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Introduction of an adhesion factor 
to cube in cube models and its effect 
on calculated moduli of particulate 
composites
Julian Rech1,3, Esther Ramakers–van Dorp1, Patrick Michels1, Bernhard Möginger1 & 
Berenika Hausnerova2,3*

The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for 
filler content dependent Young’s moduli of particle filled composites assuming perfect filler 
matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using 
an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV 
approach led to expression of the composites moduli that allows introducing an adhesion factor kadh 
ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales 
the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and 
filler. Fitting the experimental data with the modified Paul model provides reasonable kadh for PA66, 
PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that 
stiffening only occurs if kadh exceeds 

√

E
M
/E

F
 and depends on the ratio of matrix modulus and filler 

modulus. The modified model allows for a quick calculation of any particle filled composites for known 
matrix modulus EM, filler modulus EF, filler volume content vF and adhesion factor kadh. Thus, finite 
element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection 
are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions 
within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler 
contents the assumption that the property of the EV is representative for the whole composite, 
holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for 
vast majority of commercially available particulate composites, the modified model can be applied. 
Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence 
of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or 
spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between 
particles with the formation of particle network within the matrix violating the EV assumption of their 
homogeneous dispersion.

Sustainability demands on performance of polymer parts are steadily increasing. Not only polymeric systems 
from renewable sources are currently developed, but contemporary established materials commodities are recy-
cled. To meet these requirements, polymers are often modified by blending, copolymerization and reinforcement 
with particulate fillers and fibers. The access of these materials to emerging applications brings necessity of 
fast availability of relevant physical properties as stiffness, strength, and thermal properties e.g. thermal length 
expansion or heat conductivity.

In this perspective, use of reinforced composites will increase substantially1, and their performance has to 
be determined with respect to varying or even undefined mechanical properties of raw materials. This can be 
achieved by an elaborate thermo-mechanical analysis of a particular composite system (which is expensive and 
time consuming) or via accurate predictions of composite properties using analytical approaches.

Performance of composites is determined by properties of a matrix, dispersed phase and interface between 
filler and matrix2. A filler-matrix adhesion can be modified by coupling agents. He and Jiang3 showed that glass 
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bead reinforced polyepichlorhydrin pretreated with a coupling agent yielded in an enhanced stiffness behavior 
over the whole filler volume range (5–35%). Demir et al.4 investigated the effect of different coupling agents on 
the performance of luffa fiber/polypropylene composites and found out that the moduli of the composites con-
taining 15 wt% fiber increased by 52 to 98% after modification. They concluded that the addition of the coupling 
agents was accompanied by the decrease in water absorption due to a better adhesion between fibers and matrix. 
Similar conclusion was presented by Jacob et al.5, which studied the effect of various silane coupling agents on 
viscoelastic properties of sisal/oil palm hybrid fiber reinforced natural rubber composites, and reported that 
the chemical modification of fibers with respect to the used coupling agents led to improved wettability and 
consequently to an increase in storage and loss moduli of the composites.

Ku et al.6 reviewed an effect of various pretreatments and coupling agents on tensile properties of natural 
fiber reinforced polymer composites. They summarized the studies, which confirmed the increase in Young’s 
modulus due to the enhanced interfacial adhesion caused by the pretreatment of the fillers and the coupling 
agents. On the other hand, Dekkers et al.7 and Dibendetto et al.8 used glass beads as fillers for polystyrene and 
epoxy resin matrices and found that the Young’s moduli were not affected by the surface treatment. Wang et al.9 
observed increasing moduli of polypropylene/barium sulfate composites using stearic acid, silane and maleic 
anhydride as surface modifications, but they attributed it not to the improved interfacial adhesion, but rather to 
higher crystallinity and the formation of the crystal lattices in the matrix.

Numerous models have been developed to calculate Young’s moduli of particulate polymer composites consid-
ering elastic properties of fillers and matrices, volume content and aspect ratio, Table 1. For modelling purposes, 
a two-phase model in terms of the representative volume element is subjected to unidirectional stresses and 
strains for calculating expressions of elastic constants10,11. Three-phase models are not considered in this work 
because their higher complexity requires additional materials parameters12–14.

