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Abstract

Pathology has benefited from the rapid progress in technology of digital scanning during the last

decade. Nowadays, slide scanners are able to produce super-resolution whole slide images (WSI),

also called digital slides, which can be explored by image viewers as an alternative to the use

of conventional microscope. The use of WSI together with the other microscopic and molecular

pathology images brings the development of digital pathology, which further enables to perform

digital diagnostics. Moreover, the availability of WSI makes it possible to apply image processing

and recognition techniques to support digital diagnostics, opening new revenues of computational

pathology. However, there still remain many challenging tasks towards computational pathol-

ogy such as automated cancer categorisation, tumour area segmentation, and cell-level instance

detection. In this study, we explore problems related to the above tasks in histology images.

Cancer categorisation can be addressed as a histopathological image classification problem.

Multiple aspects such as variations caused by magnification factors and class imbalance make it

a challenging task where conventional methods cannot obtain satisfactory performance in many

cases. We propose to learn similarity-based embeddings for magnification-independent cancer cat-

egorisation. A pair loss and a triplet loss are proposed to learn embeddings that can measure

similarity between images for classification. Furthermore, to eliminate the impact of class im-

balance, instead of using the strategy of hard samples mining that intuitively discard some easy

samples, we introduce a new loss function to simultaneously punish hard misclassified samples and

suppress easy well-classified samples.

Tumour area segmentation in whole-slide images is a fundamental step for viable tumour burden

estimation, which is of great value for cancer assessment. Vague boundaries and small regions dis-

sociated from viable tumour areas are two main challenges to accurately segment tumour area. We

present a structure-aware scale-adaptive feature selection method for efficient and accurate tumour

area segmentation. Specifically, based on a segmentation network with a popular encoder-decoder

architecture, a scale-adaptive module is proposed to select more robust features to represent the

vague, non-rigid boundaries. Furthermore, a structural similarity metric is proposed for better

tissue structure awareness to deal with small region segmentation.

Detection of cell-level instances in histology images is essential to acquire morphological and

numeric clues for cancer assessment. However, multiple reasons such as morphological variations of

nuclei or cells make it a challenging task where conventional object detection methods cannot obtain

satisfactory performance in many cases. We propose similarity-based region proposal networks for

nuclei and cells detection in histology images. In particular, a customized convolution layer termed

as embedding layer is designed for network building. The embedding layer is then added on to

modify the region proposal networks, which enables the networks to learn discriminative features

based on similarity learning.
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Chapter 1

Introduction

Visual inspection of tissue sections is the current gold standard for cancer diagnosis. Nowadays,

slide scanners are able to produce super-resolution whole-slide images (WSI) [1], also called digital

slides, which can be explored by image viewers as an alternative to the use of conventional micro-

scope. Pathology has benefited from the rapid progress in technology of digital scanning during the

last decade. The use of WSI together with the other microscopic and molecular pathology images

brings the development of digital pathology, which further enables to perform digital diagnostics.

In fact, digital pathology is happening in pathological workflow but only for some simple and easy

tasks and standardization efforts of digital pathology has been made in Europe [2]. Moreover,

the availability of WSI makes it possible to apply image processing and recognition techniques

to support digital diagnostics which brings the development of computational pathology. There

have been some computational pathology tools that support pathologists for very routine tasks

such as to segment overlapped nuclei [3–5], to classify breast cancer histopathological images [6–9]

and to explore the spatial dimension of tumour ecology [10]. Due to the promising impact on fu-

ture pathology practice, both digital pathology and computational pathology have got tremendous

attention [11,12].

Cancer diagnosis and prognosis based on digital slides is of significant value both in clinical

medicine and pathological research. A pathology report that gives detailed information on assess-

ment of cancer stage can help employ personalised therapy and provide better health care after

tumour resection surgery. Generally, cancer stage is determined by various aspects such as differ-

entiation of tissues, morphological variety and distribution of cells. In a routine of cancer staging,

pathologists need to frequently perform several common operations to examine digital slides, such

as navigating to cancerous regions to assess tumour morphology, zoom in and out for observation at

different levels. The procedure is labor-intensive and often leads to in-observer disagreement. For

instance, to determine sub-cancer types in histology images of breast cancer, specialists sometimes

report different opinions against each other. According to the definition given in [13], computa-

tional pathology is a promising solution to improve pathological routine efficiency and to eliminate

in-observer disagreement. However, training more effective computational algorithms requires ad-
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Figure 1.1: ImageNet classification error rate over time. All the values are sourced from the results

of ImageNet large scale visual recognition challenge (ILSVRC).

equate data and obtaining large-scale annotated pathology datasets from pathologists is difficult.

Crowdsourcing image annotation has been proposed to produce massive labeled datasets to train

and evaluate computational pathology tools [14].

Even when adequate annotated pathology datasets are available, the intrinsic complex char-

acteristics of morphological variation and other reasons make histology image recognition a very

challenging task, which is now one of the major obstacles towards computational pathology. In re-

cent years, benefiting from the powerful computational resources and the availability of large-scale

labeled data, especially the construction of the ImageNet, a large image database for visual recog-

nition research, deep learning has made incredible advances in image recognition related tasks. As

depicted in Fig. 1.1, a big breakthrough has been made in 2012 that deep models outperform shal-

low models and decrease the error rate from 25.8% to 16.4%. Furthermore, in 2015, deep neural

networks achieved a classification error rate of 3.57% compared to the human error rate of 5.0%.

According to its superior ability to learn from large data, deep learning could become a solution

for computational histopathology analysis. In fact, efforts have been made to employ deep learning

for detecting cancer metastases [15–17]. Also, deep learning has been integrated to an augmented

reality microscope for cancer diagnosis [18]. Following these studies, the main research objective

of the thesis is to employ deep learning for computational histopathology analysis. In particular,

we explore problems related to automated cancer categorisation, tumour area segmentation, and

cell-level instance detection.

Automated cancer categorisation can be formulated as a histopathological image classification

problem. A whole-slide image is generally organised in a pyramidal structure that data scanned

at different magnification factors are stored at different pyramid levels. Images acquired at a

small magnification factor can present meaningful structural information of tissue, but at the same

time some cell-level details are lost. In contrast, images acquired at a high magnification factor

can capture details of cell components but the corresponding visual field in each region is small.
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To obtain comprehensive understanding of the WSIs, it is essential to perform image analysis

across different magnification levels and jointly exploit the information in them. However, images

acquired from different magnification factors show in-class appearance variations which makes

histopathological image classification a challenging task. Besides, more visual variations are also

introduced by many aspects in tissue sample staining and scanning conditions. Especially, color

variation due to differences in the staining procedure is very common in histopathological images.

These visual variations add significant challenges to histopathological image classification on top

of the variances from multiple magnification scales.

To address the above issues, some attempts are made to learn robust features for magnification-

independent histopathological image classification. In [19], deep learning based features are first

extracted from images acquired at different magnification factors and then concatenated together

to train magnification independent models. In [20], traditional methods are applied to extract

color-texture invariant features and a majority voting approach is used to make final prediction

to improve classification performance. Even though deep learning based features learned from

image-label structures or those colour-texture invariant features are discriminative in some cases,

their performance to identify tumour subtypes still does not reach a satisfactory level in computa-

tional pathology due to the in-class variations. To exploit the strong ability of similarity learning

for developing more effective classification models, we propose a novel representation scheme,

similarity-based multi-scale embeddings (SMSE), for magnification-independent histopathological

image classification.

Tumour area segmentation in stained histopathology tissue slides is a fundamental step for

cancer grading and assessment when used along with CAD systems, especially for viable tumour

burden quantification. Traditionally, experts use a semiquantitative grading system for analyzing

the degree of tumour burden. However, manual delineation requires professional domain knowl-

edge and is laborious and time-consuming due to the large variations in the shape of the tumour

regions. Also, the standard of semiquantitative grading is based on the experience of doctors,

which is unavoidably subjective and suffers from inter-observer variability, leading to uncertainty

in examination of difficult cases. Therefore, automatic solutions for accurate, objective and repro-

ducible tumour area segmentation in whole-slide images are desired for many applications, such as

estimating the degree of tumour burden.

Although automatic tumour area segmentation is highly demanded and many endeavours have

been poured into, there still have several challenges to deal with. First of all, the boundary of

tumour area is irregular and fuzzy due to the infiltration of cancerous cells. Existing methods try

to learn more robust features to solve the issue [21]. In [22], multi-scale features have been demon-

strated to be potential in cancer segmentation. However, as it can be seen from their experimental

results, the model performs unsatisfactorily and only secure the 7th place in a challenge on hepato-

cellular carcinoma segmentation. Another challenge is that there always have some small regions

similar to cancer in whole-slide images apart from the viable tumour areas. Previous approaches

like U-Net [23] cannot segment these small regions properly. In addition to the vague boundary
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and the small regions, there are some other difficulties such as image variations between samples

even when they come from the same patient, image artifacts created when preparing and scanning

the samples (wrinkles, dust, blur created by samples with different density, among others), colours

variation when using products from different vendors, large dimensions of WSI (they are in the

gigapixel range, consequently, they cannot be directly used as an input for a neuronal network),

class imbalance (remarked difference of samples per class) and distribution imbalance (large dif-

ference in the areas covered by each class), etc. To address these challenges for the purpose of

efficient and accurate tumour area segmentation, we present structure-aware scale-adaptive feature

selection networks, by leveraging state-of-the-art techniques of deep learning with tailored designs

including attention mechanisms, residual learning [24], structural similarity and multi-scale feature

fusion, etc.

Cell-level instance detection in histology images is essential to acquire morphological and nu-

meric clues, which are meaningful for cancer assessment. For instance, the Nottingham system

grades breast cancer by adding up scores for tubule formation, nuclear pleomorphism and mitotic

count [25]. Among these factors, nuclear pleomorphism could give an indication of the degree

of the cancer evolution while mitotic count could give an evaluation of the aggressiveness of the

tumour. Cell-level analysis is normally performed by pathologists manually by using a microscope

or examining digital slides. This process is laborious, error-prone and sometimes impossible due

to the high density of cell in some regions. Thus, it is highly demanding to build a computational

model that is able to automatically and accurately detect, segment and quantify nuclei and cells

of interest in a digital slide.

Histology images produced by different laboratories with different platforms unavoidably in-

troduce variations in colour, scale and shape of nuclei and cells. Overlapping cells poses further

intrinsic complications to the task. There are also some external factors that add difficulties to

the cell detection task, e.g., the lack of quality and quantity in the annotation labels and class

imbalance, which impose widely encountered and long lasting issues in biomedical image analy-

sis. Various CNN based systems have been developed to resolve the task of cell detection. Some

works directly apply well-developed object detectors of excellent performance on cell detection.

For example, Zhang et al. [26] successfully apply the framework of Faster R-CNN [27] to detect

adhesion cells in phase-contrast microscopy images; Yi et al. [28] solve the task of accurate neural

cell detection by adapting the original SSD to a light-weight model. Although those deep learn-

ing based systems succeed in some specific cases, they cannot obtain satisfactory performance in

more general scenarios. The unique morphological nature of cells and nuclei need to be considered

and specifically addressed in the design of relevant deep learning solutions. Thus, in this thesis

a dedicated similarity learning enhanced deep neural network is presented with the leverage of

state-of-the-art techniques to detect generic cell-level objects in histology images.
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1.1 Research objectives

This study aims to explore deep learning based approaches for pattern recognition in histology

images, so as to provide computational pathology analysis to support cancer diagnosis and prog-

nosis routine. Particularly, we mainly focus on fields of automated cancer categorisation, tumour

area segmentation, and cell-level instance detection. The research objectives in specificity are

summarised as follows:

• Classification methods for automated cancer categorisation. There are several common

tasks in cancer diagnosis related to classification, such as to distinguish cancerous and non-

cancerous regions in whole-slide images, and to classify tissue types of histology images

including normal tissue, benign lesion, ductal carcinoma in situ and invasive carcinoma in

breast cancer. More useful information can be obtained from the results of classification with

a few post-processing steps, such as tumour border in whole-slide images. The study aims

to develop more effective and robust models for automated cancer categorisation.

• Segmentation methods especially semantic segmentation and salient tumour detection for

tumour area segmentation for tumour tissue quantification. The in-depth quantitative anal-

ysis of different tissue components is of crucial value in the identification of prognostic and

predictive biomarkers, which can have great impact on future disease management. This

study aims to design high-performance approaches for tumour area segmentation in whole-

slide images for tissue-level cancer assessment.

• Detection methods especially object detection for cells and nuclei localization and counting.

There are some special cells with significant meanings when presenting in digital slides. For

instance, the presence of signet ring cells in digestive system is always associated with a poor

prognosis. This study aims to explore methods to detect cells and nuclei for cell-level cancer

assessment.
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1.2 Challenges

It is generally acknowledged that automated computational histopathology analysis can lead to

a promising future for cancer diagnosis and health care. Meanwhile, it is not straightforward to

achieve the goal. The characteristics of cancer and whole-slide images pose many challenges to

tasks of computational histopathology analysis:

• Appearance variability of digital slides is one of the challenges for histology image recog-

nition. Many aspects during the procedure of producing digital slides including specimen

orientation, slide fixation and tissue staining can lead to these variations. Especially, color

variation due to differences in staining procedure is very common in histology images.

• High resolution of whole-slide images is another challenge. The size of a whole-slide image

is likely to be 100, 000×100, 000, which causes higher computational cost compared to natural

image processing. Since the task like histopathological image classification normally takes an

image as input and predict a label based on features extracted from the whole input image,

high resolution makes cancer categorisation based on a whole-slide image a challenging task.

Also, it leads to low searching performance in tasks like cells and nuclei detection.

• Structure complexity is one of the challenges for tasks of cancer diagnosis especially those

associated with segmentation. In most cases of invasive carcinoma, the transition between

cancerous and non-cancerous tissues is vague instead of with a clear edge. The ambiguous

edge makes it a challenging task to segment abnormal regions.

• Morphology variability is another challenge in histology image recognition especially for

tasks associated with cell-level instance detection. Histology images produced by different

slide scanners in different laboratories with different specimens unavoidably introduce varia-

tion in scale, shape and size of cells. Overlapping cells imposes further complications to the

task.
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1.3 Contributions

The contributions made in this thesis are summarised as follows:

• Chapter 3: We propose a method of similarity-based multi-scale embeddings (SMSE) for

cancer categorisation. The SMSE scheme represent images by multi-scale embeddings with

contrastive learning. Instead of using the conventional image features, multi-scale embed-

dings learned from image pairs or triplets are proposed to highlight the truly representative

features from each class and solve the problem associated to in-class visual variances. More-

over, a reinforced focal loss function is designed to address the class imbalance issues in

histopathological image classification. Instead of using a conventional sampling strategy, the

employment of the reinforced focal loss in learning can simultaneously punish hard misclas-

sified examples while suppressing easy well-classified examples. The class imbalance problem

is solved in a learning and reinforcing manner, to ensure an accurate and flexible selection of

information compared to the brute-force sampling of the data.

• Chapter 4: We propose a structure-aware scale-adaptive network for high accurate cancer

segmentation. Specifically, a scale-adaptive module is designed for dynamic feature selection,

which is easily integrated into a segmentation network and can ensure the network to learn

more robust features around tumour for the vague boundary problem. Instead of averagely

fusing features from different scales, we propose to learn weights for scale-adaptive feature

selection. Furthermore, a structural similarity metric is proposed to regulate the network

training procedure for better tissue structure awareness, which is helpful for solving the issue

of small regions. We empirically validate the impact of the structural similarity loss on

regulating networks training and its improvement on tumour area segmentation.

• Chapter 5: We propose a tailored similarity-based region proposal network (SRPN) for

solving the challenges in nuclei and cells detection in histology images, with special focus on

detecting individual nuclei instances in cases where high visual variance and intense occlusion

take place. Specifically, a new network architecture is designed, which includes embedding

layers to enable similarity learning, providing expressive and discriminative features that suit

the task of nuclei and cells detection. Moreover, the proposed method is applied in solving

two different tasks - multi-organ nuclei detection and signet ring cell detection - to validate its

effectiveness compared against the state-of-the-arts. Multiple CNN architectures are tested

to reveal their impacts on nuclei or cells detection. Different loss functions are applied and

validated to the training of the networks.
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1.4 Thesis outline

• Chapter 2 gives a comprehensive literature review on recent advances in topics of image

classification, semantic segmentation, salient object detection, object detection and their

applications to histology images for computational pathology based on deep learning.

• Chapter 3 focuses on tasks of cancer categorisation and tumour border detection, in which

a new scheme for tissue patch classification and a generic framework for tumour border

detection are introduced.

• Chapter 4 focuses on tasks of cancer segmentation for tissue-level analysis of histology images,

in which the proposed structure-aware scale-adaptive network for cancer segmentation in

whole-slide images is introduced.

• Chapter 5 focuses on tasks of nuclei and cells detection for cell-level analysis of histology

images, in which an approach based on similarity learning is presented to detect nuclei of

multiple organs and signet ring cells of the digestive system in histology images.

• Chapter 6 presents findings of the research and some aspects that need to be improved or

focused on in the future.
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Chapter 2

Background and Literature

Review

Classification, segmentation and detection are widely adopted approaches for visual understanding

related tasks. In the community of computer vision, there are several corresponding fundamental

studying questions, i.e., image classification, semantic segmentation and object detection etc. The

task of image classification aims to assign a single label from a fixed set of categories to each given

image. Different to the task of image classification that only one single label is assigned for the

whole input image, task of semantic segmentation aims to categorize every pixel of a input image.

The task of object detection aims to localize and categorize interested objects in a given image.

A large number of approaches to tackle these fundamental studying problems have been proposed

in the past decades. This chapter firstly introduces some techniques related to computational

histopathology analysis as background, and then gives a comprehensive literature review on these

related areas with emphasis on recent advances in the era of deep learning.
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2.1 Convolutional neural networks

Convolutional neural networks (CNN) leverage convolution for feature extraction for tasks related

to pattern recognition, especially for image classification. A convolutional layer applies convolution

over an input signal composed of several planes. One advantage of convolutional layers is that they

are locally connected that could emphasise local patterns of interest. Another advantage is that

convolutional layers share weights spatially that makes them translation-invariant. Weights sharing

also means a local pattern’s convolutional response could be re-used by different candidate regions.

Besides convolutional layers, there are a couple of types of layer to construct neural networks

including pooling layer, linear connection layer and non-linear activation layer. A pooling layer is

used to either down-sampling or up-sampling an input signal by applying either a maximum or an

average pooling over the input signal. A linear connection layer applies a linear transformation

to the input signal compared to the convolutional transformation of a convolutional layer. An

activation layer usually follows a parameter layer (either convolutional layer or linear connection

layer) and applies a non-linear transformation function to simulate the activation in biological

neural networks. Among these activation functions, the rectified linear unit (ReLU) [29] and

its variants such as leaky rectified linear unit (LReLU) [30] and parametric rectified linear unit

(PReLU) [31] are widely adopted. Unlike the standard ReLU function, the LReLU function has a

non-zero gradient over its entire domain while the PReLU function has a learnable gradient over

its negative domain.

Deep neural networks especially CNN have benefited from the powerful computational resources

and the availability of large-scale labeled data to achieve impressive breakthroughs in learning

powerful representation for tasks of visual recognition [32]. In 2012, krizhevsky et al. [33] presented

a CNN model named AlexNet, which achieved a winning test error rate of 15.3% in the ImageNet

large scale visual recognition challenge (ILSVRC) 1 compared to the second place of 26.2%. The

AlexNet is built in the LeNet [34] style that simply applying the combination of convolutional layers

and max-pooling layers. It consists of 8 parametric layers. The first five layers are convolutional

and the remaining three are fully connected. The size of the convolutional kernels differs in layers.

It is worth noting that the ReLU activation function was applied to accelerate the training process

in contrast to standard ways of the Sigmoid function and the Hyperbolic tangent function. Another

point worth mentioning is that the AlexNet employs techniques including Dropout [35] and data

augmentation to reduce overfitting. Due to the success of AlexNet in applying deep learning for

image classification, there have been a growing number of work that focus on designing better

architecture for representation learning.

VGG is another successful deep network introduced by Simonyan et al. [36] to investigate better

architectures of CNN. It has been demonstrated that the depth of CNN plays an important role

in visual representation that by increasing the depth the performance of CNN shows significant

improvement. Specifically, Compared to the AlexNet that applies multiple kernel sizes, VGG ex-
1http://www.image-net.org/challenges/LSVRC/
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Figure 2.1: Architectures of basic blocks for neural networks construction. (a) basic block for

VGG; (b) Inception block for GoogLeNet; (c) Residual block for ResNet.

ploits modularized design by repeatedly stacking a convolutional layer with a small convolution

filter (e.g., 3 × 3) followed by a pooling layer (Figure 2.1 (a)). A VGG instance with 19 para-

metric layers secured the first and second places in ILSVRC 2014 for the tasks of localization and

classification respectively.

At the same period as the VGG was proposed, Szegedy et al. [37] also investigated in building

networks with a very deep structure. Instead of taking advantage of small convolution filters in all

convolutional layers of different depth, they proposed to simultaneously employ multiple branches

of convolutional layers with different filter sizes to learn an optimal local sparse structure. In

particular, as illustrated in Figure 2.1 (b), the codenamed Inception module that combines multiple

convolutional layers with filter sizes 1 × 1, 3 × 3 and 5 × 5 and concatenates the outputs of these

layers to form the input of next stage. Apart from multiple branches, there are two novel designs

worth mentioning that might strengthen the networks. One is the bottleneck design to reduce

dimensions by 1 × 1 convolutions before expensive 3 × 3/5 × 5 convolutions. Another one is the

shortcut connections by 1× 1 convolutions in the Inception block. One network instance built on

the basis of the Inception block called GoogleNet shown great strength in extracting discriminative

features and won the classification competition of ILSVRC 2014.

