinction is related to what

is considered as a relevant comparison. In the deterministic case, the only comparison

that matters is the worst possible comparison.7 Conversely, in the stochastic case,

all comparisons matter as it is clear from the Beethoven/Debussy example (Debreu,

1960) and the Red/Blue Bus example (McFadden, 1974). In this Chapter, we focus

on binary sets where the two interpretations are clearly equivalent and we complete

the connection between the two environments initiated by Fishburn (1973). A gen-

eralization of our results to sets with higher cardinality is still, to the best of our

knowledge, an unsolved problem.8

3.2 Preliminaries

Let A be a finite set of alternatives, A2 the set of all binary subsets of A and A1,2 the

set of all singletons and binary subsets of A. A binary (set-valued) choice function is

a mapping c :A2→A1,2 with c(B)⊆ B for all B ∈ A2. The following binary relation

is defined starting from a primitive c:

x �c y⇔ x ∈ c(x,y) & y 6∈ c(x,y)

The binary relation �c is asymmetric, and so irreflexive. It is also possibly in-

complete. If x,y ∈ c(x,y) then x 6�c y and y 6�c x. This binary relation over pairs is

foundational in the literature of deterministic choice theory, e.g. (Sen, 1971), (Arrow,

1959).

A binary stochastic choice rule is a mapping p : A×A2→ [0,1] such that p(x, A)+

p(y, A) = 1 for all x,y ∈ A ∈ A2 and p(z, A) = 0 for all z 6∈ A. With a common abuse

of notation, we write p(x,y) to denote the probability that x is chosen from {x,y},

and p({x,y}) to denote the entire probability distribution.

7In other words, if there exists an element x that is noticeably better than the element y, then y is
never chosen when x is available, regardless of the other alternatives available.

8We see Fudenberg et al. (2014) and Fosgerau et al. (2017) as possible starting point for this problem.
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Our results are based on two specific models of "just noticeable difference". The

Binary Threshold models and Binary Additive Perturbed Utility models are defined

as follows:

Definition 1. Let u : A→ < be a utility function and ε : A × A→ <++ be a threshold

function. We say (u, ε) is a Binary Threshold Representation [BT] of a choice function c if

for all x,y ∈ A:

c({x,y}) = {x ∈ {x,y} | 6 ∃ y ∈ {x,y} | u(y)− u(x) > ε(x,y)} (3.1)

Given the above definition, the following holds: x �c y if and only if u(x) −

u(y) > ε(x,y), and [x 6�c y ∧ y 6�c x] if and only if |u(x)− u(y)| ≤ ε(x,y).

Definition 2. Let u : A → < be a utility function, c be C1 on (0,1), a strictly convex

function with lim
p→0

c′(p) =−∞ and η : A× A→<++. We say (u, c,η) is a Binary Additive

Perturbed Utility Representation [BAPU] for a stochastic choice rule p if for all x,y ∈ A:

p({x,y}) = argmax
p∈∆({x,y})

∑
z∈{x,y}

u(z)p(z)− η(x,y) · c(p(z)) (3.2)

The existence of the above representations is characterized by restrictions on

�c and p. In particular, a choice function c has a BT representation if and only

if �c is acyclic - Aleskerov et al. (2007).9 A stochastic choice rule p has a BAPU

representation if and only if p satisfies Weak Stochastic Transitivity [WST].10

The definition of BAPU needs two brief comments. First, in order to coherently

match our analysis of Section 3.4.2 related to Fishburn (1973), we assume that u(x) 6=

u(y) for all x,y ∈ A with x 6= y. This assumption does not modify the generality of

the model but simply rules out the case of p(x,y) = 0.5. Second, the constraint

lim
p→0

c′(p) = −∞ guarantees p to be non-degenerate. This assumption allows us to

consider BAPU as equivalent to Fechnerian models. Similarly, we assume η(x,y) to

be strictly positive for all x 6= y. This constraint will have the effect of allowing ε to

9A binary relation �c is acyclic if for any integer k, x1 �c x2 · · · �c xk implies x1 6= xk.
10A stochastic choice rule p satisfies Weak Stochastic Transitivity if for all x,y,z ∈ A:

p(x,y) ≥ 0.5 & p(y,z) ≥ 0.5 ⇒ p(x,z) ≥ 0.5
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be a quasi-metric11, namely two different alternatives may have zero distance, while

η will be a metric, namely none of the alternatives have η(x,y) = 0. The reader may

note that the results hold if this constraint is relaxed in both directions, however in

stochastic choice degenerate probabilities would be introduced.

3.3 Main results

This section contains the main results of the Chapter. The results rely only on ε :

A× A→<+ and η : A× A→<++ satisfying or violating the triangle inequality.

Theorem 1. A choice function c has a BT representation where ε is a quasi-metric if and

only if the associated binary relation �c is transitive.

Proof. The proof is constructive and presented in Appendix C.2.1. Here we present

a description of the main steps of the proof. Firstly, we define the utility of an alter-

native x as the number of elements that are not strictly preferred to x. Secondly, we

construct a weighted directed graph where the weights are defined as the difference

in utility between the alternatives. We then show that the minimum weighted path

δ(x,y) constitutes a quasi-metric. The final step involves scaling down δ(x,y) using

a parameter γ ∈ [0,1). In fact, note that for any γ ∈ [0,1), u(x)− u(y) > γ · δ(x,y)

guarantees that � is represented. Hence, the remaining challenge is to find γ such

that for all x,y ∈ X such that x 6� y and y 6� x, u(x)− u(y)≤ γ · δ(x,y). The problem

of finding γ∗ is shown to be the solution of the following maximization problem:

argmax
x,y∈A:[x 6�y∧y 6�x]

u(x)− u(y)
δ(x,y)

The application of the triangle inequality is confirmed by the result on Addi-

tive Perturbed Utility models. The restriction on p, as in He & Natenzon (2018), is

Moderate Stochastic Transitivity*.

11The assumptions on the function ε are relaxed so as to be a quasi-metric, see Monjardet (1980). This
relaxation does not change the nature of the result. A quasi-metric is a function d : A × A→ [0,∞)
that satisfies the following axioms: (1) d(x, x) = 0 "minimality"; (2) d(x,y) = d(y, x) "symmetry"; (3)
d(x,z) ≤ d(x,y) + d(y,z) for all x,y,z ∈ A "triangle inequality". To be a metric, d has to satisfy also
d(x,y) = 0⇔ x = y "identity of indiscernibles".



Chapter 3 77

Definition 3. A stochastic choice rule p satisfies Moderate Stochastic Transitivity* [MST*]

if for all x,y,z ∈ A either of the following holds:

(i) p(x,y) > 0.5 & p(y,z) > 0.5 ⇒ p(x,z) > min[p(x,y), p(y,z)]

(ii) p(x,z) = p(x,y) = p(y,z)

The reader may note that this property allows for the situation: p(x,y) = p(x,z)>

p(y,z); but it rules out the situation: p(x,y) > p(x,z) = p(y,z).

Theorem 2. A stochastic choice rule p has a BAPU representation where η is a metric if

and only if it satisfies MST*.

Proof. See Appendix C.2.2.

For the next theorems we need to introduce a new deterministic property. We

call this property Lower Negative Transitivity. First, we state some preliminaries.

Suppose a finite set of alternatives A is weakly ordered12 by a binary relation �.

However, the decision maker has imperfect discrimination and does not observe

the weak order �. Instead, he has a second binary relation � that reveals if an

alternative is "surely" better than another. We say that� preserves� if x� y implies

x� y for all x,y ∈ A.13 Dual to the weak order� is a complete preorder D.14

Definition 4. A binary relation� on a weakly ordered set (A,�), preserved by�, satisfies

Lower Negative Transitivity [LNT] at x,y,z if xD yD z and x � z implies either x � y or

y � z.

The definition requires two short comments. First, notice that we rule out the

possibility that xD y and y� x. Hence, xD yD z implies z 6� x, y 6� x and z 6� y. Sec-

ond, if x� z then we interpret this as x being "surely" better than z. The requirement

that either x� y or y� z can be interpreted as follows: when the decision maker can

discriminate between x,z then he can also discriminate between either x,y or y,z.

The consequent result for Binary Threshold models is the following:

12A weak order� is an asymmetric and negatively transitive binary relation.
13This approach has been studied by, among many, Fishburn (1999), Aleskerov et al. (2007), Ok &

Nishimura (2018).
14A complete preorderD is a reflexive, complete and transitive binary relation. Due to the finiteness

of A, such a binary relation has a numerical representation.
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Theorem 3. Let a choice function c have a BT representation. There exists a function ε,

such that for all x,y,z ∈ A with u(x)≥ u(y)≥ u(z), ε(x,z)≥ ε(x,y) + ε(y,z) if and only

if the associated binary relation �c satisfies LNT at x,y,z.

Proof. See Appendix C.2.3.

This result connects violations of the triangle inequality with a new notion of

transitivity. We can provide the same result using Additive Pertubed Utility models

and a restriction on p called Strong Stochastic Transitivity*.

Definition 5. A stochastic choice rule p satisfies Strong Stochastic Transitivity* [SST*] if

for all x,y,z ∈ A both of the following hold:

(i) p(x,y) > 0.5 & p(y,z) > 0.5 ⇒ p(x,z) ≥max[p(x,y), p(y,z)]

(ii) It cannot be that p(x,z) = p(x,y) = p(y,z)

Theorem 4. Let a stochastic choice rule p have a BAPU representation. There exists a

function η, such that for all x,y,z∈ A with u(x)> u(y)> u(z); η(x,z)≥ η(x,y)+ η(y,z)

if and only if p violates SST* at x,y,z ∈ A.

Proof. The proof is constructive and presented in Appendix C.2.4. Here, we present

the main steps of the sufficiency part which is the more involving. As in Theorem

1, we first assign a utility to each alternative simply using the ranking created by

p(x,y) that exists since WST is satisfied. Secondly, we rank couples of alternatives

{x,y} using again p(x,y). Each couple now is assigned a strictly positive number

f (l) that is a function of their position l in the ranking. The number f (l) will be

then multiplied by the difference in utility to form η(x,y) = f (l)|u(x)− u(y)|. The

remaining and more involving passage is to show that f (l) is the solution of a par-

ticular difference equation, that when the initial condition is defined as f (1) = 1 and

f (2) = 2 becomes:

f (l + 1) =
1 + 2(n− 2) + f (l)

1 + (n− 2)

The remaining step consists in constructing a continuous and differentiable cost

function c(p). This step is rather simple and described in the proof of Theorem 2 in

Appendix C.2.2.
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This constructive proof generalize one step of the proof of ?. The authors con-

struct one particular f (l) that turns out to satisfy a similar version of the above

difference equation that guarantee that triangle is satisfied instead of violated.

Theorem 4 requires a brief comment. The restriction on the stochastic choice

rule p is not a general violation of SST*. To illustrate this, suppose that for all triples

apart from x,y,z the stochastic choice rule p satisfies SST*. Then, since this latter is

defined for all triples, we generically say p violates SST*. Theorem 4 states that in

this case we can construct a function η that violates the triangle inequality exactly

at those triples where SST* is violated, while it satisfies the triangle inequality in

all other triples. This is a fundamental difference from Theorem 2, which states that

there exists a η that satisfies the triangle inequality for all triples. A similar reasoning

connects Theorem 1 and 3. Hence, the reader may refer to LNT and violation of SST*

as local properties.

3.3.1 Summary

Theorems 2 and 4 are summarized in Figure 3.1. A similar diagram can be drawn

for deterministic choice using properties of �c. The choices of p(x,y) and p(y,z) are

arbitrary. The axis describes p(x,z):
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p(x,z)

WST*

MST*

SST*

0

0.5

1

p(x,y)

p(y,z)

∀η, η(x,z) > η(x,y) + η(y,z)

∀η, η(x,z) < η(x,y) + η(y,z)

∃η: η(x,z) ≤ η(x,y) + η(y,z)

∃η: η(x,z) ≥ η(x,y) + η(y,z)

6 ∃ BAPU representation.

Figure 3.1. Characterization of stochastic transitivity using triangle inequality.

Let’s show the implications of the results in view of the Paris-Rome example. As-

sume u(P+) = 2.1, u(P) = 2 and u(R) = 1, and η(P+,P) = 0, η(P,R) = η(P+,R) = 1.

