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Abstract

Polygonal billiards represent one of the simplest examples of systems with anomalous

dynamics. So far, they have resisted numerous attempts to fully describe their dynamical

behaviour. There is still a lack of complete understanding of even some basic features,

such as ergodicity or the decay of correlations. In this thesis, we study the dynamical

properties of triangular billiards using numerical means. We highlight the importance of

the billiard table geometry, more specifically symmetry, for the resulting dynamics. We

show that while typical triangular billiards appear to show correlation decay as expected

by the community, symmetric billiards may not even be ergodic with respect to the uni-

form distribution in phase space. We provide compelling evidence that symmetry plays

a decisive role in the dynamics. We further show that the relation between dynamical

properties of symmetric and right-angled triangular billiards shows a rich interplay.
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Notation and Abbreviations

GM an angle of π(
√
5− 1)/4

SM an angle of π(
√
2− 1)/4

PiPi an angle of π2/8

SQ2 an angle of π
√
2/4

SQ3 an angle of π
√
3/4

Log3 an angle of π log 3/2

Pi2 an angle of π/2

Pi4 an angle of π/4

Pi3 an angle of π/3

Leb. Lebesgue measure

FFT Fast Fourier Transform

N total number of collisions, index n used in sums

M number of cuts/initial conditions

α, β defining angles of a triangular billiard

L circumference of a triangular billiard

For the reader’s convenience, we also include the following estimates:

220 ≈ 106

223 ≈ 8× 106

227 ≈ 108

230 ≈ 109
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Introduction

Complex dynamical systems attract a considerable amount of research interest. This

is not altogether surprising as this interesting field sits at the juncture of mathematics,

physics, and their real-world applications. There is a huge body of knowledge pertaining

to the complex chaotic behaviour, see e.g., [5, 8, 17, 19]. While the main mechanisms for

chaotic behaviour such as sensitivity, hyperbolicity, correlation decay, and others have

been identified, many open problems still remain. A next possible target could be in

anomalous dynamics, a field consisting of systems without uniform hyperbolicity and

without exponential decay of correlation, see e.g. [20, 33] for typical references covering

a wide range from rigorous mathematical approaches to real world applications.

Billiard dynamics, broadly understood as the geodesic flow on a Riemannian mani-

fold with a boundary and possibly also with corners and other singularities, lends itself

extremely well to simulating numerous physical systems, both in a realistic and a sim-

plified perspective. In this thesis we focus our attention on planar billiards, which are

characterised by the movement of a point particle in a subset of R2. More specifically, we

shall discuss polygonal billiards, the two dimensional ballistic motion of a point particle

moving within a polygonal domain with elastic collisions at the boundary. These bil-

liards constitute one of the simplest examples of systems with anomalous dynamics [23].

While there is no apparent mechanism responsible for irregular motion, their dynamics

is more complicated than it might seem.

The study of ergodic properties of billiards has been a fruitful area of research. The

9
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geometrical shape of the underlying billiard table determines the qualitative properties

of the system. According to [23], we can divide planar billiards into three main classes

as follows. Firstly, there are billiards with smooth and strictly convex walls, initially

investigated in [6] and termed elliptic in [23]. The second class is constituted by billiards

with piecewise concave and piecewise smooth boundaries (see e.g. [9, 14]). The dynamics

of these billiards is hyperbolic. Lastly, the third class are billiards where the underlying

table is a polygon and the corresponding dynamics is parabolic, see e.g. [21, 22]. There

are several different ways of studying the dynamical behaviour of billiards. One might

study the billiard flow [32, 51], the billiard map or an induced map (see e.g. [10]), or

one might study a simplification of the system, such as the triangular map considered

in [11, 26]. A different approach to studying billiard dynamics amounts to replacing

the classical Hamiltonian with the stationary-state Schrödinger equation with Dirichlet

boundary conditions, see e.g. [37, 40]. These billiards are called quantum billiards.

In this thesis, we shall focus on the polygonal class, which can be further divided into

two cases. The first one consists of rational polygonal billiards, which have all angles of

the billiard table commensurable with π, while the second one encompasses irrational

polygonal billiards, where at least one angle is an irrational multiple of π. There are more

results in the literature for the rational case, as the number of scattering angles occurring

for a given orbit in rational polygonal billiards is finite and the phase space foliates into

invariant sets which consists of collections of lines. The dynamics on these invariant lines

can be captured by one-dimensional piecewise linear invertible maps, known as interval

exchange transformations, which can be studied rigorously. Fairly accessible reviews are

available, see e.g. [22, 38, 49]. Overall, this device, namely the reduction to interval

exchange transformations, makes it possible to develop computable criteria for various

dynamical properties such as minimality [30], ergodicity [7], or weak mixing [44]. On

the other hand, a seminal result [29] excludes the possibility of (strong) mixing. In this

context a set of polygonal billiards which are weakly mixing has been described in [24].

Maybe the only result concerning ‘typical’ polygonal billiards and ergodicity of Lebesgue
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measure is [32], where the authors used sophisticated approximations of general polygons

by rational polygons. A constructive example can be found in [50].

Alongside and complimenting these rigorous claims are results of numerical simula-

tions, usually found in the physics literature and focusing on irrational polygonal bil-

liards, see e.g. [1, 10]. Numerical results suggest that irrational billiards are ergodic with

respect to the Lebesgue measure, in agreement with rigorous claims [12]. In some cases,

correlation decay indicates weak and even strong mixing [11, 26]. However, numerical

results are not always conclusive [42, 53].

Let us now focus solely on the subject of triangular billiards. Again, even basic

properties like the existence of dense orbits are hard to prove [41]. We can divide

triangular billiards into three groups as follows. Firstly, we have rational triangular

billiards. The dynamics in these triangles is not ergodic, it is in fact pseudointegrable [22].

Interesting facts about lattice polygons, introduced in [48] are investigated in [31] and

[39]. Next there are triangular billiards where exactly one angle is a rational multiple of

π, such as typical right-angled triangular billiards. These have been extensively studied,

with somewhat mixed results. Some authors claim weak (but not strong) mixing [2],

some claim non-ergodicity [53], extremely slow logarithmic diffusion [27], and [42] even

argues for ergodicity in spite of [53]. Lastly, we have (fully) irrational triangular billiards,

with all angles irrational multiples of π. Numerical simulations indicate that they are

ergodic and mixing [10].

The popularity of triangular billiards stems not only from the triangle being the

simplest polygon resulting in a non-trivial dynamics but also from the fact that the

dynamics in triangular billiards can model particle collisions in different settings. More

specifically, the dynamics in a right-angled triangular billiard corresponds to a system of

two elastic hard-point masses moving between hard walls [15], whereas the dynamics in

a generic acute triangular billiard is equivalent to the motion of three point-like particles

on a ring. In all these cases, the masses of the particles relate to the angles of the

corresponding triangular billiard.
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In this thesis, we mainly focus on numerically investigating ergodic properties of ir-

rational triangular billiards by approximating them using rational triangular billiards.

We are interested in the ergodicity of Lebesgue measure, partly as the uniform distri-

bution is the natural candidate and also due to results of [32], that assert ergodicity

of Lebesgue measure for a large set of irrational triangular billiards. Again, deriving

analytical results is intrinsically very difficult, which explains why most concrete results

are numerical in nature. However, as mentioned earlier, some of the reported results

contradict each other. Moreover, authors rarely properly explain how they carried out

their simulations, making reproducing their results nearly impossible. In this thesis, we

aspire to make our numerical simulations transparent and easily reproducible by includ-

ing a chapter documenting the algorithms we used as well as by making the code public.

As we demonstrate later in the thesis, some quantities show considerable dependence on

the method of their calculation, making this transparency all the more important.

While most results in the literature, see e.g. [53], claim that changes in irrationality

of the angles of the billiard table are the leading cause for changes in the dynamical

behaviour, a counterargument, presented in [36], asserts that geometry is more impor-

tant. The authors of [36] have studied a one parameter family of irrational triangular

billiards, defined by setting the lengths of the sides of the table be consecutive integers

(N,N + 1, N + 2) for N ∈ [3,∞), using results of [16, 47]. Their results imply that

geometry is dictating the change in the dynamics.

Although we do not study triangular billiards constructed in this fashion, we shall

present results reinforcing that geometry, or rather symmetry, is the key factor in the

ergodic behaviour of triangular billiards. In all our simulations, number theoretic prop-

erties of angles in the billiard do not play a qualitative role. Somewhat surprisingly the

deciding factor for the dynamical behaviour is whether the investigated triangular table

is symmetric, i.e. isosceles, or asymmetric. We present numerical results suggesting that

while asymmetric triangular billiards seem to be mixing, in line with results in the litera-

ture [10], their symmetric counterparts exhibit behaviour which suggests non-ergodicity
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of Lebesgue measure.

The organisation of this thesis is as follows. Chapter 1 covers the necessary mathe-

matical background, including the billiard map for triangular billiards and an overview

of some important facts about ergodicity and mixing. We also clarify how we define the

triangular billiards used in our computations. Chapter 2 outlines algorithms used in the

numerical computations. We provide an explanation and justification for the methods

of computation of autocorrelation functions as our simulations indicate that some cases

of triangular billiards exhibit considerable dependence on the method used in the cal-

culation of autocorrelations. A brief excursion into rational triangular billiards can be

found in Chapter 3. We discuss phase portraits, an unfolding of a particular example of

an almost integrable rational billiard, and examine the dynamical behaviour of rational

approximations of irrational triangular billiards. Results pertaining to asymmetric irra-

tional billiards are in Chapter 4. Outcomes of our simulations confirm the belief found

in the literature that asymmetric irrational billiards are mixing. The effects of changing

time scales and ensemble sizes are investigated in order to ensure that our conclusions

do not paint an incomplete picture. In our investigation, we discovered that symmetric

triangular billiards exhibit different dynamical behaviour to that of their asymmetric

counterparts. We present results of several different numerical tests, showcasing the

effects of symmetry and its breaking, in Chapter 5. Chapter 6 discusses right-angled

triangular billiards. While the right-angled and symmetric billiards are closely related

by the process of unfolding, this does not fully translate to their dynamics. Addition-

ally, we present results indicating that the rich dynamical behaviour of the right-angled

case does not seem to stem from the fact that the right angle is a rational multiple of

π by comparing their behaviour to other irrational triangular billiards with one angle

commensurable with π. Finally, the last chapter, Chapter 7, focuses on so-called thin

triangular billiards. We take inspiration from the only explicit example, [50], where the

author proves ergodicity of Lebesgue measure for a triangular billiard constructed in a

particular way using Liouville numbers. The study of triangular billiards where at least
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one angle of the table is small provides us with further opportunities to study the effects

of symmetry.



Chapter 1

Mathematical background

The purpose of this chapter is to provide an introduction to triangular billiards. We start

with the slightly broader topic of polygonal billiards, and then focus on the triangular

case. This chapter is based on [14, 38, 52].

The outline of this chapter is as follows. In Section 1.1 we introduce and explain

polygonal billiards, along with the coordinates used, the map used to model the dynamics

and we briefly discuss why we chose to focus on the map instead of the flow. An

explanation of ergodicity and mixing is given in Section 1.2. In Section 1.3, the different

observables we use to determine ergodicity and mixing are discussed. Lastly, the various

angles and triangles, along with the notation, are summarised in Section 1.4.

1.1 Polygonal billiards

Firstly, we define the broader notion of polygonal billiards, before specialising on the

triangular case. We are mainly following [14].

Definition 1.1. Let D ⊂ R2 be a compact polygon. A polygonal billiard system corre-

sponds to the free motion of a point particle inside of D with specular reflection at the

boundary ∂D.

15



Chapter 1. Mathematical background 16

Remark. In general, D does not have to be convex or simply connected. However, we

shall assume both.

Notation 1.1. The boundary ∂D is a finite union of closed line segments Γi,

∂D = Γ = Γ1 ∪ · · · ∪ Γr,

where r is the number of vertices of D. We refer to D as the billiard table and Γ1, . . . ,Γr

the walls. We call x ∈ D a corner point if x ∈ Γ∗ = ∂Γ1 ∪ · · · ∪ ∂Γr, and a regular

boundary point if x ∈ Γ̃ = Γ \Γ∗. We also fix an orientation of each Γi by requiring that

D be to the left.

Now we can construct the dynamics on a billiard table. Let q ∈ D denote the position

of the moving particle and v ∈ R2 its velocity vector. Both are functions of time t ∈ R,

i.e. q = q(t) and v = v(t). While the particle moves inside the table, its velocity is

constant:

q̇ = v and v̇ = 0 for q ∈ int(D), (1.1)

where dot denotes the time derivative.

n

n

v+

v+

v−

v−

Figure 1.1: Velocity vector change at collision.

When the particle collides with the regular part of the boundary Γ̃, its velocity vector
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is instantaneously reflected along the inner normal vector to Γ at q. This corresponds to

the classical rule ‘the angle of incidence is equal to the angle of reflection’, see Figure 1.1,

and can be represented by

v+ = v− − 2⟨v, n⟩n, (1.2)

where v+ and v− refer to velocities after and before collision respectively, and n denotes

the inward facing normal to Γ̃ at the point q. If the moving particle hits a corner point,

i.e. q ∈ Γ∗, it stops and the motion will no longer be defined beyond this point as there

is not a unique way to reflect it. This is one of the facts complicating the study of

polygonal billiards.

As the equations (1.1) and (1.2) preserve the Euclidean norm of ∥v∥, we consider a

particle moving with unit speed, ∥v∥ = 1.

The following lemma ([14, p.24]) answers the question whether a particle can spend

an infinite time being ‘trapped’ by a corner. We shall revisit it in Chapter 7.

Lemma 1.1. If a particle enters a neighbourhood of a corner in a polygonal billiard

with an angle γ > 0 and collides with both walls adjacent to the corner, it must leave

that neighbourhood after at most ⌊π/γ⌋ collisions.

γ

ϕn

ϕn+1

Figure 1.2: Proof of Lemma 1.1.

Proof. As walls of the corner are flat, it is easy to check that the angles of incidence/reflection

grow as ϕn+1 = ϕn + γ, see Figure 1.2. Therefore, after ⌊π/γ⌋ := m collisions, ϕm > π

as ϕ0 > 0. Thus, the particle needs to leave the neighbourhood of the corner.
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Remark. Lemma 1.1 also demonstrates that in order for a particle to hit the corner

point, the immediate collision beforehand cannot be with one of the adjacent sides as

that would mean ϕn = 0.