Evidence in [36,37] have shown that the depth of deep nueral networks is of crucial importance

and plays a key role in the success of deep learning. However, deeper networks are more difficult

to train due to the problem of vanishing gradients [38, 39]. Some work [40, 41] have reported that

accuracy gets saturated and degrades rapidly with respect to the increasing depth. In [24], authors

introduced residual learning to ease the training of deeper networks and to address the problem of

degradation in training accuracy. As illustrated in Figure 2.1 (c), similar to the VGG, the Residual

block employs convolutions with a same filter size to construct networks. However, compared to

the VGG, the shortcut connection in the Residual block reduces the problem of vanishing gradients.

On the basis of the residual learning framework, a network instance with a depth up to 152 layers

called ResNet won the first place in ILSVRC 2015 and COCO 2015 [42] in multiple tasks related

to classification, detection and segmentation.
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The architecture of CNN continues to evolve after the ResNet. Inspired by the important role

of attention mechanism in human visual perception, an increasing amount of works try to leverage

attention mechanism to further improve CNN and many attention schemes have been proposed

[43–47]. According to the dimension the learned attention weights are applied to, these attention

schemes can be group into channel attention and spatial attention. Especially, attention schemes

including the squeeze-and-excitation (SE) module [44], the bottleneck attention module (BAM)

[48], the convolutional block attention module (CBAM) [49] and the attention gated networks [50]

gain great success in more robust feature learning for a couple of visual tasks including image

classification and segmentation.

Due to the property of local connectivity, convolutional neural networks are limited on captur-

ing long-range spatial dependencies, which is yet critical for many visual recognition related tasks

like cancer segmentation since dependencies among tissue types normally exist in whole-slide range.

Popular designs like large convolutional kernel or deeper network are applied to enlarge receptive

fields of CNN neurons to capture long-range dependencies [51–53]. In addition, a multi-branch

design with multiple types of kernel is applied in GoogleNet [37] to obtain multi-scale receptive

fields, and a novel selective-kernel (SK) convolutions has been proposed to achieve selective recep-

tive fields [54]. However, the above CNN models are conventionally trained through supervised

learning. Some new learning schemes like similarity learning or contrastive learning for visual

representation learning have been proposed and developed. In the next section, we give a basic

introduction on similarity learning.

2.2 Similarity learning

A good representation of an image is a key to recognise the image. Recently, learnable image

representations outperform handcrafted representations designed with domain knowledge [55–57].

Similarity learning is a promising way to learn effective visual representations without or with weak

human supervision [58–61]. These approaches learn visual representations by contrasting positive

samples against negative samples. To learn from unlabeled data, in [62], the authors propose to

treat each instance as a class and perform a variety of transformations to each instance to yield

training sets with surrogate labels. Through using the instance classes human supervision can be

discarded. Nevertheless, large computational complexity imposed by learning from instance classes

becomes a new challenge. The memory bank has been proposed to cope with the computational

problem [59, 63, 64]. In addition, some works use in-batch samples for negative sampling instead

of using a memory bank [65–67]. Due to its ability in learning more robust visual representations

compared to other machine learning methods, similarity learning has became widely used for tasks

like signature verification [68], one-shot image recognition [69] and object tracking [70].

With paired samples, distance metrics in an embedding space are used to measure the similarity

between samples. Similar samples are closer than those dissimilar ones in the embedding space.

Various loss functions based on distance metric in an embedding space have been proposed for
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similarity learning, such as the contrastive/pair loss [58] and the triplet loss [71]. The pair loss is

defined as follows:

Lpair(ϵ, ϵ
′, s) =

1

2
s ∥ϵ− ϵ′∥2 + 1

2
(1− s)max(m− ∥ϵ− ϵ′∥2 , 0) (2.1)

where s ∈ {0, 1} denotes the similarity/closeness between embedding ϵ and ϵ′ that respectively

derived from paired samples, m is a constant of margin, and ∥·∥ an Euclidean distance metric.

After the process of minimizing the loss function, the distance between two samples with different

categories should be greater than the margin m. In other words, samples of different classes

spread widely in the embedding space. Meanwhile, samples of the same class cluster closely

together. Visual representations (embeddings) learned in this way are expected to be capable of

discriminating samples. Similarly, the triplet loss is defined as the following:

Ltriplet(ϵ
a, ϵp, ϵn) = max(∥ϵa − ϵp∥2 − ∥ϵa − ϵn∥2 +m, 0) (2.2)

where ϵa is a reference embedding, and ϵp is a positive embedding of the same class as the reference

while ϵn is a negative embedding of a different class. After optimisation, the distance between a

positive pair ∥ϵa − ϵp∥2 should be less than that between a negative pair ∥ϵa − ϵn∥2 by a margin

m.

2.3 Class imbalance

Class imbalance is a very common problem faced by solving visual understanding related tasks

such as image classification. Common ways to cope with the class imbalance issue can be grouped

into two schemes 1) approaches to balance losses of different samples [72] and 2) approaches to

balance samples of different classes [73]. To balance losses, approaches like reweighing schemes [74]

and gradient suppression [75] are proposed for different purposes. To balance samples, approaches

like active learning [76] and online hard example mining [77] are introduced to select informative

samples.

Standard cross-entropy loss is widely used in tasks of image classification. Take binary classi-

fication as an example, in which the cross-entropy loss function can be expressed as:

Lce (p, p
∗) = − [p∗ · log p+ (1− p∗) · log (1− p)] (2.3)

where p∗ ∈ {0, 1} specifies the negative class and positive class respectively and p ∈ [0, 1] a predicted

probability to be the class with label p∗ = 1. As it can be seen from the formulation that the loss

might be overwhelmed by samples of a specific class. That is to say the cross-entropy loss cannot

handle the class imbalance issue. There have been some solutions to improve the cross-entropy loss.

For instance, the balanced cross-entropy loss introduces a weighting factor α ∈ [0, 1] for positive

samples and 1− α for negatives. For better understanding, with definition p̂ and α̂ as follows:

p̂ =

p if p∗ = 1

1− p otherwise,
(2.4)
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α̂ =

α if p∗ = 1

1− α otherwise,
(2.5)

the cross-entropy loss can be rewritten as:

Lce (p, p
∗) = Lce (p̂) = −log (p̂) (2.6)

Then the α-balanced cross-entropy loss can be expressed as:

Lce (p, p
∗) = Lce (p̂) = −α̂ log (p̂) (2.7)

Besides the balanced cross-entropy loss, another popular improvement to the cross-entropy loss

named focal loss is introduced in [75] which is defined as:

Lfl (p, p
∗) = Lfl (p̂) = −(1− p̂)γ log (p̂) (2.8)

where γ ≥ 0 is a tunable focusing parameter. Setting γ > 0 reduces the relative loss for well-

classified examples (p̂ > 0.5), putting more focus on hard misclassified examples.
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Figure 2.2: Representative network architectures for semantic segmentation and salient object

detection. (a) single-stream network, (b) multi-stream network, (c) multi-scale features fusion

network, (d) feature pyramid network and (e) multi-branch network.

2.4 Semantic segmentation

Generally speaking, it is helpful to recognize and understand what is in an input image at pixel

level. In this section, we first give out a common formulation of an image segmentation problem

before reviewing its recent advances. Let x ∈ Rw×h×3 denotes an input image of size of w × h

pixels, a segmentation model f(·) maps the input image x to a segmentation map y ∈ [0, 1]w×h,

i.e., y = f(x; Θ), where Θ denotes the model’s coefficients. For supervised learning based seg-

mentation, model coefficients Θ are estimated through a learning process that fits the model f(·)

to a training dataset D = {(xi, ŷi)|i ∈ Z+} where xi denotes ith image and ŷi the correspond-

ing ground-truth map. Normally, the learning process aims to find coefficients Θ that minimizes

prediction error, i.e., arg min
Θ

∑
(xi,yi)∈D L (f (xi; Θ) , ŷi), where loss function L(·) typically is a

certain distance measure. According to difference in the form of segmentation map y, tasks of

image segmentation can be further classified as semantic segmentation, instance segmentation and

salient object detection, etc. Next, we review recent advances in fields of semantic segmentation

and salient object detection that associated with tumour tissue segmentation in histology images.

As convolutional neural networks become the state-of-the-art in learning visual representation,

it is natural to apply CNNs to solve the image segmentation problem for the requirement of coarse-

to-fine inference. Inspired by the process of using CNNs for image classification in which a category
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is assigned to each input image, early segmentation approaches directly adopt the classification

networks to predict a category for each pixel through training a patch-wise classifier with much

smaller input size when compared to the whole input image [78, 79]. This kind of patch-based

methods always work with a sliding window to obtain segmentation map. Typically, a patch is

fed into the trained classifier to predict a label for the central pixel of the patch. The patch-based

methods for semantic segmentation have inherent drawbacks like low computational efficiency and

blocky prediction result [80]. To address the drawbacks of patch-based methods, fully convolutional

networks (FCN) have been proposed since 2015 [81], which has driven recent advances in applying

CNN for image segmentation. Many works including U-Net [23], SegNet [82], DeconvNet [83]

and Deeplab [84] improve FCN with a better encoder-decoder network architecture. The main

advantage of FCN based methods for pixel labelling is that the network takes whole image as

input and can be trained end to end, pixel to pixel. However, one apparently problem faced by

these state-of-the-art methods in settings of supervised learning is that a large amount of training

data is required to get a promising result.

For semantic segmentation tasks, it is much more applicable to give bounding box annotations

or image-level labels than to annotate each pixel. Considering this, several semantic segmen-

tation algorithms in weakly supervised settings have been designed to avoid the requirement of

lager amount of segmentation labels in the past few years. Pinheiro et al. [85] carried out ob-

ject segmentation by leveraging only a single object class label for a given image and beat the

state-of-the-art results in weakly supervised object segmentation task. Likewise, Pathak et al. [86]

constructed Constrained CNN to learn a dense pixel-wise labelling from image-level tags. Instead

of using image-level class, Dai et al. [87] proposed approach called BoxSup which using bounding

box annotations as an alternative source of supervision to train convolutional networks for se-

mantic segmentation. By leveraging a large amount of bounding boxes, BoxSup further produces

state-of-the-art results on segmentation benchmark PASCAL VOC 2012.

2.5 Salient object detection

Different to semantic segmentation that each pixel of a given image is assigned a label from a

ground-truth category set, salient object detection (SOD) aims at highlighting only visually salient

object regions in a given image. SOD methods can be different in learning paradigm, level of

supervision and modeling. According to the difference in learning paradigm, SOD methods can

be divided into two groups 1) single-task learning and 2) multi-task learning. One motivation to

use multi-task learning is that extra knowledge learned from related tasks can help improve model

generalizability for each task. There have been some work that combining SOD with tasks like

image classification [88], semantic segmentation [89] and edge detection [90]. According to level of

supervision, SOD methods can be grouped into either fully supervised or weakly supervised. Fully

supervised SOD models are learned from dataset with pixel-wise annotations which is prone to

human labor. Thus, a growing number of work put emphasis on weak supervision, e.g., image-level
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category supervision [91], object contour supervision [92] and pseudo mask supervision [93,94]. For

modeling, early methods are mostly heuristic that exploit low-level visual features and saliency cues

such as contrast prior [95, 96], boundary prior [97, 98] and background prior [99, 100]. Nowadays,

due to power of deep learning to extract discriminative features, an increasing number of methods

based on deep learning have been proposed for salient object detection. We will focus on deep

learning based SOD methods for the rest of this review.

Most of deep learning based SOD methods adopt fully convolutional networks (FCN) [81], which

leads to fast end-to-end saliency prediction. Typical FCN of different architectures (Fig. 2.2) for

salient object detection include 1) single-stream networks, 2) multi-stream networks, 3) multi-

scale features fusion networks, 4) feature pyramid networks and 5) multi-branch networks. Single

stream is the most standard architecture for SOD networks. An encoder-decoder architecture

is normally used in single-stream networks for saliency detection [101]. Multi-stream networks

explicitly learn multi-scale saliency features from multi-resolution inputs with multiple streams

respectively [102]. Instead of learning multi-scale features explicitly, multi-scale features fusion

networks look to use inherent multi-scale representations of hierarchical convolution layers [103].

Feature pyramid networks take advantage of both the encoder-decoder architecture and the multi-

scale representations of hierarchical convolution layers to gradually refine saliency regions [104,105].

A multi-branch network is typically consisted of shared bottom layers to process a common input

and specialized top layers for different tasks. It is normally constructed for multi-task learning to

improve saliency detection [92].
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2.6 Object detection

Visual object detection is typically formulated as a multi-task problem, i.e., to localize and to

categorize interested objects across a given image. Let x ∈ Rw×h×3 denotes an image of size

w × h pixels, a detector f(·) simultaneously map the input image x to a localization array

l ∈ Rn×m and a confidence array c ∈ [0, 1]n, where n is the number of objects and m denotes

number of dimension for locations, i.e., (l, c) = y = f(x; Θ), where Θ denotes the model’s

coefficients. For supervised learning based object detection, model coefficients Θ are estimated

through a learning process that fits the model f(·) to a training dataset D = {(xi, ŷi)|i ∈ Z+}

where xi denotes ith image and ŷi = (̂li, ĉi) the corresponding ground truth for object detection.

Normally, the learning process aims to find coefficients Θ that minimizes prediction error, i.e.,

arg min
Θ

∑
(xi,ŷi)∈D Lloc (f (xi; Θ) [0] , ŷi [0]) +Lcls (f (xi; Θ) [1] , ŷi [1]), where loss term Lloc(·) for

localization task and Lcls(·) for classification.

Classical framework of detectors before deep learning era basically consists of three components:

1) propose regions of interest (ROI) to predict candidate bounding box; 2) extract feature vectors

from ROI for classification; 3) categorize ROI and refine the corresponding bounding boxes. Gen-

erally, a sliding window approach is used to search locations of ROI. To better consider situations

that objects might have scale and aspect ratio variation, various strategies have been proposed such

as crop the input image into different sizes or use multiple sliding windows with different aspect

ratio [106,107]. Features extracted from ROI are normally encoded by low level visual descriptors

like SIFT [108], Haar [109], HOG [110] and SURF [111]. Detectors in the era of deep learning can

be grouped into two families: two-stage detectors and one-stage detectors, according to whether

there is a independent procedure to extract regions of interest. Two-stage detectors often reported

the best accuracy performance on the public detection benchmark like VOC [112] and COCO [42],

while one-stage detectors mainly focus on speeding up the prediction to realize real-time detection.

Next, we describe in details some representative detectors to date. An illustration of different

frameworks is given in Fig. 2.3 for better understanding the evolution of frameworks for regional

features based object detection. OverFeat [113] is one of the early successful approaches that

effectively uses CNN for the task of object detection. Specifically, it implemented a multi-scale,

sliding-window approach within an integrated framework for tasks of classification, localization

and detection, which shows that different tasks can be learned simultaneously. Moreover, it shows

that training a integrated CNN for multi-tasks can boost the performance of all tasks. It is the

winning approach of the ImageNet large scale visual recognition challenge (ILSVRC) 2013 for both

tasks of detection and localization.

R-CNN [114], as illustrated in Fig 2.3 (a), is a pioneering framework that exploits regional

features extracted by CNN for object detection. In particular, the R-CNN system consists of

three modules. The first module uses region proposal methods to generate potential bounding

boxes. The second module is a CNN that extracts feature from each proposal region. The third

module is used for categorizing potential bounding boxes. Compared to the previous complex

18



Figure 2.3: Evolution of frameworks for two-stage regional object detection.
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ensemble systems with the best performance of object detection like SegDPM [115], R-CNN made

a breakthrough and achieved a mean average precision (mAP) of 53.3% on the detection benchmark

VOC 2012. However, each module of R-CNN must be train separately that making it difficult to

obtain a global optimization. Moreover, due to the separate regional feature extraction of each

candidate, the resulting system is slow at the inference stage which makes R-CNN unable to meet

the requirement of real-time detection.

Inspired by the method of spatial pyramid matching (SPM) [116,117], He et al. [118] introduced

a spatial pyramid pooling (SPP) layer to construct deep neural networks, which eliminates the

constraint that neural networks always require a fixed-size input image. Specifically, a SPP layer is

used to pool a fixed-length representation for each candidate window of the feature maps generated

by the last convolutional layer. Different to R-CNN that separately extract features from image

regions, SPP can extract features in arbitrary windows from convolutional feature maps. Due to

the design of adding the SPP layer, the constructed network for tasks of object detection, termed as

SPP-net [118] (Fig. 2.3 (b)), achieves outstanding accuracy performance and has a faster inference

speed with comparison to R-CNN. However, all the parameters of convolutional kernels before the

SPP layer need to be frozen during training, which significantly affects the accuracy of very deep

networks.

Detector Fast R-CNN [119] (Fig. 2.3 (c)) was proposed to address the limitations of R-CNN

and SPP-net. Compared to R-CNN, the training of Fast R-CNN is in an end-to-end manner by

using a multi-task loss. Instead of using spatial pyramid pooling layer of SPP-net, Fast R-CNN

introduced ROI Pooling layer to extract regional features from feature maps. ROI Pooling layer

is a special case of the SPP layer which uses max pooling to convert the features inside any valid

ROI into a small feature map. Moreover, different to SPP-net that froze the convolutional layers

for feature map extraction, Fast R-CNN updates all the layers to achieve better performance. All

these changes make Fast R-CNN a better detector both in accuracy and inference speed than

R-CNN and SPP-net.

Advances of previous regional features based detection systems [114,118,119] relies on the region

proposal methods such as Selective Search [120] or Edge Boxes [121]. However, the traditional

region proposal methods are computationally expensive and based on hand-crafted features, which

lead to lower performance of detectors in terms of both accuracy and speed. To eliminate the

limitations of the region based detectors, Ren et al. [27] proposed region proposal networks (RPN)

method, a data-driven and learnable way for region proposal, the resulting detector Faster R-CNN,

as depicted in Fig. 2.3 (d), reported a outstanding mAP of 70.4% on VOC 2012 and 73.2% on

VOC 2007 with a very high inference speed that making it a real-time object detection system.

Currently, there are a various number of object detection systems based on Faster R-CNN for

different applications [122–125]. One drawback of Faster R-CNN is that it uses a single feature

map generated by the last convolutional layer to make the prediction, which makes it unable to

handle the situation of predicting objects at multiple scales.

Instead of separating object detection into two stages, YOLO [126] formats detection as a
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regression problem and uses a single CNN to simultaneously predict bounding boxes and class

probabilities. In particular, the YOLO system divides an input image into s × s grid cells, sev-

eral bounding boxes and their corresponding confidences are then made on each cell based on the

probability map. Despite with lower performance in comparison with the region based detection

systems like Faster R-CNN, YOLO has higher inference speed and is less likely to predict false

positives on background. However, there are some drawbacks of the YOLO system: 1) in consid-

eration of high computational efficiency, YOLO only predict two objects for each grid cell which

limits its application to scenes with dense objects; 2) similar to Faster R-CNN, YOLO only makes

prediction on a single feature map which is not suitable for detecting objects at different scales.

SSD is a single shot multibox detector proposed by Liu et al. [127] to address the long-lasting

challenge of multiple scales in object detection which is not well solved by detectors such as Faster

R-CNN and YOLO. Different to the previous approaches that use a single feature map for predic-

tion, SSD exploits multiple feature maps generated by multiple stacked CNN layers for prediction.

Based on the theory of receptive field of CNN [52, 128], the size of receptive field grows with the

depth of CNN and local features are detected in early visual layers and are then progressively

combined to create more complex patterns. By applying multiple feature maps at different level

for prediction, SSD achieves a comparable accuracy performance with Faster R-CNN but with

power of doing real-time detection.

Similar to SSD that using multi-scale feature maps, Liu et al. [124] proposed to use feature

pyramid networks (FPN) for detection. The network architecture of FPN is similar to the one

used in U-net [23] and stacked hourglass networks [129]. Applying FPN to adapt the single-scale

detectors like RPN, Fast R-CNN and Faster R-CNN makes significant improvement on accuracy

performance for each baseline without increasing the inference time. The adapted Faster R-CNN

reported the state-of-the-art result on the COCO [42] detection benchmark. From then on, FPN

has been proved to be a powerful architecture for generic feature extraction with many success-

ful applications in domains such as object detection [130–133], pose estimation [134] and action

recognition [135].

Besides scale variation, class imbalance between background and foreground is another challenge

in object detection. Instead of adopting the strategy of hard example mining [77,136] that naively

discarding some easy negative examples and sampling examples of a fixed ratio (e.g., 3:1) between

negatives and positives, Lin et al. [75] introduced a novel focal loss to address the problem of class

imbalance by suppressing the gradients of easy samples. The resulting detector named RetinaNet

is built on the basis of RPN and FPN but trained by the focal loss which is able to match the speed

of previous one-stage detectors while surpass the accuracy of all existing state-of-the-art two-stage

detectors.

Overall, the framework of detectors itself barely changes but the hand-crafted features are

replaced by their data-driven and learnable counterparts. Take the framework of Faster R-CNN [27]

as an example, it divides the task of detection into two stage. The first stage generate feature maps

with a backbone of convolution neural network (CNN) and then propose foreground regions in a
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Table 2.1: A summary of recently released pathological image datasets.

