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Unsupervised Deep Learning of Visual Representations

Jiabo Huang

Abstract

Interpreting visual signals from complex imagery and video data with a few or no human an-
notation is challenging yet essential for realising the true values of deep learning techniques in
real-world scenarios. During the past decade, deep learning has achieved unprecedented break-
throughs in lots of computer vision fields. Nonetheless, to optimise a large number of parameters
in deep neural networks for deriving complex mappings from an input visual space to a dis-
criminative feature representational space, the success of deep learning is heavily relying on
a massive amount of human-annotated training data. Collecting such manual annotations are
labour-intensive, especially in large-scale that has been proven to be critical to learning general-
isable models applicable to new and unseen data. This dramatically limits the usability and scal-
ability of deep learning when being applied in practice. This thesis aims to reduce the reliance of
learning deep neural networks on exhaustive human annotations by proposing novel algorithms
to learn the underlying visual semantics with insufficient/inadequate manual labels, denoted as
generalised unsupervised learning. Based on the different assumptions on the available sources
of knowledge used for learning, this thesis studies generalised unsupervised deep learning from
four perspectives including learning without any labels by knowledge aggregation from local
data structure and knowledge discovery from global data structure, transferring knowledge from
relevant labels, and propagating knowledge from incomplete labels. Specifically, novel methods
are introduced to address unresolved challenges in these problems as follows:

Chapter 3 The first problem is aggregating knowledge from local data structure, which
assumes that apparent visual similarities (pixel intensity) among images are encoded in local
neighbourhoods in a feature representational space, providing partially the underlying semantic
relationships among samples. This thesis studies discriminative representation learning in this
problem, aiming to derive visual features which are discriminative in terms of image’s semantic
class memberships. This problem is challenging because it is scarcely possible without ground-
truth labels to accurately determine reliable neighbourhoods encoding the same underlying class
concepts, considering the arbitrarily complex appearance patterns and variations both within and
across classes. Existing methods learning from hypothetical inter-sample relationships tend to
be error-propagated as the incorrect pairwise supervisions are prone to accumulate across the
training process and impact the learned representations. To that end, this thesis proposes to
progressively discover sample anchored / centred neighbourhoods to reason and learn the under-
lying semantic relationships among samples iteratively and accumulatively. Moreover, a novel
progressive affinity diffusion process is presented to propagate reliable inter-sample relationships
across adjacent neighbourhoods, so as to further identify the within-class visual variation from
between-class similarity and bridge the gap between low-level imagery appearance (e.g. pixel
intensity) and high-level semantic concepts (e.g. object class memberships).

Chapter 4 The second problem is discovering knowledge from global data structure, which
makes an assumption that visual similarity among samples of the same semantic classes is gen-
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erally higher than that of different classes. This thesis investigates deep clustering for solving
this problem which simultaneously learns visual features and data grouping without any labels.
Existing unsupervised deep learning algorithms fails to benefit from joint representations and
partitions learning by either overlooking global class memberships (e.g. contrastive representa-
tion learning) or basing on unreliable pseudo labels estimated by updating feature representations
that are subject to error-propagation during training. To benefit clustering of images from dis-
criminative visual features derived by a representation learning process, a Semantic Contrastive
Learning method is proposed in this thesis, which concurrently optimises both instance visual
similarities and cluster decision boundaries to reason about the hypotheses of semantic classes
by their consensus. What’s more, based on the observation that assigning visually similar samples
into different clusters will implicitly reduce both the intra-cluster compactness and inter-cluster
diversity and lead to lower partition confidence, this thesis presents an online deep clustering
method named PartItion Confidence mAximisation. It is established on the idea of learning the
most semantically plausible data separation by maximising the “global” partition confidence of
clustering solution using a novel differentiable partition uncertainty index.

Chapter 5 The third problem is transferring knowledge from relevant labels, which assumes
the availability of manual labels in relevant domains and the existence of common knowledge
shared across domains. This thesis studies transfer clustering in this problem, which aims at
learning the semantic class memberships of the unlabelled target data in a novel (target) domain
by knowledge transfer from a labelled source domain. Whilst enormous efforts have been made
on data annotation during the past decade, accumulating knowledge from existing labelled data
to benefit understanding the persistently emerging unlabelled data is intuitively more efficient
than exhaustively annotating new data. However, considering the unpredictable changing na-
ture of imagery data distributions, the accumulated pre-learned knowledge does not transfer well
without making strong assumptions about the learned source and the novel target domains, e.g.
from domain adaptation to zero-shot and few-shot learning. To address this problem and effec-
tively transfer knowledge between domains that are different in both data distributions and label
spaces, this thesis proposes a self-SUPervised REMEdy method to align knowledge of domains
by learning jointly from the intrinsically available relative (pairwise) imagery information in the
unlabelled target domain and the prior-knowledge learned from the labelled source domain, so
as to benefit from both transfer and self-supervised learning.

Chapter 6 The last problem is propagating knowledge from incomplete labels, with the as-
sumption that incomplete labels (e.g. collective or inexact) are usually easier to be collected and
available but tend to be less reliable. This thesis investigates video activity localisation in this
problem to locate a short moment (video segment) in an untrimmed and unstructured video ac-
cording to a natural language query. To derive discriminative representations of video segments
to accurately match with sentences, a temporal annotation of the precise start/end frame indices
of each target moments are usually required. However, such temporal labels are not only harder
to be collected than pairing videos with sentences as they require carefully going through videos
frame-by-frame, but also subject to labelling uncertainty due to the intrinsic ambiguity in a video
activity’s boundary. To reduce annotation cost for deriving universal visual-textual correlations, a
Cross-sentence Relations Mining method is introduced in this thesis to align video segments and
query sentences when only a paragraph description of activities (collective label) in a video is
available but not per-sentence temporal labels. This is accomplished by exploring cross-sentence
relationships in a paragraph as constraints to better interpret and match complex moment-wise
temporal and semantic relationships in videos. Moreover, this thesis also studies the problem
of propagating knowledge to avoid the negative impacts of inexact labels. To that end, an Elas-
tic Moment Bounding method is proposed, which accommodates flexible and adaptive activity
temporal boundaries towards modelling universal video-text correlations with tolerance to un-
derlying temporal uncertainties in pre-fixed human annotations.

Figure 1 depicts an overview of the main studies carried out in this thesis.
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Figure 1: An overview of the main studies carried out in this thesis. According to the differ-
ent assumptions made as the sources of knowledge for unsupervised deep learning, all stud-
ies presented in this thesis are grouped into four categories: aggregating knowledge from local
data structure without any labels (Chapter 3), discovering knowledge from global data structure
without any labels (Chapter 4), transferring knowledge from relevant labels (Chapter 5), and
propagating knowledge from incomplete labels (Chapter 6).
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Chapter 1

Introduction

1.1 Scope of the Thesis

Visual perception is one of the most essential building bricks of human natural intelligence by

perceiving and processing visual information from the surrounding environment to acquire use-

ful knowledge of the world. It is usually referred to as the ability to identify and organise the

information captured by human sensors (eye) to convert the resulted neural impulses (visual sig-

nals) into a form (visual images) that enables human to interpret the signals and make subsequent

decisions, e.g. recognising objects, detecting activities, etc. To enlighten machines and endow

them the ability to “mimic” human cognition so as to automate tasks, numerous Artificial Intel-

ligence (AI) (Russell and Norvig [155]) researchers have been devoting to the field of computer

vision (Sonka et al. [165]) and have developed countless advanced techniques to build artificial

visual perception, i.e., obtaining high-level understandings of visual information from digital vi-

sual data (images and videos) in the forms of decisions. For the sakes of display and storage,

visual information is always encoded as a matrix of pixels in computer. However, the indepen-

dent pixels usually fail to explain a reasonable decision. Therefore, it is critical for artificial

visual perception to represent digital visual data more abstractly and holistically by discovering

and disentangling the underlying explanatory factors hidden in pixels (Bengio et al. [12]). This

thesis studies such a fundamental computer vision task, termed as visual representation learning

(a.k.a. visual feature learning), to map high-dimensional visual data to a compact and discrimi-

native latent feature space, so as to capture the posterior distribution of underlying explanatory
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factors for the observations and make it easier to build classifiers or other predictors.

(b) Deep Visual Representation

(a) Handcrafted Image Descriptor
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Figure 1.1: An illustration of deep visual representation in comparison to handcrafted image de-
scriptor. We take the Histogram of Oriented Gradients (HOG) (Dalal and Triggs [35]) as an exam-
ple of handcrafted image descriptors. Whilst (a) handcrafted image descriptors were designed by
human experts to represent images to be invariant to scale, rotation and other semantic-agnostic
visual variations, (b) deep visual representations are derived in a data-driven manner by learning
a multi-layers neural network according to a task-specific objective loss function to maximise the
consistency of network’s predictions and human labels.

In the past decade, deep learning (Goodfellow et al. [58]; LeCun et al. [99]) of visual feature

representations has made remarkable progress thanks to the enormous efforts put on large-scale

datasets collections and annotations as well as the advanced Graphics Processing Units (GPUs).

As compared in Figure 1.1, rather than handcrafting substantial descriptors with each aiming at

identifying certain types of visual pattern (e.g. edge, corner and etc.) as the potential explanatory

factors for arbitrary tasks according to human expertise (Dalal and Triggs [35]; Lowe et al. [113];

Ojala et al. [133]), deep learning derives feature representations by fitting the mapping functions

from the input to the label prediction spaces. This is accomplished by optimising a task-specific

objective loss function (e.g. cross-entropy for image classification) to maximise the consistency

of sample’s manual labels and its predictions yielded by a model (neural network (LeCun et al.

[99]; Krizhevsky et al. [93])) composed of multiple cascaded neural layers with each conducting

a linear or non-linear projection on its own inputs. The term ‘deep’ in deep learning refers to

the large number of layers in a neural network, which has been shown beneficial to modelling
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complex mapping functions (He et al. [68]). Given a well-trained neural network model, the

outputs of its intermediate layers (usually the second-last layer) can be used to represent the input

data tailored for the tasks of interest, encoding essential visual information to make reasonable

predictions for unseen samples. This thesis studies deep learning of visual representations to

discover the underlying explanatory factors of tasks and encode them in the representations of

visual data by deep neural networks in a data-driven manner.

Regardless the unprecedented success achieved by deep learning on visual representation

learning in recent years, it is heavily relying on the massive amount of visual data with exhaustive

and precise manual labels for model training. This restricts its usability and scalability in practice

where human annotations are not always available due to the unaffordable labelling cost for

large-scale datasets or the lack of task-specific expertise (e.g. labels of medical images can only

be annotated by human experts (Shen et al. [160])). Without such labels of samples encoding

the desired observation-prediction mapping functions, it is clueless for deep learning models to

derive expressive and discriminative representations of visual data. In contrast, such exhaustive

and precise manual labels are not indispensable for human cognition to understand visual data

and describe them conceptually. This is because humans are capable of making use of various

sources of knowledge to accomplish new tasks, e.g. shared knowledge on related tasks, unreliable

knowledge in incomplete labels or even certain intuitions and common senses (assumptions),

whilst deep learning models are usually trained and supervised by a single source of knowledge,

i.e. sample-label pairing relationships. Therefore, to advance artificial visual perception to benefit

from persistently emerging unlabelled data and make it applicable in real-world, it is essential

to explore the potential of deep learning models to acquire knowledge from different sources

other than the task-specific sample-label pairs. To this end, this thesis focuses on unsupervised

deep learning of visual representations when the human annotations, which implies the desired

mapping functions, is insufficient or inadequate during model training.

1.2 Problem Definition

1.2.1 Generalised Unsupervised Learning

By contrast with supervised learning, unsupervised learning (Dayan et al. [36]; Ghahramani

[53]; Hinton and Sejnowski [73]; Bengio [9]) seeks for learning the labels of observations with

regard to a task of interest without human-annotated outputs associated with each input at the
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time of learning. Unsupervised learning is a critical topic to be studied to facilitate artificial vi-

sual perception not only because it is commonly exist in human brain (Dayan et al. [36]) but also

due to the strong assumption made by supervised learning on the availability of task-specific hu-

man annotations that restricts the scalability and deployability of learning effective vision models

in real-world. For example, the unaffordable cost of human annotations refrains supervised deep

learning from benefiting from larger scale training data. The large scale of data used for model

training have been shown to be one of the most essential factors to the success of deep learn-

ing (Krizhevsky et al. [93]), especially when the generalisation ability of the deep networks is

of concern. However, considering the unaffordable annotation cost, it is impractical to pursue

stronger models by scaling up the training datasets with manual labels. Whilst deep neural net-

works trained on one of the most popular large-scale imagery dataset, ImageNet-1K (Deng et al.

[37]) with 1.2 million labelled images from 1,000 natural object classes, have shown notable

capacity to generalise to a variety of vision tasks/domains, unsupervised learning have yielded

competitive or even superior models by scaling up the training data without needing human an-

notations or curation in Instagram-1B (Yalniz et al. [205]) composed of∼1 billion public images

from Instagram (He et al. [69]). Therefore, to facilitate powerful vision models which are appli-

cable in practice, it is crucial to explore and acquire knowledge beyond human annotations, e.g.

from the underlying data structure.

This thesis studies unsupervised learning with a focus on discriminative models, which is

formally defined as follows:

Definition 1 (Unsupervised Learning) Given a target problemPt composed of visual data from

a target domain Xt and a target task involving a label space Yt , unsupervised learning aims at

deriving a function f = g(Xt) modelling the underlying mapping from samples to their corre-

sponding labels Yt = f (Xt) with only the observed inputs but not any human annotations.

In Definition 1, the notion g(·) stands for the deep learning algorithms used to train the deep

neural networks f (·) modelling the mapping from visual observations Xt to predictions (Yt) of

target tasks.

The essence of unsupervised learning is to automate tasks by machine models without de-

pending too much on per-task exhaustive human annotations for training. Conventional unsu-

pervised learning (Definition 1) takes the visual data and its distribution as the only source of

knowledge for model learning (Bengio [9]; Dayan et al. [36]) without any kind of human annota-
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tions. However, human beings barely learn to solve a new task from scratch by “pure” guestimate

but leverage any existing knowledge either accumulated in past or available from the surround-

ing environment. In other words, there are always a wide variety of knowledge sources beyond

the task-specific manual labels and the visual data itself existing in real-world that are ready to

benefit visual understanding for novel tasks. In this regard, this thesis investigates and discusses

unsupervised learning in a wider context when the machine models can be trained with or with-

out human annotations as long as the annotations are insufficient or inadequate to indicate the

underlying mapping functions from the visual inputs to the predictions of target tasks. Such a

problem is termed as generalised unsupervised learning in this context, which is defined as:

Definition 2 (Generalised Unsupervised Learning) Given a target problemPt composed of vi-

sual data from a target domain Xt and a target task involving a label space Yt , generalised un-

supervised learning f = g(X , f ′) seeks for the one-to-one mapping function Yt = f (Xt) from

target samples to their labels without the help of the underlying pairwise relationships (Xt , Yt)

but an independent function f ′ subjecting to f 6= f ′. The prior mapping function f ′ = Xs→Ys

is derived in a source domain Xs with human annotations for a source task Ys being available.

Comparing to Definition 2, the conventional unsupervised learning given in Definition 1 is a

special case when f ′ = ∅, i.e., the observed inputs are the only source of knowledge for model

learning. By relaxing the constraint on human annotations in Definition 2, the problem of unsu-

pervised learning is considered from a more general perspective and is related to a wider range

of techniques that aiming at exploring a variety sources of knowledge beyond the target task-

specific manual labels. For example, models in transfer learning1 (Pan and Yang [134]) derive

f ′ to make use of the knowledge acquired in a source domain and a source task then transfer it

across domains (e.g. domain adaptation (Patricia and Caputo [135]; Peng et al. [139]; Muandet

et al. [122]) where Xt 6=Xs), across tasks (e.g. multi-task learning (Zhang and Yang [222]) where

Yt 6= Ys) or across both (e.g. few-shot (Sung et al. [168]) and zero-shot (Xian et al. [196]) where

Xs 6= Xt and Ys 6= Yt). Moreover, the generalised unsupervised learning is also related to the

settings where the source and target problems share both the data distribution (Xt = Xs) and the

label space (Yt = Ys), but the labels are given partially (semi-supervised learning (Chapelle et al.

[24])) or inexactly and collectively (weakly-supervised learning (Zhou [230])) to be associated

1 Whilst there are lots of studies on transfer learning with manual labels being available on the target
data and tasks, we discuss it in the context of unsupervised learning in this thesis.
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with a set of samples (observations) rather than each individual. Such labels are sometimes easier

to be collected but considered inadequate, which may contain a certain amount of sample-label

mismatches or biased pairwise relationships. In this case, the function f ′ encoding the prior-

knowledge is still different from the desired mapping function f 6= f ′, and the pre-learned model

f ′ should be used carefully to refrain f from being misled by unreliable prior.

Problem Technique Labels of Xs Labels of Xt Xs = Xt Ys = Yt

Discovering/Aggregating knowledge

from global/local data structure
Unsupervised Learning N/A None 3 3

Domain Adaptation Exhaustive None 7 3

Few-shot Learning Exhaustive Partial 7 7

Zero-shot Learning Exhaustive Collective 7 7

Transferring knowledge

from relevant labels

Transfer Learning Exhaustive None 7 7

Semi-supervised Learning N/A Partial 3 3Propagating knowledge

from incomplete labels Weakly-supervised Learing N/A Collective 3 3

Table 1.1: Comparisons of different types of generalised unsupervised learning. Given Defini-
tion 2, problems related to generalised unsupervised learning can be categorised according to
whether and what kinds of (1) human annotations (labels of Xs/Xt) are provided (2) in the target
domains (Xs = Xt) (3) for the target tasks (Ys = Yt). The human annotations in source domain
(Labels of Xs) is not applicable when the source and target domains are identical. The problems
studied in this thesis are highlighted in bold.

1.2.2 Types of Generalised Unsupervised Learning

Given definition 2, the generalised unsupervised learning problem covers a wide range of tech-

niques in deep learning, which aims at comprehensively exploring the available sources of knowl-

edge in real-world to facilitate machine perception. According to where the knowledge used for

model training comes from, this thesis studies unsupervised deep learning from four different

perspectives, including aggregating knowledge from local data structure, discovering knowledge

from global data structure, transferring knowledge from relevant labels, and propagating knowl-

edge from incomplete labels, An elaboration of generalised unsupervised learning types involved

in this thesis is given in Table 1.1.

(1) Aggregating knowledge from local data structure seeks to explore the adjacent relation-

ships of unlabelled target data in local neighbourhoods as the knowledge indicating the se-

mantic similarity/consistency of visual observations. The local data structure is defined as



1.2. Problem Definition 27

the small group memberships (neighbourhoods in restricted size) of a data collection in this

context. Considering the complex patterns and their arbitrary variations and combinations

existed in real-world visual data, assuming high visual similarity among all observations

with similar semantics may sometimes be over strong and the feature learning process is

susceptible to the inevitable errors distributed in clusters. Hence, it is more reasonable

to relax such an assumption by holding it only within local areas (neighbourhoods). The

knowledge about local adjacent relationships is undeniably less complete than that about

global data structure, however, it is usually more reliable (samples of the same groups are

more semantically consistent). This enables deep models to explore the holistic cluster

memberships with a divide-and-conquer principle either explicitly or implicitly, i.e. aggre-

gating knowledge from small groups, so as to obtain semantically discriminative visual

representations. In the light of this, this thesis investigates representation learning with the

aim of its semantic discrimination capacity by knowledge aggregation.

(2) Discovering knowledge from global data structure aims at mining the knowledge en-

coded in the cluster memberships that is inherent to a collection of unlabelled target data,

where a cluster refers to a potential semantic class of interest, e.g. natural object, physical

activity, etc. The global data structure is considered “inherent” to the data by assuming

samples of the same clusters are generally more similar to each other. This problem is

closely related to the classical cluster analysis techniques, which aims to separate a set of

data in a pre-learned feature space so that each partition is likely to encode certain data

characteristics shared by its members, e.g. k-means (Coates and Ng [32]), hierarchical

clustering (Gowda and Krishna [60]), etc. However, the conventional clustering algorithms

are usually limited when dealing with high-dimensional visual data as the pixel intensity

of images/videos is not discriminative in terms of visual semantics, thus, fails to provide

reliable supervision signals to facilitate effective feature learning by deep neural networks.

Therefore, it is critical to simultaneously optimise the objectives of representation learning

and clustering so to derive discriminative visual features by deep learning models, which

is termed as deep clustering (Hershey et al. [72]; Chang et al. [21]) and is the concentration

of the second problem studied in this thesis.

(3) Transferring knowledge from relevant labels seeks for the shared knowledge across

different data domains and/or tasks to benefit the understanding of unlabelled visual ob-
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servations in a target domain by the existing knowledge acquired from human annotations

in a relevant source domain. This problem is extensively related to a wide range of tech-

niques with different assumptions on the connections of the source and target domains

and tasks. As elaborated and compared in Table 1.1, the source and target domains can

be linked through a shared tasks (label space) in domain adaptation (Ganin and Lempit-

sky [49]; Muandet et al. [122]) or aligned by additional human annotations in the target

domains, e.g. a few labelled target samples (partial labels) in few-shot learning (Ravi and

Larochelle [147]) or class-level attribute labels (collective) shared across source and target

tasks in zero-shot learning (Ye and Guo [209]). Although those techniques are established

with different assumptions to adapt to different scenes, a shared hypothesis held by them

is the existence of common knowledge that is agnostic to data domains and tasks. There-

fore, in the third problem, this thesis studies knowledge transfer without assuming any

relationships of the source and target domains/tasks, which is referred to transfer learning

in Table 1.1 and is distinct from other transferring techniques with certain assumption.

(4) Propagating knowledge from incomplete labels aims to obtain visual understanding of

the target data with the help of the annotations intendedly collected for the target data itself

but missing a reliable indication of the desired mapping function to be modelled. Such a

scenario is common in practice, for examples, when a dataset is expanded with new data

without annotations (e.g. partial labels in semi-supervised learning (Chapelle et al. [24]))

or when data is collected from searching engines with certain keywords as their labels (e.g.

collective and inexact labels in weakly-supervised learning (Zhou [230])). The incomplete

labels provide the models with vital cues for understanding the visual observations in the

target domain from where the samples of interest (testing samples) are likely drawn, ful-

filling the i.i.d. (independent and identically distributed) assumption commonly held in the

deep learning community (Tan et al. [172]). However, taking such incomplete labels as

oracles for constructing supervision signals for model learning is prone to degrading the

generalisation capacity of the resulted models. It is crucial to propagate the knowledge ac-

quired from incomplete labels to the whole dataset in order to yield an unbiased model that

is applicable to new and unseen data. This thesis studies the last problem with a focus on

knowledge propagation from collective or inexact labels (i.e. weakly-supervised learning),

where a label is associated with a collection of samples and the knowledge encoded should
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be propagated to every individual to derive the universal sample-label mapping functions.

1.3 Challenges and Solutions

This section highlights the unresolved challenges to the four types of generalised unsupervised

learning problems, especially those being considered in this thesis (Section 1.2.2), as well as the

potential solutions proposed.

1.3.1 Aggregating Knowledge from Local Data Structure

This thesis investigates class discriminative representation learning in the problem of knowl-

edge aggregation from local data structure. In the task of representation learning, unlabelled

images are fed into models to produce their feature representations as the only outcomes. The

resulted imagery features will then be used to facilitate subsequent object recognition tasks. In

recent years, Convolutional Neural Networks (CNNs) trained in a supervised fashion have sig-

nificantly boosted the state-of-the-art performance of various computer vision tasks (LeCun et al.

[98]; Krizhevsky et al. [93]; Simonyan and Zisserman [163]; He et al. [68]). The feature repre-

sentations yielded by a supervised CNN (e.g. trained for classification on ImageNet (Deng et al.

[37])) are not only discriminative but also beneficial to novel tasks and/or domains. Despite such

remarkable success, this technique is limited due to a number of stringent assumptions. First,

supervised model learning requires enormous labelled datasets to be collected manually and ex-

haustively. This does not always hold valid due to high annotation costs. Besides, the benefits of

enlarging labelled datasets may have diminishing returns (Sun et al. [167]). Second, out-of-box

deployment 2 of pre-learned deep neural networks across tasks and domains becomes less effec-

tive when the target tasks significantly differ from the source tasks (Goodfellow et al. [58]). Due

to the only need for accessing unlabelled data which is typically available at scale, unsupervised

deep learning provides a conceptually generic and scalable solution to these limitations.

Challenges. The first challenge to the problem is to identify the local neighbourhoods con-

taining semantically consistent samples, i.e. all the samples falling in the same local area in the

latent space are from the same semantic classes. Considering the complex visual patterns existed

in real-world visual data as well as their arbitrary combinations, samples from the same seman-

tic classes might be visually distinct to each other due to the changing illumination, occlusions

2Out-of-box deployment refers to directly using the trained models on arbitrary new tasks in any new
domains without the need to collect data for further fine-tuning.
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and etc. This will lead to dramatic intra-class visual variations. On the other hand, objects of

different semantic concepts may look similar in certain local parts or from some viewpoints, re-

sulting in large inter-class visual similarity. Therefore, the local adjacent relationships between

samples don’t always reveal their true semantic similarity, especially when the features of sam-

ples are yielded by a randomly initiated or poorly trained model. In this case, it is crucial for

a model to identify and learn from “pure” local neighbourhoods to get rid of distractions, so as

to be sensitive to intra-class discrepancy as well as inter-class affinity. The second challenge is

finding the trade-off between learning from limited intra-class visual variations in small local

neighbourhoods and enlarging neighbourhoods with reduced within-group semantic consistency.

Training a model with the knowledge mined from over-large neighbourhoods leads to mostly

false-positive inter-sample relationships, while the tiny neighbourhoods tend to yield too many

false-negative supervision signals, e.g. every single sample is treated as an independent class in

instance contrastive learning (Wu et al. [195]; He et al. [69]) for sample specificity learning. In

both the cases, the visual features derived is not discriminative regarding their inherent semantics.

Solutions. This thesis presents a generic unsupervised deep learning method for discriminative

representation learning called Anchor Neighbourhood Discovery (AND). It combines the advan-

tages of both clustering and instance contrastive learning whilst mitigating their disadvantages

in a divide-and-conquer principle. The AND method discover class consistent neighbourhoods

anchored to individual training samples (divide) and aggregate the local inter-sample class rela-

tionships with such neighbourhoods (conquer) for more reliably extracting the latent discrimina-

tion information during model training. Specially, to enhance the neighbourhood “purity” (class

consistency), a progressive discovery curriculum for incrementally deriving more accurate neigh-

bourhood supervision is proposed. Furthermore, to improve the model’s invariance to intra-class

image variations while maintaining class consistency within each neighbourhood, a Progressive

Affinity Diffusion (PAD) is introduced to perform model-matureness-adaptive data group infer-

ence in training for more reliably revealing the underlying sample-to-class memberships. This

is achieved by progressively self-discovering strongly connected subgraphs on a neighbourhood

affinity graph via faithful affinity diffusion and formulating the group structure aware objective

loss function.
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1.3.2 Discovering Knowledge from Global Data Structure

This thesis discusses unsupervised object recognition without any human annotations in discov-

ering knowledge from global data structure. Considering the similar objective shared with the

conventional cluster analysis but is discussed in the context of deep learning, such a technique is

widely known as deep clustering (Hershey et al. [72]; Xie et al. [200]). Deep clustering mod-

els take unlabelled images as inputs to predict their potential membership to a desired number

of clusters. It is similar in some aspects to the discriminative representation learning studied

in Chapter 3. However, representation learning doesn’t require explicit predictions of sample’s

global class memberships and holds no assumption on the number of semantic classes, hence,

is more suitable for instance-level objects recognition vs. category-level recognition (Szeliski

[170]) in deep clustering. For learning visual representations which are encoding the high-level

abstract information of visual data beyond the trivial low-level visual patterns, one straightfor-

ward solution is to learn by recognising the semantic class memberships of data, i.e. cluster anal-

ysis. However, simply learning visual representations according to clustering objectives is prone

to collapse, e.g. a global optimum of training deep models by the objective of k-means (Lloyd

[110]) to maximise the sample density within each cluster can easily be achieved by a degener-

ated solution which maps arbitrary samples to a single tight cluster (Yang et al. [206]). Therefore,

given the massive increase of visual data available on the Internet, how to leverage them with-

out exhaustive label annotation for learning high-level visual semantics (sample’s membership to

semantic classes) remains a challenging problem.

Challenges. The first challenge to the problem is the mutual dependences between the objec-

tives of representation learning and cluster analysis. One commonly adopted strategy in deep

clustering is to iteratively estimate cluster assignment and/or inter-sample relationships which

are then used as hypotheses in supervising the learning of deep neural networks (Wu et al.

[193]; Chang et al. [21, 20]; Yang et al. [207]). In ideal cases, such alternation-learning methods

can approach the performance of supervised models not the least benefiting from their robustness

against noisy labels. Nevertheless, the class discriminative feature representations are the pre-

requisites for obtaining reliable hypothetical cluster assignments using conventional clustering

techniques, while reliable pseudo class labels is also the key to learning class-sensitive visual

features. Hence, those approaches are susceptible to error-propagation as the process of alternat-

ing cluster assignment and representation learning is staged between two learning objectives and
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any error in global clusters is accumulated during this alternation. The second challenge is that

the clusters derived by the models trained without manual labels as constraints are usually se-

mantically less plausible, i.e. there are no one-to-one mappings between the yielded clusters and

the manually defined semantic classes (common visual characteristics shared within classes are

assumed) can be found. This is especially challenging to another commonly adopted paradigm

in deep clustering, which simultaneously learn both the representations and cluster assignments

without explicit stages of alternation but by certain proxy learning objectives (Ji et al. [85, 84]).

Although they can avoid mostly the problem of error-propagation, they suffer from ambiguous

learning constraints due to vague connection between the training supervision and clustering

objective to separate data by their visual similarity.

Solutions. Firstly, this thesis proposes a deep clustering method called PartItion Confidence

mAximisation (PICA) based on the observation that inherent visual similarity among samples

are implicitly encoded in their feature representations by deep neural network even if they are

given different class labels in supervised learning of object recognition (Wu et al. [195]). With

this in mind, although a set of visual data can be separated in numerous ways according to var-

ious criteria, assigning samples from the same semantic categories, which are likely sharing a

high proportion of visual information, to different clusters will reduce the resulted within-cluster

compactness and between-cluster diversity and lead to lower partition confidence. Based on this

insight, PICA is designed specifically to encourage the model to learn the most confident clus-

ters from all the possible solutions in order to find the most semantically plausible inter-class

separation. Specifically, a partition uncertainty index is proposed to quantify how confidently a

deep model can make sense and separate a set of target images when performing both feature

representation learning and cluster assignment concurrently. To fit the standard mini-batch based

model learning, a stochastic approximation of the partition uncertainty index is introduced to

enable deep clustering with any off-the-shelf networks. Secondly, a novel Semantic Contrastive

Learning (SCL) is introduced in this thesis to alleviate the impacts of unreliable pseudo labels to

representation learning by the nature of contrastive learning (Wu et al. [195]; He et al. [69]) which

is able to derive sample-specific visual features in a class-agnostic manner. Meanwhile, cluster

structures are explicitly imposed to unlabelled training data to encourage learning a “cluster-

aware” instance discriminative feature space that promotes separation of decision boundaries

between clusters, leading to a plausible interpretation of the underlying semantic concepts. Dif-
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ferent from the contemporary instance contrastive learning based clustering methods (Van Gans-

beke et al. [181]; Li et al. [106]; Tao et al. [175]) which pull away each instance from all other

samples in the feature space, SCL only pulls it away from its pseudo-negative samples in other

clusters. By sharing a common contrastive negative set for all the instances in a cluster, SCL

indirectly pushes them closer regardless of any intra-cluster visual dissimilarity. This enhances

model’s robustness to the inevitable errors from the hypothetical class memberships estimated

based on the updating features. More importantly, it resolves the contradiction in the instance

contrastive learning and clustering objectives (dispersing all instances vs. tightening each clus-

ters) which is neglected by the recent developments on deep clustering, ensuring a discriminative

representational space is learned to encode high-level visual semantics of images.

1.3.3 Transferring Knowledge from Relevant Labels

This thesis considers unsupervised object recognition with existing knowledge acquired in rele-

vant labelled domains when studying knowledge transfer from relevant labels to unlabelled data.

Despite the remarkable progress advanced by deep learning on computer vision (LeCun et al.

[98]; Krizhevsky et al. [93]; He et al. [68]), the i.i.d. assumption widely held by most of the

deep learning models restricts their usability in novel target domains without additional labelled

training data. In general, realistic data in novel domains usually have different and unknown

distributions. It is both labour-intensive to manually annotate sufficient data and computationally

expensive to re-train a model in every new domain. Inspired by human cognition which always

leverages the knowledge accumulated in different domains on different tasks to understand and

address new tasks with unseen data, it is vital to empower machines the same ability to transfer

knowledge across tasks and domains instead of learning from scratch when there are no labels

available for the data or task of interest.

Challenges. The first challenge to the problem is the diverse and independent efforts made on

a similar objective to transfer knowledge but with different assumptions on data and/or tasks,

which limits their usability in different scenarios as well as their joint contributions to the field.

Recent efforts on unsupervised transfer learning have different manifestations based on their as-

sumptions on the training data, unlabelled vs. sparsely (incompletely) labelled, seen vs. unseen.

For examples, unsupervised domain adaptation (Ganin and Lempitsky [49]; Tzeng et al. [179])

deals with unlabelled data in a target domain from the same seen classes in the source domain, i.e.
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assuming an identical task in different domains. Few-shot Learning (FSL) (Ravi and Larochelle

[147]; Ren et al. [149]) assumes novel categories are seen in limited labelled data and Zero-shot

Learning (ZSL) (Ye and Guo [209]; Xian et al. [196]) assumes the target tasks are known in

relation to the seen classes in the source tasks in a word-vector attribute space. However, it is

impractical to assume all novel classes are seen before, or known as having exhaustive ontology

in text. Therefore, it remains an open question as how to best generalise a trained model to data

from universally unseen classes which are without known relations in text to the seen classes in

source tasks. The second challenge to the problem is the unreliable constraints applied to the tar-

get data which are inferred according to the non-transferable knowledge in source domains. Due

to the existence of domain shift (inconsistency in data distributions (Pan and Yang [134])) and

discrepancy of classes, estimating semantic class memberships of target samples by the models

trained in source domains is inevitably error-prone, which tends to mislead the learning of dis-

criminative representations of unlabelled target data. However, such differences between data

domains are usually unknown, thus, it is non-trivial to determine whether the constraints con-

structed according to the prior-knowledge acquired in source domains are transferable to and

beneficial for model learning in target domains.