The state of the moving particle at any time is uniquely specified by its position

q ∈ D and the unit velocity vector v ∈ S1. The phase space of the system is

Ω = {(q, v)} = D × S1 ,

a three-dimensional manifold with boundary ∂Ω = Γ× S1. Visually, Ω can be imagined

as a ‘doughnut’ with D as its cross-section.

We can also identify the collision pairs (q, v−) and (q, v+) for all regular boundary

points q ∈ Γ̃, effectively ‘glueing’ Ω along its boundary. The natural projections of Ω

onto D and S1 are denoted by πq and πv, so that πq(q, v) = q and πv(q, v) = v.

Let Ω̃ ⊂ Ω denote the set of states (q, v) for which the dynamics of the moving particle

is defined for all times −∞ < t < ∞. We get a one-parameter group of transformations

Ψg : Ω̃ → Ω̃

with continuous time g ∈ R, which we call the flow. The flow satisfies the following:

Ψ0 = id and Ψg+h = Ψg ◦Ψh for all g, h ∈ R. Every trajectory of the flow {Ψgx}, x ∈ Ω̃

is a continuous curve in Ω thanks to the identification of v− and v+. The projection

πq(Ψ
gx) onto the table D is called a billiard trajectory. It consists of a directed polygonal

line the vertices of which are points of collision on the boundary.

Although many results in the literature focus on investigating the billiard dynamics

with regards to the flow, we chose to study the collision map instead. Our interest

stems from a project investigating approximations of transfer operators associated with

triangular billiards and their application in industry [13, 45, 46] which use the map as

it is an easier object to study than a flow.
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One can reduce the flow to a map by constructing a cross-section. Given a flow

Ψu : Ω → Ω on a manifold Ω, one finds a hypersurface M ⊂ Ω transversal to the flow

so that each trajectory crosses M infinitely many times. Then the flow induces a return

map F : M → M and a return time function L(x) = min{u > 0|Ψu(x) ∈ M} on M , so

that F (x) = ΨL(x)(x).

For a billiard table, this hypersurface M is usually constructed on the boundary of

the billiard table, i.e. on the set Γ × S1. Due to our previous identification of v− and

v+, it is customary to describe the cross-section as the set of all velocities after collision,

i.e. v+:

M = ∪iMi, Mi = {x = (q, v) ∈ Ω | q ∈ Γi, ⟨v, n⟩ ≥ 0}, (1.3)

where n denotes the unit normal vector to Γi pointing inside D. The set M is a two-

dimensional submanifold in Ω called the collision space.

Remark. Let x = (q, v) ∈ Mi. Then the trajectory Ψgx is defined for some small

interval 0 < g < ε when q is a regular boundary point (q ∈ Γ̃) with ⟨v, n⟩ > 0.

If the trajectory Ψgx for x ∈ M is defined during some interval of time (0, ε), then

it can be shown that it will intersect the surface Γ× S1 at a future time τ(x) > 0, and

we call τ(x) the return time. Since the particle has unit speed, the return time τ(x) will

be equal to the distance between the two subsequent collisions with the boundary.

Any trajectory of the flow Ψg : Ω̃ → Ω̃ crosses the surface M infinitely many times.

Let M̃ = M∩ Ω̃. We define the return map T as

T : M̃ → M̃, T (x) = Ψτ(x)+0x . (1.4)

The map T is often called the billiard map or collision map and M is called the phase

space of the billiard map T .

For every point x ∈ int(M) its trajectory Ψgx is defined, at least, for 0 < g <

τ(x), i.e. until the next collision with the boundary, at which there are two different
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possibilities:

1. a regular collision, i.e. Ψτ(x)+0x is not a corner point;

2. the trajectory hits a corner point and dies.

Note that when x corresponds to a corner point there is no sensible way to define T (x).

Therefore, while T can be extended beyond M̃, we cannot extended it to the whole

collision space M. We can, however, extend it for trajectories either originating or

ending in a corner point by considering only the part of the orbit from/until the corner

point.

1.1.1 Triangular billiards

Among the many ways one can define and describe a triangular billiard table, we chose

the following. We fix the size of one side and vary the adjacent angles. This construction

allows us to study the effect of changing angles in the billiard with ease and hence make

our analysis more approachable as we can conveniently talk about different configurations

just using the two angles, α and β in our notation, see Figure 1.3, and we refer to the

resulting billiard as the α-β triangular billiard. See Notation or Section 1.4 for a list of

angles used along with their abbreviations.

α β

1

ab

Figure 1.3: Illustration of the construction of a triangular billiard. Note our convention:
the horizontal side has fixed length 1, while the adjacent angles α and β are variable. The
sides a and b, as well as the remaining angle, are determined using basic trigonometry.

There are two ways of dealing with dynamics on the billiard table. One can either

use normal Euclidean coordinates on the boundary viewed as a subset of R2, or one uses

the so-called Birkhoff coordinates. Even though at first glance it might seem that using
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v⃗

p = cosφ

α φ β

ab

s

O

Figure 1.4: Illustration of the definition of Birkhoff coordinates (s, p) (in red). The
original speed v⃗ is indicated in light blue. The origin point is denoted by O.

Euclidean coordinates is easier as one can quickly determine and visualise exact position

in the billiard, the converse is true. Therefore, we will work in Birkhoff coordinates

(s, p), which describe the position of our point-like particle on the boundary. They are

defined as follows. We select an origin O on the boundary. In our case, we select the

corner point adjacent to angle α as the origin in all calculations. The position s of the

particle on the boundary is given by the distance from the origin along the boundary,

measured following the orientation of the walls. Denote by φ ∈ [0, π] the angle between

the oriented boundary wall and the outward velocity vector. The momentum p is then

given as p = cosφ, i.e. it is the tangential velocity component. See Figure 1.4 for a

visual representation.

Collision map for triangular billiards

Using Birkhoff coordinates, we can define the billiard map as

T (s, p) = (s′, p′) (1.5)
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where 
s′ = s(1) + (s(1) − s)

√
1−p2√

1−p2 cosλ+p sinλ

p′ =
√
1− p2 sinλ− p cosλ

for p ∈ (ps, 1)


s′ = s(0) − (s− s(0))

√
1−p2√

1−p2 cosκ−p sinκ

p′ = −
√
1− p2 sinκ− p cosκ

for p ∈ (−1, ps),

with

ps =
cs√
1 + c2s

and cs =
s(1) − s

s(2) − s(1)
cscλ− cotλ.

Values of κ, λ, s(0), s(1), and s(2) can be found in Table 1-A as they vary depending

on which side the particle starts.

κ λ s(0) s(1) s(2)

s ∈ (0, 1) α β 0 1 1 + a

s ∈ (1, 1 + a) β π − α− β 1 1 + a 1 + a+ b

s ∈ (1 + a, 1 + a+ b) π − α− β α 1 + a 1 + a+ b 1 + a+ b+ 1

Table 1-A: Table summarising important angles and values for the definition of the map.

The quantity ps introduces a line of discontinuity into the billiard map T , see Fig-

ure 1.5. The value of ps is important as it represents a critical momentum necessary in

order for the trajectory to end up in the opposite corner, given a starting position s. If

p < ps, the particle collides with the wall on the left, p > ps and particle collides with

the wall on the right. These discontinuities are the reason why writing down the n-th

iterate Tn in closed form is intrinsically very difficult.

Unfolding

Instead of considering the orbit bouncing within the triangular billiard it is sometimes

simpler to use a so-called Zemlyakov Katok construction [55]. Rather than reflecting

the orbit we can reflect the triangular billiard about the side of the each collision so

that the trajectory becomes a straight line, see Figure 1.6. This so-called unfolding will



Chapter 1. Mathematical background 23

Figure 1.5: Phase space (on the left) of the SM-GM triangular billiard, divided into
regions by ps (dashed), along with the corresponding images under one iteration of the
map T (right). The colours between left and right hand side match, e.g. the lower left
light blue region maps to the lower right light blue region.

Figure 1.6: Illustration of unfolding of the triangular billiard. Normal trajectory (red,
full line) and the unfolded one (red, dashed) is plotted for one collision.

then produce a complicated and potentially infinite flat surface, where the actual billiard

orbits are given by straight lines. Only very few cases, which we call integrable billiards,

will result in a simple topology, namely a torus. These are the equilateral triangular

billiard (with all angles equal to π/3), the symmetric right-angled triangular billiard

(with angles π/4, π/4, π/2), and the asymmetric right-angled triangular billiard (with

angles π/3 and π/6). The unfolding of the last case is given in Figure 1.7.
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Figure 1.7: Unfolding of an integrable triangular billiard with angles π/6, π/2, π/3. The
original triangular billiard is indicated by the thick outline. The opposite sides of the
resulting parallelogram are identified so that the resulting flat surface is a flat torus.
Two nearby orbits (originating from the dark blue circle) are shown by straight lines
(solid red), with the corresponding collisions with the horizontal side identified by red
geometric shapes. A potential Poincare cross section for the flow is indicated is yellow.

Classification of triangular billiards

Although the angles used in the construction of the triangular billiard do not play a

qualitative role in the map, they play an important role in the dynamical properties of

the billiard. We can classify them as follows:

1. Rational triangular billiards: all angles are rational multiples of π, i.e. α, β ∈ πQ.

We further investigate their behaviour in Chapter 3.

2. One rational angle: one angle is a rational multiple of π, while the other two are

irrational multiples of π. Examples include generic right-angled triangular billiards,

which we cover in Chapter 6.

3. Irrational triangular billiards: all angles are irrational multiples of π, i.e. α, β ∈

π(R \Q). We will further subdivide this category in Section 1.4.

1.2 Ergodicity and mixing

Now that we defined triangular billiards, we shall review the dynamical properties we are

interested in investigating. We provide a gentle introduction, focusing on the necessary
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information for this thesis, following mainly [14] and [52].

Definition 1.2. Let X be a set. A σ-algebra F on X is a nonempty collection of subsets

of X with two properties:

(i) it is closed under countable unions; i.e. if Ai ∈ F for all i ≥ 1, then ∪∞
i=1Ai ∈ F

(ii) it is closed under taking complements, i.e. if A ∈ F, then Ac = X \A ∈ F.

A pair (X,F) is called a measurable space and the sets A ∈ F are said to be measurable.

Definition 1.3. A measure µ on (X,F) is a function µ : F → R ∪ {+∞} with the

following properties:

(i) it is nonnegative, i.e. µ(A) ≥ 0 for all A ∈ F;

(ii) the empty set has zero measure, i.e. µ(∅) = 0;

(iii) µ is σ-additive (or countably additive), i.e. if {Ai}∞i=1 ∈ F and Ai ∩ Aj = ∅ for

i ̸= j, then µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai).

We say that µ is a probability measure if µ(X) = 1 and call (X,F, µ) a probability space.

Remark. We only consider probability measures.

Definition 1.4. Let (X,F) be a measurable space. A transformation T : X → X is said

to be measurable if T−1(B) ∈ F for every B ∈ F.

Definition 1.5. Let M(X) denote the set of all probability measures on (X,F). A

measurable transformation T : X → X induces a map T∗ : M(X) → M(X) defined by

(T∗µ)(B) = µ(T−1B) for every µ ∈ M(X) and B ∈ F. We then say that a measure

µ ∈ M(X) is T -invariant if T∗µ = µ. We denote by MT (X) the set of all T -invariant

probability measures on X and refer to a quadruple (X,F, T, µ), µ ∈ MT (X), as a measure

preserving transformation.

Definition 1.6. Let (X,F, T, µ) be a measure preserving transformation. We say a
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measurable set B ⊂ X is almost T -invariant if µ(T−1(B)∆B) = 0 and T -invariant if

T (B) = B.

Remark. If T (B) ⊂ B and T (Bc) ⊂ Bc, then B is T -invariant.

Definition 1.7. A T -invariant measure µ ∈ MT (X) is said to be ergodic if for any

almost T -invariant set B ⊂ X we have µ(B) = 0 or µ(B) = 1.

The following result can be found in, e.g. [52, Theorem 1.4]

Theorem 1.1 (Poincaré’s Recurrence Theorem). Let (X,F, T, µ) be a measure preserv-

ing transformation. Let E ∈ F with µ(E) > 0. Then µ-almost all points of E return

infinitely often to E under iterations by T , i.e. there exists F ⊂ E with µ(F ) = µ(E)

such that for each x ∈ F there is a sequence n1 < n2 < n3 < · · · of natural numbers

with Tni(x) ∈ F for each i.

Using this theorem, we can define the Poincaré return map as follows.

Definition 1.8. Let (X,F, T, µ) be a measure preserving transformation and E ∈ F

with µ(E) > 0. Then the map

TE(x) = TnE(x)(x), nE(x) = min{n ≥ 1 |Tn(x) ∈ E}

is defined for µ-almost every point in E. We call TE the Poincaré return map and E its

corresponding Poincaré cross section.

Definition 1.9. Let (X,F, T, µ) be a measure preserving transformation and f : X → R

a measurable function. For every x ∈ X the sequence {f(Tnx)} of values of f on the

trajectory of x can be regarded as a time series. Its partial sums

Sn(x) =
1

n
(f(x) + f(Tx) + · · ·+ f(Tn−1x))
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are called ergodic sums. The limit

F+(x) = lim
n→+∞

Sn(x) ,

if it exists, is called the (forward) time average (or ergodic average) of the function f

along the orbit of x.

Definition 1.10. Let (X,F, T, µ) be a measure preserving transformation.

(i) T is weakly mixing if for all pairs of measurable sets A,B ∈ F

lim
n→∞

1

n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0 .

(ii) T is (strongly) mixing if for all pairs of measurable sets A,B ∈ F

lim
n→+∞

µ(T−nA ∩B) = µ(A)µ(B) ,

Remark.

� Every (strongly) mixing transformation is weakly mixing and every weakly mixing

transformation is ergodic (see e.g. [52, p. 40]).

� For an intuitive description of mixing, note that x ∈ T−nA is equivalent to Tn(x) ∈

A. We are speaking about events x ∈ B (x at time 0) and Tn(x) ∈ A (the image

of x at time n). Thus mixing is commonly interpreted as asymptotic independence

of the distant future from the present.

� It can be shown for an intuitive description of weak mixing is that for each set

A ∈ F the sequence T−nA becomes independent of any other set B ∈ F provided

we neglect a few instants of time.

We can also reformulate the mixing concepts using functions, which is useful for
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specific calculations (see e.g. [52, Theorem 1.23]).