Dataset # samples Tasks Cancer type

BreakHis [7] 7909 Classification Breast cancer

BACH [137] 400 Classification Breast cancer

GlaS [138] 330 Gland segmentation Colorectal cancer

CAMELYON16 [16] 270 Detection and classification Breast cancer

CAMELYON17 [139] 1000 Detection and classification Breast cancer

DigestPath [140] 872 Cancer segmentation Colon cancer

PAIP2019 [141] 100 Cancer segmentation Liver cancer

PAIP2020 118 Cancer segmentation Colorectal cancer

MoNuSeg [142] 21,623 Nuclear segmentation Multiple organs

MoNuSAC [143] 46,909 Nuclear classification Multiple organs

supervised way which was named as region proposal networks (RPN). The second stage consists of

two steps, 1) extract feature vectors while takes the feature maps and region proposals as input; 2)

categorize the feature vectors and refine the corresponding bounding boxes with head of classifier

and regressor respectively. It is worth noting that RPN can be used as an independent detector.

In this setting, the output of RPN will be predictions of its heads of classifier and regressor instead

of region proposals, which makes RPN a one-stage detector. Improvement have been made based

on RPN, which makes RPN develops into detectors like SSD [127] and RetinaNet [75] with better

performance and ability to do real-time detection.

2.7 Datasets and evaluation metrics

In recent years, a couple of datasets of H&E stained images have been released for several com-

putational histopathology analysis related tasks in different challenges, which makes it possible to

evaluate and compare AI based algorithms of different times. A summary of these datasets can be

seen in Table 2.1. These tasks for different cancer assessments can be formulated as classification,

semantic segmentation and cell-level instance detection in computer vision. Next, we list some

regular metrics to evaluate these tasks.

The first commonly used evaluation metric for classification is accuracy (ACC), which can be

formulated as follow:

ACC =
TP + TN

TP + FP + FN + TN
(2.9)

where TP , FP , TN and FN are short of true positives, false positives, true negatives and false

negatives respectively, and can be derived from a confusion matrix. The second metric is F1 score,

also known as the Dice coefficient (DC) in some contexts, which commonly used for classification

and detection evaluation. Similar to accuracy, F1 score/DC can be expressed as follow:

F1 = DC =
2TP

2TP + FP + FN
(2.10)
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In the context of object detection, there is a common metric called Intersection over Union

(IoU), also known as the Jaccard similarity (JS) coefficient. Similar to the F1 score/DC, the

IoU/JS is expressed as below:

IoU = JS =
TP

TP + FP + FN
(2.11)

In the context of semantic segmentation, for better understanding, given a ground truth map

A and a segmentation map B, the JS and DC can also be expressed as the follows:

JS =
|A ∩B|
|A ∪B| (2.12)

DC =
2× |A ∩B|
|A|+ |B| (2.13)

where A can be seen as a set of foreground pixels in the annotation and B the corresponding set

of foreground pixels in the segmentation result.

Apart from the above metrics, some metrics derived from a confusion matrix such as speci-

ficity (SP ), sensitivity/recall (RC), and precision (PC) are regularly used. Their mathematical

expression are as follows:

SP =
TN

TN + FP
(2.14)

RC =
TP

TP + FN
(2.15)

PC =
TP

TP + FP
(2.16)

In our research, different datasets and evaluation metrics are picked for different purposes,

which will be stated in specific experiments.

2.8 Cancer categorisation

In spite of its simplicity, image classification is used widely in computational histopathology anal-

ysis. Being able to classify tissue type in histopathological images is an essential step for computa-

tional histopathology analysis and of significant value for cancer categorisation. Efforts have been

made to automatically classify histopathological images with different methods including bag of

features [144], sparsity model [145], dictionary learning [146] and deep learning [147–150]. These

methods are usually evaluated on data of different sources selected by researchers for different tasks,

which leads to difficulty in performance comparison. To better evaluate and compare performance

of proposed methods for histopathological image classification, a dataset (BreakHis 2) that consists

of breast cancer histology images have been made publicly available [7]. Images in the BreakHis

are divided into two classes, benign or malignant. Besides, there are two datasets released for
2https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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Table 2.2: A summary of deep learning based methods evaluated on the BACH dataset.

Ref. (Year) Network/Method Pre-trained ACC (%)

Araujo et al. (2017) [148] AlexNet No 77.8

Nazeri et al. (2018) [151] FCN No 95

Vang et al. (2018) [152] GoogleNet Yes 87.5

Vesal et al. (2018) [153] GoogleNet/ResNet Yes 91.25/97.5

Rakhlin et al. (2018) [154] VGG/GoogleNet/ResNet Yes 87.2

Golatkar et al. (2018) [155] GoogleNet Yes 85

Yang et al. (2019) [156] Attention Guided CNN No 93

Sitaula et al. (2020) [157] Hybrid Features + SVM No 92.2

Li et al. (2021) [158] MA-MIDN No 93.57

Zou et al. (2022) [159] AhoNet No 85

Zhong et al. (2022) [160] DSAGu-CNN No 96.47

challenges of the BIOIMAGING 2015 3 and the BACH 2018 4. Different to the BreakHis, both

images from the BIOIMAGING 2015 and the BACH 2018 are labelled as normal, benign, in situ

carcinoma or invasive carcinoma according to the predominant cancer type in each image. These

datasets are now benchmarks for histopathological image classification. As an example, table 2.2

summarises the progression in deep learning based methods evaluated on the BACH dataset. As

it can be seen from the table, the accuracy of cancer categorisation is now at a very high level.

One of the state-of-the-art architectures ResNet achieved an accuracy of 97.5. However, these deep

learning based models are trained and evaluated on images acquired from the same magnification

factor, which simplifies the task but limits the application scenes.

The impact of magnification factor is a challenge for tasks of histopathological image classifi-

cation. A whole slide image is generally organised in a pyramid architecture that data scanned at

different magnifications are stored at different levels of pyramid. Data scanned at a large magnifi-

cation can capture details of cell architecture but the resulting image is with a very high resolution

while data scanned at a small magnification can capture the completed structure of tissue but at

the same time some details are hidden. It is important to choose a suitable magnification factor for

a specific task. To eliminate the impact of magnification factor, some work have attempted to train

magnification independent models for histopathological image classification [19,20]. In particular,

features are first extracted from images at different magnifications and then concatenated together

before being fed to classifiers for prediction. Evaluation results on the BreakHis dataset show

that magnification independent models can achieve excellent accuracy performance of about 87%

compared to the baseline range from 80% to 85% [7]. As it can be seen that the performance of

magnification-independent models are not satisfactory when compared to the magnification-specific

ones.
3http://www.bioimaging2015.ineb.up.pt/dataset.html
4https://iciar2018-challenge.grand-challenge.org/Dataset/
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High resolution of histopathological images is another challenge for tasks of histopathological

image classification. In some cases a histology image contains multiple types of tissue with different

textures but only an image-wise label is available which makes the situation even worst. In [149],

authors proposed a spatial fusion approach to address the problem of high resolution in histology

image classification. In particular, at the beginning, an instantiating ResNet is employed to extract

feature for each patch sampled from the whole histology image. The extracted features of each

patch are then combined into a spatial feature map for class prediction. The proposed method is

evaluated on both datasets of the BIOIMAGING 2015 and the BACH 2018, and achieved excellent

accuracy of 98.5% on the 4-class classification that close to performance of pathologists. Although

the performance is excellent, improvement of cancer categorisation is still needed in some cases

such as where there exists class imbalance issue.

In this research, we focus on training deep learning based models for magnification-independent

cancer categorisation with class imbalance issues.

2.9 Tumour area segmentation

The purpose of tumour area segmentation is to help do cancer assessment at tissue level. For

those cancer with a particular type of structure and a clear organ border such as the gland, to

segment the tumour area can be treated as an object-oriented segmentation. For the others that

without a clear border such as metastases, the segmentation task can be considered as a textural

segmentation.

A gland segmentation (GlaS) contest [138] hosted by the Warwick University at MICCAI 2015,

which focuses on the first kind of segmentation. The task of the contest is to segment the gland

areas when given a histopathological image of colon cancer. Table 2.3 gives a summary of the GlaS

contest. As it can be seen that most of the proposed methods are based on FCN or U-Net and

about a DC of 0.8 can be achieved. A couple of deep learning based methods have been proposed

after the contest [161–165]. Many attempts have been made to incorporate multi-scale features for

a better result. For instance, in [166], the authors propose a deep contour-aware network, which

can leverage multi-scale contextual features for accurate gland segmentation. Also, some try to

use multi-input and multi-output convolutional neural networks for gland segmentation [167] while

in [168] the authors seek to merge informative morphological scale space.

Apart from the studies based on the GlaS dataset, segmentation of other cancer types target-

ing at doing texture-based segmentation. As an example, Ciresan et al. propose a network in a

sliding-window setup to predict a class label for each pixel, which won the electron microscopy seg-

mentation challenge at ISBI 2012 [169]. Furthermore, table 2.4 gives a summary on the colonoscopy

tissue segmentation in DigestPath 2019. Similar to the development of semantic segmentation in

natural images, most early methods for tumour area segmentation are empowered by patch-based

classifier with a sliding-window post processing. As FCN becomes the state-of-the-art in semantic

segmentation, an increasing number of FCN variants have been successfully applied to various
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Table 2.3: A summary of top-6 submissions for gland segmentation evaluated

on the GlaS dataset, data acquired from [138].

Team Network/Method F1 DC

CUMedVision1 FCN, multi-level feature 0.769 0.800

ExB1 Two-path network, post-processing 0.703 0.786

Freiburg2 U-Net, morphological hole-filling 0.695 0.786

Freiburg1 U-Net, connected component labelling 0.605 0.783

CUMedVision2 Contour-aware network 0.716 0.781

ExB3 Two-path network 0.719 0.765

Table 2.4: A summary of top-5 submissions for colonoscopy tissue segmentation in

DigestPath 2019, data acquired from [140].

Team Network/Method Ensemble DC (%)

kuanguang DenseNet, ResNext, U-Net, ResNet Yes 80.75

SJTU-MedicalCV EfficientNet, DeepLab No 79.28

TIA-Lab MILD-Net Yes 78.78

ustc-czw PSP-Net Yes 78.62

zju-realdoctor U-Net Yes 77.89

scenarios and image modalities for end-to-end cancer segmentation [170–174], including digitised

histopathological images [175–177]. Among them, an ensemble model achieves the best published

result on hepatocellular carcinoma segmentation [174]. The main advantage of these FCN based

methods for pixel labelling when compared to the patch-based ones is that the networks can be

trained in an end-to-end, pixel-to-pixel way.

2.10 Detection of cell-level instances

The presence of some special types of cells, e.g., signet ring cells, is a crucial clue for cancer diagnosis

and prognosis. Thus, being able to detect cell-level instances including cells, nuclei and mitosis

is a critical step for cell-level analysis in digitized medical image, from which useful clinical clues

including but not limited to cell distribution and differentiation can be automatically acquired. A

great number of efforts have been made in this area for different purposes [178–184]. For instance,

Yi et al. [28] investigated efficient neural cell detection method to obtain reliable lineage path of

neural cells for understanding the development of brain. Since the number of mitosis is a valuable

indicator for breast cancer grading, many work have investigated automated mitosis detection in

histology image of breast cancer [181, 185, 186]. There are also some work which focus on nuclei

detection in different types of cancer [178,182,183].

Similar to object detection introduced in the section 2.6, approaches for cell-level instance
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Table 2.5: A summary of multi-organ nuclei segmentation eval-

uated on the MoNuSeg dataset.

Method RQ SQ PQ AJI DC

FCN8 [81] 0.434 0.714 0.312 0.281 0.797

U-Net [23] 0.691 0.690 0.478 0.556 0.758

SegNet [82] 0.545 0.742 0.407 0.377 0.811

Mask R-CNN [187] 0.704 0.720 0.509 0.546 0.760

DCAN [188] 0.677 0.725 0.492 0.525 0.792

CNN3 [189] - - - 0.508 0.762

DIST [190] 0.601 0.732 0.443 0.560 0.786

Deep Panoptic [191] - - - 0.585 0.794

HoVer-Net [192] 0.770 0.773 0.597 0.618 0.826

CIA-Net [193] 0.754 0.762 0.577 0.620 0.818

Triple U-Net [194] - - 0.601 0.621 0.837

detection have evolved from using handcrafted features to using learned features. Most early

stage approaches exploit handcrafted low-level visual features that encode information such as

shape [195], edge [179], luminance [180] and texture [196] to detect nuclei or cells in medical

images.

Nowadays, convolution neural networks are considered to be more powerful to learn image

representations from pixel intensity. Due to its superior ability in learning robust features, a

variety of work have exploited CNNs to the task of cell detection. A straightforward way to use

classification networks for detection related tasks is to train a classifier with small image patches

for target objects, and then applying the trained classifier to make prediction on a big input image

in a sliding-window way, where the center pixel of the window is classified into background or

foreground. Some early work success to apply this method for purpose of cell-level object detection,

including mitosis detection [181] and nuclei detection in colon cancer histology images [183]. A

major drawback is that this kind of methods are unable to deal with object scale variation. Instead

of using classification architectures for nuclei and cells detection, some work apply region based

CNN (R-CNN) architectures where the scale variation problem is well considered. For instance, Xu

et al. [197] integrate improved U-net and SSD to detect and segment cell instance in a multi-task

way. In practice however, CNNs designed and trained for nature images straightforward apply to

biomedical images are often unable to achieve satisfactory performance in most cases.

An alternative method to detect a nucleus is to localize its center, instead of using a bounding

box. Several work study nuclei detection in this setting [198, 199]. In the research of [198], a

regression model predicts and outputs a score map of same size as input image. Each pixel value

of the score map indicates its inverted distance to the nearest nucleus center. Local extremums of

the score map are then considered as nuclei centers. The model is simple and easy to implement,
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but its performance relies on a hypothesis that all nuclei are in a circle shape.

There are some work evaluated on the MoNuSeg dataset (Table 2.5). Most of these work focus

on issue of nuclei segmentation [193, 200]. In study [193], Zhou et al. introduced a contour-aware

information aggregation method for nuclei instance segmentation. Besides the standard metric

Average Jaccard Index (AJI) introduced in [189] for segmentation performance evaluation, they

also reported state-of-the-art F1-score for nuclei instance detection. We are going to compare the

proposed method to theirs.
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Chapter 3

Similarity-based Multi-scale

Embeddings for Cancer

Categorisation

Automated cancer categorisation can provide important evidences for tumour differentiation and

any other further analysis. In this chapter, we focus on studying histopathological image classifi-

cation and tumour area detection. First, instead of learning features from single labelled image,

we present a novel approach to learn similarity-based multi-scale embeddings from image pairs

or triplets for the purpose of histopathological image classification. Then, based on the success

on histopathological image classification, a patch-based framework is proposed for tumour area

detection in Hematoxylin and Eosin (H&E) stained whole-slide images. Generally, semantic seg-

mentation approaches are applied to solve this kind of tasks. However, in most cases of the

histopathological imaging domain, it is easier for pathologists to provide image-wise labels than to

provide pixel-wise ones. Therefore, image classification approaches instead of semantic segmenta-

tion are adopted here.
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Figure 3.1: Histopathological images seen in different magnification factors. Top: benign tumour;

button: malignant tumour.

3.1 Overview

A whole slide image is generally organised in a pyramidal structure that data scanned at dif-

ferent magnification factors are stored at different pyramid levels. Images acquired at a small

magnification factor can present meaningful structural information of tissue, but at the same time

some cell-level details are lost. In contrast, images acquired at a high magnification factor can

capture details of cell components but the corresponding visual field in each region is small. To

obtain comprehensive understanding of the WSIs, it is essential to perform image analysis across

different magnification levels and jointly exploit the information in them. Fig. 3.1 illustrates

some histopathological images seen in different magnification factors. As it can be seen, these

images show in-class visual variability due to the different magnification factors. Besides, more

visual variance is also introduced by many aspects in tissue sample staining and scanning condi-

tions. Especially, color variation due to differences in the staining procedure is very common in

histopathological images. To illustrate the colour and texture variations within each tissue class,

some histopathological images acquired at a magnification factor of 200× from different regions

and patients are shown in Fig. 3.2. These images are labeled by cancer types among Tubular Ade-

noma (TA), Phyllodes Tumour (PT), Fibroadenoma (F), Adenosis (A), Papillary Carcinoma (PC),

Mucinous Carcinoma (MC), Lobular Carcinoma (LC), Ductal Carcinoma (DC). For instance, al-

though the first two images belong to the same TA class, different textures are presented in the

samples taken from different regions. These appearance variations add significant challenges to

histopathological image classification on top of the variances from multiple magnification scales.

To address this issue, some attempts are made to learn robust features for magnification in-

dependent histopathological image classification. In [19], deep learning based features are first

extracted from images acquired at different magnification factors and then concatenated together

to train magnification independent models. In [20], traditional methods are applied to extract

color-texture invariant features and a majority voting approach is used to make final prediction to

improve classification performance. Even though deep learning based features learned from image-
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Figure 3.2: Histopathological images acquired at a magnification factor of 200×. Top two rows:

benign tumour; button two rows: malignant tumour. TA: Tubular Adenoma; PT: Phyllodes

Tumour; F: Fibroadenoma; A: Adenosis; PC: Papillary Carcinoma; MC: Mucinous Carcinoma;

LC: Lobular Carcinoma; DC: Ductal Carcinoma.
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label structures or those colour-texture invariant features are discriminative in some cases, their

performance to identify tumour subtypes still does not reach a satisfactory level in computational

pathology due to the in-class variations. It is observed that benign tumours, e.g. TA, PT, F. and

A. subtypes in Fig.3.2, share some common patterns when compared to malignant ones, e.g. PC,

MC, LC, DC subtypes. That is to say, tumours of same class (benign or malignant) often appear

similar. To exploit this fact in developing effective classification models, we propose a novel repre-

sentation scheme, similarity-based multi-scale embeddings (SMSE), for magnification-independent

histopathological image classification.

Class imbalance is a common problem frequently faced by medical image analysis. Some ap-

proaches based on sampling are proposed to address the class imbalance problem for histopatho-

logical image classification tasks. For instance, Reza et al. [201] combine different over-sampling

and under-sampling methods for imbalanced breast cancer histopathological image classification.

An obvious drawback of the sampling-based approaches is that some potentially useful information

might be lost in sample discarding. Instead of trying to discard redundant samples for imbalanced

histopathological image classification, we propose a dedicated reinforced focal loss to reduce the

effect of trivial samples by suppressing the gradients of these samples during training. In this way,

the negative impact of the unimportant samples are reduced without losing the useful details.

In this study, we address these challenging issues associated to histopathological image classifica-

tion. Specifically, we first tackle the difficulties in training magnification-independent classification

models by using multi-scale embeddings. Furthermore, we indirectly decrease the effect of class

imbalance by focusing on informative examples during training. The main contributions include:

(i) The SMSE scheme that represent images by multi-scale embeddings with contrastive learning.

Instead of the conventional image features, multi-scale embeddings learned from image pairs

or triplets are proposed to highlight the truly representative features from each class and

solve the problem associated to in-class visual variances.

(ii) A reinforced focal loss function designed for addressing the class imbalance issues in histopatho-

logical image classification. Instead of using a sampling strategy, the employment of the

reinforced focal loss in learning can simultaneously punish hard misclassified examples while

suppressing easy well-classified examples. The problem is solved in a learning and reinforc-

ing manner, to ensure an accurate and flexible selection of information compared to the

brute-force sampling of the data.
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3.2 Framework and Formulation

Due to a large number of variations in histopathological images, tumour classification, e.g., be-

nign and malignant, is very difficult, especially for situation where magnification-independent

histopathological image classification is necessary. We argue that tumours of the same class share

some common patterns and look similar, although there are in-class variations in texture and color.

In this section, we introduce a method that learning similarity-based embeddings for magnification-

independent histopathological image classification.

3.2.1 Overview of the SMSE framework

Fig. 3.3 depicts the structure of the framework for imbalanced magnification-independent histopatho-

logical image classification based on similarity-based multi-scale embeddings (SMSE). It consists of

two main phases, i.e., a training phase and a testing phase. The training phase involves three mod-

ules. The preprocessing module is developed to generate training sets of image pairs and triplets

suitable for contrastive learning. The core SMSE module performs learning of similarity-based

multi-scale embeddings. The final classification module entails designs to tackle class imbalance

and other problems in image classification.

Instead of being given a single labeled image as the setting for conventional supervised learning,

an image pair or triplet is fed to a feature extractor (embedding network) for learning the similarity-

based embeddings. The feature extractor can be considered as an embedding function f(·) that

maps an input image x to an embedding ϵ, namely ϵ = f(x). The learned embedding ϵ then can

be fed to train a classifier which mapping an embedding ϵ to a probability distribution p. Instead

of training the embedding network and the classifier independently, an end-to-end classification

network can be simultaneously trained in a multi-task way. In this case, the objective is to minimize

the following hybrid loss function Ltotal:

Ltotal = Lembed + Lcls (3.1)

where Lembed is for learning similarity-based embeddings (as described in Section 3.2.3) and Lcls

for imbalanced image classification (as described in Section 3.2.4). In our experiments, for Lembed,

we test either the pair loss Eq. (2.1) or the triplet loss Eq. (2.2). For Lcls, we test the proposed

reinforced focal loss Eq. (3.5) compared against the cross-entropy loss function.

3.2.2 Preprocessing module

The purpose of the preprocessing module is to generate suitable training datasets. Many tools

including a data augmentation unit and an image pair/triplet unit are included to support dataset

preparation. To train a magnification-independent classifier, image patches are extracted at dif-

ferent magnification factors from each whole slide image. The data augmentation unit is operated

during training to transform the training images in ways of colour jittering, horizontal flipping

and vertical flipping with a certain probability of 0.5, to ensure the classifiers are more robust
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Figure 3.3: Framework of learning similarity-based multi-scale embeddings (SMSE) for histopatho-

logical image classification. Pair labels in the dotted line box is optional.
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against variations of histology images. For colour jittering, image colour are randomly changed in

brightness, contrast, saturation and hue.