Solutions. In spite of the different assumptions made on different unsupervised transfer learn-

ing techniques, they share a common objective to map unlabelled data from novel classes into a

discriminative representational space. This is identical to the long-standing clustering task while

human labelling on related source data is available. Therefore, to improve model’s scalability in

different scenarios when knowledge transfer is needed, this thesis concentrates on such a tech-

nique named transfer clustering (Han et al. [65]), to be more generic than the above-mentioned

counterparts by making no assumption on the novel categories to be seen or known. Transfer

clustering models aim to predict the potential memberships of unlabelled images to a number

of clusters. Their difference to the deep clustering approaches discussed in Chapter 4 is on the

availability of labelled training data in a domain other than the target one. A novel method called

self-SUPervised REMEdy (SUPREME) is introduced to that end. The motivation is that the super-

vision constructed according to the pre-learned knowledge acquired in a relevant source domain

(transferred supervision) is not always sufficient and reliable for each and every target samples

due to distribution shift and class discrepancy. Therefore, additional complementary supervision

is necessary for learning a model to better describe the target distribution. Specifically, to com-
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plement the unreliable pairwise relationships of target data estimated in the latent feature space

yielded by the model pretrained in the source domains, the SUPREME model constructs a self-

supervision to enforce consistent cluster assignment predictions of target data and their perturbed

copies so to encourage model’s invariance to semantic-agnostic visual distortion. By exploring

the auxiliary learning principle (Caruana [19]), SUPREME explores jointly the transferred super-

vision acquired from human labels in relevant domains and self-supervision that is intrinsically

available in the unlabelled target domains. The two supervisions are adapted on each individual

target samples according to the estimated confidence of the transferred knowledge. Our empir-

ical studies demonstrate that by exploring transfer clustering with self-supervised learning in a

target domain can attain compelling knowledge transfer ability comparing to contemporary FSL

and ZSL methods without the more strict assumptions.

1.3.4 Propagating Knowledge from Incomplete Labels

This thesis studies knowledge propagation from incomplete labels in video activity localisation

by natural language (Gao et al. [50]; Zhang et al. [216]) (a.k.a. video moment retrieval (Mithun

et al. [121]) and video grounding (Chen et al. [25])). The task aims to identify the tempo-

ral boundary of a video moment in an untrimmed and usually unscripted video according to

a natural language query. A video-sentence pair is fed into the models and the potential start

and end time indice of the moment described by the query sentence in the given video are pre-

dicted. The exhaustive sample-wise labels specific to such a task is intrinsically ambiguous and

unaffordable regarding the labour cost which requires ones to go through the untrimmed videos

frame-by-frame in order to identify the precise frame indices as the temporal endpoints of the

moments-of-interest, therefore, it is of practical significance to investigate if the desired video-

sentence correlations can be propagated from certain labels that may be incomplete but are easier

to be collected, e.g. associating sentences with videos rather than video segments. Video activity

localisation is fundamentally challenging as not only the visual and textual semantics should be

properly understood by the models, but their matching relationships is of more importance in

order to accurately locate the temporal boundary.

Challenges. The first challenge when learning video-text alignment from collective labels on

associating video with sentences without precise temporal boundaries is that contemporary so-

lutions locate different moments in the same videos individually, which is not optimal as it ne-
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(a) Out-of-context ambiguity (b) Uncertainty in labelling activity temporal endpoints

Slip foot into shoeGrab shoesSit down Run

: Person put on a pair of shoes

Put down box Grab shoes Slip foot into shoe Stand up

The man then
celebrates.

A man throws
a javelin.

Union

Concat

... ...

Candidate segments in temporal order

A man throws
a javelin.

Several men run to
the landing spot.

Before

Before After

: Person put on their shoes

Figure 1.2: An illustration of challenges to knowledge propagation in video activity localisation.
(a) Video activities can be visually ambiguous if considered out of the description paragraph’s
context. (b) Activity’s temporal boundaries are intrinsically uncertain in manual labelling (grey
bars) which are break-down and highlighted in ‘red’.

glects the fact that an individual sentence is sometimes ambiguous out of its paragraph context.

For example in Figure 1.2 (a)’s top, without consideration of the temporal relations with the

second sentence, the first query sentence (purple) can be easily mismatched with incorrect video

segment, which is visually indiscriminative from the ground-truth moment. Our analysis on the

ActivityNet-Captions (Krishna et al. [91]) shows that the temporal relations of over 65% moment

pairs predicted by a contemporary weakly-supervised model (Lin et al. [107]) are contradictory

with the true order of their descriptions. Moreover, in the bottom part of Figure 1.2 (a), “the man”

in the blue query exhibits ambiguity if its semantic relations with previous sentences are ignored.

We also observed that more than 38% descriptions in ActivityNet-Captions contain ambiguous

ways of referring to expressions, e.g. pronouns. The second challenge when learning from the

exhaustive temporal boundary annotations is their intrinsic ambiguity which is prone to inconsis-

tent visual-textual correlations that is not interpretable universally. Two video moments in similar

semantics but inconsistent temporal boundary are provided in Figure 1.2 (b) as examples. When

the exhaustive temporal labels are available for model training, one straightforward solution is to

train a model to predict directly the start and end frame indices of a target moment (Zeng et al.

[214]; Ghosh et al. [54]; Zhang et al. [217]). Such paradigm deploys directly the fixed manual

activity endpoints labels for model training, implicitly assuming these labels are well-defined and

ignoring their inherent uncertainties. Nevertheless, there is a considerable variation in how activ-

ities occur in unconstrained scenarios. Fitting such uncertain temporal endpoints will inevitably

leads to semantically mismatched visual-textual correlations and result in poor generalisation in
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test. Such a challenge is also evidenced in (Mayu Otani and Heikkilä [118]) by giving the same

videos and query sentences to 5 different annotators, only 35% of their annotated activity bound-

ary are mutually agreed (with at least 50% overlaps) on ActivityNet-Captions, highlighting the

extent of activity label uncertainties in model training.

Solutions. Firstly, to effectively propagate knowledge about visual-textual correlations from

the incomplete coarse-grained video-paragraph matching relationships to the target fine-grained

alignment between video moments and sentences, a weakly-supervised method for video activity

localisation called Cross-sentence Relations Mining (CRM) is proposed in this thesis. The key

idea is to explore the cross-sentence relations in a paragraph as constraints to better interpret and

match complex moment-wise temporal and semantic relations in videos. Given the one-to-one

moment-sentence mappings, the inherent cross-moment relations are unknown and not straight-

forward to be modelled in videos but intrinsically available in the paragraph descriptions. Hence,

the CRM model imposes the same cross-sentencing relations to their potentially matching video

moments for more reliable proposal selections. Existing weakly-supervised counterparts (Zhang

et al. [224]; Ma et al. [115]; Tan et al. [173]), which locate per-sentence queries independently,

lack fundamentally any ability to make use of the cross-sentence relations for moment proposal

selection in model training. Even though such relational information is less complete than per-

sentence exhaustive temporal annotation, it is intrinsically available in the paragraph descrip-

tions which are easier to be collected. Secondly, this thesis introduces Elastic Moment Bounding

(EMB) to model explicitly the label uncertainty in the temporal boundaries of an activity mo-

ment, so that the universally interpretable knowledge about video-text alignment acquired from

a majority of data can be propagated to the samples with biased temporal annotations. Instead

of forcing a model to fit the manually labelled rigid temporal endpoints, each moment is mod-

elled by an elastic boundary with an adaptive set of candidate endpoints. The EMB model then

learns to select optimally from consistent video-text correlations among semantically similar ac-

tivities. This introduces model robustness to label uncertainty and refrains the model from losing

its generalisation ability when dealing with unseen videos or sentences.

1.4 Contributions

The contributions made in this thesis is summarised below:

(1) Chapter 3: A novel Anchor Neighbourhood Discovery method is introduced for unsuper-
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vised learning of discriminative visual representations based on the idea of preserving the

capability of clustering for class boundary inference whilst minimising the negative impact

of class inconsistency typically encountered in clusters. It is the first attempt at exploring

the concept of neighbourhood for end-to-end deep learning of feature representations with-

out class label annotations. The AND model not only generalises the idea of sample speci-

ficity learning, but also additionally considers the originally missing sample-to-sample cor-

relation during model learning by a novel neighbourhood supervision design. A curriculum

learning algorithm is further designed to gradually perform neighbourhood discovery for

maximising the class consistency of neighbourhoods, therefore, enhancing the class dis-

crimination capability. Moreover, to further improve model’s sensitivity to within-class

visual variations that are common in practice, a new Progressive Affinity Diffusion method

is formulated for model-matureness-adaptive discovery of strongly connected sub-graphs

during training through affinity diffusion across adjacent neighbourhoods, which are used

as a self-supervision structure for more reliable unsupervised learning conducted in an

end-to-end manner.

(2) Chapter 4: This thesis proposes the idea of learning the most semantically plausible

clustering solution by maximising partition confidence, which extends the classical maxi-

mal margin clustering idea (Xu et al. [203]; Cortes and Vapnik [34]) to the deep learning

paradigm. The proposed idea makes no strong hypothesis on local inter-sample relations

and/or cluster assignment which usually leads to error-propagation and inferior clustering

solutions. As an instantiation of this idea, a novel deep clustering method, called PartItion

Confidence mAximisation is introduced. PICA is built upon a newly introduced partition

uncertainty index that is designed elegantly to quantify the global separation confidence of

clusters. To enable formulating a deep learning objective loss function, a novel transforma-

tion of the partition uncertainty index is further proposed. PICA can be trained end-to-end

using a single objective loss function without whistles and bells (e.g. complex multi-stage

alternation and multiple loss functions) to simultaneously learn discriminative visual rep-

resentations and semantically plausible cluster assignment. Besides, a new Semantic Con-

trastive Learning approach is presented to benefit from sample-wise discriminative repre-

sentations derived by instance contrastive learning (Wu et al. [195]; He et al. [69]) while

encouraging them to be sensitive to semantic class memberships and more importantly, re-
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solving the contradiction in learning simultaneously sample specificity discrimination and

clustering objectives to enforce a consensus.

(3) Chapter 5: This thesis makes the first attempt at jointly exploring related-domain prior-

knowledge and novel target domain self-supervised knowledge as well as their alignment

by hard samples mining in transfer clustering. This is motivated by the idea of exploiting

intrinsically available self-supervision as the remedy for unreliable unsupervised transfer

learning to yield more discriminative modelling of the target distributions. To that end,

a novel self-SUPervised REMEdy method is presented for transfer clustering that enables

an effective implementation of leveraging related source domain prior-knowledge whilst

simultaneously mitigating the negative impact of ambiguous transferred supervision by

self-supervised learning in a target domain. The empirical studies carried out in this thesis

show that transfer clustering by SUPREME is able to provide compelling discrimination

ability when applied to other tasks such as FSL and ZSL without the need to assume human

annotations either on samples or on known semantically related classes, providing a more

generic solution in both the scenarios.

(4) Chapter 6: To effectively propagate the incomplete knowledge about visual-textual cor-

relations from the video-text holistic association labels to the moment-sentence matching

relationships for locating accurately video moment of interest according to a natural lan-

guage sentence when the precise temporal boundary annotations is missing during train-

ing, a new weakly-supervised method called Cross-sentence Relations Mining is proposed.

The CRM method trains a model with both temporal and semantic cross-sentence rela-

tions, which are intrinsically available in the paragraph descriptions of activities involved

in untrimmed videos, to improve per-sentence temporal boundary prediction in testing.

This is the first idea to develop a model using cross-sentence relations in a paragraph to

explicitly represent and compute cross-moment relations in videos, so as to alleviate the

ambiguity of each individual sentence in video activity localisation. Moreover, to enhance

the robustness to the inherently uncertain manual annotations on the temporal boundary of

video activities, this thesis further formulates a new Elastic Moment Bounding method to

expand the fixed manual temporal endpoints to an elastic set by reinforcing directly robust

content matching as a condition to accurate endpoints predictions.
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1.5 Thesis Outline

The remaining chapters of this thesis are summarised and organised as follows, with its structure

being depicted in Figure 1.3.

Chapter 2 presents a comprehensive literature review of the problems discussed in this thesis,

covering a wide range of techniques related to generalised unsupervised learning (Definition 2),

including weakly-supervised learning, transfer learning, conventional unsupervised learning of

discriminative representations for either instance-level or category-level object recognition.

Chapter 3 explores knowledge aggregation from local data structure in discriminative repre-

sentation learning for instance-level object recognition. This chapter introduces two methods to

improve model’s robustness to unreliable adjacent relationships among samples in a latent space

and also to involve more intra-class image variations in local neighbourhoods to enhance model’s

discrimination capacity, by progressively adapting the neighbourhoods selection and construction

according to the matureness of models along the training process. Experiments are carried out

in extensive benchmarks from simple digit images datasets (Netzer et al. [125]) to complex and

large-scale natural objects datasets like ImageNet (Deng et al. [37]). The superior results over

the state-of-the-art (SOTA) methods indicate the effectiveness of the progressive learning ideas

on aggregating the knowledge about the holistic class memberships from local neighbourhoods.

Chapter 4 investigates knowledge discovery from global data structure in visual object recog-

nition, i.e. deep clustering. This chapter presents two novel approaches to derive semantically

plausible clusters of a collection of unlabelled data by either maximising the partition confidence

of the clustering solutions inspired by the maximal margin clustering algorithms (Xu et al. [203])

or encouraging the sample-specific visual features derived by instance contrastive discrimination

to be cluster sensitive so that each learned cluster is encoding a set of unique and consistent vi-

sual characteristics that potentially explaining a semantic concept. Experiments on a variety of

cluster analysis benchmark datasets demonstrate the superiority of the two models on learning

clusters that can be mapped to the human-defined semantic classes one-to-one.

Chapter 5 studies knowledge transfer from relevant labels in visual object recognition, i.e.

transfer clustering. This chapter explores the idea of identifying and complementing the non-

transferable knowledge acquired in the labelled source domains by the intrinsic information in

the unlabelled target domains to alleviate the distractions from the unreliable transferred super-
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visions. The validation of this model are carried out on a wide range of natural object imagery

datasets under three different protocols including transfer clustering, FSL and ZSL, whose re-

sults demonstrate the potential of the presented SUPREME model to learn discriminative visual

representation on transfer learning tasks without making stringent task-specific assumptions.

Chapter 6 discusses knowledge propagation from incomplete labels in video activity locali-

sation. Two new video activity localisation methods are proposed to implement the ideas that

accurate and universal knowledge about visual-textual correlations can be propagated from the

manual annotations on video activity which are incomplete in terms of either their granularity

(from coarse-grained video-paragraph to fine-grained moment-sentence relationships) or cer-

tainty (from ambiguous fixed temporal endpoints to universally interpretable boundary inter-

vals). Extensive experiments are conducted to valid the effectiveness of the two proposed models

on three video activity localisation benchmark datasets collected in-the-wild involving different

common scenarios like indoor daily routines, outdoor activities and cooking tutorials.

Chapter 7 presents the conclusions, discusses the remaining problems and proposes the poten-

tial directions for future study.
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Future Work

Chapter 3
Aggregating Knowledge


from Local Data Structure

Discovering class consistent local
neighbourhoods involving diverse
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Figure 1.3: An outline of the thesis with a summary of all chapters and the structure.
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Chapter 2

Literature Review

The studies carried out in this thesis are about learning discriminative visual representations for

objects or actions recognition in images or videos by deep neural networks when human annota-

tions are insufficient and inadequate as supervisions. This chapter provides a literature review of

existing approaches which are closely related to this problem. First of all, Section 2.1 provides an

overview of deep learning of visual representation in comparisons to traditional hand-crafted im-

age descriptors; Then, representative solutions to several common and challenging problems in

generalised unsupervised learning are discussed in Section 2.2, including knowledge discovery

from data structure in representation learning (Section 2.2.1) and deep clustering (Section 2.2.2),

knowledge transfer from relevant labels in transfer clustering (Section 2.2.3), and knowledge

propagation from incomplete labels in video activity localisation (Section 2.2.4). Finally, a sum-

mary is given in Section 2.3.

2.1 Deep Learning of Visual Representations

Visual representation learning targets at describing and summarising the sparse visual informa-

tion encoded in image pixels abstractly and holistically into a compact vector, so as to underlie the

potential explanatory factors to facilitate various visual understanding tasks (Bengio et al. [12]).

Desipte that substantial efforts have been made on designing delicate classification/regression al-

gorithms (Cortes and Vapnik [34]; Ho [76]; Reynolds [150]) to push the limits of artificial visual

perceptions in terms of specific applications, representation learning is always one of the most

fundamental tasks by extracting meaningful information from visual data to support making rea-
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sonable decisions/predictions by subsequent algorithms. Therefore, it has been widely studied

both before and during the deep learning era1.

208 Computer Vision: Algorithms and Applications (August 5, 2010 draft)
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Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) c� 2005 IEEE;
(b) region-like interest operators (Matas, Chum, Urban et al. 2004) c� 2004 Elsevier; (c) edges
(Elder and Goldberg 2001) c� 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski et al. 2008)
c� 2008 ACM.
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Figure 2.1: Examples of traditional image descriptors borrowed from (Szeliski [170]). Image
feature detectors/descriptors in terms of (a) key points or patches (b) edges and (c) straight lines.

Traditional image feature descriptors, which are discussed out of the context of deep learning,

are mostly designed heuristically by human experts to recognise certain types of visual patterns

to serve as the explanatory factors for either general purposes (e.g. edges, textures, etc.) or some

specific tasks (e.g. face recognition). Expert knowledge is the foundation of such image de-

scriptors/features, which is usually not universal and sometimes not available. As summarised

in (Szeliski [170]) and shown in Figure 2.1, traditional image descriptors (e.g. SIFT (Lowe et al.

[113]), SURF (Bay et al. [7]), LBP (Ojala et al. [133]) and HOG (Dalal and Triggs [35]), etc.)

are mostly formulated to describe images in terms of their (1) key points/patches, (2) edges or (3)

straight lines and curves. The keypoint features are determined by the areas-of-interest in images,

which describe the appearance of such localised areas and their surrounding pixels. For example,

the well-known Harris detector (Harris and Stephens [66]) is one of the most commonly used

operators to extract corners and infer features of an image. The edges descriptors, in another

way, indicate the boundary of objects in images or occlusion of events in videos, which can be

further considered as groups of curves and straight lines. Considering the complex visual pat-

terns existing in natural imagery data as well as their arbitrary combinations, it is hard to decide

which types of patterns can be used to bring most benefits to the target tasks. Moreover, arbitrary

machine learning algorithms, like Support Vector Machines (Cortes and Vapnik [34]), Gaussian

Mixture Models (Reynolds [150]), Random Forest (Ho [76]) and etc., may be used as the subse-

quent predictors to yield the final decisions but they are usually holding different assumptions on

the input features. Therefore, even though traditional image descriptors have shown remarkable

1 In this thesis, deep learning is considered resurgent since AlexNet (Krizhevsky et al. [93]) has won
the first place in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012.
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effectiveness and efficiency on some specific computer vision applications, they still suffer from

the problem of poor scalability when human expert knowledge is unavailable. Especially, take

image classification as an example, it is barely possible to decide heuristically which types of

patterns and their combinations can effectively reveal the difference among images of a thousand

classes in ImageNet (Deng et al. [37]).

One of the most critical differences of visual feature representations derived by deep learning

techniques from traditional image descriptors is that deep visual features can be learned con-

currently with the target predictors in an end-to-end manner so that the essential image patterns

are automatically discovered when optimising the objective of target tasks, hence, no human

expert knowledge is needed in the process. In the past a decade, the emergence of deep learn-

ing (LeCun et al. [99]) has revoluted the computer vision community by its intuitive designs

(mimicking the neural activity in human brain), modular formulations (composed of reusable

building blocks) and remarkable capacity which surpassed human’s performance in some chal-

lenging visual understanding tasks like face recognition (Taigman et al. [171]). In general, deep

learning algorithms consist of (1) a deep neural network as the backbone model, (2) one or

multiple learning objectives (a.k.a. cost function and loss function) to be optimised and (3) a

training strategy to learn the parameters of backbone network according to the objective func-

tion. Basically, a deep neural network is a complex mapping function from the input data space

of raw image pixels to the target prediction space, which can be decomposed into a set of neural

layers with each independently mapping images or their features to a new latent space. Some

commonly used neural layers include fully-connected layer for linear projection, convolution

layer for localised linear projection with sliding windows, normalisation layers (batch normal-

isation (Ioffe and Szegedy [82]), instance normalisation (Ulyanov et al. [180]), etc.) to stablise

and accelerate model learning, and a wide variety of non-linear activation functions (the family

of ReLU (LeCun et al. [98]; He et al. [67]), Softmax (Goodfellow et al. [58]), etc.) to intro-

duce non-linearity into the network for modelling complexer non-linear mappings. By stacking

up multiple neural layers in different combinations, several types of neural networks have been

shown powerful in a wide range of computer vision applications like convolutional neural net-

works (AlexNet (Krizhevsky et al. [93]), VGG (Simonyan and Zisserman [163]), ResNet (He

et al. [68]), InceptionNet (Szegedy et al. [169]), etc.) in tasks related to static images, recurrent

neural networks (Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber [77]), Gated
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Recurrent Unit (GRU) (Cho et al. [31])) in video sequence understanding and Generative Adver-

sarial Network (GAN) (Goodfellow et al. [57]) in image manipulation. Beyond the structure of

backbone model, the learning objective function is another crucial factor to the success of deep

neural networks, which implies how should the model’s parameters be updated. The formulation

of cost function is task-oriented, anyhow, they are usually designed to quantify the difference of

model’s predictions and the expected outputs which are sometimes called the ground-truth labels.

For example, the cross-entropy of a predicted and a manually annotated probability distribution

is usually adopted in image classification while least absolute deviations (L1) and least square

errors (L2) can be used for regression tasks. Therefore, exhaustive and precise manual labels is

usually required for training deep neural network by providing reliable supervision signals. This

results in the strong dependencies of deep learning on human annotations, and also restricts its

developments when seeking for more generalisable and scalable models from large-scale data.

2.2 Unsupervised Deep Learning

Unsupervised learning has been widely studied in the machine learning and computer vision

communities, which aims to learn the desired mapping functions from data observations to a tar-

get numerical (regression) or discrete (classification) label space without using any human anno-

tations. It plays a significant role in lots of computer vision applications when human annotation

is unaffordable (e.g. medical image analysis (Shen et al. [160])). In recent years, along with the

rapid development of deep learning, unsupervised learning is attracting explosively increasing

attention even though it has already been studied for decades. This is because deep learning is

well-known as a data-driven technique which relies heavily on both the large scale of training data

and the reliability of supervision signals. However, assuming sufficient and precise manual labels

are always available in any data domains for arbitrary tasks is not practical considering that an-

notating data is not only labour-intensive but sometimes prone to subjective annotation bias. This

thesis carries out comprehensive studies of deep learning with insufficient and inadequate human

annotations beyond the “pure” unsupervised learning setup to consider also weakly-supervised

learning (Zhou [230]) when the manual labels are incomplete as well as transfer learning (Torrey

and Shavlik [178]) when the labels are annotated on a relevant rather than the target data domain.

For each of these techniques, we investigate it in visual representation learning for a concrete

and representative computer vision task/scenario, including discovering knowledge from data
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structure in representation learning and deep clustering, transferring knowledge from relevant

labels in transfer clustering, and propagating knowledge from incomplete labels in video activity

localisation.

2.2.1 Knowledge Mining in Unsupervised Representation Learning

Different from the tasks discussed in other sections which aim at learning the task-specific pre-

dictions (e.g. cluster assignments in deep/transfer clustering and temporal boundary in video

activity localisation), unsupervised representation learning models produce image’s feature as

the only output, which is evaluated by constructing extra classifiers/predictors in the yielded fea-

ture space. Existing solutions of this problem generally fall into four different categories which

are reviewed in this section: (1) Clustering analysis (Caron et al. [15]), (2) Sample specificity

learning (Wu et al. [195]), (3) Self-supervised learning (Zhang et al. [219]) and Generative mod-

els (Goodfellow et al. [57]).

(1) Cluster analysis. Clustering is a long-standing approach to unsupervised machine learn-

ing (Coates and Ng [32]). With the surge of deep learning techniques, recent studies have at-

tempted to learn discriminative visual representations by pseudo labels generated by indepen-

dent clustering algorithms (Caron et al. [15, 16, 17]; Asano et al. [4]). For example, potential

unlabelled data partitions can be constructed by k-means (Caron et al. [15]), Sinkhorn-Knopp

algorithm (Asano et al. [4]; Caron et al. [16]) or with certain contraints on sample’s assignment

distributions like student’s t-distribution (Xie et al. [200]) or a centering and sharpening con-

straint (Caron et al. [17]). Regardless, the key problem of these approaches remains the discovery

of multiple class consistent clusters (or groups) on the entire training data. This is a difficult task

with the complexity and solution space exponentially proportional to both the data and cluster

size. It is particularly so for clustering based on under-trained feature representations, which

potentially leads to class inconsistent pseudo data partitions. Therefore, these approaches tend to

adopt an ‘over-clustering’ strategy to alleviate the misleading impacts of mixing the inherently

negative samples in the same clusters, e.g. DeepCluster (Caron et al. [15]) and DINO (Caron

et al. [17]) allocates a set of unlabelled data from 1,000 manually defined classes into 10,000 and

65,534 groups, respectively.

(2) Sample specificity learning. Sample specificity learning, a.k.a. instance contrastive learn-

ing, goes to the other extreme by considering every single sample as an independent class (Wu
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et al. [195]; Bojanowski and Joulin [13]; He et al. [69]; Chen et al. [29, 27]). The key idea is

that supervised deep learning of neural networks automatically reveals the visual similarity cor-

relation between different classes from end-to-end optimisation. In concrete, existing contrastive

learning approaches adopted a similar formulation to identify each instances and its synthesised

positive counterparts from a set of negative (contrastive) samples while the key differences be-

tween different approaches are on the construction of negative sets and the representation of the

positive counterparts. Given an image III and its perturbed copy III′ generated by a random set of

visual transformations on III, the general formulation of instance contrastive learning is:

θθθ
∗ = argmax

θθθ

p;

p =
cos(qqq,qqq′)

cos(qqq,qqq′)+∑kkk∈N (III) cos(qqq,kkk)
, qqq = fθθθ (III), qqq′ = fθθθ

′(III′)
(2.1)

In Eq. 2.1, qqq and qqq′ are the representations of the raw image III and its perturbed copy III′ in

respectively yielded by fθθθ and fθθθ
′ while kkk is the feature of the samples in the contrastive set N

of III. The probability p implies how confident can the model identify every individual sample and

the learning objective is to maximise p. For instances, the vanilla model (Wu et al. [195]) takes

the whole dataset beside the target III as its negative contrastive set N (III) while the representation

qqq′ of the synthesised positive samples are obtained by the stale copies of qqq updated by momentum

along the training process. MoCo (He et al. [69]; Chen et al. [29]) maintains a first-in-first-out

(FIFO) queue in fixed size to keep track of a certain number of latest samples as the contrastive

set of III while computing the perturbed representations qqq′ by an independent network fθθθ
′ with

identical structure as fθθθ and the parameters θθθ
′ are updated according to θθθ . SimCLR (Chen et al.

[27]) extracts both the features qqq and qqq′ by fθθθ (i.e., θθθ =θθθ
′) and the negative setN is constructed

by the samples in the same mini-batches, therefore, large mini-batches are required. Regardless

the different model designs, this sort of supervision does not explicitly model the class decision

boundaries as clustering analysis. Hence, it is likely to yield more ambiguous class structures

and less discriminative feature representations.

(3) Self-supervised learning and Generative Model. Self-supervised learning has recently

gained increasing research efforts (Doersch et al. [40]; Zhang et al. [218]; Noroozi and Favaro

[131]; Noroozi et al. [132]; Zhang et al. [219]). Existing methods vary essentially in the design

of unsupervised auxiliary supervision. Typically, such auxiliary supervision is hand-crafted to

exploit some information intrinsically available in the unlabelled training data, such as spatial

context (Doersch et al. [40]; Noroozi and Favaro [131]), spatio-temporal continuity (Wang and
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Gupta [188]; Wang et al. [189]), and colour patterns (Zhang et al. [218]; Larsson et al. [96]).

Due to the weak correlation with the underlying class targets, such learning methods mostly

yield less discriminative models than clustering analysis. How to design more target related

auxiliary supervision remains an open problem. On the other hand, generative model formulation

is a principled way of learning the true data distribution of the training set in an unsupervised

manner. The most commonly used and efficient generative models include Restricted Boltzmann

Machines (Lee et al. [100]; Hinton et al. [75]; Tang et al. [174]), Auto-Encoders (Ng [126];

Vincent et al. [184]), and Generative Adversarial Networks (Radford et al. [143]; Goodfellow

et al. [57]).

To learn class-discriminative visual representation without any manual labels, this thesis

presents a novel idea of progressive neighbourhood mining in Chapter 3 with two instantia-

tions called Anchor Neighbourhood Discovery and Progressive Affinity Diffusion. The progres-

sive neighbourhood mining strategy replaces the clustering operation with local neighbourhood

identification in a divide-and-conquer principle. This enables the control and mitigation of the

clustering errors and their negative propagation, potentially yielding more accurate inference of

latent class decision boundaries. Moreover, it introduces explicitly inter-sample relationships

to encourage the feature representations to be aware of sample’s class memberships, which is

inherently missing in sample specificity learning (instance contrastive learning). Although the

proposed AND and PAD models does not belong to the family of generative models, they poten-

tially produce complementary feature representations due to a distinct (discriminative) modelling

strategy.

2.2.2 Knowledge Discovery in Deep Clustering

As one of the most fundamental problems in machine learning, clustering (Coates and Ng [32];

Rokach and Maimon [152]) has been widely studied for decades in a wide range of computer

vision fields (Achanta and Susstrunk [1]; Joulin et al. [86]). The objective of clustering is to

split a set of unlabelled data into a number of subgroups (clusters) so that samples of the same

subgroups are more similar than that of the different subgroups in terms of the chosen measure

of similarity (Xu and Wunsch [204]). Whilst an enormous number of clustering algorithms have

been devised during the past few decades, there are a few prominent categorises: (1) Hierarchi-

cal clustering (Nielsen [128]; Kaufman and Rousseeuw [87]); (2) Centroid-based methods (e.g.

kmeans (Lloyd [110])); (3) Graph-based methods (e.g. spectral clustering (Ng et al. [127]; Shi
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and Malik [161])) and (4) Density-based methods (e.g. DBSCAN (Ester et al. [46])). Regardless

that the types of clustering algorithms are far more than just the few listed here, most of them are

conducted on a fixed feature representational space. Thereby, the quality of the resulted clusters

is restricted by that of the imagery features.

Recently, along with the rapid development of deep learning, clustering has drawn growing

attention to be studied jointly with representation learning, forming a new and more challenging

task called Deep Clustering (Hershey et al. [72]; Xie et al. [200]). Deep Clustering aims to sepa-

rate a set of unlabelled raw data (rather than their pre-fixed representations) into a desired number

of clusters by exploring their inherent global data structure. This section provide literature re-

views of deep clustering techniques according to the two common training strategies adopted by

them including (1) alternate training and (2) simultaneously training, which are closely related

to the SCL and PICA models proposed in Chapter 4, respectively.

(1) Alternate training strategy. Alternation-learning methods (Yang et al. [206]; Xie et al.

[200]; Chang et al. [20]; Wu et al. [193]; Chang et al. [21]; Yang et al. [207]; Guo et al. [62])

is one of the most straightforward solutions for deep clustering, which usually estimates the

ground-truth membership according to the pretrained or up-to-date model and in return super-

vises the network training by the estimated information (pseudo labels). DEC (Xie et al. [200])

initialises cluster centroids by conducting k-means (Lloyd [110]) on pretrained image features

and then fine-tunes the model to learn from the confident cluster assignments to sharpen the re-

sulted predictions by encouraging one-hot distributions. IDEC (Guo et al. [62]) shares a similar

spirit and improves by a local structure preservation mechanism. JULE (Yang et al. [207]) com-

bines the hierarchical agglomerative clustering idea with deep learning by a recurrent framework

which merges the clusters that are close to each other. The method in (Yang et al. [206]) jointly

optimises the objectives of Auto-Encoder (Bengio et al. [10]) and k-means (Lloyd [110]) and al-

ternately estimates cluster assignment to learn a “clustering-friendly” latent space. DAC (Chang

et al. [20]), DDC (Chang et al. [21]) and DCCM (Wu et al. [193]) exploit the inter-samples re-

lations according to the pairwise distance between the latest sample features and train the model

accordingly. In idea cases, such alternate training strategy can approach the performance of su-

pervised models by benefitting from explicit supervised discriminative learning. However, these

approaches suffer from the problem of severe error-propagation from the inconsistent estimations

of cluster assignment to visual feature learning during the training process.



2.2. Unsupervised Deep Learning 51

To improve the robustness of alternate learning strategy while maintaining its discrimination

ability from mimicking supervised learning, this thesis presented a novel Semantic Contrastive

Learning model in Chapter 4. Inspired by sample-specific learning (Wu et al. [195]; He et al.

[69]) which is able to discover the intrinsic visual similarity among imagery samples despite

a lack of knowledge of their true class memberships, the SCL model is more robust to error

propagation from the intermediate cluster assignments because it may degenerate to conventional

instance contrastive learning which is still able to derive instance-wise visual features even when

the estimated cluster assignments are completely random. With such a design, the SCL model is

able to refrain from incorrectness accumulation during the alternation of learning representations

and decision boundaries.

(2) Simultaneous training strategy. To learn data partitions without alternation, simultane-

ous training strategy often integrates deep representation learning (Bengio et al. [10]; Vincent

et al. [184]) with conventional cluster analysis (Lloyd [110]; Elhamifar and Vidal [45]; Gowda

and Krishna [60]) or other pretext objectives. These approaches do not explicitly learn from

estimated cluster assignment but usually require good cluster structure to fulfil the training ob-

jectives. Methods in (Ji et al. [84]; Peng et al. [137, 138]) train to optimise the objective of

cluster analysis and concurrently adopt the reconstruction constraint to avoid trivial solutions.

ADC (Haeusser et al. [63]) formulates the optimisation objective to encourage consistent asso-

ciation cycles among cluster centroids and sample embeddings, while IIC (Ji et al. [85]) trains

a model to maximise the mutual information between the predictions of positive sample pairs.

Both of them randomly perturb the data distribution as a cue of positive relationships to enourage

model’s invariance to trivial visual deformations which are usually irrelevant to image semantics.

Although the methods from this category alleviate the negative impact of inaccurate supervision

from estimated information, their objectives are usually more ambiguous than that of the alter-

nate approaches as they can be met by multiple different separations. Due to vague connection

between the training supervision and clustering objective, this type of approaches tend to yield

semantically less plausible clusters solutions.