Theorem 1.2. Let (X,F, T, µ) be a measure preserving transformation. Let L2
µ(X) be

the Hilbert space of all µ-square integrable functions on X with the inner product given

by ⟨f, g⟩µ =
∫
X fḡ dµ.

(i) The following are equivalent:

(a) T is ergodic.

(b) For all f, g ∈ L2
µ(X), limn→∞

1
n

∑n−1
i=0 ⟨f ◦ T i, g⟩µ = ⟨f⟩µ⟨g⟩µ.

(c) For all f ∈ L2
µ(X), limn→∞

1
n

∑n−1
i=0 ⟨f ◦ T i, f⟩µ = ⟨f⟩2µ.

(ii) The following are equivalent:

(a) T is weakly mixing.

(b) For all f, g ∈ L2
µ(X), limn→∞

1
n

∑n−1
i=0 |⟨f ◦ T i, g⟩µ − ⟨f⟩µ⟨g⟩µ| = 0.

(c) For all f ∈ L2
µ(X), limn→∞

1
n

∑n−1
i=0 |⟨f ◦ T i, f⟩µ − ⟨f⟩2µ| = 0.

(d) For all f ∈ L2
µ(X), limn→∞

1
n

∑n−1
i=0 |⟨f ◦ T i, f⟩µ − ⟨f⟩2µ|2 = 0.

(iii) The following are equivalent:

(a) T is (strongly) mixing.

(b) For all f, g ∈ L2
µ(X), limn→∞⟨f ◦ Tn, g⟩µ = ⟨f⟩µ⟨g⟩µ.

(c) For all f ∈ L2
µ(X), limn→∞⟨f ◦ Tn, f⟩µ = ⟨f⟩2µ.

Definition 1.11. Given f, g ∈ L2
µ(X), the quantity

Cfg(n) = ⟨f · (g ◦ Tn)⟩µ − ⟨f⟩µ⟨g⟩µ (1.6)

is called the correlation function between observables f and g at time n. If f ≡ g, the
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correlation function is called autocorrelation function of f and we denote it by Cf . We

further define

Ĉf (n) = ⟨f · (f ◦ Tn)⟩µ

and call it non-discounted autocorrelation function of the observable f .

Definition 1.12. A sequence {di}∞i=0 is said to be Cèsaro convergent, if the sequence

{Ci}∞i=0 defined as

Cn =
1

n

n∑
i=1

di

converges. We call {Ci}∞i=0 the associated Cèsaro sequence.

Remark. Using Theorem 1.2, we have the following:

� Mixing is equivalent to the convergence of correlations (or autocorrelations) to zero

for all µ-square integrable observables f, g.

� Weak mixing is equivalent to the convergence of the Cèsaro sequence associated to

the absolute value of the autocorrelation function to zero for all µ-square integrable

observables.

� Ergodicity is equivalent to the convergence of the Cèsaro sequence associated to

the autocorrelation function to zero for all µ-square integrable observables.

1.3 Explanation of different tests for ergodicity and mixing

For our purposes we have mainly investigated the momentum p and the observable

ζ(s) = sin(2πs/L), where L is the circumference of the triangle. We also performed

several numerical simulations with different combinations of p and ζ with the conclusion

that the behaviour was very similar to that of both p and ζ. The choice of momentum

as the main observable stems from the fact that whereas the dynamics in the rational

case usually seems to be ergodic with respect to the Lebesgue measure in the positional

s coordinate, it is restrained to only a finite number of possible values in momentum.
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0 + ε

1 + a+ b− ε

Figure 1.8: Illustration for the reason why ζ is a better observable for autocorrelation
functions than just the position s. The light blue arrow indicates the distance between
the two points in our coordinate system. The red line illustrates how close they really
are.

Therefore, if (weakly) mixing behaviour in the momentum is observed, it is more likely to

correspond to the overall behaviour. As to explain the strange observable ζ in position,

one needs to look back at the geometry of the triangle. There, we see that even though

points 0 + ε and 1 + a+ (b− ε) are, in fact, very close together (1.3), due to the nature

of the chosen coordinates they are far apart. However, if we choose ζ for our observable,

this problem disappears.

1.4 Notation

As explained in Section 1.2, studying ergodic properties of triangular billiards requires

calculating compositions of the map T with itself. However, one is not able to easily write

down the expression for the n-th iterate Tn of the map (see Eq. (1.5)) in closed form due

to the discontinuities introduced by the quantity ps. Therefore, almost all of our findings

are results of numerical simulations. Due to the nature of numerical computation, we

were only able to investigate a few examples of triangular billiards. We thus had to make

a careful choice for the geometries of the triangular billiards used in our simulations.

For simulations of irrational triangular billiards, our choice for the angles is as follows:

� GM = π
√
5−1
4 , an angle constructed from the golden mean

� SM = π
√
2−1
4 , an angle constructed from the silver mean

� SQ2 = π
√
2
4
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α α/π

SM 0.325 0.104

Log3 0.749 0.239

GM 0.971 0.309

SQ2 1.111 0.354

PiPi 1.234 0.393

SQ3 1.360 0.433

Table 1-B: Table summarising the values of angles considered throughout this thesis. We
include the value of the angle, denoted by α, and the value of the angle expressed as a
multiple of π, denoted by α/π. All values are rounded to 3 decimal places.

� SQ3 = π
√
3
4

� Log3 = π log10 3
4

� PiPi = π2

8

Actual values of these angles, ordered by their size, can be found in Table 1-B.

Part II demonstrates that neither the actual value nor the number theoretical prop-

erties of the angles qualitatively influence the overall dynamical behaviour. However,

the shape of the triangular billiard plays a greater, qualitative, role in the dynamical

behaviour. To avoid confusion, we use the following terminology for triangular billiards:

� asymmetric: all angles are different; the usual generic triangular billiards. Actual

triangular billiards we considered can be found in Figure 1.9. Chapter 4 is dedicated

to their dynamical behaviour.

� slightly asymmetric: triangular billiards where two angles differ by a small ε

� symmetric: isosceles triangular billiards with α = β. We adopted this name to

make talking about slightly asymmetric and symmetric triangular billiards easier.

Symmetric triangular billiards for which simulations were performed are plotted

in Figure 1.10. Symmetric and slightly asymmetric triangular billiards are further

studied in Chapter 5.

� right-angled: triangular billiards where one angle, usually β, is π
2 . A special case
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Figure 1.9: Asymmetric triangular billiards from Chapter 4: SM-GM (black), SM-PiPi
(yellow), PiPi-GM (light blue), SQ2-PiPi (red), PiPi-Log3 (dark blue), SQ2-SQ3 (grey).

of asymmetric triangular billiards. Some of the right-angled triangular billiards we

simulated are in Figure 1.10. Results about right-angled triangular billiards can

be found in Chapter 6.

� thin: triangular billiards where at least one angle is ≲ 0.15. We arrive at this value

by studying the behaviour of phase portraits, see Chapter 7.



Chapter 1. Mathematical background 33

Figure 1.10: Left: Symmetric triangular billiards studied in Chapter 5; PiPi-PiPi (red),
GM-GM (dark blue), SM-SM (light blue).
Right: Right-angled triangular billiards presented in Chapter 6; PiPi-Pi2 (red), GM-Pi2
(dark blue), SM-Pi2 (light blue).
Note that while the x and y scales are the same within the figures, they differ between
the two figures.



Chapter 2

Algorithms

A rigorous study of dynamical properties of triangular billiards is difficult due to prob-

lems outlined in the previous chapter. As a result, most of this thesis is based on

numerical simulations which were coded from scratch. We decided to include this chap-

ter to thoroughly document algorithms used, something often omitted in the literature.

The code can be found at https://github.com/katz313/Triangular-Billiards.

This chapter is organised as follows: the structure of the main code, along with an

outline of its development, is in Section 2.1. Section 2.2 includes the overview of the

tests for mixing. The details about the different tests for ergodicity are in Section 2.3.

2.1 Code and its optimization

As mentioned above, the code used to investigate dynamical properties of various trian-

gular billiards has been coded from scratch. We used Python, for its convenience and

prevalence in the scientific community. All computations were done in double precision.

The core of the simulation is a function computing the coordinates of the next collision

with the boundary. The natural way how to do this is using the billiard map and Birkhoff

coordinates (s, p).

34

https://github.com/katz313/Triangular-Billiards


Chapter 2. Algorithms 35

Due to the nature of our investigation, the core functions simulating the collisions

needed to be coded as efficiently as possible. I would like to acknowledge the help of

Julia Slipantschuk with rewriting the next_collision and N_collisions functions into

Cython, along with elegantly coding the map, Eq. (1.5), into objects.

Algorithm 1: next_collision(s0, p0, α, β)

compute s, p using the map from Eq. (1.5);
return s, p

Algorithm 2: N_collisions(s0, p0, α, β, N)

s, p = zero vectors of dimension N ;
s[0] = s0;
p[0] = p0;
for 0 ≤ i ≤ N − 1 do

s[i+ 1], p[i+ 1] = next_collision(s[i], p[i], α, β);

return s, p

As explained in Chapter 1, some of the tests we used involve computing the autocor-

relation function. To do that, we use a standard Fast Fourier Transform (FFT) approach.

Python has several libraries with efficient FFT algorithms. However, as we average over

large ensembles, it was not possible to run it on a normal desktop computer in order

to get the desired time scales. Therefore, we used Queen Mary’s Hight Performance

Computing facility Apocrita to run the simulations. Thanks to a collaboration with the

Research Software Engineering team in ITS Research, we were able to further optimize

the FFT computation. They helped us implement the Fastest Fourier Transform in the

West (FFTW) library in our code, which enables saving a so-called wisdom. Wisdom is

a file containing saved information about how to optimally compute Fourier transform of

various sizes ([28]). As we are computing thousand(s) of FFTs of vectors in one autocor-

relation calculation, see details below, this helped us to speed up the computation and

thus increase the length of the considered orbits. The most computationally expensive

calculations were done to compute the autocorrelation functions, requiring about 50GB

of RAM and 3 days.
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2.2 Tests for mixing

We will start our algorithm overview with tests for mixing, as some of these algorithms

will be used to test for ergodicity as well. To determine whether an ergodic system is, in

fact, (weakly) mixing, one needs to look at its autocorrelation functions as discussed in

Section 1.2. However, in our numerical experiments, we discovered that in the interesting

cases, the method of computation of the autocorrelation function is a key factor in the

resulting behaviour.

Computing autocorrelation functions

Firstly, we present the different methods of computing the autocorrelation functions, as

they are used in some of the other tests. We use two different methods of computing the

autocorrelation functions, the cuts and rand methods. These two methods differ in how

we treat the ensemble average.

In the case of the cuts method (corr_cuts, Alg. 3), we compute one long orbit of

length M · N and cut it into shorter pieces of length N . We use the FFT subroutine

fft_aux (see Alg. 5) and Wiener-Khinchin theorem (see Section 2.2.1) to compute the

autocorrelation. The final step is to take the ensemble average over all the pieces.

Algorithm 3: corr_cuts(α, β, s0, p0, N , M , discount, f)

corr = zero vector of dimension N ;

for 0 ≤ i < M do

s, p = N_collisions(s0, p0, α, β, N);

s0 = s[−1];

p0 = p[−1];

v = chosen observable f computed from s and p;

corr += fft_aux(v, discount);

corr = corr/M ;

return corr
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For the rand method (corr_rand, Alg. 4), we generate M uniformly distributed

initial conditions and compute an orbit of length N for each of them. We then use

the FFT subroutine fft_aux and Wiener-Khinchin theorem to compute the individual

autocorrelations. Finally, we take the ensemble average over all the initial conditions.

Algorithm 4: corr_rand(α, β, N , M , discount, f)

S = U(0,L)(M);

P = U(−1,1)(M);

corr = zero vector of dimension N ;

for 0 ≤ i < M do

s, p = N_collisions(S[i], P [i], α, β, N);

v = chosen observable f computed from s and p;

corr += fft_aux(v, discount);

corr = corr/M ;

return corr

Moreover, we also look at discounted and non-discounted autocorrelation functions.

The distinction is done using an argument discount. If discount = True, then we,

effectively, subtract the term ⟨f⟩2µ in Eq. (1.6). We call this autocorrelation discounted.

If, on the other hand, discount = False, then we do not subtract ⟨f⟩2µ and, in the end,

we compute

Ĉf (n) = ⟨f · (f ◦ Tn)⟩µ , (2.1)

and, in line with Definition 1.11, call it non-discounted autocorrelation function of ob-

servable f .

For the numerical computation of individual autocorrelation functions, we use the

standard FFT approach (see Algorithm 5).
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Algorithm 5: fft_aux(v, discount)

v̂ = FFT of vector v;

v̂ = v̂ v̂/len(v̂), where len(v̂) denotes the length of vector v̂;

if discount then

v̂[0] = 0 ;

v̂ = inverse FFT of v̂;

v̂ = v̂/v̂[0] to normalise it;

return v̂;

2.2.1 Wiener–Khinchin Theorem for the discrete Fourier transform

We include this subsection to demonstrate that the result of Algorithms 3 and 4 actually

produce the desired autocorrelation function. We start by recalling some facts about the

discrete Fourier transform.

Let us fix N ∈ N. Given x ∈ CN its discrete Fourier transform FN (x) ∈ CN is given

by the analysis formula

FN (x)m ≡ x̂m =
1

N+

N−1∑
j=0

xj exp

{
−2πi

N
jm

}

for all m ∈ {0, · · · , N − 1}. The original vector x can be recovered from its discrete

Fourier transform x̂ by the synthesis formula

xn = F−1
N (x̂)n =

1

N−

N−1∑
j=0

x̂j exp

{
2πi

N
jn

}

for all n ∈ {0, · · · , N − 1} provided that the normalisation N+ and N− are chosen such

that

N+N− = N .

Taking N+ = 1 and N− = N appears to be a popular choice, but we shall keep

the discussion general in the following as not all implementations seem to follow this
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convention. In the following we shall drop the subscript N for F and F−1 if the ambient

dimension is understood.

Note that for a given x̂, the RHS of the synthesis formula makes sense not just for

n ∈ {0, . . . , N − 1}, but for any n ∈ Z in which case we have the extended or circular

synthesis formula

1

N−

N−1∑
k=0

x̂k exp

{
−2πi

N
kn

}
= xn mod N (∀n ∈ Z) ,

since, for any r ∈ Z and any l ∈ {0, . . . , N − 1}, we have

1

N−

N−1∑
k=0

x̂k exp

{
−2πi

N
k(l + rN)

}
=

1

N−

N−1∑
k=0

x̂k exp

{
−2πi

N
kl

}
.