The image pair/triplet unit is designed to generate image-pair or image-triplet dataset. Given

a conventional image-label dataset D1 = {(xi, yi) |i ∈ Z+} where xi and yi indicate the ith image

and its label respectively, this unit will transform the dataset D1 into an image-pair or image-

triplet dataset. The process of generating an image-pair dataset from the original image set is

summarised in Algorithm 1. A dataset of image pairs is defined as D2 = {(xi,x
′
i, si) |i ∈ Z+}

where si ∈ {0, 1} is a label for ith image pair (xi,x
′
i) denoting the similarity between image xi and

x′
i, si = 1 if the paired images xi and x′

i are of same label; otherwise si = 0. Similarly, Algorithm

2 list the steps for image-triplet dataset generation. A dataset of image triplets is defined as

D3 = {(x(a)
i ,x

(p)
i ,x

(n)
i )|i ∈ Z+} where x

(a)
i denotes a reference/anchor image, and x

(p)
i a positive

image of a same label as the reference while x
(n)
i a negative image of different label.

Algorithm 1: Image-pair dataset generation

Input: A dataset D1 = {(xi, yi) |i ∈ Z+};

Initial D2 = {}; i = 0;

while i < size(D1) do

i = i+ 1;

xi ← ith image of D1;

yi ← ith label of D1;

n← randomly select {0, 1};

if n = 1 then

x′
i ← randomly select xj ∈ D1 where yj = yi;

si ← 1;

D2 ← (xi,x
′
i, si);

else

x′
i ← randomly select xj ∈ D1 where yj ̸= yi;

si ← 0;

D2 ← (xi,x
′
i, si);

end

end

Return An image-pair dataset D2.
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Algorithm 2: Image-triplet dataset generation

Input: A dataset D1 = {(xi, yi) |i ∈ Z+};

Initial D3 = {}; i = 0;

while i < size(D1) do

i = i+ 1;

xa
i ← ith image of D1;

yi ← ith label of D1;

xp
i ← randomly select xj ∈ D1 where yj = yi;

xn
i ← randomly select xj ∈ D1 where yj ̸= yi;

D3 ← (xa
i ,x

p
i ,x

n
i );

end

Return An image-triplet dataset D3.

3.2.3 Learning similarity-based multi-scale embeddings

As mentioned before, variations in images at different magnification levels pose significant challenge

to histopathological images classification, in addition to the other variation factors due to different

regions, patients, labs, procedures, etc. Conventional visual representations are unable to separate

benign and malignant tumour, especially when multiple magnification scales are involved in the

images. To adequately exploit the common morphology patterns shared by the same tissue type

despite of the multi-magnification factors and other visual variations, we propose to learn similarity-

based multi-scale embeddings as the main descriptor for histopathological images classification.

Advantages behind applying similarity leaning are in many folds. First, the embeddings are learned

under a constraint that samples of same class are closely clustering and those of different class are

separating, and are deemed more descriptive and discriminative than single image based features.

Second, through pairing samples for similarity learning, we could indirectly eliminate the impact of

the class imbalance problem commonly faced by medical image analysis, by controlling the sampling

process. Last but not least, we can generate O(n2) pairs or O(n3) triplets from n training samples,

i.e., the training set is significantly augmented during the pairing or tripling process.

Let x ∈ Rw×h×3 denote an image, and ϵ ∈ Rn×1 an embedding of x, the similarity between

two images x1 and x2 is then defined as the reciprocal of distance between these two images in the

embeddimg space, namely ∥ϵ1 − ϵ2∥−1, where ϵ1 and ϵ2 are embeddings for x1 and x2 respectively

and ∥·∥ is a distance metric. To classify histopathological images according to their similarities,

we aim to learn an embedding function f(·) that maps an input image x into an embedding ϵ so

that similar images should cluster closely in the embedding space, namely ϵ = f (x; Θ), where Θ

denotes the function’s coefficients.

Given an image-pair dataset D2, we can apply the pair loss function Eq. (2.1) to learn similarity-

based embeddings by fitting an embedding function f(x; Θ̂p) on the image-pair dataset D2 with
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the following optimisation:

Θ̂p = arg min
Θ

∑
(xi,x′

i,si)∈D2

Lpair (f (xi; Θ) , f (x′
i; Θ) , si) (3.2)

After the optimisation, the distance between paired images of different labels should be greater

than a margin m in an embedding space. Similarly, when given an image-triplet dataset D3, we

can apply the triplet loss function Eq. (2.2) to learn similarity-based embeddings by fitting an-

other embedding function f(x; Θ̂t) on the image-triplet dataset D3 with the following optimisation

process:
Θ̂t = arg min

Θ

∑
(x

(a)
i ,x

(p)
i ,x

(n)
i )∈D3

Lt(f(x
(a)
i ; Θ), f(x

(p)
i ; Θ), f(x

(n)
i ; Θ)) (3.3)

After the optimisation, the distances between positive pairs should be less than those between

negative pairs by a margin m in an embedding space.

The embedding learning process is achieved through the SMSE module in the framework in

Fig. 3.3, in which the loss Lembed is calculated using either the pair loss or the triplet loss.

3.2.4 A reinforced focal loss function for class imbalance

It is well known that commonly used loss functions for classification tasks, e.g., cross-entropy

loss and L1 loss, are prone to class imbalance problem due to the overwhelming losses of dominant

samples. A common approach to solve the class imbalance problem is to use weighted loss functions

where a weighting factor α ∈ [0, 1] decided by the sample class distribution is introduced to balance

the losses of different samples. Instead of applying a weighting balance, some methods like the

focal loss attempt to re-design the cross-entropy loss to increase losses of hard samples and decrease

those of easy samples [75]. Assuming that a decision boundary for classification is decided by hard

samples near to the boundary, the focal loss could to some extent eliminate the effect of class

imbalance. However, due to the amplification of logarithmic operation, the cross-entropy loss based

focal loss is sensitive to outliers such as wrongly labeled samples which appears regularly in the

biomedical imaging domain. The losses of these wrongly labeled samples could be overwhelming.

To address the influence of wrong labels, based on the focal loss, we attempt to re-design the

L1 loss. Let pt ∈ [0, 1] denotes predicted probability of a sample belonging to a ground-truth class,

its L1 loss Ll1 can be calculated as:

Ll1(pt) = 1− pt (3.4)

where pt ≪ 0.5 stands for hard misclassified samples and pt ≫ 0.5 for easy well-classified ones.

To simultaneously increase losses of hard samples and decrease those of easy samples, a punishing

parameter λ and a suppressing parameter γ are introduced into the L1 loss function, as in Eq.

(3.4), to formulate a new loss function termed as reinforced focal loss Lrf (·):

Lrf (pt) = λ(1− pt)γ (3.5)

Fig. 3.4 illustrates the effect of parameter λ for punishing hard samples and γ for suppressing easy

samples. Also, the figure shows that the reinforced focal loss is less sensitive to outliers than either
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Figure 3.4: Curves of the reinforced focal loss function with different combinations of parameters

λ and γ. Left: increasing γ to reduce losses of easy well-classified samples. Middle: increasing λ to

increase losses of hard misclassified samples. Right: the reinforced focal loss compared against the

cross-entropy loss and the focal loss. The red circle indicates the cases where the reinforced focal

loss is less sensitive to wrongly labeled samples than either the cross-entropy loss or the focal loss.

the cross-entropy loss or the focal loss. The reinforced focal loss is applied in the classifier (denoted

as Lcls) as depicted in the framework and it is shown in the experiments that it can effectively

avoid the influence of class imbalance in the target tasks.

38



Table 3.1: Summary of the BreakHis dataset.

Class
Magnification factor

Total
40× 100× 200× 400×

Benign 625 644 623 588 2480

Malignant 1370 1437 1390 1232 5429

Total 1995 2081 2013 1820 7909

Table 3.2: Number of patches derived

from the PAIP dataset.

Normal Tumour Total

Training 15,000 15,000 30,000

Testing 10,000 9,375 19,375

3.3 Experiments and Evaluation

3.3.1 Datasets

The BreakHis dataset contains 7909 breast cancer histopathological images acquired at different

magnification factors from 82 patients. Each image has size of 700 × 460 pixels and is grouped

into either benign (B) or malignant (M) tumour. Details are summarised in Table 3.1. A patient-

wise image splitting protocol is introduced in [7], which guarantees that images from 54 patients

are used for training and the remaining from 28 patients for testing. To compare with previous

methods tested on the BreakHis dataset, a same 5-fold cross-validation protocol is applied to test

the proposed method.

The PAIP dataset contains 50 liver cancer slides in total, 30 out of 50 are randomly selected

for training purpose and the rest 20 are used for testing. Since the PAIP dataset is originally

prepared for tasks of tumour segmentation, a ground-truth binary mask to denote viable tumour

area or not is provided for each slide. Each whole slide image is cropped into small patches of

size 224× 224 pixels for classification purpose. Patches cropped within the viable tumour area are

labeled as tumour while the others are labeled as normal. Due to high resolution of whole slide

images, excessive patches are produced even by non-overlapping cropping. We randomly select

1,000 patches per slide for training and testing purpose. The final numbers of different patches

derived from the PAIP dataset are summarized in Table 3.2. Due to tiny viable tumour areas in

some slides, the number of tumour patches for testing is 9,375 instead of 10,000.
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3.3.2 Evaluation metrics

Considering variations in images from different patients, patient-wise recognition rate (RR) is used

for evaluation, which is defined as:

RR =
1

N

N∑
i=1

PSi (3.6)

where N is the total number of patients and PSi denotes ith patient score which is defined as

PSi =
Nrec

i

Np
i

, where Np
i denotes the total number of images from ith patient and Nrec

i denotes

the number of correctly recognised images from ith patient. Also, metrics derived from confusion

matrix including accuracy (ACC) and F1-score are used for evaluating histopathological image

classification.

3.3.3 Implementation details

Plain neural networks (PNN) are developed to validate the effectiveness of learning embeddings

for histopathological image classification. Implementation details are summarized in Table 3.3.

The PNN consists of two modules, an embedding network/feature extractor to map images into

embeddings/feature vectors and a classifier to make final class prediction based on input embed-

dings/feature vectors. Besides the layers listed in the table, there is a non-linear activation layer

PReLU following each parametric layer of the embedding network.

All classifiers are trained by the optimizer of Adam [202] together with a basic learning rate

of le-3 and a weight decay of 1e-4. To ensure the classifiers are more robust against variations

of histology images, data augmentation is performed during training by transforming the training

images in ways of colour jitters, horizontal flip and vertical flip. For colour jitters, the image colour

are randomly changed in their brightness, contrast, saturation and hue with a certain probability.

3.3.4 Ablation study

To select optimal margin m for embedding losses Eq. (2.1) and (2.2), we train and evaluate models

with the pair and triplet loss function by varying margin from 0.5 to 2.0 respectively. Table 3.4

lists performances of these models evaluated on the BreakHis dataset. Meanwhile performance of

these models against different margins are shown in bar chart (Fig. 3.5). It can be observed that

margin m = 1.0 for both the pair and triplet loss yields the best overall performance, although

changes are very minor.

To select optimal combination of parameter λ and γ in function Eq. (3.5) for hard exam-

ple punishing and easy example suppressing, models are trained and evaluated with a series of

combinations (λ, γ). Table 3.5 presents performance comparison among those models in different

combinations. Let λ = 2, then γ = 1.5 is an option to yield best performance while let λ = 3, the

optimal value for γ is 4.0.

To investigate the impact of similarity-based embeddings for histopathological image classifica-

tion, we test models trained with image pairs and triplets compared to conventional method that
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Table 3.3: Implementation details of the plain neural networks (named as PNN1 and PNN2

respectively) for histopathological image classification.

Component Layer type

PNN1 PNN2

Layer size

@stride
Output size

Accumulated

depth

Layer size

@stride
Output size

Accumulated

depth

E
m

be
dd

in
g

ne
tw

or
k/

Fe
at

ur
e

ex
tr

ac
to

r

convolution 3× 5@1 696× 458× 4 1 5× 5@1 220× 220× 8 1

max pooling 2× 3@2 347× 229× 4 1 2× 2@2 110× 110× 8 1

convolution 3× 5@1 343× 227× 4 2 5× 5@1 106× 106× 16 2

max pooling 2× 3@2 171× 113× 4 2 2× 2@2 53× 53× 16 2

convolution 3× 5@1 167× 111× 8 3 5× 5@1 49× 49× 32 3

max pooling 2× 3@2 83× 55× 8 3 2× 2@2 24× 24× 32 3

convolution 3× 5@1 79× 53× 16 4 5× 5@1 20× 20× 64 4

max pooling 2× 3@2 39× 26× 16 4 2× 2@2 10× 10× 64 4

convolution 3× 5@1 35× 24× 32 5 - - -

max pooling 2× 3@2 17× 12× 32 5 - - -

convolution 3× 5@1 13× 10× 64 6 - - -

max pooling 2× 3@2 6× 5× 64 6 - - -

linear (1920, 256) 256 7 (6400, 256) 256 5

linear (256, 256) 256 8 (256, 256) 256 6

linear (256, 12) 12 9 (256, 12) 12 7

Classifier
linear (12, 2) 2 10 (12, 2) 2 8

softmax - 2 10 - 2 8

Table 3.4: Classification performance of different margins m for the pair loss Lp

and the triplet loss Lt.

Loss m RR ACC
F1-score

Benign Malignant

Lp

0.5 0.877±0.037 0.869±0.038 0.798±0.058 0.903±0.029

1.0 0.880±0.026 0.870±0.025 0.792±0.044 0.906±0.018

1.5 0.878±0.033 0.874±0.026 0.803±0.038 0.906±0.020

2.0 0.876±0.035 0.871±0.027 0.806±0.041 0.903±0.021

Lt

0.5 0.867±0.027 0.861±0.028 0.779±0.055 0.898±0.020

1.0 0.884±0.042 0.877±0.040 0.814±0.061 0.908±0.030

1.5 0.880±0.046 0.875±0.041 0.800±0.065 0.908±0.031

2.0 0.876±0.025 0.866±0.029 0.788±0.059 0.902±0.019
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Figure 3.5: Classification performance against different margins for the pair loss (left one) and

the triplet loss (right one) respectively. RR: recognition rate, ACC: accuracy, F1-B: F1-score of

benign class, F1-M: F1-score of malignant class.

Table 3.5: Performance of different combinations of parameter λ and γ.

(λ, γ) RR ACC
F1-score

Benign Malignant

(2, 1.2) 0.870±0.038 0.862±0.039 0.765±0.094 0.900±0.027

(2, 1.5) 0.884±0.042 0.877±0.040 0.814±0.061 0.908±0.030

(2, 2.0) 0.874±0.041 0.864±0.042 0.789±0.069 0.900±0.031

(3, 3.0) 0.872±0.028 0.865±0.026 0.783±0.046 0.901±0.021

(3, 4.0) 0.879±0.036 0.871±0.036 0.797±0.056 0.905±0.027

(3, 5.0) 0.841±0.087 0.833±0.084 0.720±0.173 0.879±0.056
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Figure 3.6: Classification performance of models trained with image triplets and pairs compared

to conventional method that learning from single image.

Figure 3.7: ROC curves for different loss functions. Left: cross-entropy loss function, middle:

reinforced focal loss function, right: comparison.

learning from single image respectively. As illustrated in Fig. 3.6 which shows performance com-

parison of these models, both similarity-based embeddings learned from image pairs and triplets

achieve better classification performance with less standard deviation compared to conventional

one learned from single image. Moreover, it is worth noting that the value of F1-B of conventional

method changes dramatically due to class imbalance in the BreakHis dataset. Overall, similarity-

based embeddings can significantly boost performance for histopathological image classification.

To validate the xx loss for imbalanced histopathological image classification, we train models

with xx and cross-entropy loss functions respectively. Fig. 3.7 shows receiver operating character-

istic (ROC) [203] curves for different loss functions. As can it be seen from the figure that xx loss

function achieves a greater mean area under the ROC curve (AUC) with a less standard deviation

than that of cross-entropy loss function.

3.3.5 Breast cancer histopathological image classification

A breast cancer histopathological image dataset BreakHis1 has been published for better testing

and comparing performance for histopathological image classification [7]. In this section, we test

the plain neural network PNN1 and validate the effectiveness of the proposed method for breast
1https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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Table 3.6: Performance of model with optimal configuration evalu-

ated on the BreakHis dataset.

Fold RR (%) ACC (%)
F1-score (%)

Benign Malignant

1 86.27 85.71 79.59 89.01

2 85.46 83.35 73.26 87.92

3 92.29 92.51 88.42 94.46

4 83.61 84.36 77.09 88.13

5 94.38 92.54 88.48 94.48

Mean± std 88.40±4.17 87.69±4.01 81.37±6.12 90.80±3.02

cancer histopathological image classification on the BreakHis dataset.

According to the ablation study (Section 3.3.4), we now have an optimal configuration that

yields the best overall performance for the BreakHis benchmark. Table 3.6 lists the performance

of model with the optimal configuration for reference.

Traditional methods for feature extraction including oriented fast and rotated BRIEF (ORB)

[204], local phase quantization (LPQ) [205], local binary patterns (LBP) [206], completed local

binary pattern (CLBP) [207], gray-level co-occurrence matrices (GLCM) [208], and parameter-

free threshold adjacency statistics (PFTAS) [209] have been evaluated on the BreakHis dataset in

study [7]. Furthermore, to our best knowledge, recently developed deep learning based method con-

volutional neural networks (CNN) [19] and majority voting (MV) [20] achieved the state-of-the-art

performance on the BreakHis benchmark. In [19], two different CNN architectures are proposed for

breast cancer histopathological image classification independent of their magnifications. A single

task CNN is proposed to predict malignancy and a multi-task CNN is proposed to predict both

malignancy and image magnification level simultaneously. In [20], the authors propose to classify

breast cancer histopathological images using joint colour-texture features and a classifier ensemble.

Table 3.7 shows mean recognition rates and standard deviations of these methods. The proposed

method that learning similarity-based embedding for histopathological image classification achieves

the best overall performance compared to previous ones. Besides, most of these methods achieve

better recognition rate on images acquired at intermediate magnification factors (100× and 200×)

than that either on small magnification factor (40×) or on high magnification factor (400×), which

reveals that image texture at middle-level is suitable for cancerous diagnosis.

To further analyse patient-wise recognition performance, we list individual patient scores of a

classifier in Table 3.8. From the table we can see that although mean patient scores is satisfactory,

the classifier performs no well for some cases (e.g. patient ID 10, 11, 24). In particular, 74 out of

95 images from patient 24 are misclassified. To better understand why the classifier make incorrect

prediction, we visualise some misclassified benign samples from patient 4 (Fig. 3.8) and malignant

samples from patient 24 (Fig. 3.9). It can be observed that most misclassified benign samples
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Table 3.7: Mean recognition rate (RR) and standard deviation of different methods for

classifying histopathological images acquired at different magnification factors.

No. Method
RR (%)

Average
40× 100× 200× 400×

1 ORB [204] 74.4±1.7 69.4±0.4 69.6±3.0 67.6±1.2 70.25±1.58

2 LPQ [205] 73.8±5.0 72.8±5.0 74.3±6.3 73.7±5.7 73.65±5.50

3 LBP [206] 75.6±2.4 73.2±3.5 72.9±2.3 73.1±5.7 73.70±3.48

4 CLBP [207] 77.4±3.8 76.4±4.5 70.2±3.6 72.8±4.9 74.20±4.20

5 GLCM [208] 74.7±1.0 78.6±2.6 83.4±3.3 81.7±3.3 79.60±2.55

6 PFTAS [209] 83.8±2.0 82.1±4.9 85.1±3.1 82.3±3.8 83.33±3.45

7 CNN [19] 83.08±2.08 83.17±3.51 84.63±2.72 82.10±4.42 83.25±3.18

8 MV [20] 87.20±3.74 88.22±3.28 88.89±2.51 85.82±3.81 87.53±3.34

9 SMSE 87.51±4.07 89.12±2.86 90.83±3.31 87.10±3.80 88.64±3.51

Table 3.8: List of patient-wise recognition. Np: number of images from different patients, Nrec:

number of correctly recognised images, PS: patient scores, B: benign, M: malignant.

Id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Class M M M B M M M M M M M M B M B B B B B M M B B M M M M M

Np 146 123 119 94 125 87 74 45 108 64 65 142 64 98 65 132 158 81 57 84 59 61 66 95 44 88 78 155

Nrec 145 110 119 78 125 86 74 44 108 44 41 142 64 84 65 126 142 81 54 84 59 61 66 21 44 88 76 153

PS(%) 99 89 100 83 100 99 100 98 100 69 63 100 100 86 100 95 90 100 95 100 100 100 100 22 100 100 97 99

are acquired at small magnification factor of 40× while misclassified malignant samples contain

multiple types of tissue simultaneously. According to these observations, we argue that one possible

way to improve patient scores is to make further majority voting on patient-wise prediction.

3.3.6 Liver cancer histopathological image classification

To further validate the effectiveness of learned similarity-based embeddings for histopathological

image classification, digital slides of liver cancer from PAIP 20192 are used for model training

and evaluation. In this section, we test and compare the proposed method for the plain neural

network (PNN2) and networks that have outstanding power for feature extraction, including the

GoogleNet [37] and the ResNet [24].

Table 3.9 lists classification performance evaluated on the testing dataset derived from the

PAIP data, which compares accuracy (ACC) and F1-score of different neural networks trained

in different ways. Compared to the conventional way, ACC increases by a large margin from

73.6% to around 90% when the plain neural network PNN2 is trained in either the pair loss or the

triplet loss, which demonstrates that similarity-based embeddings are effective and with superior
2https://paip2019.grand-challenge.org/Dataset/
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Figure 3.8: Misclassified benign samples. Most samples acquired at a magnification factor of 40×

except first three.