Assume also that the cost function is c(p) = p log p (Shannon Entropy). The resulting

stochastic choice function is p(P+,P) = 1, p(P+,P) = 0.75, p(P,R) = 0.73. Note that

MST* is satisfied and η satisfies triangle inequality (note also that η is non-negative

in this example and the result still holds but we observe degenerate probabilities). If

we perturb η(P+,R)± ε with ε > 0 small, we either violate or strictly satisfy triangle

inequality. However, p(P+,R) is either 0.74 or 0.76, hence MST* is still satisfied. This

shows that if the stochastic choice function satisfy MST* but violates SST*, we can

construct η such that triangle inequality is either satisfied or violated as discussed

in Theorem 2 and 4.

3.4 Related Literature

3.4.1 Fechnerian Model

Our results create a connection with a series of stochastic binary models, among

which the most famous is the Fechnerian model. This model is defined as follows,

given a utility function u and a strictly increasing function F:
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p(x,y) = F[u(x)− u(y)]

The model has been axiomatized firstly by Debreu (1958). More recently, Fu-

denberg et al. (2015) proved an equivalence result with Additive Perturbed Utility

models.

Proposition 1. A stochastic choice rule p has a BAPU representation with η(x,y) = 1 for

all x,y ∈ A if and only if it has a Fechnerian representation.15

A more general model, based on a distance function d, has been proposed by

He & Natenzon (2018). The model, which we refer to as "HN representation", is as

follows:

p(x,y) = F
[

u(x)− u(y)
d(x,y)

]
The authors prove that this model is completely characterized by MST*. There-

fore, the next corollary immediately follows:

Corollary 1. A stochastic choice rule p has a BAPU representation where η is a metric if

and only if it has a HN representation.

3.4.2 Fishburn (1973)

Our analysis of BT and BAPU representations suggests a connection between deter-

ministic and stochastic notions of transitivity. This problem has been firstly studied

by Fishburn (1973). We build on his framework to complete the analysis and pro-

vide the reader with a full picture of this connection. If we let the stochastic choice

rule p be primitive, we construct the following binary relation for any parameter

µ ∈ [0.5,1):

�µ= {(x,y) ∈ A× A : p(x,y) ≥ µ}

Note that the binary relation �µ is symmetric for some x,y ∈ A if and only if

15This result is a restatement of Proposition 1 - Fudenberg et al. (2015).
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p(x,y) = 0.5. Whenever p(x,y) > 0.5, for all µ ∈ [0.5,1) we can focus on the asym-

metric part of �µ, which we denote as �µ.

It is important to note that �c has not been assumed to be negatively transitive

in Section 3.2. Hence, its symmetric part may describe indifference and most prob-

ably incompleteness. On the other hand, ∼µ covers only an indifference relation, or

equivalently a case where u(x) = u(y). Similar reasoning can be generalized to cases

of equalities within p as noticed by Fishburn (1973). When equalities are ruled out,

or p(x,y) 6= p(w,z) for all x,y,z,w ∈ X, the following properties are equivalent to the

ones described in previous sections: AST ⇔ WST, PST ⇔ MST* and SST ⇔ SST*.

When one discards the measure zero set of equalities in p a clear bridge between the

stochastic and deterministic worlds on binary sets arises.

Definition 6. A stochastic choice rule p satisfies Acyclic Stochastic Transitivity [AST] if

for any integer k and x1, x2, . . . , xk ∈ A:

[p(a1, a2) > 0.5 & p(a2, a3) > 0.5 & . . . & p(am−1, am) > 0.5] ⇒ p(a1, am) ≥ 0.5

Definition 7. A stochastic choice rule p satisfies Partial Stochastic Transitivity [PST] if for

all x,y,z ∈ A:

p(x,y) > 0.5 & p(y,z) > 0.5 ⇒ p(x,z) ≥min[p(x,y), p(y,z)]

Definition 8. A stochastic choice rule p satisfies Strong Stochastic Transitivity [SST] if for

all x,y,z ∈ A:

p(x,y) > 0.5 & p(y,z) > 0.5 ⇒ p(x,z) ≥max[p(x,y), p(y,z)]

Equivalence Results

AST and PST have been already connected to deterministic properties by Fishburn

(1973). In particular, he proved that for all µ ∈ [0.5,1), �µ is acyclic if and only if

p satisfies AST; and �µ is transitive if and only if p satisfies PST. No equivalence

result has been provided for SST; in other words, there is no deterministic version
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of transitivity that has been shown to provide SST for all µ ∈ [0.5,1). Some reason-

ings suggest that negative transitivity16 can play a role; however, it has almost no

explanatory power in stochastic terms, as was already noticed by Fishburn (1973).

In particular, commenting on his Lemma 5b, he wrote about negative transitivity:

"... when NST [Negative Stochastic Transitivity]17 holds, it requires a fair number of

equalities within p. This may be viewed as further evidence of the general inappli-

cability of NST."

Our proposal to solve this problem is related to the concept of imperfect dis-

crimination, and it has been anticipated with the introduction of LNT. We assume

the existence of what Ok & Nishimura (2018) refer to as "preference structure". Say

that (A,�) is a weakly ordered set and � is a binary relation that is preserved by

� as defined in Section 3.3. The dual of � is again denoted as D. We define one

new property called Higher Negative Transitivity.

Definition 9. A binary relation� on a weakly ordered set (A,�), preserved by�, satisfies

Higher Negative Transitivity [HNT] if for all x,y,z ∈ A such that xD yD z we have: (1)

x � y implies either x � z or z � y and (2) y � z implies either x � z or y � x.

This property, together with LNT, enables us to provide a characterization of SST

in terms of deterministic properties, and to complete the analysis initiated by Fish-

burn (1973). Note that the two properties are defined differently. HNT is defined for

all x,y,z ∈ A, while LNT is defined locally. The reasoning behind this definitions is

contained in the following propositions.

Proposition 2. A stochastic choice rule p either violates SST or satisfies it with equality at

x,y,z ∈ A if and only if in the same alternatives �µ satisfies LNT for all µ ∈ [0.5,1).

Proof. Suppose �µ violates LNT for some µ; then it must be that p(x,z) > µ while

p(x,y) < µ and p(y,z) < µ; but then SST is satisfied with inequality. Suppose SST is

satisfied with inequality; then set µ = p(x,z)− ε and LNT is violated.
16A binary relation � is negatively transitive if for all x,y,z ∈ A: x 6� y and y 6� z implies x 6� z. It

can be equivalently stated as: x � z implies either x � y or y � z.
17Negative Stochastic Transitivity was defined as: p(x,z) > 0.5 ⇒ max[p(x,y), p(y,z)] ≥ p(x,z). It

was shown to be equivalent to � satisfying Negative Transitivity [NT]. Hence, for all x,y,z ∈ A, if x 6� y
and y 6� z then x 6� z.
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Proposition 3. A stochastic choice rule p satisfies SST if and only if �µ satisfies HNT for

all µ ∈ [0.5,1).

Proof. Suppose �µ violates HNT, then either p(x,y) or p(y,z) are strictly greater

than p(x,z) violating SST. Suppose SST is violated, then set

µ = max[p(x,y), p(y,z)]− ε

for a small ε > 0, and HNT is violated.

Before summarizing the results in an implication diagram, we describe in a re-

mark what are the connections between transitivity and the two new properties LNT

and HNT.

Remark 2. Since transitivity is equivalent to PST, it is implied by HNT, which in fact

is equivalent to SST. Instead, LNT and transitivity are not connected. For instance,

x � y � z violates transitivity, but not LNT; x � z satisfies transitivity but violates

LNT. Similarly, if p satisfies only AST, then� satisfies LNT but not transitivity; while

if p satisfies SST with inequality, then � satisfies transitivity but not LNT.

We are now ready to complete part of the implication diagram initiated by Fish-

burn (1973). We will denote the special case where SST is satisfied with equality

as SST≈, and the case where it is violated with inequality or satisfied with equality

as SST. Hence, it must be that SST≈ = SST ∧ SST. All the results of this section

are summarized in the diagram below, and show a perfect symmetry between the

deterministic and stochastic versions of transitivity.
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ATHNTNT

HNT ∧ LNT LNT HNT ∨ LNT

ASTPSTSSTSST≈

SST ∧ SST SST SST ∨ SST

Figure 3.2. Implication Diagram for the results of Section 3.4.2.

3.5 Conclusion

This Chapter provides a new characterization of stochastic transitivity related to the

well-known concept of imperfect discrimination. As the main message, we show

that in Fechnerian models, triangle inequality and transitivity are closely connected.

This notion allows us to organize a wide range of stochastic models in accordance

with a very general version of Fechnerian models. Furthermore, given that all the

proofs are constructive, we provide simple algorithms to construct both the utility

function and imperfect discrimination parameter.
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Appendix to Chapter 1

A.1 Minor Results and Remaining proofs

A.1.1 Proof of Proposition 2

By transitivity, completeness of R and the finiteness of X; we can make use of a

result from Krantz et al. (1971): there exists a real-valued function φ on X such that

for all x,y ∈ X; xRy if and only if φ(x) ≥ φ(y).

A corollary of this result goes as follows: let φ : X → Rn−1, where |X| = n, be

a vector valued function and φ(x)z be the value assigned to x when compared to

z. Then, by the previous result, φ(x)z = φ(x)y for all y,z 6= x. The proof is triv-

ial. Suppose the above is false; then we may have φ(x)y > φ(y)z > φ(z)x violating

transitivity.

Given two generic elements x,y we can partition the collection of observations

in eight sets with the following cardinalities: Cxy, Cyx have already been defined;

Cx,−y = |{S ∈ D : x = C(S),y 6∈ S}| and similarly Cy,−x; B = Bxy = Byx = |{S ∈ D :

z = C(S); x,y ∈ S}|; Dxy = |{S ∈ D : z = C(S), x ∈ S,y 6∈ S}| and similarly Dyx; E =

Exy = Eyx = |{S ∈ D : z = C(S); x,y 6∈ S}|.

Let’s first focus on B and E. On these collection of observations, Neutrality

implies xICD y. Suppose u(x) ≥ u(y), then Cx,−y ≥ Cy,−x. By induction, suppose

Cx,−y + Cy,−x = 1 such that x = C(S), then by Choice non-negativeness xRCD y. Sup-

pose the hypothesis holds for Cx,−y + Cy,−x = n, and take Cx,−y + Cy,−x = n + 1

(note that in both cases Cx,−y ≥ Cy,−x). Suppose by contradiction that yPCD x. Then,

86
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if we remove one observation where x is chosen, Choice non-negativeness is vio-

lated. Hence, xRCD y. Similarly, Cxy ≥ Cyx implies xRCD y by Informational Respon-

siveness, Choice non-negativeness and Neutrality. Note that u(x) ≥ u(y) implies

Cx,−y ≥ Cy,−x and Cxy ≥ Cyx doesn’t hold for a generic domain D. However, it holds

for a homogeneous domain.

To complete the proof we need to extend the argument to Dxy and Dyx. How-

ever, note that u(x) ≥ u(y) implies Dyx ≥ Dxy and there are no constraints on how

such observations should influence the ranking between x,y since a third element

is chosen. Hence, a method that associate a positive value to the observations

of the type Dxy, Dyx could led to u(x) > u(y) and yPCx. However, by the corol-

lary of Krantz et al. (1971) result, which is based on Transitivity, we can focus on

Dx = ∑z 6=x |{S ∈ D : z = C(S), x ∈ S}| instead of Dxy. In other words, the value

assigned by a method to the observation z = C(S), x ∈ S, y 6∈ S must be equal to

the one assigned to y = C(S), x ∈ S, z 6∈ S.; otherwise this could potentially lead

to cycles. Hence, suppose by contradiction that u(x) > u(y) and yRCD x. It must

be that the value attached to observations in Dx is positive, since Dy > Dx. How-

ever, we proved that xPCD y over the collections of observations with cardinalities

Cx,−y, Cy,−x,Cxy, Cyx, B, E. Suppose we add an observation of the type x = C(S),

y ∈ S. Clearly, Dy increase by a positive value. However, since we assumed yRCD x

then Choice non-negativeness is violated. In words, these axioms allow a method

to attach a positive value to observations of the type Dx, however this value must

be smaller than the value attached to observations of the type Cxy as clear from the

following example.

