Direct and indirect influences of macrophyte cover on abundance and growth of juvenile Atlantic salmon

Jessica E. Marsh ${ }^{1,2, \uparrow^{* *}}$, J. Iwan Jones ${ }^{1}$, Rasmus B. Lauridsen ${ }^{2}$, James B Grace ${ }^{3}$, Pavel Kratina ${ }^{1}$

${ }^{1}$ School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
${ }^{2}$ Salmon and Trout Research Centre, Game \& Wildlife Conservation Trust, The River Laboratory, Wareham, UK
${ }^{3}$ U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, USA
\dagger Corresponding author: email jessicaelizabethmarsh@gmail.com telephone: +44 (0) 7341940988

List of ORCIDs:

JEM: 0000-0003-1154-4444; JBG: 0000-0001-6374-4726; PK: 0000-0002-9144-7937

Keywords: chalk stream, habitat heterogeneity, Ranunculus, path analysis, Salmo salar

Running head: Macrophytes indirectly influence salmon parr

[^0]
Abstract

1. The relationships between macrophytes and the physical and biological characteristics of the environments that aquatic organisms inhabit are complex. Previous studies have shown that the macrophytes, Ranunculus (subgenus Batrachium), which are dominant in lowland chalk streams and widespread across Europe, can enhance juvenile Atlantic salmon abundance and growth to a greater degree than other physical and biological habitat characteristics. However, mechanistic understanding of how this effect might arise requires consideration of the direct and indirect relationships among habitat characteristics that are likely to be influenced by the presence of macrophyte cover.
2. We applied structural equation modelling to data collected during a two-year in-river manipulative experiment in the river Frome (southern England, UK) designed to quantify the magnitude and the relative importance of direct and indirect influences of Ranunculus cover and other physical and biological variables, including water velocity, water depth, prey biomass and body size, and abundance of con- and heterospecifics, on abundance and somatic growth of $0+$ salmon.
3. Results indicated a strongly positive direct influence of Ranunculus cover on salmon abundance, as well as positive influences of Ranunculus on velocity heterogeneity and water depth that are indirectly related to decreased salmon abundance. Interestingly, there was no indication of a direct influence of Ranunculus cover on salmon growth, although Ranunculus was indirectly related to increased salmon growth through its positive influence on prey biomass, an effect mediated by velocity heterogeneity and proportion of fast velocities.
4. These findings provide novel mechanistic insights into the key role of Ranunculus in their native lowland rivers to enhance abundance and improve conditions for multiple food web components. Strategies to maintain or enhance naturally occurring Ranunculus in these rivers are therefore likely to return wide ranging ecosystem benefits, including for species of high conservation value, such as salmon. These mechanistic impacts on habitat heterogeneity and ecosystem productivity could generalise to native macrophytes in other river systems, particularly where habitat is dominated by vegetation in the absence of large substrates.

1. Introduction

Terrestrial and aquatic vegetation form key ecosystem structures that provide resources, shelter and physical conditions that benefit a variety of species and functional groups (Tews et al., 2004; Teixeira de Mello et al., 2015; Wilkinson et al., 2021). Density and morphology of plants often underly habitat heterogeneity (Diehl \& Kornijow, 1998; Tews et al., 2004; Warfe \& Barmuta, 2004), which is essential for resilient, abundant and diverse animal communities (Kovalenko, Thomaz \& Warfe, 2012; Teixeira de Mello et al., 2015). Macrophytes are considered to be such foundation species that strongly structure freshwater ecosystems (Scheffer et al., 2015; Lürig, et al., 2021) and their impacts on trophic interactions (e.g. Dionne \& Folt, 1991; Warfe \& Barmuta, 2004), water velocities and sediment retention (e.g. Wharton et al., 2006) have been well studied. However, previous research has primarily focused on direct responses of animal abundances to macrophyte structures, with less consideration for how the habitat heterogeneity created by macrophytes modulates animal responses (Kovalenko, Thomaz \& Warfe, 2012).

In lowland rivers, which are typically more stable and less dynamic than upland river systems (Berrie, 1992), macrophytes are particularly important for juvenile salmonids as they provide a key source of habitat heterogeneity in the absence of other large substrate structures (Berrie, 1992; Riley et al., 2009). While not studied as extensively as other habitat characteristics, positive interactions between juvenile salmonids and macrophytes in lowland rivers have been demonstrated across a wide geographical scale, including southern England (e.g. Riley et al., 2009; Marsh et al., 2021a), south-west Ireland (McCormick \& Harrison, 2011), northern Finland (Maki-Petays et al. 2011), and north-eastern United States (Beland et al.
2004) and are unlikely to be limited to these areas. Atlantic salmon (Salmo salar, hereafter salmon) reach greater abundances and faster growth rates in habitats with high cover of the dominant lowland macrophytes known as water crowfoot, Ranunculus spp. (Marsh et al., 2020a, 2021a), although the mechanisms underlying these relationships remain unclear. Cover is important for juvenile salmon (Armstrong et al., 2003; Marsh et al., 2020a, 2021a), and so the vertical structure of Ranunculus, coupled with the floating canopy on the water surface, offers direct protection from both aerial and aquatic predators (Johnsson, Rydeborg \& Sundstrom, 2004; Diehl \& Kornijow, 1998), harsh environmental conditions (Gries \& Juanes, 1998), and potential competitors (Venter et al., 2008).

In addition to the direct influence of macrophytes as shelter, the impacts of macrophyte cover on individual salmon and populations might be mediated by physical habitat characteristics, inter- and intra-specific competition, and resource quality and quantity. The structural complexity of submerged macrophytes, particularly those with dense canopies such as Ranunculus (Cotton et al., 2006), dramatically increases the resistance to water flow. This provides refuges of low water velocity and increased water depths, the latter of which might be avoided by juvenile salmon due to increased presence of predators and larger conspecifics (Gibson, 1993; Wharton et al., 2006, Marsh et al., 2020a). As water velocities slow within the plant stands, water flow is accelerated around the plant beds, forming adjacent areas of fast velocities (Wharton et al., 2006). This results in heterogeneous water velocities, a desirable habitat characteristic for juvenile salmonids to exploit for energy-efficient foraging opportunities, with low velocity refuges alongside fast water velocities providing increased supply of drifting prey, which might otherwise be energetically demanding environments to forage in (Wankowski \& Thorpe, 1979; Morantz et al., 1987).

Heterogeneity in water velocities and depths can promote more abundant and diverse macroinvertebrate communities, which juvenile salmon feed upon (Keeley \& Grant, 1997;

Riley et al., 2009). The reduced water velocities within plant stands result in increased retention of fine sediment and organic material (Gregg and Rose 1982; Cotton et al., 2006), providing food for macroinvertebrate communities dominated by larger individuals. The complexity provided by plant stands can also offer macroinvertebrates protection from predators (Dionne \& Folt, 1991) and thus, enables the coexistence of larger prey individuals and their fish predators. Consequently, Ranunculus communities are often associated with productive and abundant macroinvertebrate communities (Armitage \& Cannan, 2000; Riley et al., 2009).