Figure 3.9: Misclassified malignant samples. From top to button: samples seen in magnification

factors of 40×, 100×, 200× and 400× respectively.
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Figure 3.10: t-SNE visualization of embeddings learned from image-label data (first column), image

pairs (second column) and image triplets (third column). Top: embeddings extracted from training

set; button: embeddings extracted from testing set.

performance for tissue patch classification. Besides the ACC, same increase of F1-score can be

observed for network PNN2. For complicated neural network like GoogleNet or ResNet with a

tailor designed architecture, it can be seen that performance from different loss functions are close

since these kind of networks are powerful to extract robust features.

In addition to the quantitative analysis above, t-distributed stochastic neighbor embedding (t-

SNE) [210], an approach for dimensionality reduction, is exploited to visualize the high-dimensional

features/embeddings for qualitative analysis. As illustrated in Fig. 3.10, it can be observed that

embeddings learned from image-label data look inseparable, while both embeddings learned via

measuring similarity from image pairs and triplets are clustered in class and separable between

classes.
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Table 3.9: Performance comparison of liver cancer histopatho-

logical image classification.

Network Loss function ACC (%)
F1-score (%)

Normal Tumour

PNN2

Lcls 73.6 68.9 77.1

Lcls + Lp 90.3 90.2 90.4

Lcls + Lt 90.2 90.3 90.0

GoogleNet

Lcls 93.1 93.4 92.9

Lcls + Lp 92.5 92.6 92.4

Lcls + Lt 93.8 94.0 93.5

ResNet

Lcls 91.3 91.4 91.2

Lcls + Lp 89.7 90.3 89.0

Lcls + Lt 92.2 92.3 92.0

Figure 3.11: Illustration of mixed tissues in histopathological images: 1) fibrosis tissue with

tumour; 2) fibrosis tissue with immune infiltration; 3) fibrosis tissue with both immune infiltration

and tumour; 4) fibrosis tissue with fat.

3.4 Case study: detection of ductal carcinoma in situ

A reliable cancer diagnosis is helpful in guiding the treatment. While diagnosis is traditionally

performed by pathologists visually reviewing histology image of patient scanned by electronic

microscope, automated analysis of digital histology image is becoming increasingly on demand for

providing objective and reproducible diagnosis, which substantially reducing the consumption of

time and resources of specialised experts, and thus reducing the costs and waiting time of patients

associated to the process. Meanwhile, it is a very challenging task due to the unique characteristics

of histology image including complex structure and very large size of images themselves (Figure

3.11). Much efforts have been made in the computer vision and machine learning literature [15,

17, 211–214], but the accuracy of developed technologies is far from sufficient to be utilised in

practices.

The analysis of breast cancer slides to detect tumour border can provide important evidences for

further analysis and tumour differentiation. In recent years, inspired by the impressive success of
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deep learning methods in solving natural image analysis problems, an increasing number of efforts

have been made to adopt deep learning methods in analysing histology image of breast tissue for

many tasks including, but not limited to (i) tissue patch classification [148,151,154,215], (ii) tumour

tissue region detection and segmentation [15, 17, 212], (iii) identification of mitosis [181, 185, 186],

nuclei [183,216] and lymphocytes [217]. Authors in [148] proposed a convolutional neural network

to extract information from multiple scales to classify breast cancer histology images and their

approach achieved a high sensitivity of 95.6% for carcinoma cases. Besides tasks of histology image

classification, there are also proposed methods based on deep learning for cancerous tissue region

detection and segmentation. Cruz-Roa et al. [212] designed a CNN based method to detect invasive

ductal carcinoma tissue regions in whole slide images. Their method yielded the best quantitative

results in comparison with conventional handcrafted feature based methods. In addition, Wang et

al. [15] utilised a 27-layer deep network to detect metastatic breast cancer in whole slide images of

sentinel lymph nodes and won the grand challenge on cancer metastasis detection in lymph node

2016 (CAMELYON16) 3.

Cases of ductal carcinoma in situ (DCIS) increase since the introduction of screening programs.

DCIS is consider a precursor of invasive ductal carcinoma, but our knowledge on its natural pro-

gression course is rather limited. Most patients are treated with breast-conserving surgery and

radiotherapy. To improve future disease management, the identification of prognostic and pre-

dictive biomarkers is highly demanded. The in-depth quantitative analysis of the different tissue

components of DCIS and their morphological properties could provide important information for

better stratification of patients.

3.4.1 A patch-based framework for tumour area detection

Given a whole-slide image of DCIS, our goal is to predict and localize tumour tissue region to

facilitate pathologists’ assessment. Considering the fact that it is unreasonable to ask pathologists

to provide accurate pixel-wise annotations for training end-to-end segmentation models, we propose

to achieve the goal of tumour border detection by tissue patch classification. The proposed workflow

is illustrated in Fig. 3.12, which can automatically detect tumor border when given whole slide

images. The framework contains three main modules: 1) a preprocessing module, which facilitates

whole slide image annotation and image patches extraction; 2) an image patch classification module,

in which the training of deep neural networks is performed for image patch classification; and 3) a

tumour border detection module for tumour tissue region prediction and delineation.

The preprocessing module mainly consists of whole slide image annotation, image patch extrac-

tion and data augmentation. Given a H&E stained whole slide image, the first step is to annotate

regions of interest (ROI), which is performed by specialised experts. Figure 3.13 illustrates some

annotated regions of interest. An annotation encloses an area that contains only one type of tissue.

The second step is to extract image patches from the annotated regions for classification model

training and evaluation. To extract patches, several factors need to be took into consideration.
3https://camelyon16.grand-challenge.org/
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Figure 3.12: An overview of the proposed tumour border detection framework: 1) preprocessing

module: whole slide image annotation, image patch extraction and data augmentation; 2) tissue

type classification: model training and patch-level prediction; 3) tumour border detection: tumour

area detection and tumour border delineation.

The first one need to be decided is magnification factor. A digital slide is usually organized in a

pyramid structure. Image data scanned at different magnification factor is stored at different level.

Data and size of a ROI extracted at different level will be different. The magnification factor is

generally chosen based on tasks to solve. The second factor need to be decided is patch size which

has impact on input size of model and the final prediction on whole slide image. The last factor

is the stride used to crop patches. An adaptive stride could be applied to balance the amount of

patches cropped from different slides.

To guarantee appropriate training of the model and to eliminate the impact of overfitting,

the size of the training dataset is an important factor. Sometimes the amount of training patches

extracted from whole slide images is limited, an data augmentation step is designed for these cases.

There are many factors that result in colour variation during producing Hematoxylin and Eosin

stained whole slide images, such as the concentration of dye or the thickness of slide. Take this

into consideration, data augmentation approaches varying the colouration in permitted ways are

adopted including random colour jitter of brightness, contrast, saturation and hue. Figure 3.14.

shows some samples of data augmentation to enhance a training dataset.

After the prepocessing step, a dataset should be ready to train and evaluate models for tissue

patch classification. If our target is to separate cancerous and non-cancerous areas such as tumour

border detection, the task is then formulated as a binary classification problem. If the target is

to quantitatively analyse different tissue components of tumour, the task is then formulated as a

multi-class classification problem.

The tumour border detection module mainly consists of tumour tissue region detection and

tumour border delineation. After the step of tissue patch classification, given an image patch, the
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Figure 3.13: Annotated regions of interest extracted from whole slide images.

Figure 3.14: Examples of data augmentation. (a) Original input patch (b) brightness change (c)

contrast change (d) saturation change (e) hue change.
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Figure 3.15: Patches extracted at different magnification factors.

trained model is used to predict a probability indicating whether the patch contains tumour tissue

or not. Based on the patch-level prediction, a sliding window approach could be used to produce a

probability map of cancer for whole slide image. Follows the slide-level prediction, techniques like

the marching cubes algorithm described in [218] could be applied to detect tumour border with

the probability map.

3.4.2 Dataset preparation

For cancer assessment supported by computational pathology, high-quality images with adequate

annotations are of crucial importance to achieve a better performance. Meanwhile, different kind of

cancers cannot share an unified dataset because each kind of cancer has unique identifiers and rules

for assessment. There are many publicly available histology image datasets, but few of them have

adequate annotations. For the purpose of this study, we are trying to build a dataset that could

be used as a benchmark for DCIS study in collaboration with the pathology group at Karolinska

University Hospital Huddinge of Sweden.

Currently, we have collected 30 whole slide images of ductal carcinoma in situ. The size of each

whole slide image is around 100, 000 × 100, 000. For DCIS study, we intent to discriminate and

quantify four tissue categories in the whole-slide images. They are tissues of ductal carcinoma in

situ (DCIS), fibrosis (F), fat (FA), and immune infiltration (I) respectively. Fig. 3.13 illustrates

the examples of annotated regions of interest.

Based on the pre-processing module of the generic workflow for tumour border detection, we

first extract the labeled regions in each whole-slide image. And then partly overlapped image

patches in size of 224×224 pixels were cropped by sliding a window through each extracted region
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Table 3.10: Number of image patches de-

rived from WSI of DCIS.

Class Training Validation Total

DCIS 11,027 2,366 13,393

F 22,756 11,503 13,393

FA 27,808 5,106 32,914

I 575 293 868

Total 62,166 19,268 81,434

from top left to down right with adaptive strides. At last, with an evaluation of whether there are

90 percent of 128× 128 pixels at the central area of each cropped patch is contained in the labeled

region, each patch was given one image-wise label based on the label of the region or discarded. Fig.

3.15 shows examples of cropped image patches for training. The final amount of image patches we

have obtained from the enclosed regions of interest is 81,434. They are then divided into training

dataset and validation dataset at WSI level with a split ratio of 4:1. Amount of image patches of

each class is presented in Table 3.10.

3.4.3 Models training and evaluation

All models are trained using stochastic gradient descent (SGD) together with softmax cross entropy

loss, and with the same hyper parameters, namely, a batch size of 32 examples, a fixed learning

rate of 0.01 and a weight decay of 1e-5. Each network is trained for roughly 30 cycles through

the training set and the training quits while reaching convergence. The training process took

about 9 hours on the DCIS dataset on NVIDIA GeForce GTX Titan X GPU. After training, deep

features extraction and classification are performed using the trained CNN together with a 4-ways

softmax classifier. The activation of CNN at the second convolutional layer are visualized to better

understand what CNNs have learned (Figure 3.16.)

The training and validation accuracy against iteration epoch during training are also plotted

to show the convergence procedure of the deep neural networks. It can be observed from Fig. 3.17

that all the lines of the networks reach convergence at around 15 epochs. However, compare to

the ones of AlexNet and GoogleNet, VGG and ResNet ones present fluctuation during training.

In addition, VGG is very difficult to train due to huge memory requirement and a large number

of parameter adjustment because of its last three fully connected layers.

The confusion matrices of the considered networks are given in Tables 3.11-3.14. It can be

seen from the confusion matrices that all the considered networks show common patterns in distin-

guishing tissue patches. Specifically, digits are distributed on the main diagonal of each confusion

matrix which means all the models have good performance on image patch classification. The

common pattern can also be seen in recognition of individual type of tissue patch. Some DCIS

tissue patches are identified as Fibrosis and Immune Infiltration tissue while some Fibrosis tissue
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Figure 3.16: Activation of deep models at the second convolutional layer.

Figure 3.17: Convergence procedure and comparison of deep neural networks training on the DCIS

dataset. Thin lines denote training accuracy, and bold lines denote validation accuracy. Left:

AlexNet vs. VGG. Middle: GoogleNet vs. ResNet. Right: GoogleNet vs. AlexNet.
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Figure 3.18: Examples showing ground truth and prediction. (a) ground truth; (b) tumour tissue

region prediction; (c) original input image.

DCIS F FA I

DCIS 2,310 37 2 17

F 54 11,333 116 0

FA 0 2 5,104 0

I 3 2 0 288

Table 3.11: Confusion matrix of AlexNet

DCIS F FA I

DCIS 2,358 5 0 3

F 46 11,219 238 0

FA 0 0 5,106 0

I 3 5 0 285

Table 3.12: Confusion matrix of VGG

DCIS F FA I

DCIS 2,339 3 1 23

F 60 11,264 179 0

FA 0 1 5,105 0

I 1 3 0 289

Table 3.13: Confusion matrix of GoogleNet

DCIS F FA I

DCIS 2,322 13 1 30

F 60 11,253 190 0

FA 0 4 5,102 0

I 2 3 0 288

Table 3.14: Confusion matrix of ResNet
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Table 3.15: F1-score and and accuracy of different deep models for histopathological

image classification.

Model
F1-score(%)

ACC(%)
DCIS F FA I

AlexNet 93.94±12.80 97.35±1.86 98.97±0.30 94.10±23.63 97.48±1.94

VGG 95.86±9.50 97.94±0.90 98.82±0.48 95.42±26.32 97.97±0.87

GoogleNet 97.40±1.18 98.50±0.48 98.87±0.62 91.34±20.13 98.46±0.40

ResNet 96.83±2.74 98.36±0.84 99.13±0.32 93.86±15.57 98.40±0.58

Figure 3.19: Misclassified samples. DCIS vs Fibrosis (F) and DCIS vs Immune Infiltration (I).

patches are usually misclassified into DCIS and Fat ones.

Table 3.15 shows that all the deep models can achieve very high performance on overall ac-

curacy. Considering in conjunction with the F1-scores, GoogleNet shows the best comprehensive

performance on the task of image patch classification. Therefore, GoogleNet is chosen for the

further processing to predict tumour border.

To intuitively analyse what kinds of sample the deep models have wrongly classified, we plot

some misclassified samples (Fig. 3.19). Together with the confusion matrix (tables 3.11-3.14) of

each model, we can see that 1) DCIS and Fibrosis patches are easily misclassified into each other,

mainly because fibrosis exists around tumour so that the patches contain both tissue components

when the annotated regions of interest are cropped during dataset preparation; 2) deep models

also misclassify between patches of DCIS and Immune Infiltration for their similar appearance,

especially, GoogleNet falsely classify 23 DCIS patches into Immune Infiltration.

3.4.4 Tumour border detection

After the deep models are trained, a sliding window method is used to generate a probability

map of tumour throughout the corresponding whole slide image. Evaluation is performed on 6

whole-slide images of the testing dataset and our method identifies 95.6% tumour tissue out of the

enclosed tumour regions. To facilitate pathologists to validate the detected tumour tissue region,

tumour borders are produced using the tumour probability map and delineated on the original

images (Figure 3.20).
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Figure 3.20: Example of predicted DCIS tumour tissue regions. (a) DCIS probability map pre-

dicted by CNN, (b) predicted DCIS regions where probability greater than 0.6, (c) DCIS borders

delineated on original image.

3.5 Summary

We present a method that similarity metric is used to learn embeddings for magnification indepen-

dent histopathological image classification. Moreover, we introduce a punishing parameter λ and a

suppressing parameter γ to the L1 loss function to simultaneously increase losses of hard samples

and decrease those of easy samples to eliminate impact of class imbalance. Together we train and

test different networks for accurately classifying histopathological images. This challenging im-

balanced magnification-independent hiatopathological image classification task is formulated as a

multi-task learning process, namely similarity-based embedding learning and classification. Com-

prehensive experiments have been conducted to evaluate the proposed models for breast and liver

cancer hiatopathological image classification. Experimental results show that significant improve-

ment is introduced by exploiting similarity-based embeddings, demonstrating the effectiveness of

the similarity learning approach for cancerous diagnosis. Also, improvements made by varying

combination of parameter λ and γ prove that the proposed loss function is effective for class im-

balance. The proposed method yields outstanding performance on the BreakHis benchmark for

breast cancer hiatopathological image classification when compared to previous methods. Finally,

a workflow based on tissue patch classification has been proposed to detect tumour border. Given

a trained model for image patch classification, post-processing steps can be performed to help

achieve predicting tumour border and analysing morphological properties of tumour.
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Chapter 4

Structure-aware Scale-adaptive

Networks for Cancer Segmentation

Cancer segmentation in whole-slide images is a fundamental step for viable tumour burden esti-

mation, which is of great value for cancer assessment. Although a great number of endeavours

have been poured into, it still remains an open question. Factors like vague boundaries or small

regions dissociated from viable tumour areas make it a challenging task where conventional object

detection methods cannot obtain satisfactory performance. In this chapter, we focus on addressing

this challenging cancer segmentation issue in histology images for tissue-level quantitative analysis.
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4.1 Overview

Tumour area segmentation in stained histopathology tissue slides is a fundamental step for cancer

grading and assessment when used along with CAD systems, especially for viable tumour burden

quantification. Traditionally, experts use a semiquantitative grading system for analyzing the de-

gree of tumour burden. However, manual delineation requires professional domain knowledge and is

laborious and time-consuming due to the large variations in the shape of the tumour regions. Also,

the standard of semiquantitative grading is based on the experience of doctors, which is unavoid-

ably subjective and suffers from inter-observer variability, leading to uncertainty in examination

of difficult cases. Therefore, automatic solutions for accurate, objective and reproducible tumour

area segmentation in whole-slide images are desired for many applications, such as estimating the

degree of tumour burden.

Although automatic tumour area segmentation is highly demanded and many endeavours have

been poured into, there still have several challenges to deal with. First of all, the boundary of

tumour area is irregular and fuzzy due to the infiltration of cancerous cells. Existing methods try

to learn more robust features to solve the issue [21]. In [22], multi-scale features have been demon-

strated to be potential in cancer segmentation. However, as it can be seen from their experimental

results, the model performs unsatisfactorily and only secure the 7th place in a challenge on hepato-

cellular carcinoma segmentation. Another challenge is that there always have some small regions

similar to cancer in whole-slide images apart from the viable tumour areas. Previous approaches

like U-Net [23] cannot segment these small regions properly, which will be demonstrated in the

Experiments (Section 4.3). In addition to the vague boundary and the small regions, there are

some other difficulties such as image variations between samples even when they come from the

same patient, image artifacts created when preparing and scanning the samples (wrinkles, dust,

blur created by samples with different density, among others), colours variation when using prod-

ucts from different vendors, large dimensions of WSI (they are in the gigapixel range, consequently,

they cannot be directly used as an input for a neuronal network), class imbalance (remarked dif-

ference of samples per class) and distribution imbalance (large difference in the areas covered by

each class), etc.

To address these challenges for the purpose of efficient and accurate cancer segmentation,

we present structure-aware scale-adaptive feature selection networks, by leveraging state-of-the-

art techniques of deep learning with tailored designs including attention mechanisms, residual

learning [24], structural similarity and multi-scale feature fusion, etc. Contributions includes:

(i) We design a scale-adaptive module for dynamic feature selection, which is easily integrated

into a segmentation network and can ensure the network to learn more robust features around

tumour for the vague boundary problem. Instead of averagely fusing features from different

scales, we propose to learn weights for scale-adaptive feature selection;

(ii) A structural similarity metric is proposed to regulate the network training procedure for

better tissue structure awareness, which is helpful for solving the issue of small regions.
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We empirically validate the impact of the structural similarity loss on regulating networks

training and its improvement on tumour area segmentation;

(iii) We comprehensively study and compare the proposed structure-aware scale-adaptive net-

works with several advanced designs of attention mechanisms on tumour area segmentation.

All the sourcecode has been made publicly available online.
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4.2 Structure-aware scale-adaptive networks

Inspired by the recent advances in structural similarity and hierarchical feature fusion for better vi-

sual representation learning for semantic segmentation, we propose a structure-aware scale-adaptive

feature selection method for cancer segmentation in whole-slide images. In this section, we describe

in details the proposed networks and loss functions.

4.2.1 Overview of the network architecture

Beyond the patch-based methods, U-Net and its variants form a major stream in medical image

segmentation. According to the summary of the challenge on liver cancer segmentation [141], most

of the submitted top methods apply U-Net variants with a similar encoder-decoder architecture

for tumour area segmentation. For the purpose of comparative analysis, we also adopt an encoder-

decoder architecture for the proposed networks, which is mainly composed of an encoding path

and a decoding path, as illustrated in Fig. 4.1. In the encoding path, basic convolutional blocks

(Fig. 4.2) and down-sampling units are stacked for feature map extraction. The feature map

output via the encoding path is then gradually decoded in the decoding path which consists of

convolutional blocks and up-sampling units. The decoded feature map at the final stage, of the

same size as the input image, is then fed to a segmentation head - a convolution with 1×1 kernel -

for final segmentation prediction. Instead of using a single feature map for prediction, multi-scale

feature maps decoded at different stages are simultaneously fed to a scale-adaptive feature selection

(SAFS) module before being sent to the segmentation head. More details of the SAFS module are

given in Section 4.2.3.

4.2.2 Network variants

For the purpose of comparative studies, we instantiate several networks with different settings in

terms of skip/shortcut connections, convolutional blocks, and attention blocks, etc. The first one is

a baseline U-Net, which is built of basic convolutional blocks without any attention block applied,

and only a single feature map is fed to the segmentation head for prediction. The second one is

based on U-Net but built of shortcut convolutional blocks, as shown in Fig. 4.2, referred to as

U-Net+SC to distinguish from the baseline U-Net.

Several state-of-the-art attention mechanisms including the attention gate (AG) [21, 50], the

squeeze-and-excitation (SE) block [44], the bottleneck attention module (BAM) [48] and the convo-

lutional block attention module (CBAM) [49] are integrated into the baseline U-Net, the resulting

networks are named as U-Net+AG, U-Net+SE, U-Net+BAM and U-Net+CBAM respectively.