The models of Voigt15 and Reuss16 represent the upper bound for the uniform stress distribution and the 
lower bound for the uniform strain distribution, respectively, and differ significantly. In most cases the measured 
Young’s moduli lie in between. This indicates that they can only serve as a rough estimation, and that real loading 
states are more complex than uniform stress or uniform strain. Guth17 proposed a two-phase model based on 
Einstein’s approach18 to determine the viscosity of a suspension with spherical inclusions.

The cube in cube models (4–10) take into account a dispersed structure of particle filled composites. Takay-
anagi et al.19 combined the models of Voigt and Reuss in a way that allows for introducing a dependency on 
filler volume content. Paul20 assumed uniform stress states with a perfect filler-matrix adhesion, whereas Ishai 
and Cohen21 assumed uniform strain states. Their models represent more precise upper and lower bounds for 

Table 1.   Summary of two-phase models to predict Young’s moduli of particulate composites. Moduli of 
matrix EM and filler EF, filler volume content vF, parameter χ determining stress transfer between fiber and 
matrix, geometry factor ξ, Einstein coefficient KE and maximum volume fraction vF,max.
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composites moduli than those of Voigt and Reuss. More complicated models require additional parameters, 
which are determined by a fitting procedure:

•	 Hirsch22 combined the models of Voigt and Reuss balancing their contributions with a factor χ.
•	 Counto23 developed a simple model for concrete systems assuming perfect filler matrix adhesion; it coincides 

with the Hirsch model for χ = 0.5.
•	 Halpin and Tsai24 developed a model to describe anisotropic properties of fiber and filler reinforced compos-

ites with one equation in which an efficiency factor ξ takes into account fiber or filler geometry and spatial 
orientation of fibers or platelets; due to its simplicity it became popular regardless of limited accuracy.

•	 Nielsen25, Lewis and Nielsen26 and Nielsen27 proposed an alternative model based on Halpin–Tsai24 and 
Kerner28 in which mechanical properties depend additionally on fiber or filler geometry and load direction, 
maximum filler content vF,max; moreover, Nielsen assumed a Poisson ratio-dependent Einstein coefficient KE.

Moduli of matrix EM and filler EF, filler volume content vF, parameter χ determining stress transfer between 
fiber and matrix, geometry factor ξ, Einstein coefficient KE and maximum volume fraction vF,max.

All models depicted in Table 1 assume a perfect filler-matrix adhesion. Reduced adhesion between a filler 
and a matrix has not been considered yet in cube in cube models. The aim of this study is to introduce an adhe-
sion factor having values between “0” and “1”to the EV models of Paul and Ishai-Cohen to express adhesion 
quantitatively, and to investigate how the adhesion factor and spatial arrangement of EV affect the filler content 
dependent composites moduli.

Theoretical considerations
If filler particles are homogeneously dispersed in a matrix, one can define an elementary volume (EV) contain-
ing a single particle that is to be representative for composite properties. A cube of length D + a is shown with 
a spherical inclusion of diameter D consisting of matrix M and filler, Fig. 1 top. The “cube in cube” approach 
requires that a particle of any geometry is transformed to a cube of length k D with the efficiency factor k. It takes 
into account that less than the maximum cross-section contributes to the stress transfer, and thus depends on 
particle shapes. For spheres it is determined by the condition 

with volume of sphere Vsphere and volume of cube Vcube . In order to calculate the filler volume content dependent 
Young’s modulus of the composite, the cube has to be divided into a matrix part and a composite part done either 
in series or parallel to account for microscopic mechanical properties, Fig. 1 bottom left and right.

(11)Vsphere =
π

6
D3

= k3D3
= Vcube ⇒ k = ksphere =

3

√

π

6
∼= 0.81

Figure 1.   Cubic elementary volume (EV) containing a spherical inclusion with diameter D and distance a 
between inclusions (top), and its cube in cube consideration in series and parallel arrangements with adhesion 
boundary conditions.
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This allows calculation how the modulus of the EV depends on the arrangements of matrix part and compos-
ites part. Furthermore, the analysis of the EV separation shows that certain assumptions were made with respect 
to the adhesions acting between matrix and filler:

•	 For the in series arrangement “perfect” adhesion is assumed over the entire cross-section (D + a)2 perpendicu-
lar to the load direction between matrix part and composites part, and “zero” adhesion is required between 
filler and matrix of the composite part along the load direction. If the EV cube is strained to εEV by the load 
F0, the matrix part experiences the strain εM and the composites part the strain εC.