Teasing apart the direct and indirect influences of these habitat components to inform fisheries management is challenging due to the interdependence among habitat factors (Armstrong et al., 2003), however, detailed understanding of the complex relationships between Ranunculus and juvenile salmon populations is essential if we are to apply effective management strategies. Populations of Atlantic salmon have suffered unprecedented declines in the last few decades (ICES, 2021). Natural recovery of salmon populations is hindered by a decline in both the numbers of juvenile salmon migrating to sea, and, in some regions, the condition of the individuals prior to migrating. Recent works have quantified the relationship between size of salmon pre-migration and the likelihood of individuals returning to freshwater to reproduce (Armstrong et al., 2018; Gregory et al., 2019). Individual body condition is strongly influenced by habitat conditions experienced during the first summer for juvenile salmonids (Zabel \& Achord, 2004), prompting calls for a better understanding of the habitat conditions that maximise numbers and quality of juveniles (Armstrong et al., 2018; Gregory et al., 2019). Macrophytes, such as Ranunculus, have also suffered population crashes in lowland rivers within the last three decades, likely as a consequence of anthropogenic impacts including flow modifications and increased agricultural inputs (Cranston, 2004; Cotton et al., 2006). There is, therefore, an urgency to understanding the
role of Ranunculus in promoting healthy juvenile salmon populations, to improve ecosystem management benefiting salmon and anticipate the implications of macrophyte declines on salmon productivity.

Here, we analysed detailed data from an in-field Ranunculus manipulation experiment designed to quantify ecological mechanisms governing the previously observed positive impact of Ranunculus cover on salmon abundances and somatic growth (Figure 1, Marsh et al., 2021a). We aimed to determine whether these relationships represent direct influences through a source of cover, or indirect via influences on the wider ecosystem dynamics through impacts on physical habitat, food resources and/or competition. We hypothesised that abundant Ranunculus positively influences heterogenous physical habitat characteristcs (increased water depth and velocity heterogeneity), the amount of basal resources and prey (organic material and macroinvertebrate prey biomass and body size), but also increases the potential for intra- and inter-specific competition via increased abundance of juvenile salmon and brown trout (Salmo trutta) respectively (Figure 2). We subsequently postulated indirect influences of Ranunculus on salmon abundance through a positive influence of velocity heterogeneity, fast velocities and prey biomass, and a negative influence of increased water depths (and associated higher predation risk) on salmon abundance (Figure 2a). We also hypothesised indirect influences of Ranunculus on salmon growth through a positive influence of velocity heterogeneity and prey biomass and body size, as well as a negative influence of fast velocities (and associated reduced foraging efficiency) and higher abundances of salmon and trout competitors (Figure 2b).

2. Methods

Experimental design

The in-field Ranunculus manipulation experiment took place over two years (2016-2017) on the North Stream, an anabranch of the river Frome, a lowland river situated in Dorset, UK (Figure 3). Three blocks, approximately 100 m in length, were selected on the North Stream in locations with similar physical habitat, existing Ranunculus beds and no riparian canopy. At each block, three sites, 20 m in length, were designated and each assigned a different Ranunculus treatment, which was achieved by digging out and replanting Ranunculus plants between sites. To simulate the natural mosaic of Ranunculus beds, we replanted plants in random patches within the site.Following manipulation of the existing Ranunculus plant cover in spring (March/April) of each year, the treatments of low ($<10 \%$), medium (30-40\%) and high ($>60 \%$) cover were maintained throughout the year, producing a gradient of Ranunculus cover until the plants began natural senescence in autumn (see Marsh et al., 2021a for full details of the manipulation procedure). On four sample occasions between June and October of each year, juvenile salmonid populations, aquatic macroinvertebrates and basal resources were sampled, and Ranunculus cover, water velocity and depths were quantified. Previous findings from this experiment showed that both salmon abundance and growth were enhanced by Ranunculus during summer months (Marsh et al., 2021a, Figure 1). We used these data to investigate potential direct or indirect effects of Ranunculus cover on juvenile salmon (Figure 2).

Salmon abundance and growth

Juvenile salmon ($0+$ or young-of-the-year) abundance and biometric data were collected between June and October of each year at each of the nine sites (see Marsh et al., 2021a for full fish sampling procedure). We repeatedly electrofished each site in a upstream direction, capturing and removing all juvenile salmonids encountered, until two consecutive fishing passes yielded zero salmonid captures. We set stop nets at the downstream and upstream site limits to maximise capture efficiency. Captured individuals were sedated, identified to
species, weighed (to nearest 0.2 g), and marked with a Passive Integrated Transponder (PIT) tag (12.5 mm length, 2.12 mm diameter, Biomark, Idaho, USA), which was inserted into the body cavity, and the adipose fin clipped to indicate a tagged individual. Growth of individual salmon was calculated using change in the weight (g) measurements of tagged individuals that were recaptured in the same site, with the assumption that the individuals had been exposed to the site-specific Ranunculus cover for the duration of the growing period measured.

Physical habitat variables

Physical habitat variables were recorded at 25 evenly spaced quadrats ($0.5 \times 0.5 \mathrm{~m}$) per site, on each sample occasion. Ranunculus cover was estimated as the percentage quadrat cover, water depth was measured (cm), and water surface velocity was estimated visually as one of five categories $\left[1=0-25 \mathrm{~cm} \mathrm{~s}^{-1} ; 2=25-50 \mathrm{~cm} \mathrm{~s}^{-1} ; 3=50-75 \mathrm{~cm} \mathrm{~s}^{-1} ; 4=75-100 \mathrm{~cm} \mathrm{~s}^{-1} ; 5\right.$ $\left.>100 \mathrm{~cm} \mathrm{~s}^{-1}\right]$. We calculated the site-level proportion of fast velocities as the proportion of velocity categories 3,4 and 5 recorded in quadrats at a site. Measures of Ranunculus cover, water depth and proportion of fast velocities were averaged to create a site-level measure of each variable. The steepness in velocity gradients between a quadrat and its neighbouring quadrats was calculated using the Terrain Ruggedness Index (TRI, see Marsh et al., 2020a for details). Absolute values of TRI were averaged to represent site-level velocity heterogeneity.

Prey and basal resources

To determine biomass and size of macroinvertebrate prey, and the resources potentially used by the prey (basal resources), we sampled the benthos at three randomly selected locations per site, on each sample occasion. Using a Surber sample (0.25 mx x 0.25 m , mesh aperture $250 \mu \mathrm{~m}$), we disturbed the substrate by hand for 30 seconds to collect macroinvertebrates and organic material. Samples were preserved in 70% ethanol solution for sorting, identification and measuring individual macroinvertebrates, and processing of the organic material. All
macroinvertebrate specimens were identified to the lowest practical taxonomic level (usually species), counted and measured. We used macroinvertebrate measurements to estimate biomass of each taxon (Table S1) and multiplied the mean biomass by the abundance of each taxon to generate a measure of prey biomass. We summed the biomass of each taxon and calculated the average biomass of measured individuals within each Surber sample to produce measures of total prey biomass and mean prey size, respectively. After macroinvertebrate specimens had been picked from the sample, the remaining organic material was dried to constant mass $\left(70^{\circ} \mathrm{C}, 72 \mathrm{~h}\right)$ and weighed, prior to being combusted $\left(550^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$ and re-weighed. The ash-free dry mass of organic material was calculated by subtracting the combusted weight from the dried weight, producing a measure of basal resources. Measures of total prey biomass, mean prey size, and basal resources were averaged across the three Surber samples to create a site-level variable of each.

