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In the scalar field dark matter model virialized halos present condensed central cores called boson stars.
Considering the equivalent process during reheating, we look at the formation of primordial black holes
(PBHs) through the gravitational collapse of structures virialized in this era. We present the criteria
necessary for collapse of either the whole structure, or that of the central core, in terms of the threshold
amplitude for the primordial density contrast. This is computed for both the free and the self-interacting
scalar fields. We discuss the relevance of our results for the abundance of PBHs.
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I. INTRODUCTION

For quite some time scalar fields have been considered
key constituents of the universe and the Einstein-Klein-
Gordon system of equations is therefore commonly used to
describe the dynamics of a universe governed by a single or
multiple components of such fields. Scalar fields play
crucial roles in the dark sector: they are strong candidates
for the dark matter–scalar field dark matter (SFDM) [1,2]—
while quintessence models can account for dark energy (see,
e.g., Ref. [3]). Finally, and arguably most importantly, scalar
fields are regarded as the natural realization of the primor-
dial inflationary mechanism [4,5]. Inflation requires a
period of transition to the standard hot big bang, a process
called reheating (for reviews see Refs. [6,7]). Energy
transfer during reheating is most effective when scalar
degrees of freedom resonate through oscillations at the
bottom of their potential. During reheating, the universe
evolves effectively as a dust-dominated one, much as it does
in the SFDM model, but at significantly higher energy
scales, and thus covering a different sector of the parameter-
space. Both stages, however, are often modeled with a real
or complex scalar field, subject to a quadratic (free-field)
potential.
SFDM matches most of cold dark matter predictions,

with the advantage of solving some of CDM difficulties
(for a comprehensive review see Ref. [2]). Of particular
relevance in the SFDM model is supermassive black hole
formation at galactic nuclei, attributed to the gravitational

collapse of the dark matter core at the center of halos [8–11].
In this paper we propose that the analogous process in the
context of reheating can serve as a mechanism for the
production of primordial black holes (PBHs).
During reheating, primordial virialized structures, analo-

gous to those of the SFDMmodel, appear if oscillations last
long enough and give way to a “primordial structure
formation” process [12], in analogy with the corresponding
process in SFDM. One can thus consider that the reheating
process takes place in a universe filled with inhomogene-
ities, as a result of the fragmentation of the inflaton and
formation of inflaton halos (inflaton clusters) and inflaton
stars (halo cores) [13,14].
In the present work we explore the possibility of PBH

formation via the collapse of structures formed as a result of
the virialization of scalar field inhomogeneities. We study
two formation scenarios for PBHs: we first determine the
conditions for the complete virialized structure to lie within
its Schwarzschild radius, which corresponds to the gravi-
tational collapse of the inflaton halos. Second, we present
the requirements for the collapse of the central region of the
inflaton halos, the inflaton stars.
We find that for the free-field, the density contrast

required for the inflaton star collapse is an order of
magnitude smaller than the threshold value required by
the collapse of the complete halo. This in part is because, as
we show, the collapsed halos result in black holes about 50
times more massive than the collapsed inflaton stars. We
present an extension of these results for the case of a self-
interacting scalar field, and finally discuss the implications
for the abundance of PBHs formed during reheating,
beyond the idealized dust environment.
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II. THE OSCILLATORY FIELD
DURING REHEATING

Once the accelerated expansion ceases in the early
universe, it is assumed that the inflaton rolls down quickly
to the minimum of its potential and oscillates rapidly about
the minimum. In this regime, and for a large variety of
inflationary potentials, the fast oscillations of the (real or
complex) scalar field are captured by the first term of a
Taylor expansion of the potential around its minimum, the
harmonic potential

VðϕÞ ¼ μ2

2
jϕj2; ð1Þ

where the (effective) mass of the scalar field μ dictates the
characteristic oscillation frequency.1 The fast oscillations
regime is reached when the Hubble scale falls well below
the mass scale (H ≪ μ). Averaged over a Hubble time, both
real and complex scalar fields present similar dynamics. We
thus focus on the solutions for the complex field, which
require no averaging of the fast oscillation in the cosmo-
logical quantities. In other words, our results are valid for
both complex and real fields after averaging. For the
particular potential (1), the evolution of the scalar field
is such that the background energy density scales like a dust
component, which for a flat Friedmann-Robertson-Walker
background is given by

ρ0ðaÞ ¼
3m2

PlH
2
end

8π

�
aend
a

�
3

; ð2Þ

where the subscript end refers to quantities evaluated at
the end of inflation, a is the scale factor, and mPl is the
Planck mass.