•	 For the parallel arrangement “perfect” adhesion is assumed only over the cross-section (k D)2 of the composite 
part between the filler and the matrix perpendicular to the load direction, and “zero” adhesion is required 
between the composite part and the matrix part along the load direction. If the EV cube is strained to εEV by 
the load F0, the matrix of the composite part experiences the strain εC,M and the filler of the composite part 
the strain εC,F.

If the aspect ratio is not close to “1”, one has to distinguish the extremes “along the long axis” and “perpen-
dicular to the long axis” e.g. with a square column consideration. In this consideration a reduction of adhesion 
can only apply to “perfect” adhesion, whereas “zero” adhesion leads to neglecting of shear stresses.

Case 1: in series EV arrangement and Paul model.  The first step is to define the elastic stress–strain-
relation of the EV to represent the macroscopic mechanical behavior:

with external stress σ , stress acting on EV σEV , distance a between particles, modulus of EV EEV and strain of 
EV εEV . The second step is to define the stress–strain-relation of the matrix part with respect to the microscopic 
strain εM of the matrix part:

with stress acting on matrix part σM , matrix modulus EM , and matrix strain εM , and the stress–strain-relation 
of the composites part:

with stress acting on composite σC , stress acting on matrix of composites part σC,M , stress acting on filler of 
composites part σC,F , strain of composites part εC , and the composites modulus EC . The stress acting on the 
matrix of the composites part is given by:

and the stress acting on the filler of the composites part is given by:

with filler modulus EF . Introduction of (15) and (16) in (14) links the external stress to the microscopic strain 
εC yielding

If the interfacial adhesion is not perfect, the stress transfer to the inclusion is reduced. The structure of (17) 
allows to identify where non-perfect reduced filler matrix adhesion may come into play as it has to decrease 
the stiffening capability of the filler. Thus, the second term in the brackets on the right side of (17) describing 
the contribution of filler modulus EF to the stress–strain-relation of the composites does not contribute to full 
extent. In this context the EV representation of stress–strain-relation (17) provides a hint, where to introduce 
the dimensionless adhesion factor kadh that ranges from “0” (no adhesion) to “1” (perfect adhesion). In Eq. (17) 
one deals with the coefficients attached to EM and EF which represent relative cross-sections of matrix and filler, 
respectively. Therefore, the adhesion factor is introduced quadratically as it is to reduce the edge length of the 
filler cube. In that respect the physical meaning of the adhesion factor is that it scales the edge length of the filler 
cube, and thus the available contact area of stress transfer between filler and matrix to account for the reduced 
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adhesion due to the surface energies of filler and matrix, respectively. After elimination of the particle diameter 
D, one gets:

Solving (18) for εC yields the strain of the composite part.

The strain of the EV εEV depends on the strains of both the matrix part εM and the composites part εC (see 
Appendix A):

Substituting the strains from (12), (13) and (19) in (20), and solving for EEV yields:

The efficiency factor k is related to the filler volume content vF by

and (21) becomes:

For perfect adhesion with kadh = 1, Eq. (23) becomes identical to Paul’s relation in Table 1.
From Eq. (23) follows that a stiffening effect only occurs if kadh >

√
EM/EF  . Calculating the filler volume 

content dependent relative modulus ER = EC/EM with EM = 3200 MPa and EF = 63,000 MPa, respectively, and 
varying kadh between 0 and 1 shows that for kadh > 0.23 one gets stiffening, and for kadh < 0.23 softening, Fig. 2a.

Case 2: parallel EV arrangement and Ishai‑Cohen model.  The external stress σ acts macroscopically 
on the EV according to (12). The stress–strain-relation of the matrix part is given by
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Figure 2.   Calculated filler volume content dependent relative moduli ER for different adhesion factors kadh 
with EM = 3200 MPa and EF = 63,000 MPa for (a) in series EV arrangement and (b) parallel EV arrangement. The 
dotted line represents the decreasing ER for a foam with EF = 0 MPa according to Voigt.
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and the stress–strain-relations of the composites part are given by

In (25c) the adhesion factor kash is already introduced to account for possibly reduced load transfer from 
matrix to filler. The external stress σ is distributed on the matrix part by σM and the composites part by σC due 
to the corresponding cross-sections yielding

With cross-section of matrix AM, cross-section of composites part AC, and cross-section AEV of EV. The strains 
of εEV , εC,M and εC,F of the composites part are connected by

Insertion of (25a), (25b) and (25c) in (27) and solving for EC yields

or in terms of filler volume content vF using (22)

For perfect interfacial adhesion with kadh = 1, the Eq. (28) coincides to Ishai-Cohen’s relation, Table 1.
From Eq. (28) also follows that a stiffening effect only occurs if kadh >

√
EM/EF  . The filler volume content 

dependent relative modulus ER is calculated with EM = 3200 MPa and EF = 63,000 MPa, respectively, and varying 
kadh between 0 and 1, Fig. 2b.