Using data from the summer months in which Ranunculus had a positive relationship with both salmon abundance and growth, led to the use of August and September data to investigate salmon abundance ($n=36$, i.e., abundance measures in three sites in each of the three blocks at two months for two years, treated as independent data points), and June and August data to investigate salmon growth ($n=71$). Explanatory variables used in the growth analysis were averaged across June and August to represent average conditions during the growth period.

Data analyses

To investigate whether and how the effects of Ranunculus cover on salmon abundance and growth were mediated by changes in the physical habitat, prey resources and/or competition, we applied confirmatory path analysis (Grace, 2006) in a piecewise structural equation modelling (SEM) framework (Lefcheck, 2016). SEM is a quantitative framework able to
quantify and partition the relative direct and indirect conditional associations of key habitat characteristics on natural populations (Grace, 2006). This approach has been commonly applied to investigating complex theory-supported hypotheses about ecosystems and ecological scenarios. Piecewise SEM fits multiple component sub-models within a global model to allow for testing of direct and indirect effects within a single causal network (Shipley, 2009; Lefcheck, 2016). The component models are solved separately and are therefore appropriate for conventional requirements of generalised mixed models (Shipley, 2000; Shipley, 2009). We constructed the global path model for each main response variable (abundance and growth) based on previously determined relationships (Marsh et al., 2021a), and other hypothesised drivers of salmon abundance and growth (Table 1).

Firstly, we tested whether the observed positive influence of Ranunculus cover on salmon abundance was best represented as a direct effect of cover, or an indirect effect operating through changes to the physical environment and prey resources associated with Ranunculus cover (Figure 2a). The path model consisted of a set of linear regressions (identity-link function), describing the variation in variables representing physical environment or prey sources, and a negative binomial regression (log-link function), describing the variation in salmon abundance. A negative binomial distribution was used to account for potential overdispersion in the abundance data with \log site area $\left(\mathrm{m}^{2}\right)$ included in the model as an offset to account for variation in abundance that might be due to differences in habitat size (O'Hara \& Kotze, 2010). Model residuals were inspected to ensure assumptions of homogeneity, normality and independence were not violated.

Secondly, we investigated whether the observed positive effect of Ranunculus cover on salmon growth in weight was best represented as a direct effect of cover, or an indirect effect operating through changes to the physical environment, prey resources and/or abundance of competitors (Figure 2b). This path model consisted of a set of linear and negative binomial
regressions to describe physical habitat, prey resource and salmonid abundance variables as described above, and a linear mixed effect model (identity link function) to describe variation in salmon growth in weight. The growth model included an offset term of log initial weight to account for the influence of initial weight on growth potential and a random intercept of site to account for multiple measures (individuals) at each site.

Path models for both salmon abundance and growth were fitted and model performance was evaluated using R package piecewiseSEM (Lefcheck et al., 2018), which applies Shipley's (2000) directed-separation test to determine if all variables are conditionally independent and identify any important missing links in the path model. Any missing links that were indicated by the analyses and ecologically justifiable were incorporated into the model. Non-significant links were dropped to ensure they did not have an undue influence on the remaining paths in the system before refitting the model (Tables S2-3 outline the specific process of removal and addition of links). The goodness-of-fit of models fitted to individual response variables were summarized using marginal R^{2} (and conditional R^{2} where random effects were included), and overall SEM adequacy was evaluated with the approximately distributed Chisquared Fisher's C-statistic (Shipley, 2009). Prior to model fitting: (1) collinearity of explanatory variables was assessed using Pearson's correlation, none of which were highly correlated ($r \geq|0.7|$, Dormann et al., 2013, Figures S1-2); and (2) all numerical explanatory variables were standardised prior to analyses by subtracting their mean and dividing by their standard deviation. All statistical analyses were performed in R version 4.0.5 (R Development Core Team, 2021), using R packages lmerTest (Kuznetsova, Brockhoff \& Christensen, 2017) and MASS (Venables \& Ripley, 2002), in addition to those previously mentioned.

We of course recognize that scientific inferences based on quantitative models, as applied in this study, depend on a number of mechanistic assumptions, as recently described by Grace
and Irvine (2020). In this study, the most general and vital assumptions associated with network structure that we have included in our models are consistent with both known and plausible mechanisms whereby Ranunculus can influence physical and other biological system components. The use of experimental data in this study is a great asset in supporting interpretations. As with all ecological studies, estimates are assumed to be approximate and the confirmation of conclusions dependent on subsequent studies.

3. Results

3.1. Salmon abundance

Results indicate a strong and positive direct influence of Ranunculus cover on salmon abundances $(\gamma=0.52, p<0.001)$ and an overall positive influence of Ranunculus (Table 2a), which was mediated through water velocities and depths (Figure 4a). Ranunculus cover was positively associated with increased velocity heterogeneity ($\gamma=0.46, p<0.01$), which had a weakly supported, negative association with the proportion of fast velocities $(\beta=-0.30, p=$ 0.08). Proportion of fast velocities in turn had a strongly supported, positive influence on salmon abundances ($\beta=0.34, p<0.01$). Ranunculus cover was also positively associated with increased water depths ($\gamma=0.40, p=0.02$), which was negatively related to salmon abundance $(\beta=-0.29, p=0.02)$. There was no significant influence of velocity heterogeneity or prey biomass on salmon abundance, and Ranunculus cover was not related to basal resources or prey biomass. Consequently, these pathways were not retained in the final model, though there was a positive relationship between basal resources and prey biomass (β $=0.31, p=0.06$). The model was an adequate representation of the data (i.e. all paths were judged to be independent: Fisher's $\mathrm{C}_{8}=6.97, p$ value $=0.54$), and explained a high amount of
variation in salmon abundance (marginal $R^{2}=0.70$). Model residuals did not violate assumptions of homogeneity, normality or independence.

3.2. Salmon growth

The direct positive influence of Ranunculus cover on salmon growth was not retained in the path model. Instead, there were multiple indirect influences of Ranunculus cover on growth via physical habitat and prey resource variables (Figure 4b). Ranunculus cover was positively directly related to prey biomass ($\gamma=0.84, p<0.001$) and velocity heterogeneity ($\gamma=0.53, p$ <0.001). Prey biomass had a strong, positive influence on salmon growth ($\beta=0.81, p<$ 0.001). Velocity heterogeneity was negatively related to proportion of fast velocities ($\beta=-$ $0.59, p=<0.001$), which in turn was strongly, positively related to prey biomass ($\beta=0.75, p$ $=<0.001$). This latter relationship between proportion of fast velocities and prey biomass was identified as an important missing link in the initial model. The influences of prey size, salmon abundance and trout abundance on salmon growth were not significant, and so these variables were not retained in the final model. Velocity heterogeneity and proportion of fast velocities did not directly affect salmon growth, so these pathways were also removed. The overall effect of Ranunculus cover on growth was positive (Table 2b), and the data were judged to be consistent with the model (Fisher's $\mathrm{C}_{10}=10.27, p=0.42$). The model explained a high proportion of the variance in salmon growth in weight (marginal $R^{2}=0.56$, conditional $R^{2}=0.66$). Model residuals did not violate assumptions of homogeneity, normality or independence.