Models trained with AG implicitly learn to suppress irrelevant regions in an input image while

highlighting useful salient features. It is added to each layer in the decoding path of the baseline

U-Net. SE applies only channel attention, while both BAM and CBAM combine channel attention

and spatial attention in a sequential way, yet there are some slight differences on how to aggregate

information across spatial dimension between them. All of SE, BAM and CBAM are applied to
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Figure 4.1: The architecture of the proposed structure-aware scale-adaptive networks. For concise

purpose, down-sampling units between each two stages in the encoding path and up-sampling units

in the decoding path are omitted. Processing units in dashed boxes denote that attention blocks

are optional.

Figure 4.2: Building blocks. Left: a basic convolutional block. Right: a basic convolutional block

with shortcut. F: feature map, Conv: convolution, BN: batch normalization [219], ReLU: rectified

linear unit [29].
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Figure 4.3: The scale-adaptive feature selection module. MLP: multi-layer perceptron with a

single hidden layer.

every intermediate feature map of each stage in both the encoding path and the decoding path.

Since dependencies among tissue types normally exist in a whole-slide range, being able to

capture long-range spatial dependencies is critical for cancer segmentation. This is, however, not

possible for CNN due to its property of local connectivity. A novel selective-kernel (SK) convolution

has been proposed for larger and adaptive receptive fields to improve CNN [54]. To exploit the

effectiveness of the adaptive receptive fields on histopathological image segmentation, the basic

convolutional blocks in the encoding path of the baseline U-Net are substituted as the selective-

kernel convolutions to form a new network, which is named as U-Net+SK.

4.2.3 The scale-adaptive feature selection module

Multi-scale features have been demonstrated very useful for many vision related tasks such as

object detection [124], MRI reconstruction [220] and histopathological image segmentation [22].

To explore its effectiveness in tumour area segmentation, we design a network called U-Net+MS,

in which multiple feature maps {F1, F2, ..., Fn} decoded at different stages of different scales are

sent to the segmentation head in a parallel way for final prediction. A simple fusion is performed to

acquire an averaged feature map F , i.e., F = 1
n

∑n
i=1 Fi, before prediction. The averaged feature

map can take the advantages of multi-scale features. Meanwhile, it could degrade the overall

performance when features from some specific scales have poor performance. Inspired by the work

of selective kernel for adaptive receptive fields of CNN [54], we propose a scale-adaptive feature

selection (SAFS) module as an alternative feature fusion method, which is integrated into the

baseline U-Net. The resulting network is referred to as U-Net+SAFS in the following descriptions.

A two-branch case of the SAFS module is shown in Fig. 4.3. Given feature maps F1 and F2

from different scales, which are fused together to obtain a united feature map F , i.e., F = F1⊕F2,

where ⊕ is an element-wise summation. The united feature map F ∈ RC×H×W is then fed to

a global pooling unit to generate channel-wise statistics p = {pi|i = 1, 2, ..., C}, where pi =

1
H×W

∑H
r=1

∑W
c=1 F (r, c), which aggregates information across spatial dimensions. The summation

fusion procedure before the global pooling unit ensures the information is aggregated from all the

branches of different scales. Multiple paralleled MLPs and a SoftMax activation are used to map

the statistics p to a concatenated channel attention weights q which can be expressed as q = a∪b,

where a and b are channel attention weights for feature maps from different scales respectively,
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i.e., a = {ai|i = 1, 2, ..., C}, b = {bi|i = 1, 2, ..., C}, which subjects to ai + bi = 1. Finally, a scale-

adaptive feature map F̂ is obtained via a dynamic selection procedure, which can be expressed as

F̂ = (a⊗ F1)⊕ (b⊗ F2), where ⊗ is an element-wise multiplication. For the sake of clarity, these

steps are summarised in the Algorithm 3. As it can be seen, the scale-adaptive feature is actually

a weighted average of features at different scales. Unlike an averagely fused feature, the scale-

adaptive feature takes advantages of features at different scales without performance degradation,

since the weights are learned in a self-adaptive way.

Algorithm 3: The scale-adaptive feature selection
Require: Feature maps {Fi|i = 1, 2, ..., n}, s.t. Fi ∈ RC×H×W

Ensure: A scale-adaptive feature map F̂

1: Concatenate feature map: F̃ ← Cat(F1, F2, ...Fn), s.t. F̃ ∈ Rn×C×H×W

2: Unite feature map: F ←
∑n

i=1 Fi, s.t. F ∈ RC×H×W

3: Spatial information aggregation: p← 1
H×W

∑H
r=1

∑W
c=1 F (r, c), s.t. p ∈ RC

4: Reduction rate: r ← 8

5: Define a fully connected layer: FC(in_dims : C, out_dims : C
r )

6: Dimension reduction: z← FC(p), s.t. z ∈ RC
r

7: z′ ← {}

8: while n ̸= 0 do

9: Define a fully connected layer: FC(in_dims : C
r , out_dims : C)

10: z′ ← z′ ∪ FC(z)

11: n← n− 1

12: end while

13: q← SoftMax(z′), s.t. q ∈ Rn×C

14: Expand q, s.t. q ∈ Rn×C×H×W

15: F̂ ← Sum(q⊗ F̃ , dim = 0), s.t. F̂ ∈ RC×H×W , ⊗ denotes element-wise multiplication.

4.2.4 Attention blocks

Inspired by the important role of attention mechanism in human visual perception, many early

researches have made success in applying visual attention on scene understanding [221, 222]. Due

to the success of deep learning [223], especially the breakthroughs of CNN in learning powerful

visual representation [24,33,37], an increasing amount of work try to leverage attention mechanism

for further improvement on CNN [43–47]. Depends on which dimension to filter out and refine

feature maps, attention mechanisms can be divided into two groups: channel attention and spatial

attention.

A channel attention module is depicted in Fig. 4.4, which mainly consists of a global pooling

unit and a MLP unit. Given a feature map F ∈ RH×W×C , the global average pooling is operated

to squeeze spatial information into a vector of channel-wise statistics z ∈ RC . The MLP unit
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Figure 4.4: A channel attention module.

Figure 4.5: A spatial attention module.

as an excitation operator is then used to map the statistics z to a vector of channel weights

z′ = {z′i|i = 1, 2, ..., C}, where z′i ∈ [0, 1] is activated by a Sigmoid function. Finally, a channel

attention map Mc ∈ RH×W×C is obtained by expanding the channel weights z′, which is then used

to scale the initial feature map, i.e., F ′ = Mc ⊗ F , where ⊗ denotes element-wise multiplication.

In short, a channel attention module intrinsically introduce learnable weights for the input, which

can be regarded as a self-attention function on channels.

Fig. 4.5 illustrates a spatial attention module, which mainly contains convolutional blocks and a

Sigmoid activation unit. A convolutional block with 1×1 kernel is applied for channel compression

at the beginning. The input feature map F ∈ RH×W×C is mapped to an intermediate feature map

of C
r channels, where r is a reduction rate set as 8 in our experiments. Dilated convolutional blocks

with large kernel, e.g., 3×3, are then used to aggregate contextual information over the compressed

feature map. Followed the dilated convolutional blocks, a convolution operation with 1× 1 kernel

is perform to further compress the feature map to a single channel, which is then activated by the

Sigmoid unit and expanded to acquire a spatial attention map Ms ∈ RH×W×C . Finally, a refined

feature map is obtained by F ′ =Ms⊗F , where ⊗ denotes element-wise multiplication. Overall, a

spatial attention module introduce learnable weights across spatial dimension to focus on salient

regions.

The above two kinds of attention modules, channel and spatial, compute complementary at-

tention, focusing on what and where respectively. To validate the impact of attention on tu-

mour area segmentation, several state-of-the-art attention mechanisms including the attention

gate (AG) [21, 50], the squeeze-and-excitation (SE) block [44], the bottleneck attention module

(BAM) [48] and the convolutional block attention module (CBAM) [49] are integrated into the

baseline U-Net, the resulting networks are named as U-Net+AG, U-Net+SE, U-Net+BAM and

U-Net+CBAM respectively. AG belongs to spatial attention that can automatically learns to fo-

cus on target structures of varying shapes and sizes. Models trained with AG implicitly learn to

suppress irrelevant regions in an input image while highlighting useful salient features. It is added

to each layer in the decoding path of the baseline U-Net. SE applies only channel attention, while

both BAM and CBAM combine channel attention and spatial attention in a sequential way, i.e.,

F ′ = Ms ⊗Mc ⊗ F , yet there are some slight differences on how to aggregate information across
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Figure 4.6: A selective-kernel convolution module.

spatial dimension between them. All of SE, BAM and CBAM are applied to every intermediate

feature map at each stage in both the encoding path and the decoding path.

4.2.5 The selective-kernel convolution

Due to the property of local connectivity, convolutional neural networks (CNN) are limited on

capturing long-range spatial dependencies, which is yet critical for cancer segmentation since de-

pendencies among tissue types normally exist in whole-slide range. Popular designs like large

convolutional kernel or deeper network are applied to enlarge receptive fields of CNN neurons to

capture long-range dependencies. In addition, a multi-branch design with multiple types of ker-

nel is applied in GoogleNet [37] to obtain multi-scale receptive fields, and a novel selective-kernel

(SK) convolutions has been proposed to achieve selective receptive fields [54]. To validate the

effectiveness of the selective receptive fields on histopathological image segmentation, the basic

convolutional blocks in the encoding path of the baseline U-Net are substituted as the selective-

kernel convolutions to form a new version of U-Net, which is named as U-Net+SK.

A selective-kernel convolutional module is composed of three main procedures - split, fusion and

selection, as shown in Fig. 4.6 where shows a two-branch case. Given an intermediate feature map

F ∈ RH×W×C , two convolutional blocks with different kernel size, e.g., 3×3 and 5×5 respectively,

are applied to split and transform the feature map into two feature maps F1 and F2, which are

fused in two ways, i.e., concatenation and element-wise summation, to acquire a concatenated

feature map and a summation feature map respectively. The summation feature map is then fed

to a global pooling unit to generate channel-wise statistics z ∈ RC which aggregates information

across spatial dimensions. Similar to the channel attention module, MLP is used to map the

statistics z to channel weights z′. The difference is that multiple MLPs and a SoftMax activation

are applied to create a concatenated channel weights z′ = a ∪ b where a = {ai|i = 1, 2, ..., C} and

b = {bi|i = 1, 2, ..., C}, which subjects to ai + bi = 1. At last, a feature selection procedure is

performed via a weighted average, i.e., F ′ = (a⊗ F1)⊕ (b⊗ F2).

4.2.6 Loss functions

As depicted in the network architecture (Fig. 4.1), given an image as the input, a neural network

predicts a segmentation map of the same size as the input image. Widely used cross-entropy loss

is applied to train networks with different configurations. Given a prediction map M (p) ∈ RH×W
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and the corresponding ground-truth map M (g) ∈ RH×W of size of H ×W pixels, the pixel-wise

cross-entropy loss can be expressed as:

Lce(M
(p),M (g)) = − 1

H ×W

H∑
r=1

W∑
c=1

[M (g)(r, c)log(M (p)(r, c))

+(1−M (g)(r, c))log(1−M (p)(r, c))]

(4.1)

where M (g)(r, c) ∈ {0, 1} is the ground truth label at pixel (r, c), and M (p)(r, c) ∈ [0, 1] is the

predicted probability of being target instance.

Pixels located around tumour border play a key role in tumour area segmentation. To focus

on those key pixels, structural similarity is applied to capture local differences between a pre-

diction map and the corresponding ground-truth map. A structural similarity (SSIM) index has

been proposed for perceived image quality assessment, which compares luminance, contrast and

structure between two images [224]. Let x = {xi|i = 1, 2, ...,K2} denote a patch of K ×K pixels

extracted from a predicted segmentation map, i.e., x ⊆M (p), and y = {yi|i = 1, 2, ...,K2} denote

the aligned patch of the corresponding ground-truth map M (g), the SSIM index of x and y can

then be calculated as:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.2)

where µx and µy are the mean intensity of x and y respectively, σx and σy are the standard

deviation of x and y respectively, σxy is the covariance between x and y, and C1, C2 are small

constants to avoid instability when µ2
x + µ2

y or σ2
x + σ2

y is very close to zero, which are set as 0.012

and 0.032 respectively in our experiments.

With the above definitions, the SSIM loss between a prediction map M (p) ∈ RH×W and the

corresponding ground-truth map M (g) ∈ RH×W is calculated as:

Lssim(M (p),M (g)) =
1

(H −K)(W −K)

∑
∀x⊆M(p),∀y⊆M(g)

(1− SSIM(x,y)) (4.3)

where (H − K)(W − K) is the total number of patch pair (x,y) to calculate SSIM . In our

experiments, we choose K = 11 and apply a sliding window (kernel) with a stride of 1 to extract

patches. Moreover, we apply multi-scale structural similarity [225], which is more flexible than the

single-scale one. It can be observed that the SSIM loss is calculated on small patches extracted

from prediction map and ground truth. Losses between patches located within areas of tumour or

other tissue types are small while those of patches around tumour border are large. To minimize

the SSIM loss forces the networks to focus on pixels around tumour border, so as to improve the

segmentation results. This is demonstrated in the ablation study (Section 4.3.4).

Besides the SSIM loss, a couple of metric based losses have been proposed for image classification

and segmentation, such as the IoU loss [226, 227] and the Dice loss [228]. In order to perform

comparative study, we also test the IoU loss, which in the same context as the cross-entropy loss

can be expressed as:
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Table 4.1: A summary of the datasets and the derived image patches.

Dataset PAIP 2019 PAIP 2020

W
SI Type Liver cancer Colorectal cancer

Amount 50 47
Pa

tc
h Size 256 × 256 400 × 400 512 × 512 384 × 384

Level 2 2 2 3

Amount 15,637 6,161 5,850 4,772

Liou(M
(p),M (g)) = 1−

∑H
r=1

∑W
c=1M

(g)(r, c)M (p)(r, c)∑H
r=1

∑W
c=1[M

(g)(r, c) +M (p)(r, c)−M (g)(r, c)M (p)(r, c)]
(4.4)

Different to the SSIM loss, the IoU loss is a global measure between the segmentation map and

the ground truth.

4.3 Experiments and Evaluation

4.3.1 Datasets

Two published datasets (PAIP 2019 and PAIP 2020) for liver cancer and colorectal cancer assess-

ment are used for evaluation. Table 4.1 gives a summary for whole-slide images (WSIs) and patches

of two datasets respectively. The PAIP 2019 1 dataset is released for liver cancer segmentation

and viable tumour burden estimation, which contains 50 slides of liver cancer in total. All the

WSIs are scanned by Aperio AT2 at 20× magnification (level 0). A ground-truth binary mask to

denote viable tumour area or not is provided for each slide. Due to high resolution of whole-slide

images and memory limitation, each whole-slide image is cropped into small patches of different

sizes, e.g., 400 × 400 pixels, at the lowest magnification factor (level 2), with an overlap of 200

pixels for training purpose. The PAIP 2020 2 dataset is released for the automated classification

of molecular subtypes in colorectal cancer. There are 47 slides of colorectal cancer in total with

annotated binary masks. All the WSIs are scanned by Aperio AT2 at 40× magnification. In total,

4,772 small patches each of 384 × 384 pixels are extracted from whole-slide images at the lowest

magnification factor of 5× for training. To test the proposed methods, whole-slide images are

randomly split into 5 groups for 5-fold cross validation before they are cropped into small patches.

Same split over WSIs is performed on the cropped patches to avoid correlation.

4.3.2 Evaluation metrics

Widely used metrics including the Jaccard similarity and the Dice coefficient are used to validate

the effectiveness of the proposed method for cancer segmentation. Given a segmentation map
1https://paip2019.grand-challenge.org/Dataset/
2https://paip2020.grand-challenge.org/Dataset/
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(M (s)) and its corresponding ground-truth map (M (g)), the pixel-wise Jaccard similarity (JS) and

Dice coefficient (DC) can be calculated as follows:

JS(M (s),M (g)) =

∣∣M (s) ∩M (g)
∣∣∣∣M (s) ∪M (g)
∣∣ , (4.5)

DC(M (s),M (g)) =
2×

∣∣M (s) ∩M (g)
∣∣∣∣M (s)

∣∣+ ∣∣M (g)
∣∣ (4.6)

where |·| denotes the number of pixels labeled as target instance. Besides the Jaccard similarity

and the Dice coefficient, we also report specificity (SP ), sensitivity/recall (RC) and precision (PC)

for each test to provide additional evaluation.

Normally, a valid evaluation of a model needs to base on a sequence of images. In cases of

cancer segmentation in histopathological images, we usually have a dataset of image tiles and

WSIs. For image tile segmentation, accumulated value of each metric on the testing dataset of

tiles is considered as model performance. For WSI segmentation, a clipped Jaccard similarity is

considered to penalize inaccurate result, which can be calculated as:

ˆJSi =


∣∣∣M(s)

i ∩M
(g)
i

∣∣∣∣∣∣M(s)
i ∪M

(g)
i

∣∣∣ , if
∣∣∣M(s)

i ∩M
(g)
i

∣∣∣∣∣∣M(s)
i ∪M

(g)
i

∣∣∣ ≥ 0.65

0. otherwise
(4.7)

where M (s)
i denotes the segmentation map for the ith WSI and M

(g)
i the corresponding ground-

truth map. An average of ĴS is considered as a final score on a testing dataset of WSIs:

Swsi =
1

N

N∑
i=1

ˆJSi (4.8)

where N is the number of testing WSIs.

4.3.3 Training and inference

All the models are trained using the Adam [202] optimizer with a basic learning rate of 1e-4 which

is adjusted at last 10 training epochs with a decayed rate of 0.1. The coefficients for computing

running averages of gradient and its square are set as 0.5 and 0.999 respectively. According to the

losses convergence observation, we stop training after 100 training epochs. The training procedure

takes around 5 hours for each model on a GPU of NVIDIA GeForce GTX Titan X, which depends

on the range of batch size from 2 to 4.

To ensure the segmentation models are more robust against variations of histology images, data

augmentation is performed during training by randomly transforming the training images in ways

of colour jitter, rotation, horizontal flip and vertical flip with a certain probability of 0.5. For

colour jitter, the image colour are randomly adjusted in their brightness, contrast, saturation and

hue. For rotation, the images are rotated by a degree randomly selected from {0,90,180,270}. In

the inference phase, evaluation on image patches and WSIs are performed respectively.
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Table 4.2: Effect of model scale (resolution, depth and width) on the performance of the U-Net.

Model scale SP PC RC DC JS Swsi

Resolution

[Depth 5

Width 32]

256× 256 85.87 ± 2.99 84.90 ± 2.94 88.58 ± 7.27 86.59 ± 4.57 76.63 ± 6.83 31.08 ± 8.36

400 × 400 95.94 ± 1.08 91.22 ± 1.90 87.61 ± 7.02 89.24 ± 4.19 80.82 ± 6.68 73.78 ± 5.15

512× 512 89.19 ± 3.20 88.12 ± 2.38 87.36 ± 6.85 87.64 ± 4.25 78.24 ± 6.45 34.34 ± 9.99

Depth

[Width 32

400 × 400]

3 91.28 ± 2.42 81.59 ± 3.50 79.62 ± 7.56 80.43 ± 4.81 67.54 ± 6.86 43.14 ± 9.63

4 94.36 ± 1.71 87.93 ± 3.44 85.73 ± 5.82 86.79 ± 4.52 76.94 ± 7.17 66.01 ± 7.39

5 95.94 ± 1.08 91.22 ± 1.90 87.61 ± 7.02 89.24 ± 4.19 80.82 ± 6.68 73.78 ± 5.15

Width

[Depth 5

400 × 400]

16 95.09 ± 0.86 89.42 ± 2.14 87.29 ± 5.91 88.29 ± 3.99 79.26 ± 6.30 69.37 ± 6.15

32 95.94 ± 1.08 91.22 ± 1.90 87.61 ± 7.02 89.24 ± 4.19 80.82 ± 6.68 73.78 ± 5.15

48 95.60 ± 0.93 90.59 ± 1.38 87.77 ± 7.81 88.98 ± 4.51 80.44 ± 7.02 77.17 ± 7.83

4.3.4 Ablation study

To acquire an optimal setting for building networks for image segmentation, we extensively validate

the effects of model scale, number of skip connection, amount of prediction head and different loss

functions on liver cancer segmentation in terms of Dice coefficient (DC), Jaccard similarity (JS),

score on whole-slide image (Swsi), etc.

Following [229], resolution, depth and width of networks are considered as three factors for

measuring model scale. We define the network resolution as the size of input image (H ×W ),

depth as the last down-sampling stage of feature map (D) and width as the initial channel amount

(C), as shown in the network architecture (Fig. 4.1). The performance of the baseline U-Net

tested on the PAIP 2019 dataset against different scales of model are listed in Table 4.2. As can it

be observed, the model performs better at the middle-level resolution of 400× 400 on both image

patches and WSIs when compared to the one of resolution of 256×256 or 512×512. For the depth

factor, the performance increase as the network gets deeper, which is consistent with the common

understanding of deep learning. Considering the trade-off between performance and model size,

we choose D = 5 for the rest of experiments. For the width factor, we test networks with different

initial channels (16, 32 and 48). An observation is that the network with a width of 32 performs

better on image patches while the one with a greater width of 48 gets a better result on WSIs.

C = 32 is chosen for the rest of the experiments when an additional condition, memory limitation,

is considered.

To explore the skip-connection design for neural network construction, we test the baseline

U-Net with different types of skip connection. Experimental results are listed in Table 4.3. All the

networks with skip connection outperform the one without skip connection on WSIs (see the Swsi

column), demonstrating that the skip-connection design is effective, although the improvement on

image patches are not significant. In addition, networks with heavier skip connections are stronger

than the ones with light skip connections. For example, when all feature maps at different stages

(1/8+1/4+1/2+1/1) in the encoding path are connected and fused to the corresponding feature

maps in the decoding path, the network achieves a better performance while compared against

others.
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Table 4.3: Effect of different types of skip connection on the performance of the U-Net.