From Fig. 2 it is obvious that Eq. (23) produces larger filler volume content dependent Young’s moduli than 
Eq. (29). Introducing the adhesion factor kadh causes a decrease of Young’s moduli. Therefore, only Eq. (23) rep-
resenting the upper bound is used to derive adhesion factors from measured Young’s moduli.

Materials and methods
Materials.  Five kinds of polymer matrices filled with various contents of glass beads (GB) as spherical inclu-
sions were used in this study (Table 2):

•	 polyamide 66 (PA66): RADIPOL A45 (0 wt% GB), AKROMID A3 GK 30 1 natur (30 wt% GB), AKROMID 
A3 GK 40 1 natur (40 wt% GB)

•	 polybutyleneterephthalate (PBT): Ultradur B 2550 (0 wt% GB), Ultradur B 4300 K4 (20 wt% GB), Ultradur 
B 4300 K6 (30 wt% GB)

•	 butadiene rubber (BR): isomer ratio cis:trans:vinyl = 20:60:20, MN = 2 to 3 * 105, cross-linked with dicumyl 
peroxide,0, 15, 30 and 45 vol% GB unsized and sized

•	 polyethylene (PE-LD): Nova Chemicals LDPE LA-0219-A, Canada with 0, 20, 40, and 60 wt% GB
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Table 2.   Properties of matrices and dispersed phase (GB).

Matrix

GB volume content 
vF GB diameter rF Matrix density ρM Matrix modulus EM

Poisson ratio of 
matrix µM

Surface energy29–31 
σsurface

– µm g/cm3 MPa – mJ/m2

PA66 0.16/0.23 25 1.14 3100 to 3200 0.42 38 to 55

PBT 0.12/0.19 25 1.30 2600 to 2800 0.41 44 to 49

BR 0.15/0.30/0.45 58 0.95 7.6 0.48 26 to 27

PE-LD 0.08/0.19/0.35 40 to 60 0.93 98 0.48 33 to 35

iPP 0.10/0.20/0.30 Not given 0.91 1070 0.45 31 to 42
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•	 isotactic polypropylene (iPP): Petoplen MH418 with 0, 10, 20 and 30 vol% GB

The properties of polar PA66 (Technical data sheet, Radici Group, RADIPOL® A45, 2021) and PBT (Techni-
cal data sheet; BASF, Ultradur® B 2550–PBT, 2021) composites were determined experimentally, whereas the 
properties of nonpolar BR32, PE-LD33 and iPP34 were taken from literature. As in Lohrmann32 two compound 
series—one with unsized GB and one with sized GB—were investigated giving the chance to check how surface 
treatment of GB affects the stiffness. Glass beads filler has density ρF = 2.5 g/cm3, Young’s modulus EF = 63 GPa 
and Poisson ratio µF = 0.22.

Methods.  Preparation of tensile test bars.  Injection molded test bars of PA66 and PBT compounds (type 
1A according to ISO 527-2) were tested after annealing for 4 h at 180 °C to minimize effects of a thermal history.

Tensile tests.  Universal testing machine (Zwick Z100, Zwick/Roell, Ulm, Germany) was used to perform ten-
sile tests according to DIN EN ISO 527-1 with n = 5, equipped with a 10 kN load cell (resolution: 0.12%) and a 
multiXtens extensometer (resolution: 0.1 µm), an initial sample length of 50 mm, a preload of 0.1 MPa. Differing 
to ISO 527, the tensile tests of PA66 and PBT compounds were performed with a strain rate of 10%/min. The 
stress–strain-curves were evaluated using the viscoelastic stress strain function (VSSF)35:

with strain rate dependent Young’s modulus E and relaxation strain εR. Equation (27) is derived from the time 
dependent solution of the Maxwell model if one substitutes the time by the strain assuming constant strain rates 
in the tensile test. The fitting procedure was as follows:

•	 export of raw data of a force F and a length change ∆L
•	 error analysis of F and ∆L
•	 consideration of an error propagation of a conversion to stress and the strain
•	 fitting of measured σ-ε-curves using VSSF
•	 determination of E and εR as well as corresponding standard deviations
•	 determination of adhesion factors kadh of filled compounds using Eq. (18) with EM and EF as input parameters 

from Table 2.