4. Discussion

This study uncovered evidence that the positive influences of Ranunculus cover on salmon abundance and growth during summer (Marsh et al., 2021a), are likely driven by a direct
effect of cover, and indirect effects operating through multiple pathways, respectively. These findings provide mechanistic understanding of the key influence that macrophytes have on salmon communities in lowland rivers. Salmon abundance was strongly influenced by a direct effect of Ranunculus and indirectly, through influences on water depths and velocities. By contrast, salmon growth appears to not be substantially affected by a direct effect of Ranunculus, but instead predominantly influenced indirectly via impacts of Ranunculus on prey resources and water velocities. Multiple indirect pathways were identified in each analysis, via physical habitat and food resource variables, highlighting the potential of Ranunculus to influence multiple ecosystem components in lowland rivers.

Higher Ranunculus cover was directly associated with higher salmon abundance, supporting the hypothesis that densities of juvenile salmonids are determined by availability of shelter, not just food resources (Riley et al., 2009). Greater plant cover increases the area of shelter afforded by both the floating canopy on the water surface, to protect salmon from aerial predators (Johnsson, Rydeborg \& Sundstrom, 2004), and a complex vertical structure throughout the water column to shield or aid evasion from aquatic predators (Dionne \& Folt, 1991; Diehl \& Kornijow, 1998). Such structural complexity could result in plant cover being preferable habitat, attracting more individuals and resulting in reduced mortality rates from predation. Higher salmon abundance in patches with high Ranunculus cover might also result from visual isolation among competitors, which can reduce aggressive behaviour, and consequently the territory size defended by an individual (Venter et al., 2008), increasing the effective carrying capacity of a site (Venter et al., 2008). The presence and use of shelters by salmon (e.g. boulders, tree roots, aquatic vegetation) can also lead to lower metabolic rates (Millidine, Armstrong \& Metcalfe, 2006), sheltering them from extreme daytime summer temperatures (Gries \& Juanes, 1998) and allowing rest out of fast water flows during night (Riley et al., 2006).

We found evidence of a strong, positive effect of fast velocities on salmon abundance, which is consistent with suggestions that water velocity is a key determinant of juvenile salmon habitat selection (Morantz et al., 1987; Armstrong et al., 2003; Girard, Grant \& Steingrimsson, 2004). Body morphology can influence habitat choice by fish (Armstrong et al., 2003), and the large pectoral fins and streamlined body assist juvenile salmon to maintain position near the riverbed in fast flowing water (Arnold, Webb \& Holford, 1991). Fast velocities might be preferred by individual fish due to the continuous supply of drifting prey. In the study stream, salmon prey heavily on three taxonomic groups, Baetis sp. and Serratella ignita (Ephemeroptera), and Simuliidae (Diptera), which are characteristic of drift taxa (Waters, 1972; Marsh et al., 2020b). Faster water velocity might therefore support a greater number of salmon by providing an adequate supply of drifting invertebrates, to ensure sufficient resources for greater number of individuals. Ranunculus cover mediates this effect by its strong influence on velocity heterogeneity, that is, the steepness of adjacent velocity gradients in and around plant stands (Wharton et al., 2006). Ranunculus cover thus can be particularly beneficial in habitats with fast water velocities as it offers a low velocity refuge.

The negative effect of water depth on salmon abundance suggests that shallower habitats are preferred during the summer feeding period. Ontogenetic shifts in habitat selection occur in salmonid species, and older and larger fish tend to shift to deeper habitats (Morantz et al., 1987; Armstrong et al., 2003). Subsequently, increased water depths are associated with greater abundance of older, and potentially more successful, competitors and predators (Gibson, 1993; Keeley \& Grant, 1995). Therefore, juvenile salmon individuals might either not select for, or suffer higher mortality rates in deeper water, and so are recorded in lower abundance in these habitats. In contrast, juvenile salmonids in upland rivers avoid shallow water in favour for intermediate depths (Morantz et al., 1987; Girard, Grant \& Steingrimsson, 2004), as depth benefits include increased prey encounter rates for drift-feeding salmonids
and protection from aerial predators and high flows (Gregory, 1993; Piccolo et al., 2007). Ranunculus can provide comparable habitat conditions, i.e. greater foraging opportunities and shelter from high velocities and predators, in lowland rivers, which might diminish the advantages of occupying deeper water over shallow habitats.

Velocity heterogeneity and prey biomass were not identified as important drivers of salmon abundance, suggesting that shelter has a greater influence than access to prey resources. The strong relationships between Ranunculus and velocity heterogeneity and water depth illustrate how macrophytes can influence the physical environment, predominately through altering water flow dynamics. Ranunculus had little influence on basal resources, contrasting with existing knowledge on the ability of Ranunculus stands to retain substantial amounts of organic material (Gregg \& Rose, 1982; Cotton et al., 2006). However, this finding should be considered with caution as it could also indicate a limitation of the benthic sampling procedure, i.e. not enough samples were collected to capture average levels of organic matter associated with site-level Ranunculus cover accurately, due to patchy distributions (Downes, Lake \& Schreiber, 1993).

Salmon growth was not directly affected by Ranunculus cover in our models, suggesting that the previously observed positive influence of cover on salmon growth (Marsh et al., 2021a) was mediated by the physical habitat and food resources associated with Ranunculus cover. The influence of Ranunculus operated through positive impacts on velocity heterogeneity and prey biomass, the latter of which in turn was related to greater growth. This finding supports the expectation that higher Ranunculus cover allows for greater abundance and biomass of macroinvertebrate prey. The strong association between Ranunculus cover and macroinvertebrate prey in the growth model was not retained in the abundance model that was parameterised on data collected later in the year when macroinvertebrate abundance declines and Ranunculus plants begin to die back (Marsh et al. 2021a). Macrophytes provide
microhabitats that invertebrates can occupy (Hutchens et al., 2004), and plants with complex architectures are purported to support greater macroinvertebrate biomass due to increased surface area for colonisation and protection from predators (Heck and Crowder 1991; Diehl \& Kornijow, 1998). Structural complexity from highly dissected Ranunculus leaves enhances ability to trap detritus and support epiphytic biomass (Gregg and Rose 1982), that form food resources for macroinvertebrates. These increased resources might therefore support greater numbers of individuals and explain why prey biomass was greater in higher Ranunculus cover.

High velocities were expected to be detrimental to salmon growth due to the increased energetic demands of inhabiting fast flowing water (Wankowski \& Thorpe, 1979), but a direct influence of the proportion of fast velocities was not found to be important. Although drift feeding in salmonids can be considered as energetically expensive (Puckett \& Dill, 1985), behavioural responses to foraging in habitats with increased velocities, such as reducing attack distances, can negate any additional energy costs (Godin \& Rangeley, 1989). The proportion of fast velocities indirectly influenced salmon growth through a positive association with prey biomass, a relationship that was not originally hypothesised but identified from the model fit. This could represent the habitat preferences of macroinvertebrate taxa that were highly abundant in the Surber samples, particularly rheophilic fauna, such as Baetidae, Simuliidae, Ephemerellidae, Elmidae and Hydropsychidae (Marsh et al., 2020b). High velocity conditions can afford benefits through predator evasion and increasing oxygen supply, particularly for larger macroinvertebrate individuals with greater resource requirements (Sagnes, Merigoux \& Peru, 2008).