We shall derive a Wiener–Khinchin type theorem in the current set-up. Suppose we

are given x, y ∈ CN with corresponding discrete Fourier transforms x̂, ŷ ∈ CN . Firstly,

we derive the so-called circular cross-correlation formula

F−1(¯̂x · ŷ)n =
1

N+

N−1∑
m=0

x̄my(m+n) mod N .

In order to see this, note that

F−1(¯̂x · ŷ)n =
1

N−

N−1∑
k=0

¯̂xkŷk exp

{
2πi

N
kn

}

=
1

N−

N−1∑
k=0

1

N+

N−1∑
m=0

x̄mŷk exp

{
2πi

N
k(m+ n)

}

=
1

N+

N−1∑
m=0

x̄m
1

N−

N−1∑
k=0

ŷk exp

{
2πi

N
k(m+ n)

}

=
1

N+

N−1∑
m=0

x̄my(m+n) mod N ,

where we first used the definition of x̂, then exchanged the two sums, and finally used the

extended synthesis formula for y. In particular, we obtain the following Wiener–Khinchin
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type formula

F−1(|x̂|2)n =
1

N+

N−1∑
m=0

x̄mx(m+n) mod N , (2.2)

which provides an effective way of calculating autocorrelation functions of discrete sig-

nals.

We can also obtain a ‘zero-discounted’ version of the Wiener–Khinchin formula (which

is the inverse discrete Fourier transform of the modulus squared of the discrete Fourier

transform of x, for which the zero entry of |x̂|2 has been set to 0) by letting

ŷk =


x̂k k > 0

0 k = 0

in the cross-correlation formula, which gives

F−1(¯̂x · ŷ)n =
1

N−

N−1∑
k=0

¯̂xkŷk exp

(
2πi

N
kn

)

=
1

N−

N−1∑
k=1

¯̂xkx̂k exp

(
2πi

N
kn

)

=
1

N−

(
N−1∑
k=0

¯̂xkx̂k exp

(
2πi

N
kn

)
− ¯̂x0x̂0

)

=
1

N+

N−1∑
m=0

x̄mx(m+n) mod N − 1

N−

1

N2
+

∣∣∣∣∣
N−1∑
k=0

xk

∣∣∣∣∣
2

=
1

N+

N−1∑
m=0

x̄mx(m+n) mod N −N−

∣∣∣∣∣ 1N
N−1∑
k=0

xk

∣∣∣∣∣
2

.

From now on, we shall assume that N+ = 1 and N− = N , as implemented in the packages

we used. Then the zero-discounted version gives for x ∈ RN

1

N
F−1(¯̂x · ŷ)n =

1

N

N−1∑
m=0

xmx(m+n) mod N −

(
1

N

N−1∑
k=0

xk

)2

.

If xm is obtained as a time series xm = f(Tmξ) of an ergodic transformation T with
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invariant measure µ and a real-valued observable f then, by the ergodic theorem,

1

N

N−1∑
m=0

xmxm+n −

(
1

N

N−1∑
k=0

xk

)2

N→∞−−−−→
∫

f · f ◦ Tn dµ−
(∫

f dµ

)2

for µ-a.e. ξ ,

which is the above, except for the mod N term. In order to examine the convergence in

more detail we introduce the following methods, taking as input a real-valued sequence

x ∈ RN0 :

The basic method with parameters N ∈ N and n ∈ N0, n < N :

MN (x)n =
1

N

N−1∑
m=0

xmx(m+n) mod N . (2.3)

The basic discounted method with parameters N ∈ N and n ∈ N0, n < N :

M0
N (x)n =

1

N

N−1∑
m=0

xmx(m+n) mod N −

(
1

N

N−1∑
k=0

xk

)2

.

For comparison, we also introduce the following functions on x ∈ RN0 , with parameters

N ∈ N and n ∈ N0, n < N :

CN (x)n =
1

N

N−1∑
m=0

xmxm+n ,

C0
N (x)n =

1

N

N−1∑
m=0

xmxm+n −

(
1

N

N−1∑
k=0

xk

)2

.

We have the following basic error estimate

|CN (x)n −MN (x)n| =
∣∣C0

N (x)n −M0
N (x)n

∣∣ =∣∣∣∣∣ 1N
N−1∑

m=N−n

xm(xm+n − xm+n−N )

∣∣∣∣∣ ≤ 2
n

N
∥x∥2∞ .

The above implies that, for x a time-series obtained from an ergodic transformation
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xm = f(Tmξ) as before, that, for fixed n ∈ N0,

MN (x)n
N→∞−−−−→

∫
f · f ◦ Tn dµ for µ-a.e. ξ

and

M0
N (x)n

N→∞−−−−→
∫

f · f ◦ Tn dµ−
(∫

f dµ

)2

for µ-a.e. ξ

As the speed of convergence in the ergodic theorem is a very delicate issue not much

more than the above can be said.

Let us have a look at the cuts method (see Alg. 3), which relies on taking a vector x

of length MN and chopping it into M vectors x(k), k = 1, . . . ,M of length N by defining

x
(k)
m = x(k−1)N+m and then averaging over any of the two basic methods yielding:

The cuts method with parameters M,N ∈ N and n ∈ N0, n < N :

MM,N (x)n =
1

M

M∑
k=1

MN (x(k))n ,

and the discounted cuts method with parameters M,N ∈ N and n ∈ N0, n < N :

M0
M,N (x)n =

1

M

M∑
k=1

M0
N (x(k))n .

Using the basic error estimate above, we obtain

|CMN (x)n −MM,N (x)n| =
∣∣C0

MN (x)n −M0
M,N (x)n

∣∣ ≤ 2
n

N
∥x∥2∞ .

Note that these error estimates hold for n < N . In our calculations, we only consider

the first 0.1% of the computed vector, therefore, this condition holds.

Therefore we conclude that for x a time-series obtained from an ergodic transforma-
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tion xm = f(Tmξ), for fixed n ∈ N0 and M ∈ N,

MM,N (x)n
N→∞−−−−→

∫
f · f ◦ Tn dµ for µ-a.e. ξ

and

M0
M,N (x)n

N→∞−−−−→
∫

f · f ◦ Tn dµ−
(∫

f dµ

)2

for µ-a.e. ξ .

Hence the cuts and discounted cuts methods produce the desired result.

Finally, we discuss the rand method, which is best understood in terms of Monte

Carlo integration. Therefore, we start with briefly reviewing the basics of it.

Let (X,F, µ) be a probability space and Y : X → X be a random variable such that

P(Y ∈ F ) = µ(F ) for any F ∈ F. Suppose that ϕ : X → C is µ-integrable. Then

an approximation of the integral
∫
X ϕ dµ can be obtained as follows. Let (Yk)k∈N be a

sequence of random variables Yk : X → X, each with law µ. For every M ∈ N we can

form the average

1

M

M∑
k=1

ϕ (Yk) . (2.4)

Now, since the random variables Yk are independent, so are the random variables ϕ(Yk).

Moreover, as ϕ is µ-integrable, we have

E(|ϕ(Yk)|) =
∫
X
|ϕ|dµ < ∞

for all k ∈ N. Since the first moments are finite, the strong law of large numbers implies

([34, Thm. 5.17]) that we almost surely have

1

M

M∑
k=1

ϕ (Yk)
M→∞−−−−→ E(ϕ(Y1)) =

∫
X
ϕ dµ .

Hence we are able to obtain almost surely convergent approximations of the integral∫
X ϕ dµ by sampling independently from X following the law µ and calculating the

empirical means from Eq. (2.4). In our case, X is a rectangle R = [0, L] × [−1, 1] ∈ R2
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and µ is obtained from 2-dimensional Lebesgue measure Leb as

µ(F ) =
Leb(F )

Leb(R)
=

1

2L
Leb(F )

for every Lebesgue measurable F , i.e. we are sampling uniformly at random in the

rectangle R.

We now return to the rand method. It uses the basic method, see Eq. (2.3), applied

to xn = f(Tnξ) followed by randomly sampling over ξ. More precisely, fix N ∈ N and

n ∈ N0, with n < N and consider the function ϕN,n : X → R given by

ϕN,n(ξ) =
1

N

N−1∑
m=0

f(Tmξ)f(T (m+n) mod Nξ) .

For Y : X → X a random variable with law µ we have

E(|ϕN,n(Y )|) ≤ 1

N

N−1∑
m=0

∫
X
|f | ◦ Tm · |f | ◦ T (m+n) mod Ndµ

=
1

N

(
N−1−n∑
m=0

∫
X
|f | ◦ Tm · |f | ◦ Tm+ndµ

+
N−1∑

m=N−n

∫
X
|f | ◦ Tm · |f | ◦ Tm+n−Ndµ

)

=
1

N

(
N−1−n∑
m=0

∫
X
|f | · |f | ◦ Tndµ+

N−1∑
m=N−n

∫
X
|f | · |f | ◦ TN−ndµ

)

=
N − n

N

∫
X
|f | · |f | ◦ Tndµ+

n

N

∫
X
|f | · |f | ◦ TN−ndµ

≤
∫
X
|f |2dµ = ∥f∥2L2

µ(X) ,

where we used T -invariance of the measure µ and Cauchy-Schwarz inequality in the last

step. Therefore,

E(|ϕN,n(Y )|) < ∞

provided that f ∈ L2
µ(X).
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Similarly,

E(ϕN,n(Y )) =
N − n

N

∫
X
f · f ◦ Tndµ+

n

N

∫
X
f · f ◦ TN−ndµ

=

∫
X
f · f ◦ Tndµ+

n

N

∫
X
f · (f ◦ TN−n − f ◦ Tn)dµ .

For the rand method, we sample uniformly from X following the law µ, forming the

empirical means 1
M

∑M
k=1 ϕN (Yk), which, using the results above, converge almost surely

to the expected values E(ϕN (Yk)), i.e.

1

M

M∑
k=1

ϕN,n(Yk)
M→∞−−−−→ E(ϕN,n(Y )) =

∫
X
f · f ◦Tndµ+

n

N

∫
X
f · (f ◦TN−n− f ◦Tn)dµ ,

which gives us the correlation integral
∫
X f · f ◦ Tndµ with an error term bounded by

∣∣∣∣ nN
∫
X
f · (f ◦ TN−n − f ◦ Tn)dµ

∣∣∣∣ ≤ 2n

N
∥f∥2L2

µ(X)

that consequently tends to zero as N → ∞. In our calculations, we usually use N =

230 ∼ 109 and M = 103.

2.3 Tests for ergodicity

In this section, we present algorithmic implementations of tests discussed in Chapter 5.

Order parameter

When investigating ergodicity of Lebesgue measure in symmetric triangular billiards, we

introduce an order parameter Φf for the observable f as follows

Φf (N) =
1

N

N−1∑
n=0

⟨f · f ◦ Tn⟩Leb. ,

as the necessary condition of the ergodicity of the invariant measure µ is the convergence

of the Cèsaro sequence associated to the non-discounted autocorrelation function to zero
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for all µ-square integrable observables with ⟨f⟩Leb. = 0, see Section 1.2 and Section 5.4

for motivation and more details. For computations, we use the randmethod. Algorithm 6

gives the algorithmic overview.

Algorithm 6: phi_f(N , M , α, β, f)

phi f = zero vector of N;

running sum = 0;

temp = corr_rand(α, β, N , M , discount = False, f) ;

for 0 ≤ i < N do

running sum += temp[i];

phi f[i] = running sum / (i+1);

return phi f;

Distribution of ergodic averages

Another test, introduced in Chapter 5 studies the distribution of ergodic averages of

momentum. To this end, we first generate M uniformly distributed initial conditions.

Then, we compute an orbit of length N starting from each one. We average the momenta

along individual orbits, saving the means. This is done in function pk_sum, see Alg. 7.

Once we have the vector of means, we can plot it as a histogram or use it otherwise.

Algorithm 7: pk_sum(N , M , α, β)

S = U(0,L)(M);

P = U(−1,1)(M);

pk = zero vector of dimension M ;

for 0 ≤ i < M do

s,p = N_collisions(S[i], P [i], α, β, N);

pk[i] = mean(p);

return pk
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Convergence of ergodic averages

Finally, we present the algorithm used to compute the convergence of ergodic averages,

see Section 5.6 for more details. Here, in order to save space, we are saving the data

logarithmically instead of saving all the values. Note that due to that, we are also

returning (and saving) the number of averaged collisions (in the vector ind) so that we

can correctly plot the data. The HPC version of this computation is slightly different

due to the time limit for computations there — we added an intermittent saving to it

and let it run for as long as possible.

Algorithm 8: s_sum(s, p, α, β, N)

running sum = p;

counter = 0.999999;

s sum = zero vector of dimension N ;

ind = zero vector of dimension N ;

iteration = 0;

j = 0;

while s sum[-1] = 0 do

s, p = next_collision(s, p, α, β);

running sum += p;

iteration += 1;

if i > counter then

s sum [j] = running sum / (iteration+1);

ind[j] = iteration;

j += 1;

counter *= 1.001

return s sum, iteration
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Chapter 3

Rational case

In this chapter, we shall discuss rational triangular billiards, i.e. triangular billiards with

α, β ∈ πQ. Recall from the Introduction that there are many results in the literature

about both rational triangular and polygonal billiards as the number of scattering angles

occurring along any single orbit is finite, which leads to a foliation of the phase space

into a collection of invariant lines. Moreover, the dynamics on these invariant lines is de-

scribed by one-dimensional piecewise linear invertible maps, known as interval exchange

transformations, which are also studied in other areas of mathematics, see e.g. [30, 49].

Our aim is to present some explicit examples of rational billiards, along with results

of approximations of irrational billiards, in particular, we present results about ergodic

properties of approximations for triangular billiards we study in later chapters.

The organisation of this chapter is as follows. Section 3.1 explains the phase space

dynamics of rational triangular billiards. Sections 3.2 showcase a particular example

of a rational triangular billiard in more detail. Lastly, Section 3.3 focuses on rational

approximations of irrational triangular billiards.

49
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Figure 3.1: An example of a phase portrait for two particular orbits of a rational trian-
gular billiard for α = π/6, β = π/6 for two different initial conditions, denoted by dark
blue and light blue dots. The light blue dots corresponds to the periodic orbit plotted
on the right panel.

