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Abstract

In this thesis, we present the theory of high-dimensional signal approximation of multi-
frequency signals. We also present both linear and non-linear compressive sensing (CS)
algorithms that generate encoded representations of time-correlated single photon count-
ing (TCSPC) light detection and ranging (LiDAR) data, side-scan sonar (SSS) and syn-
thetic aperture sonar (SAS). The main contributions of this thesis are summarised as
follows:

1. Research is carried out studying full-waveform (FW) LiDARs, in particular, the
TCSPC data, capture, storage and processing.

2. FW-LiDARs are capable of capturing large quantities of photon-counting data in
real-time. However, the real-time processing of the raw LiDAR waveforms hasn’t
been widely exploited. This thesis answers some of the fundamental questions:

e can semantic information be extracted and encoded from raw multi-spectral

FW-LiDAR signals?

e can these encoded representations then be used for object segmentation and
classification?

3. Research is carried out into signal approximation and compressive sensing tech-
niques, its limitations and the application domains.

4. Research is also carried out in 3D point cloud processing, combining geometric fea-
tures with material spectra (spectral-depth representation), for object segmentation
and classification.

5. Extensive experiments have been carried out with publicly available datasets, e.g.
the Washington RGB Image and Depth (RGB-D) dataset [108], YaleB face dataset!
[110], real-world multi-frequency aerial laser scans (ALS)? and an underwater multi-
frequency (16 wavelengths) TCSPC dataset collected using custom-build targets
especially for this thesis.

6. The multi-spectral measurements were made underwater on targets with differ-
ent shapes and materials. A novel spectral-depth representation is presented with
strong discrimination characteristics on target signatures. Several custom-made
and realistically scaled exemplars with known and unknown targets have been in-
vestigated using a multi-spectral single photon counting LiDAR system.

7. In this work, we also present a new approach to peak modelling and classification
for waveform enabled LiDAR systems. Not all existing approaches perform peak
modelling and classification simultaneously in real-time. This was tested on both
simulated waveform enabled LiDAR data and real ALS data?.

This PhD also led to an industrial secondment at Carbomap, Edinburgh, where some of
the waveform modelling algorithms were implemented in C++ and CUDA for Nvidia TX1
boards for real-time performance.

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/
2This dataset was captured in collaboration with Carbomap Ltd. Edinburgh, UK. The data was
collected during one of the trials in Austria using commercial-off-the-shelf (COTS) sensors.
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Chapter 1

Introduction

1.1 | Background

Laser based range sensing is fairly modern. NASA first began work on LiDAR prototypes
for eventual space exploration. These efforts were evident in the 1971 Apollo 15 Mission
where astronauts used a laser mapping sensor to map the surface of moon [1]. The
following decade scientists efforts were focussed on measuring atmospheric properties such
as: ocean water, forest canopies and polar ice sheets [87, 170]. Before laser based mapping,
high-resolution terrain mapping and profiling was achieved using photogrammetry and
Radar [67, 41]. Low-resolution mapping was achieved using radar or space stereo imagery.
Radar can penetrate cloud cover and efficiency over large areas made it very popular, but
it has certain limitations. Radar struggles to penetrate forest canopies to map ground

elevation and is prone to artefacts in urban areas and steep elevation.

The ground coverage of LIDAR based sensors are similar to photogrammetric sensors,
e.g. aerial cameras. LiDAR’s capability to provide geometry and high-speed scanning
is where they differ from other active sensing technologies. Early 2000’s saw a steep
rise in the amount of data generated by such sensors and an improvement in the data
processing techniques to handle and process such data. In comparison, state-of-the-art,
full-waveform LiDAR (FW-LiDAR) systems are capable of capturing 250,000 or more

pulses per second and capture multiple returns from individual pulses[179].
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Vegetation Returns

Ground Returns

Figure 1.1: Various real-world scenarios that benefit from FW-LiDAR systems. (Left)
Forest health monitoring (Source - NeonScience [126]). (Right) Underwater mine coun-
termeasures (Image still from War at Sea: Scotland’s Story, Source - BBC [156])

Laser range finding can be achieved using either triangulation or time-of-flight, of which
the latter is more suited for long range measurements. The principal methodologies for a
time-of-flight system include phase shift in an AM signal, measurement of frequency shift
in a FM modulated signal, or measurement of transmit-receive pulse separation [9]. A
3D image (or Point Cloud) can be constructed, either by recording the received radiation
of a static laser beam that encompasses the target on a focal array of independent pixels,
or the laser beam must be scanned across the scene. Some of the earliest commercial full-
waveform systems came to the market in 2004 [91] and with the increasing availability of
3D scanners there has been a significant push towards faster and more intelligent ways

to process such data.

1.2 | Motivation

A study by the UK ministry of defence (MoD) in 2010 identified several issues within the
signal processing domain, especially in cluttered and challenging environments. These are
jointly characterised these into themes and challenges [128]. Inference, in such complex
environments, is data driven and data is implicit to the sensing modalities used for
intelligence and counter-intelligence. In this thesis, we focus primarily on challenges 8
(Maximising the Information Capture from LiDAR Returns) and 12 (Signal Processing

Algorithms and Techniques to Manage Noisy 3D Point Clouds)[128].

Not only future battlefields, as illustrated in Figure 1.1, but also scientists and engineers

are making use of modern FW-LiDAR systems and assisting in solving other global
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Figure 1.2: An aerial scenario. This image illustrates how multi-spectral full-waveform
time correlated single photon counting data is collected.

problems. For example:

e Forest health monitoring, e.g. tree species and studying the undergrowth [125],
classification [32, 142, 175],

e Cloud and aerosol characterisation [32, 142, 175], and

e Driverless Cars, e.g. driving in bad weather.

High frequency state-of-the-art sensors demand efficient data management and intelligent
processing for effective situational awareness in complex and harsh environments, e.g.
dense forests, driverless cars and conflict management. This data primarily encodes
obscured information (targets). Signal processing is fundamental to decode such data,
detect anomalies and targets and to the capabilities of other communication systems.
Figure 1.2 illustrates an environment monitoring scenario. A FW-LiDAR, on-board an
aerial platform, transmits tens of thousands of pulses every second. The on-board sensor
can record and time stamp backscattered pulses down to a resolution of a photon. The
underlying motivation behind this work is to categorise a survey mission (e.g. aerial
mapping shown in Figure 1.2) into two phases: (i) Phase 1 - low-frequency scans (with

a larger laser footprint) that identify key regions of interests, e.g. anomalous spectra in
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Figure 1.3: Two phase approach to a survey mission, e.g. large dense forest or terrain.
Phase 1 - low-frequency scans coupled with real-time data processing identify anomalous
regions. Phase 2 - High frequency scans coupled with slower post-processing algorithms
for further shape and object type classification.

forest growth or spatial signatures; and (ii) Phase 2 - high-frequency scans (with a smaller
laser footprint) on the anomalous regions for shape and material characterisation. Figure

1.3 presents this idea as an illustration.

Researchers, in the last two decades, have suggested robust signal modelling (statistical)
techniques to process FW-LiDAR data. A detailed review is presented in Chapter 2.
In this work, we analyse full-waveform multi-spectral TCSPC LiDAR data, collected
using [114], 1D Sonar signals [74], synthetic aperture sonar and side scan sonar images
[131, 132, 74] to improve aerial and bathymetric situational awareness. The underlying

key idea of this thesis is:

We show that intelligent encoding (Chapter 3) can be more practical and effi-
cient in comparison to robust signal modelling techniques. The idea is to use
compressed representation of time-series FW-LiDAR data (Chapter 3) and
combine that with geometric (shape) and spectral properties (Chapter 6). We
also show how to detect spectral anomalies (Chapter 4) and classify objects in

LiDAR (6) and sonar data Chapter 7.

1.3 | Contributions & Outline

Figure 1.4 illustrates an outline and organisation of this thesis. An introduction and

background survey is presented in Chapter 1 and 2, respectively. Chapter 3 presents the
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theory and the algorithms developed. The use of these algorithms in practice and on
real-world LiDAR (aerial and underwater) and Sonar data is presented in Chapters 4, 5,

6 and 7.

e Chapter 2 describes Sonar and laser based distance measurement schemes along
with topographic LiDAR principles. A detailed survey is presented on the full-
waveform processing and modelling techniques. We also discuss sparse approxima-
tion and dictionary learning techniques and a high-level categorisation of sparse
recovery algorithm is presented. We conclude Chapter 2 by presenting a survey on

anomaly detection and dictionary learning techniques.

e Chapter 3 presents novel data approximation and dictionary learning techniques.
An optimisation and discrimination algorithm, Sparse discriminative signatures,
that can re-order and select a subset of dictionary atoms from a larger sub-space is

presented in Section 3.1.1. With the K-SAD algorithm, Section 3.2, we show that if

Anoamly Detection & Object Classification using
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Chapter 4
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we learn a discriminative orthogonal dictionary instead, learning and classification
run-time can be significantly reduced. These algorithms, with minor variations,
have been applied to 1D signals (acoustic and full-waveform LiDAR signals), 2D

images (side scan and synthetic aperture sonar) and 3D point cloud (LiDAR data).

e In chapter 4, we show how we make use of sparse discriminative signatures (Algo-

rithm 1) to detect anomalies in multi-spectral full-waveform LiDAR waveforms.

e In chapter 5, we consider the problem of extracting multiple peaks and classifying
them, simultaneously. We present an algorithm (Section 5.1), simultaneous peak
extraction and discrimination (SPeED), for the analysis and discrimination of small

foot-print airborne and terrestrial FW-LiDAR.

e Chapter 6 reports the analysis and discrimination of TCSPC LiDAR signals mea-
sured on custom underwater targets. In this chapter we use the novel non-linear
orthogonal dictionary learning algorithm, proposed in Chapter 3 (Algorithm 3) to
detect and classify underwater targets. Finally, we propose two shape representa-

tions that combine geometry and material spectra.

e Chapter 7 presents a signal approximation and discrimination approach that applies
to both 1D and 2D datasets. A two-stage approach to underwater sonar signal
discrimination is proposed. The work presented here is developed from an earlier
approach [53] to optimal classification of different tree species using synthetic 1D
photon count histograms. Here it has been extended to represent and classify

multiple types of targets in both 1D sonar echoes and 2D sonar images.

e Chapter 8 provides an overall conclusion to the thesis.
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Literature Review

2.1 | Sound Navigation and Ranging (Sonar)

Data collected using modern sonar systems can be highly redundant, consisting of a highly
correlated and densely sampled version of the physical world. Modelling and extracting
a compressed representation of the underlying scene and signal conditioning that leads
to that observation is highly beneficial for signal reconstruction and target recognition.
Such algorithms should capture salient features based on the generating cause, e.g., the
physical phenomena causing a spherical target to appear circular in a 2-D image plane.
The feature space is generally of lower dimension than the data space, and the focus
of this work is to identify such a representation, a dictionary, that supports Automatic

Target Recognition (ATR) for underwater mine countermeasures (MCM).

Active sensing for MCM requires the transmission of a pulse; for traditional side-scan
sonar (SSS) and synthetic aperture sonar (SAS), the pulse is a sound wave. In each case,
the transmitted pulse reflects from the target or the environment, then is recorded and
processed to form an image. Detecting and differentiating signals of interest from clutter
underwater is extremely challenging and has been studied extensively [23, 154, 77, 63,

76, 132].

In [23], authors propose an approach to reduce false detections by employing a probabilis-
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tic calibration scheme on top of support vector machines (SVM) and Gaussian Process
classifiers. They test their approach on SAS imagery of two target types. Although they
do not report state-of-the-art results, using uncertainty they seem to classify previously
unseen target types with significant confidence. In order to compute detection statistics,
Groen et al. [77, 76] propose a method based on target template matching. Detection
statistics with respect to vehicle speed and range are computed. Fundamentally, template

based approaches have degraded performance for unseen target classes.

In [76], the authors propose a model based matching approach to object classification.
Similar to the methods used in radar, templates generated by a sonar model are preferred
in their approach. The sonar models, for various objects with varying facets, were built on
several assumptions, e.g. the acoustic paths between the target and sonar always follow
a straight line, the target is assumed to be a 3D surface. Their detection was based
on a correlation operator and a probabilistic model matching scheme. The experiments
report reasonable results but recommend a maximum of 36 templates to be used when
the grazing angle is known within a few degrees. The number of templates could rise

when the grazing information is unknown.

A more sophisticated feature selection and classification scheme applied to underwater
object detection was proposed by Sawas et. al. [154]. The approach is highly influenced
by a feature selection approach, adaboost, a method for combining complex classifiers in a
cascade which assists in clutter removal. The overall algorithm complexity and detection
time using the cascade approach is very low. Authors in [132] propose an approach for
the classification of mine like objects (MLO) using Eigenfaces, motivated by the principle
component analysis (PCA) technique. They report state-of-the-art results both on SSS
and SAS imagery. Fakiris et al. [63] report a comprehensive study on MLO classification
on SSS imagery with 70 man-made targets. They propose an automatic detection and
classification scheme which is composed of three stages: texture based feature extraction,
dimensionality reduction using ICA, and finally, an unsupervised clustering approach for

classification.
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2.2 | Light Detection and Ranging (LiDAR)

Airborne and ground based LiDAR, when pulsed, measure the round trip time of a
laser pulse. In comparison, a continuous system measures the phase difference between
the reference and measured signal which is then mapped to a 3D point cloud. In an
urban scene, targets or objects are mostly distributed in space, the reflected signal in a
continuous system is the superposition of echoes (backscatters) at different distances. In
a discrete case with a fixed number of targets, the power of the received signal is the sum
of the contributions from N targets. The standard equation is borrowed from the radar

equation (2.2.0.1). For more details see [118§],

D? ([ Igys Natm 2R
P, (t) = zm?fo yR4 ™ p, <t - V—) o (r) dr. (2.2.0.1)

g

The combined power of the receive signal can be considered as the sum of contribution

of N objects with their individual characteristics:

P, (t) = Z Pri () * ngys (£) Nggm, (2) (2.2.0.2)

where P, is the received power, D is the receiving sensor’s aperture diameter, A the
wavelength, a the flying altitude, r the distance to the object, v, the group velocity
of the laser pulse, n,,, and 1, are the atmospheric and system transmission factors
respectively, o (r) dr the effective differential cross-section [176] and P,; (t) is the echo

from the iy, object with a spatial spread [r; + Ar, r; — AR].