There was no significant influence of salmon or trout abundance on salmon growth detected, suggesting that growth (and competition for resources) was not negatively impacted by the abundance of con- or hetero-specifics in this experiment. This finding is likely context
specific, however, as other studies have shown negative effects of competitor densities (salmon or trout) on juvenile salmon growth, linked to individuals competing for similar and limited resources (e.g. Bal et al., 2011; Gregory et al., 2017). Additionally, due to the recruitment crash in the river Frome catchment in 2016 (Marsh et al., 2021b), there might have been insufficient densities of con- or hetero-specifics to detect any influence of competition on growth. In line with previous works that observed the territory sizes of juvenile salmon to be within a few square metres (Armstrong et al. 1994; Venter et al. 2008), in this study we assumed that the home ranges of juvenile salmon were mostly limited to the individual 20 m study sites and thus, exposure to the Ranunculus treatments. Extending the scale of the study, both temporally and spatially, would be required to discern whether the relationships between Ranunculus and salmon abundance and growth sustained across larger scales and, ultimately, resulted in a change at the population level. This work would be an interesting future research direction.

Direct and indirect influences of Ranunculus underlie greater abundance of faster growing salmon at a reach-scale. Even in these relatively simple path analyses, the important links retained for the two salmon responses demonstrate the complex interactions, which govern the impact of Ranunculus cover on multiple abiotic and biotic variables. This highlights the role of Ranunculus as a key aquatic structure that mediates environmental conditions in lowland streams promoting abundance, and growth conditions in individuals of species at multiple trophic levels by creating suitable physical habitat with abundant resources. The analytical approach taken in the study allowed us to test for salmon responses to varying level of macrophyte cover as well as associated changes in habitat heterogeneity, providing new mechanistic insights into how Ranunculus benefits juvenile salmon in lowland rivers. The impact of macrophytes on habitat and ecosystem productivity could generalise to native macrophytes and fish communities in river systems where large substrates that provide
structural complexity are infrequent. Only by elucidating the mechanisms driving change in population dynamics, can we design and undertake effective restoration of ecosystems degraded by anthropogenic activity. This study suggests that strategies to maintain or enhance naturally occurring Ranunculus will likely return wide ranging ecosystem benefits, including for species of high conservation value, such as salmon.

Acknowledgements

We are grateful to S. Gregory, L. Scott, D. Cooling, J. Pretty, W. Beaumont, J. Murphy, A. Arnold, T. Porteus, J. Picken, and C. Little for their helpful input and field assistance, A. Daniell for providing the location for the experimental sites, and local farmers for permitting access to the river.

Author contribution statement

Conceptualisation: JM, JIJ, RL, PK. Developing methods; data interpretation; writing: JM, JIJ, RL, JG, PK. Conducting the research, data analysis, preparation of figures and tables: JM.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Data availability statement

The data supporting the original experiment and used in this study are available via the Dryad Digital Repository https://doi.org/10.5061/dryad.612jm643t (Marsh et al., 2021c); additional data are available from the authors upon reasonable request.

Funding information

This work was funded by the G \& K Boyes Charitable Trust (Charity No: 1166015) through a PhD studentship awarded to JM. This study was supported in part by the USGS Climate R\&D and Ecosystems Programs. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

References

Armitage, P. D. \& Cannan, C. E. (2000). Annual changes in summer patterns of mesohabitat distribution and associated macroinvertebrate assemblages. Hydrological Processes, 14, 3161-3179.

Armstrong, J. D., Shackley, P. E. \& Gardiner, R. (1994). Redistribution of juvenile salmonid fishes after localised catastrophic depletion. Journal of Fish Biology, 45, 1027-1039.

Armstrong, J. D., Kemp, P. S., Kennedy, G. J. A., Ladle, M. \& Milner, N. J. (2003). Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research, 62, 143-170.

Armstrong, J. D., McKelvey, S., Smith, G. W., Rycroft, P. \& Fryer, R. J. (2018). Effects of individual variation in length, condition and run-time on return rates of wild-reared Atlantic salmon Salmo salar smolts. Journal of Fish Biology, 92, 569-578.

Arnold, G. P., Webb, P.W. \& Holford, B. H. (1991). The role of the pectoral fins in stationholding of Atlantic salmon parr (Salmo salar L.). Journal of Experimental Biology, 156, 625-629.

Bal, G., Rivot, E., Prŭvost, E., Piou, C. \& Bagliniure, J. L. (2011). Effect of water temperature and density of juvenile salmonids on growth of young-of-the-year Atlantic salmon Salmo salar. Journal of Fish Biology, 78, 1002-1022.

Beland, K. F., Trial, J. G. and Kocik, J. F. (2004). Use of riffle and run habitats with aquatic vegetation by juvenile Atlantic salmon. North American Journal of Fisheries Management 24:525-533.

Berrie, A. D. (1992). The chalk-stream environment. Hydrobiologia, 248, 3-9.
Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M. \& Wotton, R. S. (2006). The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology, 77, 320-334.

Cranston, E. (2004). Ranunculus in Chalk rivers: phase 2. Environment Agency, Bristol, UK.
Diehl, S. \& Kornijow, R. (1998). Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates in E. Jeppesen, M. Sondergaard, M. Sondergaard \& K. Christoffersen (eds). The structuring role of submerged macrophytes in lakes. Springer New York, pp. 24-46.

Dionne, M. \& Folt, C. L. (1991). An experimental analysis of macrophyte growth forms as fish foraging habitat. Canadian Journal of Fisheries and Aquatic Sciences, 48, 123131.

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carrŭ, G., Marquйz, J. R. G... \& Lautenbach, S. (2012). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.

Downes, B.J., Lake, P.S. \& Schreiber, E.S.G. (1993). Spatial variation in the distribution of stream invertebrates: implications of patchiness for models of community organization. Freshwater Biology, 30, 119-132.

Gibson, R. J. (1993). The Atlantic salmon in fresh water: spawning, rearing and production. Reviews in Fish Biology and Fisheries, 3, 39-73.

Girard, I. L., Grant, J. W. A. \& Steingrimsson, S.O (2004). Foraging, growth, and loss rate of young-of-the-year Atlantic salmon (Salmo salar) in relation to habitat use in Catamaran Brook, New Brunswick. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2339-2349.

Godin, J.-G. J. \& Rangeley, R. W. (1989). Living in the fast lane: effects of cost of locomotion on foraging behaviour in juvenile Atlantic salmon. Animal Behaviour, 37, 943-954.

Grace, J. B. (2006). Structural Equation Modeling and Natural Systems, Cambridge University Press.

Grace, J. B., \& Irvine, K. M. (2020). Scientist's guide to developing explanatory statistical models using causal analysis principles. Ecology, 101(4), e02962. https://doi.org/10.1002/ecy. 2962.

Gregg, W. W. \& Rose, F. L. (1982). The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany, 14, 309-324.

Gregory, R. S. (1993). Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 50, 241-246.