3.1 Phase space

Consider a triangular billiard with inner angles α, β, γ ∈ πQ. We can express them as

π li/D, i ∈ {α, β, γ}, withD denoting the smallest common denominator. As described in

Chapter 1, we usually work in Birkhoff coordinates (s, p), with s being the position on the

boundary and p = cosφ the tangential velocity component. The map T (s, p) = (s′, p′) is

given in Eq. (1.5). Another way to express the direction of the particle would be to look

at the angle φ between the oriented boundary and the outward direction (see Figure 1.4

for details.). Then, we have φ′ = π − λ − φ or φ′ = φ − λ depending on whether the

particle bounces to the right or left, with λ being the inner angle of the sides involved.

Denoting the initial angle by φ0, the only possible potential scattering angles for that

orbit are given by the 2D values φ0 + π i/D and −φ0 + π i/D, where i ∈ Z such that

the values are contained in the domain [0, π]. Note that not all possible angles have to

be visited. An example is shown in Figure 3.1.

Even if we consider an initial angle from an interval [φ0, φ0 + ε], ε > 0, the resulting

possible scattering angles, given by 2D rectangles in the phase space, do not fill in

the phase space provided that ε is small enough. Lebesgue measure, therefore, cannot
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be ergodic as we can construct an invariant subset with measure greater than zero.

The dynamics has non-trivial constants of motion and is therefore sometimes called

pseudointegrable [40]. Due to this confinement, we can reduce the dynamics to one-

dimensional piecewise linear invertible maps called interval exchange transformations,

see e.g. [30, 49]. The study of these one-dimensional simplifications of the original map

reveals many interesting details of the dynamical system. We demonstrate this using a

particular example.

3.2 The almost integrable case

Consider a symmetric triangular billiard with inner angles π/6, π/6 and 2π/3. We will

call it the Pi6-Pi6 triangular billiard for short. Note that we can obtain this triangular

billiard from the integrable triangular billiard with angles π/6, π/2 and π/3 by unfolding

(see last part of Section 1.1 for more details). We can further consider the unfolding

of this triangular billiard. This way, we can focus on studying a geodesic flow on a flat

surface instead of orbits bouncing within the triangular billiard. Unlike the few integrable

cases, the flat surface resulting from the Pi6-Pi6 triangular billiard has singularities

induced by the corner point corresponding to the inner angle 2π/6.

The unfolding can be found in Figure 3.2. The same topological object, even though

in a slightly different context, has been described in the literature, see e.g. [18, 40, 43].

The flat surface consists of two tori connected via a branch cut, with the two singularities

caused by the obtuse angle. The branch cut is a result of the unfolding of the triangle for

the case where the orientations of the corresponding sides do not match. Note that these

branch cuts do not occur for the unfolding of the π/6, π/2, π/3 billiard, see Figure 1.7,

which is connected to the Pi6-Pi6 triangular billiard by unfolding. The torus appears due

to the fact that we identify opposite sides within each surface. Note that the topology

of the surface does not depend on the way the unfolding was performed.

The unfolding in Figure 3.2 clearly shows that there are only a finite number of
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Figure 3.2: Unfolding of the almost integrable Pi6-Pi6 triangular billiard. The flat
surface consists of two sheets of a torus, connected via a branch cut (light blue). An
orbit (red), originating from the right sheet, has been plotted for two iterates of the
Poincaré map corresponding to the Poincaré cross-section (yellow).

scattering angles for a given orbit.

3.3 Rational approximations of irrational triangular bil-

liards

In the remainder of the thesis, we numerically simulate irrational billiards. However, as

we are using standard double precision in Python, it is not entirely clear whether our

simulations faithfully represent the dynamics in actual irrational triangular billiards. We

therefore include this section in order to justify our numerical results. While our results

are not obtained using infinite precision or by using precise formulas, we demonstrate

that when we round the angles down to four decimal places, the results of our simulations

stay in accordance with our expectations.

In order to show that results presented in the following chapters are valid, we consider

our ‘default’ two triangular billiards SM-GM and GM-GM, while rounding their angles

to different numbers of decimal places. Let us illustrate this on an example. The angle

we denote as GM is given by π(
√
5 − 1)/4. In our calculation, we construct rounded

angles from GM as π round((
√
5− 1)/4, r) for various r, where round(x, r) rounds x to r

decimal places. We found that if we dramatically round the value of the irrational mul-

tiple of π to one or two decimal places, the behaviour of the resulting autocorrelations

does not resemble the (fully) irrational case. This fact is expected as we are essentially

simulating a rational triangular billiard with D, the smallest common denominator of
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the angles, about 30 if we round to two decimal places. When we then consider rounding

to larger number of decimal places, D increases dramatically. For example, if we consider

the GM-GM triangular billiard with angles rounded to four decimal places, the corre-

sponding D is about 3000. The resulting behaviour is then very similar to that found in

the simulations without any rounding, see Figure 3.3, which means that in the case of

asymmetric triangular billiards, all autocorrelations show signs of decay. Moreover, the

autocorrelations computed using the rand method for the rounded angles and for the full

angles are almost identical. While the shape of the autocorrelation function computed

using the cuts method differs between the rounded and full cases, they both decay.

In the symmetric case, we observe a different behaviour between the autocorrelations

for the rounded case for the cuts and rand methods, in line with observations presented

in Chapter 5. This difference in the behaviour of the autocorrelation function is one of

the reason why we are extra transparent about the details of our numerical simulations.

Overall, the autocorrelation functions computed for the rounded case both in the

symmetric and asymmetric cases showcase the same type of behaviour as those computed

for the ‘full’ case.

We include this section only as a justification of our simulations and, thus, will not

elaborate on the reasons for the aforementioned behaviours at this stage.
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Figure 3.3: Autocorrelation functions of momentum for the SM-GM (left) and GM-
GM (right) triangular billiards as a function of N , plotted on a double logarithmic
scale. Dark blue lines in both panels correspond to autocorrelations computed using
the cuts method for angles rounded to four decimal places, light blue lines correspond
to autocorrelations computed using rand method for angles rounded to four decimal
places. Red lines correspond to results computed using rand method for angles without
any rounding. Light blue and red lines have been shifted by a factor of 10−1 and 10−2

respectively for visibility reasons. All autocorrelation functions were computed using
orbits of length 230 and averaging over an ensemble of size 103.
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Chapter 4

Asymmetric case

In contrast to rational triangular billiards, there was only limited mathematical progress

for their irrational counterparts. Recent results, mainly published in the physics liter-

ature, are entirely based on numerical simulations, see e.g. [2, 10]. The few rigorous

result are for ‘typical’ polygonal billiards [4, 12, 32], except for [50, 51] which is dealing

with a special case of right-angled triangular billiard and we will discuss it further in

Chapter 7. Numerical results indicate that general irrational billiards are ergodic with

respect to Lebesgue measure, in line with rigorous results (cf. [32, 50, 51]), while the

correlation decay indicates weak or even strong mixing, see [11, 26]. Some authors study

a simplified model of the billiard map, e.g. [11, 26], with their results confirming the

previous numerical findings. However, some recent results ([53, 54]) are in conflict with

these previous findings. Another fact to consider is that it is not always completely ob-

vious how the results were obtained and, therefore, it is nearly impossible to reproduce

them. Overall, the picture for general irrational triangular billiards is not entirely con-

sistent. On one hand, the mathematical literature provides few rigorous results, often for

a generic set-up, which are somewhat difficult to apply to a specific case. On the other

hand, results in the physics literature provide data for a specific system but without any

proof. Notably, limitations of numerical simulations due to slow correlation decay might
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present an issue for the study of polygonal billiards.

In this and the following chapters, it is my goal to present clear and concise results

which are reproducible. Therefore, all algorithms used are described in Chapter 2, while

the code can be found on https://github.com/katz313/Triangular-Billiards. This

chapter is based on [54]. We use the same notation as in Chapters 1 and 2.

This chapter is organised as follows. The main results, demonstrated on one particular

example of the SM-GM triangular billiard, are presented in Section 4.1, while an overview

of other triangular billiards we have considered is in Section 4.2.

4.1 Main results

For our investigations we consider the billiard map T using Birkhoff coordinates (s, p)

as defined in Chapter 1. As the goal is to investigate (weak) mixing, the quantity of

interest is the autocorrelation function of an observable f given by

Cf (n) = ⟨f · f ◦ Tn⟩µ − ⟨f⟩2µ ,

where ⟨. . . ⟩µ denotes the average with respect to a T−invariant measure µ (see Sec-

tion 1.2 of Chapter 1 for details). Mixing requires correlation functions to decay for all

µ-square-integrable observables f , while weak mixing requires only the Cèsaro sequence

associated to the absolute value of the autocorrelation function of the observable f ,

1
N

∑N−1
n=0 |Cf (n)|, to decay for any µ square integrable observable f . However, due to the

nature of the numerical simulations, it is only possible to check the behaviour of a few

observables and hope that the findings are generic. As explained earlier in Chapter 1,

our chosen observables are the momentum p and the cyclic position observable defined

as ζ(s) = sin(2πs/L), where L denotes the circumference of the triangle.

Although we will illustrate all the relevant points on the SM-GM triangular billiard,

all other investigated asymmetric irrational triangular billiards exhibit the same general

https://github.com/katz313/Triangular-Billiards
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Figure 4.1: Upper panel: data for the momentum p. Lower panel: data for the cyclic
position observable ζ. Both panels are organised as follows:
Left: Autocorrelation function on a double logarithmic scale for the SM-GM triangle.
Data has been computed for a time series of length 230 with ensemble sizes as follows:
N = 1 (dark blue), N = 10 (light blue), N = 102 (red), and N = 103 (yellow). For
visibility reasons, values have been shifted by a factor of 10−1. The full black line
indicates a power law decay with exponent -1.41 (upper panel) and -1.45 (lower panel),
following the results in Table 4-A.
Middle: The dependence of the plateau value for large time as a function of the time series
length. The maximum (dark blue circles) and the absolute mean (light blue triangles)
follow a power law decay with exponent 1/2 (dashed), whereas the variance (red squares)
decays as a power law with exponent 1 (dash-dotted).
Right: The dependence of the plateau value for large time (time series length of 230) as a
function of the ensemble size. The maximum (dark blue circles) and the absolute mean
(light blue triangles) follow a power law decay with exponent 1/2 (dashed), whereas the
variance (red squares) decays as a power law with exponent 1 (dash-dotted).

behaviour. The only quantity which differs is the speed of the decay, see Section 4.2 for

details.
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Figure 4.2: Figure comparing the different methods of computing the autocorrelation
function of momentum used in the asymmetric case. Orbits of length 230 were used,
along with 103 ensembles.
Left: differences of discounted cuts and non-discounted cuts method (dark blue), and
discounted rand and non-discounted randmethod (yellow). Comparison of the discounted
cuts and discounted randmethod (light blue), and the discounted cuts and non-discounted
rand method (transparent red).
Right: the autocorrelation function of momentum computed using the cuts (dark blue)
and rand (light blue overlay) method.

The autocorrelation functions computed by our approach show a power law decay as

N increases, see Figure 4.1, indicating strong mixing. The exponent of the power law

shows a weak dependence on the observable and considerably stronger dependence on

the angles of the triangular billiard, see Table 4-A. Autocorrelations level off at large

time scales, with the concrete times of levelling off varying depending on the particular

triangular billiard and the observable. The large time plateau values scale with both the

orbit and sample size (see middle and right panels of Figure 4.1 consistent with that for

sum of independent random numbers. Therefore, we are confident that this levelling off

is caused by sampling errors due to finite sample sizes.

The effect of using a different method of computation of the autocorrelation func-

tion is illustrated in Figure 4.2. The difference between discounted and non-discounted

autocorrelation function is negligible for both the cuts and the rand method. As for a

comparison between the computation methods, their difference stays more or less con-

stant and, as can be seen from the right panel of Figure 4.2, the overall shape of the
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autocorrelation function is the same. Therefore, the fact that the size of this difference

between the computational methods is considerably larger of that between discounted

and non-discounted autocorrelations computed using the same method stems from the

oscillations in the autocorrelation itself. Overall, the data clearly indicates that the

behaviour of the autocorrelation function is the same regardless of the method used to

compute it.

4.2 Summary of asymmetric triangular billiards

While only results for the SM-GM triangular billiard were presented in the previous

section, triangular billiards with different angles were considered. As discussed in Sec-

tion 1.4, we tried to choose our angles in a way to encompass different number theoretical

properties of the irrational numbers. Although the exact behaviour of the autocorrela-

tion functions vary depending on the chosen triangular billiard and observable, all of the

combinations we considered demonstrate a similar overall behaviour with a power law

decay with levelling off at large time scales. The following table and figure summarise

our findings.

Cp Cζ

SM-GM -1.41 -1.45

PiPi-Log3 -0.98 -1.02

PiPi-GM -1.11 -1.10

SQ2-PiPi -1.20 -1.21

SM-PiPi -1.46 -1.20

SQ2-SQ3 -0.97 -0.95

Table 4-A: Table of exponents of the power law decay of autocorrelation functions for
different asymmetrical irrational triangular billiards. Slopes have been calculated for
non-discounted autocorrelation functions computed for orbits of length 230, averaged
over ensemble size of 1000, using the rand method. All values were rounded to two
decimal places. Slopes were calculated using linear regression from the scikit-learn

library and are accurate to two decimal places.
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Figure 4.3: Autocorrelation functions of momenta p (left) and the cyclic position ζ for dif-
ferent triangular billiards. All autocorrelations were computed using the non-discounted
rand method from orbits of length 230 and averaged over ensemble size 1000. The colour
coding is as follows: SM-GM (dark blue), PiPi-GM (light blue), SM-PiPi (red), SQ2-
PiPi (yellow), SQ2-SQ3 (grey).



Chapter 5

Symmetry and its breaking

Whereas our results for the asymmetric billiards are not particularly surprising, the situ-

ation is different in the symmetric case. By the seminal result of [32], Lebesgue measure

is ergodic for triangular billiards for a large set of angles, when the property being a

large set is measured in topological terms. On one hand, the results of [2] and of the

previous section indicate that this holds in typical numerical simulations. On the other

hand, the question of ergodicity of a typical polygonal billiard is yet to be fully solved.