Considering the ill-defined nature of deep clustering that a set of unlabelled images can in-

trinsically be grouped in multiple ways according to different criteria, this thesis makes an as-

sumption on the consistency of visual and semantic similarity among image data regardless of the

existence of within-class visual variation and inter-class affinity. Based on the observations that
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the intrinsic visual similarity among images will be implicitly encoded by deep neural network

in feature distances regardless of the assigned class labels, a new PartItion Confidence mAximi-

sation model is proposed in Chapter 4 which introduce a partition uncertainty index to quantify

the global confidence of clustering solutions so as to learn the most separable clusters which

are potentially the most semantically plausible solution. The PICA method can be trained in a

concise and simultaneous manner without any ad-hoc strategy for pretraining or alternation.

2.2.3 Knowledge Transfer in Transfer Clustering

Transfer Learning (Pan and Yang [134]; Torrey and Shavlik [178]) is one of the most critical areas

studied in the computer vision community, aiming to levearge the knowledge encoded in human-

labelled data to help understanding/modelling any new and unseen data without exhaustive labels.

According to the conditions of different application scenarios, the studies of transfer learning

are divided into multiple branches with various assumptions on the relationships of the labelled

source data and the unlabelled target data in terms of their label spaces and data distributions.

This section reviews transfer learning (1) first in a global picture to elaborate the different lines

of works with distinct assumptions and then (2) investigates transfer clustering (Han et al. [65])

which is a more general task studied in this thesis and is closely related to the SUPREME model

proposed in Chapter 5.

(1) Unsupervised Transfer Learning. Unsupervised Domain Adaptation (UDA) has been

widely studied to transfer knowledge across different data distributions. Critically, by assuming

all the domains are sharing the same label space, UDA learns to either align feature distribu-

tions (Ganin and Lempitsky [49]; Tzeng et al. [179]) or map the relationships between the deci-

sion boundaries and feature representations so that the boundaries are valid for both domains (Lee

et al. [102]; Saito et al. [156]). However, UDA is not always practical as it cannot enumerate all

the categories for model training let alone exhaustively collecting and annotating the data. Alter-

natively, Zero-shot Learning and Few-shot Learning have drawn increasing attention, in which

target data of novel classes are unseen or weakly-seen during model training. As generalising

CNN models to universal unseen categories is intrinsically challenging, both these two tasks hold

an assumption that the novel classes are known according to their pre-defined relationships with

the seen classes. In ZSL (Song et al. [164]; Chao et al. [23]), all the seen (source) and unseen

(target) classes are described by a common representational space, e.g. attribute space, so that
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data from unseen classes can be classified by novel combinations of attributes which are building

blocks shared with the seen classes. Different from ZSL, FSL (Ye et al. [208]; Miller et al. [119])

assumes that a few (usually 1 ∼ 5) anchor samples with manual labels are available from each

novel classes as its prototype (so strictly not unseen), and the novel classes and seen classes are

in proximity in their distributions. In this case, the target data can be classified according to their

distances to different anchor samples with the assistance of the distributions of seen classes.

Considering the common objectives of UDA/FSL/ZSL to derive discriminative feature rep-

resentations of the unlabelled target data with the help of the human annotations on relevant data,

their individual assumptions limit their deployability and usability in different real-world tasks.

To address such a limitation, the proposed SUPREME method aims to deal with universal un-

seen categories without human annotation in any level, neither semantically nor visually. This

is intrinsically more challenging than UDA/FSL/ZSL by holding fewer assumptions but is more

generic in practice and is potentially beneficial to all the above-mentioned tasks.

(2) Transfer clustering. To partition unlabelled target data with pre-learned source domain

knowledge, Han et al. (Han et al. [64]) first introduced the task of transfer clustering formally,

which aims to jointly learn both the representations and the decision boundaries of unlabelled

target data with the help of the labelled data from related domains. They construct the initial

clustering solution by applying k-means upon the feature representation produced by a pretrained

model and learn to sharpen the initial assignment distribution of each sample. As the follow-up,

Han et al. (Han et al. [65]) propose to learn the intial feature space by self-supersion and transfer

knowledge by rank statistics. They train the model by the confident supervision constructed

according to prior-knowledge and learns to gradually sharpen the initial prediction distribution

of each sample. There are other attempts at transferring knowledge across domains for achieving

learning tasks that are similar to transfer clustering. For example, KCL (Hsu et al. [79]) and

MCL (Hsu et al. [80]) are based on a Constrained Clustering Network, which learns to transfer

pairwise similarities from a source to a target domain so that the cross-domain and cross-task

transfer learning are decoupled. This aims to reduce the model learning complexity. Another

method called Centroid Networks (Huang et al. [81]) is proposed to jointly learn data embeddings

and clustering using the Sinkhorn k-means algorithm. Due to distribution shift and discrepancy

in label space proximity, the clustering of some target samples during model training will not

yield sufficient supervision from the prior-knowledge of the source domain, therefore, poorly
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modelled.

Whilst the non-transferable knowledge obtained in relevant labelled data is inevitably exist-

ing when being applied to the unlabelled target data, transferring such knowledge will certainly

result in ambiguous and unreliable supervisions that reduce the class discrimination ability of

the learned representations for the target data. Therefore, the SUPREME model presented in

Chapter 5 tackles this problem by integrating self-supervision into transfer learning as the com-

plementary of insufficient transferred supervisions so to better explain the target distribution.

Although Han et al. (Han et al. [65]) adopted self-supervised learning for model pretraining, it is

conducted as a separated step, hence, failed to exploit the complementary of the two supervisions

and lead to suboptimal results.

2.2.4 Knowledge Propagation in Video Activity Localisation

The problem of lacking reliable supervisions for training deep neural networks does not only

exist in pure unsupervised learning or transfer learning, but also when human annotations are

incomplete. For examples, two types of incomplete labels commonly seen in practice are when

they are given in collective in weakly-supervised learning (Zhou [230]; Guo et al. [61]) or anno-

tated with ambiguity/uncertainty in fully-supervised learning (Zhou et al. [229]). To investigate

effective algorithms for deep model training with such incomplete labels, video activity localisa-

tion by natural language (Gao et al. [50]; Heilbron et al. [70]) is a perfect application to be studied

since the temporal boundary annotations for video activity is intrinsically ambiguous (uncertain

labels) and associating natural language sentences with videos (collective labels) is much easier

than identifying the precise start and end time indices of video moments. In this regard, this

thesis discusses the problem of knowledge propagation from incomplete labels in video activity

localisation. This section reviews: (1) fully-supervised localisation methods based on content

alignment or boundary identification; (2) intrinsic uncertainty in temporal boundary and con-

temporary attempts on resolving it, and (3) existing weakly-supervised solutions to localisation

without requiring exhaustive temporal boundary annotations during model training.

(1) Content Alignment and Boundary Identification. The two commonly adopted training

strategies in video activity localisation (Gao et al. [50]; Heilbron et al. [70]) learn to locate by

matching the content of moment proposals with query sentences in segment level or directly pre-

dict the boundary of target moments in frame level. Technically, these two types of approaches
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can be identified by whether they are with a proposal-based or proposal-free design. By aggregat-

ing all the frames within a video segment (proposal) and aligning them holistically with the query

sentences, the proposal-based content alignment approaches (Anne Hendricks et al. [3]; Gao et al.

[50]; Zhang et al. [221, 220]; Ge et al. [52]) are insensitive to the boundary as its most salient

and semantically aligned parts are not necessarily at its two ends. However, the endpoint frames

usually play a significant role in differentiating video moments from their overlapping counter-

parts containing redundant frames, hence, critical for video activity localisation. In contrast, the

proposal-free boundary identification methods (Chen et al. [25]; Zeng et al. [214]; Ghosh et al.

[54]; Zhang et al. [217]; Nan et al. [124]; Zhou et al. [229]; Zhao et al. [228]; Li et al. [105]) learn

to directly regress the start and end timestamps of the target moments or predict the per-frame

probabilities of being the endpoints. In either case, they take the temporal boundaries provided

manually as the oracles for learning exactly the same predictions. However, this is prone to be

misled by the uncertainty in manual labels and results in less generalisable models. What’s more,

there are some recent attempts at benefitting from both the learning strategies, which are called

Joint content-boundary learning models in this thesis. They mostly adopted a dual-branch de-

signs to encode video in frame- and segment-level independently, then explore the interaction

(e.g. assembling) of frame’s and segment’s features to explore visual information in different

granularities for better video comprehension.

(2) Temporal Boundary Uncertainty. The uncertainty of temporal boundary annotation refers

to the difference of boundary labels annotated by different workers according to the same natural

language sentences as the queries. Otani et al. (Mayu Otani and Heikkilä [118]) quantitatively

studied this problem by collecting multiple boundaries for the same activities from different an-

notators. Giving the same videos and query sentences to 5 different annotators, only 42% and

35% of their annotated activity boundary are mutually agreed (with at least 50% overlaps) on

Charades-STA (Gao et al. [50]) (filming indoor daily routines) and ActivityNet-Captions (Kr-

ishna et al. [91]) (mostly about outdoor activities), respectively. This highlights the extent of ac-

tivity label uncertainties in model training inherent to the current proposal-free methods, and the

potential significant misinformation in training such models. However, Otani et al. (Mayu Otani

and Heikkilä [118]) did not explicitly propose a solution to the problem. DeNet (Zhou et al.

[229]), on the other hand, addressed the problem of uncertainty w.r.t. the variety of language

descriptions, i.e., the same video activity can be described semantically in different ways. They
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generated different copies of the same query sentences by perturbing the “modified” phrases (ad-

jective, adverb and etc.) so to predict diverse boundaries for the same video activities. Besides,

there are a few other attempts at modelling uncertain boundary by Gaussian distributions (Chen

et al. [30]; Xie et al. [201]; Wang et al. [186]; Xiao et al. [199]). However, labelling uncertainty

is usually random and unpredictable, unlikely Gaussian in general.

To explicitly model the boundary uncertainty during training and get rid of the misinforma-

tion to derive universally interpretable visual-textual correlation from such uncertain annotations,

a new Elastic Moment Bounding method is introduced in Chapter 6. The EMB model explores

collaboratively both proposal-free and proposal-based mechanisms for learning and expand man-

ually annotated a single pair of fixed activity endpoints to an elastic set, so as to reinforce directly

robust content matching (the spirit of proposal-based) as a condition to accurate endpoints local-

isation (the spirit of proposal-free) of activities in videos. The presented EMB method explores

the combination of both the proposal-based and proposal-free learning strategies for attention

learning of activity temporal boundary conditions beyond feature learning for activity represen-

tation. It augments the fixed manual labels by the video segments selected according to their

content alignments with query sentences to help improve the robustness of temporal endpoints

identification when there is boundary uncertainty. Rather than studying the uncertainty from the

perspective of semantic description in DeNet (Zhou et al. [229]), this thesis analyses it from

the perspective of inherent uncertainties in the activity temporal boundary annotations, which is

intrinsically harder to avoid.

(3) Locating Video Activity with Weak Supervision. In the absence of temporal boundary an-

notations, most of the existing weakly-supervised approaches are either based on Multi-Instance

Learning (MIL) (Keeler et al. [88]) or jointly learn with reconstruction task. The MIL-based

methods (Gao et al. [51]; Tan et al. [173]; Ma et al. [115]; Zhang et al. [224]) learn the video-text

alignment in the video-level by maximising the matching scores of the videos and their corre-

sponding descriptions manually annotated on the datasets while suppressing that of the videos

and the descriptions of others. Such learned video-text alignment is then applied to locate the mo-

ments which are best matched with the given queries in inference. Another commonly adopted

reconstruction strategy (Lin et al. [107]; Duan et al. [43]) aims at selecting the video segments

which can help accomplish the reconstruction task to the largest extent, e.g. WS-DEC (Duan

et al. [43]) jointly optimises the sentence localisation and video captioning tasks so to identify
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the video segments which yield consistent captions with the queries.

Even though remarkable progress has been made by the abovementioned works in the past

few years, none of these methods fully exploit the video-level paragraph descriptions but treat

different sentences in the paragraph independently. In Chapter 6, a new Cross-sentence Relations

Mining approach is proposed to explore the relations of sentences in paragraphs and use them to

constrain the selections of moments in training so that only the reliable video segments with con-

sistent relations will be aligned with the query sentences. Although such relational information

is less complete than per-sentence exhaustive temporal annotation, it requires no extra annota-

tions and avoids subjective bias from inherent ambiguity in temporal labelling (Mayu Otani and

Heikkilä [118]).

2.3 Summary

This section provides a comprehensive review of deep visual representation learning in the per-

spective of training deep neural network with insufficient and inadequate human annotations.

As summarised in Table 2.1, several common scenarios in challenging computer vision tasks are

discussed, including discovering knowledge without any labels in representation learning and

deep clustering, transferring knowledge from relevant labels in transfer clustering, and propagat-

ing knowledge from incomplete labels in video activity localisation. A wide variety of existing

works have been studied, which have yielded impressive performances but still suffer from some

limitations. The following chapters investigate several unresolved challenges in these problems,

for which novel deep learning algorithms are introduced. Specifically:

(1) (Chapter 3) Knowledge aggregation from local data structure in representation learn-

ing: Among the existing solutions for learning visual representations, joint clustering ap-

proaches and sample specificity learning have been shown superior on deriving discrimi-

native visual features. Nevertheless, considering the complexity and solution space expo-

nentially proportional to both the data and cluster size, the clustering-based approaches are

subjective to error-propagation. In contrast, sample specificity learning takes every indi-

vidual instance as a pseudo class augmented by linear and global image transformations,

which results in instance discriminative features that are less sensitive to the underlying

semantic classes involving complex non-linear image variations. this thesis presents a pro-

gressive neighbourhood mining strategy to combines the advantages of both clustering and
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sample specificity learning whilst mitigating their disadvantages by a divide-and-conquer

principle to discover class consistent neighbourhoods anchored to individual training sam-

ples and propagtes the local adjacent relationships across neighbourhoods for more reliably

extracting class discriminative information in training.

(2) (Chapter 4) Knowledge discovery from global data structure in deep clustering: Clus-

ter analysis have been a long-standing problem in unsupervised learning, however, to be

conducted simultaneously with representation learning, existing methods suffer from ei-

ther error-propagation in the alternation of clusters and features learning or the ambiguous

learning constraints due to vague connections between the training supervision and cluster-

ing objective which will result in semantically less plausible data separations. To resolve

the problem of error-propagation, a new variant of sample-specific contrastive learning

called Semantic Contrastive Learning is proposed, which derives visual features in a class-

agnostic manner that is robust to unreliable intermediate cluster assignments estimated in

the process of model training. Besides, by extending the classical maximal margin idea to

the deep learning paradigm, this thesis introduces a novel PartItion Confidence mAximi-

sation model to derive global decision boundary of clusters by maximising data separation

confidence, so as to ensure the semantic plausibility of the learned clusters.

(3) (Chapter 5) Knowledge transfer from relevant labels in transfer clustering: Whilst un-

supervised transfer learning have been extensively studied in several independent lines of

works with their own assumptions on the relationships of source and target tasks and data

distributions, it is intrinsically more challenging to conduct knowledge transfer without as-

suming the target data is seen or the target classes are known, which is barely investigated

in existing works. To facilitate knowledge transfer in a more generic scenario without

making over strong assumptions, this thesis presents a self-SUPervised REMEdy model

for clustering of unlabelled image data with the help of the manual labels in a relevant

data domains. The SUPREME model identifies non-transferable knowledge from source

to target domains by discovering hard target samples with insufficient and ambiguous su-

pervisions. After that, SUPREME construct self-supervisions by intrinsically available

positive inter-sample relationships in the target domain to complement those weak trans-

ferred supervisions, so as to ensure the discrimination ability of the resulted visual features

as well as the separability of the yielded clusters.
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(4) (Chapter 6) Knowledge propagation from incomplete labels in video activity localisa-

tion: Existing video activity localisation approaches rely heavily on the temporal boundary

annotations of video moments to derive visual-textual correlations while such exhaustive

labels are not only labour-intensive to be collected but also prone to subjective labelling

bias, which are likely lead to ambiguous and unreliable supervision signals for deep model

training. To accurately locate video activity by natural language, a novel Cross-sentence

Relations Mining method is proposed in this thesis, which explores video-text alignments

according to the intrinsically available cross-sentence relations in the paragraph descrip-

tion of videos so that no moment-wise temporal boundary annotation is needed for model

learning. Moreover, this thesis further investigates another common case of incomplete

labels when the human annotations are uncertain. To this end, a new Elastic Moment

Bounding approach is introduced to derive universally interpretable visual-textual correla-

tions by expanding manually annotated a single pair of fixed activity endpoints to an elastic

set and selecting optimally among semantically similar activities.
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Task Solutions Remarks

Cluster analysis It is difficult to discover class consistent clusters be-

cause the complexity and solution space exponen-

tially propotional to the data and cluster size.

Sample specificity

learning

Per sample specific feature representations are

learned, which does not explicitly model sample’s

potential class memberships.Representation

Learning
Self-supervised learn-

ing and Generative

model

Expressive visual knowledge is acquired by pretext

learning task. However, how to design more target

related auxiliary supervision remains an open prob-

lem.

Alternate learning Benefiting from mimicking supervised learning but is

prone to errors accumulationDeep

Clustering Simultaneous learning Suffering from the vague connection between the

pretext training supervision and clustering objective.

Unsupervised transfer

learning

UDA, FSL and ZSL hold different assumptions on

the target data and label spaces, hence, being limited

to specific scenariosTransfer

Clustering Transfer clustering Overlooking the hard sample with ambiguous trans-

ferred supervisions, which are important for learning

discriminative feature representations of target data

Fully-supervised learn-

ing

Content alignment is less sensitive to accurate tempo-

ral endpoints while boundary identification is fragile

as the labels are inherently uncertainVideo Activity

Localisation Weakly-supervised

learning

Doesn’t require exhaustive temporal boundary labels

for training but ignores the cross-sentences relations

which are intrinsically available

Table 2.1: A summary of existing solutions to different computer vision tasks related to gen-
eralised unsupervised learning including unsupervised representation learning, deep clustering,
transfer clustering and video activity localisation.
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Chapter 3

Aggregating Knowledge from Local Data Structure

by Neighbourhood Mining

This chapter discusses knowledge aggregation from local data structure in learning class discrim-

inative visual representations without any human annotations on pre-defined semantic categories.

Suppose we have N training images I = {III1, III2, ..., IIIN} with no sample-wise exhaustive class la-

bels being available. The objective is to derive a deep CNN model θθθ from the imagery data

I that allows to extract class discriminative feature representations xxx, fθθθ : III → xxx. Without the

access to class labels, it is unsupervised how the feature points xxx should be distributed in training

so that they can correctly represent the desired class memberships. It is therefore necessary for

an unsupervised learning algorithm to reveal such discriminative information directly from the

visual data. This is challenging due to the arbitrarily complex appearance patterns and varia-

tions typically exhibited in the image collections both within and across classes, implying a high

complexity of class decision boundaries.

The structure of this chapter is as follows: An overview of the idea to learn from local

neighbourhoods and its unique merits over the contemporary unsupervised representation learn-

ing approaches are presented in Section 3.1; Section 3.2 introduces the detailed formulation of

learning discriminative feature representations by neighbourhoods discovery characterised by a

curriculum learning strategies to get rid of the negative impacts of the inevitable false-positive

inter-sample relationships; Section 3.3 further provides a model-matureness-adaptive design for

finding a trade-off between the class consistency and visual variations within local neighbour-
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hoods; Section 3.4 provides thorough experiments to valid the effectiveness of the proposed

models on extensive object recognition benchmark datasets; Section 3.5 summarises the ideas to

aggregate knowledge from local data structure for learning discriminative feature representations.

(a) (b) (c)

Figure 3.1: An illustration of three unsupervised representation learning strategies. (a) Clus-
tering analysis aims for discovering the global class decision boundary (Caron et al. [15]; Xie
et al. [200]); (b) Sample-specificity learning discards the concept of clusters by treating every
training sample as an independent class (Wu et al. [195]; Bojanowski and Joulin [13]); (c) Our
Neighbourhood Discovery searches local neighbourhoods with high class consistency.

3.1 Approach Overview

To effectively discovery semantic class memberships among samples to derive visual features

that is sensitive to both intra-class discrepancy and inter-class similarity, we take a divide-and-

conquer strategy from the local sample-anchored neighbourhood perspective. Specifically, an

intuitive method to determine such neighbourhoods is using k nearest neighbours (kNN) given

a feature space X and a similarity metric, e.g. the cosine similarity. A neighbourhood Nk(xxx)

determined by kNN is sample-wise, i.e., anchored to a specific training sample xxx:

Nk(xxx) = {xxxi | cos(xxxi,xxx) is top-k in X}∪{xxx}, (3.1)

where X denotes the feature space. We call such structures as Anchor Neighbourhoods (ANs).

The key idea is that, whilst it is difficult and error-prone to directly reason the global class

decision boundaries at the absence of class labels on the training data (Figure 3.1 (a)), it would be

easier and more reliable to estimate local class relationship in small neighbourhoods (Figure 3.1

(c)). Although such information is incomplete and provides less learning supervision than the

conventional clustering strategy (Caron et al. [15]; Xie et al. [200]) that operates at the coarse
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group level and mines the clusters of data samples, it favourably mitigates the misleading effect of

unreliable supervision. Besides, the idea of learning from local data structure differs dramatically

from the sample-specificity learning strategy (Wu et al. [195]; Bojanowski and Joulin [13]), that

lacks a fundamental ability to mine the inter-sample class relationships primitive to the global

class boundaries (Figure 3.1 (b)). Therefore, it represents a conceptual trade-off between the two

existing strategies and a principled integration of them.

3.2 Anchor Neighbourhood Discovery

This section introduces the proposed Anchor Neighbourhood Discovery method for unsupervised

discriminative representation learning.

(b) Neighbourhood Discovery & Selection(a) Neighbourhood
Initialisation

Per-sample Neighbourhoods

Round 1

(d) Curriculum Learning

Similarity
Distribution

AnchorTraining Sample

Anchor Neighbourhood

Round 2 Round R

Low Entropy

High Entropy

(c) Neighbourhood Supervision

…

…

…

Figure 3.2: An overview of the proposed Anchor Neighbourhood Discovery method for unsuper-
vised discriminative representation learning.

An overview of the introduced AND model is depicted in Figure 3.2. (a) The AND model

starts with per-sample neighbourhoods for model initialisation. (b) The resulting feature repre-

sentations are then used to discover the local neighbourhoods anchored to every single training

sample, i.e., anchor neighbourhoods. (c) To incorporate the neighbourhood structure information

into model learning, we propose a differentiable neighbourhood supervision loss function for

enabling end-to-end model optimisation. (d) For enhancing model discriminative learning, we

further derive a curriculum learning algorithm for selecting class consistent neighbourhoods in a

progressive manner. This is based on a novel similarity distribution entropy measurement.
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3.2.1 Neighbourhood Discovery

To enable class discriminative learning, we want all samples in a single neighbourhood AN to

share the same class label, i.e., class consistent. As such, we can facilitate the design of learning

supervision by assigning the same label to these samples. This requirement, however, is non-

trivial to fulfil in unsupervised learning since we have no reasonably good sample features, even

though a neighbourhood AN can be much smaller and more local (therefore likely more class

consistent) than a typical cluster when using small k values. Moreover, we begin with the training

images but no learned features. This even prevents the formation of Nk and gives rise to an

extreme case – each individual sample represents a distinct anchor neighbourhood.

Neighbourhood Initialisation. Interestingly, such initial ANs are in a similar spirit of sample-

specific instance contrastive learning (Wu et al. [195]; Bojanowski and Joulin [13]) where each

data instance is assumed to represent a distinct class (Figure 3.2 (a)). With this conceptual link-

age, we exploit the instance loss (Wu et al. [195]) to commence the model learning. Specifically,

it is a non-parametric variant of the softmax cross-entropy loss written as:

Linit =−
nbs

∑
i=1

log(pi,i),

pi, j =
exp(xxx>i xxx j/τ)

∑
N
k=1 exp(xxx>i xxxk/τ)

,

(3.2)

where pi,i indicates the normalised probability that sample xi can be correctly identified from all

the other instances while nbs denoting the training mini-batch size and the temperature parameter

τ is for controlling the distribution concentration degree (Hinton et al. [74]).

Neighbourhood Supervision. In the feature space derived by Eq. (3.2), we build a neighbour-

hood Nk(xxxi) for each individual sample xxxi. Considering the high appearance similarity among

the samples of each Nk(xxxi), we assume they share a single class label for model discriminative

learning. Formally, we formulate an unsupervised neighbourhood supervision signal as:

LAN =−
nbs

∑
i=1

log
(

∑
j∈Nk(xxxi)

pi, j

)
(3.3)

The rationale behind Eq. (3.3) is to encourage label consistency for anchor neighbourhoods

(Figure 3.2 (c)). Specifically, the probability pi, j (Eq. (3.2)), obtained using a softmax function,

represents visual similarity between xxxi and xxx j in a stochastic manner. This takes the spirit of

stochastic nearest neighbour (Goldberger et al. [56]), as it considers the entire training set. In

this scheme, the probability P(xxxi) of correctly classifying a sample xxxi can be then represented as:
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P(xxxi) = ∑
j∈C

pi, j (3.4)

where C denotes the set of samples in the same class as xxxi. However, C is unavailable to unsuper-

vised learning. To overcome this problem, we approximate C by the neighbourhoods ANs, each

of which is likely to be class consistent. Together with the cross-entropy function, this finally

leads to the formulation of the proposed LAN loss (Eq. (3.3)).

Remarks. The proposed neighbourhood supervision formulation LAN (Eq. (3.3)) aims at ex-

ploring the local class information, under the assumption that anchor neighbourhoods are class

consistent. This is because each neighbourhood AN is treated as a different learning concept

(e.g. class), although some ANs may share the same unknown class label. Such information is

also partial due to that a specific AN may represent only a small proportion of the correspond-

ing class, and multiple ANs with the same underlying class can represent different aspects of the

same concept collectively (not the whole view due to no AN-to-AN relationships). It is the set

of these distributed anchor neighbourhoods as a whole that brings about the class discrimination

capability during model training. It is in a divide-and-conquer principle.

Fundamentally, the proposed design differs dramatically from both (1) the clustering strat-

egy that seeks for the complete class boundary information – a highly risky and error-prone pro-

cess (Caron et al. [15]; Xie et al. [200]), and (2) the sample specificity learning that instead totally

ignores the class level information therefore less discriminative (Wu et al. [195]; Bojanowski and

Joulin [13]). Moreover, clustering often requires the prior knowledge of the cluster number,

therefore, limiting their usability and scalability due to the lack of it in many applications. On

the contrary, this kind of information is not needed for forming the proposed ANs, hence, more

application generic and scalable. To maximise the class consistency degree in ANs, we simply

need to use the smallest neighbourhood size, i.e., k=1.

3.2.2 Neighbourhood Selection

As discussed above, the proposed method requires the neighbourhoods ANs to be class consistent.

This condition, nonetheless, is difficult to meet. Specifically, the instance loss function Linit

(Eq. (3.2)) encourages the feature representation learning towards that each sample’s specificity

degree can be maximised as possible on the training data. Considering a sample xxxi, other samples

either share the class label (positive) with xxxi or not (negative). Hence, this formulation may yield
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a model with certain discrimination ability, e.g. when a subset of (unknown) positive samples are

associated with similar visual specificity. But this entirely depends on the intrinsic data properties

without stable guarantee. It means that typically not all neighbourhoods ANs are reliable and class

consistent. This inevitably leads to the necessity of conducting neighbourhood selection for more

reliable model learning.

To this end, we go beyond by taking advantages of the curriculum learning idea(Bengio et al.

[11]; Dong et al. [41]). Instead of taking a one-off neighbourhood selection, we introduce a pro-

gressive selection process (Figure 3.2 (d)) which distributes evenly the neighbourhood selection

across R rounds. This realises an easy-to-hard learning procedure through a curriculum.

Selecting Curriculum. To enable automated neighbourhood selection for making a scalable cur-

riculum, it is necessary for us to derive a selecting criterion. This is achieved by exploiting the

intrinsic nature of the probability pi, j (Eq. (3.2)) defined between two samples xxxi and xxx j. More

specifically, we utilise the entropy measurement of the probability vector pi = [pi,1, pi,2, · · · , pi,N ]

as the class consistency indicator of the corresponding neighbourhood AN as:

H(xxxi) =−
N

∑
j=1

pi, jlog(pi, j). (3.5)

We consider that smaller H(xxxi) values correspond to more consistent neighbourhoods. In par-

ticular, when H(xxxi) is small, it means xxxi resides in a low-density area with sparse visual similar

neighbours surrounding. In the definition of sample specificity learning (Eq. (3.2)), the model

training tends to converge to some local optimum that all samples of a neighbourhood Nk(xxxi)

with small H(xxxi) share some easy-to-locate visual appearance, and simultaneously the same un-

derlying class label statistically since positive samples are more likely to present such appearance

commonness including the context than negative ones. On the contrary, a large H(xxxi) implies a

neighbourhood Nk(xxxi) residing in a dense area, a case that the model fails to identify the sam-

ple specificity. This is considered hard cases, and requires more information for the model to

interpret them.

In light of the observations above, we formulate a linear curriculum according to the class

consistency entropy measurement. Specifically, for the r-th round (among a total of R rounds),

we select the top-S (Eq. (3.6)) of ANs according to their corresponding entropy for model learning

by the proposed neighbourhood supervision loss LAN (Eq. (3.3)).

S =
r
R
∗100% (3.6)
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Since the remaining training samples are still not sufficiently interpreted by the model at the

current round, they are preserved as individuals (i.e., single-sample neighbourhoods) as in sample

specificity learning (Eq. (3.2)).

3.2.3 Model Training

With the progressive neighbourhood discovery as above, we obtain the model objective loss

function for the r-th round to be minimised for learning the model weights as:

Lr =− ∑
i∈Br

inst

log(pi,i)− ∑
i∈Br

AN

log
(

∑
j∈Nk(xxxi)

pi, j

)
(3.7)

where Br
inst and Br

AN denote the set of instances and the set of ANs in a mini-batch at the r-th

round, respectively. The Nk(xxxi) defined in Eq. (3.1) is the neighbourhood anchored at xxxi.

As each round of training is supposed to improve the model, we update the neighbourhoods

ANs for all training samples before performing neighbourhood selection per round. To facilitate

this process, we maintain an offline memory to store the feature vectors. We update the memory

features of mini-batch samples by exponential moving average (Lucas and Saccucci [114]) over

the training iterations as:

x̃xxi = (1−η) · x̃xxi +η · xxxi (3.8)

where η denotes the update momentum, xxxi and x̃xxi the up-to-date and memory feature vector

respectively.

Model Optimisation. The proposed loss function (Eq. (3.7)) is differentiable therefore en-

abling the stochastic gradient descent algorithm for model training. In particular, when xxxi comes

as an individual instance, the gradients for Lr w.r.t. xxxi and xxx j ( j 6= i) are written as:

∂Lr

∂xxxi
=

1
τ
[

N

∑
k=1

(pi,k · xxxk)+(pi,i−2) · xxxi],
∂Lr

∂xxx j
=

1
τ

pi, j · xxxi (3.9)

When xxxi corresponds to an AN, the gradients are then:

∂Lr

∂xxxi
=

1
τ
[

N

∑
k=1

(pi,k · xxxi)− ∑
k∈Nk(xxxi)

p̃i,k +(pi,i− p̃i,i) · xxxi] (3.10)

∂Lr

∂xxx j
=


1
τ
[pi, j · xxxi− p̃i, j · xxxi], j ∈Nk(xxxi)

1
τ
[pi, j · xxxi], j /∈Nk(xxxi)

(3.11)

where p̃i, j = pi, j/∑k∈Nk(xxxi) pi,k is the normalised distribution over the neighbours. The whole

model training procedure is summarised in Algorithm 1.
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Algorithm 1: AND for discriminative representation learning.

Input: Training data I, rounds Nrd, iterations per round Nit.

Output: A class discriminative CNN feature representation model.

// Initialisation

Model initialisation by instance specificity learning (Eq. (3.2));

// Unsupervised learning

for r=1 to Nrd do

Form neighbourhoods with the current features (Eq. (3.1));

Curriculum selection of neighbourhoods (Eq. (3.6));

for iter=1 to Nit do

Network forward propagation (batch feed-forward);

Objective loss computation (Eq. (3.7));

Network back-propagation (Eq. (3.9),(3.10),(3.11));

Memory feature update (Eq. (3.8));

end

end

3.3 Progressive Affinity Diffusion

In the local data structure formulated in Eq. (3.1), the neighbourhoods represent a kind of data

grouping. However, without class label supervision, such structures convey either limited (small

k) or unreliable (large k) affinity information between training samples (Figure 3.3 (a)). Using

directlyNk for self-supervision is therefore restricted. To address this problem, we propose affin-

ity diffusion across neighbourhoods. This aims to model the correlation of different Nk in order

to break through their barriers and spread the class identity of one sample through. Conceptually,

this leverages global data manifold (Belkin et al. [8]) formed collectively by all neighbourhoods.

As each neighbourhood may encode visual affinity information from a distinct perspective, link-

ing them is equivalent to joining different types of variations of a concept, therefore enabling

model learning to capture more comprehensive concept boundaries.

An overview of our PAD method is depicted in Figure 3.4. Specifically, PAD is an iterative

unsupervised model learning process including three components: (1) Affinity graph construc-

tion for representing the global structure of training data, (2) Affinity diffusion across neighbour-
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Figure 3.3: An illustration of the effects of neighbourhood’s size. (a) k-nearest neighbours vs.
(b) strongly connected subgraph. Blue box: the anchor. Green box: with the same class as the
anchor. Red box: with a different class against the anchor.

hoods for self-discovering groups of samples with the same semantics, (3) Progressive model

update by formulating group structure aware objective loss function. They are integrated into

a multi-stage procedure. In each stage the model mines only the reliable data groups that have

emerged thus far in the affinity graph (i.e., model-matureness-adaptive) other than clustering all

the samples, which then feed into the subsequent model training stages sequentially. We describe

the model training details at the end of this section.

(c) Model Update (d) Improved Feature Space

Vertices: Edges: Constraints: Strongly connected subgraph:

(b) Affinity Diffusion(a) Affinity Graph

Figure 3.4: An overview of the proposed Progressive Affinity Diffusion method. (a) Affinity
graph construction by k-nearest neighbourhoods. (b) Affinity diffusion across neighbourhoods
to discover label consistent strongly connected subgraphs. (c) Progressive model update with
self-discovered subgraphs, leading to (d) improved feature representations. The model is trained
iteratively. in a multi-stage procedure.