Gregory, S. D., Nevoux, M., Riley, W. D., Beaumont, W. R. C., Jeannot, N., Lauridsen, R. B... \& Roussel, J.-M. (2017). Patterns on a parr: Drivers of long-term salmon parr length in U.K. and French rivers depend on geographical scale. Freshwater Biology, 62, 1117-1129.

Gregory, S. D., Ibbotson, A. T., Riley, W. D., Nevoux, M., Lauridsen, R. B., Russell, I. C., Britton, J. R... \& Rivot, E. (2019). Atlantic salmon return rate increases with smolt length. ICES Journal of Marine Science, fsz066.

Gries, G. \& Juanes, F. (1998). Microhabitat use by juvenile Atlantic salmon (Salmo salar) sheltering during the day in summer. Canadian Journal of Zoology, 76, 1441-1449.

Heck K.L., Crowder L.B. (1991). Habitat structure and predator-prey interactions in vegetated aquatic systems. In: Bell S.S., McCoy E.D., Mushinsky H.R. (eds) Habitat Structure. Population and Community Biology Series, vol 8. Springer, Dordrecht.

Hutchens, J. J., Wallace, J. B. \& Romaniszyn, E. D. (2004). Role of Podostemum ceratophyllum Michx. in structuring benthic macroinvertebrate assemblages in a southern Appalachian river. Journal of the North American Benthological Society, 23, 713-727.

ICES. (2021). Working Group on North Atlantic Salmon (WGNAS). ICES Scientific Reports. 3:29. 407 pp. https://doi.org/10.17895/ices.pub. 7923.

Johnsson, J., Rydeborg, A. \& Sundstr:om, L. F. (2004). Predation risk and the territory value of cover: an experimental study. Behavioral Ecology and Sociobiology, 56, 388-392.

Keeley, E. R. \& Grant, J. W. A. (1995). Allometric and environmental correlates of territory size in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 52, 186-196.

Keeley, E. R. \& Grant, J. W. A. (1997). Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 54, 18941902.

Kovalenko, K. E., Thomaz, S. M. \& Warfe, D. M. (2012). Habitat complexity: approaches and future directions. Hydrobiologia, 685, 1-17.

Kuznetsova, A., Brockhoff, P.B. \& Christensen, R.H.B. (2017). ImerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579.

Lefcheck, J. S, Byrnes, J. E. K., \& Grace, J. B. (2018) piecewiseSEM: Piecewise structural equation modeling. An r package. version 2.1. 0 . https://cran.rproject.org/web/packages/piecewiseSEM/piecewiseSEM.pdf.

Lürig,M. D., Narwani, A., Penson, H., Wehrli, B., Spaak, P., \& Matthews, B. 2021. Nonadditive effects of foundation species determine the response of aquatic ecosystems to nutrient perturbation. Ecology, 102, e03371.

Maki-Petäys, A., Muotka, T., Huusko, A., Tikkanen, P. and Kreivi, P. (1997). Seasonal changes in habitat use and preference by juvenile brown trout, Salmo trutta, in a
northern boreal river. Canadian Journal of Fisheries and Aquatic Sciences 54:520530.

Marsh, J. E., Lauridsen, R. B., Gregory, S. D., Beaumont, W. R. C., Scott, L. J., Kratina, P. \& Jones, J. I. (2020a). Above parr: Lowland river habitat characteristics associated with higher juvenile Atlantic salmon (Salmo salar) and brown trout (S. trutta) densities. Ecology of Freshwater Fish, 29, 542-556.

Marsh, J. E. (2020b). The importance of Ranunculus spp. for juvenile salmonids in lowland rivers. PhD thesis. Queen Mary University of London, London, UK.

Marsh, J. E., Lauridsen, R. B., Gregory, S. D., Kratina, P., Scott, L. J., Cooling, D. \& Jones, J. I. (2021a). High summer macrophyte cover increases abundance, growth and feeding of juvenile Atlantic salmon. Ecological Applications https://doi.org/10.1002/eap. 2492

Marsh, J. E., Lauridsen, R.B., Riley, W. D., Simmons, O. M., Artero, C., Scott, L. J... \& Gregory, S. D. (2021b). Warm winters and cool springs negatively influence recruitment of Atlantic salmon (Salmo salar L.) in a southern England chalk stream. Journal of Fish Biology, 99, 1125-1129.

Marsh, J. E., Lauridsen, R. B., Gregory, S. D., Beaumont, W. R. C., Scott, L. J., Kratina, P. \& Jones, J. I. (2021c). Data from: High summer macrophyte cover increases abundance, growth and feeding of juvenile Atlantic salmon, Dryad Digital Repository, https://doi.org/10.5061/dryad.612jm643t.

McCormick, D. P., and Harrison, S. S. C. (2011). Direct and indirect effects of riparian canopy on juvenile Atlantic salmon, Salmo salar, and brown trout, Salmo trutta, in south-west Ireland. Fisheries Management and Ecology 18:444-455.

Millidine, K. J., Armstrong, J. D. \& Metcalfe, N. B. (2006). Presence of shelter reduces maintenance metabolism of juvenile salmon. Functional Ecology, 20, 839-845.

Morantz, D. L., Sweeney, R. K., Shirvell, C. S. \& Longard, D. A. (1987). Selection of microhabitat in summer by juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 44, 120-129.

O'Hara, R. B. \& Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution, 1, 118-122.

Piccolo, J. J., Hughes, N. F. \& Bryant, M. D. (2007). The effects of water depth on prey detection and capture by juvenile coho salmon and steelhead. Ecology of Freshwater Fish, 16, 432-441.

Puckett, K. J. \& Dill, L. M. (1984). Cost of sustained and burst swimming to juvenile Coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 41, 1546-1551.

R Development Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Riley, W. D., Ives, M. J., Pawson, M. G. \& Maxwell, D. L. (2006). Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk stream. Fisheries Management and Ecology, 13, 221-236.

Riley, W. D., Pawson, M. G., Quayle, V. \& Ives, M. J. (2009). The effects of stream canopy management on macroinvertebrate communities and juvenile salmonid production in a chalk stream. Fisheries Management and Ecology, 16, 100-111.

Sagnes, P., Mŭrigoux, S. \& Pйru, N. (2008). Hydraulic habitat use with respect to body size of aquatic insect larvae: Case of six species from a French Mediterranean type stream. Limnologica, 38, 23-33.

Scheffer, M., S. Szabo, A. Gragnani, E. H. Van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers, and R. J. M. Franken. 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences USA, 100, 4040-4045.

Shipley, B. (2000). A new inferential test for path models based on directed acyclic graphs. Structural Equation Modeling: A Multidisciplinary Journal, 7, 206-218.

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90, 363-368.

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M. \& Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31, 79-92.

Teixeira de Mello, F., Meerhoff, M., González-Bergonzoni., Kristensen, E.A., BaattrupPedersen, A., Jeppesen, E. (2015). Inflence of riparian forests on fish assemblages in temperate lowland streams. Environmental Biology of Fishes, 99, 133-144.

Venables, W.N. \& Ripley, B.D. (2002). Modern applied statistics with S. Fourth Edition, Springer, New York.

Venter, O., Grant, J. W. A., Noël, M. V. \& Kim, J-W. (2008). Mechanisms underlying the increase in young-of-the-year Atlantic salmon (Salmo salar) density with habitat complexity. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1956-1964.