The echo of the i object can be expressed as:

D2 R; +AR 1 2
Py () f — P, (t - —R> o; (r) dr. (2.2.0.3)

T 4AmA? ri—Ar R Vg
Laser scanners that provide one backscattered echo per laser pulse. We refer diffraction

cone as the area covered (in 2D) by the laser beam on the ground. Several pulse scanning

systems are capable of recording more than one pulse, e.g. first and last pulse. Thiel et
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al. [165] have shown how to discriminate up to six individual returns from a single pulse.

2.2.1 | Waveform Processing

In the case of dense vegetation and forest scenes, the first echo often belongs to the canopy
and the last belongs to ground, but this is not always true. In order to verify this we can
make use of 3D visualisation tools that can plot the 3D point cloud. Full-waveform LiDAR
systems such as [91] have the ability to record the complete waveform of the backscattered
echo signal. Such systems sample at a frequency of around 1GHz and are capable of
capturing the entire profile distribution of object hit by the laser pulse. Full-waveform
LiDAR returns can be decomposed into a sum of echoes. These echoes, geolocated or
arranged in a 3D grid, result in a 3D point cloud (Section 2.2.1). The resulting point cloud
data can be used for interpretation, e.g. point classification, building reconstruction,
segmentation etc. We begin this section presenting few signal processing methods that
can detect faint echoes and characterise such echoes with additional information (e.g.,

surface and geometry)

With the advancements in the laser radar sensor industry research in sensing through
foliage using such sensors is fairly new. In the past LiDAR sensors have been used for
forest scene segmentation and tree classification [140]. Military vehicle detection [133, 127,
121, 10] using LiDAR sensors has been very popular. Recent works include MIT Jigsaw

program [113, 171], algorithms and techniques by the Swedish Defence Research Agency

Figure 2.1: Left: Aerial image of City of Amiens. Right: Difference between last and
first pulse digital elevation map (DEM). Source: Mallet et al. [118]

10
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(FOI) [78, 159] and applications in Automatic Target Recognitions [11, 194, 162, 115]

have surfaced recently.

Signal Modelling Modelling of full-waveform LiDAR signals has been an active area
of research which involves the processing of raw data (1D signals) to extract range (depth)
and material spectra. Parametric approaches are always chosen to model echoes within
a waveform and mathematical models characterise the shape and reflectance properties
of such echoes. Methods such as Non-linear least Square (NLS) [88, 140] or a maximum-
likelihood method to model the waveform as a mixture model [137] can be used. For
small foot-print LiDAR waveforms, Wagner et al. [176] has shown that we can model a
full-waveform liDAR signal as a sum of Gaussian pulses. Recently, Wallace et al. [179]
used a Bayesian approach [85] to model liDAR signals with a specific modelling function,
e.g. a set of piece-wise exponential functions. A grammar of such functions is defined
and an optimisation technique is suggested resulting in the detection of faint echoes and

a dense 3D point cloud.

Mathematical models can be used to define a set of parameters representing a waveform.
We would like to represent a backscattered waveform with such models for: echo (peak)
estimation in a signal and characterise shape and reflectance characteristics of the ob-
ject that falls within a laser footprint. This section is dedicated to describe methods
for waveform modelling (Non-linear methods [98], Maximum Likelihood based methods
([139]) and Herndndez-Marin et al. [85] state-of-the-art stochastic approach ). Please
see Mallet et al. [118] for further details and comparisons. Below we present a brief
discussion on the reasons behind waveform modelling and how it is relevant to this work.

We begin this section by formally defining a waveform function.

Let us represent a waveform as a function y = f(z;). This function needs to be decom-

posed into a sum of N components:
N
Vi = Z Yr () + bi, (2.2.1.1)
k=1

11
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Figure 2.2: Full-waveform signal recorded for a single pixel. The horizontal axis is the
round-trip distance and the vertical its amplitude. Source: Wallace et al.[179]

where v is the echo model with a set of parameters 6 (f = >}, ), f is the waveform

-----

waveform, and b is the background noise.

Wagner et al. [176] proposed a method that considers a waveform as a mixture of Gaus-
sian distributions. Received waveforms are a convolution between the transmitted pulse
(mostly Gaussian with a calibrated width) and the surface scattering function within the
laser footprint. When the laser footprint (laser pulses that travel longer distance diverge

and create a large footprint) is large, the Gaussian assumption holds well.

In urban scenes laser peaks are distorted (subject to roof tops and vehicles and their
materials). Chauve et al. [45] proposed a more generalised Gaussian function to improve
signal fitting. Persson et al. [137] propose a pulse detection method based on an itera-
tive Expectation-Maximisation (EM) approach. They assume the return waveform as a
sum of Gaussians, but it is possible to extend it to other probability density functions.
Hernandez-Marin et al. [85] propose a method to fit terrestrial LIDAR waveforms with
a set of four piecewise exponential function. This method creates a library (grammar
or bag of words) of such functions that can be defined and adapted. Decomposing a

backscattered signal into its individual components is an essential first stage in 3D laser

12
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mapping. Figure 2.2 illustrates an example of a full waveform that is recorded for an

individual pixel of a distributed target.

The above method [85] does not assume or fix the number of peaks in the returned
waveform. However, it can detect even faint returns (mostly echoes of target closer to
the ground). One major drawback with this method is that it is iterative and are not
practical for real-time applications. Experiments in Chapter 4 show further comparisons
and results. For urban scenarios, the method proposed by Kirchhof et al. [104] shows

improvement in range estimates of opaque and semi-penetrable objects.

Echo Extraction and Classification There are two main motivations behind signal

processing of backscattered waveforms.

1. Decomposing the waveform into a sum of components of echoes and characterising
them in order to detect objects along the path of the laser beam. Maximising the
rate of detection is most desirable in such a scheme in order to generate denser
3D point clouds and then foster signal processing capabilities for information ex-
traction. Such a scheme is highly beneficial to remote sensing and archaeological

applications (e.g., segmentation of forestry data and artefact reconstruction).

2. Spatio-temporal signal analysis is performed and features are extracted within a 3D
waveform space. One of the main advantages with the later scheme is the capability
to extract faint echoes in a full-waveform signal. In this section we first look at some

of the methods that determine range and extract echoes for object discrimination.

Surface Modelling Jutzi el. al [98] proposed an approach that models the emitted
pulse, the surface, and the backscattered pulse in order to extract surface features. They
perform deconvolution to remove the properties of the emitted signal from the received
signal in order to obtain surface responses. Further, temporal position, length and ampli-
tude of the corresponding surface features are approximated by Gaussian functions using

the Levenberg-Marquardt method. Their experiments show that surfaces with a distance

13
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corresponding to less than 0.15m can be resolved.

The received pulse is computed using the LiDAR equation ((2.2.0.1)) and incorporates
the physical principles into their models, e.g. geometrical reflectance, material reflectance
and multi-surface reflections to describe the influence of the surface on the laser beam.
In our work, we strongly believe that such an approach can be used to detect anomalies
in the signal domain and also to reduce the search space within the point-cloud in order
to perform high-level tasks, e.g. segmentation and recognition. The steps involved are

listed below:

1. Detect pulse with a noise dependent threshold using the emitted pulse model

2. Remove emitted pulse characteristics from the received waveform by performing

deconvolution in the frequency domain
3. Estimate the surface response using the Wiener filter

4. Waveform fitting using the LM method

Faint Echoes

Most of the methods discussed so far require echoes to be modelled with an analytical
function. Stilla et al. [160] show an interesting waveform stacking technique that es-
tablishes neighbourhood relationships between consecutive waveforms and improves the
signal to noise ratio. By means of mutual information accumulation they generate a
hypothesis for planes with different slopes. Each signal is then assessed by a likelihood
value with respect to the accepted hypothesis. Finally, they perform classification apply-
ing thresholds. Figure 2.3 illustrates the approach. Compared to standard algorithms

this method predicts faint echoes as can be seen in Figure 2.4.

Improving point density and range

With full-waveform LiDAR systems we aim to make use of the entire waveform to generate
a dense 3D point cloud. The accuracy in range/distance estimate and point density
has an direct impact on the quality of man-made object segmentation or recognition

in a 3D point cloud. In an urban scenario or poor weather conditions, e.g. fog, rain

14
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Figure 2.3: An advanced faint echo extraction method proposed by Stilla et al. Source:
Stilla et al. [160]

or smoke, objects can be occluded, partially penetrable (e.g., glass windows and roof
canopies) or even impenetrable. Robust distance estimate can improve object boundaries
for object reconstruction and segmentation. Kirchhof et al. [104] propose a method to

improve the point density and distance estimate which in turn improves the segmentation

Figure 2.4: (Left) Pulses detected by standard peak method. Black: no pulse; White:
(Right) A traffic light paradigm used to show faint echoes that are

pulse detected.
Red: no pulse; Yellow: unknown; Green: weak echo.

detected using this technique.
Source: Stilla et al. [160]

15



Chapter 2: Literature Review

accuracy. They aim to fill gaps in partially occluded surfaces in an urban scenario with
an assumption that the laser pulse hits a planar surface with a slope. Using a matched
filter the surface response is modelled. Figure 2.3 illustrates their approach. First they

estimate the interaction between the surface and laser pulse, surface response.

2.2.2 | Seeing Through Foliage and Clutter

When processing full-waveform LiDAR data to detect objects hidden behind foliage, the
first echo may belong to canopy and the last return to the ground; but this is not always
true. Hence, in order to confirm this, a 3D point cloud of the surveyed area is required.
So far, we have seen literature that focuses on waveform modelling (transmitted and
received) combined with surface modelling and methods that improve range/distance
estimate for more accurate 3D point clouds and also echo classification in applications
such as segmentation. Most of these methods do not consider the geometric properties of
the surface except for [104] where the authors use the geometric properties to pre-segment

occlusion and foliage.

Kirchhof et al. work is the closest we have found that aims to model and segment foliage
at the 3D point level. Wagner et al. [176] have given a theoretical background into the
interactions of a laser beam with the atmosphere, roofs, trees, power lines etc. Almost
all the methods described so far neglect the mitigation of the laser beam when travelling

through a tree volume.

Chehata et. al [47] present an approach highly influenced by the image processing com-
munity to segment urban scenes into different classes (vegetation, buildings, artificial
surface and natural surface). Their features are a fusion of three optical components
R,G and B, five multi-echo LiDAR components and four full-waveform components. The

resulting feature vector f, is given by:

fo=[RGB; A, N,R,N.; Awoa]" (2.2.2.1)
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For the sake of completeness, we list the features in detail below:

e R, (G, B: 3 optical components, e.g., colors.

e A.: height difference between the lidar point and the lowest point found in a large
cylindrical volume whose radius can be set experimentally. This feature helps in

discriminating ground and off-ground objects.

e N,: deviation angle of the local normal vector (a local plane needs to be computed)

from the vertical direction. This is a strong feature that highlights the ground.

e R,: residuals of the local plane estimated in a small voxel (3D spatial boundaries,

spherical or cylindrical). In general residuals are high for vegetation.

e N: total number of echoes within the waveform for a LiDAR point. This feature

will be high for vegetation and building facades.

e N. normalized number of echoes obtained by dividing the echo number by the
total number of echoes within the waveform of the current LiDAR point. Again,

this feature highlights the vegetation.

e A: echo amplitude. High amplitude values can be found on building roofs, on
gravel, and on cars. Streets (asphalt or tar) have lower values. The lowest values

may also correspond to vegetation due to higher attenuation.

e w: echo width. Higher values correspond to vegetation since it spreads the lidar
pulses. A narrow pulse is likely to correspond to ground and buildings. However,

this is not the case with higher roof slope.

e 0: echo cross-section, equals to A x w. The values are high for buildings, medium

for vegetation and low for artificial ground.

e o: echo shape describing how locally distorted the waveform is. Chauve et. al [45]
shows that very low and high shape values correspond relatively to building roofs

and vegetation.
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Machine learning methodologies (support vector machines and random forests) have been
applied to learn several representations using a set of training images and LiDAR signals
to learn and classify data in to several classes((vegetations, buildings, natural ground
and artificial ground etc.). A similar approach using support vector machines (SVM) is
proposed by [44]. Intuitively these methods are attractive and easy to implement but a
detailed analysis on the influence of individual features is missing. Also, these approaches

are not tested on objects hidden in dense forests and partially occluded.

With an efficient ground plane estimation, we can filter out remaining points into un-
natural objects. We have identified methods [140, 143] that map, segment and classify
various tree species. These methods segment single trees from the rest of the 3D data
using dense full-waveform returns. They exploit a voxel based method to segment an
entire tree and special tree saliencies (features) are computed to classify trees into two

categories: deciduous and coniferous. Their approach is split in to three main steps:

1. Waveform Modelling Decompose a full-waveform signal into its individual compo-
nents using Sum of Gaussian method similar to [176]. Extract 3D point clouds.
Each point also bears additional information such as Width, twice the height stan-
dard deviation and Intensity, approximated as twice the standard deviation times

the amplitude;

2. Feature extraction Features are made up of geometric x, y, z cues, internal geometry
cues inspired by tree characterisation methods [125] and finally intensity informa-

tion derived using the waveform decomposition step.