3.3.1 Affinity diffusion across neighbourhoods

Progressive affinity diffusion is carried out through graphs G of unlabelled training samples,

which is built upon the adjacent relationships among samples encoded in local neighbourhoods

(Eq. (3.1)) in the latent feature space. In the directed graphs G, a vertex stands for a sample xxxi

in the training data X while an edge pointing from xxxi to xxx j indicates that xxx j is one of the top-k

most similar samples to xxxi, i.e., xxx j ∈ Nk(xxxi). For discriminative diffusion, it is critical that error

introduction and propagation are minimised. To this end, motivated by graph theory (Duda et al.
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[44]; Raghavan and Yu [145]), we propose to search Strongly Connected Subgraphs (SCS) of

the affinity graph G for revealing underlying semantic concepts. A SCS structure is defined as a

set of vertices (images) where each vertex can be reached from any others through neighbouring

edges. This means that all vertices of a SCS are highly similar w.r.t. some variation criteria.
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Figure 3.5: An illustration of searching strongly connected subgraphs in a neighbourhood affinity
graph. In this example, the scale threshold ρ is set to 3.

SCS structures are formed as shown in Figure 3.5. Starting with a random vertex xxxs, we

construct a tree-like structure based on the edges. Then, we traverse the vertices along edges in a

depth-first search strategy. We assign nearest neighbours with the highest priority for maximising

the average pairwise affinity of a SCS. Depth-first search can easily achieve this condition. It is

constrained that each vertex can be visited only one time to avoid repeated traversing. To ensure

reachability of any two vertices, we enforce a cyclic constraint (Figure 3.3 (b)). In the tree-like

structure, one cycle that loops back to the start vertex xxxs is necessary, whilst any other cycles

allow excluding xxxs as long as partly overlapped with the former. In the search process, we aim to

find disjoint SCS structures. Hence, we remove all the vertices of a SCS once found from G to

simplify and accelerate the subsequent searching. This process repeats until no SCS exists. Note

that at the end, a number of isolated vertices are likely left (outside any SCS).

With the above search method, however, we find that the resulting SCS tends to be over large

even when the graph is not dense. This ends up with mixed samples of different class concepts.

To address this issue, we further impose an operational size (scale) threshold ρ on SCS. This

simple constraint works in our case considering that we are not seeking a complete group of

samples per class which can be extremely challenging and risky as in clustering methods, due to

complex observation variations. Even splitting a single class into multiple SCS structures, we are

still able to obtain a large amount of intra-class variation information, whereas the risk of class

mixture is significantly reduced.
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3.3.2 Progressive model updating

Next, we describe how the self-discovered SCS structures can be used for progressive model

update. For formulation ease, we treat individual samples as special SCS structures each with

one sample. We propose to further convert affinity measurements into probability distributions,

so that maximum likelihood-based learning objective functions (Goodfellow et al. [58]) can be

adopted. Similar as in Section 3.2, we define the probability that any two samples xxxi and xxx j are

drawn from the same class according to the normalised distance between their features over a

stochastic subset of the training data (Eq. (3.2)). For clarity concern, we reiterate the formulation

here:

pi, j =
exp(xxx>i xxx j/τ)

∑
N
k=1 exp(xxx>i xxxk/τ)

(3.12)

where τ is a temperature parameter controlling the distribution concentration degree (Hinton

et al. [74]). This quantity is naturally compatible with SCS formation, both relying on pairwise

affinity. To reinforce the SCS structural information into model learning, we maximise the same-

class possibility of samples per SCS. We therefore formulate a group (subgraph) structure aware

objective function as:

Lscs =−
1

nbs

nbs

∑
i=1

log
(

∑
j∈C(xxxi)

pi, j

)
(3.13)

where nbs specifies the mini-batch size and C(xxxi) the samples of the SCS structure including

xxxi. This encourages affinity maximisation of samples within SCS. For isolated samples, C(xxxi) =

{xxxi}, Lscs turns to the instance loss function. The objective loss function formulated in Eq. 3.13

is consistent with that in Eq. 3.7 but the group structures are mined adaptively along the training

process of PAD rather than defined manually as independent curriculums in AND. Eq. (3.13) is

also analogous to Neighbourhood Component Analysis (Goldberger et al. [56]) when C(xxxi) is

replaced with labelled sets.

With summation ∑ j∈C(xxxi) pi, j, one possible weakness of Eq. (3.13) is that less similar neigh-

bours can be overwhelmed due to over small quantity. To calibrate their importance, we further

introduce a Hard Positive Enhancement (HPE) strategy. Given a SCS, for a sample xxxiii we define

its hard positive sample as the one xxxi′ with the smallest affinity. In the case of isolated sample

whenNk(xxxi) = {xxxi}, we use a randomly transformed variant as its hard positive. For calibration,

we minimise the Kullback-Leibler (KL) divergence of model predictions of xxxi and xxxi′ as:

Lhpe =
1

nbs

nbs

∑
i=1

N

∑
j=1

pi, jlog
pi, j

pi′, j
(3.14)
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We obtain the final loss function of the PAD model by weighted summation as:

Lpad = Lscs +λLhpe (3.15)

where the weight λ modulates their importance balance. The learnable parameters θ in the

model will then be optimised by minimising Lpad.

3.3.3 Model Training

Different from the AND model, thanks to the model-matureness-adaptive design, PAD starts with

a randomly initialised CNN rather than pretraining with the sample specificity learning objective

(Eq. (3.2)). For efficiency, we update the affinity graph and SCS per epoch, and use a memory to

keep track of per-sample representations required by loss computation (Eq. (3.15)). The memory

is updated per batch by exponential moving average (Lucas and Saccucci [114]) as formulated in

Eq. (3.8). The whole training procedure is summarised in Algorithm 2.

Algorithm 2: PAD for discriminative representation learning.

Input: Training data I, training epochs Nep, iterations per epoch Nit.

Output: A class discriminative CNN feature representation model.

for epoch=1 to Nep do

Construct the kNN based affinity graph (Eq. (3.1));

Search strongly connected subgraphs (Figure 3.5);

for iter=1 to Nit do

Mini-batch feed-forward through the network;

Objective loss computation (Eq. (3.15));

Network back-propagation and model weights update;

Memory feature refreshing (Eq. (3.8));

end

end

3.4 Experiments and Evaluations

3.4.1 Datasets, Protocols and Metrics

Datasets. We used 5 image classification benchmarks for evaluating our models. Examples are

shown in Figure 3.6. CIFAR-10/CIFAR-100 (Krizhevsky and Hinton [92]): An image dataset
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with 50,000/10,000 train/test images from 10 (/100) object classes. Each class has 6,000 (/600)

images with size 32×32. SVHN (Netzer et al. [125]): A Street View House Numbers dataset

including 10 classes of digit images. ImageNet (Russakovsky et al. [154]): A large 1,000 classes

object dataset with 1.2 million images for training and 50,000 for test. STL-10: An ImageNet

adapted dataset containing 500/800 train/test samples from 10 classes as well as 100,000 un-

labelled images from auxiliary unknown classes. MNIST: A hand-written digits dataset with

60,000/10,000 train/test images from 10 digit classes.

CIFAR

SVHN

ImageNet

MNIST

Figure 3.6: Examples of datasets used in neighbourhood mining.

For learning any unsupervised representation model, we assumed and used only the image

data but no class labels. Unless stated otherwise, we adopted the AlexNet (Krizhevsky et al.

[93]) as the neural network architecture for fair comparisons with the state-of-the-art methods.

To assess the quality of a learned model for classification at test time, we utilised the ground-

truth class labels of the training images merely for enabling image categorisation. This does not

change the feature representations derived in unsupervised learning.

Protocols. We considered two test protocols for unsupervised learning of discriminative repre-

sentations. (1) Image classification (Caron et al. [15]; Wu et al. [195]) where the ground-truth

class labels of the training images are used to learn additional classifiers based on frozen feature

representations. Note that labels are used only for testing. We tested two classification mod-

els including Linear Classifier (LC) on top of the last convolutional layer in our backbone and

Weighted kNN based on the last fully-connected (FC) features. LC was realised by a fully con-

nected layer. The kNN classifier is based on weighted voting of top-k neighbours Nk of sample

xxxi as pi, j = ∑ j′∈Nk
1[ j = y j′ ] ·w j′ where pi, j is the predicted probability of xxxi being drawn from

the j-th class while 1[ j = y j′ ] is an identity function returning 1 if label j = y j′ , and 0 otherwise.

We computed the weight w j′ as w j′ = exp(cos(xxxi,xxx j′)/τ) with τ = 0.1 the temperature parameter
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and k = 200 as in (Wu et al. [195]). Without an additional parametric classifier post-learning in-

volved, kNN reflects directly the discriminative capability of the learned feature representations

within local areas in the latent space. (2) Image clustering (Ji et al. [85]; Xie et al. [200]) where

k-means is applied if cluster assignments were not explicitly learned by the models for clustering

the samples represented by any unsupervised model into the ground-truth number of clusters. Es-

pecially, both the training and testing data are used for model learning in the standard clustering

setting, unlike the classification setting where only the training data is used.

Evaluation metrics. To measure model’s performance, for image classification, we follow the

common recipe to test the classifier by the Top-1 Accuracy, namely the proportion of test images

that are correctly classified by the classifier learned with the manual labels on the training set.

For image clustering, we followed (Ji et al. [85]) to adopt the Clustering Accuracy (Xie et al.

[200]) to measure the proportion of samples correctly grouped. Specifically, the clusters yielded

by k-means upon the learned feature spaces are associated with the manually defined categories

using the Hungarian algorithm (Kuhn [94]).

3.4.2 Implementation Details

For fair comparisons with existing works, we used the same experimental setting as (Wu et al.

[195]; Bojanowski and Joulin [13]). We adopted Stochastic Gradient descent (SGD) with Nes-

terov momentum at 0.9 as the optimiser to train the proposed models for 200 epochs. The learn-

ing rate was initiated to be 0.03 and scaled down by a factor of 0.1 every 40 epochs after the

first 80. The length of the learned features (outputs of the last FC layer) was set to be 128 and

the batch size was 256 for ImageNet and 128 for other datasets. We adopted several common

data augmentation techniques same as in (Wang and Gupta [188]) including random horizontal

flipping, cropping and colour jittering. We set η=0.5 in Eq. (3.8) to update the features memory.

For the AND model, we empirically set the number of curriculums to be 4 and the size of the an-

chor neighbourhoods was set to be k=1 (Eq. (3.1)) for exploring the most local neighbourhoods.

For the PAD model, we set k = 5 in Eq. (3.1) for affinity graph construction. The maximum

size ρ of SCS was set to be 10 and the weight of the learning objective for hard sample mining

λ in Eq. (3.15) was 0.8. In practice, the SCS searching is conducted on memory features for

efficiency concern and the memory bank takes around 600MB for ImageNet (the largest datasets

discussed in this thesis with 1.2M images). Implemented in Tarjan framework (Tarjan [176]),
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the worst-case time complexity of our SCS searching is O(N2) where N is the number of sam-

ples. In practice, it takes 4 minutes per epoch to compute the SCS on ImageNet with the overall

training time in 4 Tesla P100 GPUs being 6 days. The constructions and updates of SCS is the

only computation overhead to the baseline instance discrimination model (Wu et al. [195]). It

should not be an efficiency bottleneck. All our parameters were tuned on CIFAR-10 and applied

to all the other datasets due to no labelled validation set for cross-validation in unsupervised

learning. By using a single setting for all the experiments, we tested our models’ scalability and

generalisation.

Dataset CIFAR-10 CIFAR-100 SVHN ImageNet

Classifier/Feature Weighted kNN / FC

Random 34.5 12.1 56.8 3.5

Supervised 91.9 69.7 96.5 -

DeepCluster 62.3 22.7 84.9 26.8

Instance 60.3 32.7 79.8 31.3

RotNet 72.5 32.1 77.5 9.2

AND 74.8 41.5 90.9 31.3

PAD 81.5 48.7 91.2 35.1

Classifier/Feature Linear Classifier / conv5

Random 67.3 32.7 79.2 14.1

Supervised 91.8 71.0 96.1 14.1

DeepCluster 77.9 41.9 92.0 38.2

Instance 70.1 39.4 89.3 35.6

RotNet 84.1 57.4 92.3 36.5

AND 77.6 47.9 93.7 37.8

PAD 84.7 58.6 93.2 38.6

Table 3.1: Comparisons with the state-of-the-art methods in unsupervised image classification.
The 1st/2nd best results were marked in red/blue. Results of previous methods were reproduced
by us using the implementations released by their authors.
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3.4.3 Comparisons with the State-of-the-Art

Image classification. In Table 3.1, we compared our AND and PAD methods with the repre-

sentative works of clustering analysis (DeepCluster (Caron et al. [15]), self-supervised learning

(RotNet (Gidaris et al. [55])), and instance contrastive learning (Instance (Wu et al. [195])) as

well as the random and supervised learning baselines on four benchmarks. We make three obser-

vations:

• The PAD model surpasses all competitors under either classification model, often by a

large margin while the AND model is superior when testing with the kNN classifier. This

suggests the performance advantages of our methods thanks to its strong capability of

discovering semantic consistent neighbourhood structures.

• When compared with kNN classifier, linear classifier tends to yield better results due to

using extra parameters. This is particularly so for the pretext task based model RotNet.

This is because the pretext task is less relevant to classification, leading to weaker rep-

resentation as compared to grouping based methods like AND and PAD. In contrast, the

margins obtained by our models with kNN as the classifier tend to be larger than those by

linear classifier. This indicates features derived by our models are favourably more ready

for direct use without extra classifier training as post-processing, i.e. more discriminative

regarding the semantic classes.

• As an intermediate representation between clusters and instances, tiny neighbourhoods are

exploited in AND for revealing class boundaries and improves the results in most cases.

However, this method is restricted by the small size of neighbourhoods. PAD addresses

this limitation by affinity diffusion across adjacent neighbourhoods.

Image clustering. Apart from sample-wise image classification, we further validated our mod-

els in image clustering which reflects the representation quality in describing global data struc-

tures. We compared PAD with two groups of alternative methods, (1) Clustering methods:

JULE (Yang et al. [207]), DEC (Xie et al. [200]), DAC (Chang et al. [20]), ADC (Haeusser

et al. [63]) and IIC (Ji et al. [85]); (2) Generic representation learning methods: Triplets (Schultz

and Joachims [157]), AE (Bengio et al. [10]), Sparse AE (Ng [126]), Denoising AE (Vincent

et al. [184]), Variational Bayes AE (Kingma and Welling [90]), SWWAE (Zhao et al. [225]),
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Methods MNIST STL-10 CIFAR-10 CIFAR-100

JULE 96.4 27.7 27.2 13.7

DEC 84.3 35.9 30.1 18.5

DAC 97.8 47.0 52.2 23.8

ADC 99.2 52.0 32.5 16.0

IIC 98.4 59.8 57.6 25.5

Random† 48.1 20.1 18.6 10.3

Triplets† 52.5 24.4 20.5 9.9

AE† 81.2 30.3 31.4 16.5

Sparse AE† 82.7 32.0 29.7 15.7

Denosing AE† 83.2 30.2 29.7 15.1

Variational Bayes AE† 83.2 28.2 29.1 15.2

SWWAE† 82.5 27.0 28.4 14.7

DCGAN† 82.8 29.8 31.5 15.1

DeepCluster† 65.6 33.4 37.4 18.9

PAD† 98.2 46.5 62.6 28.8

Table 3.2: Comparisons with the state-of-the-art methods in unsupervised image clustering.
Methods with † generate cluster assignments with the help of k-means. The 1st/2nd best results
were marked in red/blue. Results of previous methods were adopted from (Ji et al. [85]).

DCGAN (Radford et al. [143]) and DeepCluster (Caron et al. [15]). For the latter group includ-

ing PAD, we further applied k-means to generate their clustering solutions. For PAD, we reported

the average result over 10 runs. For competitors, we used the results from (Ji et al. [85]). Despite

different modelling purposes, we performed both within and cross group comparisons. We made

a couple of observations from Table 3.2:

• The first group of methods tends to produce higher clustering results, thanks to their joint

learning of feature representations and clustering by using the ground-truth class number

prior in end-to-end model training, i.e., consistent between training and test objectives.

Among them, IIC (Ji et al. [85]) achieves the best results while JULE (Yang et al. [207])

serving as a baseline that share a similar agglomerative clustering idea with PAD. .
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• Without taking clustering as objective, the second group of methods is relatively inferior

in modelling data group structures. However, PAD again reaches the best performance

consistently in this group. Crucially, our model is on par with all the dedicated clustering

methods and even surpasses them on CIFAR-10 and CIFAR-100 with significant margins,

regardless of the disadvantage on STL-10 which, we conjugate, is due to some distracting

impact from auxiliary unknown categories. This indicates the efficacy of our unsupervised

learning method in capturing the holistic data distribution. We attribute this advantage to

the favourable ability of our method in seeking the latent class consistent groups with high

variations of individual concepts.
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Figure 3.7: Neighbourhood quality of
AND over rounds on CIFAR-10.
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Figure 3.8: Statistics dynamics of SCS during
training on CIFAR-10: average size and precision.

Neighbourhood quality. We examined the class consistency of local neighbourhoods discov-

ered throughout the training process. Figure 3.7 shows that the numbers of both class-consistent

and inconsistent anchor neighbourhoods increase along with the training rounds, and more im-

portantly the consistent ones raise much more rapidly. This explains the performance advantages

of the AND model and the benefit of exploring progressive curriculum learning. Besides, we

examined the training dynamics of SCS size and precision in PAD. Figure 3.8 shows that PAD

starts with finding small SCS structures due to weak representation power, then explores larger

ones at decreasing precision, and finally converges the size whilst increases the precision before

both levels off. High precision of SCS is a key for enabling more discriminative unsupervised

learning by PAD.

3.4.4 Component Analysis of AND

We conducted detailed component analysis with the weighted kNN classifier and FC features to

provide insights into the AND model.

Backbone network. We tested the generalisation of AND with varying-capacity networks. We

further evaluated ResNet18 and ResNet101 (He et al. [68]) on CIFAR-10. Table 3.3 shows that
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AND benefits from stronger net architectures. A similar observation was made on ImageNet:

41.2% (ResNet18) vs. 31.3% (AlexNet).

Network AlexNet ResNet18 ResNet101

Accuracy 74.8 86.3 88.4

Table 3.3: Network generalisation analysis of AND on CIFAR-10.

Neighbourhood size. Neighbourhood size is an important parameter in AND since it controls

label consistency of neighbourhoods and finally the model performance. We evaluated its effect

using ResNet18 on CIFAR-10 by varying k from 1 (the default value) to 100. Note that k = 1

refers to the model trained with neighbourhoods with at most two member samples. Figure

3.9 shows that the smallest neighbourhoods (i.e., k=1) are the best choice. This implies high

variety of imagery data, so smaller neighbourhoods are preferred if without adaptive and reliable

strategy for neighbourhoods expansion.
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Figure 3.9: Effect of the neighbourhood size
in AND on CIFAR-10.
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Figure 3.10: Effect of the curriculum round in
AND on CIFAR-10.

Curriculum round. We tested the effect of the curriculum round (R in Eq. (3.6)) of progres-

sive neighbourhood discovery. More rounds consume higher training costs. Figure 3.10 shows

that using 4 rounds gives a good trade-off between model training efficiency and feature perfor-

mance. Often, per-round epoch number Nep affects the training efficiency and performance. We

investigated its effect and found that AND achieves 83.3% by Nep=50 vs. 84.8% by Nep=100.

One-off vs. curriculum neighbourhood discovery. We evaluated the benefit of AND’s cur-

riculum. To this end, we compared with the one-off discovery counterpart where all anchor

neighbourhoods are exploited one time. Table 3.4 shows that the proposed multi-round progres-

sive discovery via a curriculum is effective to discover more reliable anchor neighbourhoods for

superior unsupervised learning.
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Neighbourhood Discovery One-off Exploration Curriculum Learning

Accuracy 84.2 86.3

Table 3.4: One-off vs. curriculum discovery in AND on CIFAR-10.

3.4.5 Component Analysis of PAD

Similarly, we conducted a sequence of detailed component evaluations and performance analysis

for the PAD model on the image classification task with kNN as classifier.

Effect of affinity diffusion. To investigate the effect of affinity diffusion, we tested the perfor-

mance of models in which C(xxx) for each sample was replaced by its k-nearest neighbours Nk(xxx)

as shown in Figure 3.3 (a) and the size k was set to 10. According to Table 3.5, discovering

consistent sample groups according to affinity diffusion across adjacent neighbourhoods with

necessary constraints clearly benefits the discriminative learning of models in all cases.

Diffusion CIFAR-10 CIFAR-100 SVHN

7 77.5 34.5 89.5

3 81.5 48.7 91.2

Table 3.5: Effect of affinity diffusion in PAD.

Cyclic and scale constraints. We examined the effect of cyclic and scale constraints (Sec-

tion 3.3.1) and observed from Table 3.6 that: (1) Cyclic constraint brings consistently perfor-

mance gain, particularly in the most challenging CIFAR-100 test. This is because of the presence

of subtle visual discrepancy between fine-grained classes, which leads to more wrong association

in affinity diffusion. (2) Scale constraint is clearly necessary for ensuring the effectiveness of our

model in all cases. Without it, different classes would be mixed up in diffusion due to complex

visual patterns exhibited in images.

Hard positive enhancement. Table 3.7 (left) shows that constraining the prediction between

hard positive pairs is clearly beneficial for model discriminative learning. This confirms the

overwhelming effect among within-SCS samples when using normalised affinity measurements

(Eq. (3.2)) to quantify loss function (Eq. (3.13)), and suggests the efficacy of our enhancement
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Cyclic CIFAR-10 CIFAR-100 SVHN Scale CIFAR-10 CIFAR-100 SVHN

7 73.3 30.6 91.1 7 20.2 1.8 20.3

3 81.5 48.7 91.2 3 81.5 48.7 91.2

Table 3.6: Effect of (left) cyclic and (right) scale constraints in forming SCS structures.

strategy. We also compared two loss designs: Feature Cosine Similarity (FCS) vs. KL divergence.

Table 3.7 (right) suggests the superiority of KL over FCS. A plausible explanation is that KL can

integrate with SCS loss Lscs (Eq. (3.13)) in a more harmonious manner, as both are based on

class posterior probability measurements.

HPE CIFAR-10 CIFAR-100 SVHN Design CIFAR-10 CIFAR-100 SVHN

7 69.8 30.9 80.9 FCS 72.7 39.1 90.4

3 81.5 48.7 91.2 KL 81.5 48.7 91.2

Table 3.7: (Left) Effect of hard positive enhancement and (Right) the HPE loss design compari-
son of Feature Cosine Similarity and Kullback-Leibler divergence.

Parameter analysis. We evaluated 3 parameters of PAD on CIFAR-10: (1) Affinity graph den-

sity k, (2) SCS scale threshold ρ , and (3) weight λ of hard positive enhancement loss. Table 3.8

shows that the parameters are insensitive with a wide range of good values, indicating training

robustness.

Parameter Affinity graph density k SCS scale threshold ρ HPE loss weight λ

Value 1 3 5 10 5 10 50 100 0.2 0.5 0.8 1.0

Accuracy 77.8 79.3 80.4 79.5 79.3 80.4 80.3 79.7 78.2 79.9 80.4 80.2

Table 3.8: Model parameter analysis of PAD on CIFAR-10. Left: Affinity graph sparsity k;
Middle: SCS scale threshold ρ; Right: Weight λ of hard positive enhancement loss.

Computation cost of SCS searching. To validate the complexity of SCS searching, we tested

the searching time on ImageNet: 4 mins per epoch, 800 mins among the overall 6 days training.
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Figure 3.11: The evolving dynamics of the AND model’s learning attention throughout the train-
ing rounds on six ImageNet classes. Red bounding box indicates a failure case.

3.4.6 Visualisation and Qualitative Study

To further understand how the idea of local neighbourhood discovery benefits feature represen-

tation learning, we tracked the AND’s modelling attention by Grad-Cam (Selvaraju et al. [158])

to visualise which parts of training images the model is focusing on throughout the curriculum

rounds. We have the following observations from Figure 3.11: (1) Often the model initially looks

at class irrelevant image regions. This suggests that sample specificity is a less effective supervi-

sion signal for guiding model class-discriminative training. (2) In cases, the AND model is able

to gradually shift the learning attention towards the class relevant parts therefore yielding a more

discriminative model. (3) The AND may fail to capture the object attention, e.g. due to cluttered

background and poor lighting condition.

What’s more, to provide visual interpretation of how the PAD model yielded more discrimi-

native representations than that of AND by benefiting from discovering neighbourhoods in larger

sizes, we conducted a case study of affinity diffusion on STL-10. Figure 3.12 shows that when

the model is immature (at the early training stage), wrong cross-class diffusion may happen fre-

quently; the cyclic constraint can help detect this and early stop error accumulation. Besides, it

is shown that SCS can better capture semantic similarity beyond pairwise affinity measurements

(see dashed curve). However, as expected not all the hard positive pairs are discovered due to
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affinity diffusion. (c) Extremely hard positive pairs undiscovered by PAD. Red solid box: with a
different class as the anchor; Green solid box: with the same class as the anchor. The numbers
above arrows are the corresponding pairwise affinity scores.

extreme viewing condition discrepancy as shown in Figure 3.12 (c).

3.5 Summary

In this chapter, we presented two novel approaches (Anchor Neighbourhood Discovery and Pro-

gressive Affinity Diffusion) for unsupervised learning of class discriminative feature representa-

tions for images through class consistent neighbourhood discovery and supervision in a progres-

sive manner. With the AND model, we make a first attempt to avoid the notorious grouping noises

whilst still preserving the intrinsic merits of clustering for effective inference of the latent class

decision boundaries. It is also superior to the existing sample-specific instance contrastive learn-

ing strategy, due to the unique capability of propagating the self-discovered sample-to-sample

class relationship information in end-to-end model optimisation. Moreover, to further expand

the size of class-consistent local neighbourhoods in order to introduce more complex intra-class

image variations to encourage the visual features to be more class-sensitive, we further present

PAD with a model-matureness-adaptive design. It is achieved by self-discovering class consistent

strongly connected subgraphs in neighbourhood affinity graphs and formulating group structure

aware objective loss function. Critically, The PAD model overcomes the small locality limita-

tion of neighbourhoods in AND, whilst preserving and integrating its intrinsic strengths for more

effective discriminative learning. Extensive experiments on five visual recognition benchmark

datasets on image classification and image clustering tasks validate the superiority of both AND

and PAD over a wide spectrum of state-of-the-art unsupervised deep learning methods. In-depth

component analysis and intuitive qualitative cases study were provided to give insights on the

model advantages of both the formulations.
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Chapter 4

Discovering Knowledge from Global Data Structure

in Deep Clustering

This chapter investigates knowledge mining from global data structure to learn jointly discrimi-

native feature representation of visual data as well as their semantic partitions without accessing

any manual class labels of target data. The image clusters are considered semantically plau-

sible if they can be mapped to the human defined categories one-to-one. In this case, images

of the same clusters can be described by the labels of the matched classes, which are usually

human-understandable short phrases like cat, dog, ship, etc. The task studied in this Chapter

is different from the one in Chapter 3 by predicting the probabilities of samples being from a set

of clusters as model’s outputs while the latter producing feature representations instead. Specif-

ically, given a set of N unlabelled target images I = {III1, III2, · · · , IIIN} drawn from C semantic

classes Y = {y1,y2, · · · ,yN | ∀i ∈ [1,N], yi ∈ [1,C]}, the objective of deep clustering is learning

to separate I into C clusters in an unsupervised manner by a CNN model. There are typically two

components learned jointly end-to-end: (1) a feature extractor fθθθ (·) that maps the target images

into vector representations: xxxi = fθθθ (IIIi), and (2) a classifier gφφφ (·) that assigns each feature repre-

sentation xxxi with a cluster membership distribution: pppi = gφφφ (xxxi) = {pi,1; pi,2; · · · ; pi,C}. Once the

model is trained, the cluster assignment can be predicted in a maximum likelihood manner as:

ỹi = argmax
c

(pi,c), c ∈ {1,2, · · · ,C}. (4.1)

Unlike in Chapter 3 where pi, j denotes the probability that the i-th and j-th samples are positive,

pi, j indicates how likely the i-th sample is from the j-th cluster here. Ideally, all the samples
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of a cluster would share the same target class labels. That being said, we aim to discover the

underlying semantic class decision boundary directly from the raw data samples.

Aiming at the two challenges of joint learning data partitions and feature representations sum-

marised in Section 1.3, this chapter is organised as follows: Section 4.1 reiterates the challenge

of learning semantically plausible data partitions without the constraints from human annotations

to motivate the novel PartItion Confidence mAximisation model presented in this chapter with its

overview provided in Section 4.1.1 and detailed formulations given in Section 4.1.2 and model

training in Section 4.1.3; Section 4.2 discusses the obstacles of error-propagation when benefiting

deep clustering by the powerful unsupervised learning techniques for generic visual representa-

tions, which motivates a new variant of instance contrastive learning (He et al. [69]) to derive

class-discriminative feature representations by Semantic Contrastive Learning. An overview of

SCL is given in 4.2.1 while the model designs and training strategy are in Section 4.2.2 and

Section 4.2.3, respectively; Section 4.3 provides extensive experiments for evaluating the two

proposed models on a wide range of natural object recognition benchmark datasets with in-depth

analysis and comprehensive ablation studies. Section 4.4 summaries the ideas of discovering

knowledge from global data structure studied here.

4.1 Maximising Semantic Plausibility of Clusters

In general, image clustering is not a well-defined problem as multiple different solutions can

all make sense of the input data (Xu and Wunsch [204]). This makes deep clustering extremely

challenging due to totally lacking high-level guidance knowledge from human annotations. How-

ever, in object-centric images (e.g. ImageNet (Deng et al. [37])), the objects-of-interest that po-

tentially drawing human’s attention are usually occupying also the most salient parts of images.

Therefore, regardless the existence of intra-class visual discrepancy and inter-class affinity, the

majority of samples from the same semantic classes are still expected to share a high proportion

of visual information. In this case, although a set of imagery data can be separated in numerous

ways according to various criteria, assigning samples of the same semantic categories to different

clusters will implicitly reduce the resulted within-cluster compactness and between-cluster sep-

arability (Wu et al. [195]), leading to lower partition confidence. Therefore, we assume that the

most confident data partition is the most promising clustering solution we are seeking for, which

is likely to be mapped to the human-defined object categories one-to-one, i.e. semantic plausible.
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Figure 4.1: An overview of the proposed PartItion Confidence mAximisation method.

4.1.1 Approach Overview

In this chapter, we formulate a novel deep clustering method, called PartItion Confidence mAx-

imisation. PICA is based on a Partition Uncertainty Index (PUI) that measures how a deep CNN

is capable of interpreting and partitioning the target image data. This index is differentiable,

hence, PICA simply needs to optimise it without whistles and bells using any off-the-shelf CNN

models. An overview of PICA is depicted in Figure 4.1. Given the input data and the decision

boundaries determined by the CNN model (Figure 4.1 (a)), the PICA model computes the cluster-

wise Assignment Statistics Vector (ASV) in the forward pass using a mini-batch data (Figure 4.1

(b)). To minimise the partition uncertainty index depicted in Figure 4.1 (c), the PICA model is

trained to discriminate the ASV of all negative cluster pairs on the hypersphere through a ded-

icated objective loss function (Figure 4.1 (d)), so as to learn the most confident and potentially

promising clustering solution. Moreover, to ensure model’s invariance to visual transforma-

tions, the PUI is computed by a batch of samples and its perturbed copy obtained by random data

augmentations. Such a design leads to the dual-branch architecture of PICA.

4.1.2 Partition Uncertainty Index

We start by formulating a partition uncertainty index, a key element of our PICA. Given an input

image IIIi, suppose the cluster prediction of a CNN model is denoted as:

pppi =


pppi,1

· · ·

pppi,C

 ∈ RC×1, (4.2)

where pi, j specifies the predicted probability of the i-th image being assigned to the j-th cluster,

and there are a total of C clusters ( j ∈ [1,2, · · · ,C]). We then obtain the cluster prediction matrix
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of all the N target images as

P = [ppp1, ppp2, · · · , pppN ] ∈ RC×N . (4.3)

For presentation ease, we denote the j-th row of P as:

qqq j = [p1, j, p2, j, · · · , pN, j] ∈ R1×N , j ∈ [1,2, · · · ,C]. (4.4)

Clearly, qqq j collects the probability values of all the images for the j-th cluster, which summarises

the assignment statistics of that cluster over the whole target data. Hence, we call it as a cluster-

wise Assignment Statistics Vector.

Ideally, each image is assigned to only one cluster, i.e. each pppi is a one-hot vector (same as the

ground-truth label vectors in supervised image classification). It is intuitive that this corresponds

to the most confident clustering solution which is the objective that PICA aims to achieve. For

enabling the learning process of a deep clustering model towards this ideal (most confident) case,

an objective loss function is typically needed. To that end, we design a partition uncertainty index

as the learning target. Specifically, we observe that in the ideal case above, the ASV quantities of

any two clusters, qqq j1 and qqq j2 , are orthogonal to each other. Mathematically, this means that their

cosine similarity (Eq. (4.5)) is 0 (due to not negative values in qqq j1 and qqq j2).

cos(qqq j1 ,qqq j2) =
qqq j1 ·qqq j2

‖qqq j1‖2‖qqq j2‖2
, j1, j2 ∈ [1, · · · ,K] (4.5)

In the worst clustering cases where all the cluster prediction pppi are the same (e.g. the uniform

distribution vector), we also have a constant value: cos(qqq j1 ,qqq j2) = 1, since all the ASV quantities

are the same. For any case in-between, the ASV cosine similarity of two clusters will range from

0 (most confident) to 1 (least confident).

In light of the above analysis, we formulate a partition uncertainty index as the ASV cosine

similarity set of all the cluster pairs as:

MPUI( j1, j2) = cos(qqq j1 ,qqq j2), j1, j2 ∈ [1,C]. (4.6)

In form, MPUI is a C×C matrix. By doing so, the learning objective of PICA is then to min-

imise the PUI (except the diagonal elements), which is supposed to provide the most confident

clustering solution at its minimum.

A Stochastic Approximation of PUI. The PUI as formulated in Eq. (4.6) requires using the

entire target data which is often at large scale. This renders it unsuited to stochastic mini-batch
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based deep learning. To address this problem, we propose a stochastic approximation of PUI.

Specifically, instead of using all the images (which is deterministic), at each training iteration

we use a random subset It of them. In probability theory and statistics, this is sampling from

a discrete uniform distribution in the whole target data space (Hogg et al. [78]). We call this

approximation as Stochastic PUI. In practice, this allows to fit easily the mini-batch training of

the standard deep learning, e.g. simply setting It as a mini-batch.

Formally, at the t-th training iteration, we have a mini-batch B of nbs samples to train the

model and set It = B. Let us denote the cluster prediction matrix of It made by the up-to-date

model as:

Pt =


qqqt

1

· · ·

qqqt
C

 ∈ RC×nbs , (4.7)

where qqqt
j ∈ R1×nbs is the ASV of j-th cluster on mini-batch It . As Eq. (4.6), we obtain the

Stochastic PUI:

MS-PUI( j1, j2) = cos(qqqt
j1 ,qqq

t
j2), j1, j2 ∈ [1,C]. (4.8)

The Stochastic PUI is in a spirit of dropout (Srivastava et al. [166]). Instead of neurons, we ran-

domly drop data samples in this case and realised in the standard mini-batch sampling process.