The stress–strain curves of BR compounds were taken from32, digitized and evaluated correspondingly to 
include an example of a rubber matrix composite.

Determination of adhesion factors.  If a filler matrix adhesion is reduced, a composite modulus decreases. As the 
modulus EEV according to the Eq. (18) represents the upper bound for kadh = 1, it is used to determine the adhe-
sion factors of the composites depicted in Table 2. The fitting was done for each composite modulus EC using the 
Excel solver tool. In cases of several measured EC this allows for providing standard deviations (STD).

Scanning electron microscopy (SEM).  Tensile test bars of PA66 and PBT compounds (type 1A according to ISO 
527-2) were fractured under cryogenic conditions in a liquid nitrogen after approximately 5 min of storage. The 
fracture surfaces were sputtered by gold layer for 90 s at 20 mA, 0.1 mbar in an argon atmosphere. SEM (JEOL 
JSM-IT100, Japan) equipped with a tungsten cathode was used to investigate the structure of the fracture sur-
faces at 5.0 kV under vaccuum conditions.

Finite element analysis (FEA).  FEA using the software SIMULIA/ABAQUS2020 was performed in 2D for the 
middle plane of the EV, where maximum stresses occur. A 3D simulation would provide the same stress distri-
bution for the middle plane. A mixed mesh of triangle (S3) and rectangle (S4) shell elements with linear shape 
functions were used. The total number of elements for each arrangement was approximately 53,000. The nodes 
at the top and bottom were coupled in y- and z-directions with a reference node using a kinematic coupling 
constraint. For the reference node at the bottom all translational and rotational degrees of freedom were fixed 
to u1 = u2 = ….. = u6 = 0. For the reference node at the top, all degrees of freedom except for the translation in 
y-direction were fixed as well. The displacement in the positive y-direction (u2) was defined at the top node to 
apply a uniaxial tensile load. Static linear analysis was carried out by implementing materials properties as a filler 
modulus EF and a matrix modulus EM, a filler Poisson ratio µF and a matrix Poisson ratio µM, and a filler vol-
ume content vF. Filler content dependent EV arrangements in a cubic and a hexagonal lattice were investigated, 
Fig. 3. Maximum achievable filler contents are vF,max = π/6 ≈ 0.52 for cubic and vF,max = π/

√
27 ≈ 0.60 for 

hexagonal arrangements. For given technically relevant filler volume contents below 0.4 both arrangements are 
identical with respect to a space filling but not to a force flow under uniaxial loads.

Results and discussion
The tensile properties of PA 66 and PBT composites were determined according to ISO 527 and evaluated using 
the VSSF, Table 3. Both PA66 and PBT compounds showed a stiffening effect with increasing GB contents, 
whereas reinforcement is only found for the PA66 compounds indicating a higher filler matrix adhesion. Moduli 

(30)σ(ε) ∼=
︸︷︷︸

ε<εR

EεR

(

1− e
−

ε
εR

)
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determined by ISO 527 are smaller than those determined by the VSSF because the strain rate of 10%/min is not 
reached yet at strains ε1 = 0.05% and ε2 = 0.25%.

The adhesion factors kadh were determined by a fitting procedure that brings calculated moduli EEV according 
to the Eq. (18) to coincidence to measured moduli EVSSF. The comparison of EEV to calculated moduli EC accord-
ing to Ishai-Cohen, Paul and Halpin–Tsai with ξ = 2 for the transversal case shows that fitting the composites 
moduli according to Eq. (18) provides reasonable values of the adhesion factors, Table 4. It confirms that Paul 

Figure 3.   Cubic elementary volume model for FEA simulations: (a) cubic and (b) hexagonal lattice 
arrangements. Note that this EV representation holds also for unidirectional fiber systems if the load acts only 
perpendicular to the fiber axis.