3. Classification This is a 2 step procedure that perform clustering of the tree species

followed by a Bayesian classification.

Some of their segmentation results can be seen in Figure 2.5.

Results by Reitberger et al. [140] and others involved in tree segmentation and classifica-
tion operate on a large dataset (forest areas spread over kilometers and sensing altitudes

of 500 meters in altitude). When looking for targets under trees we will encounter dense
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Figure 2.5: Some examples of tree segmentation using the methods presented above.
(Left) A regiont of interest (ROI) into a voxel structure before processing. (Middle) Two
segmented trees (A and B). (Right) Examples of segmented trees. Source: Reitberger et
al.[143]

forest and targets which are relatively 10 to 15 times smaller and camouflaged. But such
objects (e.g.,vehicles) are mostly on the ground plane and extend to < 2 — 4 meters
above it. Recent work by the Swedish Defence Research Agency (FOI) [159, 78, 79] have
proposed spatial filtering methods and algorithms that make use of object separation in

3D point cloud data in order to segment out objects for further recognition.

Spatial Filtering Gronwall et al. [79] propose a framework for object detection and
classification. Their philosophy towards object (target) detection is a scheme that com-
plements on two sub tasks: firstly, data reduction in order to identify everything except
the target while preserving information that defines the target; secondly, point charac-
teristics that define a particular class of target. Their approach breaks down non-target
points in a scene into 3 logical categories: foreground clutter (outliers or points that
do not belong to a homogeneous region), points above a certain elevation (height) and
vegetation. They back this philosophy with a strong set (11) of assumptions. Although
most of them are implicitly assumed in several cases (e.g., target being on the ground
and ground surface being within the field-of-view) some of them are target specific (e.g.,

dimensions of the target to be known as prior and target being impenetrable). They
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Figure 2.6: Sample results from [79] where authors have applied spatial filtering methods
on point cloud data to separate targets from foliage and undergrowth.

make similar assumptions on the geometry of trees.

Combined with these assumptions and several ad-hoc features, e.g., elevation, tree trunks,
clutter type A, clutter type B, planar surfaces, local convex regions and rectangular
shadows, they test on real world LiDAR images and report their results. Their analysis
shows that with the help of all 7 features they achieve a detection rate of 70% with a
false alarm rate of < 0.015. Out of the 30 datasets, 70% were used for training and 30%
for testing. Figure 2.6 illustrates a sample scene and the data used by Gronwall et. al
[79]. The authors claim that they achieve better results from elevated sensors , e.g., drone
or aerial, perspective compared to a ground-to-ground perspective. Their algorithm also

suffers if the ground estimate is not accurate.

Their approach significantly reduce clutter (non-target points) is to have an efficient pre-
processing step that cleans the data. Their list of 11 assumptions do not apply in an
urban scenario. In a forest environment, the target shape can be more structured than
the environment itself but this is not particularly true for an urban city scenario. Finally,
this approach is evaluated only on geometric data. No spectral or polarisation data is

considered.

Jigsaw The Jigsaw [113] is a program started in the year 2003 in collaboration with
MIT, Sarnoff. Funded by The Defence Advanced Research Projects Agency (DARPA)

and U.S. Army, the aim of the program was to support troop survivability by offering
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robust situational awareness and accurate target identification. In a networked battlefield
scenario, the Joint Commander Control is required to make a decision based on infor-
mation that is made available. Using a light weight UAV equipped with LiDAR based

sensors, a similar scenario can be imagined to support ground troops.

Jigsaw is a concept which is made up of a sequence of events which begins with a handover
of a set of geo-locations (accurate with +10 meters), the military aircraft flies to the
location with their in-house LiDAR sensor along with other set of sensors and collects
3D data. Their goal is for total latency in fifteen minutes, which includes data collection,

processing and transmission from airborne platform to ground stations.

Their LiDAR sensor design is illustrated in Figure 2.7 along with the laser, detector array,
Risley scanner and transmit-receive optics. This entire unit is manufactured to fit in a
30" diameter gimbal along with an Inertial Measurement Unit (IMU), a visible camera,
and a long-wave infra-red (LWIR) camera. Some of the notable sensor parameters used
are: Laser wavelength - 532nm, laser pulse width - 300ps, receiver aperture diameter -

7.5¢m and range resolution of 40cm.

Duplexer mirror . Transmit optics Risley
scanner

Obijective

APD array

Microchip

Receive path

T it path —
s Diffraction beam

Figure 2.7: (Left) Optical path in the Jigsaw Sensor (Right) The sensors optical head,
with all the components integrated. Source: Marino et al.[113]

)
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2.3 | 3D Data Processing: Shape and Geometry

With the help of Sarnoff Corporation and Harris Corporation in the U.S. the Jigsaw team
have created a suite of data processing algorithms. They convert raw data into a set of
3D (z,y, z) points and range histograms. Vaidyanathan et al. [172] use Spin Images [97]
on a wide range of military vehicles and perform detection and recognition using machine
learning. We present Spin Images in section 2.3 as part of geometric profiling of shape of

objects.

Object Detection and Classification So far we have looked at methods and modalities
that deal with 1D signals. We have looked at methods that extract objects (targets) from
a 1-D backscatter waveforms. In this section, we present a review related geometric object
modelling methods that surround Partial Retrieval of objects. Since data correspondence
in a dense 3D point cloud is not fully solved and occlusion gives only a partial view of an

object our focus has been towards Partial Shape Retrieval methods.

Partial Shape Retrieval (Detection and Recognition) We define partial retrieval
as the goal to detect and recognise a moving or stationary object of interest. We refer
“partial” here (in a 3D shape) meaning that it is composed of one or more semantic shapes
and can be characterised by a sub-set of shapes belonging to ‘object’. No assumption
is made that the set is complete and is a full-shape, it can be relative. A tank turret
is part of the tank shape and the barrel a part of its shape. Its relevance is application
dependent. If a search analogy is taken, then we are interested in searching for a part
(‘sub-set’) in the whole object (‘set’). We can consider this as an ‘object-to-object’ search

but with similarity measures that are based on partial matches.

Partial shape based retrieval methods need to address address difficulties such as: partial
matches, partial correspondence and shape matching and partial similarity measures. We

categorise partial retrieval methods based on local and global saliencies:

1. Point based descriptors
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2. Segmentation based methods
3. View based methods

4. Statistical shape modelling

For the sake of brevity and scope of this document we will summarise (i) Point based
descriptors and (ii) Segmentation based methods. Point based descriptors are most rele-
vant for partial retrieval of objects in dense point clouds. We present some segmentation
methods that have been successful to segment and recognise whole objects in computer

aided design (CAD) like datasets.

Some of the most widely used point based features are Surface Normal and Curvature [6].
These do not discriminate underlying surfaces very well except when the scale chosen is
very small and the data is dense. These are local features that characterise a point and
the region around it. Previous work related to point features are: Moment Invariants
[150], Integral Volume Descriptors (IVD) [70], Spherical Harmonic Invariants (SHI) [34]
and a few shape correspondence methods. These are translation and rotation invariant
but they do not discriminate the surface they are part of. Additionally, when the data is
sparse; and when scale needs to be chosen in order to compute these features. These are
points with a ’single-value’ point-descriptors and may not be expressive enough and their
values highly depend on the sensor and noise. Multi-point descriptors such as Curvature
Maps [174] and Spin Images [97] were proposed originally for 3D meshes and have better
local characterisation. But these methods do not deal with partial view and occlusion
very well.

Methods such as Extended Gaussian Images (EGI) [90] describe the object on a unit
sphere and tend to have problems handling arbitrary curved objects. Eigen-shapes [36]
show impressive results, but most of their data is CAD models and is tested on synthetic
data. Spherical harmonic invariants (SHI) and spin images work well in dense point-cloud
datasets, but their performance seems to degrade for noisier and sparser datasets [21].
Moment Invariants, SHI and IVD are successfully used in point cloud registration, but

they do not encode the ‘surface-type’ information which is highly desirable but are not
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robust against occlusion.

Point based Descriptors This review shall focus on some of the below:

e How are surfaces defined and how to define parts?

e [s parametrising them the correct approach?

Should objects be considered in their entirety or point based features suffice?

Should segment-based object detection approach be used? [19]

Single value features (e.g., curvature, normal) or multi-value features (curvature

maps, spin images)?

Should we handle part organisation?

What similarity measures to use?

A point descriptor is usually a scalar or a vector that is a function computed around
an individual point that captures certain information, e.g., Gaussian curvature. Here we
discuss some of the point based descriptors recently proposed: Spin Images [97], Local
Spherical Harmonics Descriptor [102], Heat Kernel Descriptor [58] which is based on the
fundamental solution of the heat equation [161] and a variant of Spin Images (Point
Feature Histogram [149] and View Feature Histogram [148]) that are popular with the

robotics and machine learning community:.

Spin Images Spin images is a technique proposed by Johson et al. [97] that maps all
the vertices in R? — R? based on an oriented point basis (p,n). In other words (z,y, 2)
are mapped in to coordinates («, 5). Figure 2.8 illustrates the basic idea. Here « is the
perpendicular distance to the normal line L, and § is the signed perpendicular distance

to the tangent plane P.

Once the basis formed, the neighbours are projected onto a cylindrical coordinate system,

and a 2D image is generated which represents a density histogram of points with respect
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2D Points

-
Spin-lmage

Figure 2.8: (Left) Spin image and its local coordinate system. (Right)3D model and 2
sampled spin images. Source: Johnson et al. [97]

to the basis. By embedding a 3D shape as a manifold, pair-wise geodesic distances are
preserved which makes the descriptor robust to isometric transformations. Recent work
by Sipiran et al. [171] show that partial shapes can be detected using spin images, but as
part of this work we have tested their approach on synthetic CAD style data with high

point density.

Local Spherical Harmonics Descriptors Kazhdan et al [102] first proposed a
Spherical harmonic descriptors (Global) for a 3D model. The descriptor is constructed
on several concentric spheres centring at the mean point. The same concept can be
applied locally to capture local information. Local spheres with different radii are cen-
tred around a point of interest and a binary identification function is defined in order
to evaluate intersections and non-intersection relationship between each sphere and the
underlying mesh. Using different frequency vectors, the spherical function is decomposed
into harmonic functions. This can be used to analyse local surfaces [13]. The descriptor
is robust to rotation and translation transformations but is susceptible to non-rigid de-
formations. When looking for rigid objects (e.g., vehicles and buildings) this approach

can be robust.

Diffusion Geometry & Heat Kernel Descriptor . This work has received a lot
of attention since published in 2010 by Ovsjanikov et al. [130]. The idea here is to find

structure-preserving maps between shapes. Heat kernel descriptors are derived from the
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heat diffusion equation by using the Laplace-Beltrami operator on manifold. Laplace-
Beltrami operator, in its generality, is a Connection Laplacian, or a differential operator
acting on several tensors of a manifold. This approach can extract non-rigid features on
surfaces and any volumetric representation. The paper gives convincing results (Figure
2.9) in partial extraction and detection, e.g., human arms, horse legs and elephant trunks.
Due to its intrinsic property, heat kernel is insensitive to isometric deformation and robust
to fine variations. One of the drawbacks to this approach is that the scale needs to be

normalised as it cannot handle different scales of a shape.

Figure 2.9: Partial matching using a heat kernel descriptor. Source: Ovsjanikov et al.
[129]

Other point based features Partial similarity can also be computed at point level.
We study this by looking at methods and approaches applied to indoor robotics appli-
cations. We discuss the Point Feature Histogram [149]. PFH is an informative pose-
invariant local features which model underlying surface model properties. The dissim-
ilarity between the descriptors should be high enough to categorise them into different
surfaces or shapes. The computation procedure is similar to spin images [97] and is based
on the combination of a geometric relation between a point p and its nearest k neigh-
bours. A basis coordinate system is fixed which incorporates a 3D point < z,y, 2 > and
its surface normals < nx,ny,nz >. The author also suggests the use of other properties

such as curvatures and 2nd order moments.
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Generic shape representations Csakany and Wallace propose an approach in [55]
to segment and classify 3D objects by representing an object by generic shapes. This
work addresses the problem of representation and classification of 3D-objects from depth
data or meshed data. Firstly, they segment surface patches on the basis of curvature and
quadratic surface fitting. Secondly, they are represented by a modified Gaussian image
which includes shape based indexes. Finally, they perform learning and measure the
similarities between feature sets of objects and generic classes. This framework is tested
on a group of 3D objects built using CAD models and laser scanned depth data.

Their are few drawbacks to this approach. Representing objects with a set of generic
shapes (quadratic surface) is going to work on organised point clouds or dense CAD
style datasets. Another implicit assumption in this work is made on the wholeness of
the objects and this approach has not been tested under occlusion or even sparse point
clouds. In the case of objects hidden behind dense foliage, we have to deal with problems

such as: occlusion, missing points, shadows and ghost points.
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Figure 2.10: Tensor Voting Framework as proposed by Medioni et. al [123].