4.1.3 Model Training

Learning objective function. Given the Stochastic PUIMS-PUI, as discussed earlier PICA is

then trained to minimise it excluding the diagonal elements. To derive a typical objective loss

function, we usually need a scalar measure. However,MS-PUI is a C×C matrix. There is hence

a need to transform it.

Recall that for any two different clusters, we want to minimise their ASV cosine similarity.

This is actually reinforcing self-attention (Vaswani et al. [182]) by treating each cluster as a data

sample and suppressing all the inter-sample attention. Hence, we apply a softmax operation as

self-attention to each cluster j and obtain a probabilistic measurement as:

m j, j′ =
exp(MS-PUI( j, j′))

∑
C
c=1 exp(MS-PUI( j,c))

, j′ ∈ [1,C]. (4.9)

With this transformation, the learning objective is further simplified into maximising {m j, j}Cj=1.
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By further treating m j, j as the model prediction probability on the ground-truth class of a

training sample (a cluster j in this context), a natural choice is then to exploit the common cross-

entropy loss function:

Lce =
1
C

C

∑
j=1
−log(m j, j). (4.10)

As such, we formulate a scalar objective loss function Lce that minimises effectively the matrix

MS-PUI.

In clustering, there are algorithm-agnostic trivial solutions that assign a majority of samples

into a minority of clusters. To avoid this, we introduce an extra constraint that minimises negative

entropy of the cluster size distribution:

Lne = log(C)−H(Z), with Z = [z1,z2, · · · ,zK ] (4.11)

where H(·) is the entropy of a distribution, and Z is L1 normalised soft cluster size distribution

with each element computed as z j =
∑(qqqt

j)

∑
C
c=1 ∑(qqqt

c)
. With the maximal entropy of a C-dimensional

probability distribution, log(C) is to ensure non-negative loss values.

The overall objective function of PICA is formulated as:

L= Lce +λLne (4.12)

where λ is a weight parameter. The objective function (Eq. (4.12)) of PICA is differentiable end-

to-end, enabling the conventional stochastic gradient descent algorithm for model training. To

improve the model robustness to visual transformations we use data augmentation to randomly

perturb the training data distribution. We enforce the clustering invariance against image pertur-

bations at the global solution level. More specifically, we use the original data to compute qqqt
j1

and the transformed data to compute qqqt
j2 in Eq. (4.8) at each iteration. The training procedure is

summarised in Algorithm 3.

4.2 Alleviating Error-propagations to Features

Apart from the simultaneous representation learning and clustering paradigm studied in the above

section, alternative learning is another widely adopted strategy in deep clustering. This section

further investigates the alternation strategy and the error-propagation problem commonly seen in

it. A novel approach is introduced to alleviate the negative impacts of error-propagation with the

help of instance contrastive learning (He et al. [69]; Chen et al. [27]; Tian et al. [177]). Among
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Algorithm 3: PICA for deep clustering.

Input: Unlabelled data I, training iterations Nit target cluster number C.

Output: A deep clustering model;

for iter=1 to Nit do

Sampling a random mini-batch of images;

Feeding the mini-batch into the deep model;

Computing per-cluster ASV (Eq. (4.4));

Computing the Stochastic PUI matrix (Eq. (4.8));

Computing the objective loss (Eq. (4.12));

Model weights update by back-propagation;

end

the recent developments of unsupervised learning of generic visual representations which are ap-

plicable to various downstreamed tasks with fine-tuning, instance contrastive learning has been

shown to excel at learning sample-specific discriminative feature representations by instance dis-

crimination, with a direct benefit to unsupervised clustering through encoding visual similarity

in feature distance. Specifically, instance contrastive learning derives image features by learning

with per-sample pseudo classes generated by global linear data augmentations, which differenti-

ates every independent instance from all or a random subset of training data (negative/contrastive

set) regardless of their semantic class memberships. However, such an approach does not opti-

mise concept (class) discrimination between clusters and is unaware of any potential nonlinear

intra-class variations. Lacking considerations for nonlinear class decision boundaries, the result-

ing features are limited to apparent visual similarity (e.g. pixel intensity) rather than latent seman-

tic membership interpretations. On the other hand, considering that the instance discrimination

formulation is agnostic to sample’s underlying class memberships, such a learning strategy pro-

vides a robust manner to deal with unreliable estimations of cluster assignment when imposing

false negative pairwise relationships into contrastive sets. In this regard, we present a new vari-

ant of contrastive learning in this section for deriving class discriminative visual representations

called Semantic Contrastive Learning. The SCL model simultaneously conducts cross-cluster

instance discrimination and cluster discrimination to learn jointly visual features and cluster de-

cision boundaries. In the cross-cluster instance discrimination, rather than explicitly pushing the
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potentially positive samples closer in the latent space to facilitate feature invariance to intra-class

visual discrepancy, we implicitly encourage this by assigning a common contrastive set to the

pseudo positive samples so to alleviate the errors propagated from the unreliable (noisy) cluster

assignments. Meanwhile, the cluster decision boundaries are derived to maximise the consistency

between sample’s distances in cluster-level (semantic) and instance-level (visual).

(a) Initiation (b) Instance discrimination (c) Cluster discrimination (d) Results

Data points from different classes Initial and updated boundaries Far Close

Visual
similarity

Semantic
assignment

Target sample

Figure 4.2: An overview of the proposed Semantic Contrastive Learning method.

4.2.1 Approach Overview

An overview of the SCL model is depicted in Figure 4.2. Given a randomly initiated feature space

and the decision boundary of a set of clusters (Figure 4.2 (a)), the SCL model learns the visual

similarities of instances in each cluster by instance discrimination against samples from other

clusters (Figure 4.2 (b)) and optimises each cluster decision boundary by assigning the instances

to the cluster with the most similar samples (Figure 4.2 (c)). As shown in Figure 4.2 (d), SCL

converges to a consensus between maximising inter-cluster instance-level (visual) diversity and

intra-cluster cluster-level (semantic) compactness. This results in semantically more plausible

clusters to interpret the underlying semantic concepts without explicitly learning from labels.

4.2.2 Instance and Cluster Discrimination

We start with formulating a new cross-cluster instance discrimination learning objective with a

novel semantic memory. The aim is to learn visual features to be discriminative across clusters

and design the semantic memory to facilitate simultaneous instance and cluster discrimination.

Cross-cluster instance discrimination. Our feature learning objective is formulated to dif-

ferentiate every individual instance against its pseudo-negative samples so to reduce its visual

redundancy regarding images of other clusters. Given random partitions at the beginning of

training, by isolating samples from different clusters, the model behaves as instance contrastive
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learning and outputs per sample-specific visual features. Intuitively, visually similar samples are

expected to share more class-specific unique information, their representations will therefore be

gradually gathered closer and grouped into the same clusters by our cluster discrimination de-

tailed later. Along the clustering process with increasingly better and stable cluster assignments,

the contrastive set of every sample will absorb more visually dissimilar counterparts, instead of

random ones. Consequently, the learning objective becomes reducing cross-cluster visual re-

dundancy, resulting in desired features that are aware of inter-cluster visual discrepancies and

invariant within clusters.

Our cross-cluster instance discrimination is a generic formulation, integratable with existing

instance contrastive learning methods. The main refinement involved is to add the component of

contrastive sets at the cluster level in a plug-in manner. We take the MoCo (He et al. [69]; Chen

et al. [29]) as an example.

To be concrete, we first formulate a mapping function fθθθ from a pixel space to a representa-

tional space as an encoder with learnable weights θθθ . Similarly, we construct another momentum

encoder f
θ̃θθ

with an identical structure but independent parameters θ̂θθ . Given an unlabelled dataset

I, we randomly apply a set of transformations T to each image for distribution perturbation. We

then represent two perturbed copies of each instance, T1(IIIi) and T2(IIIi), by the encoder and mo-

mentum encoder respectively and denote them as xxxi = fθθθ (T1(IIIi)) and x̂xxi = f
θ̂θθ
(T2(IIIi)). Given the

pseudo labels of all the samples Y = {ỹ1, ỹ2, · · · , ỹN}, ỹi ∈ [1,C] inferred by the progressively

updating decision boundaries (detailed later), our instance discrimination (ID) objective in terms

of IIIi is to match xxxi with x̂xxi against its contrastive set X̃i = {x̃xx1, x̃xx2, · · · , x̃xxk} s.t. ỹi 6= ỹ j,∀ j ∈ [1,k]

composed by k stale representations of its pseudo-negative samples:

LID(IIIi) =−log
exp(cos(xxxi, x̂xxi)/τ)

∑x̃xx∈X̃i∪{x̂xxi} exp(cos(xxxi, x̃xx)/τ)
(4.13)

where cos(xxx, x̃xx) is the cosine similarity between a pair of representations and τ is the temperature

to control the concentration degree of distribution. As the samples in the same clusters share a

common contrastive set, they are indirectly pushed closer in the feature space regardless of any

intra-cluster variations. Therefore, the learned visual features are sensitive to both intra-cluster

visual discrepancies and inter-cluster similarities. This capability is absent to instance contrastive

learning, in which intra- and inter-cluster variations are considered equal. Hence, our learned

feature representation is geared towards being sensitive to cluster-wise visual characteristics.
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Semantic memory. For cross-cluster instance discrimination, we introduce a novel semantic

memory. It serves two functions: (1) playing the role of conventional memory bank to store a list

of k representations for contrastive learning; (2) imposing cluster structures into training data.

Specifically, we manage C independent memory banks M = {M1,M2, · · ·MC} each corre-

sponding to one cluster with a size of k/(C− 1). For an image IIIi with pseudo label ỹi, we

construct a contrastive set X̃i:

X̃i = {x̃xx|x̃xx ∈M j ∀ j ∈ [1,C] and j 6= ỹi}. (4.14)

As formulated in Eq. (4.14), there is always one memory bank left out for each sample and

the rest Ms are concatenated as its contrastive set X̃i approximately in size k (rounding error)

to support cluster discriminative feature representation learning. Specially, the size (k/(C− 1))

of each independent memory bank Mi is deliberately designed to ensure the consistent size of

contrastive sets in SCL and the baseline instance contrastive learning model (He et al. [69]), so

as to get rid of its impacts in comparison experiments. For memory update, after every backward

pass, the representation x̂xxi enqueues to Mỹi with the oldest one inside removed.

Cluster discrimination. To discover the underlying concepts with unique visual character-

istics, we infer their decision boundaries by reducing the visual redundancy among clusters,

namely maximising the visual similarity of samples within the same clusters and minimising that

between clusters (Figure. 4.2 (c)). Concretely, as the representation of samples with different

pseudo labels are stored independently in the semantic memory bank, they can be taken as an-

chors to describe their corresponding clusters. Given a training sample xxxi, the semantic memory

bank naturally serves as a classifier based on pairwise similarity:

p̃i, j =
∑x̃xx∈M j

exp(cos(xxxi, x̃xx)/τ)

∑
C
j′=1 ∑x̃xx∈M j′

exp(cos(xxxi, x̃xx)/τ)
, (4.15)

where p̃i, j implies the estimated probability that samples xxxi should be assigned to the j-th cluster.

With such potential memberships determined by sample-anchor visual similarities, we formulate

a consistency loss for cluster discrimination (CD):

pppi = Softmax(W>xxxi +B) ∈RC, (4.16)

LCD =
1

nbs

nbs

∑
i=1

C

∑
j=1
−p̃i, jlogpi, j, (4.17)

where {W ;B} is the learnable parameters of classifier fφφφ and nbs denotes the size of mini-batch.

In Eq. (4.17), we aim to minimise the cross-entropy of the distance-based cluster assignments
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p̃ppi and the predictions pppi yielded by the cluster decision boundaries and propagate the gradient

back to pppi only to avoid feature learning from unreliable boundaries. By doing so, samples are

assigned to the cluster with the most similar anchors while each cluster holding its own visual

characteristics that make it different from others and correspond to an underlying semantic class

with consistent and unique visual characteristics.

With the updated classifier fφφφ , we renew the cluster assignments in a maximum likelihood

manner (Eq. 4.1) for semantic memory construction in Eq. (4.14). As the predictions become

increasingly more accurate along training, this update encourages the visual features derived by

cross-cluster instance discrimination to be more aware of cluster-wise visual information.

Remarks. To avoid the learning process collapsing to extremely imbalanced cluster assign-

ments, we adopt the “merge-and-split” strategy (Zhan et al. [215]) to update cluster assignments.

This helps stabilise training. The process merges iteratively each over-small cluster with the

largest cluster, then splits the merged into two new partitions, and repeats until there is no imbal-

anced cluster.

Hard samples mining. To enhance discrimination capacity, we identify semantically ambigu-

ous samples and emphasise them in instance discrimination:

se
i = se−1

i +1[ỹe
i 6= ỹe−1

i ], we
i =

se
i

∑
nbs
j=1 se

j
, (4.18)

LID =
nbs

∑
i=1

we
iLID(IIIi), (4.19)

where we
i is the weights of IIIi at the e-th training epoch. The samples that are frequently swapped

across clusters (i.e., hard samples) are assigned with higher weights for offering more useful

discriminative learning clues.

4.2.3 Model Training

Given the instance (Eq. (4.19)) and cluster (Eq. (4.17)) discrimination losses, the overall training

objective of SCL is:

L= λ1LID +λ2LCD. (4.20)

In general, the two weight parameters λ1 and λ2 in Eq. (4.20) are to balance the significance of

LID andLCD. However, in the absence of labelled validation data in unsupervised clustering, here

we set both weights to 1 to avoid exhaustive per-dataset parameter tunning. The model is trained

by minimising L. To that end, the weights of encoder θθθ as well as the decision boundaries φφφ are
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updated by back-propagation and the momentum encoder θ̂θθ is by θ̂θθ ← ηθ̂θθ +(1−η)θθθ where η

is a momentum coefficient (He et al. [69]). Both objective functions (Eq. (4.19) and Eq. (4.17))

are differentiable thus can be trained end-to-end by the conventional stochastic gradient descent

algorithm. The overall training procedure of SCL is summarised in Algorithm 4.

Algorithm 4: SCL for deep clustering.

Input: Unlabelled data I, training epochs Nep, iterations per epoch Nit, target cluster

number C.

Output: A deep clustering model.

for epoch=1 to Nep do

for iter=1 to Nit do

Generating a random mini-batch of unlabelled data;

Generating two perturbed copies of the mini-batch;

Computing xxx and x̂xx by fθθθ and f
θ̂θθ

, respectively;

Constructing sample-wise contrastive sets X̃ (Eq. (4.14));

Computing the instance discrimination loss (Eq. (4.19));

Constructing distance-based predictions p̃pp (Eq. (4.15));

Feeding xxx into fφφφ to compute ppp (Eq. (4.16));

Computing the cluster discrimination loss (Eq. (4.17));

Updating θθθ and φφφ by back-propagation;

Updating θ̂θθ by momentum;

Updating the semantic memory by x̂xx;

end

Updating assignments (Eq. (4.1));

Updating sample’s weights (Eq. (4.18));

end

4.3 Experiments and Evaluations

4.3.1 Datasets and Metrics

Datasets. Evaluations were conducted on six challenging object recognition benchmarks. (1)

CIFAR-10/CIFAR-100 (Krizhevsky and Hinton [92]): Natural image datasets composed by
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60,000 samples in size 32× 32 that are uniformly drawn from 10(/100) classes. (2) STL-

10 (Coates et al. [33]): An ImageNet adapted dataset consists of 1,300 images from each of

10 classes in size 96× 96. Additional 100,000 samples from unknown classes with no over-

lap with the known categories on training or test sets were deprecated in our experiments. (3)

ImageNet-10/Dogs (Russakovsky et al. [154]): ImageNet subsets containing samples from 10

randomly selected classes or 15 dog breeds. (4) Tiny-ImageNet (Le and Yang [97]): Another

ImageNet subset at large scale with 100,000 samples in size 64× 64 evenly distributed in 200

classes. All the models were trained on the same data in consistent sizes as (Ji et al. [85]) for

fair comparisons. We adopted the clustering setup same as (Ji et al. [85]; Wu et al. [193]; Chang

et al. [20]): Using both the training and test sets (without labels) for CIFAR-10/CIFAR-100 and

STL-10, while only the training set for ImageNet-10, ImageNet-Dogs and Tiny-ImageNet; The

20 super-classes on CIFAR-100 were considered as ground-truth.

Evaluation metrics. We used three standard clustering performance metrics: (a) Accuracy

(ACC) is computed by assigning each cluster with the dominating class label and taking the

average correct classification rate as the final score, (b) Normalised Mutual Information (NMI)

quantifies the normalised mutual dependence between the predicted labels and the ground-truth,

and (c) Adjusted Rand Index (ARI) evaluates the clustering result as a series of decisions and

measures its quality according to how many positive/negative sample pairs are correctly assigned

to the same/different clusters. All of these metrics scale from 0 to 1 and higher values indicate

better performance.

4.3.2 Implementation Details

For fair comparisons, we followed the same practices of (Ji et al. [85]) to adopt a variant of

ResNet-34 for small inputs as the backbone network. Given the different baseline models adopted

in PICA and SCL, their own implementation are provided separately as below.

Partition confidence maximisation. Following (Ji et al. [85]), we used the auxiliary over-

clustering strategy in a separate clustering head to exploit the additional data from irrelevant

classes if available. For the over-clustering head, we set 700 clusters for Tiny-ImageNet (due to

more ground-truth classes) and 70 clusters for all the others. The over-clustering head, discarded

finally in test, was trained alternatively with the primary head. In case of no auxiliary data, we

used the target data in over-clustering head, which plays a role of auxiliary learning. For training,
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we used Adam optimiser (Kingma and Ba [89]) with a fixed learning rate 0.0001. All the models

were randomly initialised and trained with 200 epochs. The regularisation penalties to model

weights were set to be 0. We set the batch size to 256 and repeated each in-batch sample 3 times.

Three operations, including random rescale, horizontal flip and colour jitters, were adopted for

data perturbations and augmentation. We applied the sobel filter for restraining the model from

capturing meaningless patterns of trivial colour cues. The weight of entropy regularisation in

Eq. (4.12) was set to 2 empirically.

Semantic contrastive learning. For SCL training, we followed most the implementation choices

of (Chen et al. [29]). All the models and the cluster assignments are randomly initialised. An

SGD optimiser was adopted for model updates with weight decay in 5e−4. The coefficient for

momentum encoder updating was set to 0.9 and τ in Eq. (4.13) was 0.1. We stored 4096/(C−1)

representations for each cluster in the semantic memory (Eq. (4.14)) on all the datasets except

for 8192/(C− 1) on Tiny-ImageNet due to larger scale. The learning rate was set to 0.03 with

a batch size of 256 and cosine schedule (Loshchilov and Hutter [112]) was used for learning

rate adjustments across 200 training epochs. Besides the target ‘clustering’ tasks which partition

the target data into the ground-truth number of clusters to facilitate comparisons with previous

works, we followed (Ji et al. [85]) to jointly train our model with auxiliary ‘under-clustering’

and ‘over-clustering’ tasks so to explore multi-grained visual similarity. The cluster number in

‘under-clustering’ was half of the ground-truth while sample specificity learning was considered

as extreme ‘over-clustering’. At test time, we used the assignments yielded by the classifier for

‘clustering’ tasks while the other two classifiers were deprecated.

Regardless the different implementations of the two models, we used the same hyper-parameters

in each individual for all the experiments on different benchmark datasets without exhaustive per-

dataset tuning which is unscalable, inconvenient nor unfriendly in deployment.

4.3.3 Comparisons with the State-of-the-Art

Deep Clustering. Table 4.1 compares the proposed PICA and SCL models with 13 state-

of-the-art deep clustering models including both without contrastive learning (DEC (Xie et al.

[200]), DAC (Chang et al. [20]), ADC (Haeusser et al. [63]), DDC (Chang et al. [21]), DCCM (Wu

et al. [193]), IIC (Ji et al. [85]), DCCS (Zhao et al. [226]), GAT (Niu et al. [130])) and with in-

stance contrastive learning (SCAN (Van Gansbeke et al. [181]), IDFD (Tao et al. [175]), CC (Li
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CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet
Model Instance

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 7 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005

DEC∗ 7 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.293 0.122 0.195 0.079 0.115 0.037 0.007

DAC∗ 7 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017

ADC∗ 7 - 0.325 - - 0.160 - - 0.530 - - - - - - - - - -

DDC∗ 7 0.424 0.524 0.329 - - - 0.371 0.489 0.267 0.433 0.577 0.345 - - - - - -

DCCM∗ 7 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182 0.224 0.108 0.038

IIC 7 - 0.617 - - 0.257 - - 0.610 - - - - - - - - - -

DCCS∗ 7 0.569 0.656 0.469 - - - 0.376 0.482 0.262 0.608 0.710 0.555 - - - - - -

GAT∗ 7 0.475 0.610 0.402 0.215 0.281 0.116 0.446 0.583 0.363 0.594 0.739 0.552 0.281 0.322 0.163 - - -

PICA 7 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040

SCAN 3 0.712 0.818 0.665 0.441 0.422 0.267 0.654 0.755 0.590 - - - - - - - - -

IDFD 3 0.711 0.815 0.663 0.426 0.425 0.264 0.643 0.756 0.575 0.898 0.954 0.901 0.546 0.591 0.413 - - -

CC 3 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274 0.340 0.140 0.071

CRLC 3 0.679 0.799 0.634 0.416 0.425 0.263 0.729 0.818 0.682 0.831 0.854 0.759 0.461 0.484 0.297 - - -

SCL 3 0.744 0.813 0.683 0.477 0.482 0.314 0.593 0.638 0.485 0.877 0.930 0.861 0.728 0.763 0.652 0.337 0.172 0.080

Table 4.1: Comparisons with the state-of-the-art methods in deep clustering. The column ‘In-
stance’ indicate whether or not the approaches conducted deep clustering by instance contrastive
learning. Methods with (·)∗ trained without the additional data on STL-10. The 1st/2nd best
results are indicated in red/blue.

et al. [106]), CRLC (Do et al. [39])). We made the following observations:

• Both the PICA and SCL models yielded superior performances on all benchmarks when

being compared with contemporary approaches which are formulated without benefitting

from instance contrastive learning (upper part of Table 4.1). Specifically, PICA surpasses

all the strong competitors in most cases, sometimes by a large margin. Taking ACC for

example, PICA outperforms the second-best competitor on CIFAR-10 and ImageNet-10

with 4.0% and 13.1% respectively while the performance gain over the baseline model (Ji

et al. [85]) on STL-10 is 10.3%. Besides, the overall performance margins obtained by

all instance contrastive learning based deep clustering methods (lower part of Table 4.1),

demonstrate compellingly the benefit of contrastive constraints in unsupervised semantic

concepts inference learning. Falling in this group of methods, our SCL model yielded also

competitive performances on all benchmarks, outperforming the second-best model in four

out of the six datasets, sometimes by a significant margin in some cases.

• For the methods built without relying on the visual features yielded by instance contrastive

learning, DCCM (Wu et al. [193]) serves as a strong competitor on most datasets except

for STL-10, on which it is outperformed by both IIC (Ji et al. [85]) and our PICA by more

significant margins. We attribute this to the capability of exploiting auxiliary data of both
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winner methods. Also, PICA is clearly superior to IIC for clustering the images of STL-

10, suggesting the outstanding potential of our method for capitalising extra data during

deep clustering. However, the auxiliary data (10×) on STL-10 are sampled from the same

distribution as the target data but guaranteed from different classes. Those additional data

are beneficial to learn better representations but were explicitly excluded when training

the target classifier (Li et al. [106]; Do et al. [39]). For the experiments of SCL model, we

avoided using them because it is less practical to have such similar and guaranteed negative

data unless their class labels are available. In this case, SCL’s performance advantages over

the methods learned without additional data are still notable (improved (Niu et al. [130])

by 5.5% w.r.t. clustering accuracy).

• The advantages obtained by PICA over contemporary methods on the more challenging

ImageNet-Dogs (fine-grained) and Tiny-ImageNet (large-scale) benchmarks are relatively

smaller. This is not surprised, since these datasets present higher inter-class similarity

or complexer intra-class variations. By conducting instance-level image discrimination

when learning visual features, the SCL model yielded its unique superiority in these cases,

surpassing the second-best competitor (IDFD (Tao et al. [175]) and CC (Li et al. [106]))

on ImageNet-Dogs and Tiny-ImageNet with 29.1% and 22.9% relative margins.

• Compared to the concurrent attempts on deep clustering by instance contrastive learning

(Van Gansbeke et al. [181]; Tao et al. [175]; Li et al. [106]; Do et al. [39]), the SCL’s

superior performances is due to solving the contradiction between optimising instance

contrastive learning (pull apart) and maximising intra-cluster compactness (push closer)

by satisfying a consistency condition jointly by both objectives.

Representation Learning. Beyond the methods intrinsically designed for clustering (Van Gans-

beke et al. [181]; Tao et al. [175]; Li et al. [106]; Do et al. [39]), we also compared the presented

SCL model with a clustering-based representation learning approach (Caron et al. [15]) and two

general instance contrastive learning schemes: Instance-wise learning (MoCo (Chen et al. [29]))

and local neighbourhood discrimination based learning (PAD introduced in Chapter 3). The

learned feature representations from both models are applied with k-means for clustering. As

shown in Table 4.2 (top), our SCL method outperformed all the representation learning methods

across the board. This shows clearly the advantages of SCL from holistically modelling the in-
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CIFAR-10 CIFAR-100 STL-10
Model

Clustering (ACC)

MoCo 0.528 0.360 0.561

PAD 0.626 0.288 0.465

DeepCluster 0.374 0.189 0.334

SCL 0.813 0.482 0.638

kNN classification

MoCo 0.853 0.713 0.772

SCL 0.871 0.721 0.712

Table 4.2: Comparisons to representation learning methods in deep clustering. Results of MoCo
were reproduced from scratch using the authors’ code (Chen et al. [29]) and that of DeepCluster
are from (Ji et al. [85]).

herent class structure, resulting in also a more optimal representation, as compared to separating

representation learning from class membership estimation.

In addition to clustering, we further evaluated the generalisation ability of the image features

derived by our SCL model and that of MoCo (He et al. [69]; Chen et al. [29]) in Table 4.2 (bot-

tom). Specifically, we followed (Wu et al. [195]; He et al. [69]) to classify the unseen test images

according to their k-nearest neighbours in the training set with a ResNet18 as backbone. Our

competitive performance demonstrates the potential of learning generalisable visual features by

exploring inherent class memberships without manual labels. Figure 4.3 further shows visual ex-

amples of cluster assignments made by instance contrastive learning (MoCo) and SCL, together

with their corresponding confidence scores. It is evident that the class decision boundaries es-

timated by instance contrastive learning are not as separable as those by SCL, with the former

giving nearly uniform predictions in many cases similar to the two examples shown. Moreover,

such partitions became even less accurate when there are visual overlaps between semantic con-

cepts, common in practice e.g. airship and ship. In contrast, SCL yielded consistently reliable

and confident predictions by optimising jointly cross-cluster instance contrastive property and

cluster compactness condition. This demonstrates the benefit of modelling explicitly underlying

global class structures, which is the essence of SCL.
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Figure 4.3: Visualisations of sample’s cluster assignment and confidence scores yielded by
Instance vs. Semantic contrastive learning on ImageNet-10.

4.3.4 Component Analysis of PICA

We conducted ablation studies to investigate the effect of different design choices in PICA.

Partition confidence dynamics. We started with examining the clustering confidence dynam-

ics during training, which underpins the key idea of our PICA. In this examination, we used the

maximum prediction probability (Eq. (4.1)) of every image to measure the clustering confidence,

and summarised their 50-bins histogram statistics. We performed this test on CIFAR-10 at four

accuracy performance milestones: 0.10 (random guess), 0.30, 0.50 and 0.70. As shown in Fig-
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Figure 4.4: Partition confidence evolution of PICA in training on CIFAR-10. The probability
range [0,1] is uniformly divided into 50 bins and the number of samples whose maximal predic-
tion value is falling in each interval is counted.

ure 4.4, (a) the model started with random clustering close to a uniform prediction; (b,c) Along

with the training process, an increasing number of samples get more confident cluster assign-

ment; (d) At the end of training, a majority of samples can be assigned into clusters with 0.98+

probability confidence, nearly one-hot predictions.
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Avoiding under-clustering. We examined how important PICA needs to solve the generic

“under-clustering” problem (assigning most samples to a few clusters, i.e., trivial solutions) in

our context. The results in Table 4.3 indicate that it is highly necessary to take into account this

problem in model design otherwise the model will be trivially guided to such undesired solutions.

This also verifies that the proposed PICA idea is compatible well with the entropy regularisation

of the cluster size distribution (Eq. (4.11)), enabling to eliminate simply trivial results without

resorting to complex designs or tricks.

Entropy CIFAR-10 CIFAR-100 ImageNet-10

7 0.246 0.168 0.650

3 0.696 0.330 0.829

Table 4.3: Effects of avoiding under-clustering using the entropy regularisation of the cluster size
distribution. Clustering accuracies are reported.

Effect of over-clustering. We examined the performance contribution of over-clustering in

PICA which serves two purposes: (1) Leveraging extra auxiliary data from irrelevant classes for

mining more information (e.g. on STL-10); (2) In case of no auxiliary data, playing a role of

ensemble learning (e.g. on CIFAR-10). The results are given in Table 4.4. It is clear that over-

clustering helps in both cases, and interestingly the margin on CIFAR-10 is even bigger than that

on STL-10. Also note that without using over-clustering, our PICA can still achieve competitive

performances (cf . Table 4.1).

Over-clustering CIFAR-10 STL-10

7 0.582 0.633

3 0.696 0.687

Table 4.4: Effects of over-clustering in PICA. STL-10 has auxiliary data whilst CIFAR-10 does
not. Clustering accuracies are reported for comparison.

Robustness to data perturbation. We tested the clustering robustness against image transfor-

mations used for perturbing data distributions in PICA. Unlike existing methods typically using

data augmentation by random perturbation at the local sample level, we exploit it at the global

clustering solution level. The results in Table 4.5 show that our PICA requires data augmentation

for offering strong performances. While seemingly surprised, this is also rational/sensitive since
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our method performs the robustness enhance in a solution-wise manner; This effectively accumu-

late the augmentation effect of individual samples and potentially resulting in amplified effects

eventually. However, this does not affect the use of PICA in general since data augmentation is

just a standard necessary element of almost all deep learning methods.

Perturbation CIFAR-10 CIFAR-100 ImageNet-10

7 0.310 0.147 0.734

3 0.696 0.330 0.829

Table 4.5: PICA’s clustering robustness to data perturbation. The model trained without pertur-
bations computes the matching matrix by the cosine similarities between the ASV determined by
the original batch (without perturbation) only. Clustering accuracies are reported.

4.3.5 Component Analysis of SCL

Detailed ablation studies were conducted for in-depth analysis of SCL. k-means was adopted for

models which did not yield desired number of clusters. Experimental results were averaged over

multiple trials.

Instance and cluster discrimination. We investigated the independent contributions of our

cross-cluster Instance Discrimination and online Cluster Discrimination designs in the SCL

model. We took the MoCo as the baseline without both the ID and CD components. For models

trained without cross-cluster ID, all the memory banks were concatenated as the contrastive set

for every sample (Eq. (4.14)), whilst the cluster assignments p̃pp yielded by the semantic mem-

ory (Eq. (4.15)) was used for pseudo labels updating if learned without online CD. As shown in

Figure 4.5, the models trained without cross-cluster ID or online CD can always surpass MoCo

with remarkable margins, which demonstrates their effectiveness as individual components. By

jointly learning with both, SCL always produced superior performances which indicates the mu-

tual benefits of representation learning and decision boundaries reasoning.

Effects of cluster number. Jointly learning from multiple clustering tasks has been validated

to be beneficial to deep clustering (Ji et al. [85]). Whilst there is no universal principle to deter-

mine the proper cluster number, we considered that the unlabelled images can be grouped in three

different possibilities: fewer, equal or more clusters than the true number of classes (unknown).

Specifically, we took instance-wise discrimination as the extreme case of ‘over-clustering’ and
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Figure 4.5: Ablation studies of cross-cluster Instance Discrimination and online Cluster Dis-
crimination designs. Instance contrastive learning is trained with neither component.

halved the ground-truth numbers in ‘under-clustering’. The SCL model was jointly learned with

all these three tasks. Figure 4.6 shows that all the models trained with consideration of cluster

assignments can better learn the ground-truth memberships than instance contrastive learning,

which again indicates the defects of learning sample-specific representations on high-level se-

mantic understanding of visual data. The SCL model explored multi-grained visual similarity

which avoids it being misled by hard negative samples that are semantically different but visu-

ally similar in certain parts, and yielded the best results in all cases.
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Figure 4.6: Effect of learning with different cluster numbers. The cluster numbers in over-,
under- and clustering tasks are larger, smaller and equal to the ground-truth. SCL trains with all.

Hard sample mining. To emphasise the hard samples in model learning, we re-weighted the

samples within the same mini-batches according to their assignment stability (Eq. (4.18)). To

study the effectiveness of this design, we replaced it by averaging their losses as in conventional

batch-wise training. According to Figure 4.7, the learned clusters show higher consistency with

the ground-truth classes when training with the re-weighting strategy. This demonstrates the

importance of paying more attention to hard samples with ambiguous semantic meanings so to

further improve the model’s class discrimination capability.
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Figure 4.7: An ablation study on the hard sample mining strategy in SCL.

4.3.6 Visualisation and Qualitative Study

Evolution of cluster assignment. To provide a better understanding of how does the presented

models work, we analysed the PICA model qualitatively by visualising the evolution of cluster

assignment across the whole training process. This enables us to find out how does our model

gradually attain the final result. We tracked the model status during the whole training process on

CIFAR-10 and evaluated at four accuracy performance milestones: 0.10 (random guess), 0.30,

0.50 and 0.70. Using t-SNE (Maaten and Hinton [116]), we plotted the predictions of 6,000

randomly selected samples with the ground-truth classes colour encoded. Figure 4.8 shows that,

(a) the model started from a chaotic status where all the samples were assigned into each cluster

with similar probabilities; (b) With the supervision from the proposed objective, easy samples

with most salient observations were separated gradually while the remaining were still indecisive;

(c) As the training proceeded, easy samples served as references for the others and attracted those

with high visual similarities; (d) Finally, the model converged to a stable clustering solution

which separated samples from different classes with some confusion around decision boundaries.
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Figure 4.8: Prediction dynamics of PICA across the training process on CIFAR-10. A total of
6,000 randomly sampled images were used. Ground-truth classes are colour coded.
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Visual case examples. For qualitative study about SCL, we investigated the success and failure

cases of cluster assignments predicted by it to offer extra insights into the model. Two types of

cases were studied on ImageNet-10. Samples with the largest probability to be assigned into

their corresponding cluster are shown in Figure 4.9 (a) cluster-wise ‘confident’ cases: From left-

to-right, the left-most sample in the first row of Figure 4.9 (a) holds the highest probability to be

assigned into that cluster (row) than others predicted to be in the same row (cluster). Figure 4.9

(b) shows the least confident samples of each cluster (row) from left-to-right. By comparing

the ‘confident’ and ‘unconfident’ cases, it is evident that the assignment confidence yielded by

the SCL model is closely aligned to the correctness of predictions, i.e., samples with confident

assignment are more likely to be assigned into the correct clusters. It means that the semantic

concept encoded in our learned clusters are consistent with the ground-truth categories, which

demonstrates the remarkable capability of the SCL model on exploring the high-level semantic

meanings of unlabelled imagery data. Moreover, by examining the failed ‘confident’ cases, SCL

suffers similarly as supervised learning classifiers such that it is prone to make incorrect predic-

tions when the most discriminative elements (parts) of objects are missing, e.g. airliners were

mistaken as airships when the empennage was invisible. From the examples of the ‘unconfident’

cases (but still succeeded in being clustered correctly), they demonstrate SCL’s robustness to

distractions even when only a small part of target objects are visible as long as they reveal suffi-

cient discriminative information. Most of the failed cases share some common background visual

characteristics away from the target objects. This suggests that it remains a challenging problem

for unsupervised learning methods to always focus on the more salient and relevant content.