Table 3.   Tensile properties of composites. For BR compounds the standard deviation could not be determined 
because there was only one stress strain curve for each compound available in Lohrmann32. For PE-LD and iPP 
the data were taken directly from Chimeni et al.33 and Balkan and Demirer34.

Matrix

Filler content vF Modulus EISO 527 Tensile strength σmax

Tensile elongation 
εmax Modulus EVSSF Relaxation strain εR

– MPa % MPa %

PA66 0 3143 ± 14 81 ± 0.3 3.9 ± 0.5 3197 ± 28 9.4 ± 0.2

PA66 0.16 4811 ± 22 91 ± 1.1 3.1 ± 0.8 4955 ± 44 7.8 ± 0.1

PA66 0.23 5299 ± 45 86 ± 0.2 3.7 ± 0.5 5452 ± 48 7.2 ± 0.1

PBT 0 2704 ± 18 59 ± 0.1 10.8 ± 1.4 2754 ± 25 9.4 ± 0.1

PBT 0.12 3581 ± 32 57 ± 0.1 3.2 ± 0.2 3691 ± 33 5.9 ± 0.1

PBT 0.19 4254 ± 30 55 ± 0.1 2.0 ± 0.6 4408 ± 39 5.4 ± 0.2

BRunsized

0 – – – 7.0 6.2

0.15 – – – 11.0 6.3

0.30 – – – 16.8 8.0

0.45 – – – 48.0 0.7

BRsized

0 – – – 6.9 5.0

0.15 – – – 9.9 4.6

0.30 – – – 19.2 5.5

0.45 – – – 52.2 1.1

PE-LD

0 – 8.4 ± 0.2 – 98 ± 5 –

0.15 – 7.8 ± 0.5 – 124 ± 6 –

0.30 – 6.2 ± 0.3 – 175 ± 27 –

0.45 – 3.3 ± 0.1- – 219 ± 76 –

iPP

0 – 31.1 ± 0.5 14.7 ± 0.4 1070 ± 20 –

0.10 – 26.0 ± 1.7 10.6 ± 0.8 1230 ± 10 –

0.20 – 18.8 ± 4.9 6.1 ± 1.6 1280 ± 20 –

0.30 – 15.9 ± 1.3 45 ± 1.2 1310 ± 20 –
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and Ishai-Cohen models represent the upper and lower bounds, respectively. The calculated moduli according 
to Halpin–Tsai provide reasonable EC values, but the efficiency factor ξ is hardly related to filler matrix adhesion 
as the calculated EC can be larger or smaller compared to the measured ones.

For the polar polymer matrices PA66 and PBT, kadh is found to be around 0.6 and 0.5, respectively, whereas 
it is smaller than 0.25 for the nonpolar polymer matrices iPP, PE-LD and BR, which is in accordance with the 
surface energies shown in Table 1. In spite of rather low kadh all analyzed composites exhibit stiffening due to GB 
introduction as they always exceed the stiffening limit.

The comparison of measured Young’s moduli of GB filled PA66 and PBT composites to calculated ones, Fig. 4, 
confirms that the models of Ishai-Cohen and Paul represent the lower and the upper bounds. The measured 
Young’s moduli lie between these bounds as well as the calculated moduli according to Halpin–Tsai with ξ = 2 
and EV with kadh = 0.6 (PA66) and 0.5 (PBT). Both reproduce well the measured Young’s moduli, but only the 
EV provides the quantitative information concerning the filler-matrix adhesion.

SEM images of PA66 and PBT composites show a fracture surface with embedded GB, which are partly 
covered by the matrix indicating rather poor filler-matrix adhesion, Fig. 5.

Better adhesion seen for the PA66 composite correlates with its higher kadh. Small fibrils partly visible on the 
fractured surfaces of both the PA66 and PBT composites correspond to ductile failure of the matrices. It seems 
that the fracture behavior becomes more ductile, the higher the GB content is.