Voting based Schemes LiDAR point cloud data are often noisy and identifying salient
and structured information is a challenging task. In order to estimate these salient struc-
tures a voting scheme methodology has to be robust to noise and handle data com-
munication between points in a local neighbourhood. The goal is to extract geometric
structures such as, regions, curves, surfaces, planes, and their interactions from organised
or un-organised LiDAR data sets. Below we present two such voting schemes: The Hough

Transform, originally proposed by R.O. Duda in [62] and The Tensor Voting framework

by Gérard Meidoni et. al in

Layered Description

[123].
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Hough Transformation (HT) HT is a method used in image processing and com-
puter vision for detecting lines and circles in 2-dimensional data sets. So far it has not
received a lot of attention for 3D. High computation costs have led to several variations
for HT. Borrman et. al [28] present several variations (Generalised 3D Hough Transform,
Probabilistic Hough Transform) and its application to detect planes in 3D data. They

evaluate new accumulators on synthetic 3D data sets.

2.4 | Sparse Representation & Dictionary Learning

Sensors, both natural (e.g. eyes or ears) and artificial (e.g. 2D or 3D imagers) are capable
of recording huge amount of data every second. The underlying process that causes such
observations are usually low-dimensional compared to the recorded datasets. In this
chapter, we present techniques that can represent a signal of length P with only K «
P nonzero coefficients. The extraction and identification of such relevant information
(generating cause) within the classes of Sonar and LiDAR signals is the central topic of
this thesis. However, the techniques presented here can be adopted and applied to other
sensing modalities (e.g. 1D, 2D or 3D datasets). These techniques have been studied for
over a decade and have been highly beneficial for signal reconstruction, compression [33],

approximation [4] and discrimination [52, 116, 191].

2.4.1 | Categorisation of Sparse Recovery Algorithms

Compressive sensing theory asserts that a certain set of signals can be recovered accu-
rately using fewer measurements than the Nyquist/Shannon sampling principle. Figure
2.11 illustrates the three main processes involved: sparse representation, measurements

(encoding), and sparse recovery (decoding).
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The SAD & K-SAD algorithms proposed in this
thesis are dicitonary selection and learning
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Sparse Representation - The signal representation model proposed here is based on the
recent developments in approximation, dimensionality reduction and compressive sensing,
which have an underlying concept, sparsity. Sparsity, also referred to as “compactness”
means that an original signal can be represented using a contribution vector and a finite
basis, i.e. the contribution vector is almost sparse [38]. Given an approximate dictionary,
an orthogonal or bi-orthogonal basis, which can be fixed or learnt from the data the signals
or images of interest can be represented sparsely. A detailed discussion on orthogonality
can be found in [147]. A signal z € R" is said to be K-sparse, if K elements of its entries

are non-zero.

Coefficients as features- A transformation, through ad-hoc feature extraction com-
bined with sparsity based methods can offer much better results. The feature extraction
stage is a way of transforming or representing the raw data by using a reduced set of data
points or parameters. Most signals are either naturally sparse, or can be made sparse in a
particular basis using specific transforms, e.g., the Discrete Cosine Transforms (DCT) or
directional and analytical Wavelets. Regardless of the choice of such bases, when learnt,

the resulting sparse code, or the coefficients can be treated as a feature representation.

More recently, it has been shown that a sparse representation can also be learnt from
the data itself [4, 188, 186]. A detailed review with historical and current state-of-the-
art dictionary learning and design methodologies can be found here [134, 147]. Sparse
representation has a significant impact on the discriminatory nature of any classification
system. Dictionary learning (DL) for signal approximation and discrimination is equal to
identifying, given a set of training samples, an appropriate set or dictionary such that any
K-subset of it spans a K-dimensional subspace. In contrast to hand-crafted dictionaries,
DL methods adapt an over-complete or orthogonal dictionary to an observation, hoping

for better sparsity.

The discriminative nature of these sparse coefficients may not always be natural, but
it can be discovered by carefully selecting and clustering the coefficients under certain
constraints. Experiments in chapter 7 show that these methods on their own cannot accu-

rately discriminate between different objects, e.g. underwater mine-like-objects (MLOs).
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Similarly, in order to take into account multi-resolution, invariance to rotation and scale,

using raw signals alone, produces unsatisfactory classification performance.

Measurement (Encoding) - The measurement process consists of taking only a few
measurements y € R from the sparse signal € R¥. 3 can be approximated with a
simple multiplication of the sparse signal = by a dictionary matrix D € R¥*V  where K
is the number of measurements, and N is the dimension of the sparse signal with K «
N. Ideally, the reduction (compression) from RY to R¥, must preserve the underlying
generating cause (information) stored in the K-sparse signal necessary to recover the

original signal from these measurements, i.e. a dictionary matrix.

Sparse Recovery (Decoding) - The sparse recovery process aims to recover the sparse
signal z from a small set of measurements of y when z is projected on a measurement or
dictionary matrix D. The sparse recovery problem is an underdetermined system of linear
equations and the uniqueness of the solution is guaranteed when the signal is sufficiently
sparse and the measurement or dictionary matrix satisfies the restricted isometry property
(RIP) [50]. Over the last decade, several sparse recovery algorithms have been proposed.
These algorithms can be classified into three main categories: Greedy [166, 101, 60, 182,
25], Bayesian [95, 14, 17] and Convex & Relaxation [50, 69, 66].

2.4.2 | Dictionary Learning

Given a set of examples Y = [y, ..., yn] € RP*YN | the aim is to extract a sparse matrix,
X = [x1,...,2x] € RY*Eand learn a dictionary D = [dy, ...,dx] = RP*E simultane-

ously. Traditional DL algorithms have two steps:

1. Sparse Coding;:

min [[y; — Dzl |3, st ||zi|lo < Ty, Vi=1,..,N (2.4.2.1)
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2. Dictionary Update:

K
min [IY - djw?II%] il = 1,95 =1,.., K (2.4.2.2)

j=1

Equation (2.4.2.2) assumes that both Y and D are fixed except in column d; and the

coefficients that correspond to it, the 5 row in X, denoted as z7. ||| is the sparsity
measure. The unit length and orthogonal constraint, |d;| = 1, makes the dictionary D
orthonormal.

Over-complete vs Orthogonal Dictionaries - Learning an over-complete dictionary
using greedy methods ensures maximum sparsity, but the dictionary can be most coher-
ent, i.e. highly redundant. Enforcing the incoherence condition on an over-complete dic-
tionary [38] whilst solving (2.4.2.2) is a difficult task. In this work, we learn a structured
orthogonal dictionary and use the derived coefficients as target signatures for classification

purposes.

Non-linearity in the data - Most real-world signals or images have an intrinsic non-
linear similarity measure and can be harder to discriminate. Recently, Kernel based DL
[189, 96, 173] methods have been proposed as an effective way of capturing non-linearity
in the input space and learn sparse encodings, simultaneously. However, these methods
require the kernel or Gram matrix, ® € RY*Y. For large-scale datasets, computing
such a matrix is a computationally complex task, both in space and time. Work by
Golts and Elad [72] incorporate an effective way of approximating a kernel matrix with
an over-complete dictionary and Gangeh et. al [68] show that an kernelized orthogonal

dictionary can be learnt.

2.5 | Anomaly Detection

Anomaly detection (AD) is the process of detecting data points that are inconsistent
with the distribution of the majority of the data. AD has had a long history of research

in machine learning, statistics and data mining. Anomalies are also known as abnormal
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Figure 2.12: In this work we present a high-level categorisation of anomaly detection
algorithms.

events, abnormalities, deviants or outliers. Detailed AD surveys on static data for various
scenarios have been proposed [42, 3, 43, 106]. Static datasets are a known complete set of
observations that are available and the anomalies are detected with regards to the entire
dataset. Figure 2.12 illustrates a high-level categorisation of AD techniques for static
and evolving data. In our survey, we have left out evolving datasets [73, 92, 151]. The
unsupervised scenario, applying AD techniques to data streams can be divided into two

main groups: statistical methods and clustering or nearest-neighbour methods.

The statistical based methods learn distributions that resemble normal behaviour. A test
set is labelled abnormal if it does not fit into the current model (or has a lower probability
score). Gaussian mixture model (GMM) [164, 71] and Bayesian approaches [122] apply

a outlier probability score to data streams (signals or images).

The clustering or nearest-neighbour techniques label data points as anomalous if they
fall in to clusters which have a lower mass (density) or small number of data points. The
balanced iterative reducing and clustering using hierarchies (BIRCH) [192] is a popular
technique introduced in 1996 and several variants [169] have been proposed and analysed
since then. The nearest-neighbour technique scores outliers based on a distance metric,
either Euclidean, Mahalanobis or in combination with cluster density [56]. Recently, a

distance based outlier detection algorithm called LEAP [40] has been proposed. This
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(a) Sample dataset from [49] where authors treat power-line detection problem as
an anomaly detection problem.

(b) Detected power-lines coloured in red.

Figure 2.13: Treating the power-line detection in LiDAR data as an anomaly detection
algorithm. Source [49]

method scales well for large datasets by optimising its search space. In our work, we bor-
row the idea of sliding window on data streams, not to compute global or local distances

but to learn correlations across tree layers (See chapter 4).

Anomaly Detection (AD) in LIDAR Data In this thesis we present an approach
that learns the abundance of distinctive material spectra and their relationships across
different tree layers within a range(depth)-amplitude data series. Within the context
of FW-LiDAR, our aim is to detect a deviation from the learnt models resulting in an

abnormal event.

Over the last decade, AD techniques has been applied to 3D point cloud data. More
recently for: UAV right-of-ways (RoW) clearance management [49] and nuclear disaster

monitoring [30], space LiDAR for environmental monitoring [57, 163], mining and tunnel

35



Chapter 2: Literature Review

Il YSt_RF_probs>=99%

YSt_normalized_height [m]
.- 0 75 150 225 300 m
2 | I ]

(a) Normalised height map and gamma spectrometer measurements results. Source [30].

YSt_gamma_local
8.51 - 9.02
9.02-9.11
9.11-9.16
9.16 - 9.20
9.20 - 10.08

® ® ® 0 O

(b) Normalised height map and classification results using Random Forests (RF).

Figure 2.14: Detecting abnormal regions at the Chernobyl Nuclear site. Source [30].

change detection [181].

In [49], authors proposed an anomaly detection algorithm to detect power lines in 3D
point cloud data. Their approach models power lines as splines and after a series of
filtering algorithms scores the non-terrain point-cloud data. The successful candidates
are then segmented using a curve fitting algorithm. UAV clearance or RoW is then treated
as an anomaly detection problem. Figure 2.13 illustrates example images with power-
lines segmented. Recent work by Briechle et. al [30] have applied anomaly detection
and classification techniques to map contaminated areas around Chernobyl nuclear site.
After the 1986 explosion, radioactive fall-out and contaminated trees (the Red Forest)
were buried in the Chernobyl’s exclusion zone (ChEZ). Today, three decades later, the
exact location of these sites and materials is needed. The authors use aerial LiDAR,
multi-spectral camera and gamma-spectrometry data collected using an UAV. In the
paper, authors use established approaches to feature engineering on 3D LiDAR data and

detect anomalies in regions around the nuclear site. Figure 2.14b illustrates their anomaly

36



Chapter 2: Literature Review

classification results using Random Forests (RF) in the study area 3: Yanov Station (YS)
3.3. The classification of class ‘contaminated” is achieved by fusing results from the
gamma spectrometer measurements and normalised height maps (generated using the

3D point cloud data).
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Chapter 3

Dictionary Learning & Non-linear

Data Approximation

3.1 | Simultaneous Approximation & Discrimination

We present an optimisation and discrimination algorithm that can re-order and select a
subset of dictionary atoms from a larger subspace, sparse discriminative signatures (Sec-
tion 3.1.1). The resulting over-complete dictionary and their contribution (coefficients)
vectors are then used as features for object classification. The ordering and coefficients
of the dictionary atoms differ for each target class so a supervised dictionary learning

approach is formulated using training samples and a cross-validation test is conducted.

The goal here is to find an optimal dictionary, such that an input dataset, Y, can be
accurately reconstructed and the size of this subspace is as small as possible. One may
take a simpler approach, randomly and uniformly selecting basis vectors to build the
subspace. This strategy may be risky as it may not capture the variability in the training
data for different target classes. A principled selection strategy that produce highly
discriminative multi-class dictionary, which selects an optimal subset of D is proposed.
We call this approach Sparse Discriminative Signatures (SDS). We then show how SDS
can be used, in conjunction with a K nearest-neighbour approach, for signal classification.

We call this combined approach simultaneous approzimation and discrimination (SAD).

38



Chapter 3: Dictionary Learning & Non-linear Data Approximation

3.1.1 | Sparse Discriminative Signatures (SDS)

For N training samples, with signal dimensionality P, let Y € R"*¥ correspond to the
signal matrix. The representation model in this work assumes that Y can be approxi-
mated with a combination of vectors (basis vectors), from an over-complete dictionary, (a
dictionary is over-complete when the number of basis vectors is greater than the dimen-
sions of the input), D € RP*K  either built using pre-selected functions or learnt from
the data. A corresponding coefficient matrix X € RN*K controls the contribution of each
individual atom of D. Thus, building on the model as shown in (3.1.1.1), in its simplest

form, the representation model can be re-written:
Y ~ DX” (3.1.1.1)

Using all the column vectors of D, denoted by {dj}_, and vectors of X, denoted by
{zr}_,, a signal y,, can be represented as a sparse linear combination of these columns.
The representation of Y may either be exact ((3.1.1.1)) or an approximation, such that,
1Y — DXT7||; < e. For a full-rank matrix D and K « N, there are an infinite number of

solutions to this representation ((3.1.1.1)).