(a) Confident cases (b) Unconfident cases

Figure 4.9: Case-study examples of SCL from ImageNet-10. (a) Top-8 samples with the highest
predicted probabilities to each class are shown in the order of more-to-less ‘confident’ cases from
left-to-right, and (b) bottom-8 samples with the lowest probabilities (left-to-right) are ‘unconfi-
dent’ cases. Samples in green boxes are successfully assigned into the correct classes while those
with red boxes are failed cases.
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4.4 Summary

In this chapter, we proposed two new methods for jointly learning class discriminative visual

representations and the global decision boundaries of clusters by addressing the two common

challenges in deep clustering including lacking semantic plausibility and error-propagation from

unreliable pseudo labels to feature learning. Specifically, we introduced a novel idea of learning

the most promising and semantically plausible clustering solution from the partition confidence

perspective, and formulated an elegant objective loss function based on a partition uncertainty

index. The PICA model extends the idea of maximal margin clustering used in previous shal-

low models to the stronger deep learning paradigm with significant loss function formulation. It

can be introduced in standard deep network models and end-to-end trainable without bells and

whistles. Besides, a new Semantic Contrastive Learning method is presented which addresses

the fundamental limitation of instance contrastive learning by imposing the cluster structure into

the unlabelled training data so to jointly learn discriminative visual feature representations and

reason about cluster decision boundaries while avoiding the inherent contradiction between their

learning objectives. With the design of class-agnostic instance discrimination, our SCL model

learns visual features with high robustness to temporal (intermediate) cluster assignments in the

course of model training, which mitigates the common error-propagation problem of contempo-

rary deep clustering techniques. Extensive experiments on six challenging datasets demonstrated

the performance superiority of both the proposed methods (PICA and SCL) over a wide range

of the state-of-the-art deep clustering as well as generic representation learning approaches on

deriving class discriminative feature representations and their underlying semantic class mem-

berships.
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Chapter 5

Transferring Knowledge from Relevant Labels

with Self-supervised Remedy

This chapter investigates knowledge transfer from a relevant source data domain with manually

defined category labels to an unlabelled target domain for visual object recognition, i.e. transfer

clustering (Han et al. [65]). Given Ns image-label pairs {IIIs,ys}Ns

i=1 drawn from a source label

space Ys = {1,2, · · · ,Cs} and Nt target images {IIIt}Nt

i=1 from Y t = {1,2, · · · ,Ct} where Y t 6= Ys.

In transfer clustering, no class label is annotated on target images. The objective is to jointly

learn a feature representation of target samples fθθθ : IIIt → xxxv and the probabilities that they belong

to each of Ct clusters fφφφ : xxxv → ppp so that the target samples of the same class labels (unseen)

are more likely to be allocated into the same partitions. Due to the absence of labelling in the

target domain, the target distribution is agnostic, so as the discrepancy between it and the source

distribution. It is therefore necessary to consider not only an effective way for source domain

knowledge transfer in target sample clustering, but also how to identify and deal with those

target samples having insufficient (weak or ambiguous) support from the source domain prior-

knowledge. This is intrinsically challenging as the arbitrarily complex appearance patterns and

variations exhibited in the imagery data usually lead to intricate relationships between source

domain and target domain distributions.

This chapter is structured as follows: Section 5.1 provides an overview of the proposed

method; Section 5.2 introduce the formulation of benefiting knowledge transfer by self-supervision

in the cluster analysis; Section 5.3 elaborate the optimisation/training details of the model; Sec-
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tion 5.4 exhibits the validation results by extensive experiments on both small and large-scale

natural objects datasets and Section 5.5 summaries the chapter.

Confusing area

Target Samples Transferred supervision Self-supervision

(b)

(a) Truncation

(d)

(b) Selection (c) SUPREME

Figure 5.1: An illustration of strategies dealing with ambiguous transferred supervision. (a)
Truncating ambiguous transferred supervision to make them determined. (b) Neglecting uncon-
fident transferred supervision. (c) Complementing transferred supervision with self-supervision.

5.1 Approach Overview

For effective knowledge transfer across domains while mitigating the negative impacts of the

non-transferable prior caused by distribution shift or class discrepancy, the proposed SUPREME

method shares the spirit of auxiliary learning to train a model jointly by transferred knowledge

and self-supervision constructed by the information intrinsically available in the unlabelled target

domains. Comparing with existing knowledge transfer strategy, the SUPREME method holds its

own advantages as below:

• The SUPREME model is more robust to unreliable transferred supervision. One straight-

forward solution to deal with ambiguous supervisions is “truncate” them to convert manda-

torily to be determined (Figure 5.1 (a)), e.g. converting the assignment probabilities (soft-

labels) decided by cluster analysis on the pre-learned feature space to pseudo hard la-

bels according to the most confident assignments. However, this can be error-prone and

rather arbitrary. The SUPREME model considers it is more consistent to replace those

unreliable supervisions by the intrinsic information encoded in the target data, i.e. self-

supervision (Figure 5.1 (c)). Although self-supervision is usually less complete than the

prior-knowledge acquired from human annotations (Hsu et al. [79, 80]), it can minimise

the misleading effect of applying non-transferable knowledge to the target domain.

• The SUPREME model is more informative when learning on hard target samples that

yielding ambiguous transferred supervisions. Rather than truncating the uncertain super-

visions, another intuitive idea is to selectively learn from the (easy) samples on which the

transferred knowledge is applicable while neglecting the “hard” ones (Xie et al. [200]; Han
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et al. [64]), which tends to introduce bias in model training and result in less discriminative

feature space (Figure 5.1 (b)).

Source data
Source boundary
Target data
Soft-constraint (Strong to weak)

Self-supervision
Perturbed Target data

Target boundary
(a) Prior-knowledge (b) Soft Constraint (c) Self-supervision (d) Ultimate Model

Source
images

Target
images

Perturbed
Target
images

Initial cluster

Figure 5.2: An overview of the proposed self-SUPervised REMEdy method.

An overview of the proposed self-SUPervised REMEdy model is shown in Figure 5.2. We first

acquire the prior-knowledge from a source domain by learning a discriminative representational

space to classify source images according to their manual category labels (Figure 5.2 (a)). k-

means is then applied upon the resulted feature space to construct a soft constraint between

each pair of target samples, whose confidence is measured by introducing a novel joint-entropy

based metric (Figure 5.2 (b)). Self-supervision on model’s invariance to image distortions is then

introduced to make up for the ambiguous transferred supervisions (Figure 5.2 (c)). By jointly

trained with both supervisions, our model finally learns a discriminative latent space and the

decision boundaries for the target data (Figure 5.2 (d)).

5.2 Self-supervision in Transfer Clustering

We start from the construction of initial data partitions with the help of a model pretrained on a

source domain for transferring prior-knowledge. Given a model f
θ̃θθ

which is pretrained in super-

vised manner on source data {IIIs,ys}Ns

i=1, transfer learning assumes that there is some transferable

common knowledge shared by the source and target domains, and some non-transferable specific

knowledge to the source. To start, we yield an initial representation of target images IIIt by feed-

ing them into the pre-learned model: x̃xxt = f
θ̃θθ
(IIIt). An initial clustering solution of x̃xxt is computed

by any standard technique (e.g. k-means). By separating x̃xxt into Ct groups, we assumed that

all the prior-knowledge of the source domain are applicable to the target domain by this initial

clustering solution. This is not always true. To overcome this problem, we then formulate the

transfer clustering as a constrained clustering task in which the constraints are formed by pair-
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wise similarities between target samples determined by their initial assignment. The constraints

are then weighted by their confidence estimated by the concentration degree (entropy) of their

prior assignment probability distribution.

Construction of transferred supervision. Given the representations x̃xxt and the Ct clusters

centroid {ccci}Ct

i=1, we measure the probability p̃pp(ccc j|IIIt
i) that sample IIIt

i belongs to cluster ccc j by

computing a student’s t-distribution (Xie et al. [200]):

p̃pp(ccc j|IIIt
i) =

(1+‖x̃xxt
i− ccc j‖2/α)−(α+1)/2

∑
Ct

k=1(1+‖x̃xxt
i− ccck‖2/α)−(α+1)/2

(5.1)

The parameter α in Eq. (5.1) is the freedom of student’s t-distribution and is set to 1 in our

implementation. We denote p̃pp(ccc j|IIIt
i) by p̃ppi, j for brevity. With the initial assignment probabilities,

we then estimate how likely two target samples are from the same class by the inner product

between their initial distributions:

r̃i, j = p̃pp>i · p̃pp j =
Ct

∑
k=1

p̃i,k · p̃ j,k (5.2)

The joint probabilities of sample pairs r̃i, j reaches its maximum r̃→ 1 only when two target sam-

ples are both close to the same cluster’s centroid. In which case, they are considered “confidently

positive”. Otherwise, the pairwise relation is either ambiguous (neither samples is close to any

cluster centroid) or “confidently negative” (two samples are close to different cluster centroids),

resulting in the positive probability between them becomes the minimum r̃→ 0. To construct the

transferred supervision signals, we then train a CNN model with soft constraints to encourage

target pairs with large r̃i, j to be assigned into the same groups by a binary cross entropy loss

(BCE):

LBCE(i, j) = r̃i, jlogri, j +(1− r̃i, j)log(1− ri, j), (5.3)

where n is the mini-batch size and ri, j = ∑
Ct

k=1 pi,k · p j,k is the up-to-date positive probability of

the sample pair consisting of IIIt
i and IIIt

j and is computed by {pppi, ppp j}= fφφφ ( fθθθ ({IIIt
i, III

t
j})).

Constraint weighting. In the formulation of LBCE (Eq. (5.3)), ambiguous and confidently neg-

ative sample pairs hold similar low probabilities to be assigned into the same clusters. However,

comparing with the latter, samples of ambiguous pairs are more likely positive. It means that the

prior-knowledge transferred to the confidently negative pairs are more reliable than that to the

ambiguous pairs. Instead of learning from all the prior in equal importance, the model should be

encouraged to focus on the transferable knowledge. To that end, we assume that target samples
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near the initial cluster centroids are able to form confident pairwise relations while those close

to the decision boundaries cannot. Subsequently, we quantify the confidence of the pairwise

relations by the joint entropy of initial assignment distributions:

H(IIIt
i, III

t
j) =−

Ct

∑
k=1

Ct

∑
k′=1

p̃i,k p̃ j,k′ logp̃i,k p̃ j,k′ ,

Hmax = log(Ct)2,

wi, j =
exp((Hmax−H(IIIt

i, III
t
j)/(Hmax · τ))

∑
n
i′, j′ exp((Hmax−H(IIIt

i′ , III
t
j′))/(Hmax · τ)

,

(5.4)

where τ is the temperature that controls the concentration of the confidence distribution; H(IIIt
i, III

t
j)

is the joint entropy of p̃ppi and p̃pp j; wi, j is the normalised confidence of constraint r̃i, j. The overall

penalty of a mini-batch will then be determined by the weighted sum instead of the average of

Eq. (5.3):

Lclu =−
nbs

∑
i=1

nbs

∑
j=1

wi, jLBCE(i, j). (5.5)

The weighting strategy measures the reliability of prior-knowledge from the source domain in

terms of different target samples, which mitigates the misleading effects caused by applying

non-transferable prior to target domain.

Self-supervision information source. As determined by the cost function Lclu (Eq. (5.5)),

samples falling into an ambiguous area of the initial feature space (e.g. those with similar dis-

tances to multiple cluster centroids) make necessarily less contribution to knowledge transfer as

they are given smaller weights. On the other hand, those samples can play a significant role in

learning a more discriminative feature space in the target domain. Due to the absence of ground-

truth labels and the ineffectiveness of source domain prior-knowledge on these “hard” samples,

the information we can leverage instead for additional supervision on model learning are intrin-

sic characteristics of those “hard” target images. Inspired by recent unsupervised learning ideas,

we formulate our self-supervision signals based on the idea to maximise model’s invariance to

trivial visual distortions (Wu et al. [195]; Ji et al. [85]; He et al. [69]) to impose guaranteed pos-

itive inter-sample relationships in model training. By training the model to produce one-hot and

identical predictions for each unlabelled images and its randomly perturbed copies, we encour-

age a determined clustering function which yields concentrated prediction distributions and is

capable of finding the common that is invariant to spatio or non-material distortions so to model

the intra-class discrepancy without manual label.
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To form the self-supervised constraints to complement ambiguous transferred supervisions,

we apply a random set of image transformations T (·) on the original raw imagery data, then

compute the positive probability ri, j in Eq. (5.5) according to the assignment distribution of

sample IIIt
i and that of T (IIIt

j): ri, j = ∑
Ct

k=1 pi,k · T (p j,k) where T (p j) = fφφφ ( fθθθ (T (IIIt
j))). We then

set r̃i,i = wi,i = 1∀i ∈ [1,n] so that “hard” samples with ambiguous transferred supervision (small

w) will be supervised mostly by the self-supervision to produce persistent assignments for them

and their transformed copies. In this way, the two supervisions are integrated harmoniously.

5.3 Model Training

Beyond the self-supervised knowledge alignment objective Lclu (Eq. (5.5)), our model is also

trained with several regularisations to refrain from degenerated solutions. The overall training

objective is thereby to minimise the weighted sum of Lclu and all the regularisation terms.

Avoiding extremely imbalanced clusters. The training objective of cluster analysis encour-

ages the maximisation of intra-cluster compactness and inter-cluster diversity, hence, the model

can possibly collapse by assigning all the samples into one single cluster. To refrain from this,

we introduce a balance regularisation on cluster size:

Lbalance = logCt −
Ct

∑
k=1

zklogzk, zk =
1

nbs

nbs

∑
i=1

pi,k (5.6)

where zk is the approximated size of the k-th cluster and the maximal entropy logCt is added to

ensure positive regularisation values. We train the model to minimise the negative entropy of the

approximated cluster size distribution so as to avoid extremely imbalanced distributions.

Pseudo attributes representational space. Given that the target and source recognition tasks

are composed of different classes, the feature distributions in the target domain can not be learned

by aligning with the source distribution based on the shared label space as in UDA (Ganin and

Lempitsky [49]). Therefore, several approaches have been proposed to bridge models across

domains and label spaces by modelling attributes (Fu et al. [48]; Rastegari et al. [146]). These

approaches share a similar assumption as zero-shot learning that recognition in different relevant

domains should be performable in a common attribute space (Chang et al. [22]). Motivated

by this, given the visual feature xxxv of sample III from either domains, we project it to the latent

factor space produced by a linear layer fωωω and activate it by the non-linear Sigmoid function
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xxxa = σ( fωωω(xxxv)). An element-wise binary regularisation is then applied on the factor space:

Lattr =−
1

nbs×D

nbs

∑
i=1

D

∑
j=1

xa
i, jlogxa

i, j +(1− xa
i, j)log(1− xa

i, j), (5.7)

where D is the dimension of the attribute representation xxxa
i ∈ RD. The binary regularisation

attains its minimum Lattr→ 0 when xa
i, j ∈ {0,1} ∀ j ∈ [1,D]. Afterwards, xxxa will be fed into the

domain-specific classifier to predict the assignment distribution. The prediction of target samples

is supervised by our proposed objective function (Eq. (5.5)) while that of source data is by the

conventional cross-entropy loss with the provided labels on source domain:

Lxent =−
1

nbs

nbs

∑
i=1

Cs

∑
j=1

1[ j = ys
i ]logpi, j. (5.8)

The 1[·] denotes the indicator function which equals to 1 iff j is the ground-truth label ys
i , other-

wise 0. Although our ultimate goal is on target domain, jointly training with the classification

task on source domain can also be taken as a multitasks regularisation to avoid learning triv-

ial representation as well as the well-known catastrophic forgetting problem in transfer learn-

ing (Goodfellow et al. [59]).

5.4 Experiments and Evaluations

5.4.1 Datasets, Protocols and Metrics.

Datasets. Evaluations of the proposed SUPREME method were conducted on 10 benchmarks.

CIFAR-10 (/CIFAR-100) (Krizhevsky and Hinton [92]): An imagery dataset containing 50,000/

10,000 training and testing data drawn from 10(/100) classes uniformly. SVHN (Netzer et al.

[125]): The Street View House Numbers dataset includes 73,257/26,032 train/test images lying

in 10 digit classes 0 ∼ 9. ImageNet (Russakovsky et al. [154]): A large scale imagery dataset

with over 1.2 million images from 1,000 classes. CUB (Welinder et al. [192]): Caltech-UCSD-

Birds contains 11,788 images from 200 breeds of birds with 312 binary attributes annotations.

FLO (Nilsback and Zisserman [129]): Oxford Flower dataset gathers images from 102 flower

categories with each class consisting of between 40 and 258 instances. SUN (Patterson and Hays

[136]): SUN Attribute is another common fine-grained datasets used in ZSL with 14,303 images

included. AwA2 (Xian et al. [196]): Animals with Attributes2 consists of 37,322 images of 50

animals classes with 85 numeric attributes for each class. Mini-ImageNet (Ravi and Larochelle

[147]): An Imagenet adapted dataset containing 100 classes with 600 samples in each category.
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Following (Ren et al. [149]), 64/16/20 classes are selected as base/validation/query set, respec-

tively. We adopted the base set as the source domain and the query set as the target one. Tiered-

ImageNet (Ren et al. [149]): Another subset of ImageNet which is larger than Mini-ImageNet

and its categories are selected with hierarchical structure so that the base and query classes are

disjointed semantically. The base set is composed by 351 classes from 20 super-categories while

the validation set contains 97 classes and 160 for the query set. Similarly, the base and query set

are taken as the source and target domain respectively under the transfer clustering setting. Data

examples from each datasets are shown in Figure 5.3.

CIFAR-10/100 SVHN AwA2

CUB FLO SUN

ImageNet

Figure 5.3: Examples of datasets used in transfer clustering.

Protocols. To transfer knowledge across domains in an unsupervised manner, we assumed that

human annotations were only available on source domains and took the number of target classes

as the only prior. We aimed to provide a generic solution to unsupervised transfer learning with

fewer assumptions than most of the existing settings. To that end, in addition to comparing with

transfer clustering techniques following the same setups as (Han et al. [64]), we further evaluated

the effectiveness of SUPREME on FSL and ZSL benchmarks. Note, SUPREME did not utilise

any word-vector embedding space knowledge on either the source or the target class labels nor

sample-wise manual label on target domain as compared to the ZSL and FSL methods. We

followed the settings as in (Xian et al. [198]) and (Ren et al. [149]) for ZSL and FSL, respectively.

Moreover, there are two different training schemes commonly adopted in ZSL and FSL denoted

as ‘transductive’ and ‘inductive’. Their main difference is that additional unlabelled data in

target domains is available and used for model training in the transductive scheme while not in

the inductive one. We compared the proposed SUPREME model with contemporary methods
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designed for both the schemes.

Evaluation metrics. We adopted two standard metrics in cluster analysis for evaluation: (a)

Clustering Accuracy is determined by the percentage of target samples that are assigned into the

cluster which is matched with the correct ground-truth class by the Hungarian algorithms (Kuhn

[94]). (b) Normalised Mutual Information quantifies the normalised mutual dependence between

the predicted assignments and the ground-truth memberships. Both of these metrics are falling

within the range of [0,1] and higher values indicate better performances. In FSL/ZSL tasks,

we reported clustering accuracy to be compared with the classification accuracy yielded by the

competitors, both of which reveal the model’s discrimination ability and are within the same

scale.

5.4.2 Implementation Details

We used the same network architectures as the ones adopted by (Han et al. [64]) as well as

the corresponding model weights pretrained on source domains provided by them on the transfer

clustering evaluation and the ImageNet pretrained ResNet101 (Chao et al. [23]) in ZSL to be con-

sistent with (Xian et al. [198]). In FSL, we followed (Wang et al. [190]) to use ResNet12 as our

backbone and adopted their provided pretrained model weights. The Adam algorithm (Kingma

and Ba [89]) is adopted for model training with a fixed learning rate (1e−3). The image transfor-

mations used for data perturbation include random rescale and random horizontal flip, which are

also adopted by (Han et al. [64]). All the main results are averaged over 10 runs while the ones

from ImageNet are averaged over 3 runs with different data splits following (Han et al. [64]; Hsu

et al. [79, 80]).

5.4.3 Comparisons with the State-of-the-Art

Transfer Clustering. We first evaluated SUPREME’s effectiveness on clustering unlabelled

data with the help of prior-knowledge from source domains by comparing with seven state-of-

the-art transfer clustering models including LPNMF (Cai et al. [14]), LSC (Chen and Cai [28]),

KCL (Hsu et al. [79]), MCL (Hsu et al. [80]), DEC (Xie et al. [200]), DTC (Han et al. [64])

and AutoNovel (Han et al. [65]) as well as the baseline which applies k-means on the feature

space pre-learned in source domains. Results in Table 5.1 show that: (1) Most of the unsuper-

vised transfer clustering methods yielded superior performances than the k-means baseline. As a

cross-domain deployment solution, k-means generally applies the knowledge acquired from one
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CIFAR-10 CIFAR-100 SVHN ImageNet
Method

ACC NMI ACC NMI ACC NMI ACC NMI

K-means 0.655 0.422 0.622 0.555 0.426 0.182 0.719 0.713

LPNMF - - - - - - 0.430 0.526

LSC - - - - - - 0.733 0.733

KCL 0.665 0.438 0.274 0.151 0.214 0.001 0.738 0.750

MCL 0.642 0.398 0.327 0.202 0.386 0.138 0.744 0.762

DEC 0.749 0.572 0.721 0.630 0.576 0.348 0.784 0.790

DTC 0.875 0.735 0.728 0.634 0.609 0.419 0.784 0.791

AutoNovel∗ 0.917 - 0.752 - 0.952 - 0.825 -

SUPREME 0.914 0.794 0.758 0.663 0.808 0.606 0.795 0.778

SUPREME∗ 0.920 0.810 0.794 0.716 0.864 0.715 0.795 0.778

Table 5.1: Comparisons with the state-of-the-art methods in transfer clustering. The 1st/2nd best
results were marked in red/blue. Methods with (·)∗ used self-supervised representation learning
for fine-tuning with the unlabelled target data on CIFAR-10, CIFAR-100 and SVHN. Results of
previous methods were adopted from (Han et al. [64, 65]).

domain to another without any selection or adaptation. Its disadvantages demonstrate the neces-

sity of dealing with distribution shift/discrepancy. (2) The proposed SUPREME method was on

par with all the competitors on most datasets. This suggests the effectiveness of our auxiliary

learning design, which leverages the self-supervision to fill in the gap where prior-knowledge is

not transferable. (3) The advantages of SUPREME on ImageNet was weaker than that on oth-

ers. While seemingly surprised, this is also rational due to the between/within classes variations

are modelled by geometry transformations or colour perturbations applied to input data, which

is intrinsically restricted comparing with the complex and diverse image variations exhibited in

such a larger scale dataset. Nevertheless, this doesn’t degrade the contribution of our key idea

of complementing source domain transferred knowledge with target domain self-supervision. It

encourages exploiting more fully on larger scale data. (4) As an ad-hoc training strategy, self-

supervised pretraining with unlabelled data from both domains brought significant help to the

knowledge transfer. This is credited to the narrowed gap between the distribution learned by

pretrained model and that of the target domain.
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Mini-ImageNet Tiered-ImageNet
Protocol Method

1-shot 5-shot 1-shot 5-shot

TapNet 0.617 0.764 0.631 0.803

CTM† 0.641 0.805 0.684 0.843Inductive

MetaOpNet 0.641 0.800 0.658 0.818

TPN 0.595 0.757 0.587 0.743

TEAM∗ 0.601 0.759 - -

LR+ICI 0.668 0.793 0.808 0.879

SVM+ICI 0.658 0.789 0.806 0.879

Transductive

SUPREME 0.853 0.803

Table 5.2: Comparisons with the state-of-the-art methods in few-shot learning. Methods with
(·)† adopted ResNet18 as backbone with input size 224× 224, while (·)∗ used ResNet18 with
84× 84. The rest methods used ResNet12 with 84× 84 as in (Wang et al. [190]). Results of
previous works are from (Wang et al. [190]).

Few-Shot Learning. In addition to transfer clustering, we also compared the proposed SUPREME

method on a downstream transfer learning task, Few-shot learning. We compared SUPREME

with TapNet (Yoon et al. [210]), CTM (Li et al. [104]), MetaOpNet (Lee et al. [101]), TPN (Liu

et al. [109]), TEAM (Qiao et al. [142]) and ICI (Wang et al. [190]) on two challenging FSL

benchmarks. As shown in Table 5.2, the performance advantages achieved by the transductive

methods over the inductive ones were marginal due to the limited amount of unlabelled target

samples (15 samples per class) that were available for the transductive approaches under the

meta-learning-based evaluation protocol. Even though SUPREME made use of none human an-

notation in target domains, it yielded superior performance in most of the cases even when being

compared with FSL methods trained with 5 labelled samples per target category (5-shot). The

superiority achieved by SUPREME demonstrates that it is possible to effectively transfer knowl-

edge across domains without human annotation and the transferred model should is potential to

benefit FSL by further trained with the task-specific assumption, i.e. label of target samples.

To study the effect of unlabelled target data amount to our model’s discrimination ability, we

varied it from 15 (same as in FSL) to 600 (maximal on Mini-Imagenet) and reported the clustering

accuracy. As shown in Figure 5.4, the more visual information we can use in model training, the
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better our model will be. Besides, even when we use the same amount of unlabelled target data as

FSL approaches, our model can still produce competitive results. Although the transfer clustering

setting makes use of the whole unlabelled target set to learn the data partitions, considering the

high cost of human annotation, SUPREME should not be less applicable than FSL methods in

real-world scenarios by requiring no manual label.
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Figure 5.4: Effect of unlabelled target domain size to model discrimination ability. We randomly
sampled variant amount {15, 50, 100, 300, 600} of data from each of the 5 target categories and
report the clustering accuracy.

Protocol Method CUB FLO SUN AWA2

ALE 0.549 0.485 0.581 0.599

CLSWGAN 0.573 0.672 0.608 0.682

SE-GZSL 0.596 - 0.634 0.692

Cycle-CLSWGAN 0.586 0.703 0.599 0.668

Inductive

F-VAEGAN-D2 0.610 0.677 0.647 0.711

ALE-tran 0.545 0.483 0.557 0.707

GFZSL 0.500 0.854 0.640 0.786

DSRL 0.487 0.577 0.568 0.728

UE-finetune 0.721 - 0.583 0.797

F-VAEGAN-D2 0.711 0.891 0.701 0.898

Transductive

SUPREME 0.686 0.690 0.408 0.831

Table 5.3: Comparisons to the state-of-the-art methods in zero-shot learning. Results of previous
works are from (Xian et al. [198]).

Zero-Shot Learning. We further compared the proposed SUPREME method in ZSL with

ALE (Akata et al. [2]), CLSWGAN (Xian et al. [197]), SE-GZSL (Kumar Verma et al. [95]),
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Cycle-CLSWGAN (Felix et al. [47]), F-VAEGAN-D2 (Xian et al. [198]), ALE-tran (Xian et al.

[196]), GFZSL (Verma and Rai [183]), DSRL (Ye and Guo [209]) and UE-finetune (Song et al.

[164]). Table 5.3 shows that the superiority of the transductive methods over the inductive ones

in ZSL was more significant than that in FSL due to the sufficient unlabelled target data available

in model learning. The competitive results yielded by SUPREME on all the datasets except SUN,

especially against the inductive ZSL setting (more realistic and general), demonstrated its com-

pelling discrimination ability on target domains even without any word vector prototype mapping

in the text space or human labelled attribute learning on class description. However, the rather

poor performance on SUN, in which the number of target samples is limited to around 1,000

but the target classes are larger than other benchmarks, implies that sufficiently large unlabelled

training data is important to our model. The experimental results, once again, demonstrate our

model’s potential to benefit another downstream transfer learning task.

(a) CIFAR10 (b) CIFAR100

Figure 5.5: Visualisations of target samples’ representation before and after transferring by
SUPREME. The left in each pair of images was the feature space produced by the model pre-
trained on source data, while the right images was by SUPREME. Ground-truth labels were
colour-coded.

5.4.4 Visualisation and Qualitative Study

We visualised the representations of target samples by t-SNE (Maaten and Hinton [116]) in both

the pretrained and transferred feature spaces. Figure 5.5 shows that, even though the target sam-

ples can roughly form some groups in the pretrained feature space, the boundaries were ambigu-

ous. As our objective function encourages determined assignments, which means no samples

should hold similar probabilities to be assigned into multiple clusters, our models yielded clus-

ters in higher compactness and discrimination. Moreover, as shown in the red boxes highlighted

in Figure 5.5 (b), thanking to the auxiliary self-supervision constructed by intrinsic information

on target data, our method was able to correctly cluster samples of the same classes but were

initially far away.
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Figure 5.6: Qualitative studies on CIFAR-10. (a) Samples that were wrongly classified by k-
means but corrected by SUPREME. (b) Samples that were wrongly classified by SUPREME. (c)
Confusion matrices yielded by k-means (left) or SUPREME (right). (d) The clustering accuracy
of k-means or SUPREME on each target category.

Cases study. We randomly selected 6 samples that were mistakenly classified into each of

the target categories by k-means but assigned into the correct clusters by SUPREME, e.g. all the

samples from the first row in Figure 5.6 (a) were classified as “Dog” by k-means but assigned into

their ground-truth classes respectively by SUPREME. Due to the discrepancy between domains,

the pretrained model failed to distinguish samples from different target classes especially when

handling classes with large discrepancy to the source ones. By taking the self-supervision into

concern, SUPREME learns not only from the prior-knowledge but also the visual similarity that

is intrinsically available in the target domain and that enables it to better describe the target

distribution. We then selected another 6 instances from each target category at random and all of

them were wrongly classified by both k-means and SUPREME. As shown in Figure 5.6 (b), our

model failed to make correct predictions in extreme cases like large inter-class similarity (boat

with wheels was mistaken as truck), unexpected textures (bees-clothing dog), etc.

Confusion matrices. Figure 5.6 (c) shows the confusion matrices between the ground-truth

memberships and the assignments produced by k-means (left) or SUPREME (right). It demon-

strates that k-means usually confused among dog, frog and horse (red border) or ship and truck

(orange border) but rarely mistook the latter group as the former one. This was because the

source domain was also consisting of animals and manufactures, so the pretrained model has

learned to differentiate between them. However, the class-specific patterns that tell the source

categories apart were different from those of the target ones, i.e. nontransferable. Therefore, k-

means is less sensitive to visual discrepancies between classes in finer grained. To address such a

limitation, SUPREME adapts the pre-learned knowledge to the target domain and complements

the non-transferable part by self-supervision, which enables it to better identify the intra-class
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difference and inter-class similarity.

Class-wise performance. We then studied how well the models perform on each target class.

As indicated in Figure 5.6 (d), k-means showed inconsistent capacity on different categories

and did worst on recognising frog which is likely least visually related to the source categories

including airplane, automobile, bird, cat and deer. The SUPREME model not only boosted the

performance on the categories that are closely related to the source ones but also did well on those

didn’t when the pre-learned knowledge are less transferable. This demonstrates the effectiveness

of our auxiliary learning design to learn from the self-supervision constructed according to the

visual characteristic of target samples and take it as the remedy of the transferred supervision.

5.4.5 Component Analysis and Discussions

We conducted detailed ablation studies to investigate the effectiveness of different design choices

in our model for in-depth analysis.

Transferred supervision v.s. Self-supervision. As our key idea holds the assumption that

self-supervision can provide complementary constraints to the target samples to which the prior-

knowledge is not applicable, we evaluated the effectiveness of both the transferred supervision

and self-supervision to better understand their individual contributions to the model. According
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Figure 5.7: Ablation studies of training objectives. (a) Decouple different supervisions to inves-
tigate their individual contribution to model’s capacity. (b) Effect of temperature τ which decides
the concentration degree of confidence distribution.

to Figure 5.7 (a), both the prior-knowledge and the self-supervision are able to provide useful

constraints independently in model training. Our SUPREME model achieves better performance

in most cases, which indicates these two supervisions can benefit each other. It is also interest-

ing to see that the self-supervised model marginally surpasses SUPREME on CIFAR-10. This

suggests that the prior-knowledge from the source domain sometimes contains misleading and

inaccurate (non-transferable) information of high confidence to the target domain.
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Confidence Distribution Concentration. The temperature τ used to compute the confidence

of constraints in Eq. 5.4 decides the concentration degree of the normalised confidence distribu-

tion, hence, it can be interpreted as the reliability of prior-knowledge in terms of self-supervision.

As shown in Figure 5.7 (b), our model is able to attain promising performance with a wide range

of τ but the best results on different datasets can sometimes be sensitive to it, e.g. τ = 0.25 in

SVHN. This is because measuring the relevance of two domains and the transferability of prior-

knowledge is intrinsically challenging. Thereby, the setting of τ is intricately related to various

factors, e.g. capacity of pretrained models. Due to the existence of human annotations on source

domains, a reasonable setting of τ can be determined by cross-validation, which is a conventional

solution in transfer learning (Xian et al. [196]).
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Figure 5.8: Effects of training regularisations in SUPREME. (a) Balance regularisation on clus-
ters size distribution. (b) Binary regularisation on common factor space. (c) Multitasks regulari-
sation to avoid trivial representation.

Effects of regularisations. The SUPREME model is trained with several regularisations and

we investigated their necessity as well as our model’s robustness to them by varying their weights

within different ranges. As shown in Figure 5.8, the significant performance drop in most cases

caused by removing either of these regularisations (setting the weight to 0) demonstrate that none

of them is redundant for effective knowledge transfer. Furthermore, the stability and the similar

trends in parameter values on different datasets indicate the scalability and robustness of our

model which requires no exhaustive parameter tuning.