Similar increases of filler content dependent Young’s moduli of elastomer (BR) composites were found for 
all models, Table 4, showing a stiffening effect although the adhesion factors become small. The introduction 
of a coupling agent to one BR composite has hardly an effect. The Halpin–Tsai model produces similar Young’s 
moduli as the EV with kadh between 0.02 and 0.05 for vF = 0.15 and 0.30. For vF = 0.45 all models generate too 
small Young’s moduli. This can be attributed to the fact that at high filler contents, particle interactions become 
stronger going along with the formation of a particle network with significantly higher modulus36. On first sight 
this issue could be eliminated by allowing adhesion factors exceeding 1. However, it turned out that the models 
of Ishai-Cohen and Paul limit the filler volume content dependent stiffening factors to:

From Fig. 3 it is obvious that the cubic arrangement of EV leads to less shear stresses compared to the hexago-
nal arrangement although the only difference is that each 2nd layer of EV is shifted by one half of the edge length. 
This is confirmed by purely elastic FEA simulations showing that the stress distributions differ significantly for the 
cubic and hexagonal EV arrangement, Fig. 6. The stresses have to be interpreted with respect to tensile strengths 
of matrix and GB, whereas σy,GB >  > σy,M. For all cubic arrangements the maximum stresses occur between the 

(31)Ishai−Cohen s(vF) =
EEV

EM
=

vF

1− v
1
3

F
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2.9
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=

1

1− v
1
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vF=0.45
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Table 4.   Comparison of calculated GB content dependent Young’s moduli with evaluated adhesion factors kadh 
and its minimal stiffening limit kstiffeningadh,min =

√
EM/EF . a To calculate EEV the adhesion factor was set to kadh = 1. 

n.f. means “no fit available”.

Matrix

Filler content vF

Calculated Young’s modulus EC

Adhesion factor 
kadh

Stiffening limit 
k
stiffening

adh,minIshai-Cohen Paul Halpin–Tsai EV (EEV ≡ EVSSF)

– MPa –

PA66
0.16 4229 ± 35 5963 ± 44 4770 ± 32 4955 ± 44 0.604 ± 0.017

0.225
0.23 4899 ± 40 6940 ± 51 5408 ± 36 5452 ± 48 0.570 ± 0.013

PBT
0.12 3370 ± 30 4744 ± 37 3754 ± 26 3691 ± 33 0.478 ± 0.015

0.209
0.19 3895 ± 34 5608 ± 43 4449 ± 30 4408 ± 39 0.530 ± 0.013

BRunsized

0.15 9.2 14.9 10.7 11.0 0.031

0.0110.30 13.3 21.1 16.0 16.8 0.042

0.45 20.4 29.9 24.1 29.9a n.f

BRsized

0.15 9.2 14.8 10.6 9.9 0.025

0.0110.30 13.2 21.0 15.8 19.2 0.073

0.45 20.3 29.6 23.9 29.7a n.f

iPP

0.10 1263 1876 1407 1230 0.220

0.1300.20 1565 2414 1824 1280 0.190

0.30 1993 3010 2351 1310 0.180

PE-LD

0.08 112 173 125 124 0.100

0.0390.19 143 232 167 175 0.130

0.35 215 331 257 219 0.110
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Figure 4.   Comparison of relative Young’s moduli calculated according to Ishai-Cohen, Paul, Halpin–Tsai with 
ξ = 2, and EV for kadh = 0.5 and 0.6 (lines) with measured ones (symbols) for (a) PA66 and (b) PBT.

Figure 5.   Fracture surface of composites: (a) PA66/GB16, (b) PA66/GB23, (c) PBT/GB12 and (d) PBT/GB19.
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GB in the matrix forming the parallel stress lines in the composite part along the load direction, whereas in the 
interjacent matrix parts the stresses remain smaller. With the increasing filler content, the stresses in tensile 
direction increase leading to a failure of the interface, and cracks propagation perpendicular to the load. Nev-
ertheless, the stresses in both parts are always oriented in the parallel and uniaxial manner in tensile direction.

The hexagonal arrangement of EV shows stress pattern with in-load direction oriented oval “stress islands” 
around the GB particles. The minimum stresses occur perpendicular to the load direction in the matrix between 
the GB. The matrix stresses in the load direction between the GB seem to be more homogeneous compared to 
the cubic arrangement providing more deformability. With increasing the GB content, the stress islands unify 
and form shear stress band under an angle of 45° seen in Fig. 6—hexagonal/vF = 0.40. Both reduces moduli of 
the hexagonal arrangement in the load direction, Table 5, but the difference remains less than 10% for volume 
filler contents not exceeding 20%.