Example 1. Take X = {x,y}, u(x) > u(y) and a method g such that:

xRC
g y⇔ Hx ≥ Hy

where Hx = a · Cx + b · Dx with b = 2 > a = 1.

 S {x,y}

C(S) (5,5)


 S {x,y}

C(S) (6,5)
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From the first dataset we infer Hx = 15 and Hy = 15 and so xICD y; from the second

dataset we infer Hx = 16 and Hy = 17 and so yPCD x violating Choice non-negativeness

(and in this case also Informational Responsiveness).

A.1.2 Some auxiliary facts about Counting Procedures.

The reader may have observed that when the restrictions of Theorem 2 apply, adding

information implies removing information in the definition of (Strong) Informa-

tional Responsiveness. Hence, this latter could be, in principle, omitted by the defi-

nition.

Claim 1. If a method g satisfies Choice non-negativeness then the second consequent in the

definition of Informational Responsiveness can be omitted.

Proof. Suppose by contradiction that if xICD y and x = C(S) then xRCD\S y. Then, if

xICD\S y, we immediately contradict Informational Responsiveness in its first conse-

quent. If xPCD\S y, then Choice Non-Negativeness is violated.

More interesting than the trivial proof is an example that shows the indepen-

dence of adding and removing data. Let xPCD y when |D| < 2 and xRCD y if and

only if Cx ≥ Cy when |D| ≥ 2. Moreover, CC holds for all other z 6= x,y. Notice that

this method violates Neutrality and Choice non-negativeness. However, it satisfies

Informational Responsiveness in its first consequent since it does vacuously when

|D| < 2. However, it violates Informational Responsiveness in its second conse-

quent. Let x = C(S) and y = c(T), then xICD y. If S is removed then xPCD y violating

the second consequent.

In Section 1.6 we introduced Robustness as an appealing characteristic of welfare

methods. We also claimed that it is redundant in proving Theorem 2 since it is im-

plied by the collection of other axioms. This result can be shown easily as a corollary

of Theorem 2, using the transitivity property of the counting choice method.

Corollary 1 (Theorem 2). Independence, Neutrality, Stability and Strong Informational

Responsiveness imply Robustness

Proof. Suppose, by contradiction, xPCD zPCD y and yRCD\S x. If yPCD\S x then Stability

is contradicted. Suppose yICD\S x. If z = C(S) then Independence is contradicted. If
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y = C(S) then Strong Informational Responsiveness is contradicted. If x = C(S) then

we exploit the transitivity property of Cx ≥ Cy. In fact, by Independence zPCD\S y; by

Stability either xICD\S z or xPCD\S z, and in both cases transitivity is contradicted.

A.1.3 Proof of Proposition 3

Similarly to the others, the proof is by induction on the cardinality of the domain.

If |D| = 0 then xICD y by Neutrality and Completeness. Suppose |D| = 1 if x =

C(S) then xPCD y by Strong Positive Responsiveness. If z = C(S) then xICD y by

Independence.

Suppose |D| = 2 and Cx = Cy then:

• if x = C(x,y), y = C(x,y) then xICD y by Neutrality.

• if x = C(x,y), y = C(y,z) then suppose xPCD y. If we add z = C(x,z) we

have xPCD∪{x,z}y by Independence. So, the possible results by Transitivity are

xPCD∪{x,z}yPCD∪{x,z}z or zPCD∪{x,z}xPCD∪{x,z}y or xICD∪{x,z}zPCD∪{x,z}y or xPCD∪{x,z}zPCD∪{x,z}y.

However, take the permutation π(x) = y, π(y) = z and π(z) = x. The choice

function is preserved while the binary relations are not. Hence, we have a

contradiction, implying xICD y.

• if x = C(x,z), y = C(y,w). Then, take π(x) = y, π(y) = x, π(z) = w and π(w) =

z and by the same argument as before xICD y.

Now, suppose |D|= n, assume the statement is true and take |D ∪ {T}|= n + 1.

Suppose Cx > Cy then if x or y are chosen from T, xPCD∪T y by Strong Positive Re-

sponsiveness and the inductive hypothesis. If z is chosen, xPCD∪T y by Independence

and the inductive hypothesis.

Suppose Cx = Cy and z = C(T) then the results holds by Independence. If y or

x is chosen then xPCD y (or yPCD x) by the inductive hypothesis. Hence, suppose

by contradiction that yPCD∪T x, then there exists a set T such that x is chosen since

Cx = Cy. Hence, by the inductive hypothesis, Strong Positive Responsiveness is

violated since xPCD y.
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A.1.4 Proof of Theorem 3

Let |D| = 0, then by Neutrality and Completeness xICD y. Let D = {S} and z =

C(S). If either x 6∈ S or y 6∈ S or both then xICD y by Connection. If x,y ∈ S then by

Neutrality xICD y. Suppose that x = C(S); if y 6∈ S then xICD y by Connection. If y ∈ S

then xPCD y by Informational Responsiveness. Take D = {S, T}. If z = C(T) and

Cxy = Cyx = 0 then xICD y by Connection and Neutrality; if Cxy = 1 then xPCD y again

by Connection and Neutrality. Let x = C(T); if Cxy = 2 then ¬yPCD x by Stability;

suppose xICD y then it should be yPCD\T x by Informational Responsiveness, but this

contradicts the premise; hence xPCD y. If Cxy = Cyx = 1 then xICD y by Stability and

Completeness.

Suppose the result holds for |D| = n and take |D ∪ T| = n + 1. If Cxy = Cyx and

x = C(T) then xCD∪T y by Stability and Completeness. If z = C(T) then the results

holds by either Connection or Neutrality. If Cxy − Cyx = 1 then xPCD∪T y by Informa-

tional Responsiveness and the inductive hypothesis. If Cxy−Cyx > 1 then ¬yPCD∪T x

by Stability and the inductive hypothesis. Suppose xICD∪T y, then removing x = C(T)

it should be yPCD x contradicting the inductive hypothesis, hence xPCD∪T y.

A.2 Comments on Additivity and Continuity

A.2.1 Continuity

Our axioms are defined over an abstract setting. In this appendix section we anal-

yse the problem from a different perspective. The rationale for this analysis is that

Stability reminds closely Bolzano’s theorem (which is the equivalent of intermediate

value theorem around zero). However, to draw this connection we need to endow

domain and codomain with a metric topology.

A method is a map from a set of choice functions to a set of binary relations. If

we focus on CC we can alternatively see it as a map that assigns to any alternative

a non-negative integer. In this case, we can endow the set of non-negative integers

with the metric |x − y| for all x,y ∈ Z . Since a method maps to a set of binary

relations, we then write xPC
CCy if and only if Cx − Cy > 0 and xIC

CCy if and only if

Cx − Cy = 0.
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It is less straightforward to endow the space of choice functions C with a metric.

However, we can define a metric between two choice functions Ci,Cj ∈ C using

the symmetric distance (Klamler, 2008): d(Ci,Cj) = ∑
S∈K
|∆(Ci(S),Cj(S))| = where

|∆(Ci(S),Cj(S))| = |(Ci(S) ∪ Cj(S)) \ (Ci(S) ∩ Cj(S))|. Klamler (2008) proposes this

distance restricted to a fix domain D. We generalize it allowing D to change while

keeping the choice function C fixed. In this case we can just take the symmetric

difference among domains. Hence, for all D1, D2 ∈ D, ∆(D1, D2) = |(D1 ∪ D2) \

(D1 ∩ D2)|. It is easy to verify that for a fixed domain D ⊆ X and for any three

choice functions CD
i ,CD

j CD
l ∈ C (D):

d(CD
i ,CD

j ) ≥ 0

d(CD
i ,CD

i ) = 0

d(CD
i ,CD

j ) = d(CD
j ,CD

i )

d(CD
i ,CD

l ) ≤ d(CD
i ,CD

j ) + d(CD
j ,CD

l ).

minCD
i 6=CD

j
d(CD

i ,CD
j ) = 2

On the other hand, if for a fixed choice function C∈C , and for any three domains

D, D∗, D
′ ∈ D:

d(CD,CD∗) ≥ 0

d(CD,CD) = 0

d(CD,CD∗) = d(CD∗ ,CD)

d(CD,CD
′
) ≤ d(CD,CD∗) + d(CD∗ ,CD

′
) 1

minD 6=D∗d(CD,CD∗) = 1

A welfare method is now a function between metric spaces. We recall the general

definition of ε,δ continuity:

Definition. A function f : R→ R is continuous at p ∈ R if for any ε > 0 there exists δ > 0

s.t. for all x ∈ R if |p− x| < δ then | f (p)− f (x)| < ε.

In this classical definition, we can set a δ as function of x and ε can be any number

1Let’s take D1, D2, D3 ∈ X : d(D1, D3) = |(D1 \ D3) ∪ (D3 \ D1)|. Given D2 we have D1 \ D3 =
(D1 \ (D2 ∪ D3)) ∪ ((D1 ∩ D2) \ D3). So, show that (D1 \ D3) ∪ (D3 \ D1) ⊆ (D1 \ D2) ∪ (D2 \ D1) ∪
(D2 \ D3) ∪ (D3 \ D2):
[(D1 \ (D2 ∪D3))∪ ((D1 ∩D2) \D3)]∪ [(D3 \ (D1 ∪D2))∪ ((D2 ∩D3) \D1)]⊆ [(D1 \ (D2 ∪D3))∪

((D1 ∩ D3) \ D2)] ∪ [(D2 \ (D1 ∪ D3)) ∪ ((D1 ∩ D2) \ D3)] ∪ [(D2 \ (D1 ∪ D3)) ∪ ((D2 ∩ D3) \ D1)] ∪
[(D3 \ (D1 ∪ D2)) ∪ ((D1 ∩ D3) \ D2)]

In fact, note that [(D1 \D2)∪ (D2 \D1)∪ (D2 \D3)∪ (D3 \D2)] \ [(D1 \D3)∪ (D3 \D1)] = ((D1 ∩
D3) \ D2) ∪ (D2 \ (D1 ∪ D3)) ∪ (D2 \ (D1 ∪ D3)) ∪ ((D1 ∩ D3) \ D2)
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however small. In the discrete case, both δ and ε have some bounds. We rely on

Johnsonbaugh (1998), who introduces an intermediate value theorem for integer-

valued functions with a definition of continuity where δ = ε = 1:

Definition. Let f an integer-valued function defined on the integers in [m,n]. Suppose

(as the equivalent of a continuity assumption) that | f (i)− f (i + 1)| ≤ 1 for m ≤ i < n. If

f (m) f (n) < 0, then f (x) = 0 for some integer x in (m,n).

For example, if we focus on CC, continuity is based on a "marginal change" δ

in the domain which is mind>0d(Ci,Cj) = 1. Since the codomain is the set of non-

negative integers with the metric |x− y|, the minimum change greater than zero is

ε = 1. Hence, the counting choice method, CC : (C (D),d)→ (Z , | · |), can be charac-

terized using Neutrality, Strong Informational Responsiveness, Independence and

(1-1)-Continuity.

In general, the definition of Continuity depends on the distance defined on the

space of choice functions. This distance is primitive and, in fact, using Stability

we assume the marginal change to be δ = |D| − |D \ {S}|. However, the reader

may imagine a different δ that changes with respect to the cardinality of the set

involved in the marginal change. In principle, one could consider a bigger set more

important than a smaller one. Once δ is defined, then ε will describe the "degree" of

continuity of the function. For instance, if ε = 2, then CC would be continuous

among intervals of 2, while into an interval of 2 it could move discontinuously.

Therefore, we can interpret the level of ε as a measure of robustness in the following

way: if xPz1P . . . PzεPy then xPCD\S y.

A.2.2 Additivity

In this appendix section, we comment on a second framework that may be of in-

terest: conjoint measurement. When we think about a function that ranks the alter-

natives, it could be of some interest to think of it as a function that extracts some

information about the importance of each alternative from each set. This definition

is in line with the literature of conjoint measurement where each set is considered

as an attribute of the alternative importance. Krantz et al. (1971) shows that given a

product space, there exists an additive conjoint representation only if Rg is rational,
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independent and solvable. We refer the reader to Krantz et al. (1971) for the result

and definitions.