# skip connection SP PC RC DC JS Swsi

0 (without) 94.73 ± 0.91 88.87 ± 2.38 87.83 ± 6.39 88.28 ± 4.34 79.29 ± 6.86 69.22 ± 8.86

1/8 94.77 ± 2.06 89.13 ± 3.12 87.26 ± 7.21 88.04 ± 4.54 78.92 ± 7.11 70.70 ± 9.78

1/8+1/4 95.01 ± 1.13 89.51 ± 1.53 86.66 ± 7.74 87.90 ± 4.40 78.68 ± 6.93 75.92 ± 3.68

1/8+1/4+1/2 94.93 ± 1.45 89.29 ± 2.46 87.26 ± 5.76 88.20 ± 3.86 79.10 ± 6.12 72.96 ± 6.73

1/8+1/4+1/2+1/1 95.94 ± 1.08 91.22 ± 1.90 87.61 ± 7.02 89.24 ± 4.19 80.82 ± 6.68 73.78 ± 5.15

Table 4.4: Effect of multi-scale/scale-adaptive features on the performance of the U-Net.

# scale SP PC RC DC JS Swsi

1 (single) 94.93 ± 1.45 89.29 ± 2.46 87.26 ± 5.76 88.20 ± 3.86 79.10 ± 6.12 72.96 ± 6.73

2 (multiple) 95.32 ± 1.41 89.92 ± 2.26 85.89 ± 7.23 87.70 ± 4.20 78.35 ± 6.63 73.12 ± 6.52

3 (multiple) 94.67 ± 1.68 88.96 ± 2.62 88.46 ± 6.46 88.61 ± 4.11 79.78 ± 6.46 75.40 ± 7.81

4 (multiple) 94.86 ± 1.36 89.10 ± 2.49 87.33 ± 5.80 88.16 ± 4.05 79.05 ± 6.38 73.26 ± 8.32

2 (adaptive) 94.87 ± 2.00 89.54 ± 3.10 89.73 ± 6.46 89.52 ± 4.10 81.28 ± 6.56 77.07 ± 8.62

3 (adaptive) 94.96 ± 1.15 89.42 ± 2.50 89.22 ± 7.16 89.25 ± 4.81 80.91 ± 7.56 77.59 ± 8.92

To observe the effect of different fusion schemes for multi-scale features in prediction, feature

maps at different decoding stages are fused for final prediction. Two kinds of fusion methods are

tested, i.e., average fusion and adaptive fusion. For each fusion method, we test different settings

including the fusions of two feature maps, three feature maps and four feature maps respectively

against the case of only one single feature map for prediction. Results are listed in Table 4.4.

As it can be seen, for averaging fusion, the case of three feature maps outperforms the others in

terms of clipped Jaccard similarity and Dice coefficient, although the improvement is limited when

compared to the one with a single feature map. One possible reason behind this is that the overall

performance of the averaging feature map could be degraded when features of some specific scales

have poor performance. Unlike average fusion, a great increase on performance can be seen for

cases of adaptive fusion. For instance, the mean clipped Jaccard similarity increases from 73.12 to

77.07 when compared to the counterpart of average fusion. This demonstrates that fusion methods

play a key role in applying multi-scale features for prediction.

To demonstrate the influence of using different loss functions, we test networks trained by

different losses including the widely used cross-entropy loss (CE), the SSIM loss, the IoU loss and

different combinations. Table 4.5 gives a comparison among these losses in terms of segmentation

performance. An interesting observation is that either the SSIM loss or the IoU loss cannot work

properly when applied alone. It is better to combine them with the CE loss. Improvements can

be seen on the combination between CE and SSIM or combination of all three losses. Fig. 4.7

shows the descent of each loss function in comparison between the training and testing modes. The

objective function is to minimise the difference between a segmentation map and a corresponding

ground truth. Since the CE loss is calculated on the pixel level, while SSIM is calculated on patch

level and IoU is a global measurement, the final convergent value of each loss is different.
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Table 4.5: Effect of different loss functions on the performance of the baseline model U-Net.

Loss function SP PC RC DC JS Swsi

Lce 95.94 ± 1.08 91.22 ± 1.90 87.61 ± 7.02 89.24 ± 4.19 80.82 ± 6.68 73.78 ± 5.15

Liou 88.65 ± 3.99 79.22 ± 7.52 90.36 ± 4.89 84.36 ± 6.24 73.45 ± 9.24 56.89 ± 9.42

Lssim 95.56 ± 1.24 90.21 ± 2.58 85.23 ± 7.98 87.50 ± 5.11 78.14 ± 7.90 68.98 ± 4.97

Lce+Liou 95.58 ± 1.22 90.42 ± 2.70 88.00 ± 6.10 89.14 ± 4.32 80.67 ± 6.90 69.02 ± 8.77

Lce+Lssim 96.10 ± 0.74 91.48 ± 1.25 86.96 ± 6.66 89.04 ± 3.78 80.45 ± 6.07 75.63 ± 5.46

Lce+Lssim+Liou 95.64 ± 0.49 90.67 ± 0.89 88.46 ± 6.64 89.42 ± 3.58 81.06 ± 5.78 73.56 ± 2.97

Figure 4.7: Losses against training epochs of the baseline U-Net.

4.3.5 Evaluation on liver cancer segmentation

In this section, we test and compare networks with different architectures on liver cancer segmenta-

tion. To validate the effectiveness of the proposed networks for cancer segmentation in whole slide

images, digital slides of liver cancer from the challenge of PAIP 2019 are used for networks train-

ing and evaluation. Besides the structure-aware scale-adaptive networks, several networks with

superior selective-kernel convolutions and attention mechanisms including channel and spatial at-

tention are also tested. Comparison among these networks are listed in Table 4.6. The network

(U-Net+SAFS+SSIM), to which both the SAFS module and the structural similarity (SSIM) are

applied, scores a clipped Jaccard similarity of 79.89±5.08, with a 7% improvement compared to

the baseline U-Net. The improvement can also be seen in Fig. 4.8, where many false positives of

the baseline U-Net are gradually eliminated when the SAFS and the SSIM are applied, showing

the effectiveness of the scale-adaptive features and structural similarity. The elimination of false

positives, most of which are dissociated from viable tumour areas, is more obvious while the SSIM

is applied, due to the ability of SSIM to focus on differences of local patches.

The scale-adaptive feature selection module and its combinations with the structural similarity

(SSIM), shortcut convolution (SC), and selective-kernel convolution (SK) are tested respectively,

results listed in Table 4.7 together with the top ten results of the PAIP 2019 challenge. Note

that a testing set of 40 extra WSIs are provided during the period of the PAIP 2019, while our

results are cross-validated using the training set. Although it is not absolutely fair to make such

a comparison and the training set we use is smaller, the results are listed for reference. As it can

be seen, the proposed networks achieve outstanding performance. Specifically, the network with

the combination of SAFS and SSIM (U-Net+SAFS+SSIM) scores 79.89 ± 5.08 which is almost
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Table 4.6: Comparison among networks with different architectures tested on the PAIP 2019 and

the PAIP 2020 respectively. #P denotes the number of parameters.

Architecture
#P

(million)

PAIP 2019 (liver cancer) PAIP 2020 (colorectal cancer)

DC JS Swsi DC JS Swsi

U-Net (baseline) 8.7680 88.20 ± 3.86 79.10 ± 6.12 72.96 ± 6.73 91.72 ± 3.15 84.86 ± 5.30 80.12 ± 7.87

U-Net+SC 8.9713 88.31 ± 4.28 79.33 ± 6.75 73.05 ± 6.45 91.87 ± 3.19 85.12 ± 5.39 79.53 ± 6.47

U-Net+AG 8.8826 88.80 ± 4.45 80.14 ± 7.06 75.77 ± 8.10 92.32 ± 3.09 85.88 ± 5.25 79.84 ± 8.76

U-Net+SE 8.9922 89.48 ± 4.62 81.27 ± 7.29 79.02 ± 5.04 92.64 ± 2.99 86.44 ± 5.12 83.10 ± 8.16

U-Net+BAM 9.3177 90.00 ± 3.72 82.01 ± 6.04 76.14 ± 8.95 93.01 ± 2.85 87.06 ± 4.95 83.22 ± 9.42

U-Net+CBAM 8.9963 87.75 ± 3.90 78.39 ± 6.25 75.08 ± 5.53 92.78 ± 2.60 86.64 ± 4.52 83.00 ± 8.28

U-Net+SK 19.8725 89.51 ± 4.48 81.30 ± 7.17 79.11 ± 6.98 92.84 ± 2.58 86.74 ± 4.49 82.06 ± 8.65

U-Net+MS 8.8791 88.61 ± 4.11 79.78 ± 6.46 75.40 ± 7.81 91.87 ± 3.16 85.12 ± 5.36 80.05 ± 7.94

U-Net+SAFS 8.8051 89.52 ± 4.10 81.28 ± 6.56 77.07 ± 8.62 92.42 ± 3.21 86.08 ± 5.50 82.97 ± 4.97

U-Net+SAFS+SSIM 8.8051 90.06 ± 3.65 82.11 ± 5.93 79.89 ± 5.08 92.46 ± 3.18 86.14 ± 5.43 84.22 ± 5.22

the same as the best published result of an ensemble model [174], while the network with shortcut

and selective-kernel convolutions (U-Net+SK+SC) achieves the best clipped Jaccard similarity of

81.00±4.98. Although the proposed network achieve a high overall performance, the variance is

merely acceptable. The relatively large variance reveals that our network may face generalisation

issues to some instances. We will pay special attention to these issues in our future work.

4.3.6 Evaluation on colorectal cancer segmentation

In this section, we further test and compare the proposed networks on colorectal cancer segmen-

tation using WSIs of PAIP 2020 in which tiny blank regions within viable tumour areas are also

considered as cancer (see the GT column in Fig. 4.9). Results are listed in Table 4.6. An in-

teresting observation is that either the scale-adaptive feature selection module or the structural

similarity can lead to improvement in colorectal cancer segmentation when compared to the base-

line, which is similar to the evaluation on liver cancer segmentation. Especially when both methods

are applied simultaneously, the network (U-Net+SAFS+SSIM) achieves the best clipped Jaccard

similarity of 84.22±5.22. We visualize some examples of whole-slide images and the corresponding

segmentation maps from networks with different settings to demonstrate the improvement (Fig.

4.9). However, the improvement is not as significant as the results on the liver cancer task, mainly

because there is less influences of small regions outside the viable tumour areas in WSIs of colorec-

tal cancer. Networks with superior attention mechanisms can also outperform the baseline. For

instance, U-Net+BAM scores better in Jaccard similarity (JS) and Dice coefficient (DC) on small

image patches. Nevertheless, considering the tradeoff between the number of network parameters

and segmentation performance, we propose the combination of SAFS and SSIM for efficient and

accurate cancer segmentation.
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Figure 4.8: WSIs of liver cancer and segmentation maps of different networks.
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Table 4.7: Comparison with top ten teams partic-

ipating in the challenge of PAIP 2019. Ranks are

from the challenge leaderboard [141].

Rank Team Swsi

- U-Net+SAFS 77.07±8.62

- U-Net+SAFS+SC 78.66±5.85

- U-Net+SAFS+SSIM 79.89±5.08

- U-Net+SAFS+SK 79.99±8.01

- U-Net+SK+SC 81.00±4.98

- Ensemble [174] 79.70

1 Hyun Jung 78.90

2 Team Sen 77.72

3 Team MIRL-IITM 75.03

4 Team Damo AIC 67.18

5 Team QuIIL 66.52

6 Team CUHK-Med 66.24

7 Team DAISYlab@UKE 65.96

8 Team COSYPath 63.13

9 Ching-Wei Wang 60.65

10 Team LRDE 52.99
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Figure 4.9: WSIs of colorectal cancer and segmentation maps of different networks.
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4.4 Summary

We present a structure-aware scale-adaptive network to efficiently and accurately segment tumour

area in whole-slide images. This challenging image segmentation problem is tackled by applying a

SAFS module to dynamically select feature maps from different scales for final prediction. More-

over, the structural similarity metric is proposed to regulate the network training procedure for

better tissue structure capturing, so as to improve the segmentation performance without increas-

ing the number of network parameters. The proposed network has been evaluated on two cancer

segmentation benchmarks. Significant improvements are achieved by exploiting scale-adaptive fea-

tures together with the structural similarity loss, demonstrating the effectiveness of the dynamic

and scale-adaptive feature selection approach for cancer segmentation. Specifically, experimental

results show that the proposed network yield outstanding performance on the benchmark of PAIP

2019 for liver cancer segmentation while compared to previous methods, and on the colorectal can-

cer segmentation benchmark when compared with the baseline or other networks with excellent

attention designs.
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Chapter 5

Similarity-based Region Proposal

Networks for Nuclei and Cells

Detection

Detection of nuclei and cells in histology images is of great value in both clinical practice and

pathological studies. However, multiple reasons such as morphological variations of nuclei or cells

make it a challenging task where conventional object detection methods cannot obtain satisfactory

performance in many cases. In this chapter, we focus on addressing challenging issues associated

to detection of nuclei and cells in histology images for cell-level computational histopathology

analysis.
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Figure 5.1: Variations of nuclei (first row) and signet ring cells (second row) in histology images.

5.1 Overview

In recent years, benefiting from the powerful computational resources and the availability of large-

scale labeled data, deep learning has made incredible advances in image recognition related chal-

lenges, and has become a solution for computational pathology. In many cases, morphological and

numeric features of nuclei and cells are meaningful for cancer assessment. For instance, the Notting-

ham system grades breast cancer by adding up scores for tubule formation, nuclear pleomorphism

and mitotic count [25]. Among these factors, nuclear pleomorphism could give an indication of

the degree of the cancer evolution while mitotic count could give an evaluation of the aggressive-

ness of the tumour. Cell-level analysis is normally performed by pathologists manually by using

a microscope or examining digital slides. This process is laborious, error-prone and sometimes

impossible due to the high density of cell in some regions. Thus, it is highly demanding to build

a computational model that is able to automatically and accurately detect, segment and quantify

nuclei and cells of interest in a digital slide.

Histology images produced by different laboratories with different platforms unavoidably intro-

duce variations in colour, scale and shape of nuclei and cells (Fig. 5.1). Overlapping cells poses

further intrinsic complications to the task. There are also some external factors that add difficulties

to the cell detection task, e.g., the lack of quality and quantity in the annotation labels and class

imbalance, which impose widely encountered and long lasting issues in biomedical image analy-

sis. Various CNN based systems have been developed to resolve the task of cell detection. Some

works directly apply well-developed object detectors of excellent performance on cell detection.

For example, Zhang et al. [26] successfully apply the framework of Faster R-CNN [27] to detect

adhesion cells in phase-contrast microscopy images; Yi et al. [28] solve the task of accurate neural

cell detection by adapting the original SSD to a light-weight model. Although those deep learning

based systems succeed in some specific cases, they cannot obtain satisfactory performance in more

general scenarios.

The heterogeneity in cell-level objects and the visual challenges existing in histology images
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together make the classification, detection and segmentation of these objects a completely different

task than working on objects in natural images. The unique morphological nature of cells and nuclei

need to be considered and specifically addressed in the design of relevant deep learning solutions.

Thus, in this research a dedicated similarity learning enhanced deep neural network is presented

with the leverage of state-of-the-art techniques to detect generic cell-level objects in histology

images. The main contributions include:

(i) Tailored similarity-based region proposal networks for solving the challenges in nuclei and

cells detection in histology images, with special focus on detecting individual nuclei instances

in cases where high visual variance and intense occlusion take place;

(ii) A new network architecture that includes embedding layers to enable similarity learning, pro-

viding expressive and discriminative features that suit the task of nuclei and cells detection;

(iii) The proposed method is applied in solving two different tasks - multi-organ nuclei detection

and signet ring cell detection - to validate the effectiveness of the proposed method compared

against the state-of-the-arts. Multiple CNN architectures are tested to reveal their impacts on

nuclei or cells detection. Different loss functions are applied to the training of the networks.
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Figure 5.2: Illustration of using anchor boxes for object detection. For each location in the feature

map, multiple boxes with different scales and aspect ratios are predicted. The yellow grid roughly

denotes the receptive field of neural networks.

5.2 Similarity-based Region Proposal Networks

Given an image, one common method to detect objects of interest across the whole image is to

use anchor boxes [27]. As illustrated in Fig. 5.2, at first a large number of anchor boxes (object

bounding boxes) serving as object (cell) candidates are overlaid on each possible locations of

the input image. Network (detector) parameters are then adjusted to simultaneously refine the

candidate bounding boxes and to assign a label for each candidate bounding box during the process

of training. Normally, to take into account the difference in size and shape of object, multiple

anchor boxes with different scales and aspect ratios are assigned for each candidate location. In

our experiments, we use 3 scales and 3 aspect ratios, 9 anchor boxes per location. There are

many methods to adjust parameters of a detector. The proposed method exploits the advantage of

similarity learning to achieve a high performance for cell-level object detection. Next, we describe

the proposed method in detail focusing on two aspects, i.e., the network architecture and loss

functions.

5.2.1 Network architecture

The proposed network architecture to detect nuclei and cells is illustrated in Fig. 5.3. At the

beginning, a CNN backbone is used to extract feature maps from an input image of size C0×H0×W0

(C0 = 3 for RGB image), since features extracted by CNN have been demonstrated with excellent

robustness to various kinds of visually related tasks such as classification [33], segmentation [81]

and detection [114]. Given an extracted feature map of C1 channels as input, a convolution layer

(Conv1) encodes a local region of 3×3 pixels of the feature map into a feature vector of length C2;

in our experiments C1 = C2 = 256. Predictions of a bounding box array and a confidence array

are then acquired for each feature vector (H2 ×W2 in total) by using a regressor and classifier

head respectively. A regressor head (Conv2) encodes offsets between the default anchor boxes and
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Figure 5.3: Architecture of SRPN for nuclei and cells detection. It takes an image as input and

outputs prediction indicating locations and confidences for nuclei across whole image by using a

regressor and classifier head respectively.

the corresponding predicted bounding boxes. A classifier head (Conv4) assigns a confidence score

indicating foreground or not for each predicted bounding box with a Softmax function. Before the

classifier head, an embedding layer (Conv3) is added to enable similarity learning to improve the

classification performance. In order to keep location consistency, a convolution layer with a kernel

size of 1 × 1 is applied to the regressor, the classifier or the embedding layer. An anchor box is

presented as a 4-tuple, consisting of a coordinate pair of its top left corner and its height and width,

that is to say, C3 = 4×num_anchor where num_anchor denotes the number of anchors to predict

per location. C4 = num_anchor × dim_embedding, C5 = num_anchor, where dim_embedding

denotes the dimension of embedding, set to 20 in our experiments.

In contrast to the original RPN settings proposed by [27], an embedding layer is added before

the classifier head to enable similarity learning with the aim to improve the performance of nuclei

detection. The motivations behind applying similarity learning in this framework are in two folds.

On the one hand, embeddings learned under the constraint that samples of the same class are clus-

tering and those of different classes are separating, are more discriminative, especially in the cases

of identifying one specific type of objects out of a noisy background. A well-performing classifier

is of crucial importance to build an excellent object detector. On the other hand, through pair-

ing samples for similarity learning, one can indirectly eliminate the impact of the class imbalance

problem commonly faced by object detectors by controlling the sampling process. Furthermore,

we can generate the maximum of n2 sample pairs or n3 sample triplets from n training samples,

meaning that the pairing of samples also serves as a data augmentation process for model training.

Overall, the similarity learning paradigm demonstrates significant benefits for feature learning in

object detection tasks.
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5.2.2 Loss functions

According to the network architecture presented in Section 5.2.1, when given an image with ground

truth, the embedding layer outputs an embedding array of size C4 × H4 ×W4 where C4 equals

to the product of the number of the anchors per location and the dimension of the embeddings,

i.e., 9 × 20 in our experiments. To perform supervised learning, a label indicating foreground or

background is assigned to each anchor based on the intersection over union (IoU) between the

anchor and the corresponding ground truth. An anchor is given a positive label 1 if it has an IoU

higher than the positive threshold, say 0.7, with any ground truth box. A negative label 0 is given

to an anchor if the IoU is lower than the negative threshold, say 0.3, with all the ground truth

boxes. Anchors that are neither positive nor negative will be filtered out during training.

To apply similarity learning, generating embedding pairs or triplets is a key step. Given a

set of embeddings E1 = {(ϵi, p∗i ) |i ∈ Z+}, where ϵi represents embedding for the ith anchor and

p∗i ∈ {0, 1} denotes its anchor label, it is easy to transform E1 into 1) a set of embedding pairs

E2 = {(ϵi, ϵ′i, si) |i ∈ Z+}, where si ∈ {0, 1} denotes the similarity/closeness between embedding

ϵi and ϵ′i; or 2) a set of embedding triplets E3 = {(ϵai , ϵ
p
i , ϵ

n
i ) |i ∈ Z+}, where ϵai is a reference

embedding, and ϵpi is a positive embedding of the same class as the reference while ϵni is a negative

embedding of a different class. In practice, the sampling process can be controlled to the balance

embedding pairs with a different label si. For a better description, we define a function φ : E1 → E2
to represent the process of generating pairs, and ψ : E1 → E3 to represent the generation of triplets.

With the embedding pairs E2 or triplets E3, we can now apply the contrastive/pair loss Eq. (2.1)

or the triplet loss Eq. (2.2) as a constraint for similarity learning.