III. STRUCTURE IN THE EARLY UNIVERSE

In the canonical mechanism, the k–modes associated
with the quantum fluctuations of the inflaton present a fixed
amplitude when stretching beyond the Hubble horizon,
during the accelerated expansion phase (thereby sup-
pressing the decaying mode). After inflation, these modes
reenter the cosmological horizon, giving way to a process
of structure formation, analogous to that of the SFDM
model. Inside the cosmological horizon and in the fast
oscillating phase, two regimes are distinguished, which are
separated by the scale kQ—usually referred to as the
Quantum Jeans scale or simply the Jeans scale—given
by [15]

kQ ¼ ð16πGρ0μ2a4Þ1=4: ð3Þ

Density fluctuations with a characteristic scale k > kQ are
damped through oscillations, whereas those with a size
k < kQ behave as standard dust inhomogeneities, which in
the perturbative regime grow in amplitude at the rate of the
scale factor. It is well known that the description of a single
dust component can be fully captured through the
Newtonian formalism [16]. In fact, it has been argued that
the Newtonian treatment of the system is enough to
describe the post-inflationary dynamics [12], and we shall
follow this formalism for the rest of this work.
Since this process starts from causal contact at the

Hubble horizon reentry, one can express the density
contrast as

δða; kÞ ¼ δHCðkÞ
a

aHC
; ð4Þ

where the subscript HC refers to quantities evaluated at the
horizon crossing time.
Once detached from the expansion, throughout the

nonlinear regime, overdensities of size much larger than
the critical value (in this case, the de Broglie wavelength
λdB), present the same evolution as dust configurations.
Indeed, an equivalence has been drawn between the
Schödinger-Poisson system (used to describe the nonlinear
evolution of the scalar field at scales smaller than the
cosmological horizon and for nonrelativistic velocities)
and the Vlasov-Poisson equations (see for example
Refs. [17,18]).
Overdensities of pressureless dust form virialized

structures on a timescale of order the dynamical time,
tNL ≃ ð4πGρ0ðaNLÞÞ−1=2, where aNL refers to the scale
factor measured at this time. In regard of Eq. (2), this time is
given by

tNL ¼ 4.4 × 10−39
�
10−5mPl

Hend

�
e
3
2
ðNHCðkÞþNNLðkÞÞ s; ð5Þ

where we have expressed aNLðkÞ ¼ aendeNHCðkÞþNNLðkÞ, in
terms of the number of e-folds required for the inhomo-
geneity to reenter the cosmological horizon NHC, and to
become nonlinear after horizon crossing, NNL. Explicitly,
for the overdensity of size 2π=k,

NHCðkÞ ¼ 2 ln

�
kend
k

�
; NNLðkÞ ¼ lnð1.39δ−1HCðkÞÞ: ð6Þ

Note that from the top-hat spherical collapse model, we
have taken the value δNL ¼ 1.39 for the linear overdensity
to identify the virialization time.2

1We take the potential (1) as valid in the postinflationary
universe, with μ as a free parameter. The field ϕ in question may
or may not be the inflaton itself.

2In the top-hat model an overdensity should virialize at a radius
of order rmax=2, where rmax is the turn around radius. At that time
the value of the density contrast predicted by the linear theory is
δ ≃ 1.39.
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The final result of this process are quasispherical halos
with a specific density profile, close to an NFW function.
Such structures also arise in numerical simulations of the
SFDM scenario after averaging over the angular coordi-
nates [19,20]. Simulations of the fast oscillating regime of
the reheating field confirm the analogy with the SFDM
model and the formation of similar, primordial structures,
referred to as inflaton halos [13,14].
For a particular k–mode, the mass of these inflaton halos

can be expressed as

MIH ¼ m2
Pl

2Hend

�
aHC
aend

�
3=2

ð1þ δendðkÞÞ: ð7Þ

As in SFDM structure formation, we take MIH ¼
4πR3

IHρ200ðaNLÞ=3, where ρ200ðaNLÞ ¼ 200ρ0ðaNLÞ and
RIH is the virial radius of the inflaton halo, we find that
these structures should virialize and halt collapse at radius