The reader may note that CC clearly admits an additive conjoint representation.

An interesting exercise is to verify if other methods such as MS and EIG have such

representation. The task is quite straightforward since the independent condition is

necessary.

Definition. A preference relation Rg is independent if (xi, x−i)Rg(yi, x−i) is equivalent to

xiRgyi for all i ∈ {1,2, . . . ,n}.

The conjoint representation over the product space can be described using a

function F given a choice function C and a list of sets S. F(C(Si))S∈D is F : X|D| →

R |X| while the function of a single element is Fx : X|D|→R. Then if additivity holds,

we would have Fx(C(Si))S∈D = φx(C(S1)) + · · ·+ φx(C(Sn)) for some function φ.

Our examples will make use of xICD
g y via the following trick: take a permutation

π as defined in Chapter 1 such that π(x) = y, π(y) = x and π(z) = z for all z 6= x,y;

then use Neutrality to provide the contradiction. The counterexamples that involve

MS and EIG will make this trick clear.

Take the choice function: C(x,y) = x, C(x,y,z) = y, C(x,z) = z. The swaps

solution here suggests yPCD
MSx. By Neutrality the permutation π produces xPCD

MSy.

Let’s now add C(x,z) = z on both the choice functions. In the original choice func-

tion we still have yP
CD∪{x,z}
MS x, but in the one after the permutation we have xIC

MSy.

This suggests that the new set is helping y in some way. But then by Krantz’s in-

dependence we should have yP
C{x,z}
MS x only over z = C(x,z) which is a contradic-

tion. Hence, the preference relation resulted from MS is not independent into the

choice function and so there exists no additive conjoint representation such that

Fx(C(Si))S∈K ≥ Fy(C(Si))S∈K ⇔ xRMSy.

The same can be proved for the EIG method. Take the following choice function:

C(x,z) = x, C(w,y) = w. Here, xPCD
EIGy and given a permutation π, by Neutrality,

yPCD
EIGx. Let’s now add other two choices, namely C(w,y) = w and C(z,w,y) = z.

Here, in the first choice function we have xP
CD∪{w,y},{z,w,y}
EIG y, but in the second one we

have xI
CD∪{w,y},{z,w,y}
EIG y. This suggests that the two new choices help x over y. But, EIG

doesn’t discriminate between two elements if they are never chosen; even though
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they are beaten a different number of times. Hence, Fx(C(w,y) = w,C(z,w,y) = z) =

Fy(C(w,y) = w,C(z,w,y) = z); which contradicts the independence condition.
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Appendix to Chapter 2

B.1 Alternatives

We start presenting the rationale behind the parametrization of delayed payment

plans and lotteries. A drawback of the experiments of Manzini et al. (2010) and

Barberá & Neme (2017) was that some alternatives were dominated if the decision

maker happened to be a discounter. This problem led to a very high number of

rational subjects and therefore a low level of heterogeneity in preferences.

Following Agranov & Ortoleva (2017), we construct the MAIN alternatives with

no clear domination. We run a pilot experiment in the game theory classes of the

Queen Mary University of London to confirm the presence of heterogeneity in pref-

erences.

95
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B.1.1 Time

Table B.1. List of Delayed Payment Plans

0 3 6 9 12

ONE SHOT (OS) 160 0 0 0 0
M(OS) 140 0 0 0 0

Im(OS) 0 160 0 0 0

DECREASING (D) 110 50 25 0 0
M(D) 100 40 10 0 0

Im(D) 0 110 50 25 0

CONSTANT (K) 50 50 50 50 0
M(K) 40 40 40 40 0

Im(K) 0 50 50 50 50

INCREASING (I) 0 15 40 170 0
M(I) 0 10 20 160 0

Im(I) 0 0 15 40 170

NEUTRAL
Neu1 15 55 30 20 5
Neu2 5 20 30 55 15

MONTHS

ALTERNATIVES

NOTE -- The amounts are described in Token. The exchange rate was fixed at 20:1 pounds. The confounding
alternatives are divided in: (1) "M" or Monotonicity Dominated; (2) "Im" or Impatience Dominated. The first
is obvious; the second regards sequence of payments with the same total summation but paid three months
later.

Table B.1 presents the comprehensive list of delayed payment plans. We use a quasi-

hyperbolic discounting model1: u(x0, . . . xt) = x0 + β ∑t=1,2,... γtxt. This specification

displays a present bias for β < 1. Among many Benhabib et al. (2010) find that in an

experimental setting subjects display a significant present bias2. We set β = 0.9 such

that the following preferences arise for different levels of γ:

1See Laibson (1997) or Phelps & Pollak (1968) for a review of quasi-hyperbolic discounting. Note
the following difference in modelling discount utility:

• Exponential Discounting: v(x0, . . . xt) = ∑t=0,1,2,... βtu(xt);

• Quasi-Hyperbolic Discounting: v(x0, . . . xt) = u(x0) + β ∑t=1,2,... γtu(xt);

• Hyperbolic Discounting: v(x0, . . . xt) = ∑t=0,1,2,...[∏t=0,1,2,... γ(t)]u(xt).

2Benhabib et al. (2010) use a slightly different specification with fixed cost to represent the present
bias.
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Discount rate Preference− (�)



0.985 < γ ≤ 1 I� K�D�OS

0.982 < γ ≤ 0.985 I�D� K�OS

0.974 < γ ≤ 0.982 D� K� I�OS

0.965 < γ ≤ 0.974 D� K�OS� I

0.926 < γ ≤ 0.965 D�OS� K� I

0 < γ ≤ 0.926 OS�D� K� I

The construction is meant to penalise the two simple alternatives, OS and K.

The former is either first or second best for γ < 0.965, which would imply an an-

nual discount rate of about 0.65; while the latter is never a first-best alternative. This

choice has been driven by the necessity of avoiding "simplicity seeking" heuristics as

observed by Iyengar & Kamenica (2010). Conversely, the main difference between

D and I payment plans is the present bias, which is a feature of quasi-hyperbolic

discounting. In fact, without present bias we should observe I chosen by most indi-

viduals since, in an exponential model, it is the best element for any annual discount

rate bigger than 0.974. The exponential model maintains the feature that K and OS

are never the best alternatives. This reveals that any choice of these two payment

plans in a set with all alternatives available is due to (i) heuristics; (ii) exceptionally

low discount rate; (iii) negative or non-monotone time preferences that would need

the more complex hyperbolic discounting model to be encountered.
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B.1.2 Risk

Table B.2. List of Lotteries

DEGENERATE (D) 50 0 1 0 50 0
F1(D) 45 0 1 0 45 0
F2(D) 50 0 0.95 0.05 47.5 10.9
So(D) 51 0 0.95 0.05 48.45 11.12

SAFE (S) 65 25 0.8 0.2 57 16
F1(S) 60 20 0.8 0.2 52 16
F2(S) 65 25 0.75 0.25 55 17.32
So(S) 70 15 0.7 0.3 53.5 25.2

FIFTY-FIFTY (50) 95 20 0.5 0.5 57.5 37.5
Sim 100 0 0.5 0.5 50 50

F2(50) 95 20 0.45 0.55 53.75 37.31
So(50) 110 20 0.4 0.6 56 44.09

RISKY (R) 300 5 0.2 0.8 64 118
F1(R) 250 5 0.2 0.8 54 98
F2(R) 300 5 0.15 0.85 49.25 105.34
So(R) 500 5 0.1 0.9 54.5 148.5

NOTES -- The amounts are described in Token. The exchange rate was fixed at 10:1 pounds. The confounding alternatives are
divided in: (1) "F1" and "F2" - First Order Stochastically Dominated; (2) "So" - Second Order Stochastically Dominated; (3) Sim -
SIMPLE. This latter was created to check for "simplicity seeking" heuristics connected to simple numbers.

ALTERNATIVES TOKEN PROBABILITIES EV SD

Table B.2 presents the comprehensive list of lotteries. The parametrization follows a

CRRA utility function with parameter γ such that the following preferences arise:

Risk parameter Preference− (�)



0≤ γ < 0.1 R� 50/50� S�D

0.1≤ γ < 0.2 S� 50/50� R�D

0.2≤ γ < 0.6 S� 50/50�D� R

0.6≤ γ < 1.9 S�D� 50/50� R

γ ≥ 1.9 D� S� 50/50� R

Some evidence about estimation of risk aversion parameters in laboratory (Bom-

bardini & Trebbi, 2012), (Harrison & Rutstrom, 2008), (Soltani et al., 2012) and on

field (Kim & Lee, 2012) seem to suggest that in binary sets S, 50/50 and R should
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obtain a substantial amount of choices since γ > 1 has been rarely observed, es-

pecially in laboratory experiments. R has been designed to attract risk neutral in-

dividuals, while 50/50 has been slightly penalised against S due to the fact that it

could be chosen using simplicity seeking heuristics (Iyengar & Kamenica, 2010). In

general, the amount of token in the three non-degenerate lotteries has been set in

order to avoid simple amounts such as (10, 100 or 1000) and make the calculation

of expected values not straightforward. Finally, the SIMPLE lottery (100,0) with 50

percent probability has been created to test the robustness of the simplicity seek-

ing argument. Notice also that Second Order Stochastically Dominated alternatives

have a smaller mean than the MAIN alternatives. This was to guarantee a suffi-

cient choice of MAIN alternatives as well as highlight subjects with risk-seeking

behaviour.

B.2 Order of Questions

Another drawback of previous experimental designs was the absence of confound-

ing alternatives. This is a crucial feature of our design since it allows us to observe

violations of structural axioms such as monotonicity or impatience and to reduce

the learning effect. The construction of the questions is based on the literature re-

garding the order effect. A survey can be found in Day et al. (1987). They identify

four factors as sources of order effects:

1. Discovered preference hypothesis (Plott, 1993) and Institutional learning.

The first refers to respondents that, when faced with new decisions in unfa-

miliar environments, exhibit significant randomness in initial decisions. The

second is related to the fact that respondents may have never experienced a

lab experiment and surely they have never experienced the present design;

2. Fatigue: respondents may get tired of the choice task, especially if it is re-

peated many times. Hence they could exhibit higher randomness in later

tasks;

3. Starting point effect: Respondents may create a reference point in some choice

task and based subsequent choices on that.
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Table B.3. List of Questions - Time

QUESTIONS
1 OS D
2 OS K
3 OS I
4 D K
5 D I
6 K I
7 OS D K
8 OS D I
9 OS K I
10 D K I
11 OS D K I
12 D I M(D)
13 D I M(I)
14 D I Im(D)
15 D I Im(I)
16 Im(OS) Im(D) Im(K) Im(I)
17 M(OS) M(D) M(K) M(I)
18 Neu1 Neu2
19 M(OS) M(D) Neu1 Neu2
20 Im(K) Im(I) Neu1 Neu2
21 D I M(D) M(I) Im(D) Im(I) Neu1 Neu2
22 OS D K I M(OS) M(D) M(K) M(I) Neu1 Neu2
23 OS D K I Im(OS) Im(D) Im(K) Im(I) Neu1 Neu2
24 D I M(OS) M(K) Im(OS) Im(K) Neu1 Neu2
25 OS D K I M(OS) M(D) M(K) M(I) Im(OS) Im(D) Im(K) Im(I)

B
I
G

ALTERNATIVES

M
A
I
N

A
D

Table B.4. List of Questions - Risk

QUESTIONS
1 D S
2 D 50
3 D R
4 S 50
5 S R
6 50 R
7 D S 50
8 D S R
9 D 50 R

10 S 50 R
11 D S 50 R
12 S R F1(S)
13 S R So(S)
14 S R F1(R)
15 S R So(R)
16 F2(D) F2(S) So(50)
17 F2(D) F2(R) So(50)
18 F2(S) F2(50) F2(R)
19 F2(50) Sim
20 D S 50 R So(D) So(S) So(50) So(R) F1(D) F1(50)
21 D S 50 R So(D) So(S) So(50) So(R)
22 D S 50 R F2(D) F2(S) F2(50) F2(R)
23 Sim S 50 R So(D) So(S) So(50) So(R)
24 Sim R S 50 D So(D) So(S) So(R)
25 D S 50 R F1(D) F1(S) F1(50) F1(R) Sim F2(R)

B
I
G

ALTERNATIVES

M
A
I
N

A
D

In order to reduce the magnitude of the first two effects, we construct confound-

ing alternatives, as described in Appendix B.1. We also avoid that subjects create
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an immediate knowledge of the MAIN alternatives designing a heterogenous list of

questions. This design feature has been previously exploited by Badescu & Weiss

(1987) and suggested by Charness et al. (2012). As described in Table B.3 and B.4, the

questions are divided into three main domains: MAIN, AD and BIG. The remaining

questions are neutral questions.