5.5 Summary

In this chapter, we addressed a common underlying problem among several unsupervised transfer

learning tasks that all aiming to model a discriminative latent space in an unsupervised (or weak

semi-supervised) manner with the help of the prior-knowledge acquired from labelled data in re-

lated domains. To that end, we propose a new generic and more scalable solution to unsupervised
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transfer learning by formulating a self-SUPervised REMEdy method to augment transfer cluster-

ing with self-supervised learning. It is always the case that some of the target samples will fail to

yield reliable transferred supervision from prior-knowledge due to distribution shift/discrepancy,

the proposed SUPREME method is designed to identify those “hard” target samples and provide

them with self-supervision based on intrinsic pairwise similarities among the target images in

relation to the source domain pre-knowledge. Experiments on extensive transfer clustering, FSL

and ZSL benchmark datasets demonstrate the compelling performance of the proposed method

against a wide range of the state-of-the-art models in all three tasks. Uniquely, SUPREME shows

competitive discrimination ability on both ZSL and FSL tasks without utilising any additional as-

sumptions on sample-wise human annotation or class-level semantic knowledge, as the case in all

conventional ZSL and FSL methods. Detailed ablation studies and in-depth analysis are provided

to give insights on SUPREME design considerations.
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Chapter 6

Propagating Knowledge from Incomplete Labels

in Video Activity Localisation

This chapter studies knowledge propagation from incomplete labels in video activity localisation

by natural language when the exhaustive temporal boundary of the moments-of-interest (MoIs)

are collective (i.e., the natural language queries are associated with videos rather than video

segments) or when they are uncertain with subjective annotation bias. Given an untrimmed

and unstructured video V composed of L f frames V = {xxx f
i }L f

i=1 and a natural language sentence

Q = {xxxw
i }Lw

i=1 with Lw words describing the activity depicted in a specific segment of the video

V , the objective of video activity localisation is to learn discriminative representations of video

frames/segments and align them with the query sentences so that the model can predict the tempo-

ral boundary of a target moment (S,E) to ensure that the video segment {xxx f
i }E

i=S is matching with

the query Q in semantics. Labelling video activities is fundamentally a more challenging task

than conventional image- and video-level annotations, which needs the annotators to go through

the long and untrimmed videos frame-by-frame to identify the proper boundaries that are inher-

ently ambiguous. In this chapter, we present a novel Cross-sentence Relations Mining method

to learn the matching relationships of video segments and sentence descriptions when only the

labels on video-sentences association are available but not the temporal boundary annotations

on video segments. Moreover, a new Elastic Moment Bounding approach is introduced to deal

with the inherent uncertainties in boundary labels, which helps derive universal visual-textual

correlations and locate video activity more accurately in inference.
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This chapter is organised as follows: Section 6.1 discuss weakly-supervised video activity

localisation when the video-text labels are provided in collective, where Section 6.1.1 gives prob-

lem statement and approach overview, Section 6.1.2 introduces the conventional multi-instance

learning based design for locating activity without boundary labels and Section 6.1.3 elaborates

the proposed mechanism of cross-sentence mining while model training and optimisation are

given in Section 6.1.4; Section 6.2 provides extensive experiments for evaluating the CRM model

with detailed ablation studies and in-depth analysis. Section 6.3 investigates the uncertainty

in temporal annotations when being used as supervisions in model learning, with the problem

statement and approach overview given in Section 6.3.1. Section 6.3.2 and Section 6.3.3 in

respectively present a general framework for frame-wise temporal boundary prediction and a

new strategy to improve model’s robustness to labelling uncertainty by simultaneously learning

video-text matching relationships in segment-level. Section 6.3.4 introduce how the EMB model

should be trained and used in inference; Section 6.4 evaluates EMB thoroughly and investigate

the effectiveness of each of its components; Section 6.5 presents a summary of this chapter.

6.1 Knowledge Propagation from Collective Labels

This section presents the proposed Cross-sentence Relations Mining model for weakly-supervised

video activity localisation to study knowledge propagation from collective labels.

6.1.1 Problem Statement and Approach Overview

Problem statement. Suppose for each video, we have a description paragraph consisting of Lq

text query sentences Q = {Q j}Lq

j=1 one-to-one describing the MoIs in V . Given a video-query

pair (V,Q j), by dividing the untrimmed video V into Ls candidate segments {xxxs
i}Ls

i=1 using sliding

windows (Lin et al. [107]; Ma et al. [115]) as the proposals, our objective in weakly-supervised

activity localisation is to select the xxxs
i which is most aligned with Q j in semantic. Although the

video-paragraph (multi-sentences) relations are available in training, there is no access to the

ground-truth per-sentence temporal boundary, i.e., the manual labels are given in collective. This

is a weakly-supervised learning problem where video proposals xxxs
i interact with the text queries

Q j to discover the most plausible matches between video segments and text sentences while the

labels are given in video-level on associating Q j with V rather than xxxs
i .
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Figure 6.1: An overview of the proposed Cross-sentence Relations Mining method.

Approach Overview. In this section, we formulate a Cross-sentence Relations Mining method

for this task. Figure 6.1 shows an overview. We first learn the visual-text alignment in video-

level with the same spirit of Multi-Instance Learning to feed a video-query pair into a Modalities

Matching Network (MMN), which predicts the matching score of the query and every proposal

and supervise the max-pooling of scores by binary cross-entropy loss (Figure 6.1 (a)). We then

explore the order of two descriptions in the paragraph and optimise their joint matching scores to

a proposals pair with consistent temporal relations (Figure 6.1 (b)). Furthermore, we synthesise

a longer query by forming pairs of sentences in a paragraph (concatenation) and encourage its

pairwise localisation to be semantically consistent with the union of proposals individually se-

lected for each sentence (Figure 6.1.1 (c)). This is to minimise the ambiguities in sentences so

to improve the model’s interpretation of multiple video moments in a more complex sentencing

context.

6.1.2 Video-Sentence Alignment

We start with the alignment of representations from two different modalities, i.e., an untrimmed

video V = {xxx f
i }L f

i=1 ∈ RDv×L f
composed of L f frames and a query sentence Q j = {xxxw

j,i}Lw

i=1 ∈

RDt×Lw
with Lw words. To explore the relation of V and Q j and enable video-text interaction,

both the video and sentence are first projected into D-dimensional spaces by two independent

fully-connected layers, respectively. For clarity concern, we reuse the symbols V ∈ RD×Lv
and

Q j ∈RD×Lw
after projections. The video V and the query Q j will then be fed into a MMN which

will generate a set of candidate moments (proposals) {xxxs
1,xxx

s
2, · · · ,xxxs

Ls} by sliding windows (Lin

et al. [107]; Ma et al. [115]) and predicts their individual matching scores with the input query

{p(xxxs
i |Q j)}Ls

i=1 (Figure 6.1 (a)). Motivated by the remarkable success of Transformer (Vaswani

et al. [182]; Devlin et al. [38]) on sequence analysis, the MMN is composed of a stack of attention
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units to explore both the within and cross-modal correlation.

Attention Unit. As the building block of our MMN, the attention unit plays a significant role

to learn the representation of a target sequence in terms of its correlations with every element in a

reference sequence. For instances, the target and reference sequences can be two videos (Vi,Vj),

two sentences (Qi,Q j) or a video-sentence pair (Vi,Q j). Given a target sequence X t ∈RD×Lt
and

a reference X r ∈ RD×Lr
, an attention unit δ (X t ,X r) attends X t using X r as follows:

A= X t>W qW kX r>/
√

D ∈ RLt×Lr

δ (X t ,X r) = FC
(
X t +W vX rSoftmax(A)>

)
∈ RD×Lt

.

(6.1)

The notions {W q,W k,W v} ∈RD×D×3 in Eq. (6.1) are three learnable matrices and the coefficient

1/
√

D is to counteract the effect of small gradients caused by large D (Vaswani et al. [182]).

The Softmax(·) is the row-wise softmax normalisation and A is the correlation scores of target-

reference element pairs. The FC(·) function is a linear projection with consistent input-output

dimensions. The attended result serves as the updated representation of the target sequence.

To investigate the video-text matching relations, it is essential to explore not only the within-

modal context but also the cross-modal interaction (Ma et al. [115]). Hence, the MMN is con-

structed by both self-attention and cross-attention blocks. The video V and the query Q j are

first fed into two independent self-attention blocks respectively, in which the target and reference

inputs are from the same modalities:

V ← δ
V2V(V,V ), Q j← δ

Q2Q(Q j,Q j). (6.2)

By doing so, the salient clips/words in the input video/query are highlighted by considering the

context of the video or sentence. Conventional sliding window strategy (Lin et al. [107]; Ma

et al. [115]) is then adopted to divide the video into Ls proposals V = {xxxs
i}Ls

i=1 ∈ RD×Ls
. Each

proposal is composed of arbitrary continual frames in {xxx f
i }L f

i=1 and represented by max-pooling

their features. After that, the two representations are interacted by cross-attention:

V ← δ
Q2V(V,Q j), Q j← δ

V2Q(Q j,V ), (6.3)

which attends one modality by another so to suppress the redundant text and irrelevant visual

information in query sentence and target video, respectively.

Matching Score. Given the video segment features V = {xxxs
i}Ls

i=1 and the text representation

Q j = {xxxw
j,i}Lw

i=1, the matching score p(xxxs
i |Q j) of a proposal-query pair is predicted according to
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both the modalities. The sentence representation is first computed by aggregating all the words:

xxxq
j ← cmax(Q j) ∈ RD×1 where cmax(·) denotes the column-wise max-pooling function, which

is then fused with every proposal’s representation (Gao et al. [50]; Hendricks et al. [71]):

xxxi, j = (xxxs
i + xxxq

j)‖(xxxs
i ⊗ xxxq

j)‖FC(xxxs
i‖xxxq

j). (6.4)

The notion (·⊗ ·) indicates the element-wise multiplication and (·‖·) is the concatenation of two

vectors while FC(·) standing for a linear projection. After that, the joint representations {xxxi, j}Ls

i=1

are fed into a linear classifier:

p(xxxs
i |Q j) = σ(xxxi, jW>+B). (6.5)

The variable {W,B}> ∈ RD+1 is the weights of classifier and σ(·) is the sigmoid function. The

yielded probabilities {p(xxxs
i |Q j)}Ls

i=1 ∈ (0,1) serve as the matching scores between proposals and

query, which is abbreviated to pi, j. In inference, the most aligned proposal can be obtained in a

maximum likelihood manner:

xxxs
∗ = argmax

xxxs
i

pi, j, (6.6)

whose boundary (S̃, Ẽ) is predicted as the temporal boundary of the activity corresponding to Q j.

Multi-Instance Learning. In the absence of temporal boundary, the ground-truth moment is

agnostic. Therefore, we optimise the matching scores in video-level to facilitate video-text align-

ment. To that end, the matching score between the video V and the query Q j is obtained by

the max-pooling of all the proposals’ score p(V |Q j)← max({pi, j}Ls

i=1). For each positive pair

(V,Q j) given manually on the dataset, we construct two negative counterparts by replacing either

V or Q j by a randomly sampled video V− or sentence Q− from the mini-batch and compute

their matching scores in the same way as p(V |Q). The BCE loss function is then adopted as the

video-query alignment supervision signal:

LBCE(V,Q j) =−2log
(

p(V |Q j)
)
− log

(
1− p(V |Q−)

)
− log

(
1− p(V−|Q j)

)
, (6.7)

where the coefficient 2 is applied to the positive term considering the balance of positive and

negative pairs. The rationale behind Eq. (6.7) is assuming that the MoIs in one video doesn’t exist

in any other videos so (V,Q−) and (V−,Q j) should be semantically unmatched. By minimising

p(V |Q−) and p(V−|Q), the predictions of the incorrect proposals in V with different semantics

from Q j will also be minimised implicitly so that the learned matching scores can reveal the

inherent visual-textual correlation. This takes the spirit of MIL (Keeler et al. [88]) by treating the

proposals as the instances in a bag (video) and learning with the bag-level annotations.
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6.1.3 Cross-Sentence Relations Mining

The LBCE in Eq. (6.7) aligns queries with the proposals yielding the largest matching scores

among all the candidates. However, the predicted scores can be unreliable due to the visually

indiscriminate moment proposals existed in videos and text ambiguities in individual sentences

which will lead to video-text misalignment in training. Therefore, we explore the cross-sentence

relations to select reliable proposals with consistent cross-moment relations.

Temporal Consistency. As the video frames are naturally exhibited to the viewers in time

order, the temporal relations of different MoIs should intrinsically be encoded in the order of their

descriptions in the paragraph. With such an assumption, we can identify the pairs of proposals

both yielding high predicted matching score with the corresponding queries but inconsistent in

temporal relations, which are likely to be incorrect. Given arbitrary query sentences pair (Q j,Q j′)

from the description paragraph of video V , their respectively selected segments (xxxs
i ,xxx

s
i′) should

satisfy similar temporal structure with them, i.e., xxxs
i should occur before xxxs

i′ in the video if Q j is in

front of Q j′ in the paragraph and vice versa. The temporal order of two proposals R(xxxs
i ,xxx

s
i′) = 0

if xxxs
i starts before xxxs

i′ in the video, otherwise R(xxxs
i ,xxx

s
i′) = 1. Similarly, R(Q j,Q j′) = 1[ j ≥ j′]

where j and j′ are the position of sentences in the paragraph. The temporal (TMP) constraint is

then formulated to ensureR(xxxs
i ,xxx

s
i′) =R(Q j,Q j′).

By assuming the matching scores of different queries to any proposals are independent, the

joint probability of Q j and Q j′ are respectively matching with xxxs
i and xxxs

i′ is:

p(xxxs
i ,xxx

s
i′ |Q j,Q j′) = p(xxxs

i |Q j) · p(xxxs
i′ |Q j′). (6.8)

As shown in Figure 6.1 (b), we take the queries’ order as the ground-truth for the temporal re-

lation of the proposal pair. Given Q j and Q j′ , the joint probabilities set {p(xxxs
i ,xxx

s
i′ |Q j,Q j′)}Ls

i,i′=1 is

then divided into two subsets: for all the proposal pairs (xxxs
i ,xxx

s
i′), the joint probability p(xxxs

i ,xxx
s
i′ |Q j,Q j′)∈

P+
t if R(xxxs

i ,xxx
s
i′) =R(Q j,Q j′), otherwise belonging to P−t . The MIL loss is re-formulated with

the temporal constraint:

LTMP(V,Q j,Q j′) =−log
(

max(P+
t )
)
− log

(
1−max(P−t )

)
. (6.9)

By training with LTMP, the model learns to align the proposals with queries only if they are

temporally consistent. This refrains the model from visual-textual misalignment in the absence

of ground-truth temporal annotations.
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Semantic Consistency. To minimise the negative impact from ambiguous per-sentence expres-

sions in isolation and to explore the context of a paragraph, it is beneficial for a model to consider

broader semantics beyond individual sentences by relating other expressed objects/actions in a

wider context (Mun et al. [123]). However, it is non-trivial to explicitly do so since the ob-

ject/action’s information is missing without fine-grained annotation. In this case, we propose to

form pairs of MoIs by concatenation in the same videos: Q j, j′ = Q j‖Q j′ and train the model

to locate the concatenated longer query with the consideration of both sentences in each pair.

Given the proposals xxxs
i and xxxs

i′ with the largest p(xxxs
i ,xxx

s
k′ |Q j,Q j′) in Eq. (6.9), the matching scores

of Q j, j′ and the video segments xxxs
k is optimised to encourage the consistency of xxxs

k and xxxs
i ∪ xxxs

i′

(Figure 6.1 (c)). As in the temporal constraint, we divide the predicted scores p(xxxs
k|Q j, j′) into

two subsets: for all the proposals xxxs
k in the video V , p(xxxs

k|Q j, j′) ∈ P−s if IoU(xxxs
k,xxx

s
i ∪ xxxs

i′) < τ ,

and P+
s is composed of the xxxs

k which is most consistent with xxxs
i ∪ xxxs

i′ . The τ decides how two

proposals are deemed consistent regarding their Intersection over Union (IoU) which is set to 0.5

in practice. The constraint on the semantic (SMT) consistency of xxxs
k and xxxs

i ∪xxxs
i′ is formulated as:

LSMT(V,Q j,Q j′) =−log
(

max(P+
s )
)
− log

(
1−max(P−s )

)
. (6.10)

To minimise LSMT, the model is explicitly trained to consider the semantics of both Q j and Q j′

when locating Q j, j′ so to ensure the overlap of xxxs
k and xxxs

i ∪ xxxs
i′ . By introducing additional longer

queries synthesised from pairwise sentences in model training, it enhances the model’s capacity

to interpret and match more complex descriptions to video moments, critical in practice due to

that untrimmed raw videos are often unstructured.

6.1.4 Model Training

In each training iteration, we randomly sample nbs videos with a pair of queries (Q1
i ,Q

2
i ) for each

from its paragraph description as a mini-batch and the overall loss to be minimised is:

L=
1

2∗nbs

nbs

∑
i=1

2

∑
j=1
LBCE(Vi,Q

j
i )+

1
nbs

nbs

∑
i=1
LTMP(Vi,Q1

i ,Q
2
i )+

1
nbs

nbs

∑
i=1
LSMT(Vi,Q1

i ,Q
2
i ). (6.11)

Since the objective function L in Eq. (6.11) is differentiable, conventional stochastic gradient

descent algorithm is adopted for end-to-end model training. The overall process of a training

iteration is summarised in Algorithm 5.
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Algorithm 5: CRM for video grounding with collective labels.

Input: Untrimmed videos V , Paragraph descriptions Q.

Output: A video activity localisation model.

Sampling a random mini-batch of videos;

Sampling two queries for each video from its paragraph;

foreach video-query pair do

Mapping video and query to D-dimensional spaces by linear projections;

Conducting V2V and Q2Q self-attention (Eq. (6.2));

Generating proposals by sliding windows;

Conducting V2Q and Q2V cross-attention (Eq. (6.3));

Fusing each proposal’s feature with the query (Eq. (6.4));

Computing the proposal-query matching scores (Eq. (6.5));

Computing the BCE-based MIL loss LBCE (Eq. (6.7));

end

Computing the temporal consistency constraint LTMP (Eq. (6.9));

Computing the semantic consistency constraint LSMT (Eq. (6.10));

Updating model weights by back-propagation;

6.2 Experiments on Knowledge Propagation from Collective Labels

6.2.1 Datasets and Metrics

Datasets. Experiments were conducted on two video activity localisation datasets: (1) Charades-

STA (Gao et al. [50]) contains 12,408/3720 video-query pairs from 5338/1334 videos for training

and testing, respectively. The query sentences are composed of 7.2 words on average and the av-

erage duration of the target video moments and untrimmed videos are 8.2 and 30.6 seconds; (2)

ActivityNet-Captions (Krishna et al. [91]) is a much larger-scale dataset composed of 19,290

videos with 37,421/17,505/17,031 MoIs in the train/val 1/val 2 split. The average length of

queries is 14.8 words while that of the MoIs and untrimmed videos are 36.2 and 117.6 seconds.

The activities captured in those two datasets are of various complexity: Only 6% of the

descriptions involve more than one actions in Charades whilst 44% in ActivityNet with 12% vs.

44% regarding the number of people (Lei et al. [103]).



6.2. Experiments on Knowledge Propagation from Collective Labels 135

Evaluation metrics. We followed previous works (Duan et al. [43]; Wu et al. [194]; Chen

and Jiang [26]) to evaluate the activity localisation results by the “IoU@m” metric where m is

the pre-defined temporal IoU thresholds. Given the temporal boundary (S,E) of a target mo-

ment and the selected segment proposal bounding at (S̃, Ẽ) (Eq. (6.6)) with the largest predicted

matching score, the IoU between the two video segments is computed by max(0,min(E,Ẽ)−max(S,S̃))
max(E,Ẽ)−min(S,S̃) .

A prediction is considered correct if its IoU with the ground-truth is greater than the pre-defined

IoU thresholds m set to {0.1,0.3,0.5} on ActivityNet and {0.3,0.5,0.7} on Charades (Duan et al.

[43]; Wu et al. [194]).

6.2.2 Implementation Details

We used VGG (Simonyan and Zisserman [163]) (4096-D) and ResNet152 (He et al. [68]) (2048-

D) feature representations officially released with the datasets for per-frame representations in

Charades and ActivityNet, respectively. The videos were truncated evenly (and zero-padded)

into 128 clips in Charades and 256 in ActivityNet, with each clip represented by the max-pooling

of 5 continual frame’s features as the minimal video unit ({xxx f
i }L f

i=1). The pre-trained GloVe em-

bedding (Pennington et al. [140]) was adopted as the word feature representation (300-D) and the

maximal sentence length was set to 20 words. Both the clip and word representations were lin-

early mapped to 256-D spaces before being fed into MMN. The sliding windows stride was 8 and

the window sizes were {8,12,20,32,64} in Charades and {8,16,32,64,128} in ActivityNet. The

temporal dependencies of video segments in terms of the same query sentences were explored

by an additional self-attention unit before predicting their matching scores. As the paragraph

descriptions were pre-divided into individual sentences on both datasets, we restored the order

of sentences in the paragraph by the ground-truth start time of MoIs. Note that timestamps were

unavailable in proposal selections, neither in training nor testing. The proposed CRM was trained

50 epochs by Adam optimiser with a batch size of 64 and learning rate of 1e−4. Cross-sentence

relations were only used in training with no extra computational cost in testing.

6.2.3 Comparisons with the State-of-the-Art

Table 6.1 compares the performance of CRM against the state-of-the-art video activity localisa-

tion models including both fully-supervised (DPIN (Wang et al. [185]), 2D-TAN (Zhang et al.

[221]), DRN (Zeng et al. [214]), LGI (Mun et al. [123]), HVTG (Chen and Jiang [26])) and

weakly-supervised methods (WS-DEC (Duan et al. [43]), WSLLN (Gao et al. [51]), BAR (Wu



136 Chapter 6. Propagating Knowledge from Incomplete Labels in Video Activity Localisation

Method Split Moment Query IoU@0.1 IoU@0.3 IoU@0.5

DPIN 3 7 - 62.40 47.27 Method Moment Query IoU@0.3 IoU@0.5 IoU@0.7

2D-TAN 3 7 - 59.45 44.51 DPIN 3 7 - 47.98 26.98

DRN 7 7 - - 45.45 2D-TAN 3 7 - 39.81 23.25

LGI 3 7 - 58.52 41.51 DRN 7 7 - 53.09 31.75

HVTG

val 2

7 7 - 57.60 40.15 LGI 3 7 72.96 59.46 35.48

WS-DEC 7 7 62.71 41.98 23.34 HVTG 7 7 61.37 47.27 23.30

WSLLN 7 7 75.40 42.80 22.70 TGA 7 7 29.68 17.04 6.93

BAR 3 7 - 49.03 30.73 SCN 3 7 42.96 23.58 9.97

CRM (Ours)

val 1

3 3 76.66 51.17 31.67 LoGAN 3 7 51.67 34.68 14.54

SCN 3 7 71.48 47.23 29.22 BAR 3 7 44.97 27.04 12.23

RTBPN 3 7 73.73 49.77 29.63 RTBPN 3 7 60.04 32.36 13.24

CCL 3 7 - 50.12 31.07 VLANet 3 7 45.24 31.83 14.17

CRM (Ours)

val 1

3 3 81.61 55.26 32.19 CCL 3 7 - 33.21 15.68

WS-DEC 3 7 30.17 17.00 7.17 CRM (Ours) 3 3 53.66 34.76 16.37

CRM (Ours)
OOD

3 3 38.35 22.77 10.31

Table 6.1: Performance comparisons of CRM on ActivityNet-Captions (left) and Charades-STA
(right). Fully and weakly-supervised methods are shown in the upper and lower part of each
table, respectively. The ‘Moment’ column refers to methods trained by exploiting multiple video
moments corresponding to the same-sentence, whilst the ‘Query’ column refers to training by
cross-sentence temporal ordering and sentence pairing in the context of a paragraph. The ‘Split’
column denotes the different data splits in the ActivityNet-Captions used in the evaluations.
The discounted recall rates (Yuan et al. [213]) are reported for the ‘OOD’ split of ActivityNet-
Captions.

et al. [194]), SCN (Lin et al. [107]), RTBPN (Zhang et al. [223]), CCL (Zhang et al. [224]),

TGA (Mithun et al. [121]), LoGAN (Tan et al. [173]), VLANet (Ma et al. [115])). We have the

following observations:

• Not surprisingly, fully-supervised models outperform weakly-supervised models clearly

by benefitting from the exhaustive temporal annotation on activities’ boundary. However,

CRM reduces that performance gap by over 41% on the ActivityNet (IoU@0.3).

• Discovering different video moments correlating to the same-sentence for proposal se-

lection has been exploited to a good effect by existing methods in an implicit form of

attention (Lin et al. [107]; Ma et al. [115]) or 2D temporal convolution (Zhang et al.

[223, 221]). However, the notably better performance of CRM compared to those meth-

ods further demonstrates the additional advantage of using cross-sentence temporal and

semantic relations within a paragraph to explicitly constrain cross-moment relations for

learning better video-text alignment and benefiting per-sentence localisation in testing.
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• CRM surpasses the state-of-the-art weakly-supervised methods across the board except for

IoU@0.3 on Charades. This demonstrates compellingly the effectiveness of CRM from

modelling explicitly cross-sentence relations. Our advantages on the Out-of-Distribution

(OOD) split of ActivityNet-Captions (Yuan et al. [213]) further indicate CRM’s better

multi-modal understanding rather than driven by annotation biases.

6.2.4 Component Analysis

We investigated the effects of different components in CRM model design to study their individ-

ual contributions. The “val 1” split of ActivityNet was adopted.

Effects of cross-sentence relations. We evaluated the effectiveness of imposing cross-sentence

relational consistency by training the baseline model (BCE) with either the temporal (BCE+TMP)

or semantic (BCE+SMT) constraint as well as with both (BCE+TMP+SMT). Figure 6.2 shows

that both constraints are beneficial individually and the benefits become more clear when they

are jointly adopted. Moreover, the performance improvement is more significant on ActivityNet

than Charades. Given the generally more complex activities in ActivityNet, this shows that train-

ing CRM on combinations of pairwise sentencing as semantic consistency constraint (Eq. (6.10))

has its unique advantages in activity localisation against more complex query descriptions.
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Figure 6.2: Effect of cross-sentence relations mining in CRM. BCE is the base model trains with
only the MIL objective (Eq. (6.7)). TMP and SMT are the proposed constraints on temporal
(Eq. (6.9)) and semantic (Eq. (6.10)) relational consistency.

Temporal consistency. To verify our assumption on temporal order, we compared how many

correct predictions learned with and without LTMP (Eq. (6.9)) against the ground-truth. Specifi-

cally, for each video consists of n MoIs, we constructed C2
n MoI pairs and measured the ratio of

consistent pairs by comparing the order of the two ground-truth moments and that of the selected

proposals. Table 6.2 shows that by explicitly training CRM with cross-sentence temporal order
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Train Test
Temporal

ActivityNet Charades ActivityNet Charades

7 64.28 73.88 45.02 73.91

3 82.43 74.88 70.82 74.65

Table 6.2: Temporal consistency between the descriptions of MoI pairs and their selected pro-
posals. Metric: accuracy.

constraint, the video segments selected by CRM is much more consistent in temporal relations

on ActivityNet than the base models without it. Although different moments in the test set are

localised independently, such advantages are still clear. Besides, it is surprising to see that the

cross-moment temporal relations yielded by the base model on Charades are reasonably consis-

tent with the true order but the temporal constraint still benefited the localisation results. This

implies the potential advantages of optimising joint matching scores of moment pairs with their

descriptions in learning effective visual-textual correlation.

Semantic consistency. As in the analysis of temporal consistency, we enumerated all the pos-

sible MoI pairs in the same videos and quantify the semantic consistency by taking the union of

MoI pairs as the ground-truth moment corresponding to the concatenation of their descriptions.

More specifically, given the sentence description of two MoIs and their selected segments xxxs
i and

xxxs
j, we concatenated the two per-sentence queries and identified the video segment xxxs

k yielding

the largest matching scores with the concatenation. We then computed the temporal IoU between

xxxs
i ∪ xxxs

j and xxxs
k, where xxxs

k is deemed semantically consistent with xxxs
i ∪ xxxs

j if IoU(xxxs
i ∪ xxxs

j,xxx
s
k)> 0.5.

Note that it is not necessary for the two moments to be consecutive in time so that our semantic

assumption can hold, as the boundary defined by the concatenated description always matches

their temporal union. Table 6.3 shows that the baseline model trained without semantic constraint

in Eq. (6.10) yields sensible performances in locating the paired queries. This demonstrates that

CRM implicitly learns to consider the semantic context of queries by the attention units. The su-

perior results of CRM trained with explicit semantic constraint shows that it encourages broader

consensus in semantics across sentences. This explains why the performance advantages of CRM

is more significant when locating more complex activities in ActivityNet.

Effects of attention units. As the building block of our MMN backbone introduced in Sec-

tion 6.1.2, the attention units play a significant role in exploring the videos and sentences data as
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Train Test
Semantic

ActivityNet Charades ActivityNet Charades

7 55.76 35.34 57.84 31.01

3 68.14 55.46 71.30 51.33

Table 6.3: Semantic consistency between the union of two MoIs’ segments and the one selected
for the concatenation of their descriptions. Metric: prediction recall at IoU = 0.5.

well as their correlations. We investigated its effect by comparing the prediction recall of CRM

constructed with different numbers of attention units, showing its benefits in sequence analysis

and video-text interactions (Figure 6.3). On the other hand, due to the limited video data avail-

able for training (10K/5K on ActivityNet/Charades), stacking up attention layers fails to further

benefit CRM, leading to model performance degradation possibly due to overfitting.
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Figure 6.3: Effect of self-attention (left) and cross-attention units (right) in CRM. Models are
constructed and trained with different numbers of self-attention and cross-attention units to in-
vestigate their effects.

Qualitative examples. Figure 6.4 shows some qualitative examples from both ActivityNet and

Charades. They show how different MoIs in the same videos may interact with each other so

that their relations can be used to optimise per-sentence activity localisation in the context of a

paragraph. It is evident that locating video moments by per-sentence independently is unreliable,

e.g. in the first example (top-row), the man reaches the monkey bars both before and after he

walks toward the lower pole. “The first cat” example in the middle-row is ambiguous without

context. By explicitly exploring the cross-sentence relations, CRM avoids such ambiguities and

minimises video-text misalignment.

6.3 Knowledge Propagation from Uncertain Labels

This section introduces the proposed Elastic Moment Bounding model to alleviate the negative

impacts of labelling uncertainties in temporal boundary that intrinsically exist in constructing
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0.0 141.5

16.0 144.0

92.1 219.3

88.0 216.0

9.9

8.0

30.3

37.4

14.8

16.0

36.9

37.4

One cat then begins to lick the other

The first cat then stops and
the other licks afterwards.

0.0

0.0 6.6

6.5 13.7

13.3 23.2

24.0a person is sitting down
eating a sandwich

person drinking a
glass of water.

A bald man walked towards the monkey bars,
then he walked towards a lower pole.He walked back to

the monkey bar.

Figure 6.4: Qualitative examples show the interaction between MoIs in the same videos. The
green bars indicate the ground-truth MoI’s boundaries whilst the blue bars show the model pre-
dictions by CRM. The query sentences are simplified for illustrations only.

supervision signals for learning video activity localisation models.

6.3.1 Problem Statement and Approach Overview

Problem statement. Suppose we have a set of long and untrimmed videos V = {Vi}Nv

i=1 with

each composed of L f frames Vi = {xxx f
i, j}L f

j=1. With a set of natural language sentencesQ= {Qi}Nq

i=1

describing the MoIs in the videos, the objective of fully-supervised video activity localisation is

to derive visual-textual correlations from the video-text-boundary triplets {
(
Qi,Vj,(S j,E j)

)
| i ∈

[1,Nq] and j∈ [1,Nv]} so that the model is able to predict accurately the start and end boundary of

a moment (S̃, Ẽ) in an unseen video V according to a new query sentence Q. Note that different

from Section 6.1.1, the activity’s descriptions Q are not organised into paragraphs here so the

subscript indicates a single text sentence rather than a paragraph. When studying about the

uncertainties in temporal boundary, we assumed the exhaustive temporal labels are available for

model training. Considering that semantically similar query sentences are associated with video

boundaries with inconsistent visual cues, it is fundamentally challenging to derive universally

interpretable visual-textual correlations from them. In the following discussion, for simplicity,

we deprecate the subscript i and j in Vi and Q j to introduce the model design in terms of a

single target triplet
(
Q,V,(S,E)

)
where the query sentence Q and the video moment {xxx f

i | i ∈

[S,E] and xxx f
i ∈V} are consistent in semantics.
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Figure 6.5: An overview of the proposed Elastic Moment Bounding method.

Approach overview. In this section, we propose an Elastic Moment Bounding model whose

overview is depicted in Figure 6.5). The EMB model first predicts the per-frame probabilities

to be the temporal endpoints of a target moment (Figure 6.5’s bottom box) by a Multi-grained

Interaction Network (MGIN) (Figure 6.5 (c)) incorporating with a Guided Attention mechanism

(Figure 6.5 (b)). EMB then optimises the frame-wise probabilities by mining multiple candi-

date endpoints beyond the manual annotated ones. The candidate endpoints are discovered by an

auxiliary alignment branch shown in Figure 6.5’s top box. The alignment branch explores video-

text content alignment in segment-level, which is less sensitive to exact endpoints annotations

so more robust to endpoints uncertainty. By doing so, we construct an elastic boundary inter-

pretable universally for semantically similar activities with endpoints uncertainty. In our joint

content-boundary learning design, a video V will be concurrently represented in frame {xxx f
i }L f

i=1

and segment-level {xxxs
i}Ls

i=1. For clarity concern, we denote video frames by V f and video seg-

ments (proposals) by V s in the rest of the section.

6.3.2 Temporal Endpoints Identification

Our elastic moment bounding is a generic formulation deployable in any multi-modal back-

bone deep networks. Here, we start with the VSLNet (Zhang et al. [217]) and reconstruct it by

introducing a Guided Attention mechanism to form a multi-grained interaction network. The

overall pipeline of MGIN is shown in Figure 6.5 (c) to first encode the video V f and the sentence

Q = {xxxw
i }Lw

i=1 by attention both within (self) and across modalities, then predict the frame-wise

endpoint probabilities by the joint-modal representations fused by context-query attention (Seo
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et al. [159]; Xiong et al. [202]; Yu et al. [211]).

Adopting the convention (Zhang et al. [217]; Nan et al. [124]; Wang et al. [186]), video

frames V f = {xxx f
i }L f

i=1 ∈ RDv×L f
are represented by a pre-trained 3D-CNN model (Carreira and

Zisserman [18]) and the query sentence by the GloVe embeddings (Pennington et al. [140]) of

words Q = {xxxw
i }Lw

i=1 ∈ RDt×Lw
. To facilitate cross-modal feature interactions, we map both the

representations to have the same dimension D by two independent linear projections, i.e., V f ←

FC(V f ) ∈ RD×L f
and Q← FC(Q) ∈ RD×Lw

.