RIH ≃
�
3

4π

MIH

ρ200ðaNLÞ
�

1=3
: ð8Þ

Within these inflaton halos, and on scales close to the de
Broglie wavelength, additional phenomena associated to
the wavelike dynamics of the scalar field are expected.
Particularly, the formation of boson stars (or soliton
structures) through Bose-Einstein condensation takes
place in the center of inflaton halos. In the context of
reheating, these core condensations are called inflaton
stars [13,14]. The condensation time τ required for these
structures to form can be derived from the theory of
relaxation in the Schrödinger-Poisson equations and the
Landau equation (see Ref. [21] for details),

τ ¼ 8.168 × 10−18ðμ25MIHRIHÞ3=2tNL; ð9Þ

where μ5 ≡ μ=ð10−5mPlÞ.
In the SFDM model, there is a specific relation between

the total mass of the soliton structure in the center of halos
and the total mass of the complete halo. We can derive such
a relation through various criteria: either, by demanding
that the velocity dispersion at the radius of the soliton be
the same as that at the edge of the halo; or by demanding
that the core and the halo present the same virial temper-
ature; or by demanding an equivalence between the
energy/mass ratio in the soliton and in the complete halo
(see for example Refs. [10,11]). In all cases the propor-
tionality MIH=RIH ≃MIS=RIS between inflaton star (IS)
and the complete inflaton halo (IH) is observed. On the
other hand, the soliton profiles fulfill the mass-radius
relationMIS ¼ ð9.9m2

Pl=μÞ · ðμ−1=RIHÞ, where we combine
all these expressions, to arrive at

�
MIS

1020 GeV

�
¼ 8.61

ρ̂1=611 ðaNLÞ
μ5

�
MIH

1024 GeV

�
1=3

; ð10Þ

where ρ̂11ðaNLÞ≡ ρ200ðaNLÞ=ð1011 GeVÞ4.

IV. PRIMORDIAL BLACK HOLE FORMATION

A. Case 1: Inflaton halo collapse

If the structures that form after inflation are very massive,
one might expect that they could be gravitationally unstable
and collapse forming a PBH on a time scale close to the
dynamical time (5). In particular, from the description
above, a good indicator of such collapse is whether the
overdensities virialize at a radius similar or smaller than the
Schwarzschild radius RSch ≡ 2GMIH associated to the halo,
i.e., if RIH ≤ RSch. This condition implies from Eq. (8) that

MIH ≥
3.144 × 1034ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂11ðaNLÞ
p GeV: ð11Þ

When combined with Eqs. (2) and (7), this inequality can
be expressed in terms of the density contrast at the end of
inflation. After some algebra we arrive at

NNL ≤
2

3
ln½14.14ð1þ δendÞ�: ð12Þ

Using Eq. (6) we can turn this inequality into a condition
for the amplitude of the density contrast at the horizon
crossing time to form a primordial black hole:

δHC ≥
1.39

½14.14ð1þ δendÞ�2=3
: ð13Þ

Note that in the limit δend ≪ 1, which is a typical value for
most inflationary models, the collapse occurs when

NNL ≤ 1.766; and δHC ≥ δðIHÞcrit ≡ 0.238: ð14Þ

B. Case 2: Inflaton star collapse

Inflaton stars are understood as configurations which
balance the attractive force of gravity, and the quantum
repulsion associated to the Heisenberg uncertainty principle
(see, e.g., Ref. [22]). However, if a soliton generated in this
scenario is massive enough, it is expected that the quantum
repulsion cannot balance self-gravity, and the structure may
collapse to form a black hole. This implies the existence of a
maximum mass for which inflaton stars can be stable, a
phenomenon equivalent to the Chandrasekhar mass limit for
white dwarf stars but associated to soliton structures. The
numerical value of this critical mass is Mcrit

IS ¼ 0.633m2
Pl=μ

[23–25]. If we substitute this value into Eq. (10), we find a
critical halo mass Mcrit

IH beyond which its central soliton
should be unstable and to form a PBH in a time close to the
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condensation time (9). Here the condition for PBH for-
mation is given by

MIH ≥
7.237 × 1032ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂11ðaNLÞ
p GeV: ð15Þ

Comparing relation (15) with Eq. (11), we infer that the
soliton collapse may be reached for smaller halo masses
than for the case of complete halo collapse, and therefore
may be achieved from a smaller density contrast. Repeating
the above algebra we arrive at the corresponding threshold
values for PBH formation