Wankowski, J. W. J. \& Thorpe, J. E. (1979). Spatial distribution and feeding in Atlantic salmon, Salmo salar L. juveniles. Journal of Fish Biology, 14, 239-247.

Warfe, D. M. \& Barmuta, L. A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia, 141, 171-178.

Waters, T. F. (1972). The drift of stream insects. Annual Review of Entomology, 17, 253-272.
Wharton, G., Cotton, J. A., Wotton, R. S., Bass, J. A. B., Heppell, C. M., Trimmer, M., Sanders, I. A. \& Warren, L. L. (2006). Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments, Dorset (UK). Journal of Hydrology, 330, 171-184.

Wilkinson, C.L., Chua, K.W.J., Fiala, R., Liew, J.H., Kemp, V., Fikri, A.H., Ewers, R.M., Kratina, P. and Yeo, D.C.J. 2021. Forest conversion to oil palm compresses food chain length in tropical streams. Ecology, 102(1): e03199.

Zabel, R. W. \& Achord, S. (2004). Relating size of juveniles to survival within and among populations of chinook salmon. Ecology, 85, 795-806.

Table 1. Summary of the variables used in path analysis of salmon abundance $(n=36)$ and growth rates ($n=71$) with mean and standard error (prior to standardising).

Model	Variable (unit)	Type	Error	Mean (\pm SE)
Abundance	Salmon abundance (N)	Response	Negative binomial	14.47 (2.07)
	Proportion of fast velocities	Response/Explanatory	Gaussian	0.62 (0.04)
	Velocity heterogeneity (Index)	Response/Explanatory	Gaussian	0.80 (0.06)
	Water depth (cm)	Response/Explanatory	Gaussian	31.58 (1.82)
	Total biomass of prey (mg)	Response/Explanatory	Gaussian	221.27 (17.31)
	Basal resources (mg)	Response/Explanatory	Gaussian	0.83 (0.07)
	Ranunculus cover (\%)	Explanatory	-	34.00 (4.28)
Growth	Salmon growth in weight (g)	Response	Gaussian	4.55 (0.20)
	Average salmon abundance (N)	Response/Explanatory	Negative binomial	33.97 (1.47)
	Average trout abundance (N)	Response/Explanatory	Negative binomial	13.23 (1.06)
	Average proportion of fast velocities	Response/Explanatory	Gaussian	0.72 (0.01)
	Average velocity heterogeneity (Index)	Response/Explanatory	Gaussian	0.95 (0.05)
	Average total biomass of prey (mg)	Response/Explanatory	Gaussian	191.62 (11.73)

Average size of prey (mg)	Response/Explanatory	Gaussian	$0.32(0.01)$
Average Ranunculus cover (\%)	Explanatory	-	$53.50(3.57)$

Table 2. Standardised effects of the paths retained in the best fitting model between Ranunculus cover (R) and salmon abundance (A) and growth in weight (G), shown in section (a) and (b), respectively. Variables represented as VH - velocity heterogeneity, FV - fast velocity, WD - water depth, P - total biomass of prey. Indirect effects are calculated by multiplying the partial path coefficients and represent the effect of Ranunculus on salmon abundance and growth directly and mediated by the physical habitat/food resource variables. The overall effect of Ranunculus on salmon abundance and growth is calculated by summing all direct and indirect effects.

Response	Pathways	Direct	Indirect	Overall
variable		effects	effects	effect
(a)	0.52	-	$\mathbf{0 . 3 5}$	
Salmon	$\mathrm{R} \rightarrow \mathrm{A}$	-	-0.05	
abundance	$\mathrm{R} \rightarrow \mathrm{VH} \rightarrow \mathrm{FV} \rightarrow \mathrm{A}$	-	-0.12	
	$\mathrm{R} \rightarrow \mathrm{WD} \rightarrow \mathrm{A}$			$\mathbf{0 . 6 4}$
(b)		-	0.68	
Salmon growth	$\mathrm{R} \rightarrow \mathrm{P} \rightarrow \mathrm{G}$	-	-0.04	
in weight	$\mathrm{R} \rightarrow \mathrm{VH} \rightarrow \mathrm{FV} \rightarrow \mathrm{P} \rightarrow \mathrm{G}$	-		

Figure Captions

Figure 1. Partial effects showing the influence of Ranunculus through time on (a) juvenile (0+) salmon abundance during August and September, and on (b) $0+$ salmon growth of marked individuals caught in June and recaptured in August. These partial effects were predicted from separate models including other explanatory variables that together described the effects of a Ranunculus manipulation experiment on salmon abundance and growth (for full details see Marsh et al. 2021a). The solid line and shaded area represent the mean estimate and 95% confidence interval of the marginal effect of Ranunculus cover and the solid circles show the raw data points. These data points form the response variables of this study.

Figure 2. Hypothesised relationships of the piecewise SEMs to describe variation in (a) $0+$ salmon abundance, and (b) $0+$ salmon growth. The path diagrams represent hypothesis of direct and indirect effects of Ranunculus cover on salmon abundance and growth, $\boldsymbol{\gamma}$ represents links between an exogenous and endogenous variable, $\boldsymbol{\beta}$ represents links between two endogenous variables, numbers correspond to the variable number, e.g. x_{1}, y_{2}, that are linked. Black arrows denote positive links and red arrows denote negative links, and the strength of effect is highlighted by arrow thickness.

Figure 3. Schematic illustration of the study locations and experimental manipulations: (a) location of the River Frome in Dorset, UK; (b) locations of the three experimental blocks on the North stream (black triangles); and (c) a schematic representation showing that each experimental block consisted of three sites (20 m in length), each manipulated to maintain contrasting Ranunculus cover (high / medium / low) and bounded by Ranunculus denuded buffer strips (5 m in length), from Marsh et al. 2021a.

Figure 4. Outcomes of the final piecewise SEMs testing direct and indirect effects of Ranunculus cover on (a) $0+$ salmon abundance and (b) $0+$ salmon growth. Non-significant pathways were omitted from the final model, and missing paths were identified using dseparation tests and incorporated. Coefficient estimates are shown for each pathway with significance levels are denoted as ${ }^{* * *} p<0.001$, ${ }^{* *} p<0.01, * p<0.05, \cdot p<0.1$, marginal R^{2} values for each component response variable are shown under the response variable name. Black arrows denote positive links and red arrows denote negative links, and the strength of effect is highlighted by arrow thickness.

Figure 1.

Figure 2.

Figure 3.

(b)

Figure 4.

Supplementary information in support of: Marsh, J. E., Jones, J. I., Lauridsen, R. B.,
 Grace, J. B \& Kratina, P. Direct and indirect influences of macrophyte cover on abundance and growth of juvenile Atlantic salmon. Submission to Freshwater Biology

 Supplementary Tables

 Supplementary Tables}

Table S1. Mass-length relationships used to calculate macroinvertebrate biomass. All macroinvertebrate specimens were identified to species, except Oligochaeta (sub-class), Hydrachnidae (family), Simuliidae (family) and Chironomidae (tribe), and counted to determine total abundances per sample. Measures of parasitic Nematoda and Nematomorpha were omitted from these calculations, as these were not considered to represent prey for salmon. We recorded body-size measurements of up to 30 randomly selected specimens of each taxon in each sample and used published length-mass relationships to estimate the mean biomass of each taxon. We then multiplied the mean biomass by the abundance of each taxa to estimate a total biomass of each taxon per sample.