For example, whether or not the set of ergodic billiards has a positive Lebesgue measure

is still unclear [23]. However, the belief is that the Lebesgue measure is ergodic. In this

chapter, we will present a wide array of data suggesting that Lebesgue measure may not

be ergodic for symmetric triangular billiards, and, thus, that symmetric irrational trian-

gular billiards may not belong to the large set of ergodic triangular billiards described

in [32].

The chapter is organised as follows. Section 5.1 sets the scene with a brief discussion

of phase portraits. Autocorrelation functions are discussed in Section 5.2. Section 5.3

introduces slightly asymmetric triangular billiards. An order parameter is introduced in

Section 5.4. Section 5.5 deals with distribution of finite time ergodic averages, whereas

convergence of ergodic average of momentum is discussed in Section 5.6. Lastly, a sum-

62
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mary and a brief discussion can be found in Section 5.7. This chapter is based on [54].

5.1 Phase portrait conundrum

As already mentioned, majority of literature supports ergodicity of Lebesgue measure

for most ‘typical’ triangular billiards, including the symmetric ones. It was, therefore,

surprising that our numerical findings do not support this for symmetric triangular

billiards. Before starting with a thorough examination of the symmetric case, let us begin

the presentation of our results with a naive observation about phase portraits. Although

phase portraits are not in themselves indicative of the overall dynamical behaviour, they

provide a straightforward example of the difference in behaviour between the symmetric

and asymmetric case.

As can be seen in Figure 5.1, although the phase space is populated in a more or

less uniform fashion in the case of the asymmetric triangular billiard, the same is not

true for the symmetric case. The dynamics in the symmetric triangular billiard even for

long orbits is still confined to a set of lines. As the middle part of Figure 5.1 indicates,

the orbit fails to properly reach the corner point corresponding to the obtuse angle.

Moreover, the bottom part of that figure shows that only about 30% of the 600 possible

bins corresponding to the different momenta are actually visited.

Although this observation is nowhere near conclusive, it provides us with an insight

of the intricacies in the dynamics.

5.2 Autocorrelations

Another indication of different dynamical behaviour is the dependence of autocorrelation

functions on the method of their computation. Whereas the autocorrelation behaved the

same in the asymmetric case regardless of the chosen method (cf. Figure 4.2), the same is

no longer true for symmetric triangular billiards. Here both the method of computation

(the cuts or rand method) and whether the zero frequency is discounted or not play an
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Figure 5.1: Top: Phase portrait comparing the asymmetric SM-GM triangular billiard
(left) and symmetric GM-GM (right). Both phase portraits have been computed from
an orbit of length 1012 as a histogram with bin size of order 10−3, with the resolution of
600 × 600. The initial condition (s0, p0) has been kept the same for both triangles and
is representative of all initial condition tested.
Middle: Total number of collisions occurring in interval [s, s + δs), plotted on a semi-
logarithmic scale. The asymmetric SM-GM triangular billiard is on the left, the sym-
metric GM-GM on the right. The drop in the symmetric case corresponds to the obtuse
angle over the base.
Bottom: Total number of collisions occurring in interval [p, p + δp), plotted on a semi-
logarithmic scale. The asymmetric SM-GM triangular billiard is on the left, the sym-
metric GM-GM on the right. It is clear that the some values of the momenta p (about
70%) have not been visited at all in the symmetric case.
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Figure 5.2: Figure comparing the different methods of computing the autocorrelation
function of momentum used in the symmetric case. Orbits of length 230 were used,
along with ensembles of size 103.
Left: differences of discounted cuts and non-discounted cuts method (dark blue), and
discounted rand and non-discounted randmethod (yellow). Comparison of the discounted
cuts and discounted randmethod (light blue), and the discounted cuts and non-discounted
rand method (transparent red).
Right: the autocorrelation function of momentum computed using the cuts (dark blue)
and rand (light blue) method.

important role (see Figure 5.2).

In contrast to the asymmetric case, not only are the errors substantially larger but

also the overall shape of the autocorrelation is different, as is evident from the right part

of Figure 5.2. Overall, if one is interested in investigating the autocorrelation functions of

symmetric triangles, one needs to take extra care in choosing the computational method.

This dependence of the result on the method of calculation is another indication that

ergodicity of symmetric triangular billiards needs to be carefully investigated.

5.3 Slightly asymmetric triangular billiards

To better understand this strange behaviour observed in the case of symmetric triangular

billiards, we introduce a parameter ε to break the symmetry and observe the results.

Hence, we included slightly asymmetric triangular billiards in our study of the dynamic

behaviour. As stated in Section 1.4, by slightly asymmetric triangular billiards we mean
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triangular billiards with angles α and β = α − πε where ε is small. The original case

of the symmetric triangular billiard then corresponds to ε = 0 and by increasing the

parameter ε, we increase the asymmetry of the billiard table. By varying the size of ε,

we can study the effect of the symmetry breaking on the overall behaviour.

As mentioned in Chapter 1, the angle of reflection φ changes linearly with the angles of

the billiard in each collision. Thus, one might expect that it can take around 1/ε collisions

for the triangular billiard to feel the slight asymmetry. This effect is demonstrated in

Figure 5.4.

Figure 5.3: Figure comparing the different methods of computing the autocorrelation
function of momentum used in the slightly asymmetric case. Orbits of length 230 were
used, along with ensembles of size 103.
Left: differences of discounted cuts and non-discounted cuts method (dark blue), and
discounted rand and non-discounted randmethod (yellow). Comparison of the discounted
cuts and discounted randmethod (light blue), and the discounted cuts and non-discounted
rand method (transparent red).
Right: the autocorrelation function of momentum computed using the cuts (dark blue)
and rand (light blue) method.

For the slightly asymmetric triangle, the autocorrelation functions behave similarly

to symmetric triangular billiards in the sense that the value of the correlation function

is dependent on the method of its computation (see Figure 5.3). The difference there,

however, is that the autocorrelations decay regardless of the method — only the slope

of the decay differs.
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With this setup, we can investigate the ergodicity of the Lebesgue measure for sym-

metric triangular billiards.

5.4 Order parameter

A necessary condition for the ergodicity of the invariant measure µ is that the Cèsaro

sequence associated to the autocorrelation function i.e.

(
1

N

N−1∑
n=0

⟨f · f ◦ Tn⟩µ − ⟨f⟩2µ

)
→ 0

decays to zero as N → ∞ for any µ-square integrable observable f . As we are trying to

discern whether Lebesgue measure is ergodic, we introduce the order parameter Φf for

the observable f as

Φf (N) =
1

N

N−1∑
n=0

⟨f · f ◦ Tn⟩Leb. , (5.1)

to measure ergodicity of the uniform distribution. The introduction of an order parame-

ter is a well known technique from solid state physics to measure spontaneous symmetry

breaking in phase transitions. If Lebesgue measure is ergodic then, using Theorem 1.2,

we have limN→∞Φf (N) = ⟨f⟩2Leb.. By restricting our investigations to observables with

vanishing Lebesgue average, ⟨f⟩Leb. = 0, we can disprove ergodicity of Lebesgue measure

by showing that Φf (N) does not vanish as N → ∞. Note that for both of our chosen

observables, the momentum p and the cyclic position ζ, the averages ⟨p⟩Leb. and ⟨ζ⟩Leb.

vanish. Numerical results were computed using Algorithm 6.

We compare the symmetric and slightly asymmetric cases for various values of ε to

illustrate the effect of symmetry. Our findings do not substantially depend on the value

of the angle α, that is, we observed qualitatively similar behaviour for other angles.

The dependence of the order parameter for observables p and ζ on N can be found in

Figure 5.4. Again, the overall behaviour does not seem to depend on the choice of the

observable. In all the slightly asymmetric cases we simulated, the order parameter for

both observables tends to zero, and this tendency becomes stronger as ε increases. This
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Figure 5.4: Order parameter as a function of N on double logarithmic scale for the
symmetric GM-GM triangular billiard (dark blue), slightly asymmetric GM-GM billiards
with ε = 10−3 (light blue), 10−5 (red), and 10−7 (yellow). The top part corresponds to
the momentum observable, the bottom panel to the cyclic position ζ. The insets show
1/Φp and 1/Φζ respectively. All autocorrelations were computed from orbits of length
227 using the non-discounted rand method, averaged over 104 initial conditions.

supports ergodicity of Lebesgue measure in the case of slighly asymmetric triangles. On

the other hand, the results for the symmetric case are not fully conclusive. The order

parameters for both momentum p and cyclic position ζ have no clear limit. From the

numerical data both order parameters could either tend to a finite value or they could

tend to zero in extremely slow fashion, see insets in Figure 5.4. Overall, the behaviour

of both order parameters supports ergodicity breaking of Lebesgue measure or, at the

very least, point towards a very slow sub-logarithmic relaxation time scale, which is not

possible to easily simulate in direct simulations. Either way, the numerical results clearly
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indicate that the underlying dynamics in symmetric triangular billiards is different to

the asymmetric case.

5.5 Distribution of ergodic averages

In order to further investigate this strange phenomenon, we evaluate the distribution of

finite time averages

PN (z) = ⟨δ(z − p̄N )⟩Leb. (5.2)

where

p̄N =
1

N

N−1∑
n=0

p ◦ Tn (5.3)

denotes the partial ergodic sum of momentum. If the system is ergodic with respect

to Lebesgue measure, the distribution is expected to resemble the normal distribution.

If that is not the case, then properties of the distribution (5.2) may help to identify

different ergodic components of the system. Numerical results, computed using Algo-

rithm 7, for both the symmetric and slightly asymmetric GM-GM triangular billiards

are in Figure 5.5.

Again, there is a notable difference between the symmetric and slightly asymmetric

case. The distribution for the slightly asymmetric triangular billiards shows scaling

according to large deviation theory with PN ∼ exp{−Nϕ(z)} and maximum and variance

follow the law of large numbers with exponential tails. Moreover, we can again observe

the effect of the size of the asymmetric parameter ε - the more asymmetric the triangular

billiard is, the better it follows the aforementioned scaling. In contrast, there is little to

no scaling with N in the symmetric case. This could point towards a flat non-equilibrium

potential and many ergodic components which the uniform distribution in composed of.

Overall, this is further evidence of possible non-ergodicity of Lebesgue measure for the

case of symmetric triangular billiards.
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Figure 5.5: Distribution of the finite time ergodic average of momentum p, see equation
(5.2), on a semi-logarithmic scale. Top lines (dark blue) correspond to N = 104, middle
lines (light blue) to N = 105, and bottom lines (red) to N = 106 iterations. Data have
been computed from a uniform random ensemble of initial conditions with ensemble
size 106. The distributions have been generated as a histogram with bin size 4 × 10−4.
The insets show the half-width (dark blue circles) and standard deviation (light blue
triangles) for the three values of N , along with the trivial scaling 1/

√
N (dashed).

Top: symmetric GM-GM triangular billiard
Middle: slightly asymmetric GM-GM triangular billiard with ε = 10−5,
Bottom: slightly asymmetric GM-GM triangular billiard with ε = 10−3.
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Figure 5.6: Ergodic averages of momentum, see equation (5.3), on a semi-logarithmic
scale, for an asymmetric SM-GM (dark blue), a symmetric GM-GM (light cyan), slightly
asymmetric GM-GM triangular billiards with ε = 10−3 (red) and ε = 10−7 (yellow). All
orbits were computed for a fixed initial condition (s0, p0) = (0.5, 0.64)

5.6 Ergodic averages of momentum

Our last argument for the non-ergodicity of Lebesgue measure for symmetric triangu-

lar billiards has to do with the convergence of the ergodic averages of momenta. We

evaluate point-wise convergence of individual ergodic averages, see equation (5.3) and

Algorithm 8, for given initial value (s0, p0). Although results vary depending on the

choice of the initial condition, the overall behaviour is similar and the results presented

in Figure 5.6 are representative of all initial conditions we investigated. In the asym-

metric and slightly asymmetric case, ergodic averages converge to the analytic value

⟨p⟩Leb. = 0, in line with ergodicity of the uniform distribution. For the slightly asym-

metric triangular billiards, the speed of convergence is dependent on the size of ε, as

expected. This effect can be observed on the red and yellow lines in Figure 5.6. In

stark contrast, in the symmetric case, ergodic averages may not even converge. Instead,

behaviour of the ergodic average is remarkably similar to that found in stable hetero-

clinic networks [3, 25, 35], where the dynamics is dominated by exponentially increasing

sticking times to saddle points. In these cases symmetry plays a crucial role as well.
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5.7 Summary

We have provided compelling numerical evidence that symmetry of triangular billiards

plays a crucial role for the ergodic properties of the dynamics. While correlations with

respect to Lebesgue measure appear to decay for typical irrational triangular billiards, the

uniform distribution does not even appear to be ergodic in case of symmetric triangular

billiards. We showcase the effect of symmetry by comparing the dynamical behaviour of

symmetric and slightly asymmetric triangular billiards. The potential non-ergodicity of

Lebesgue measure has been pointed out recently [53] without reference to the underlying

symmetry of the system. The importance of symmetry, on the other hand, is also

mirrored by a toy model of the triangle map, see [11], showing similar features to our

findings to the symmetric and asymmetric dichotomy. Finally, symmetry turns out to

be relevant when rational billiards are considered and where better analytical insight

can be gained. While the uniform distribution is not ergodic in these cases, one observes

very slow convergence of ergodic averages when isosceles rational triangles with large

denominators are investigated. All in all, these findings support the claimed dichotomy

between symmetric and asymmetric triangular billiards.

Effects of symmetry will be investigated further in the next chapter.



Chapter 6

Right-angled triangular billiards

In the last chapter, we presented substantial evidence that symmetry plays a crucial role

in the dynamical behaviour of triangular billiards. We expand on this observation in this

chapter, where we present results concerning right-angled triangular billiards, which are

closely related to the symmetric case. If one unfolds the dynamics of a right-angled tri-

angular billiard at one of the catheti, one obtains the dynamics in a symmetric triangular

billiard with an almost two-to-one correspondence (explained further in Section 6.1) be-

tween the orbits of both systems [55]. Although there is no obvious relation between the

ergodic properties of both systems, one would expect that the dynamics in both trian-

gular billiards are closely related. Over the years, right-angled triangular billiards have

been the most studied special case of irrational triangular billiards. There are results

suggesting ergodicity of Lebesgue measure, weak mixing but not mixing ([2]), results

claiming non-ergodicity for a large number of angles α [53], and extremely slow diffusion

[27]. Hence we revisit the problem in this chapter, presenting results of our numerical

simulations, and comparing the behaviour of right-angled, symmetric, and asymmetric

triangular billiards.