NðfreeÞ
NL ≤ 4.28; and δHC ≥ δðfreeÞcrit ≡ 0.019: ð16Þ

V. A SIMPLE EXTENSION:
THE SELF-INTERACTING SCENARIO

Alternatives to the free-field potential (1) are also
considered in the reheating scenario. The stable structures
formed in each model show a singular mass-to-radius
relation [10,11], thereby modifying the collapse threshold
values of PBH formation, as we are about to show. We
exemplify this by looking at the self-interaction model,
which is of wide interest in the SFDM scenario. In this case,
the potential can be expressed as

VðϕÞ ¼ 1

2
μ2jϕj2 þ λ

4
jϕj4; ð17Þ

where λ parametrizes the self-interaction of the boson
particles that constitute the reheating field. This self-
interaction is often regarded as a pressure force that can
be repulsive or attractive, if λ is positive or negative,
respectively. Moreover, this potential can be interpreted
as the leading order terms in the Taylor expansion of a more
complicated inflationary, symmetric potential (ignoring the
constant term, as required in reheating). Our focus here is
the attractive scenario, since it would help the formation
of PBHs.
At the background level, a cosmological solution for the

scalar field with an attractive self-interaction eventually
matches the pressureless dust evolution of Eq. (2) [26].
Moreover, at the perturbative order, the incorporation of the
self-interacting term could cause an exponential growth of
the density contrast at small scales, which could enhance the
formation of primordial structures [15]. This is because the
self-interaction of the particles defines a new characteristic
scale in the system, given by:

kSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

�
μ2

jλj
�s �

μ

mPl

�
a: ð18Þ

On the other hand, for large enough scales, which are
of primary interest here, the evolution mimics that of a

dust-like fluid. This implies that, after horizon crossing,
inhomogeneities are described by Eq. (4) and, in conse-
quence, the threshold for the inflaton halo collapse remains
invariant.
In view of the above, the evolution of a self-interacting

inflaton halo is equivalent to that in the free field scenario.
This is not the case for inflaton stars, which are expected to
show a modified star-to-halo mass relation. Such modifi-
cation was explored in great detail in [10,11] for SFDM
models, so here we briefly show how to adapt it to the
reheating scenario.
In extension to the free case, the mass-radius relationship

of the inflaton star is now given byMIS ¼ 9.9ðm2
Pl=μÞðμ−1=

RISÞ=½1 − 3π2Λðμ−1=RISÞ2�, with Λ≡ ðλ=8πÞðmPl=μÞ2.
This implies that the relation in Eq. (10) is now modified to

�
MIS

1020 GeV

�
¼ 3.43

ρ̂1=611 ðaNLÞ
μ5

�
MIH

1024 GeV

�
1=3

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−59.73jλj ρ̂

1=3
11

μ25

�
MIH

1024 GeV

�
2=3

s
: ð19Þ

From this expression,MðcritÞ
IS ¼ ð5.57 × 1019=

ffiffiffiffiffijλjp Þ GeV is
a maximum of the inflaton star mass. For larger masses a
PBH should form at the core. In turn, this will occur when
halo masses fulfill the condition

MIH ≥
2.166 × 1021ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂11ðaNLÞ
p �jλj

μ25

�
−3=2

GeV: ð20Þ

If we follow the same procedure as above, which led to
Eqs. (14) and (16), we arrive at the conditions

NNL ≤
2

3
ln

�
5.804 × 1013

�jλj
μ25

�
3=2

�
; ð21aÞ

and δHC ≥ δðSIÞcrit ≡ 9.27 × 10−10
�jλj
μ25

�
−1
: ð21bÞ

We emphasize that the collapse in this model will not
occur for all values of λ. The restriction for this parameter
comes from demanding that the critical mass of collapse
(20) be smaller than that of the free case (15). This is
guaranteed for values

jλj
μ25

≥ 4.88 × 10−8: ð22Þ

VI. PROBABILITY OF PRIMORDIAL
BLACK HOLE FORMATION

To illustrate the relevance of our results, we compute the
probability of primordial black hole formation in light of
the featured mechanism, together with previous estimates
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relevant to the reheating phase. Considering Gaussian
density perturbations with variance σ2, the fraction of
horizon-size patches collapsing onto PBHs of a single mass
(monochromatic) is given by [27]

β ≃ Erfc

�
δcritffiffiffi
2

p
σ

�
; ð23Þ

where ErfcðxÞ is the complementary error function and δcrit
is the threshold value of the density contrast for PBH
formation, evaluated at horizon crossing. In a universe
dominated by radiation, this threshold value is δcrit ≃ 0.41
[28], whereas for reheating we find that such values are
given by Eq. (14) in the case of the total inflaton halo
collapse, Eq. (16) in the case of the inflaton star collapse in
the free-field case, and Eq. (21b) in the case of the inflaton
star collapse with an attractive self-interaction.
We show in Fig. 1 the mass fraction β as a function of the

mean amplitude σ for radiation and the three scenarios
featured here. The probability of PBH formation is smallest
in the radiation era. Moreover, the collapse of the inflaton
halo is less likely than the collapse of the inflaton star,
mostly due to the mass difference between configurations.
An attractive self-interaction between the particles requires
a much smaller variance, as expected, to produce PBHs
significantly.