As suggested in Carlsson et al. (2012) and Ladenburg & Olsen (2008), we in-

clude three trial questions before each part of the experiment in order to reduce in-

stitutional learning. These questions have irrelevant alternatives and different num-

bers of alternatives as to not affect the preferences of individuals or create reference

points.

Fatigue is not a major issue. Numerous studies find no or small differences in

preferences due to fatigue in experiments with a sequence of identical choice prob-

lems (Carlsson et al., 2012) (note that our choice problems are not identical). We set

the number of questions to 50, more or less in line with the literature: Agranov &

Ortoleva (2017) asked 70 questions, Cavagnaro & Davis-Stober (2014) 120 questions,

Manzini et al. (2010) 22 questions, Barberá & Neme (2017) 16 questions. However,

the first two experiments involved pairs of lotteries and so they have a simpler de-

sign compared to our experiment; while the second two experiments lasted only 15

to 30 minutes which is much less than usual experiments in the field.



Appendix 102

Table B.5. List of Orders

ORDER 1 ORDER 2 ORDER 1 ORDER 2
21 24 23 21
14 14 13 13
1 4 1 4
23 16 20 24
10 3 10 3
13 13 14 14
3 1 3 1
19 17 16 18
7 8 7 8
22 22 22 22
2 10 2 10
18 18 19 19
11 11 11 11
20 19 17 16
15 15 15 15
9 9 9 9
25 25 25 25
8 6 8 6
17 23 18 20
4 2 4 2
12 12 12 12
16 7 24 7
6 20 6 17
5 5 5 5
24 21 21 23

TIME RISK

In Table B.5 we present the four orders that have been used. The construction

of the two orders, both in Time and Risk, has followed a structural randomization.

Namely, we divided the alternatives in the four similarity groups shown in Table B.3

and B.4. Then, we randomized the positions in order to avoid, as much as possible,

similar questions to arise consecutively. In order to test for reference points and,

more generally order effects, we fixed the position of certain questions (e.g. number

11) while for others we inverted positions (e.g. number 21 and 24).

In Table B.6 we present the descriptive statistics related to the four possible treat-

ments for WARP violations in the MAIN sets:

1. Order 1 & Time/Risk;

2. Order 1 & Risk/Time;

3. Order 2 & Time/Risk;
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4. Order 2 & Risk/Time.

Table B.6. WARP Main Sets - Treatments

Mean Std. Dev. Mean Std. Dev.
Treatment 1 1.8333 2.7826 5.0555 3.8689
Treatment 2 2.7179 3.6343 5.5128 3.4859
Treatment 3 1.5333 2.1613 3.7667 2.9088
Treatment 4 1.6500 2.6365 5.3250 3.1896

TIME RISK

NOTES -- In Time no difference in the mean among Treatments is statistically significant.
In Risk the 3rd Treatment has less violations than the 1st and 4th with significance at 5%.

B.3 Questionnaire

In order to have more insights into the understanding of the experiment, we con-

ducted a non-incentivized questionnaire. In the first part, summarized in Table B.7,

subjects were asked to agree or disagree with some statements. We find that over-

all subjects show both a good understanding of the experimental design and of the

instructions. They also report signals of learning effect expressed both in terms of

preference learning and quicker response times. The reward has been considered

overall a significant contribution of their daily budget.
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Table B.7. Questionnaire 1

MEAN SDQUESTIONS

1
"I got a good understanding of overall experiment (incentives, how

to choose, nature of the alternatives)".
1.552 0.600

2
"The instructions and explanations provided have been enough to

understand experiment's duties".
1.366 0.622

3
"The clarity of my preferences on the alternatives improved

during the course of the experiment".
1.993 0.961

NOTE - Subjects could reply to this statement choosing one of the following: "Strongly Agree", "Agree", "Neutral",
"Disagree", "Strongly Disagree". The answers have been matched to numbers from 1 to 5; where 1 is "Strongly
Agree" and 5 is "Strongly Disagree".

4
"The time required for choosing has reduced during the course of

the experiment".
1.931 1.045

5
"The money I earn through participating in this experiment is a

substantial contribution to my daily budget"
2.462 1.167

In the second part of the questionnaire (Table B.8), subjects were asked to reply

with a "Yes" or "No" to a series of questions about the structure of the experiment

and their behaviour. Overall they accepted the idea that some questions were more

difficult than others and they indicated the high number of alternatives as to the

main source of complexity. Strangely, but comprehensively, most of the subjects had

the impression that some questions were repeated even though it was not the case.

They overall confirm to have read all alternatives before choosing; importantly note

that reading and paying attention sometimes do not overlap. Finally, they confirm

the presence of reference point effects.

Questions 6 and 7 focus on the reasoning of subjects. About half of the subjects

report risk neutrality via the use of the "highest expected value" criterion; while

about two thirds report patience via the use of the "highest summation" criterion.
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Table B.8. Questionnaire 2

YES NOQUESTIONS

1
"Did you find that some questions were more difficult than

others?"
123 22

2
"If yes, what features did play a main role in making these

questions more difficult?" [YES - High number of alternatives] -
[NO - Complexity of some alternatives]

92 53

3 "Do you think some questions were asked multiple times?" 133 12

4
"Did you always read all the alternatives carefully before

choosing?"
118 27

5 "Did you base some decisions on previous choices?" 123 22

NOTE - Question 2 wasn't given to subjects as a YES/NO; but here it has been translated into YES/NO to ease the
Table representation.

6
"In case of lotteries, in general, did you calculate the expected

value and choose according to the "highest expected value"
criterion?"

75 70

7
In case of delayed payment plans, in general, did you calculate the

summation of the plan and choose according to the "highest
summation" criterion?

97 48
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B.4 Instructions

Figure B.1. General Instructions

5

General Instructions
This is an experiment in the economics of decision-making and in particular risk and time attitudes of individuals.

Notice there is no RIGHT or WRONG answer for any of these questions. We are interested in studying your
preferences.

The tasks are extremely simple and if you make good decisions you may earn a considerable amount of money that
will be paid to you by direct debit at the end of the experiment and at particular times in the future.

The currency in this experiment is called tokens.

The experiment should last at maximum 1:30 hour even though more probably around 1 hour. It is divided in four
parts:

1. Part 1: 25 Questions;

2. Part 2: 25 Questions;

3. Questionnaire

4. Test

At the end of experiment, the computer will randomly choose on question for each part of the experiment and pay
your choice. In case of Lottery the computer will also play out the Lottery according to the respective probabilities.

Your total earning from the experiment will consist of the sum of three components:

1. One Choice from Part 1;
2. One Choice from Part 2;
3. A participation fee of £ 5.

Notice:

 There is no time constraint for any question;
 Before each part of the experiment you will complete a three questions trial in order to make you fully

understand which kind of questions you are going to answer. The alternatives in the trial questions do not have
sense and will not be considered in the calculation of your reward.

 After you click the “OK” button, there might be a short delay before the next question appears, due to the
software. Please be patient.

 At the end of PART 1 the screen “BREAK” will appear. Please remain sit and wait. During the break you are not
allowed to speak with anyone. You will receive the instructions for PART 2 and the experiment will restart.
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Figure B.2. Specific Instructions I

Specific Instructions
Instructions are visualized on the screen before each Part of the Experiment. This is the paper version. You can keep it
and revise it in case you have doubts about the experiment.

---------------------------------------------------------------------------------------------------------

The exchange rate for this part of the experiment is:

20 Token = £ 1
In this part, you will choose among Delayed Payment Plans. The following screen shows a delayed payment plan:

A delayed payment plan is described in two ways:

 A histogram, on the left, allows to visualize the number of tokens paid at different months;
 A table in which Token and Months are written.

This delayed payment plan allows you to win 35 Tokens in 3 months, 20 Tokens in 6 months and 5 Tokens in 9 months.

On the right you can see a Button to select. If you click on “Option A” you select this Delayed Payment Plan and a black
frame will appear.

You can change your choice even after you have selected one. When you are sure of your choice you can click the
Button “OK” in the Right-Bottom part of the screen (see below). Once you clicked “OK” your decision is recorded and
you cannot change it.

Notice:

 Questions may have a different number of alternatives to choose from;
 Delayed Payment Plans may different both in Token and in Time of Payments.
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Figure B.3. Specific Instructions II

Specific Instructions
Instructions are visualized on the screen before each Part of the Experiment. This is the paper version. You can keep it
and revise it in case you have doubts about the experiment.

---------------------------------------------------------------------------------------------------------

The exchange rate for this part of the experiment is:

10 Token = £ 1
In this part, you will choose among Lotteries. The following screen shows a lottery:

A lottery is described in two ways:

 A pie, on the left, allows to visualize the probabilities to win;
 A table in which Token and Probabilities are written.

This lottery allows you to win 2 Token with 50% probability and 5 Token with 50% probability.

On the right you can see a Button to select. If you click on “Option A” you select this Lottery and a black frame will
appear.

You can change your choice even after you have selected one. When you are sure of your choice you can click the
Button “OK” in the Right-Bottom part of the screen (see below). Once you clicked “OK” your decision is recorded and
you cannot change it.

Notice:

 Questions may have a different number of alternatives to choose from;
 Lotteries may different both in Token and in Probabilities.
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B.5 Screens

Figure B.4. Screen Lotteries

Figure B.5. Screen Delayed Payment Plans



Appendix C

Appendix to Chapter 3

C.1 Additional results

C.1.1 More on Higher, Lower Negative Transitivity and Strong Stochastic

Transitivity.

This section helps to clarify the two new deterministic versions of transitivity that

we introduced: LNT and HNT. So far we proved that LNT neither implies nor is im-

plied by transitivity; while HNT is stronger than transitivity. Interestingly, a binary

relation that satisfies this property is a special case of semiorder. In fact, it satisfies

both strong intervality and semitransitivity.

Definition. A binary relation � satisfies strong intervality [SI] if x� y and z� w implies

x � w or z � y for all x,y,z,w.

Definition. A binary relation � satisfies semitransivity [ST] if x � y and y � z implies

x � w or w � z for all x,y,z,w.

Proposition. If � satisfies HNT then it satisfies SI.

Proof. Suppose by contradiction that x � y, z � w, x 6� w and z 6� y. If w = y, the

contradiction arise from x� y and x 6� y. If w = z, HNT is violated since x� y, x 6� z

and z 6� y. If w = x, transitivity is violated since z � x � y but z 6� y.

Conversely, let x � y, z � w and x � w. SI is satisfied but not HNT.

Proposition. If � satisfies HNT then it satisfies ST.
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Proof. Suppose by contradiction that x � y, y � z, x 6� w and w 6� z. If either w = x

or w = z then transitivity is violated since x 6� z and if w = y again the contradiction

arise from x � y and x 6� y.

Conversely, let x � y then ST is satisfied but not HNT.

Note that, HNT and LNT are not exactly properties of a binary relation. They are

properties of a tuple (�,�), with� that preserves�. Formally, x� y implies x� y

for all x,y. Fishburn (1999) shows that a function satisfying this latter property can

be constructed on any set endowed with an acyclic binary relation �. It is therefore

not surprising that x � y � z, x 6� z satisfies LNT but not transitivity and that a

binary relation satisfies either LNT or HNT if and only if it is acyclic.

One can notice that HNT characterizes a binary relation that is stronger than both

interval order and semiorder. This condition is respected in stochastic choice. The

reader may verify in Fishburn (1973) that SST is stronger of both Interval Stochastic

Transitivity (IST) and J-Stochastic Transitivity (JST) that together characterize �µ to

be a semiorder for all µ ∈ [0.5,1), while only IST characterizes �µ to be an interval

order for all µ ∈ [0.5,1). The definition of�µ can be found in Section 3.4.2 of Chapter

3.