Taxa (Class/Sub- Class)	Reference
Hydrozoa, Insecta,	
Turbellaria	Benke, A.C., Huryn, A.D., Smock, L.A. \& Wallace, J.B. (1999). Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society, 18, 308-343.
Insecta	Burgherr, P. \& Meyer, E.I. (1997). Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Archiv fur Hydrobiologie, 139, 101-112.
Copepoda	Dumont, H.J., Van de Velde, I. \& Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19, 75-97.
Hirudinea	Edwards, F.K., Lauridsen, R.B., Armand, L., Vincent, H.M. \& Jones, J.I. (2009). The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundamental and Applied Limnology, 173, 321-327.
Gastropoda	Hawkins, J.W., Lankester, M.W., Lautenschlager, R.A. \& Bell, F.W. (1997). Length- biomass and energy relationships of terrestrial gastopods in northern forest
ecosystems. Canadian Journal of Zoology, 75, 501-505.	

Arachnida, Insecta Sabo, J.L., Bastow, J.L. \& Power, M.E. (2002). Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society, 21, 336-343.
Insecta Smock, L.A. (1980). Relationships between body size and biomass of aquatic insects. Freshwater Biology, 10, 375-383.
Gastropoda Vincent, H.M. (2010). Algal resource depression by macro-invertebrate herbivory in a chalk stream: An empirical approach. Unpublished PhD thesis. Available online at http://etheses.bham.ac.uk/550/.

Table S2. Model fitting procedure undertaken to identify the final model fit to describe salmon abundance. Non-significant pathways were removed iteratively, and model adequacy was assessed after each removal by calculating Fisher's C test. A - Abundance, R Ranunculus, FV - Fast velocities, D - water depth, VH - velocity heterogeneity, P - biomass of prey, BR - basal resources.

Model	Model terms	Model term change	Fisher's C	df	P value
1	$\begin{aligned} & \mathrm{A} \sim \mathrm{R}+\mathrm{FV}+\mathrm{D}+\mathrm{VH}+\mathrm{P} \\ & \mathrm{D} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{R}+\mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{P} \sim \mathrm{R}+\mathrm{BR} \\ & \mathrm{BR} \sim \mathrm{R} \end{aligned}$	Full model	28.11	18	0.06
2	$\begin{aligned} & \mathrm{A} \sim \mathrm{R}+\mathrm{FV}+\mathrm{D}+\mathrm{P} \\ & \mathrm{D} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{R}+\mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{P} \sim \mathrm{R}+\mathrm{BR} \\ & \mathrm{BR} \sim \mathrm{R} \\ & \hline \end{aligned}$	Removed velocity heterogeneity (VH) from abundance (A) model	28.26	20	0.10
3	$\begin{aligned} & \mathrm{A} \sim \mathrm{R}+\mathrm{FV}+\mathrm{D}+\mathrm{P} \\ & \mathrm{D} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{P} \sim \mathrm{R}+\mathrm{BR} \\ & \mathrm{BR} \sim \mathrm{R} \\ & \hline \end{aligned}$	Removed Ranunculus (R) from fast velocities (FV) model	28.55	22	0.16
4	$\begin{aligned} & \mathrm{A} \sim \mathrm{R}+\mathrm{FV}+\mathrm{D}+\mathrm{P} \\ & \mathrm{D} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{P} \sim \mathrm{R} \end{aligned}$	Removed basal resources (BR) model and BR term in prey (P) model	22.60	14	0.07
5	$\begin{aligned} & \mathrm{A} \sim \mathrm{R}+\mathrm{FV}+\mathrm{D} \\ & \mathrm{D} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \end{aligned}$	Removed prey (P) model and P term in abundance (A) model	6.97	8	0.54

Table S3. Model fitting procedure undertaken to identify the final model fit to describe growth in weight of salmon individuals. Non-significant pathways, and important missing pathways were identified using Shipley's d-sep test and were removed/added iteratively. Model adequacy was assessed after each removal/addition by calculating Fisher's C test.

Model	Model terms	Model term change	Fisher's C	df	P value
1	$\begin{aligned} & \mathrm{G} \sim \mathrm{R}+\mathrm{VH}+\mathrm{FV}+\mathrm{PS}+\mathrm{P}+\mathrm{SA}+ \\ & \mathrm{TA} \\ & \mathrm{PS} \sim \mathrm{R}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{SA} \sim \mathrm{R} \\ & \mathrm{TA} \sim \mathrm{R} \end{aligned}$	Full model	558.51	28	0
2	$\begin{aligned} & \mathrm{G} \sim \mathrm{R}+\mathrm{VH}+\mathrm{FV}+\mathrm{PS}+\mathrm{P}+\mathrm{TA} \\ & \mathrm{PS} \sim \mathrm{R}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{TA} \sim \mathrm{R} \end{aligned}$	Removed salmon abundance (SA) model, and SA term in growth (G) model	455.04	18	0
3	$\begin{aligned} & \mathrm{G} \sim \mathrm{VH}+\mathrm{FV}+\mathrm{PS}+\mathrm{P}+\mathrm{TA} \\ & \mathrm{PS} \sim \mathrm{R}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \mathrm{TA} \sim \mathrm{R} \end{aligned}$	Removed Ranunculus (R) from growth (G) model	455.01	20	0
4	$\begin{aligned} & \mathrm{G} \sim \mathrm{VH}+\mathrm{FV}+\mathrm{PS}+\mathrm{P} \\ & \mathrm{PS} \sim \mathrm{R}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \hline \end{aligned}$	Removed trout abundance (TA) model, and TA term in growth (G) model	254.59	12	0
5	$\begin{aligned} & \mathrm{G} \sim \mathrm{FV}+\mathrm{PS}+\mathrm{P} \\ & \mathrm{PS} \sim \mathrm{R}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \end{aligned}$	Removed velocity heterogeneity (VH) from growth (G) model	256.2	14	0
6	$\begin{aligned} & \mathrm{G} \sim \mathrm{FV}+\mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \end{aligned}$	Removed prey size (PS) from growth (G) model	101.19	10	0
7	$\begin{aligned} & \mathrm{G} \sim \mathrm{P} \\ & \mathrm{P} \sim \mathrm{R} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \end{aligned}$	Removed fast velocity (FV) from growth (G) model	102.40	12	0
8	$\begin{aligned} & \mathrm{G} \sim \mathrm{P} \\ & \mathrm{P} \sim \mathrm{R}+\mathrm{FV} \\ & \mathrm{FV} \sim \mathrm{VH} \\ & \mathrm{VH} \sim \mathrm{R} \\ & \hline \end{aligned}$	Included fast velocity (FV) in prey biomass (P) model after identified as an important missing pathway	10.27	10	0.42

Supplementary Figures

Figure S1. Correlation matrix for explanatory variables included in salmon abundance SEM.

Figure S2. Correlation matrix for explanatory variables included in salmon growth SEM.

[^0]: * Present addresses: Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth DT4 8UB, UK; Department of Life and Environmental Sciences, Bournemouth University, BH15 5BB, UK.