The organisation of this chapter is as follows. In the first section we explain in more

detail the relationship between the right-angled and the symmetric case, including the

73
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Figure 6.1: Unfolding of right-angled triangular billiard into a symmetric one. An orbit
originating from the same initial condition is plotted to compare its behaviour.

process of unfolding and orbit correspondence. Section 6.2 includes several subsections

with numerical results using the same tests as in Chapter 5. Results for other triangular

billiards with exactly one rational angle are presented in Section 6.3. We discuss our

findings in the last section. This chapter is partially based on [54].

6.1 Unfolding of right-angled triangles

When one investigates the dynamics of symmetric triangular billiards, a natural follow

up question is what happens in the right angled case. Given a symmetric triangular

billiard with angles α, α, and π − 2α, we call a right-angled triangular billiard with

angles α, π/2, and π/2 − α the corresponding right-angled triangular billiard. Even

though the two systems are clearly related by unfolding (Figure 6.1), the relationship of

their dynamic properties is sadly not as straight-forward.

As can be seen from Figure 6.1, the vertical wall adds complexity to the dynamics

of right-angled triangular billiard. Whereas we plotted only three collisions for the light

blue orbit in the symmetric case, the same part of the corresponding orbit (i.e. same

momentum, scaled position) in the right-angled case contains five collisions.

Further investigation of the proportion of collisions happening on the vertical side

brings a rather surprising discovery that the angles of the triangular billiard play a vital

role. While there is a weak dependence on the choice of initial condition, the dependence

on the angle is stronger, see Table 6-A for details.
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α m̄ σ

SM 0.143 0.007

Log3 0.286 0.007

GM 0.345 0.003

SQ2 0.384 0.002

PiPi 0.416 0.001

SQ3 0.447 0.002

Table 6-A: Table summarising the proportion of collisions occurring on the vertical wall
for different right-angled triangles. The angles have been ordered by their size in an in-
creasing order. The mean m̄ and the standard deviation of the proportion were calculated
using 10 different orbits starting from uniformly distributed random initial conditions,
each of length 109. We expect that the difference between the SM-Pi2 triangular billiard
and the rest is due to the size difference in the angles. The proportions of collisions are
stable under changes of orbit length and initial conditions.

Figure 6.2: Illustration of the almost two-to-one correspondence of orbits in the right-
angled and symmetric triangular billiard. From the original light blue orbit in the right-
angled case, we are able to construct two orbits in the symmetric triangular billiard
(light and dark blue). However, there is only one orbit corresponding to the red orbit in
the right angled case.

Further more, there is the question about the almost two-to-one correspondence of

orbits. Given an orbit in the right-angled triangular billiard, we are usually able to con-

struct two orbits in the corresponding symmetric triangular billiard. One just by keeping

the initial starting point in the left hand side of the triangle and the other by reflecting

the position along the vertical wall and switching the sign of momentum. However, this

construction fails for certain orbits. One such example is given in Figure 6.2. Hence, we

talk about the almost two-to-one correspondence of orbits.
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Figure 6.3: Comparison of autocorrelation function of momentum for the SM-Pi2 right-
angled triangular billiard, computed using different methods. We used orbits of length
230 and ensembles of size 103.
Left: difference of discounted and non-discounted cuts (dark blue) and rand (transparent
yellow) methods. Comparison of discounted cuts and rand method (transparent red),
and the non-discounted cuts and rand method (light blue).
Right: the autocorrelation function of momentum computed using non-discounted cuts
(dark blue) and non-discounted rand (light blue) method.

6.2 Numerical results

Even though there is almost two-to-one correspondence between the orbits of both sys-

tems, there is no obvious relation between their dynamical properties. We performed

the same tests on the right-angled triangular billiards as we did in the symmetric case

in previous chapter. The following subsections present the corresponding results and

compare them to that of a symmetric triangular billiard.

6.2.1 Autocorrelations

Similarly to the symmetric case, the autocorrelation function differs depending on the

method of computation (see Figure 6.3). While the autocorrelations computed using the

cuts method do not decay, the autocorrelations computed using the rand method show

weak signs of decay, although the decay is much less pronounced than in general asym-

metric triangular billiards. However, in contrast to the symmetric case, the difference

between the discounted and non-discounted result of a single method is negligible.
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6.2.2 Order parameter

The complexity added by the vertical wall is even more pronounced when we look at the

behaviour of the order parameter Φf for observable f as defined in previous chapter in

equation (5.1). There, we observed that neither the autocorrelation function (when com-

puted using the cuts method) nor the order parameter decays in the case of symmetric

triangular billiards. So far, we presented evidence that neither do the autocorrelation

functions (computed using the cuts method) for the right-angled triangular billiard de-

cay. However, as Figure 6.4 demonstrates, the order parameter Φp for the momentum

observable p decays in the right-angled case, with the decay as strong as in the case of

generic asymmetric triangular billiards. On the other hand, the order parameter Φζ as-

sociated to the cyclic position observable ζ shows behaviour similar to that of symmetric

triangular billiards.

6.2.3 Distribution of finite time ergodic averages

Whereas the behaviour of autocorrelation functions and of order parameters stands some-

where in between the asymmetric and symmetric case, the distribution of finite time

ergodic averages of momentum, see Eq. (5.2), behaves qualitatively the same as for gen-

eral asymmetric triangular billiards. Figure 6.5 show the distribution PN for our choice

of right angled triangular billiards — the SM-Pi2, GM-Pi2, and PiPi-Pi2 triangular bil-

liards. As can be seen from the insets, both the half-width and standard deviation scale

as Pn ∼ exp{−Nϕ(z)}, in line with our expectations.

Following the unexpected behaviour of the order parameter Φζ , we present the distri-

butions of finite time ergodic averages of the cyclic position observable ζ in Figure 6.6.

Again, here we see a similar type of behaviour to the case of the ergodic sums with

respect to momentum of symmetric triangular billiards, cf. Figure 5.5. Overall, while

the behaviour of ergodic averages of momentum supports the ergodicity of Lebesgue

measure, the situation with the cyclic position is not as clear.
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Figure 6.4: Order parameter as a function of N on a double logarithmic scale for SM-Pi2
(light blue), GM-Pi2 (red), PiPi-Pi2 (yellow) right angled triangular billiards, symmetric
GM-GM (dark blue), and asymmetric SM-GM (grey) triangular billiards for comparison.
Top part corresponds to momentum and bottom to the cyclic position observable ζ. The
insets show 1/Φp and 1/Φζ respectively. All autocorrelations were computed from orbit
of length 227 using the non-discounted rand method, averaged over 104 initial conditions.

6.2.4 Convergence of ergodic averages

Lastly, we present results concerning the convergence of ergodic averages of momentum,

see equation (5.3) and Algorithm 8 for more details. Again, here we see a strong re-

semblance to the general asymmetric behaviour, with the ergodic average converging to

the analytical value ⟨p⟩Leb. = 0 at the same rate or even quicker than in some general

asymmetric cases. Although the exact convergence shows a weak dependence on both

the angles of the billiard and on initial condition, all variations of both decayed to 0 at

at most the same rate as in general asymmetric triangles.
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6.3 Comparison with other triangular billiards

We include this section in order to compare the behaviour of right-angled triangular

billiards to that of other irrational billiards with exactly one angle being a rational

multiple of π. In the previous section we presented results indicating that the ergodic

behaviour of right-angled triangular billiards is somewhere in between that of symmetric

and asymmetric ones. However, we have yet to present any evidence that this is due

to the special connection between the right-angled and symmetric case and not due to

the fact that one of the angles is a rational multiple of π. Therefore, we shall now

compare the behaviour of the order parameters Φp and Φζ for the right-angled case with

triangular billiards with angles π/3 and π/4. As can be seen from Figure 6.8, in all cases

we simulated, the order parameters decay, with the speed of the decay weakly dependent

on the angles in the billiard. Interestingly, there is a slight difference in the speed of

decay for the two order parameters. While the order parameter in triangles with angle

π/3 decay a bit faster in case of the cyclic position observable ζ, billiards with the angle

π/4 exhibit faster decay for the momentum order parameter. Overall, the speed of decay

for both order parameters is reasonably similar to that of a generic asymmetric irrational

triangular billiard. More importantly, we do not observe any suspicious levelling off as

in both the symmetric and right-angled cases.

6.4 Discussion

While there is an obvious geometric relationship between symmetric and right-angled tri-

angular billiards, this does not fully translate to their respective dynamical properties.

On one hand, we presented compelling evidence for non-ergodicity, or at least extremely

large relaxation time scales, of the Lebesgue measure in the symmetric case. On the

other hand, data for the right-angled triangular billiards are not fully conclusive. While

the distribution and convergence of ergodic averages of momentum support ergodicity,

the behaviour of autocorrelation functions as well as that of the order parameters lie

somewhere in between generic asymmetric and symmetric triangular billiards. Overall,
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the results indicate that while the symmetric and right-angled triangular billiards are

related by the simple process of unfolding, further subtleties play an important role for

their ergodic properties. We support this argument by showing that the order parameter

behaves as expected for other triangular billiards with exactly one rational angle, there-

fore, the fact that the triangular billiard is not fully irrational does not seem to play a

role. This further showcases the rich dynamical properties of triangular billiards.
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Figure 6.5: Distribution of the finite time ergodic average of momentum p, see equation
(5.2), on a semi-logarithmic scale. Top lines (dark blue) correspond to N = 104, middle
lines (light blue) to N = 105, and bottom lines (red) to N = 106 iterations. Data have
been computed from a uniform random ensemble of initial conditions with ensemble size
106. The distributions have been generated as a histogram with bin size 2× 10−4. The
insets show the half-width (dark blue circles) and standard deviation (light blue trian-
gles) for the three values of N , along with the trivial scaling 1/

√
N (dashed).

Right-angled triangular billiards considered are as follows: SM-Pi2 (top), GM-Pi2 (mid-
dle), and PiPi-Pi2 (bottom).
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Figure 6.6: Distribution of the finite time ergodic average of the cyclic position observ-
able ζ, Top lines (dark blue) correspond to N = 104, middle lines (light blue) to N = 105,
and bottom lines (red) to N = 106 iterations. Data have been computed from a uniform
random ensemble of initial conditions with ensemble size 106. The distributions have
been generated as a histogram with bin size 2 × 10−4. The insets show the half-width
(dark blue circles) and standard deviation (light blue triangles) for the three values of
N , along with the trivial scaling 1/

√
N (dashed).

Right-angled triangular billiards considered are as follows: SM-Pi2 (top), GM-Pi2 (mid-
dle), and PiPi-Pi2 (bottom).
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Figure 6.7: Ergodic averages of momentum, see equation 5.3, on a semi-logarithmic
scale, for asymmetric SM-GM (grey), symmetric GM-GM (yellow), and right SM-Pi2
(dark blue), GM-Pi2 (light blue), PiPi-Pi2 (red) triangular billiards. All orbits were
computed for same fixed initial condition (s0, p0) = (0.5, 0.64).
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Figure 6.8: Order parameter Φζ (top) and Φp (bottom) as a function of N , for GM-PiX
(dark blue), SM-PiX (light blue), and PiPi-PiX (red) billiards, where Pi3 is plotted as
a solid and Pi4 is dashed. We also plotted the asymmetric SM-GM (dotted grey) and
symmetric GM-GM (dash-dotted grey) triangular billiards for comparison. All autocor-
relation functions were computed from orbits of length 227 using the non-discounted rand
method, averaged over 104 initial conditions. Note that several lines overlap, especially
in the order parameter of momentum Φp.



Chapter 7

Thin triangular billiards

In this chapter, we present our findings about thin triangular billiards. Our study of

the thin case is motivated by the only explicit example, [50], found in the literature. In

this paper, the author was able to prove ergodicity of Lebesgue measure for the billiard

flow in a special right-angled triangular billiard, where one of the angles is a sum of

so-called Liouville numbers. Due to the extremely small size of this special angle, it is

impossible to accurately simulate such triangular billiard numerically. Therefore, we set

upon studying triangular billiards that have at least one angle very small. We do not

restrict our study to only right-angled triangles. On the contrary, the thin set up offers

another opportunity to observe the effects of symmetry on the dynamical behaviour of

the billiard.

This chapter is organised as follows. Section 7.1 introduces our notation and explores

what we mean by a thin triangular billiard. Section 7.2 investigates phase portraits of

various thin triangular billiards. A study of time spent in different sections, along with

the upper bound for the number of collisions, can be found in Section 7.3. Autocorrela-

tion functions are presented in Section 7.4.

85
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7.1 How thin is thin

For our purposes, we define our triangles using rational multiples of the angles discussed

in Section 1.4, e.g. GM/d for increasing d. With this construction, we are able to

systematically investigate the effect of ‘squishing’ of the triangular billiard.

When deciding how thin a triangular billiard needs to be so that we call it thin, we

considered the behaviour of phase portraits, more specifically the appearance of elliptical

shapes (see next section for more details). Observing the changes in the phase portraits

for different angles, we found that angles smaller than 0.15 usually foster the appearance

of these elliptical shapes. A summary of angles used along with their respective size can

be found in Table 7-A.

SM 0.3253

SM/5 0.0650

SM/35 0.0093

SM/50 0.0065

GM 0.9708

GM/5 0.1942

GM/35 0.0277

GM/50 0.0194

Table 7-A: Table of angles used in simulations for thin triangular billiards, rounded to 4
decimal places.

One reason why thin triangular billiards exhibit special behaviour is due to the effect

that the change in momentum has on the next collision. While in a ‘normal’ triangu-

lar billiards, a substantial change in momentum results in a substantial change in the

position of the next collision, the same is not true for their thin counterparts. This is

due to the very short distance between the sides adjacent to the thin angle, hence the

variation in direction does not result in a substantial change in the position of the next

collision, see Figure 7.1. This makes the particle spend a long time in the thin part of

the triangle, as there needs to be a large number of collisions in order to leave the thin

leg. We investigate the numbers of collisions in the legs further in Section 7.3.
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Figure 7.1: Illustration of how decreasing the angles in the triangular billiard affects
orbits with different momenta. Orbits in all three billiards start at the same position
s = 0.3 with momenta p = 0 (dark blue), p = 0.5 (light blue), p = 0.9 (red), p = 0.99
(yellow), and p = 0.999 (grey). Triangular billiards have angles as follows: SM-GM
(left), SM/5-GM (middle), SM/35-GM (right).