When solving (3.1.1.1) using iterative methods, a stop criteria is needed, e.g., a sparsest
approximation constraint, i.e. minx ||X]|o, where ||.||o is the ly quasi-norm, which counts
the non-zero entries of a vector, or when the error term € stops decreasing and goes
below a threshold. An optimal D,,; and X,,; can be defined by minimising the following

objective function:
(Do X} = argmin [|[Y — DX + 3 [X]lo]. (3..1.2)

where the parameter §; > 0 is a regularization scalar that balances the trade-off between

the reconstruction accuracy and sparsity.

Finding a solution to ((3.1.1.2)) is an NP-hard problem primarily due to its combinato-

rial optimisation, i.e., minimising for the best reconstruction with the least number of
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basis functions that are individually convex, but not jointly convex. This can be solved
iteratively. A suboptimal solution to this problem is found by replacing the [y norm in

((3.1.1.2)) with the {; norm [53] and rewriting ((3.1.1.2)) using components of X as:

K
arg 1)1(11]51 Y — DXT|3 + 5 kzl ||zk||1 | subject to,
lzgl| < 1,VE = 1,2, ..., K. (3.1.1.3)

where || =||; is the [; norm. Equation 3.1.1.3, in its current form is not suited for learning
multi-class dictionaries. The minimisation problem is augmented with a discriminative
function that provide higher degree of separation between the dictionary atoms. SDS
(Algorithm 1) provides a solution to the modified objective function and re-ranks the

dictionary atoms.

Discriminative Coefficients The sparse solution ((3.1.1.3)) can be updated with a dis-
crimination function parametrised by D,,; using a Fisher discriminant function which has
been very popular in Linear Discriminant Analysis (LDA), a generalisation of Fisher’s
linear discriminant [155]. The discrimination power is maximised when the spatial dis-
tribution of similar classes (scatter matrix, S,,) has samples that are closer to each other
when compared to samples from different classes (scatter matrix, S;). This is used to

re-rank dictionary atoms in order to achieve maximum discrimination.

For a set of samples or coefficients, X, a given dictionary matrix, D, we have c¢ different
classes or groups. Let N; be the number of samples in class i. Each class group, €2;, has

a class mean, which we denote 7;

N;
=1

T, =

J

1
N;
where there are N; data points (coefficients) in class ;.

The grand or overall mean of all coefficient samples can be written as:

1c 1cNi
f:NZM@:NZZ@J (3.1.1.5)
=1

i=17=1
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Algorithm 1: SPARSE DISCRIMINATIVE SIGNATURES (SDS)

[uny

N

Input: D, a dictionary matrix in RF*¥,

y, a signal in R”; /31, 35, the regularisation parameters
€ or s, a stop criteria - reconstruction error or iterations
Output: z, a sparse representation of signal y in R¥,
I, support set of the estimated signal, i.e. a set containing positions,
of non-zero elements of x
Initialise sparse representation xo = 0, the index set Iy = ¢, matrix of chosen
atoms Dy = [], and the iteration counter t = 1;

while ¢t < s orr < e do
Calculate the residual:
=Y—- Dt—lx’:{_l
Find the index of the column of D, that maximises the objective function:
. . T
u=mg£$ﬁfénﬁh&)
if max occurs for multiple indices, choose one arbitrarily
Augment the index set:
=1 1v {Zt}
and the matrix of chosen atoms:
Dy = [D;-1D;,]
Update signal estimate:
zy = D'y
Update iteration counter:
t=t+1
Assign:

r=ap I =1

Return: z, I;
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Algorithm 2: SPARSE APPROXIMATION & DISCRIMINATION (SAD)

Input: Y., a training dataset in RP*V,

Y,.s:, a test dataset in RP*M

I, support set of the estimated signal,

Liyain, label set for Yipqin
Output: L, cqict, predicted label set for Yy,

C, confusion matrix for ROC analysis
Set ¢, error threshold, s, no. of iterations, (1, 82, the regularisation parameters
Select a discriminative dictionary for training set Y.q;, using Algorithm 1:

[Na It] = SDS(D, Ytraina €S, Bla B2)a

D,,: = D[1,:]
Generate coefficient matrix for Yieq:
Xiest = DIy Yiest
Initialise the test label set to null:
Lyredict = &

Generate similarity matrix for classification
Stest <— MakeSimilarityM atriz(Xies:)
Get Lpyefiet using labels Indes of the closest matches based on k-NN Classification:

Indiesy < SortSimilarityMatriz(Siest)
Lyyedict — GetMajorityLabel(Indyes)

Make confusion matrix - GenerateConfusionMatrix(Lorg, Lpredict)
Return: L, cqict
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We can also define a class group covariance matrix:

Z

Nzij —7)" (3.1.1.6)

j:1

The intra-class scatter matrix, S,,, can be defined as:

[

Sw =Y (N; = )X _ZZ% Wiy —7)" (3.1.1.7)

=1 1=1j5=1

The inter-class or between class scatter matrix, Sy, can be defined as:
Sy=> N@i -7 (@ -7 (3.1.1.8)
i=1

Finally, the Fisher discrimination function is defined as:

G(X) =5,'5, (3.1.1.9)
Using (3.1.1.9), (3.1.1.3) is updated:
K
: . T2
arg in | G (X) +51;Hxnul+52uy DX |, (3.1.1.10)

where (3 and (3, are positive scalars, chosen as a trade-off between reconstruction error,
coefficients contribution and discrimination. An iterative optimisation routine motivated
by pursuit algorithms [168, 135] has been suggested to solve (4.2.3.1). A modified version
(Algorithm 2) is proposed in this work and a discriminating term is added to the original

objective function.

The steps involved are detailed in Algorithm 1. In step 3 of the algorithm the residual
variable Ry is initialised to the input signal matrix Y. Step 4 selects each atom, minimises

(4.2.3.1). A projection matrix is computed in step 6.

The SDS technique (Algorithm 1) is a modified matching pursuit algorithm [167] that

ensures the selected dictionary atom maximises the intra-class vs inter-class similarity
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ratio.

3.1.2 | Orthogonal or Over-complete Dictionaries

A dictionary is considered to be over-complete when the number of basis vectors or
atoms is greater than the dimensionality of the input data. In contrast, a dictionary is
orthogonal when D”D = I, eliminating any redundant dictionary atoms albeit may not

offer the maximum sparsity.

Learning an over-complete dictionary using greedy methods ensures maximum sparsity,
but the dictionary can be most coherent, i.e. highly redundant. Enforcing the incoherence
condition on an over-complete dictionary [38] whilst solving for sparsity is a difficult task.
In this work, we learn any form of non-linearity in the input data using a structured
orthogonal dictionary and use the derived coefficients as target signatures for classification

purposes.

Recently, kernel based DL [189, 96, 173] methods have been proposed as an effective way
of capturing non-linearity in the input space and learn sparse encodings, simultaneously.
However, these methods require the kernel or Gram matrix, K € RV*V. For large-scale
datasets, computing such a matrix is a computationally complex task, both in space and
time. Work by Golts and Elad [72] incorporated an effective way of approximating a
kernel matrix with an over-complete dictionary and Gangeh et. al [68] show that an
kernelized orthogonal dictionary can be learnt. However, in this paper, we combine the
kernel approximation method [82] with a discriminative orthogonal dictionary learning
step. This separates our work from [72] and [68] improving classification accuracy and
reduces the algorithm run-time significantly. Most real-world signals or images have an

intrinsic non-linear similarity measure and can be harder to discriminate.
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3.2 | Kernel Dictionary Learning

Kernel dictionary learning with applications to signal classification offers a solution to
learning non-linearity in the input data. However, decomposing a kernel matrix for large
datasets is a computationally intensive task. Existing papers on dictionary learning using
optimal kernel approximation method improve computation run-time but learn an over-
complete dictionary. In this chapter, we show that if we learn a discriminative orthogonal
dictionary instead then learning and classification run-time can be significantly reduced.
The proposed algorithm, kernelized simultaneous approximation, and discrimination (K-
SAD), learns a single highly discriminative and incoherent non-linear dictionary on small
to medium-scale real-world datasets. Extensive experiments result in > 97% classification
accuracy and show that the algorithm can scale both in space and time when compared

to existing dictionary learning algorithms.

The Mercer kernel defines an implicit, non-linear transformation mapping the input data
into a higher or even an infinite dimensional kernel feature space [12|. The kernel trick
allows training of the input data in the high dimensional feature space without explicitly
computing the exact mapping. The Mercer kernel ¢ : Y x Y — R for training samples

y; and y; can be expressed as

®i; = oiy) = (o), oY), Vi, j =1, N (3.2.0.1)

where ® is the implicit non-linear mapping associated with the kernel function ¢ (-, -).
For the input matrix Y € RV*” the kernel matrix, ® € R¥*V  contains values of all
pairs of input signals, where ¢(y) € RL is the image of y in a higher dimensional feature
space, F and L » P is the dimension of F. Commonly used kernel methods are the linear

kernel, polynomial kernels and Gaussian radial basis function (RBF).
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3.2.1 | Kernelised Orthogonal Dictionary Learning

In this section, we present a non-linear orthogonal dictionary learning algorithm. The
key contributions of this approach are: i) we report an improvement in run-time and
classification accuracy on existing kernel DL methods [72, 173] by proposing to learn a
discriminative orthogonal dictionary instead of an over-complete one; ii) unlike [72], we
propose the use of an efficient SVD method for large matrices when approximating the
kernel matrix using the Krylov method [82]; iii) we report state-of-the-art classification
results and faster run-time on high-dimensional RGB-D and face recognition databases
learning a single kernelised orthogonal dictionary; iv) finally, unlike [72, 68] we also
map the kernel dictionary back into the input domain in order to better understand the

dictionary structure and diversity.

3.2.1.1 | Problem

We assume that for an input training matrix Y € RY¥* its kernel matrix ® € RV*V is
of rank » < N. Hence, ® ~ BTB = ¢(Y)T¢(Y). Finally using B, we compute “virtual
samples” ®;,4:n € RN where M « P. Section 3.2.1.2 details how we approximate

@tra'm-

Proposition 1. Given the virtual samples, ®4yqin, a dictionary, D €e RM*M | DTD = [,
where M « P, the original discriminatory sparse coding problem (2.4.2.1) can be re-

written as:
min [®rain — DX |3 + 611X [0 + fG(X),

has a unique solution X* = Tg, (D ®Pirain, G(X)). For a given vector, ¢, the hard thresh-

olding operator, Tp,, is defined as [T, ¢:;| = ¢4, if |¢s| > P1 and O otherwise.
Proof. See Appendix A. m

We add a discriminatory function G(X) (See Section 3.1.1) that maximises inter-class
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variance and minimises intra-class variance of dictionary coefficients [52, 189].

Proposition 2. Assuming DTD = I, the orthogonal kernel dictionary learning step can

be written as:
min [|®4qin —DX" 2, (3.2.1.1)

and has a unique solution D* = UVT, where U,V denote the orthogonal matrices defined

by the following SVD @0, XT = UXVT,

Proof. See Appendix A. m

3.2.1.2 | Proposed Approach

Some of the limitations with linear and non-linear sparsity based classification algorithms

are:

i) The Eigenvalue decomposition of the kernel or the Gram matrix may not scale with
large data sets, O(N?) and O(N?3) in space and time, respectively, where N is the

number of observations.

ii) Overcomplete dictionaries (where the number of dictionary atoms is greater than the

dimension of the data) can be highly redundant and may not have a structure.

Recent work by Golts and Elad [72] also propose a solution to the implicit kernel problem,
i.e. efficient computation of the kernel matrix ®. However, unlike our approach, they
do not enforce incoherency or discriminatory constraints on the dictionaries and learn

over-complete dictionaries for each target class. Our algorithm learns only one.

Stage 1: Low-rank Kernel Approximation The low-rank kernel approrimation
(LKA) stage is a pre-processing step that maps the high-dimensional input data on a
low-dimensional non-linear feature space. We use the Nystrom method, first introduced

by Williams and Seeger [184] through uniform sampling of the input data. This method
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Algorithm 3: K-SAD

Input: Yy uin, Yiest, sampler, sr, kernel_type, kt, ¢
Output: labels
begin

// Stage I - LKA. See Section 3.2.1.2
Y, — vector_quantisation (Y gqin, ST, kt, ¢)
Cirain — compute_kernel (Y rain, Ys)
Ciest — compute_kernel (Yiest, Ys)
H — compute_kernel (Ys, Ys)
H' — AXTAT
1/2
@train = (22) Afcz;azn
1/2
(I)test = <22) Agcg;st
// Stage 2 - ODL. Section 20
Set initial Dy
forall t € [0, T] do
Xt = Tﬁl (th)trainp G<X))
b, X =UXVT
Dt+1 = UV’
D € Dy
// Stage 3 - K-NN Classifier
Xtest = DTq)test
labels < ModelKNNClassifier (Xtest, D)
forall i € [1,N] do
L Distance(D,Xtest)s

labels « Sort (Distance (D, Xycst) )

return labels

computes a low-rank approximation to ® of the form ® = CHLCT. The Nystréom method

permutes ® as:

H H ST
C = - (3.2.1.2)
S S A

where C denotes the N x ¢ matrix formed by ¢ columns, H € R“*¢ is a matrix consisting of
the intersection of ¢ columns with corresponding ¢ rows of ®, A corresponds to a matrix
composed of the remaining (N — ¢) rows and columns and S € RN=9%¢ is a mixture of
both. In this work, we use two sampling techniques and fix the size of ¢, i) random

uniform sampling, and ii) vector quantisation (VQ) which uses the k-means clustering
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method. The uniform sampling method selects ¢ « N columns from Yy,.4, at random
compared to the clustering or the VQ method that uses ¢ cluster centres. Finding the best
sampling technique for LKA is out of the scope of this work and interested readers can
see [184] for a detailed analysis. Using (3.2.1.2) we construct ® as follows ® = CH'CT,

where (T) denotes the pseudo-inverse operator.