C.1.2 Relaxing Antisymmetry

In Section 3.3 we introduced two properties MST* and SST* that are modifications

of the well-known MST and SST. Here, we generalize this modification to WST that

is traditionally defined as follows:

Definition. A stochastic choice rule p satisfies Weak Stochastic Transitivity [WST] if for

all x,y,z ∈ A:

p(x,y) & p(y,z) ≥ 0.5 ⇒ p(x,z) ≥ 0.5

This property is equivalent to the existence of a utility function u such that

u(x) > u(y) if and only if p(x,y) > 0.5 and u(x) = u(y) if and only if p(x,y) = 0.5.

Marschak & Block (1960) presents a comprehensive analysis of WST. We now define

a modification of the property.
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Definition. A stochastic choice rule p satisfies Weak Stochastic Transitivity* [WST*] if for

all x,y,z ∈ A:

p(x,y) & p(y,z) & p(x,z) ≥ 1
2

and either of the following holds:

(1) min[p(x,y), p(y,z)] = 1
2 ⇒ p(x,z) > min[p(x,y), p(y,z)]

(2) p(x,z) = p(x,y) = p(y,z)

The following result states that if AST is satisfied then the two above properties

are equivalent.

Proposition. A stochastic choice rule p satisfies WST if and only if it satisfies WST*.

Proof. Let AST be satisfied.. The following cases are possible:

(i) p(x,y) = p(y,z) = p(x,z) = 0.5. Both WST and WST* are not violated;

(ii) p(x,y) & p(x,z)> 0.5 and p(y,z) = 0.5. WST and WST* are both not violated;

(iii) p(x,y)> p(y,z) = p(x,z) = 0.5. Both WST and WST* are violated since u(x) =

u(z) = u(y)< u(x) and condition (1) of WST* is violated. Note that AST is not

violated.

(iv) p(x,y) & p(y,z) > 0.5 and p(x,z) = 0.5. Both WST and WST* are violated.

Again, AST is satisfied.

(v) p(x,y) & p(y,z) & p(x,z) > 0.5. Both WST and WST* are satisfied.

C.2 Proofs

C.2.1 Proof of Theorem 1

Necessity: Suppose ε satisfies triangle inequality and take x,y,z ∈ A. Let x� y and

y � z then:
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u(x)− u(y) > ε(x,y)

u(y)− u(z) > ε(y,z)

Combining the two inequalities and using triangle inequality:

u(x)− u(z) > ε(x,y) + ε(y,z)

u(x)− u(z) > ε(x,z)

hence x � z and transitivity is satisfied.

Sufficiency: The proof is constructive and it is divided into five steps.

Step 3.

We first construct a utility function such that x � y implies u(x) > u(y). Let

u(x) = |{t ∈ A : t 6� x}|.

By x � y and transitivity of � we have {t ∈ A : t � x} ( {t ∈ A : t � y} since

if an element t is preferred to x, by transitivity it is also preferred to y. Hence, the

completements of these sets have an opposite subset relation: {t ∈ A : t 6� x}) {t ∈

A : t 6� y}, which implies u(x) > u(y).1.

Step 4.

From this step on, we construct the quasi-metric. First, let d(x,y) be the shortest

path metric of the transitive graph G of the partial order �. This metric has the

following characteristics:

1. x � y⇒ d(x,y) = 1

2. [x 6� y ∧ y 6� x]⇒ d(x,y) > 1

3. d(x,y) > 2 implies that there exists a sequence (x1, . . . xn) such that:

x1 � x2 ≺ x3 � x4 · · · � xn ≺ xn+1

1This step has been highlighted also by Fishburn (1999)



Appendix 115

where n is even.

Point (1), (2) are immediate. Let’s prove point (3):

Suppose d(x,y) = 2 then there exists an element z such that either (i) x� z, y� z

or (ii) z� x, z� y. Clearly, if x� z� y then by transitivity x� y but then d(x,y) = 1.

(i) - Suppose we want to increase d(x,y) then take a w: if w � x (or w � y) by

transitivity w � z and d(x,y) = 2. If z � w then d(x,y) is not influenced.

(ii) - Again take a w: if w � z then by transitivity w � x, w � y and d(x,y) = 2. If

z � w then d(x,y) is not influenced.

Hence, we need two elements z,w such that x � z, w � z and w � y given

d(x,y) = 3. Following this idea we can increase d(x,y) = n− 1 where n is the cardi-

nality of A.

Step 5.

The shortest path metric proposed in Step 2 needs to be refined. We trans-

form the graph G into an undirected weighted graph. For any edge e = (x,y)

of the undirected graph corresponding to the directed graph G define a weight

w(e) = |u(x) − u(y)|. Define P(x,y) as a path from x to y and define a weight

w[P(x,y)] = ∑
e∈P(x,y)

w(e). Let δ(x,y) be the minimum weighted path from x to y.

Since � is not complete, it can be that there is no path between two elements x,y. If

this is the case we set δ(x,y) = n∗ where n∗ = max
x,y

δ(x,y) + ε with ε > 0. This choice

respects the finiteness of δ and it is in line with the usual convention of setting the

distance between two unconnected node as infinite. By Monjardet (1980) we have

that δ(x,y) is a quasi-metric. This result is straightforward:

(i) δ(x, x) = 0;

(ii) δ(x,y) = δ(y, x) since the graph is undirected;

(iii) δ(x,z) ≤ δ(x,y) + δ(y,z). To see this suppose y is on the Minimum Weighted

Path between x,z then by definition δ(x,y) + δ(y,z) = δ(x,z). If y is not on

the Minimum Weighted Path then by definition δ(x,z) < δ(x,y) + δ(y,z) oth-

erwise minimality would be violated. Finally, if x,z are not connected there

exists no y such that both x,y are connected and y,z are connected. This means
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that if x,y are not connected δ(x,y) = δ(x,z) and by positivity δ(y,z)≥ 0, hence

triangle inequality is satisfied.

Step 6.

Now, we need to prove that � has a BT representation. First, we prove that

x � y implies u(x)− u(y) > γ · δ(x,y) for all γ ∈ [0,1). This is immediate. By Step

1 we have u(x) > u(y). By definition, δ(x,y) = u(x)− u(y). Hence, u(x)− u(y) >

γ · |u(x)− u(y)| for any γ ∈ [0,1).

Step 7.

Finally, we have to prove that [x 6� y∧ y 6� x] implies u(x)− u(y)≤ γ · δ(x,y) for

some γ ∈ (0,1].

Suppose w.l.o.g. that u(x) ≥ u(y) and let’s prove by induction over the shortest

path d(x,y) as defined in Step 2 from x to y.

By Step 2, we start analysing the case d(x,y) = 2. We have two cases: (i) x � z,

y � z and (ii) z � x, z � y.

(i) - if u(x) = u(y) then we can write the inequality as u(x)−u(z)+u(y)−u(z)≥

0. Since u(x) > u(z) and u(y) > u(z) the inequality is strict and for all γ ∈ [0,1) the

inequality γ · δ(x,y) ≥ 0 is satisfied.

If u(x)> u(y) then the inequality is u(x)− u(z) + u(y)− u(z)≥ u(x)− u(y) but

2u(y) ≥ 2u(z) and the inequality is strict. Hence, there exists a γ ∈ (0,1) such that

the weak inequality is satisfied. The value of γ is:

1 > γ ≥ u(x)− u(y)
u(x) + u(y)− 2u(z)

> 0

(ii) - if u(x) = u(y) by the same argument as before, for all γ ∈ (0,1) we have that

γ · [2u(z)− u(x)− u(y)] ≥ 0.

If u(x) > u(y) then there exists a γ ∈ (0,1) such that the inequality is satisfied

and the value is:

1 > γ ≥ u(x)− u(y)
2u(z)− u(x)− u(y)

> 0
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By definition of δ(x,y) if there exist two elements z, t such that conditions (i) and

(ii) are satisfied then we select the minimum path. Furthermore, again by definition

of δ, δ(x,y) is minimized and so γ is maximized for each x,y. However, this is

not enough, in fact in order to satisfy triangle inequality for all x,y ∈ A we have to

multiply δ(x,y) by the same parameter γ. The selection is found maximizing among

alternatives:

γ∗ = argmax
x,y∈A:[x 6�y∧y 6�x]

u(x)− u(y)
δ(x,y)

This condition guarantees that if γ∗ is selected by x,y then [x 6� y∧ y 6� x] implies

[r 6� t ∧ t 6� r] for all other r, t ∈ A.

Suppose the result holds for d(x,y) = n and let d(x,y) = n + 1. By Step 2, there

is a sequence (x1, . . . , xn+2) such that:

x1 � x2 ≺ x3 � x4 · · · � xn+1 ≺ xn+2

The inequality that must be satisfied is:

u(x1)− u(xn+2) ≤∑
i,j

u(xi)− u(xj)

where i is odd, j is even and i, j are consecutive numbers.

If n + 2 is even then the inequality is immediately satisfied. If n + 2 is odd then

the inequality is:

0≤ −u(x2) + u(x3)− u(x2) + u(x3)− u(x4) + u(x5) . . . u(xn+2)− u(xn+1)

if the condition holds for d(x,y) = n then the inequality is reduced to:

0≤ u(xn+2)− u(xn+1) + u(xn+2)− u(xn+1)

which clearly holds strictly since u(xn+2) > u(xn+1).

Hence, we have proved that the representation holds with ε(x,y) = γ∗ · δ(x,y)
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for all x,y ∈ A. Clearly, ε(x,y) maintain all the properties of δ(x,y) and it is therefore

a quasi-metric.

C.2.2 Proof of Theorem 2

Necessity: Let u(x) > u(y) > u(z) and suppose by contradiction that:

p(x,z) ≤min[p(x,y), p(y,z)]

and it is not the case that p(x,y) = p(y,z) = p(x,z).

Since c′ is strictly increasing in p, given four real numbers λ1,λ2,µ1,µ2 ∈ <+:

c′(p(x,z)) + λ1 = c′(p(x,y))

c′(p(x,z)) + µ1 = c′(p(y,z))

c′(p(z, x))− λ2 = c′(p(y, x))

c′(p(z, x))− µ2 = c′(p(z,y))

By definition, the following holds:

c′{x,y}(p(x,y))− c′{x,y}(p(y, x)) + c′{y,z}(p(y,z))− c′{y,z}(p(z,y)) =

= c′{x,z}(p(x,z))− c′{x,z}(p(z, x))

and

η(x,y) · [c′(p(x,y))− c′(p(y, x))] + η(y,z) · [c′(p(y,z))− c′(p(z,y))] =

= η(x,z) · [c′(p(x,z))− c′(p(z, x))]

Substituting, we obtain:

[η(x,y)+ η(y,z)] · [c′(p(x,z))− c′(p(z, x))]+ η(x,y) · (λ1 +λ2)+ η(y,z) · (µ1 +µ2) =
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= η(x,z) · [c′(p(x,z))− c′(p(z, x))]

If the inequality is strict then η(x,z)> η(x,y) + η(y,z) violating triangle inequal-

ity. If p(x,y) = p(x,z)< p(y,z) or p(y,z) = p(x,z)< p(x,y) again triangle inequality

is violated.

Sufficiency: Let MST* be satisfied. By Theorem 1 of He & Natenzon (2018): there

exists a moderate utility representation, namely a utility function u and a distance

metric d such that for any x,y,z,w ∈ A (note that their proof is constructive):

p(x,y) ≥ p(z,w)⇔ u(x)− u(y)
d(x,y)

≥ u(z)− u(w)

d(z,w)

We construct a strictly increasing function F that maps the probabilities into the

numerical representation given by u,d such that:

F[p(x,y)] =
u(x)− u(y)

d(x,y)

F[p(z,w)] =
u(z)− u(w)

d(z,w)

The construction uses a piecewise linear function F on the interval [0.5,1). First

let F(0.5) = 0. Then, for all x,y ∈ A define an interval [p(x,y)− ε, p(x,y) + ε] with ε

sufficiently small such that the interval does not overlap with any other intervals.