From Table 5 one can conclude that the properties of the EV are representative of composites properties for 
filler volume contents not exceeding 15 to 20%. In this filler content range, the EV arrangement effects remain 
in the order of the experimental error. For higher filler contents, the arrangement of EV starts to affect the com-
posites moduli due to increasing shear stresses. The two considered EV arrangements are boundary cases. The 
real EV arrangements lie rather in between, and thus the measured moduli should be smaller than those of the 

Global 
stress YY vF = 0.04 vF = 0.16 vF = 0.40

cubic

hexagonal

Figure 6.   Filler content dependent stress distribution in tensile direction (YY) of cubic and hexagonal lattice 
arrangements of EV under tensile load in y-direction. Note that the displacements in y-direction are represented 
in a magnified manner.

Table 5.   FEA calculated filler volume content dependent Young’s moduli of cubic and hexagonal lattice 
arrangements of EV with EM = 3200 MPa, EF = 63,000 MPa, µM = 0.42 and µF = 0.22.

Filler content, vF EC (cubic lattice) EC (hexagonal lattice)

EC ratio cubic:hexagonal– MPa MPa

0.04 3950 3914 1.01

0.07 4389 4308 1.02

0.16 5988 5656 1.06

0.22 7461 6827 1.09

0.40 14,534 11,632 1.25
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cubic arrangement, but larger than those of the hexagonal arrangement. It means that the adhesion factor kadh 
is under-estimated if the Eq. (18) is used for fitting.

Increasing of filler content ease crystallization for semi-crystalline polymers due to more nucleation sites. 
Thus, matrix moduli are increased due to higher crystallinities9. However, higher matrix moduli have the con-
sequence that the adhesion factors kadh are determined slightly smaller. This shows that adhesion factors are also 
affected by the choice of the matrix polymer.

Conclusion
The cube in cube models of Paul (upper bound) and Ishai-Cohen (lower bound) determine the moduli of particle 
filled composites assuming perfect filler-matrix adhesion. To take into account reduced adhesion between filler 
particles and matrix polymer their models were recalculated using an EV approach, and extended by an adhe-
sion factor kadh that scales the edge length of the cubic inclusion. It leads to the reduction of the filler content 
dependent composites moduli EC(vF). The modified Paul model in EV version as the upper bound of EC(vF) was 
used to fit experimental moduli of glass bead filled polymers and provided reasonable adhesion factors: 0.6 for 
polyamide (PA66), 0.5 for polybutylene terephthalate (PBT), 0.2 for polypropylene (iPP), 0.13 for low density 
polyethylene (PE-LD) and 0.05 for butadiene rubber (BR), which are in line with the corresponding surface ener-
gies. The modified model allows for design engineers to calculate realistic modulus of any particulate composite 
using only matrix and filler moduli, filler content and adhesion factor without performing tests. Further analysis 
of the modified model elucidated that stiffening only occurs if kadh exceeds 

√
EM/EF  and relates stiffening to the 

ratio of matrix modulus EM and filler modulus EF. This means almost all technical relevant filler contents lead to 
stiffening of the polymer. Furthermore, the EV approach shows directly that the moduli of particulate composites 
depend on particle shape—quantified by the efficiency factor k—and the dimensions within the EV—expressed 
by the normalized filler distance d which depends on a filler volume content.

Additionally, finite element analyses of cubic and hexagonal EV arrangements show that the spatial EV 
arrangement leads to differences of the filler content dependent composites moduli especially for high volume 
contents. Thus, the assumption “The properties of the EV are representative for the whole composites” only holds 
for filler volume contents up to 15 or 20%. The increasing difference between composites moduli calculated for 
cubic and hexagonal EV arrangement can be attributed to two limits of the cube in cube model: first, the occur-
rence of increasing shear stresses if EV arrangements deviate from cubic arrangements, and second, increasing 
interaction among filler particles with the formation of particle networks within the matrix disturbing the EV 
assumption of homogeneously dispersed particles. The modulus increase of rubber composite by factor 2 or 3 
if the filler content changes from 30 to 45%, respectively, cannot be explained within the cube in cube model 
anymore. From a practical point of view, where commercially available particle filled polymers have filler volume 
contents less than 20%, it is positive that the EV arrangement affects calculated composites moduli within the 
experimental error of 3 to 5%.

Data availability
The datasets generated during and/or analysed during the current study are available in the Zenodo open reposi-
tory maintained by https://​zenodo.​org/​record/​64602​62.
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