Since H is a symmetric positive semi-definite (SPSD) matrix, it can also be written in

terms of its eigenvalues and eigenvectors. Hence, we re-write H as

H=AXA" and H' = AZTAT (3.2.1.3)
and (HT)l/ 2 (ET)I/ 2AT Finally, we re-write ®;,.4;, as follows
1/2
B,y0in = (EL) ATCT (3.2.1.4)

We solve line 6 of Algorithm 3 using the randomised version of the block Lanczos method
[82] which is adapted for large datasets and produces nearly optimal accuracy. We repeat

the above steps for the test dataset and get ®y.q.

Stage 2: Discriminative Coefficient based Orthogonal DL Stage 2 of algorithm 3
presents the pseudocode of the ODL stage. The input to the algorithm is a training matrix
®,4in. The optimisation problem in (2.4.2.1) does not optimise the learned coefficients
for maximum discrimination. The discriminative term in (3.2.1.1), G (X) is expressed as

G (X) = Trace(S,*S,) [52]. Algorithm 3 lists the pseudocode of the steps involved.

3.3 | Evaluation on benchmark datasets

The SAD algorithm has been extensively evaluated on sonar data (Chapter 7) and LiDAR

data (Chapter 4 and 6).

In this section, we have compared the K-SAD algorithm with other kernel dictionary
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learning approaches. We evaluate our approach on four publicly available benchmark
datasets: i) The RGB-D object dataset [108], ii) The ORL AT&T face dataset' [152],
iii) Fxtended Yale face dataset? [110] and iv) MNIST Digit Dataset® . All our experiments
were carried out on an Intel quad-core i7-4800MQ 64-bit computer with a CPU clock
speed of 2.7 GHz and 16 GB RAM.

The Washington RGB-D dataset is a collection of 300 household objects grouped into 51
categories collected using the Microsoft Kinect sensor. The images are of size ~ 85 x85x 4.
Several representation based methods, e.g. instance distance learning (IDL) [109], query
adaptive similarity measure (QSM) [51], convolutional-recursive deep learning (CNN-
RNN) [158], convolutional k-means descriptor (CKM) [24], depth kernel descriptors
(KDES) [26] and hierarchical matching pursuit (HMP) [27] have reported results on the
Washington RGB-D datasets. Lai et. al in [109] compute a single feature vector com-
bining image, texture and depth features. Such features are then used for classification.
Deep learning based methods, e.g. the CKD [24, 158], have reported state-of-the-art
results where feature responses are learned in the vicinity of interest points and later
combined into a descriptor. The CKD descriptor incorporates depth information which

is then computed on image patches whose dimensions are pre-defined.

As suggested in [108] 10 trials with pre-defined training and test datasets* were adopted in
our experiments and average accuracy is reported. We compare our results against state-
of-the-art results in [51] and report classification accuracy and training and classification
run-time. All the methods shown in Table 3.1 use the same training and test partitioning
of the dataset. For our experiments we do not down-sample the images or extract any
features [26, 109]; 51 dictionary atoms (one atom per category) are initialised at random
from the input data and adopted using the DL method. A polynomial kernel of degree 8

with hyper-parameters 5; = 0.1 and S = 0.01 (see (3.2.1.1)) was used in our experiments.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://vision.ucsd.edu/~leekc/ExtYaleDatabase/
3http://yann.lecun.com/exdb/mnist/
‘http://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset_eval/
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Table 3.1: Accuracies(%) on RGB-D Washington dataset. A set of pre-defined training
and test datasets ([108]) were used for these experiments.

Method Accuracy (%)
SP-HMP [27] 87.5 + 2.9
IDL [109] 85.4 + 3.2
CKM [24] 86.4 + 2.3
CNN-RNN [158] 87.6 + 2.0
KDES [26] 86.2 + 2.1
Kernel SVM [109] 83.8+3.5
QSM [51] 92.7 + 1.0
Our approach | 97.572 +0.265

§-7
vawli
weu
6‘3@;‘\

RGB-D Washington Dataset Extended Yale Face Dataset

Figure 3.1: RGB-D Washington and YaleB Face dataset.
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Method Accuracy Total Execution Time(s)
OMP [168] 03.7542.12 | -
L, — L [105] 05.90 + 1.15 | -
KK-SVD [173] 93.75+0.05 | 8.3
AT&T Dataset FDDL [189] 94.254+0.03 | 1744.3
LKA+FDDL [189] | 92.75 + 0.03 | 92.78
Our approach 96.58 +0.02 | 1.3
OMP [168] 901.9740.96 | -
Ly — L,[105] 94.22 +0.71 | -
KK-SVD [173] 01.53 +0.00 | 41.96
ValoB Datasot | LKATFDDL [189] | 872 +212 | 9000
FISTA [18] 94.50 + 0.82 | -
PALM [193] 93.19 + 0.642 | -
LKDL [72] 96.33 -
Our approach 98.26 £+ 0.03 | 314

Table 3.2: Accuracies(%) on AT&T and YaleB Datasets

3.3.1 | The AT&T (formerly ORL) Face Dataset

The AT&T face dataset is composed of 40 subjects and 10 images with pose and expres-

sion variation per subject. The dataset has images of size 112 x 92, captured on several

different occasions in an up-right frontal position under a homogeneous background. We

compare our approach to orthogonal matching pursuit [168], L;_L, [105] and FISTA [18].

Technical details of the above algorithms can be found in a recent survey [193]. In com-

parison to the methods discussed in the recent review [193] our method gives the least

classification error. In our experiments, we use the full feature space of 10,304 pixels as

input to the stage 1 of our algorithm, unlike [193]. We randomly initialise 240 dictionary

atoms (6 per subject) from the non-linear mapped input data. A polynomial kernel of

degree 8 was chosen for this experiment with 5, = 0.1 and 85 = 0.01. Table 3.2 illustrates

state-of-the-art results on the AT&T face dataset.
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3.3.2 | Extended YaleB Face Dataset

The “Extended YaleB” face recognition database, in contrast to the AT&T database, is
a larger database with 2,432 frontal images taken under varying lighting conditions and
expressions. There are 38 subjects with ~ 64 8-bit images per subject of size 192 x 168.
Table 3.2 illustrates state-of-the-art results reported for this database against methods
presented in [193]. In comparison to the methods and other kernel based DL methods our
approach shows improvement in classification accuracy and is faster. For our experiments
we do not re-size our images as done in [193] and use the full input space as an input to
stage 1 of our algorithm. A polynomial kernel of degree 8 with 740 dictionary atoms (20

atoms per subject), initialised by uniformly sampling the kernel space was used.

3.3.3 | MNIST USPS Digit Dataset

The USPS MNIST dataset consists of 60,000 training images and 10, 000 test images of
size 28 x 28. The parameters used for this experiment are: 5, = 0.1, 85 = 0.01, 20 DL
iterations, 300 dictionary atoms and a polynomial kernel of order 8. We compare clas-
sification accuracies and run-time execution against state-of-the-art results reported by
Golts et. al [72]. Table 3.3 compare classification accuracy of our approach against ap-
proaches presented in [72, 173]. We use the KKSVD code made available by the authors.
The original algorithm in [173] is not feasible for such a large dataset hence we employ
the kernel approximation (Stage 1, 3.2.1.2) algorithm first and then use the KKSVD al-

gorithm for kernel dictionary learning. We call this method “LKA + KKSVD” in Table

Table 3.3: Accuracies(%) on USPS Digit Dataset

Method Accuracy(%) | Total Execution Time(s)
FDDL [189)] 95.79 -

FDDL+ LKDL [72] 96.03 ;

LKA + KKSVD [173] 74.62 0825.4

SVM (Gaussian Kernel) 98.6 -

Our approach 96.42 92.86
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AT&T Face Dataset Extended Yale Face Dataset

Figure 3.2: Exemplars of the learnt kernel dictionary.

3.3. Compared to [72] (using same set of parameters), the orthogonal discriminatory

dictionary learnt using our approach is ~ 55 times faster.

3.4 | Summary

This work improves on two central problems in DL algorithms i) handles non-linearity
in the input space by improving classification accuracy on existing publicly available
datasets; ii) reduces the learning and classification algorithm run-time through kernel
matrix approximation. This work combines an orthogonal incoherent discriminatory dic-
tionary learning method in the non-linear space with an efficient approximation of a
kernel matrix. Unlike some existing techniques, which have produced these ideas individ-
ually, our approach learns a single non-linear orthogonal dictionary which is incoherent,
minimising cardinality and maximising the discrimination capabilities in the non-linear
space. We complement the small-runtime required by the orthogonal DL step with a fast
kernel approximation stage in our algorithm. We report state-of-the-art results on large-
scale high-dimensional datasets and report an average classification accuracy of ~ 97% on
8-bit digits, face and RGB-D images. Unlike most sparsity based classifiers our approach
uses the coefficients as target signatures. Finally, unlike [72, 68], the reverse mapping,

i.e. pre-images, of the kernel dictionary, Figure 3.2, were computed using [107].
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Chapter 4

Anomaly Detection & Classification

from Aerial LIDAR Signals

We present an algorithm for the analysis and discrimination of small foot-print airborne,
terrestrial full-waveform (FW)-LiDAR and time-correlated single photon counting (TC-
SPC) LiDAR signals. We consider the problem of extracting multiple peaks and clas-
sifying them, simultaneously. We use data from aerial trials, flying over a rural setting
in Austria, using three different FW sensors provided by RIEGL Gmbh, Austria. The
backscattered laser pulse is time-gated to form a histogram, a full-waveform, whose in-
herent nature depends on several factors, e.g., the laser wavelength, surface geometry
and transmission medium. We show that multiple peaks can be extracted and classified
simultaneously into different classes, e.g. man-made terrain, buildings and trees. Since
the real data lacks any ground-truth we validate our data on realistic synthetic data. The
simulated data is generated using a custom modified open-source ray-tracer, terrain and
target modeller. Our approach can extract multiple peaks and assign target label in a
single step. We also compare our approach against well established robust peak analy-
sis algorithms. Active imaging using light detection and ranging (LiDAR) has become
a powerful tool not only to measure distance or deepth but also spectral reflectance of
different surfaces. This has advantages in remote sensing [81, 39], defence and security

[53], and restoration and archaeology [65]. In a camouflaged scenario, e.g., objects hid-
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den behind dense foliage, a FW-LiDAR penetrates such foliage and returns a sequence

of echoes including buried faint echoes.

4.1 | Mapping using Waveform LiDAR

When mapping the forest or the undergrowth, an explicit assumption is made that a
depth profile through a dense forest or an individual tree can be represented by a series
of instrumental LiDAR returns from a set of layers (see Figure 4.2D) at distinguishable
ranges. Thus, layer position defines the context of a tree and the number of layers, the
number of individual spectra measured within a layer, and their contribution defines its
behaviour. A depth profile of a tree or forest is made up of countless surface responses
from leaf, bark and other man-made surfaces found at varying depths. The illustration in
Figure 4.2D highlights one such example with spectral response registered at each layer.
The top-most layer records green, since it mostly consists of high chlorophyll content
representing natural material. The bottom-most layer records brown dead leaves and
undergrowth and finally forest floor records spectra different to other layers, color coded
here as grey. This sequence clearly deviates under diverse vegetation or with varying tree
heights. The relationship between over-lapping layers may embed co-occurring patterns
resulting in anomaly detection and tree species classification [53]. This can be achieved
by breaking down a data sample in its entirety into several neighbouring sub-sequences
and measure the co-occurrence of local-patterns within every sub-sequence. Authors in
[53] learn lower-dimensional subspaces in order to seek unusual local patterns that do not
appear in reference range-amplitude series. However, an implicit assumption is made in
their work, the flying altitude is known and that each individual FW-MSL measurement
is registered with respect to the flying altitude, i.e., that the length of the two samples

and the range bin index are the same.

Large vs Small-footprint Scanning Large foot-print scanning can be considered as a

precursor to find interesting signals [53], worthy of more detailed sampling and analysis.
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This can be an attractive solution to keep surveying cost low. In contrast, we present an
approach that models individual peaks in fine resolution LiDAR waveforms in order to

detect and classify each peak, simultaneously.

The key contributions listed in this chapter are: i) We generate adaptive elementary
functions, either from prior knowledge or learn from the data, for each peak and solve
for a non-negative sparse contribution vector by introducing additional constraints; ii) if
a trained set of elementary functions is given, we extract peak labels based on the sparse
solution; iii) unlike previous works [8, 86, 20, 89|, our approach can not only estimate

multiple peaks but also classifying them simultaneously.

Dissimilarities with Previous Methods: The way we model a sequence of uniformly
spaced LiDAR bins and generate initial parameter estimates is very similar to [89, 177].
However, we use a multiple parametric function (a generalised Gaussian) models for each
peak with an additional parameter to control its shape. Additionally, we also learn a
library of elementary functions from the data. The concept of using a library of shapes
is not a new one [120, 86]. Unlike these methods, we combine the decomposition and
classification problem into a single mathematical formulation motivated by sparse ap-
proximation and learn a dictionary of elementary elements. This is significantly different
to the non-negative least square (NNLS) and Levenberg-Marquardt technique (LM) for-

mulation proposed in [89, 187].