Let F[p(x,y)− ε] = u(x)−u(y)
d(x,y) − δ and F[p(x,y) + ε] = u(x)−u(y)

d(x,y) + δ again with δ

sufficiently small such that no interval
[

u(x)−u(y)
d(x,y) − δ, u(x)−u(y)

d(x,y) + δ

]
overlaps with

other intervals.

Take four elements x,y,z,w ∈ A such that p(x,y) > p(z,w) and the probabilities

are immediate successors. For all p ∈ [p(z,w) + ε, p(x,y) − ε] define the following

linear function F passing through the points above defined:

F(p)− F[p(z,w) + ε]

F[p(x,y)− ε]− F[p(z,w) + ε]
=

p− [p(z,w) + ε]

p(x,y)− ε− [p(z,w) + ε]

The same function is defined for intervals [0.5, p(z,w) − ε] and [p(x,y) + ε,1)

where p(z,w) and p(x,y) are respectively the minimum and maximum probabilities.
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Finally, for all x,y∈ A in the interval (p(x,y)− ε, p(x,y)+ ε) define another linear

function F:

F(p)− F[p(x,y)− ε]

F[p(x,y) + ε]− F[p(x,y)− ε]
=

p− [p(x,y)− ε]

p(x,y) + ε− [p(x,y)− ε]

which can be rewritten as:

F(p) = p− p(x,y) +
u(x)− u(y)

d(x,y)

Clearly, we have limp→p(x,y) F(p) = u(x)−u(y)
d(x,y) . By the existence of the limit in

p(x,y) for all x,y ∈ A, F is also differentiable in the relevant finite points p(x,y).

Also F is strictly increasing on [0.5,1) and bounded by finiteness of u and strict

positivity of d, hence F is integrable.

Let a cost function be c(p) =
∫ p

0.5 F(t)dt. By the First Fundamental Theorem of

Calculus, c′(p) = F(p).

Finally, we can use u, d from He and Natenzon (2018) and c just defined to write

a maximization problem:

max
p(x,y)

u(x)p(x,y) + u(y)[1− p(x,y)]− d(x,y)c(p(x,y))

which can be rewritten (dividing everything by d(x,y) > 0) as:

max
p(x,y)

p(x,y)
[u(x)− u(y)]

d(x,y)
+

u(x)
d(x,y)

− c(p(x,y))

By the FOCs we have:

u(x)− u(y)
d(x,y)

= c′(p(x,y))

This proves that MST* implies the existence of a BAPU representation where η

is a metric.

C.2.3 Proof of Theorem 3

Necessity: Let u(x)− u(z)> ε(x,z). By the violation of triangle inequality, u(x)−

u(y) + u(y) − u(z) > ε(x,y) + ε(y,z) which implies either u(x) − u(y) > ε(x,y) or
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u(y)− u(z) > ε(y,z).

Sufficiency: Using Theorem 2.5 and Theorem 4.1 by Aleskerov et al. (2007) the

following results hold: the existence of a BT representation if and only if� is acyclic

if and only if there exists a weak order � such that x � y implies x� y. Namely,

� preserves �. Therefore, (A,�) is a weakly ordered set. We can define LNT on

(A,�). We now need to construct a function ε that violates triangle inequality (or

satisfy it with equality) wherever LNT is satisfied at some x,y,z ∈ A.

If x � y let ε(x,y) = |u(x)− u(y)| − σ for some small σ > 0. If [x 6� y ∧ y 6� x] let

ε(x,y) = |u(x)− u(y)|. The binary relation is represented:

1. x � y implies u(x)− u(y) > ε(x,y);

2. [x 6� y ∧ y 6� x] implies u(x)− u(y) = ε(x,y).

We have to prove that ε violates triangle inequality when u(x) ≥ u(y) ≥ u(z).

Note that |u(x)− u(y)|+ |u(y)− u(z)|= |u(x)− u(z)|. Also, for all x,y ∈ A, u(x) =

u(y) implies x 6� y and vice versa; but the converse is not true. For instance, let

x � y, y � z but x 6� z. One can see that x� y� z preserves �, hence u(x) > u(z).

By LNT the following cases are possible:

(i) if x � z, x � y and y � z then: |u(x)− u(z)| − σ = ε(x,z) > ε(x,y) + ε(y,z) =

|u(x)− u(z)| − 2σ;

(ii) if x � z and x � y then: |u(x)− u(z)| − σ = ε(x,z) = ε(x,y) + ε(y,z) = |u(x)−

u(z)| − σ;

(iii) if x � y and y � z then: |u(x) − u(z)| = ε(x,z) > ε(x,y) + ε(y,z) = |u(x) −

u(z)| − 2σ;

(iv) if x � y then: |u(x)− u(z)| = ε(x,z) > ε(x,y) + ε(y,z) = |u(x)− u(z)| − σ;

(v) if �= ∅ then ε(x,z) = ε(x,y) + ε(y,z).

C.2.4 Proof of Theorem 4

Necessity Let u(x) > u(y) > u(z) and suppose by contradiction that:
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p(x,z) ≥max[p(x,y), p(y,z)]

Since c′ is increasing in p, given four real numbers λ1,λ2,µ1,µ2 ∈ <+:

c′(p(x,z))− λ1 = c′(p(x,y))

c′(p(x,z))− µ1 = c′(p(y,z))

c′(p(z, x)) + λ2 = c′(p(y, x))

c′(p(z, x)) + µ2 = c′(p(z,y))

Following the same approach that we used in Theorem 2 we obtain:

[η(x,y)+ η(y,z)] · [c′(p(x,z))− c′(p(z, x))]− η(x,y) · (λ1 +λ2)− η(y,z) · (µ1 +µ2) =

= η(x,z) · [c′(p(x,z))− c′(p(z, x))]

hence: η(x,z) < η(x,y) + η(y,z) satisfies triangle inequality.

Note that if either p(x,z) = p(x,y) > p(y,z) or p(x,z) = p(y,z) > p(x,y). Then

we have λ1 = λ2 = 0 but µ1,µ2 > 0 (or vice versa) and the result still holds.

Sufficiency This part requires a construction similar to the one in He & Natenzon

(2018). The utility function is taken from their construction: WST is satisfied; hence

we let x � y if and only if p(x,y) > 0.5, obtaining a linear order. Since A is finite,

there exists a utility function u : A→ {1,2, . . . , |X|} such that x � y if and only if

u(x) > u(y).

Let Y = A2 be the set of binary subsets of A and let m be the cardinality of the

set {|p(x,y)− 0.5| > 0 : {x,y} ∈ Y}. Partition the set Y in m disjoint sets such that

{x,y} ∈ Yi and {z,w} ∈ Yj with i ≥ j if p(z,w) ≥ p(x,y) > 0.5. Let (Di)
m
i=1 be a

sequence of strictly positive numbers that is attached to the sequence of sets (Yi)
m
i=1.

The distance between x,y when {x,y} ∈ Yi is defined as follows:
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η(x,y) = Di|u(x)− u(y)|

Take three elements x,y,z such that u(x)> u(y)> u(z), with {x,y} ∈ Yi, {y,z} ∈

Yj and {x,z} ∈ Yl , then:

η(x,y) + η(y,z)− η(x,z) =

= Di|u(x)− u(y)|+ Dj|u(y)− u(z)| − Dl |u(x)− u(y) + u(y)− u(z)| =

= (Di − Dl)|u(x)− u(y)|+ (Dj − Dl)|u(y)− u(z)|

We will construct the sequence (Di)
m
i=1 recursively. Note that we want triangle

inequality to be (weakly) violated:

(Di − Dl)|u(x)− u(y)|+ (Dj − Dl)|u(y)− u(z)| ≤ 0

(Dl − Di)|u(x)− u(y)| ≥ (Dj − Dl)|u(y)− u(z)|

Given the above inequality we need to identify the worst case scenario. Namely,

the case that, when satisfied, guarantees that the inequality is satisfied in all other

cases. We argue that the worst case scenario is when utilities are u(x) = n, u(y) =

n − 1, u(z) = 1 (where n = |A|). Probabilities are such that p(y,z) is minimum,

therefore Dj is maximum; p(x,z)< p(x,y) and these latter are immediate successor.

To verify that this is the worst case scenario note the following two facts:

• The LHS is strictly increasing in Dl − Di; hence for them being immediate

successor is the worst case. In fact, the LHS is increasing in Dl , while RHS is

decreasing in Dl , hence when this term is minimum, Dl = f (l + 1), it is the

worst case;

• The LHS is decreasing in u(y), while the RHS is increasing in u(y) therefore

when u(y) is maximum, u(y) = n− 1, it is again the worst case.

Note also that m is bounded above by (n
2) which is the number of binary subsets
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of a set with cardinality n. We can thus rewrite the above inequality in order to

find the function f that maps the sequence {1, . . . i, . . . ,m} into positive real numbers

giving us the desired sequence (Di)
m
i=1:

[ f (l + 1)− f (l)]|u(x)− u(y)| ≥
[

f
((

n
2

))
− f (l + 1)

]
|u(y)− u(z)|

[ f (l + 1)− f (l)] ≥
[

f
((

n
2

))
− f (l + 1)

]
(n− 2)

We assume that this inequality is satisfied with equality at the worst case sce-

nario. Therefore it becomes a simple difference equation. To solve it, we need to

define the initial conditions; or in other words the first step. For instance, let f (l) = 1

and f (l + 1) = 2 for l = 1. Solving the worst case scenario with equality becomes:

1 =

[
f
((

n
2

))
− 2
]
(n− 2)

f
((

n
2

))
=

1
n− 2

+ 2

f (l) can be recursively constructed for any l ≥ 3. Solving the equation:

f (l + 1)− f (l) =
[

1
n− 2

+ 2− f (l + 1)
]
(n− 2)

f (l + 1) =
1 + 2(n− 2) + f (l)

1 + (n− 2)

Now we verify that triangle inequality is always violated when Strong Stochastic

Transitivity* is violated:

(i) If either p(y,z) > p(x,z) = p(x,y) or p(x,y) > p(x,z) = p(y,z); Dl = Di > Dj

or Dl = Dj > Di and η(x,y) + η(y,z)− η(x,z) < 0;

(ii) If either p(x,y) > p(y,z) > p(x,z) or p(y,z) > p(x,y) > p(x,z); Dl > Dj > Di

or Dl > Di > Dj and η(x,y) + η(y,z)− η(x,z) < 0;



Appendix 125

(iii) If either p(y,z)> p(x,z)> p(x,z) or p(x,y)> p(x,z)> p(y,z) then again η(x,y)+

η(y,z)− η(x,z)≤ 0, where the equality is satisfied in the worst case scenarios.

If triangle inequality is violated then it is satisfied in the two opposite directions,

namely η(z, x) + η(x,y)− η(z,y) ≥ 0 and η(y,z) + η(z, x)− η(y, x) ≥ 0. We need to

verify that these conditions are met when SST* is satisfied:

η(z, x) + η(x,y)− η(y,z) = (Di + Dl)|u(x)− u(y)|+ (Dl − Dj)|u(y)− u(z)| > 0

η(y,z) + η(z, x)− η(y, x) = (Dl − Di)|u(x)− u(y)|+ (Dl + Dj)|u(y)− u(z)| > 0

since Dl ≥ Dj and Dl ≥ Di.

Now, let p(x,y) > p(z,w) with {x,y} ∈ Yi and {z,w} ∈ Yj:

u(x)− u(y)
η(x,y)

=
1

Di
>

1
Dj

=
u(z)− u(w)

η(z,w)

Let p(x,y) = p(z,w) with {x,y},{z,w} ∈ Yi:

u(x)− u(y)
η(x,y)

=
1

Di
=

1
Di

=
u(z)− u(w)

η(z,w)

To complete the proof a cost function can be constructed as in Theorem 2 in order

to provide the BAPU representation.

C.3 The special case of 3 elements

Theorem.

(i) Let |A| = 3; the result in Theorem 2 holds for every strictly convex, C1 cost function;

(ii) If |A| > 3, the result at (i) does not hold.

Proof. - (i)
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Let c be any strictly convex, C1 function with limp→0 c(p) =−∞. We have that c′

is strictly increasing in p. Therefore c′(p(x,y)) ≥ c′(p(y, x)) if and only if p(x,y) ≥

p(y, x).