Vision-language attention representation. Similar as in CRM (section 6.1.2), we deploy at-

tentive encoding (Vaswani et al. [182]) for both the visual and textual representations to explore

the dependencies among elements in both. We reiterate the formulations here for clarity. In

general, to encode a target sequence X t ∈ RD×Lt
of Lt elements with the help of a reference se-

quence X r ∈ RD×Lr
in size Lr, we first compute an attention matrix A indicating the pairwise

target-reference correlations, then represent each target element by its correlated references:

A= FC(X t)>FC(X r)/
√

D ∈ RLt×Lr
(6.12)

δ (X t ,X r) = FC(X t +FC(X r)Softmax(A)>) ∈ RD×Lt
. (6.13)

An attention layer formulated in Eq. (6.13) is parameterised by three independent fully-connected

layers with the same input and output channels. Our MGIN shown in Figure 6.5 (c) is constructed

by both self-attention within modalities: V f ← δ (V f ,V f ), Q← δ (Q,Q) for context exploration

and cross-attention between modalities: V f ← δ (V f ,Q), Q← δ (Q,V f ) to learn the semantic

correlations between video frames and query words.

Guided attention. To effectively locate the temporal endpoints of activities, it is essential for

the model to be aware of not only what is shown in each individual frame but also what’s changing

across it, i.e., the differences between its preceding and subsequent content. As a simple example,

the starting point of an activity ‘person puts on shoes’ should not be arbitrary frames involving

shoes-like objects in-between the period but the one when the shoes first appear to interact with a

person at the beginning of the process. Therefore, we propose a content-guided attention module

(Figure 6.5 (b)’s bottom) to explicitly encode the preceding and subsequent content information
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of each frame into its representation:

V f
pre = {MaxPool({xxx f

i }
j
i=1)}L f

j=1 ∈ RD×L f
,

V f
sub = {MaxPool({xxx f

i }L f

i= j)}L f

j=1 ∈ RD×L f
,

Ṽ f = Conv2d({V f ,V f
pre,V

f
sub}) ∈ RD×L f

.

(6.14)

The feature MaxPool({xxx f
i }

j
i=1) ∈ RD in Eq. 6.14 aggregate all the frames before xxx f

j by max-

pooling as its preceding content representation. Similarly, the subsequent content of the j-th

frame is obtained by MaxPool({xxx f
i }L f

i= j). Both the preceding V f
pre and subsequent V f

sub content

features are then stacked and assembled with the frame-wise representations V f by a 2D convolu-

tion layer. After that, the content-guided representations of video frames Ṽ f are used for attentive

encoding (Eq. (6.13)) both within V f ← δ (Ṽ f ,Ṽ f ) and across modalities V f ← δ (Ṽ f ,Q).

Boundary prediction. Given a video V f ∈ RD×L f
and sentence Q ∈ RD×Lw

representations,

we estimate the frame-wise endpoint probabilities by computing context-query attention (Seo

et al. [159]; Xiong et al. [202]; Yu et al. [211]), same as the baseline (Zhang et al. [217]). It is

defined as:

(ppps, pppe)=Softmax(LSTM(V̂ f �hhh)),where hhh=σ(Conv1d(V̂ f ‖xxxq)) ∈ R1×L f
,

V̂ f = g(V f ,Q) = FC(V f ‖Xv2q‖V f �Xv2q‖V f �Xq2v) ∈ RD×L f
; and

A=
FC(V f )

>FC(Q)√
D

, Xv2q = QAr>, Xq2v =V fArAc>.

(6.15)

In Eq. (6.15), we predict the frame-wise endpoint probabilities by two stacked LSTM with each

followed by an independent linear layer. This is based on fusing video frames V f with the

query sentence Q by function g(·) then rescale the per-frame fused features V̂ f ∈ RD×L f
using

their estimated likelihood hhh ∈R1×L f
of being foreground (within the target moment) to suppress

any distractions from redundant frames. Matrix A ∈ RL f×Lw
consists of frame-to-word correla-

tion scores; Ar and Ac are its row and column-wise softmax normalised copies. The xxxq is the

sentence-level representation obtained by weighted sum of words (Bahdanau et al. [5]). Notation

(·‖·) stands for concatenation (broadcast if necessary) while � is the Hadamard Product.

6.3.3 Elastic Moment Bounding

Given the uncertainty and ambiguity in manually annotated activity temporal boundaries, it is in-

effective to decide heuristically which frames and how many of them are possibly more universal

and should be taken as the candidate endpoints (ŜSS, ÊEE) for different video activities. To address
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this problem, we formulate an auxiliary alignment branch in the model to learn the video-text

content mapping per each video segment. It serves as an additional self-learning “annotator” to

expand the given single pair of manually annotated boundaries into candidate endpoints proposal

sets tailored for individual activities.

Elastic boundary construction. As shown in Figure 6.5 (top), we first generate a 2D feature

map (Zhang et al. [221]) by enumerating all pairs of frames as the start-end boundaries to repre-

sent Ls = L f ×L f video segments V s = {xxxs
i}Ls

i=1 ∈ RD×Ls
as the proposals for a target moment.

We flatten the 2D map here so that video segments V s are in consistent dimensions as that of

frames V f to be encoded by MGIN. The i-th proposal with the temporal boundary of (ts
i , t

e
i )

is represented by max-pooling the frames it is composed of xxxs
i = MaxPool({xxx f

j |∀ j ∈ [ts
i , t

e
i ]}).

The segment-wise representations will then be fed into an independent MGIN equipped with

boundary-guided attention modules (Figure 6.5 (b)’s top box) for visual encoding. Similar as

in the content-guided attention for video frames, we explicitly assemble the frame-wise bound-

ary features with the content representations of video segments to encourage boundary-sensitive

content alignment:

V s
sta = {xxx f

ts
j
}Ls

j=1 ∈ RD×Ls
, V s

end = {xxx f
te

j
}Ls

j=1 ∈ RD×Ls
,

Ṽ s = Conv2d({V s,V s
sta,V

s
end}) ∈ RD×Ls

.

(6.16)

The features V s
sta and V s

end in Eq. (6.16) are the representations of the start and end frames for

each of the Ls proposals. They are stacked and assembled with the segment-wise content fea-

tures V s to derive the boundary guided segment representations Ṽ s by a 2D convolution layer.

Such boundary-guided attention share a similar spirit with temporal pyramid pooling (Zhao

et al. [227]), that is to explicitly encode the temporal structure into segment’s representation

so to be sensitive to its boundary. Ṽ s is then used for attentive encoding (Eq. (6.13)) within

V s← δ (Ṽ s,Ṽ s) and across V s← δ (Ṽ s,Q) modalities.

Given the segment-level video representations V s, we fuse them with the sentence features by

function g(·) defined in Eq. (6.15), then re-arrange it to be a 2D feature map and predict the per-

proposal alignment scores by a 2D convolution layer with consideration of segments’ overlap:

pppa = σ(Conv2d(g(V s,Q))) s.t. pa
i ∈ (0,1) ∀i ∈ [1,Ls]. (6.17)

The segment-wise alignment scores pppa activated by the Sigmoid function σ is then flatten and
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supervised by the temporal overlaps between every proposal and the manual boundary:

αi = IoU((ts
i , t

e
i ),(S,E))

ya
i =


1, if αi ≥ τu

0, if αi < τl

αi, otherwise

Lalign
(
V s,Q,(S,E)

)
= BCE(yyya, pppa).

(6.18)

The notations τu and τl are the upper and lower overlap thresholds to control the flexibility of

video-text alignment, which are set to 0.7 and 0.3 respectively as in (Zhang et al. [221]). With

the learned segment-wise alignment scores pppa, we take the boundary (ts
∗, t

e
∗) of the most confi-

dent proposal with the greatest predicted score pa
∗ ≥ pa

i ∀i ∈ [1,Ls] as the pseudo boundary and

construct the corresponding candidate endpoint sets by:

ŜSS = [min(ts
∗,S),max(ts

∗,S)], ÊEE = [min(te
∗,E),max(te

∗,E)]. (6.19)

We customise the candidate endpoint sets for every individual activity by exploring the content

alignments between video segments and query sentences, i.e., elastic boundary. This is poten-

tially more flexible and reliable than applying label smoothing globally (Wang et al. [186]; Xiao

et al. [199]) without considering video context and language semantics.

Reliability vs. flexibility. Introducing too many candidate endpoints that are semantically ir-

relevant to the query sentences is prone to distracting the model from learning effective visual-

textual correlations, especially at the early stage of training a randomly initialised model which

is likely to yield inaccurate pseudo boundaries (ts
∗, t

e
∗). Therefore, we balance the reliability and

flexibility of our elastic boundary by a controllable threshold τ:

ts
∗, t

e
∗ = argmax

ts
i ,t

e
i

pppa s.t. αi ≥ τ. (6.20)

The αi in Eq. (6.20) implies the overlap between the i-th proposal and the manual boundary,

whilst the threshold τ serving as a controllable trade-off between flexibility and reliability so that

only the sufficiently overlapped proposals will be selected for constructing the elastic boundary

in Eq. (6.19).

Learning from elastic boundary. With the elastic boundary (ŜSS, ÊEE), instead of optimising

model’s predictions (Eq. (6.15)) to be exactly the same as the rigid manual endpoint label (S,E),
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we construct the frame-wise supervisions to maximise the sum of candidate’s probabilities:

Lbound
(
V f ,Q,(S,E)

)
=−log(∑

i∈ŜSS

ps
i )− log(∑

i∈ÊEE

pe
i ). (6.21)

We optimise the sum rather than product of probabilities to allow the model to select confident

endpoints from elastic boundary instead of encouraging uniform predictions for all the candidate

frames. Comparing with the commonly adopted frame-wise supervision which trains ppps and pppe

to be one-hot (Zhang et al. [217]; Nan et al. [124]), we provide in Eq. (6.21) a more flexible

boundary to the target moments so that the model can learn in a data-driven manner to select the

endpoints beyond the manual boundary and ignore the unconcerned actions involved.

6.3.4 Model Training and Inference

Inference. We consider two schemes when predicting the boundary of video activity: (a) fol-

lowing the standard protocol of the task (Gao et al. [50]; Krishna et al. [91]), we predict a de-

termined (DET) boundary enclosed by a single start and end frames according to the outputs of

bounding branch in a maximum likelihood manner:

S̃ = argmax
i

ppps, Ẽ = argmax
i

pppe, (6.22)

where S̃ and Ẽ are the predicted start and end frame indices of a video that are corresponding

to a given query. (b) Besides, considering the uncertain nature of temporal boundary, it is more

intuitive to estimate the endpoints of video activity by temporal spans rather than specific frames.

Our model is able to predict also an elastic (ELA) boundary in a similar way as in training

S̃SS = [min(ts
∗, S̃),max(ts

∗, S̃)], ẼEE = [min(te
∗, Ẽ),max(te

∗, Ẽ)]. (6.23)

In Eq. (6.23), we denote S̃SS and ẼEE in bold to indicate a set of candidate endpoints, and differen-

tiate them from the determined boundary in Eq. (6.22). The (ts
∗, t

e
∗) is the boundary of the most

confident proposals selected from the alignment branch without constraint on their overlaps to

the manual boundary. i.e., τ =0 in Eq. (6.20).

Training. The bounding and alignment branches in the EMB model are simultaneously trained

in the conventional batch-wise manner. A mini-batch is composed of nbs pairs of untrimmed

video and natural language sentence, each with a manual boundary (S,E) indicating the video’s

interval corresponding to the query, i.e., the target activity moment. The overall loss function for

a video-query-boundary triplet is:

L= λ1Lbound +λ2Lalign, (6.24)
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where λ1 and λ2 are designed to balance the two branches, both of which are empirically set to 1

as they play equally important roles in training while neither of them numerically dominates the

loss by sharing the same cross-entropy based formulation. The EMB model is optimised end-to-

end by minimisingL using stochastic gradient descent. Its overall training process is summarised

in Algorithm. 6.

Algorithm 6: EMB for video grounding with uncertain labels.

Input: An untrimmed video V f , a query sentence Q, a temporal boundary (S,E).

Output: An updated video activity localisation model.

// Bounding branch

Encode frames by content-guided attention via Eq. (6.13)(6.14);

Fuse frames with query and predict per-frame endpoint probabilities via Eq. (6.15);

// Alignment branch

Construct 2D feature map of proposals V s;

Encode proposals by boundary-guided attention via Eq. (6.13)(6.16);

Fuse proposals with query and predict proposal-query alignment scores via Eq. (6.17);

// Supervisions to both the branches

Construct the elastic boundary via Eq. (6.19)(6.20);

Optimise model weights by minimising L in Eq. (6.24);

6.4 Experiments on Knowledge Propagation from Uncertain Labels

6.4.1 Datasets and Metrics

Datasets. Beyond the two benchmark datasets adopted in Section 6.2, we further evaluated

our EMB model on the TACoS dataset to facilitate extensive comparisons with contemporary

methods trained by manual labels. To be concrete, our experiments were carried out on three

benchmark datasets, including (1) TACoS (Regneri et al. [148]) adapted from the MPII Cooking

Composite Activities dataset (Rohrbach et al. [151]), (2) ActivityNet-Captions (Krishna et al.

[91]; Heilbron et al. [70]) and (3) Charades-STA (Gao et al. [50]; Sigurdsson et al. [162]). We

summarise their different data characteristics in Table 6.4. Among the three datasets, the raw

videos in TACoS have the longest durations (287.14s) while that of its MoIs are shortest in

contrast (5.45s), which means that the video activities are temporally covering less than 2% of
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the complete videos on average. Therefore, the videos in TACoS contain a lot of redundancy in

terms of every MoIs. On the other hand, the ActivityNet is very different from TACoS whose

activities temporally cover much larger proportions of the videos (∼ 30%) than the other two.

Dataset #Video #Train #Val #Test Lv Lm Lw

TACoS 127 10,146 4,589 4,083 287.14s 5.45s 10.1

ActivityNet 19,290 37,421 17,031 17,505 117.61s 36.18s 14.8

Charades 6,672 12,408 - 3,720 30.59 8.22 7.2

Table 6.4: Statistics of video activity localisation datasets. Lv and Lm are the average lengths
of untrimmed videos and MoIs respectively, whilst Lw is the average number of words in query
sentences. The higher ratio between Lv and Lm with shorter Lw dictate harder localisation tasks.

Evaluation metrics. Similar as in Section 6.2, we measure the quality of video activity lo-

calisation results by their average recall rate at different temporal IoU thresholds (IoU@m).

The predicted boundary (S̃, Ẽ) of a MoI obtained by Eq. (6.22) is considered correct if its IoU

with the manual temporal label (S,E) is greater than the thresholds m which are predefined as

m = {0.3,0.5,0.7}. Besides, we also reported the Mean Intersection over Union (mIoU) of all

predictions with their corresponding ground-truth temporal labels to show the average overlaps

between the predicted and manual boundaries. Specially, for our elastic boundary, we enumerate

all the start-end pairs from S̃SS and ẼEE (Eq. (6.23)), respectively. If a manual boundary’s overlap to

any of the combinations is greater than the IoU threshold, we consider it is correctly predicted.

6.4.2 Implementation Details

For fair comparisons, we adopted the video features provided by our baseline model (Zhang

et al. [217]) and the 300-D GloVe (Pennington et al. [140]) embeddings to encode the input

video frames and query sentences respectively, both remaining fixed during training. We down-

sampled videos to have 128 frames at most by max-pooling and zero-padded the shorter ones.

The output dimension of all the hidden layers are set to 128 as in (Zhang et al. [217]) and the

multi-head variant (Vaswani et al. [182]) of the attention layer in Eq. (6.12) was used with 8 heads

followed by layer normalisation and random dropout at 0.2. The EMB model was trained for 100

epochs with a batch size of 16. It was optimised by an Adam optimiser using a linearly decaying

learning rate of 0.0005 and gradient clipping of 1.0. In the alignment branch, we downsampled

the videos to have 16 clips by the max-pooling of every 8 continuous frames for constructing
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the 2D feature maps of video segments to avoid over-dense proposals. For training the bounding

branch, we construct the elastic boundary subject to an evolving threshold τ in Eq. (6.20), which

progressively decreased from 1 to 0.5 in the course of training.

6.4.3 Comparisons with the State-of-the-Art

We evaluate the effectiveness of the proposed EMB model by comparing it with 13 state-of-the-

art methods, including VSLNet (Zhang et al. [217]), IVG (Nan et al. [124]), 2D-TAN (Zhang

et al. [221]), LGI (Mun et al. [123]), DPIN (Wang et al. [185]), DRN (Zeng et al. [214]),

SCDM (Yuan et al. [212]), BPNet (Xiao et al. [199]), CPNet (Li et al. [105]), CPN (Zhao et al.

[228]), DeNet (Zhou et al. [229]), CBLN (Liu et al. [108]), and SMIN (Wang et al. [186]) Ta-

ble 6.5 shows clear performance advantages of the elastic boundary predicted by our EMB model

over the contemporary competitors. When constructing the elastic boundaries in inference, over

80% of the predictions pairs yielded by the alignment and bounding branches are consistent with

each other (IoU > 0.5). Therefore, the performance improvements we obtained is not due to

over-dense sampling of the potential boundaries. However, to learn with elastic boundary, it

takes the EMB model 4.3 minutes to train for one epoch on ActivityNet-Captions vs. 1.5 minutes

for VSLNet (Zhang et al. [217]). The testing time also increases from 20.6 to 50.6 seconds for

the construction of elastic boundary with the auxiliary alignment branch. Besides, as for the de-

termined boundary yielded by our models, EMB (DET) outperforms the state-of-the-art methods

on TACoS against all the performance metrics while remaining its competitiveness on the other

two datasets. It is important to note that among the three datasets, TACoS poses the hardest test

with the longest average untrimmed videos and the shortest activity moments of interest (see

Table 6.4). That is, TACoS exhibits more realistic scenarios for activity localisation test. In this

context, EMB shows its advantage over other models most clearly when the untrimmed videos

are longer whilst the video MoIs are sparse and far between. Furthermore, the determined bound-

ary yielded by EMB also outperforms the baseline VSLNet (Zhang et al. [217]) by significant

margins on all tests. The more recent IVG (Nan et al. [124]) was also based on VSLNet, sharing

the same baseline as EMB. The notable performance advantages of EMB over both VSLNet and

IVG demonstrate its non-trivial improvements.
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TACoS Charades-STA ActivityNet-Captions

IoU@m IoU@m IoU@mMethod
mIoU

0.3 0.5 0.7
mIoU

0.3 0.5 0.7
mIoU

0.3 0.5 0.7

VSLNet 24.11 39.61 24.27 20.03 45.15 64.30 47.41 30.19 43.19 63.13 43.22 26.16

IVG 28.26 38.84 29.07 19.05 48.02 67.63 50.24 32.88 44.21 63.22 43.83 27.10

2D-TAN - 37.29 25.32 - - - 39.81 23.25 - 59.45 44.51 26.54

LGI - - - - 51.38 72.96 59.46 35.48 41.13 58.52 41.51 23.07

DPIN - 46.74 32.92 - - - 47.98 26.96 - 62.40 47.27 28.31

DRN - - 23.17 - - - 53.09 31.75 - - 45.45 24.36

SCDM - 26.11 21.17 - - - 54.44 33.43 - 54.80 36.75 19.86

BPNet 19.53 25.93 20.96 14.08 46.34 65.48 50.75 31.64 42.11 58.98 32.07 24.69

CPNet 28.69 42.61 28.29 - 52.00 - 60.27 38.74 40.65 - 40.56 21.63

CPN 34.63 48.29 36.58 21.25 51.85 72.94 56.70 36.62 45.70 62.81 45.10 28.10

DeNet - - - - - - 59.75 38.52 - 61.93 43.79 -

CBLN - 38.98 27.65 - - - 61.13 38.22 - 66.34 48.12 27.60

SMIN - 48.01 35.24 - - - 64.06 40.75 - - 48.46 30.34

VSLNet† 28.15 39.07 27.59 16.65 47.33 67.26 50.46 31.53 42.26 57.75 41.10 25.58

EMB (DET) 36.66 51.74 38.74 24.47 52.47 72.10 58.52 39.65 45.63 63.72 46.72 27.62

EMB (ELA) 49.08 64.61 53.29 38.42 62.77 80.22 69.87 52.98 55.41 73.30 57.21 39.07

Table 6.5: Performance comparisons of EMB to the state-of-the-art models on three video activ-
ity localisation benchmark datasets. The 1st/2nd best results are highlighted in red/blue, respec-
tively. The ‘DET’ modifier of EMB stands for the determined boundary predicted in Eq. (6.22)
while ‘ELA’ is the elastic boundary (Eq. (6.23)). The symbol † denotes the reproduced results of
our baseline model under the strictly identical setups using the code from authors.

6.4.4 Component Analysis and Ablation Study

For in-depth understandings of the proposed EMB model, we conducted comprehensive ablation

studies by comparing our determined predictions with the ones yielded by our baseline (Zhang

et al. [217]) to investigate the effectiveness of model designs.

Components analysis. We investigated the individual contributions of different components

in our EMB model to its improvements over the baseline model (Zhang et al. [217]). As shown

in Figure 6.6, both our elastic boundary learning objective (Eq. (6.21)) and the MGIN brought

clear benefits to the baseline. Such results demonstrate the effectiveness to learn the temporal

endpoints of video activities with higher flexibility so to tolerant the uncertainty of manual labels.

Besides, they also imply the superiority of our visual encoders which conduct both within and

cross-modal attention learning and complement the boundary and content information of video
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segments mutually.
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Figure 6.6: Effects of the proposed components in EMB. The elastic moment bounding formu-
lation is denoted as component “A” while the multi-grained interaction network is “B”.

Candidate endpoints mining. We evaluated the advantages of mining candidate endpoints

adaptively over several heuristic strategies: (1) boundary extension (Zhang et al. [217]), (2)

smoothing by a gaussian kernel (Wang et al. [186]; Xiao et al. [199]) and (3) fitting single-frame

manual endpoints (baseline). As shown in Figure 6.7, simply improving the boundary’s flexibility

without considering their reliability (“Extend”) tends to degrade the model’s performances on

both datasets. Boundary smoothing by a gaussian kernel (“Kernel”) is sometimes beneficial but

less stable than our adaptive designs. This is because their candidates were determined according

to only the duration of MoIs without considering the video context and query’s unambiguity.
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Figure 6.7: Effects of candidate endpoints mining strategies used in training. “Fix”: single-
frame manual boundaries. Multiple candidate endpoints are generated by extension (“Extend”),
a gaussian kernel (“Kernel”), or our elastic bounding.

Evolving threshold. We studied the effects of threshold’s evolving schemes to our elastic

boundary constructions (Eq. (6.20)). Figure 6.8 shows the curves of schemes and their corre-

sponding performances on Charades-STA. The model trained with a constant threshold yielded

the worst results in most cases, which indicates that an evolving threshold is beneficial as a trade-

off between reliability and flexibility at different training stages. Besides, the model learned
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with the “Sigmoid” scheme is superior to others in all cases. By comparing the curves in Fig-

ure 6.8, it’s clear that the ‘Sigmoid’ scheme maintains a persistently high threshold at the early

training stages to avoid introducing distractions to boundary identification when the alignment

branch is under-trained, then drops rapidly to involve more diverse candidate endpoints when the

alignment branch is reliable.
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Figure 6.8: Effect of constructing elastic boundary subject to an evolving threshold on Charades.

Guided attention. We validated the effectiveness of our guided attention mechanism by replac-

ing it in our MGIN encoder by the conventional attention modules proposed in (Vaswani et al.

[182]). From the comparison results shown in Figure 6.9, the models trained with guided atten-

tion outperformed their counterparts which learned the video representations without interacting

information in multiple granularities. Such results imply the complement of segment’s content

and boundary information, which encourages the video feature representations to be sensitive to

redundancy and activity transitions.
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Figure 6.9: Effect of guided attention mechanism by comparing with the conventional attention
modules (Vaswani et al. [182]).

Qualitative case study. For qualitative study, we provide several video examples in Figure 6.10

which are showing video activities corresponding to semantically similar sentence descriptions.
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However, their manual boundary are inconsistent, demonstrating the uncertainty in temporal

boundary. Specifically, the manual boundary for Q1 starts from grabbing the food right before

putting it into the mouth while Q2 skipping the action of “grabbing” and start when the person

takes a bite. The Q3 involves even more redundancy which covers the actions of taking a plate

from a desk and blending foods by a folk, before the person really deliver the food to his mouth.

In contrast, the predictions made by our model are more consistent on interpreting the action of

“eat” in different videos, i.e., always starts from delivering food to the mouth. This is because,

by reliably exploring multiple candidate endpoints for the target moments, we train the model

to locate video activities in higher flexibility so that the model can learn from the boundary that

are universally interpretable instead of fitting the pre-fixed manual endpoints which will lead to

visual-textual mis-correlations.
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17.710.2

16.9 30.8
30.818.4

: person eats some food. 

IoU: 0.898

: person eat the food.

IoU: 0.893

: person eat some foods.

IoU: 0.681

22.614.311.7 21.8

Figure 6.10: Cases of video activities on ActivityNet-Captions with similar semantics but in-
consistent manual boundaries. The manual and predicted boundary are shown in red and green,
respectively.

6.5 Summary

This chapter explores knowledge propagation from incomplete labels to learn discriminative rep-

resentations for video segments, so as to accurately locate moments-of-interest in untrimmed

videos. Specifically, we focus on two common challenges when the incomplete labels are given

in collective or unreliable. In the case of learning from collective labels, we presented a novel

Cross-sentence Relations Mining method for learning video activity localisation in the absence

of per-sentence temporal annotation, i.e. the descriptions of activity are associated with videos

rather than segments. CRM explores cross-sentence relations within each paragraph descrip-
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tion of a long video to optimise video moment proposal selections in training so to improve

per-sentence localisation in testing. CRM minimises mismatching individual sentences to video

moment proposals during training by constraining their selections according to the temporal or-

dering and pairwise sentencing as expanded queries in the context of a paragraph description of

video. This improves notably CRM’s capacity to locate more accurately video activities against

more complex language descriptions. For learning from unreliable labels, we introduced a new

Elastic Moment Bounding approach to learn a more robust model by constructing elastic bound-

ary tailored to learning more flexibly the endpoints of every target moment. The EMB is enabled

and encouraged to select the optimal boundary for each video moments by exploring semanti-

cally similar activities, rather than being enforced to predict the rigid manual labels. With such

an elastic bounding design, EMB learns a more accurate and universal visual-textual correlation

generalisable to activity moment localisation in more naturally prolonged unseen videos where

activity of interests are fractionally small and harder to detect. Comprehensive experiments on

three activity localisation benchmark datasets demonstrate the competitiveness and unique ad-

vantages of both the CRM and EMB models over the state-of-the-art models. Extensive ablation

studies further provided in-depth analysis and understandings of the individual components for-

mulated in them.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presented a comprehensive study on unsupervised deep learning of visual representa-

tions. Particularly, the conventional ‘pure’ unsupervised learning without any manual labels was

expanded to a more generalised setup to discuss deep visual feature learning when human an-

notations are insufficient and/or inadequate for constructing reliable supervisions to underlie the

mapping functions from data to the desired predictions. In this context, four types of generalised

unsupervised learning problems that widely exist in various computer vision applications were

investigated, including knowledge aggregation from local data structure, knowledge discovering

from global data structure, knowledge transferring from relevant labels, and knowledge propaga-

tion from incomplete labels. Whilst remarkable progress have been made by recent works in the

literatures, there are still some remaining challenges to be resolved. To this end, novel methods

were proposed in this thesis to address the limitations of existing solutions. Specifically,

(1) In Chapter 3, a novel progressive neighbourhood mining idea is introduced to learn dis-

criminative representations of unlabelled imagery data by exploring inter-sample adjacent

relationships in local neighbourhoods with a divide-and-conquer principle, which com-

bines the merits of cluster analysis and sample specificity learning while mitigating their

disadvantages in being misled by inaccurate pseudo cluster labels or insensitive to within-

class visual variations. As an instantiation, an Anchor Neighbourhood Discovery method

is proposed to progressively learn with confidently positive sample pairs in a curriculum
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learning scheme to improve model’s robustness to unreliable positive signals which are

inconsistent with the underlying class memberships. Furthermore, to better balance the

size of local neighbourhoods and their purity (i.e., true positive rate), a novel Progressive

Affinity Diffusion model is introduced to broadcast the potential positive inter-sample re-

lationships across adjacent neighbourhoods with a cyclic constraint. By expanding local

neighbourhoods while maintaining their consistency with underlying class memberships,

PAD is sensitive to complexer intra-class visual variations and higher inter-class similarity,

hence, more class discriminative than training with neighbourhoods in restricted size.

(2) In Chapter 4, class discriminative visual representations are learned from the global cluster

structure without any human labels by two new deep clustering methods PartItion Confi-

dence mAximisation and Semantic Contrastive Learning. Specifically, the PICA model is

formulated to derive the decision boundary of the underlying semantic classes by maximis-

ing the partition confidence which is beneficial to improve the semantic plausibility of the

resulted clusters. On the other hand, SCL is a novel variant of instance contrastive learning

to encourage the sample specificity learning to be sensitive to underlying class member-

ships by imposing explicitly distance-based cluster structures on unlabelled training data

to enable cross-cluster instance discrimination. Inheriting the class-insensitive formula-

tion of sample specificity learning, the SCL model is robust to the errors propagated from

inaccurate cluster assignments to visual feature learning.

(3) In Chapter 5, a new self-SUPervised REMEdy approach is proposed to facilitate effective

knowledge transfer from a relevant labelled source domain to benefit clustering of images

on an unlabelled target domain. Considering that the relationships between different data

domains are usually complex and unpredictable in practice, the SUPREME model makes

no assumption on seen target data as in FSL or known target classes in relation to the

source classes as in ZSL and domain adaptation. In this case, SUPREME complements

the insufficient transferred supervisions constructed by non-transferable knowledge ac-

quired in source domains by self-supervisions intrinsically available in target domains and

adaptively balances the two types of supervision on each independent instances to ensure

learning discriminative visual representations from the hard samples where the transferred

supervisions are ambiguous.
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(4) In Chapter 6, a novel Cross-sentence Relations Mining model for video activity localisation

by natural language is developed to acquire accurate understandings of video-text align-

ment from human annotations on associating descriptions with videos rather than video

moments, i.e. incomplete labels given in collective. The CRM model exploits the cross-

sentence relationships in a video’s paragraph description to explicitly constrain cross-

moment relationships, so as to alleviate the ambiguity of each individual sentence. Despite

such constraints are less complete than the supervisions constructed by per-sentence fine-

grained temporal annotations, they are more practical to be collected for model training.

Moreover, a new Elastic Moment Bounding method is proposed in Chapter 6 for video ac-

tivity localisation with inherently uncertain temporal labels which will lead to ambiguous

supervision signals when being considered as oracles, and result in biased visual-textual

correlation. In EMB, each video moments is modelled adaptively by an elastic bound-

ary with a set of candidate endpoints. This enables the model to learn to select optimal

endpoints from consistent visual-textual correlations among semantically similar activities

and obtains universal knowledge about video-text alignments.

7.2 Future Work

Beyond the methods developed in this thesis, there are still some remaining limitations and chal-

lenges in the discussed problems that are worth to be further investigated in future works. These

are summarised as follows:

(1) Aggregating knowledge from local data structure in representation learning: The

AND and PAD models proposed in this thesis yielded promising performances on learn-

ing discriminative visual features without any human annotations, whilst the benchmark

datasets widely adopted in the field are mostly well-curated to be object-centric (Locatello

et al. [111]; Russakovsky et al. [153]), i.e., the objects of interest occupy the main and

most salient regions. However, large-scale natural images collected in the wild are usually

with complex background and in arbitrary structures. Therefore, effective attention learn-

ing without constraints from manual labels is worthy of further study, especially with the

help of the rising transformer-like models (Vaswani et al. [182]; Devlin et al. [38]) which

have been shown remarkable on learning both sequential and spatial attention.

(2) Discovering knowledge from global data structure in deep clustering: Whilst the two
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proposed PICA and SCL approaches are able to derive discriminative visual features and

semantically plausible separations for unlabelled image data, they hold two stringent as-

sumptions which are common in the literature of deep clustering but not always valid in

practice. First, the number of clusters are trivially assumed known. It is challenging to

accurately estimate how many classes are involved in a collection of unlabelled images

without labelling and knowing their semantics. Although this is a long-standing and crit-

ical problems in clustering (Wang et al. [187]; Milligan and Cooper [120]; Maulik and

Bandyopadhyay [117]), it will be interesting and beneficial to further aggregate such an

estimation task into the end-to-end learning of clusters and visual features to approach to

their global optimum. Another assumption is on the balanced class distributions. Such

an assumption is usually made to avoid trivial clustering solutions when a majority of

samples are assigned into minor clusters (Xie et al. [200]; Yang et al. [206]). However,

it is well-known that natural data usually follows a long-tailed distribution (Dong et al.

[42]; Japkowicz and Stephen [83]; Weiss [191]), hence, how to deal with class imbalance

in deep clustering remains an open question.

(3) Transferring knowledge from relevant labels in transfer clustering: The SUPREME

model presented in this thesis is formulated with fewer assumptions on the unlabelled

target data and their underlying semantic classes, leading to a more scalable model which

is applicable in arbitrary transfer learning scenarios. However, it is interesting to conduct

further study on how can such a generic model benefits more transfer learning tasks beyond

direct deployment when additional information is available, e.g. fine-tuning or by more

advanced designs to make use of extra expert knowledge. For example, when the target

classes are known in relation to source classes in zero-shot learning, it is possible to obtain

the initial cluster assignments according to such knowledge without relying on independent

clustering algorithms like k-means.

(4) Propagating knowledge from incomplete labels in video activity localisation: Although

the presented CRM and EMB models are designed to learn universal visual-textual correla-

tions from collective or uncertain human annotations, the obtained video-text knowledge is

likely biased to the training data given its restricted scale. Considering that an untrimmed

and unstructured video is equivalent to a sequence of hundreds or thousands of images,

collecting and curating large-scale video data is fundamentally a more challenging task
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than labelling individual images in similar scale, let alone making annotations. Given such

biased knowledge, one drawback of existing localisation models is their poor scalability to

locate video activity in videos filmed in novel scenarios and described by unknown vocab-

ulary (Bao and Mu [6]). Along with the rapid developments of the image-text foundation

models (Radford et al. [144]; Qi et al. [141]) which acquires comprehensive visual-textual

knowledge from massive amount of pairwise image-text data, one potential solution will

be bridging videos and text through images to facilitate more generic localisation models

which is applicable to unseen scenes for unknown activities.
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