4.2 | Anomaly Detection in LiDAR signals

Light detection and ranging (LiDAR) is an active depth (spatial) sensing modality,
operated from ground, aerial and space-based platforms. This has found a variety of
applications in remote sensing and military scenarios for its ability to extract spatial
information from a 3D scene. Passive multi-spectral imaging (MSI) and hyperspectral
imaging (HSI) with dozens and hundreds of wavelengths respectively, measure spectral

signatures for each individual image pixel with no spatial information. A fusion of spectral
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imagery with 3D spatial information may seem desirable. This comes at a cost of both
processing time and complexity. The evolution from passive MSI and HSI into spectrally
aware active laser sensors seems natural since simultaneous measurements can eliminate
data synchronization errors (both in space and time). Full-waveform multispectral LiDAR
(FW-MSL) signals are active spatial measurements that are made simultaneously at
different wavelengths using LiDAR based sensors. In the past, LiDAR sensing has seen
applications in ecological studies for tree species classification and segmentation [141],
geo-morphology [32] and foliage filtering [99]. The relevance of urban scene classification

with applications to remote sensing has also been studied extensively. [99, 119, 48].

More recently, small foot-print sensing using MSL has been possible in retrieving struc-
tural and physiological properties of vegetation [180]. Although popular with the remote
sensing community, the choice of MSL sensors and raw waveforms for anomaly detection
in complex environments (urban city or dense forest) has not been investigated. Echo
characterisation and classification is an active area of research but this requires sophisti-
cated echo modelling algorithms which operate on the entire dataset. The aim here is to

propose a framework that is smarter in its search for anomalies.

Automatic Target Recognition (ATR) scenarios may benefit, for example, in automatic
detection of known targets hidden or camouflaged under dense foliage. The nature of
anomaly detection differs from the ATR notion. The type of target, its structure and
material may be unknown. Consider a surveying scenario where a forest is scanned
looking for normality and abnormality in what is being perceived through different sensor
modalities. A set of measurements can be made on what is being observed and one may
be interested in narrowing down the target search window by finding spatial and spectral

anomalies for further structural analysis. This can be carried out in two phases:

e Phase 1 of the survey operates on a large-footprint setting which aims to identify
regions with spectral and spatial (time) anomalies, i.e., similar spectral signatures
found at depths which do not comply with learnt models. In this chapter we present

a method to support Phase 1. Once these regions are identified, Phase 2 is applied
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FW-MSL exemplars

Mixed spectra: tree, vehicle, undergrowth and forest floor measured for 4
different wavelengths
T

FW-MSL signals characterised as vegetation,
normal exemplars

Photon Count

Photon Count
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Range bins (y) with a bin resolution of ~5cm

Figure 4.1: Example FW-MSL signals used to detect anomalies. (Left) A typical FW-
MSL return of a large foot-print with a range resolution of ~ 5¢m per bin. The backscat-
tered returns shown here are recorded for 1020, 510, 550 and 590 nm wavelengths. This
depth profile is a mixture of different spectra: vehicle, conifer, undergrowth and bare-
ground. When observed from an altitude the tree top is the first peak, 600" bin on the
left. (Right) Stacked FW-MSL exemplars.

to regions that contain such anomalies.

e Phase 2 A small-footprint scanning scheme can be employed along with expensive

signal modelling algorithms to deliver a dense 3D point cloud for structural analysis.

In order to support Phase 1 and Phase 2, a multi-channel (4 wavelength) LiDAR systems
has been designed and developed [178]. In order to support future instrument design and
parameter selection experiments on simulated and synthetic data have been carried out
on a range of wavelengths: 4, 8, 16 and 32. Figure 4.1 illustrates example FW-LiDAR

signals measured over a plot of vegetation.

4.2.1 | Contributions and Outline

In this chapter, a two-stage surveillance framework involving a sensing scheme that makes
use of both small and large footprint LiDAR scanning is proposed. In order to model
natural trees or forest plots, a layered representation is considered that conforms to a

sparse approximation and discrimination model. The framework includes:

e This work aims to avoid computationally expensive signal modelling algorithms in

order to characterize backscattering echoes for target localisation on large FW-MSL
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datasets. To support such an aim, a cueing algorithm that reduces target search
space by identifying anomalies in a large urban or forest scene is proposed. Such
an approach is novel since it is can be an efficient way of combining large and
small foot-print scanning, especially when surveying large environments and the

multi-spectral nature of the sensors used.

e A semi-supervised subspace (a set of linearly dependent basis, i.e., dictionary) learn-
ing method which learns normal LiDAR signals of different conifer species and forest
terrain comprising of 8 different spectra (bark, needle, terrain, under-growth, steel,
concrete, brick and clay tiles); and each new observation is transformed and re-
constructed using the learnt dictionary. High reconstruction errors reveal hidden
anomalies. The optimisation routine used here is influenced by the compressed
sensing literature except that the objective function is modified in order to classify

tree species and other signals. See Algorithm 1 and 2 in Chapter 3.

e The proposed framework can emphasize any unknown as opposed to a known sig-
nature [83] both in spatial and spectral context. To the best of our knowledge, this
approach is the first attempt at applying such techniques to foliage penetration and

anomaly detection on raw FW-MSL measurements.

e This work also shows that the proposed approach is widely applicable as the defi-
nition of an anomaly is not restrictive to a particular target type. The concept of
context is associated with different FW-MSL measurements across different layers.
In the past, this has been over-looked, echo modelling schemes have treated each in-
dividual echo independently and characterise with its location and amplitude. This
work shows that relationship learning across layers and wavelengths can discover

co-occurring patterns which can be highly relevant to anomaly detection.
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Overlapping Layered Model

Scanning schemes

Depth (m)

Figure 4.2: (A) A cross-section of a single conifer tree. (B) A push-broom style (small-
foot print) dense scan pattern resulting in a cross-section slice of a tree. A flash style
(large-foot print) scan pattern is illustrated in (C). (D) The forest/tree layered model.

4.2.2 | Problem Definition

Anomaly detection can be defined as a problem of detecting data samples that signifi-
cantly deviate from an expected model. Methods that can capture essential patterns both
in temporal and spectral dimensions within the original data space are desirable. Such
patterns contribute significantly to the generating cause of an observation, a measured

signal, and such representation are in a lower dimensional space.

Recent developments in signal approximation [38] and dimensionality reduction have an
underlying concept, Sparsity, which means that an original signal, which is dense in
certain basis, once its is transformed in to another convenient basis i.e., the contribution
vector is almost sparse. It is assumed that an expected prior conforms to a sparse
representation model, where the coefficients represent the contribution of a set of atoms,
together called a subspace. This work also employs method that extract and learns such
a subspace and their coefficients from raw FW-MSL data. Together, they contribute
towards an accurate representation of the original FW-MSL measurement data. The
following section introduces a layered representation of a forest, followed by an FW-MSL

approximation model.

4.2.2.1 | Layered Representation of a FW-LiDAR Signal

An explicit assumption is made here that a depth profile through a dense forest or an

individual tree can be represented by a series of instrumental LiDAR returns from a set
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of layers (see Figure 4.2D) at different ranges. Thus, layer position defines the context
of a tree and the number of layers, the number of individual spectra measured within a

layer, and their contribution defines its behaviour.

A depth profile of a tree or forest is made up of countless surface responses from leaf,
bark and other man-made surfaces found at varying depths. This is a leaf-on condition,
dense healthy forests, mostly during summer. During winter, a leaf-off condition, most
of the laser light penetrates trees easily. The illustration in Figure 4.2 highlights one such
example. The top-most layer records green, since it mostly consists of high chlorophyll
content representing natural material. The bottom-most layer records brown dead leaves
and undergrowth and the forest floor records spectra different to other layers. This
sequence clearly deviates under diverse vegetation or with varying tree heights. Hence,
the intuition here is to capture the relationship between over-lapping layers in order to

capture any co-occurring patterns.

This can be achieved by breaking down a data sample, in its entirety in to several
neighbouring sub-sequences and measure the co-occurrence of local-patterns within ev-
ery sub-sequence. For the sake of simplicity, running an overlapping sliding window over
wavelength(\)-range(7y) series resulting in multiple sub-sequences. The aim is to learn
lower-dimensional subspaces in order to seek unusual local patterns that do not appear
in reference range-amplitude series. An implicit assumption made here is that the fly-
ing altitude is known and that each individual FW-MSL measurement is registered with
respect to the flying altitude, i.e., that the length of the two samples and the range bin
index are the same. Next, the concept of normality and abnormality in the context of

range-amplitude-wavelength, FW-MSL data, is explained.

4.2.2.2 | The Concept of Normality

In a semi-supervised anomaly detection technique, it is assumed that a database of normal
exemplars that conform to non-anomalous data is known. Within the realm of this work,

these exemplars may belong to several different classes, i.e., different tree species or
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LiDAR returns of vegetation and bare forest floor. A continuous range-amplitude depth
profile of a tree or forest is made up of several different spectra: bark, needle, dead leaves,
undergrowth and forest floor. Such data samples are qualified as normal, free from any

man-made objects. Deviation from such learnt model qualifies as abnormality.

Scenes observed using active/passive range sensors are made up of objects or targets,
background clutter, sensor and environmental noise. Background clutter can be defined as
something that is neither anomalous nor an object of interest. Interestingly, an anomaly
characterised by a context or an outcome of a condition can be referred as a contextual
anomaly, or a conditional anomaly. In the context of FW-LiDAR measurements, the
input data is a range-amplitude-wavelength series and the context here is occurrence of

an event at a particular range v or wavelength \.

In a layered representation (Figure 4.2) an anomaly can occur in any range bin, i.e., depth.
This could be due to the variability in tree height across a section of the forest, tree health
(climatic conditions) or a more interesting cause: presence of man-made object(s). It is
highly impractical to collect data samples for all abnormal cases, but, what is available in
abundance is a large amount of training data, normal events only, plots of natural forests

with trees. The anomaly detection problem can be defined as follows:

One wishes to learn the abundance of distinctive material spectra and their
relationships across different layers within a range-amplitude series. The aim
is to detect a deviation from the learnt normal models resulting in an abnormal

event.

4.2.2.3 | Mapping Raw LiDAR Data into Sub-spaces

FW-MSL signals measured for A wavelengths can be expressed as:

Y = [V,..., V4] (4.2.2.1)
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Sliding window scheme for capturing local patterns Observations (p) FW-MSL Data Space
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Figure 4.3: Sliding window concept in order to extract over-lapping range-amplitude
series.

The original range-amplitude-wavelength series Y for different wavelengths (A) is mapped
on to a set of overlapping sub-sequences W and then transformed in to a feature subspace

F. The mapping can be written as follows:
Y ->W->F (4.2.2.2)

The first half of the mapping is explained below then a mapping intoF F' is explained in

more detail at the end of Section 4.2.3.1 using 4.2.3.2 and 4.2.3.3.

Overlapping sub-sequence representation (Y — W) Figure 4.3 illustrates the
windowing concept and subspace representation of normal vs abnormal events occurring
in the range-amplitude-wavelengths space. Y € RF*P*A for P training samples, A number

of wavelengths and r number of range bins. So the Y — W can be written as:

W = [Wy, ..., Wa]., (4.2.2.3)

where W), is a sub-sequence representing a layer of the forest/tree of size B = % that are
partitioned on the range (r-axis), where N controls the window size and m is the amount

of overlap. For a fixed wavelength \ this can be written as:

W)\ = Ynis -~ YN 5 Y\14+m s o5 Y\N+m 5 -+ 5 -« sYAR-N+15 -+ YAR (4224)
< ] < ] <

>

v v

~
W1 Wi 2 Wa.B
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Subspace representation Each data sub-sequence, W) ;, where i = [1,2, ..., B] is the
sequence index in 4.2.2.4 can be described with an over-complete basis (dictionary or

subspace), D, ;, a coefficient matrix X, ; plus additive constant background noise:
Wi ~ Dy X3, (4.2.2.5)

where Wy,; € RPN and Dy; € RP*E is an over-complete (K » P) matrix and the
resulting coefficient matrix X, € R¥*®. The goal here is to find an optimal subset
(Subspace) D, ; such that the set W, ; can be accurately reconstructed by D, ; and the
size of this subspace is as small as possible. A simple way of doing this is to randomly
and uniformly select basis vectors to build the subspace. This strategy can be risky as it
may not capture the variability in the training data. A principled way of selection which

selects an optimal subset of D, ; as a subspace is presented below.

Using all the vectors of D, ;, denoted by {di} | (see Section 4.2.3.1), all vectors of X,
denoted by {:E,\,i}le a signal Y); can be represented as a sparse linear combination of
these columns (atoms). For a full-rank matrix D), and K « P, there are an infinite

number of solutions to this representation (4.2.2.5). A stop constraint is needed on this

solution, either set a sparsest approximation constraint, i.e. minx, .|| Xx||o, where || =|]o
is the [y quasi-norm, which counts the non-zero entries of a vector or when the error
term € goes below a certain threshold. The objective function for minimisation can be

expressed as follows:

arg min [|[Wx; — Dx: X315 + B[ Xxillo] (4.2.2.6)

P XL D W)

where the parameter 8; > 0 is a regularization scalar that balances the trade-off between
the reconstruction accuracy and sparsity. In the following section an iterative way to

solve 4.2.2.6 is explained in more detail.
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4.2.3 | Adopted Approach

A solution to (4.2.2.6) leads to a good approximation of measurement matrix Wy ;. A
discriminating trait is added to the original problem and finally the reconstruction er-
ror is used to differentiate normal from abnormal data. This framework allows for the
classification of LiDAR signals (test samples) into different classes (e.g., tree species). A
natural forest environment is made up of several tree species with variable tree height.
Hence, one cannot fix one tree layer model for different tree species. One solution to

capture such variability is to have species bound subspaces and coefficients.