If primordial perturbations follow a Gaussian distribu-
tion, PBHs are expected to form most abundantly with
masses close to the critical mass in each case, since the
probability of perturbations with higher masses is exponen-
tially suppressed. As an example, taking μ5 ¼ 1, the PBHs
that formed due to the collapse of inflaton stars in the free-
field potential present masses MPBH ≈ 10−3 kg, whereas in
the self-interacting case with λ=μ25 ¼ 10−7 such objects
present MPBH ≈ 3 × 10−4 kg. As shown in Fig. 1, these
black holes are subject to the Planck mass relics constraint,
which is saturated for primordial fluctuations as small as
σ ¼ 0.002 and σ ¼ 0.001, respectively, if thermalization
follows immediately after black hole formation.
For comparison we include in Fig. 1 the constraints on

the abundance of PBHs formed in a dustlike background
(see, for details, Refs. [29,30]). Relevant constraints due to
the bounds on PBH formation are represented by horizontal
lines [31]. Our figure shows how likely it is to form PBHs
in a scalar field-dominated phase in comparison with the
radiation-dominated or dust-dominated universe. The low
values of σ required for a sizable β in the self-interacting
model, indicate that this model is subject to the same
conditions as the dust-dominated scenario for large enough
σ. Otherwise, the inflaton star collapse can evade the
constraints of a dust scenario and require a smaller σ to
overproduce PBHs.

VII. CONCLUSIONS AND DISCUSSION

We have put forward a new mechanism of PBH for-
mation during single scalar-field domination, realized in the
reheating period. This mechanism is based on the obser-
vation that sufficiently massive nonlinear structures (infla-
ton halos) could have formed within their Schwarzschild
radius, or could be massive enough to overcome the
quantum pressure of the central core (inflaton stars) and
thus form PBHs. These objects are produced more effec-
tively in a free-field dominated universe than in the radiation
era, but require larger overdensities than those allowed to
collapse in a matter-dominated universe (as assumed pre-
viously during reheating, e.g., Refs. [32–35]). Considering
an attractive self-interaction, the probability of PBH for-
mation can saturate the sphericity and rotation conditions
that constrain the PBH production in the matter-dominated
scenario. These results represent a solid tool to constrain
reheating models through the bounds to PBH abundance.
Simulations of scalar field collapse are still to provide

accurate conditions for PBH formation during the reheat-
ing stage (see however Ref. [36]). Our novel mechanism
provides explicit conditions for PBH formation beyond the
simplistic dust-like scenario. The precise description of
PBH formation is crucial since these objects constitute an
observable [31]. Specifically, in the lower mass end of the
spectrum, the possible Planck mass relics left behind after

FIG. 1. The PBH density fraction β plotted as a function of the
mean density contrast σ, as given by Eq. (23) and evaluated with
the threshold amplitude derived for each case. We used
λ=μ25 ¼ 10−7. The maximum values of β allowed in a dust-
dominated universe are plotted as two green lines. The thick
green line accounts for the sphericity condition for PBH
formation [29], whereas the thin green curve shows the condition
for the maximum spin allowed for collapse [30]. For reference,
we include observational constraints on β [31], provided by the
galactic gamma-ray background (brown), big bang nucleosyn-
thesis (purple), and Planck mass relics (pink), each of these
constraining monochromatic mass functions at the relevant
masses.
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the evaporation of small black holes may constitute part
or all of dark matter [34,35]. Additionally, a stochastic
gravitational wave background may be generated due to
the collapse of virialized structures [37,38], and from the
collision of primordial black holes [39]. In particular, for
the mechanism put forward in this paper, the delay in the
process of formation with respect to the standard case
results in a delayed evaporation and the associated
gravitational waves produced at a later times. The impact
of these effects in observables and constraints will be
reported elsewhere. This information, in tandem with
information of the primordial spectrum, can provide clues
on the physics of the reheating phase.
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