We need to prove that there exists a u and η such that this latter is a metric and p

is the outcome of a perturbed maximization problem. This proposition is equivalent

to the existence of solutions for a system inequalities.

In order to prove the compatibility of such system we can rely on Motkin theo-

rem of alternatives; Dantzig (1963):

Theorem (Motzkin’s Theorem). Let A, B,C be given matrices with A being non vacuous.

Then one and only one of the following is feasible.

• There exists x such that Ax > 0, Bx = 0, Cx = 0.

• There exists π,µ,γ such that ATπ + BTµ + CTγ = 0, π ≥ 0 and µ= 0.

where ≥ means semi-positive and = means non-negative.

By Weak Stochastic Transitivity, and and assuming p(x,y) 6= 0.5 for all x,y, we

can define a linear order over the elements of X such that u(x) > u(y) if and only if

p(x,y) > 0.5. Let u = (1,2,3 . . . ,n) where u(x) = 1 if x is the worst element and

u(x) = n if it is the best element. So, take w.l.o.g. three consecutive elements

x,y,z ∈ A such that u(x) > u(y) > u(z) and let Moderate Stochastic Transitivity be

satisfied. For simplicity, let c
′
(p(x,y))− c

′
(p(y, x)) = a, c

′
(p(y,z))− c

′
(p(z,y)) = c

and c
′
(p(x,z))− c

′
(p(z, x)) = b. Then the system is as follows:

Ax =


1 0 0

0 1 0

0 0 1




η(x,y)

η(y,z)

η(x,z)

 > 0

Bx =

[
1 1 −1

]
η(x,y)

η(y,z)

η(x,z)

 ≥ 0
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Cx =

[
a c −b

]
η(x,y)

η(y,z)

η(x,z)

 = 0

From the dual system we obtain:

γ1 =
µ1 + π1

a
; γ1 =

µ1 + π2

c
; γ1 =

µ1 − π3

b

Hence we obtain three equations:

[c− a]µ1 = −cπ1 + aπ2 [b− a]µ1 = −bπ1 − aπ3 [b− c]µ1 = −bπ2 − cπ3

Note that the RHS of the last two equations is weakly negative since π ≥ 0 and

a,b, c > 0. By Moderate Stochastic Transitivity if either b > a or b > c, the LHS of one

of the last two equations is positive and the system has no solution. Suppose b = c

and a > b then π2 = π3 = 0 and by definition π1 > 0 but set µ1 > 0 appropriately

and the system has solution. If b = c and b > a then π2 = π3 = 0, π1 > 0 and since

b, c > 0 the system has no solution. Finally, if b = c and b = a then π1 = π2 = π3 = 0

violating semi-positivity and the system has no solutions.

Finally, note that if b = a = c = k then by FOCs we have:

u(x)− u(y) = η(x,y)k

u(y)− u(z) = η(y,z)k

u(x)− u(z) = η(x,z)k

since u(x)− u(z) = u(x)− u(y) + u(y)− u(z):

u(x)− u(y)
η(x,z)

+
u(y)− u(z)

η(x,z)
=

u(x)− u(y)
η(x,y)

substituting we obtain
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η(x,y)k
η(x,z)

+
η(y,z)k
η(x,z)

=
η(x,y)k
η(x,y)

and so

η(x,y) + η(y,z) = η(x,z)

.

Proof. - (ii)

The following is a counterexample with |A| = 4 and the cost function being the

Shannon Entropy.

p(x,y) = p(z,w) = 0.75 p(x,z) = p(y,w) = 0.99

p(x,w) = 0.76 p(y,z) = 0.6

MST* is satisfied since:

p(x,z) > min[p(x,y), p(y,z)] p(y,w) > min[p(y,z), p(z,w)]

p(x,w) > min[p(x,y), p(y,w)] p(x,w) > min[p(x,z), p(z,w)]

Solving the model we obtain, among all, the following triangle inequalities:

[u(x)− u(z)]/4.59511 + [u(z)− u(w)]/1.0986 > [u(x)− u(w)]/1.15267

[u(x)− u(y)]/1.0986 + [u(y)− u(w)]/4.59511 > [u(x)− u(w)]/1.15267

Since u(x) and u(w) are the max and the min, let u(x) = 100 and u(w) = 0.

[100− u(z)]/4.59511 + [u(z)]/1.0986 > [100]/1.15267

[100− u(y)]/1.0986 + [u(y)]/4.59511 > [100]/1.15267
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By the first inequality we have that u(z) must be very close to 100 (u(z) >

93.835...). By the second inequality u(y) must be very close to zero (u(y) < 6.165...).

However since p(y,z) = 0.6 we must have that u(y) > u(z) proving the contradic-

tion.

C.4 Examples

C.4.1 Deterministic Examples

This is an example that applies the constructive proof of Theorem 1 to provide a

BT representation of a transitive binary relation. Consider the following graph of a

transitive relation:

x1 x2

x3 x4

x5

x6

x7 x8

x9

The resulting matrix of utilities, where for all x ∈ A, u(x) = |{t ∈ A : t 6� x}| is:

 x1 x2 x3 x4 x5 x6 x7 x8 x9

u 8 7 3 6 8 7 6 8 7


The resulting weighted graph (weights are difference in utilities):

x1 x2

x3 x4

x5

x6

x7 x8

x9

1

5 4

3
5 2

1

2

4 1

2

1
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Following Step 5 of the proof of Theorem 1, we solve for

γ∗ = argmax
x,y∈A:[x 6�y∧y 6�x]

u(x)− u(y)
δ(x,y)

where δ(x,y) is the minimum weighted path between x,y. The maximum is

reached between x8 and x3 with γ∗ = 5
9 . Hence, if we multiply the above weights

for any γ ∈ ( 5
9 ,1) we can represent the partial order as a BT representation. For

instance, let’s γ = 0.6 the following graph arises. The reader may confirm that the

binary relation is in fact represented.

x1 x2

x3 x4

x5

x6

x7 x8

x9

0.6

3 2.4

1.8
3 1.2

0.6

1.2

2.4 0.6

1.2

0.6

C.4.2 Stochastic Examples

These are two examples that apply the constructive proof of Theorem 2 and 4. In

particular, we start with two stochastic choice functions and construct a utility func-

tion, which is common to the two proofs, and then a function η that is a metric in the

first case, while it violates Triangle Inequality in the second at exactly those triples

that violate Strong Stochastic Transitivity.

Example 1. We have the following stochastic choice function p:

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

p(A) (0.8,0.2) (0.7,0.3) (0.8,0.2) (0.8,0.2) (0.85,0.15) (0.9,0.1)


• The utilities are u(x) = 4, u(y) = 3, u(z) = 2, u(w) = 1;

• The set of binary sets is partitioned in four subsets: Y1 = {{z,w}}, Y2 = {{y,w}},

Y3 = {{x,y},{y,z},{x,w}} and Y4 = {{x,z}};
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Theorem 2 - Construction

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

η(A) 3 18 9 3 2 0


Note that Moderate Stochastic Transitivity* is violated in the triple (x,y,z) and (x,y,w):

η(x,y) + η(y,z)− η(x,z) = −12 η(x,y) + η(y,w)− η(x,w) = −4

η(x,z) + η(z,w)− η(x,w) = 9 η(y,z) + η(z,w)− η(y,w) = 1

Theorem 4 - Construction

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

η(A) 2.33 5 7 2.33 4 1


Note that Strong Stochastic Transitivity* is always violated:

η(x,y) + η(y,z)− η(x,z) = −0.33 η(x,y) + η(y,w)− η(x,w) = −0.66

η(x,z) + η(z,w)− η(x,w) = −1 η(y,z) + η(z,w)− η(y,w) = −0.66

Example 2. We have the following stochastic choice function p:

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

p(A) (0.75,0.25) (0.99,0.01) (0.76,0.24) (0.6,0.4) (0.99,0.01) (0.75,0.25)


• The utilities are u(x) = 4, u(y) = 3, u(z) = 2, u(w) = 1;

• The set of binary sets is partitioned in four subsets: Y1 = {{x,z},{y,w}}, Y2 =

{{x,w}}, Y3 = {{x,y},{z,w}} and Y4 = {{y,z}};

Theorem 2 - Construction

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

η(A) 3 0 3 9 0 3


Note that Moderate Stochastic Transitivity* is always satisfied:
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η(x,y) + η(y,z)− η(x,z) = 12 η(x,y) + η(y,w)− η(x,w) = 0

η(x,z) + η(z,w)− η(x,w) = 0 η(y,z) + η(z,w)− η(y,w) = 12

Theorem 4 - Construction

 A {x,y} {x,z} {x,w} {y,z} {y,w} {z,w}

η(A) 2.33 2 6 2.5 2 2.33


Note that Strong Stochastic Transitivity* is violated in the triple (x,y,w) and (x,z,w):

η(x,y) + η(y,z)− η(x,z) = 2.833 η(x,y) + η(y,w)− η(x,w) = −1,66

η(x,z) + η(z,w)− η(x,w) = −1,66 η(y,z) + η(z,w)− η(y,w) = 2.833

C.5 Tversky & Russo (1969)

In Section 3.4.1 in Chapter 3, we connected Additive Perturbed Utility models to

Fechnerian models. Here, we treat the case of Tversky & Russo (1969) model:

p(x,y) = F[u(x),u(y)]

where F is strictly increasing in u(x) and strictly decreasing in u(y). This model

is completely characterized by a property called (Strict) Strong Stochastic Transitiv-

ity:

Definition. A stochastic choice rule p satisfies (Strict) Strong Stochastic Transitivity [SSST]

if for all x,y,z ∈ A:

p(x,y) >
1
2

& p(y,z) >
1
2
⇒ p(x,z) > max[p(x,y), p(y,z)]

Note that this property is the strongest introduced so far but it is similar to Strong

Stochastic Transitivity*. Even if it is not directly connected with Additive Perturbed

Utility models, a simple condition on η guarantees this model to be satisfied. The

proof is straightforward. It is nonetheless interesting the counterexample that shows
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how the restriction imposed on η is stronger than the model of Tversky & Russo

(1969).

Proposition 1. Let a stochastic choice rule p has a BAPU representation. Take x,y,z ∈ A

such that u(x)> u(y)> u(z); there exists a function η such that η(x,y),η(y,z)≥ η(x,z)

only if at x,y,z ∈ A, p satisfies (Strict) Strong Stochastic Transitivity.

Proof. By u(x) > u(y) > u(z) it must be:

η(x,z) · [c′(p(x,z))− c′(p(z, x))] > η(x,y) · [c′(p(x,y))− c′(p(y, x))]

and by η(x,z) ≤ η(x,y):

c′(p(x,z))− c′(p(z, x)) > c′(p(x,y))− c′(p(y, x))

that gives p(x,z) > p(x,y).

Note that if, by contradiction, p(x,z) = p(x,y) then by FOCs we have u(x) −

u(y) = η(x,y)[c′(p(x,y))) − c′(p(y, x))] < η(x,z)[c′(p(x,z)) − c′(p(z, x))] = u(x) −

u(z). Hence, η(x,z) > η(y,z).

Conversely, let c(p) be the Shannon Entropy and let p(x,y) = p(y,z) = 0.69 <

p(x,z) = 0.7 so that SSST is satisfied. Then, c′(p(x,y))− c′(p(y, x)) = c′(p(y,z))−

c′(p(z,y)) = 0.8 and c′(p(x,z)) − c′(p(z, x)) = 0.84 but then the following system

should have a solution with η(x,y),η(y,z) ≥ η(x,z):

u(x)− u(y) = 0.8η(x,y)

u(x)− u(z) = 0.84η(x,z)

u(y)− u(z) = 0.8η(y,z)

This can be rewritten as

0.8[η(x,y) + η(y,z)] = 0.84η(x,z)

let η(x,y) = η(x,z) + α1 and η(y,z) = η(x,z) + α2 for some α1,α2 ≥ 0 then:
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0.8
0.84

=
η(x,z)

2η(x,z) + α1 + α2

(1.6− 0.84)η(x,z) = −0.8(α1 + α2)

that has clearly no solution for α1,α2 ≥ 0 and η(x,z) > 0.
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