Figure 7.2: Phase portraits for the SM/5-GM/5 triangle (left) and the SM/35-GM/35
triangle (right). Both were computed as a histogram with bin width 5× 10−3 for 3× 108

collisions starting from the same initial condition.

7.2 Elliptical shapes in the phase space

When considering the phase space for thin triangular billiards, a fixed initial condition

produces ellipse-like shapes in the phase portrait. The effect emerges even for not so

thin triangles (see Figure 7.2) and becomes stronger as the triangle flattens out. This

has to do with the dynamics in thin cones, which we shall focus on presently.
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Consider the following example of a thin cone with angle α and a particle starting

from the horizontal side with initial condition (s, cosφ), see Figure 7.3.

α φ

Figure 7.3: Unfolding of a thin cone with angle α. An orbit starting with angle φ is
depicted within the cone (red, solid) and on the unfolding (red, dashed). The other side
of the triangular billiard, not used in the unfolding, is dotted.

Using simple trigonometric identities, we find that the subsequent bounces have the

following Birkhoff coordinates


p2n+1 = − cos(φ− [2n+ 1]α) ,

s2n+1 = L− s sinφ
sin(φ−[2n+1]α) ,


p2n = cos(φ− 2nα) ,

s2n = s sinφ
sin(φ−2nα) ,

(7.1)

for n ∈ N, with even collision occurring on the horizontal side and odd on the slanted

side. The parameter L corresponds to the perimeter of the billiard.

When plotting the orbit in the phase space, s and p correspond to the x, respectively

y, axis. We then get the following analytical equations:

c2

x2
+ y2 = 1 resp.

c2

(x− L)2
+ y2 = 1 , (7.2)

where c = s sinφ ∈ (0, 1) codes the initial condition. An example of curves for Eq. (7.2)

are plotted in Figure 7.4.

Note while the curves in Eq. (7.2) do not explicitly depend on the triangular billiard,

respectively its angles α and β, the dependence on the angles plays a role in the number
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Figure 7.4: Curves from Eq. (7.2). Dark blue lines corresponds to c2

x2 + y2 = 1, red to
c2

(x−L)2
+ y2 = 1. Light blue corresponds to collisions in the right leg. The solid, dashed,

and dash-dotted lines correspond to different initial conditions with c = 0.1, 0.25, and
0.4 respectively.

Figure 7.5: Phase portraits for the SM-GM/35 (left) and GM-GM/35 (right) triangular
billiards. Both were computed as a histogram with bin width 5 × 10−3 for 5 × 108

collisions starting from the same initial condition.

of collisions in the respective legs – the smaller the angle, the denser the curves are

‘sampled’ in Eq. (7.2).

Finally, not only do elliptical shapes appear for triangular billiards where both angles

are small, we observed similar type of behaviour in cases where just one angle was small,

see Figure 7.5.
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7.2.1 Stability of elliptical shapes

Even in the case of thin triangles, symmetric triangles behave differently to asymmetric

ones. This can be observed in particular in the phase portraits, where the elliptical shapes

slowly spread out to fill in the whole phase space for asymmetric thin triangular billiards.

If we consider a histogram of the phase portrait in the thin asymmetric case with bin

size of 3 × 10−3, our simulations suggest that all bins have been visited after about

107 collisions. However, in the case of symmetric thin triangular billiards, the elliptical

shapes seem to stop spreading after a certain number of collision, see Figure 7.6. Finally,

while for asymmetric triangular billiards the elliptical shapes seem to fill the phase space

in a continuous fashion, the phase space in the symmetric thin case does not appear to

fill but keeps exhibiting non-uniformities with distinct stable line structure.

Of course, this is not a proof of non-ergodicity of the Lebesgue measure for the thin

symmetric triangles, but gives us further evidence of a dichotomy in the behaviour of

the two classes of irrational triangles.

To investigate this strange stability of ellipses further, we simulated the GM/35-

GM/35 triangular billiard for several different initial conditions, varying the length of

the orbit, while the resolution of the histogram is kept the same with bin size 3× 10−3.

For all simulated initial conditions, the elliptical shapes stopped spreading for orbits of

length between 1011 and 1012 collisions, more specifically, there were no newly visited

bins when comparing histograms of the two lengths of the orbits. Two examples of the

resulting phase portrait can be found in Figure 7.7.

While more investigation is needed, especially using greater resolution of the his-

togram, this (interim) stability presents further evidence of the difference in behaviour

between symmetric and asymmetric triangular billiards.
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Figure 7.6: Top: Phase portraits for the SM/50-GM/50 triangle (left) and the GM/50-
GM/50 triangle (right). Both were computed as a histogram with bin width 3 × 10−3

for 5× 108 collisions starting from the same initial condition. Note that while every bin
in the thin asymmetric triangle has been visited a number of times, most of the bins are
empty in the symmetric case.
Middle: Total number of collisions with positional coordinate in the interval [s, s + δs)
obtained from the histogram above. The asymmetric SM/50-GM/50 triangular billiard
is on the left, the symmetric GM/50-GM/50 on the right (plotted on a semi-logarithmic
scale).
Bottom: Total number of collisions with positional coordinate in the interval [p, p+ δp)
obtained from the histogram above. The asymmetric SM/50-GM/50 triangular bil-
liard is again on the left, the symmetric GM/50-GM/50 on the right (plotted on a
semi-logarithmic scale). Only about 47% of momenta intervals have been visited in the
symmetric case.
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Figure 7.7: Phase portraits for GM/35-GM/35 triangular billiard, computed as a his-
togram with bin width 3×10−3 for 3×1012 collisions and two different initial conditions.
Middle: Total number of collisions with positional coordinate in the interval [s, s + δs)
obtained from the histogram above.
Bottom: Total number of collisions with positional coordinate in the interval [p, p+ δp)
obtained from the histogram above, plotted on a semi-logarithmic scale. The total per-
centage of visited bins is 78% and 18% respectively.

7.3 Collisions in the legs

Next question we want to investigate is how the number of collisions in the legs changes.

The Theorem 1.1 in Chapter 1 answered the question whether there is an upper bound

on the number of collisions in an leg of a triangular billiard. Note that we can arrive at
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the same answer by considering the maximum n such that φ− 2nα ∈ [0, π] in Eq. (7.1).

Either way, we find that

N (ν)
max =

⌊π
ν

⌋
(7.3)

is the maximum number of collisions in the leg with angle ν.

We can investigate how the number of collisions in the legs evolve over time and

whether it reaches the maximum value Nmax.

Again, there is a distinction between symmetric and asymmetric triangular billiards.

This time, however, it is clearer that the symmetry plays a role as the maximum number

of collisions is the same in both legs. Therefore, it is not altogether surprising that

the number of collisions in thin symmetric billiards has a certain structure to it (see

Figure 7.8). On the other hand, there is no reason why the maximum number of collision

is rarely achieved in the symmetric case. Results indicate that this fact plays a role in

the sparse ‘sampling’ of the elliptical shapes, resulting in more sparsely populated phase

portraits. In the case of asymmetric thin triangular billiards, the number of collisions

within the legs lacks any discernible structure but did not fail to reach maxima Nmax

for both legs in any situation we simulated.

7.4 Autocorrelations

Lastly, we present the results of autocorrelation computations. Again, there is a clear

difference between symmetric and asymmetric triangular billiards, consistent with the

results we obtained in the ‘normal’, non-thin, case (see Figure 7.9). For the simulations,

we chose different combinations of angles from Table 7-A such that we could observe the

effects of only one thin angle as well if there is a further effect of squishing the billiard. We

computed the autocorrelations using both the cuts and rand methods, as well as checking

the discounted and non-discounted versions of each. Overall, the one symmetric billiard

we considered, GM/35-GM/35, was behaving very similarly to those symmetric billiards

discussed in Chapter 5, i.e. there is a significant difference in autocorrelation functions



Chapter 7. Thin triangular billiards 94

Figure 7.8: Number of collisions in the legs for the symmetric GM/35-GM/35 (left) and
asymmetric SM/35-GM/35 (right) triangular billiards. Note that while the symmetric
billiard on the left shows structure in the number of collisions in the two legs, the

number of collisions does not approach N
(GM/35)
max = 113. In the right pane, the number

of collisions in the legs of the asymmetric billiard reaches both maxima, N
(GM/35)
max = 113

(red line) and N
(SM/35)
max = 337 (light blue line).

computed by the cuts and rand methods with less significant differences between the

discounted and non-discounted versions of each. On the other hand, all the asymmetric

thin triangular billiards we simulated show behaviour consistent with that of ‘normal’

asymmetric triangular billiards as presented in Chapter 4.
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Figure 7.9: Autocorrelation functions of momentum p (left) and cyclic position observ-
able ζ (right), plotted on a semi-logarithmic scale. We used the cuts method for orbits
of length 230 collisions, using ensembles of size 103. With the exception of the GM/35-
GM/35 triangular billiard (red on bottom panel), all triangular billiards plotted are
asymmetric.
Top: Autocorrelation functions for triangular billiards SM-GM/35 (dark blue), SM/35-
GM/35 (light blue), and SM/35-GM/50 (red).
Bottom: Autocorrelation functions for triangular billiards GM-GM/35 (dark blue),
GM/35-GM/35 (light blue), and GM/35-GM/50 (red).



Conclusion and outlook

In this thesis, we have focused on a numerical study of ergodic properties of triangular

billiards. While there are substantial results in the mathematical literature for rational

triangular billiards, there has been only limited progress in the case of their irrational

counterparts. Most results regarding the dynamical behaviour of irrational triangular

billiards come from the physics literature and are entirely based on numerical simulations.

Moreover, these numerical results are frequently hard to interpret and replicate, as most

authors do not explain in detail how the simulations were performed. Our approach,

therefore, has been to provide numerical results together with a detailed explanation

of the method of computation. We believe that greater transparency in the numerical

methods is necessary as some results, e.g. autocorrelations, show considerable sensitivity

to the method of calculation.

Our results from Chapter 4 aim to provide further evidence that ‘typical’ asymmetric

irrational triangular billiards are mixing, while also presenting the algorithms used in

Chapter 2 and discussing why we see the levelling out of autocorrelation functions. We

acknowledge that these results, as all other results presented in this thesis, are only

numerical in nature and, therefore, cannot answer the question of mixing in asymmetric

triangular billiards for certain, as we were only able to study just a few observables in

the case of just a few examples of such billiards. Furthermore, our implementation of

irrational triangular billiards is only approximating the truly irrational case. Therefore,

while our results may provide a good indication of the overall behaviour, they cannot be
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fully conclusive.

Further, in Chapter 5, we have analysed the impact of symmetry of the billiard

table on the system. We found compelling evidence that the dynamical behaviour of

symmetric irrational triangular billiards is different to their asymmetric counterparts.

The effect of symmetry was further illustrated by comparing the results for symmetric

and slightly asymmetric triangular billiards. Our numerical results, performed using a

range of different tests in several different settings, all indicate that Lebesgue measure

may not be ergodic in the symmetric case. Autocorrelation functions depend on the

method of computation and do not seem to decay, while order parameters have no clear

limit. The distribution of finite time ergodic averages shows little to no scaling. And

ergodic averages of momentum might not converge. Overall, we provided compelling

numerical evidence that the dynamic behaviour of symmetric triangular billiards differs

significantly from that of their asymmetric counterparts. Moreover, our results indicate

that symmetric triangular billiards likely do not belong to the large set of triangular

billiards that are ergodic with respect to Lebesgue measure as described in [32].

The effect of symmetry was investigated further in Chapter 6, where we have stud-

ied the ergodic properties of right-angled triangular billiards, which are closely related

to the symmetric ones by the process of unfolding. Although the connection between

right-angled and symmetric case seems simple, results of our numerical simulations in-

dicate that their relation is not as straightforward. Similarly to the symmetric case,

autocorrelations show dependence on the method of calculation and, generally, do not

decay. The situation with the order parameter is, however, not as straightforward as its

decay depends on the observable used in the computation. While the order parameter

for the momentum observable decays as fast as in the case of asymmetric triangular

billiards, the order parameter for the cyclic position observable ζ matches the behaviour

of the symmetric case. In contrast, the order parameter for other triangular billiards

with exactly one rational angle behaves similarly to the asymmetric case as expected.

Finally, both the distribution and convergence of ergodic averages of momenta exhibits
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behaviours of asymmetric triangular billiards. Overall, our results indicate that fully un-

derstanding the dynamical behaviour of right-angled triangular billiards is not as simple

as one might think.

Lastly, we have focused on so-called thin triangular billiards in Chapter 7. This

special class of triangular billiards exhibits interesting features in their phase portraits

due to their shape. Even in this setting, results for symmetric triangular billiards differ

from results for the asymmetric case.

Overall, we have presented convincing numerical evidence suggesting that symme-

try plays a crucial role in ergodic properties of triangular billiards, although the exact

mechanism remains unknown.

Future prospects

Lastly, we mention several potentially fertile areas of future research, which might provide

further insight concerning the ergodic properties of triangular billiards with particular

emphasis on effects of symmetry.

★ Billiard flow Many results in the literature are either for the billiard flow (e.g. [12,

32, 51]) or it is unclear whether the map or flow was used it the simulations. While

ergodicity of the flow is equivalent to ergodicity of the billiard map (with respect

to the same measure), it would be interesting to compare and contrast simulations

of both as some tests may be better suited to either of those implementations.

Therefore, contrasting the implementations of both the flow and the map could be

useful in recovering further evidence for our results.

★ Triangle map Many results, e.g. [11, 26], are for the simplified model of the

triangle map, instead of the full triangular billiard. It would be interesting to

implement the triangle map and study the two systems together, searching for

differences and similarities.
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★ Induced maps Another possible way of studying triangular billiards would be

to consider the induced map on the base of the triangle as well as replacing the

momentum p for the angle φ as the coordinate of choice. One can easier study

how the scattering angles evolve in different triangular billiards, as well a as study

necessary conditions for recurrence of those angles.

★ Special choices of angles One might examine if choosing rationally related an-

gles, e.g. α = 2β, has any effect on the dynamical behaviour of the irrational

asymmetric triangular billiards. While we performed similar tests in Chapter 7,

choosing smaller rational multiples might produce interesting results, especially

when studying the induced maps and recurrence.

★ Effects of symmetry in the quantum case Finally, studying specta of sym-

metric and asymmetric irrational triangular billiards in the quantum setting might

provide further insight into the role of symmetry.
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