Following the R-CNN based approaches for object detection [27,114,119], a classification head

and a regression head are employed for object identification and bounding box regression respec-

tively, as depicted in Fig. 5.3. For the classification head, a regular cross-entropy loss or focal

loss [75] is used for weights tuning. For the regression head, following [119], we apply the smooth

L1 loss for anchor box tuning. An anchor box is encoded as a 4-tuple [xa, ya, ha, wa], where

(xa, ya) indicate the coordinate of its top left corner, and (ha, wa) represent its height and width

respectively. To refine the anchor boxes, offsets between the final predicted bounding box and the

corresponding anchor box are encoded as a 4-tuple t = [tx, ty, th, tw] such that:
tx = (x− xa) /wa

ty = (y − ya) /ha
th = log (h/ha)

tw = log (w/wa)

 (5.1)

where [x, y, h, w] is the 4-tuple for the final predicted bounding box similar to [xa, ya, ha, wa] for

the anchor box. In a supervised learning setting, ground truth bounding boxes are also input

as supervision signals. The offsets between a ground truth bounding box and an anchor box are

83



encoded as t∗ = [t∗x, t
∗
y, t

∗
h, t

∗
w], such that:

t∗x = (x∗ − xa) /wa

t∗y = (y∗ − ya) /ha
t∗h = log (h∗/ha)

t∗w = log (w∗/wa)

 (5.2)

where [x∗, y∗, h∗, w∗] is a 4-tuple for a ground truth box. With the definitions above, the smooth

L1 loss can be defined as:

LsmoothL1
(t, t∗) =

∑
j∈{x,y,h,w}

f(tj − t∗j ) (5.3)

where f (·) is the smooth L1 function:

f(x) =

0.5x2 if |x| < 1

|x| − 0.5 otherwise.
(5.4)

Overall, the total loss for an input image with the ground truth is a weighted sum of the

embedding loss Lembed, the localization loss Lloc and the classification loss Lcls:

L =

N∑
i

Lembed (ε (ϵi, p
∗
i )) +

N∑
i

p∗iLloc (ti, t
∗
i ) +

N∑
i

Lcls (pi, p
∗
i ) (5.5)

in which N denotes the number of anchor boxes, ε (·) = φ (·) or ψ (·) depending on the option of

the embedding loss Lembed. In our experiments, we employ either the pair loss Eq. (2.1) or the

triplet loss Eq. (2.2) as the embedding loss Lembed. The term p∗iLloc indicates that the localization

loss is activated only for positive anchors where p∗i = 1 and is disabled otherwise, p∗i = 0. The

smooth L1 loss Eq. (5.3) is tested as the localization loss. Since there is only one cell or nuclei

type to detect, as mentioned before, we employ either the cross-entropy loss Eq. (2.6) or the focal

loss Eq. (2.8) as the classification loss Lcls.
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5.3 Experiments and Evaluation

5.3.1 Datasets

The MoNuSeg dataset is published for the Multi-organ Nuclei Segmentation challenge1 in MICCAI

2018. The training dataset consists of 30 images generated from multiple organs including breast,

kidney, liver, prostate, bladder, colon and stomach, each of size 1, 000× 1, 000 pixels. There are in

total 21,713 nuclear boundary annotations drawn by domain experts. The testing dataset consists

of 14 images with 6,697 additional nuclear boundary annotations. To validate the proposed method

thoroughly, the testing dataset is organised into two groups based on the organ types. Images in

group 1 are taken from the same organs of training data (seen) and images in group 2 from unseen

organs (unseen).

The used dataset is released for the Digestive-System Pathological Detection and Segmentation

Challenge2. There are in total 77 histology images with annotations from 20 patients. All the

images are acquired from either gastric mucosa or intestine. The average size of each image is

about 2000 × 2000 pixels and there is a total of 9,710 signet ring cells annotated by experienced

pathologists in the format of bounding boxes. To validate the networks, we randomly split the

images into a training set and a validation set with a ratio of 4 : 1. Images from the training set

are then cropped into small patches for training. The size of patches is defined as 600× 600 pixels

here according to the network input requirement.

5.3.2 Evaluation metrics

The first metric used to validate the effectiveness of the proposed method for nuclei detection is

the F1 score. Intersection over union (IoU) is computed to decide if two objects are matched or

not. In our experiments, the IoU threshold is set as 0.3. Besides the F1 score, we also report the

average precision (AP ) for each test to provide additional evaluation.

In the annotated images, pathologists can only guarantee that the labeled cells all belong to

the signet ring cell category, but cannot exhaustively label all the signet ring cells presented in the

images, especially in the overcrowded regions. In this situation, it is not possible to use average

precision or F1-score to validate and compare the detection performance. Evaluation metrics here

include 1) recall (RC), and 2) score of normal region false positives Snr = max(100−FPnr,0)
100 , where

FPnr is mean normal region false positives counted on a set of extra negative images. This set

contains 378 extra images extracted from normal regions, each of size 2000× 2000 pixels, and are

employed only for evaluation purposes. Since there is no signet ring cells present in the negative

images, all the predicted bounding boxes in the negative images are added to FPnr. The evaluation

results are compared against baseline networks without the embedding losses, but no comparison

with external methods can be presented in this paper as the results are not yet published to date.
1https://monuseg.grand-challenge.org/Data/
2https://digestpath2019.grand-challenge.org/Dataset/
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5.3.3 Training and inference

The detectors are trained using the optimiser of stochastic gradient descent (SGD) together with a

basic learning rate of 1e-3. We validate several CNN architectures, like ResNet-50/ResNet-101 [24]

and ResNeXt-50/ResNeXt-101 [230], as the backbone of detectors. To speed up the training

procedure, we exploit networks pretrained on ImageNet [231]. The weights and biases in the other

layers are initialized by values drawn from the normal distribution N ∼ (0, 0.012) and a constant

of 0 respectively. The training procedure takes a couple of hours for each detector on a GPU of

NVIDIA GeForce GTX Titan X, depending on the range of the batch size from 4 to 12.

To ensure the robustness of the detectors against visual variations in histology images, data

augmentation is performed during training by transforming the training images in ways of colour

jitter, horizontal flipping and vertical flipping with a certain probability of 0.5. For colour jitter,

the image colour are randomly changed in their brightness, contrast, saturation and hue.

Class imbalance is a very common problem faced by dense object detection. Generally, the

number of interested objects is much less than the rest of searched locations to predict in an input

image. That is to say, the number negative samples overwhelms the number of positive samples.

Thus, during the training process, the technique of online hard example mining (OHEM) is applied

to eliminate the effect of class imbalance [77]. Consequently, the ratio between the negative and

positive samples becomes 3 : 1, similar to that reported in previous works [27].

In the inference phase, there might be several predictions for one object due to the settings

designed for dense object detection. Normally, a process of non-maximum suppression is performed

to remove the repeated predictions, keeping only one with the highest probability for each object

[232]. A threshold of IoU between two predictions is used to decide whether they are repeated or

not. In our experiments, the threshold is set to 0.3.

5.3.4 Ablation study

To select suitable margins for the embedding loss functions as given in Eqs. (2.1) and (2.2), we train

models with the pair and triplet loss functions by varying the margin from 0.5 to 2.0 respectively.

Fig. 5.4 shows model performance against different margins on the MoNuSeg testing dataset. It

is observed that margin m = 1.0 for the pair loss and m = 2.0 for the triplet loss yield the best

F1-scores in the respective cases.

To investigate the impact of similarity learning on nuclei detection, we test a variety of the

proposed models with different CNN backbones (ResNet-50, ResNet-101 or ResNeXt-101) and

embedding loss functions (pair or triplet loss). Fig. 5.5 shows some samples of ground truth and

corresponding detection for a visual assessment.

Table 5.1 presents a comparison among the tested models in different settings. As it can be

observed, the performance of these models with embedding loss functions show great improvements

in both F1-score and average precision compared to the associated baselines (models without em-

bedding loss functions), demonstrating the effectiveness of similarity learning for nuclei detection.
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Figure 5.4: F1-score and average precision (AP ) against different margins for the pair loss (top

one) and the triplet loss (button one) respectively.

Figure 5.5: Detection of nuclei by models trained with different loss functions. First row: trained

without embedding loss; second row: trained with Lpair; third row: trained with Ltriplet. Ground

truth is depicted in green bounding boxes and detection in yellow bounding boxes (best view in

color).
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Table 5.1: Comparison of the proposed SRPN method with different CNN backbones and embedding

loss functions.

Model Backbone Lembed TP FP FN Precision Recall F1 AP

RPN ResNet-50 - 4760 1040 1937 0.8207 0.7108 0.7618 0.7253

SRPN ResNet-50 Lpair 5131 1000 1566 0.8369 0.7662 0.8000 0.8112

SRPN ResNet-50 Ltriplet 5426 742 1271 0.8797 0.8102 0.8435 0.7976

RPN ResNet-101 - 4961 756 1736 0.8678 0.7408 0.7992 0.7470

SRPN ResNet-101 Lpair 5136 1029 1561 0.8331 0.7669 0.7986 0.7964

SRPN ResNet-101 Ltriplet 5399 695 1298 0.8860 0.8062 0.8442 0.7785

RPN ResNeXt-101 - 4398 1501 2299 0.7456 0.6567 0.6983 0.7678

SRPN ResNeXt-101 Lpair 5184 994 1513 0.8391 0.7741 0.8053 0.8024

SRPN ResNeXt-101 Ltriplet 5482 663 1215 0.8921 0.8186 0.8538 0.7898

Figure 5.6: F1-score of different models with different CNN backbones and embedding losses

evaluated on the MoNuSeg testing dataset.
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For example, the original model with ResNet-50 backbone achieves a F1-score of 0.7618, which

is significantly increased to 0.8435 when the triplet loss is applied to it. Similar increases of F1-

scores can also be seen for the other two backbones. Focusing on the AP column, we can see that

the models with embedding losses applied, especially the pair loss, outperform their correspond-

ing baselines with clear advantages. Overall, these results evidence a strong positive influence of

similarity learning on the performance of nuclei detection models.

To further investigate and compare the performance of each model, we plot F1-score against

the number of training iteration at a sampling interval of 2500, as depicted in Fig. 5.6. The lines of

the triplet models are superior to those of the baseline models in all cases. This further reveals the

fact that the employment of similarity learning introduces evident enhancement to the detection

performance, due to its excellent ability to distinguish nucleus out of the background. Moreover,

the convergence performance of the baseline models changes as the network depth and complexity

increase from ResNet-50 to ResNeXt-101 while those of similarity learning models keep relatively

stable. After using ResNet-101, the baseline model’s F1-score is close to that of the network with

pair loss, but still far behind that of the triple loss model. However, the training of the baseline

model fails with further increase of complexity of network. These observations further validate the

efficacy of the embedding losses in leveraging the similarity metric for nuclei detection.

5.3.5 Evaluation on multi-organ nuclei detection

Nuclei detection in histology images enables the extraction of cell-level features for computational

histopathology analysis. Once accurately detected, nuclear morphometric and appearance features

such as nuclei density, average size, and pleomorphism can be used to assess cancer grades, as well

as to predict treatment effectiveness. Identifying different types of nuclei based on the detection

results can also yield information about tumour growth, which is important for cancer grading.

In this section, we utilise the MoNuSeg dataset [189] to validate the effectiveness of the proposed

method for nuclei detection in histology images.

To demonstrate the effectiveness of the proposed SRPN method for nuclei detection, we compare

the performance of different SoTA methods evaluated on the MoNuSeg testing dataset. Table 5.2

shows a comparison of these methods on seen-organ and unseen-organ images. All the deep learning

based methods (from method No. 2 to 7) outperform the conventional watershed method (Method

1) on both seen-organ and unseen-organ images by a large margin. Among them, it is observed

that the proposed method SRPN achieves the state-of-the-art results. The F1-score on seen organs

is 3% higher than the best published method [188] and that of the unseen organ is almost the same

with the best result [193].

In the nuclei detection task, similarity learning can significantly enhance the classification ability

of the proposed model, especially when the triple loss is used. We argue that this method’s ability

in producing better results on data with low diversity makes it particularly suitable for tasks on

cell-level object detection in histology images where traditional detection methods cannot obtain

better performance. It can extract more discriminative features for nuclei detection and maintain
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Table 5.2: Performance comparison of different

methods for seen-organ and unseen-organ im-

ages.

No. Method
F1 score

Seen Unseen

1 Fiji [233] 0.6402 0.6978

2 CNN3 [189] 0.8226 0.8322

3 DCAN [188] 0.8265 0.8214

4 PA-Net [234] 0.8156 0.8336

5 BES-Net [235] 0.8118 0.7952

6 CIA-Net [193] 0.8244 0.8458

7 Proposed SRPN 0.8579 0.8427

its performance in spite of the change of CNN architectures. The proposed SRPN model shows

superior performance on nuclei detection in both seen and unseen organ images, because its ability

in leveraging the similarity metric for instance classification.

5.3.6 Evaluation on signet ring cells detection

We further test the proposed method on a much more challenging task - signet ring cell detection.

Signet ring cell is a type of abnormal cell that is most frequently associated with stomach cancer.

A tumour is defined as signet ring cell adenocarcinoma when it is composed of at least 50% signet

ring cells. Generally, a tumour has a worse prognosis when a significant number of signet ring cells

present. It is of clinical importance to detect and count the number of signet ring cells in a region.

This can be used as valuable clues to help pathologists understand and evaluate the degree of tissue

lesion. However, due to its large morphological variations and other complexities, signet ring cell

detection remains a challenging task. Therefore in this section, we validate the performance of the

proposed SRPN method by applying it to solve the task of signet ring cell detection.

We comprehensively test and compare different models (Faster R-CNN and RetinaNet) with

different CNN backbones and/or embedding loss functions on both the validation set and the

extra negative image set. Table 5.3 lists the recall value R and the score on normal regions Snr

at a confidence threshold of 0.5 of each model. From group 1 to 3 for different models, the same

observation can be drawn that models with embedding loss functions outperform those baselines in

terms of the score on normal region Snr. However, the proposed similarity learning models achieve

slightly lower recall R values in most cases. In particular, it can be observed from group 1 that

the SRPN model with triplet losses achieves superior average performance when compared to the

corresponding RPN model without embedding losses due to the improvement on Snr.

To investigate the impact of the CNN architectures on signet ring cells detection, we test the

RetinaNet model with multiple CNN backbones including ResNet-50, ResNet-101 and ResNeXt-
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Table 5.3: Comparison of signet ring cell detection results of different mod-

els, CNN backbones and embedding loss functions. RC@0.5: recall at a

confidence threshold of 0.5; Snr@0.5: score on normal regions at a confi-

dence threshold of 0.5.

Group Model Backbone Lembed RC@0.5 Snr@0.5

1

RPN ResNet-50 - 0.8428 0.07

SRPN ResNet-50 Lpair 0.8482 0.00

SRPN ResNet-50 Ltriplet 0.7796 0.39

2

Faster R-CNN ResNet-50 - 0.6141 0.71

Faster R-CNN ResNet-50 Lpair 0.6312 0.68

Faster R-CNN ResNet-50 Ltriplet 0.6004 0.78

3

RetinaNet ResNet-50 - 0.6273 0.72

RetinaNet ResNet-50 Lpair 0.57 0.83

RetinaNet ResNet-50 Ltriplet 0.5602 0.83

4

RetinaNet ResNet-50 - 0.6273 0.72

RetinaNet ResNet-101 - 0.5999 0.77

RetinaNet ResNeXt-101 - 0.6009 0.78

5

RetinaNet ResNet-50 Lpair 0.57 0.83

RetinaNet ResNet-101 Lpair 0.547 0.85

RetinaNet ResNeXt-101 Lpair 0.5225 0.88

6

RetinaNet ResNet-50 Ltriplet 0.5602 0.83

RetinaNet ResNet-101 Ltriplet 0.5235 0.86

RetinaNet ResNeXt-101 Ltriplet 0.5215 0.85
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Figure 5.7: False positives on negative images of normal region detected by models with different

CNN backbones and embedding loss functions (best view in color).

Figure 5.8: Performance comparison among models trained with/without different embedding loss

functions, evaluated on the validation set of signet ring cell detection.
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101. As can it be seen from group 4 to 6 of Table 5.3, the light-weight architecture ResNet-50

perform better on recall R while deeper and more complex architectures ResNet-101 and ResNeXt-

101 perform better on Snr, resulting in a close average performance of different backbones.

To observe changes of performance against training iteration and to compare the performance of

different embedding loss functions, we plot the performance of RetinaNet with different embedding

loss functions, on the signet ring cell validation set (Fig. 5.8). As presented in the figure, normal

region scores Snr of models applied embedding loss are better than those of the baselines while

the recall R values demonstrate in a different way. The observation that models with embedding

losses outperform baselines on normal region scores Snr can also be validated in Fig. 5.7, which

shows false positives of signet ring cell on negative images of normal region predicted by different

models. As can it be seen from the figure, the numbers of false positives decrease significantly

when embedding loss functions are applied.

These result together show that the proposed SRPN networks with a similarity learning scheme

present excellent ability in discriminating true and untrue instances, and can thus avoid challenging

false positives being detected while maintaining a high true positive rate.
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5.4 Summary

We present a similarity based region proposal network (SRPN) to accurately detect nuclei and cells

in histology images. This challenging cell-level object detection problem is formulated as a multi-

task learning process, namely, instance localisation and classification. A similarity metric is used to

improve classification performance. To apply similarity leaning, we introduce an embedding layer

to the SRPN architecture for building networks, which allows us to train networks with embedding

loss functions. Networks trained with embedding losses are able to learn discriminative features

based on the similarities and use them for instance classification. The proposed SRPN has been

evaluated on two cell-level object detection benchmarks. Significant improvement are introduced

by exploiting embedding losses, demonstrating the effectiveness of the similarity learning approach

for nuclei and cells detection. Specifically, experimental results show that SRPN yield outstanding

performance on the MoNuSeg benchmarks for nuclei detection compared to previous methods, and

on the signet ring cell detection benchmark when compared against baseline networks.
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Chapter 6

Conclusion

This thesis studies problems associated to computational histopathology analysis. Several al-

gorithms or frameworks are proposed for different tasks including cancer categorisation, cancer

segmentation and nuclei detection. In this chapter, the major findings and future work are sum-

marised.

6.1 Findings

To achieve the goal of doing computational histopathology analysis, we carry out researches on

1) histopathological image classification for cancer categorisation; 2) semantic segmentation for

tissue-level cancer assessment; and 3) cells and nuclei detection for cell-level cancer analysis. The

main findings are listed as follows:

We have presented similarity based multi-scale embeddings for cancer categorisation. Due to

the variations caused by magnification factors and the complexity of tissue structure, a good repre-

sentation plays a key role in cancer categorisation in histopathological images. We have validated

that similarity learning is an effective method for representation learning in histopathological im-

ages, for which we have got a significant improvement on cancer categorisation. In addition, class

imbalance is an issue commonly faced by image classification. We propose a reinforced focal loss to

better solve the issue. The effectiveness of the reinforced focal loss has been verified and compared

to the traditional cross-entropy loss.

We have presented structure-aware scale-adaptive networks for cancer segmentation in whole-

slide images. Difficulties like vague boundaries or small regions dissociated from viable tumour

areas make cancer segmentation a challenging task. We have found that scale-adaptive attention

is an effective way for feature selection, which ensures high performance of cancer segmentation.

Moreover, we have verified that the structure similarity as a loss function can help eliminate noise

of small regions. The combination of the scale-adaptive feature selection and the structure-aware

loss have made our deep model achieves the state-of-the-art performance on several kinds of cancer

segmentation.
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We have presented similarity based region proposal networks for nuclei and cell detection in

histology images. Detection of nuclei or cells is a fundamental step for cell-level pathological

analysis. However, reasons such as morphological variations of nuclei or cells make it a challenging

task where conventional object detection methods cannot obtain satisfactory performance. We have

verified similarity learning an effective way to detect specific cells, e.g., signet ring cells. Features

obtained by similarity learning can significantly boost the detection performance compared to

conventional methods.

6.2 Future work

Though we have made some achievements on several tasks for the purpose of computational

histopathology analysis based on deep learning, most of them are under the setting of super-

vised learning which relies on a large number of labeled data. It is never lack of data but it is

very expensive to label data to satisfy the requirement of deep learning, especially in the field of

medical imaging. In the future, we will focus on unsupervised learning and few-shot learning to

better learn from unlabeled data:

• Unsupervised learning is a promising solution for the shortage of labeled data in the deep

learning era. Compare to supervised learning based approaches which usually need to take

human supervision as input, unsupervised learning based ones can make usage of unlabeled

data and learn without any supervision. However, it is difficult to build an unsupervised

learning based model. Furthermore, the performance of an unsupervised model normally is

not good as the one of the corresponding supervised model. It is more reasonable to build

semi-supervised or weakly supervised models instead of totally unsupervised ones. Currently,

there are many work that focus on applying contrastive learning for representation learning

without annotation. Some of these work have made great improvement upon unsupervised

learning, although this kind of learning scheme is designed for tasks of image classification. In

the future, we try to design novel unsupervised learning scheme that is suitable for semantic

segmentation and object detection for medical applications.

• Few-shot learning is a type of machine learning method where the machine can learn

rare cases. It can reduce data collection efforts and computational costs. Therefore, it is

another solution for the problem of insufficient labeled data in medical imaging. Compare

to conventional deep learning models which require a large amount of labeled data, few-shot

learning models only learn from a couple of samples. Due to the requirement of expertise, the

labelling engineering in the medical imaging field is more expensive than those of other fields,

which makes the issue of lacking annotated data more severe and poses difficulty in applying

deep learning technologies for medical image analysis. Considering this, it is necessary to

develop new few-shot learning methods. In the future, we aim to find more application

scenes and design novel machine learning scheme based on few-shot learning to reduce the

requirement of annotations.
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