As illustrated in the previous section the data is layered in to overlapping sub-sequences.
Pseudocode for the training step is shown in Algorithm 2. The optimisation routine with
an discriminative objective function is presented in Algorithm 1. The complete approach

can be briefly listed in three steps:

1. Subspace selecting € Learning In the training mode a matching pursuit method is
employed in order to learn optimal subspaces, D) ; and multi-wavelengths coefficient
matrix F, i.e., W — Fy..;,. Such a representation can be extended by including a
class discriminative (non-anomalous) criterion in the objective function such that
during the approximation stage discriminating subspaces can be learned for different
normal classes (conifer species, bare forest floor, and undergrowth). In testing mode,

using the learnt subspace a new coefficient matrix Fy.4 is computed.

2. Relationship learning & anomaly detection Fi,.q;, is decomposed using a semantic
learning technique, transformed and reconstructed. A test sample is projected back
to the subspace and reconstructed, a high reconstruction error reveals the anomalies

present in the test data samples.

66



Chapter 4: Anomaly Detection & Classification from Aerial LiDAR Signals

4.2.3.1 | Step 1: Sparse Discriminative Signatures (SDS)

We introduced SDS in Section 3.1.1 and the idea of using discriminatory coefficients as

feature vectors. Using (3.1.1.9) we re-write (4.2.2.6) as

Dy, X

K K
arg min G (X)\’i) + 51 Z ||{X)\’Z}k|‘1 + ,82 Z HY)\’Z' - DM{XM}ZH% s (4231)
k=1 k=1

where 51 and (3, are positive scalars chosen as a trade-off between reconstruction error,
coefficients contribution and discrimination. An iterative optimisation routine motivated
by pursuit algorithms [168, 135] is used. The algorithm in its entirety is illustrated in

Algorithm 2.

4.2.3.2 | Step 2: Layered Representation of SDS

We repeat this step for each individual layer (sub-sequence) and stack the coefficient

matrix X, ;, where A = [1,2,...,A]. For layer 1, the Fj ; matrix can be expressed as:

X1
Fai=| | e RAxPIxE (4.2.3.2)
_XA71_.
and a set of such matrices can be represented as:
Fioin=+4 Fr\1 , 2 , .., ..., Fap ¢. (4.2.3.3)
M~ ~——

Wi1 Wi,2 Wa.B

The subscript label under F) p shows which layer it belongs to. Conceptual diagram
showing how Fy,..;,, matrix is constructed is shown in Figure 4.4. The final step is to
reduce the dimensionality in the A dimension and learn the relationships across different

layers at the same time. This is shown below.
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Figure 4.4: Conceptual diagram of multi-wavelength atom-layer relationship matrix (co-
efficient matrix) which is learnt for several over-lapping sub-sequences (columns) on range-
amplitude ladar signals.

4.2.3.3 | Step 3: Relationship Learning & Anomaly Detection

The Singular Value Decomposition (SVD) is used to decompose Fiqin:
Ftrain =UX VT7 (4234)

where, U = [uy, ..., urx,| (p = number of training examples) and V = [vq,...,v,] (n =
number of basis vectors) are sets of singular vectors, and X, a diagonal matrix of the
singular values. In this representation, the vectors of U correspond to the elementary
atoms that make up a LiDAR signal and vectors of V' corresponds to a tree/forest layer
(window) in the semantic space. To preserve only ¢ essential semantic relationships, one

needs to approximate the atom-layer relationship matrix as follows:

Firaim = UgS V.. (4.2.3.5)

In the training phase apply (4.2.3.5) to the atom-layer (coefficient) matrix Fy,.q;, resulting

in U, and X,. During testing, the atom-layer coefficient matrix Fy., is transformed into
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a lower-dimensional semantic space using:
Fieo = 5, U Freat, (4.2.3.6)
and reconstructed in to the original space using:
F = U, Fi.. (4.2.3.7)

This step completes the mapping of W — F which results in a mapping Fy4in € ¢ X K
where, ¢ « (A x P).

Anomaly Detection It should be noted that while the low-rank nature of U, and
¥, captures only the essential semantic relationships, (4.2.3.7) cannot reconstruct the
original atom-layer coefficient matrix perfectly. The underlying intuition here is that if
the co-occurrence relationships in the test LIDAR samples are different to those in the
training data set, the reconstruction error will be large, i.e., the anomalous elements of the
coefficient matrix will have a significantly large value. This is computed by calculating the
distance between the learnt representation and reconstructed signal. The reconstruction

error on each individual layer is computed:
Ascore = HFtrain - FH%, (4238)

Equation (4.2.3.8) computes a score with regard to an individual layer (sliding window),

an anomaly score for each FW-MSL signal with N layers can be written as:
1 & -
Ascore I Ascore 4.2.3.9
N 2. (1.2:3.9)

Note If the classification mode is selected, the above steps are followed except that
training labels for different classes are made available. In such a scenario, the discrim-

inative objective function (4.2.3.1) is used to learn atom-layer relationships and assign
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Category | Property Value
Pixel Grid (pixels) 40 x 40

Waveform || Total waveforms 1600
No. of range bins 400
Bin resolution (ns/m) | 1/0.01
Footprint (m) 0.5
Wavelength (nm) 560

Laser Pulse

Width (ns) 2,4, 8,16

Beam divergence (rad)

Outgoing pulse shape | Gaussian

Flying altitude (m) 350

3D Scene Picea Engelmannii
Tree species used

Picea Nigra

Pinus Parviflora

Table 4.1: LiDAR Simulator Configuration

them class labels. For each test sample a K-NN match is computed in order to predict
its class label and then compute (4.2.3.6 and 4.2.3.7). Initial experiments show that this

reduces false alarms but at an expense of CPU time in solving (4.2.3.1).

4.3 | Anomaly Detection Results

We use simulated LiDAR waveform data of forest vegetation and real-world aerial laser
scanning (ALS) data collected over sub-urban Austria using RIEGL’s waveform sensors.
The real data lacks semantic labels, e.g. vegetation, terrain or buildings hence we analyse
our peak extraction and discrimination approach on synthetic LIDAR waveforms. Our
simulations are as close to the real data as possible. An operationally viable LiDAR
model was set up with a systems configuration as similar to a real sensor, RIEGL’s LMS-
Q1560 [145] and LMS-Q780 [144]. Table 4.1 illustrates the configuration settings used in

our simulations.
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4.3.1 | Synthetic Data - Multi-Beam Modeller

The concept of simulating small or large footprint LiDAR waveforms is not a new one
[103, 187, 178]. Unlike previous models, we generate realistic forest terrains. Our sim-
ulator models a 3D forest-terrain, generates a realistic vegetation using a closed-source
popular tree modeller and finally ray-traces and generate multiple LiDAR waveforms.

The steps involved are illustrated as work-flow in Figure 4.5.

Ray-tracing Configuration: One of the key operational requirements is for the out-
going laser pulse to have enough energy to penetrate dense forest foliage. An outgoing
waveform of pulse width 2ns was used to generate ground truth waveforms and point
cloud. The standard setting of LMS-Q560 and LMS-Q780 is approximately 4ns. We use
intermediate pulse widths of 4, 8 and 16ns to generate three different waveform sets for
three different tree species. We use the 2ns dataset as the ground truth. When scanning
an urban setting or dense forest we employ two scanning schemes (See Figure 4.2); firstly,
a push-broom style scan where we carry out a dense grid style scan and secondly, a flash
style scan with larger beam resulting in a large foot-print scan that illuminates an entire
tree in one go. In Figure 4.5, we illustrate the waveform generation process using the
depth and intensity images. A synthetic scene is ray-traced using a custom modified
Povray' that also generates a depth image. Equation (4.3.1.1) is used to convolve the
scene with a Gaussian instrumental (3-5ns) to generate synthetic FW-MSL waveforms.
For the sake of simplicity the same instrumental response is used across all wavelengths.
The received power P, (r) of a LIDAR signal after interacting with S surfaces, at a range
R, with d, as the aperture diameter of the receiver sensor can be expressed as:
S &2

Pa(r) = 3, gryaq o) T (1) # Br) +0:(r), (43.1.1)

i=1

where = denotes a convolution operation over Py (1), the transmitted power, I" (1), the sys-

tem impulse, E (r) , environmental aerosol contribution and o; (1), is the backscattering

Yhttp:/ /www.pov-ray.org
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Figure 4.5: Realistic LIDAR waveform generation workflow. (A) Natural terrain gen-
eration method using fractal based Brownian Motion Fields. (B) Layer 1 is a factorial
Brownian filed (fBF) and layer 0 is a texture layer that is mapped to the elevation model.
A closed-source tree modeller, Onyxtree is used to generate 3D tree models. (C) Tree 1
- Picea Engelmannii. (D) Tree 2 - Pinus Nigra. (E) Tree 3 - Pinus Parviflora. (F) The
depth and intensity image from the rendered scene is then used to generate synthetic
LiDAR waveforms.

cross-section.

The outgoing pulse width setting in our simulation is in agreement with a real sensor.
This is so that the outcome is also inline with the waveform processing that will be
applied to the real data. Also, the outgoing laser pulse is restricted to only nadir view
to reduce disparity in target backscatter or atmospheric attenuation. The transmitted
laser pulses from most real-world sensors are asymmetric, i.e., the trailing edge has a
slightly longer tail versus the leading edge. However, in our simulations we approximate
the outgoing pulse using a Gaussian distribution based on our observation of the actual
outgoing pulses.

Terrain and Vegetation Modeller: We assume that the forest terrain is a simple
continuous-time stochastic process and model it as a fractal or factorial Brownian Field
(fBF) [53]. The terrains are made up of two layers as shown in Figure 4.5(A). Layer
one, is an elevation field and texture is mapped to the elevation model in layer two. An
elevation function is defined using a generalised Brownian motion without independent

increments:

g
E[By,, B,] = — [t*" = (t2 — t1)*" + *] (4.3.1.2)
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Figure 4.6: Measured material spectral reflectance for natural (tree bark, needle and soil
samples) along with data from the Aster spectral library for selected man-made objects:
building material and galvanized steel.

where B, is a continuous-time Gaussian Process on [0, T'] and o, The roughness parameter
H (Hurst index) is varied in order to control the raggedness of the motion and this can
result in a variety of surfaces such as smooth dessert type terrains and mountainous
regions. Combinations of more than one surface can be used to build rocky terrains. We
use a popular closed-source tree modeller, OnyxTree?, to model different species of trees.
Three different species, Pinus Parviflora, Pinus Nigra and Picea Engelmannii, were used
with variable height, spectral reflectance® and leaf area index (LATI). We also add a man-
made object, a vehicle placed under the tree, in order to analyse the penetration and
discrimination capabilities of our algorithm. Figure 4.7a illustrates a simulated single
pixel waveform with added Poisson noise. In order to make the setting more realistic
we add random undergrowth in between the trees. The reflectance spectra of all the

materials used in the experiments is illustrated in Figure 4.6.

Man-made Objects Most of the man-made objects come from manufacturing pro-
cesses or architectural constructions and are a complex arrangement of basic ensembles
(cylinders, spheres or planes). Such objects are used in the experiments in order to study
the spectral responses of different surfaces (elevated areas, small objects and vegetation

surfaces) with multi-beam and multi-spectral LIDAR sensor. Man-made structures with

2http://www.onyxtree.com

3The Aster2.0[15] spectral library provided by JPL, NASA is used for reflectance values. Passive
measurements of tree samples under laboratory conditions [178] was carried out using a stabilized light
source and spectrometer, with several needles and bark samples.
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(a) Simulated waveform for a single pixel. The (b) Ray-traced 3D scene with three different
horizontal axis is the round-trip distance and tree species.

the vertical its amplitude or photon counts.

The peaks are extracted using the SPeED al-

gorithm proposed in this thesis (Green line).

Figure 4.7: (Left) Example FW-LiDAR signal. (Right) A ray-traced scene with three
different tree species.

elevated roofs and planar platforms along with vehicles are rendered and placed in a

forest setting.

Figure 4.7b illustrates a test scene with three different tree species: i) Picea Engelannii;
ii) Pinus Nigra; and iii) Pinus Paviflora. The waveforms from this scene were used to

test the SPeED algorithm and also classify the tree species.

4.3.2 | Layered Anomaly Score

Scenes rendered using the proposed modeller, as illustrated in Figure 4.3, are used for
experimentation. This small plot of forest is made up of two conifer tree species and
several man-made objects are placed in between. These objects are vehicles closer to the

ground and camouflaged with a random undergrowth introduced in between the trees.

An overhead surveillance flight simulation is assumed and flight path is traced and sev-
eral regions of the forest are illuminated using large foot-print waveforms, backscattered
returns are recorded using 4.3.1.1. Out of 105 test samples 23 FW-MSL signals contain
several anomalies. The detections are shown in Figure 4.11b. Experiments on simulated

and synthetic data have been carried out on a range of wavelengths (4, 8, 16, 32), rang-
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Layer-wise anomaly score for individual test sample

Anomaly score

Figure 4.8: Layer wise reconstruction error computed using 4.2.3.7 is illustrated here.
These results also label the species of the trees using a discriminative optimisation routine
3.1.1.9. Samples 34 and 69 record high reconstruction error as this is bare forest floor
with some undergrowth. Layer 1 and 9 record the lowest reconstruction error as these
layers record mostly background and system noise.

ing between 380 to 2500nm. Figure 4.10 illustrates the extracted spectra from the scene
shown in Figure 4.9a using 32 bands. Further analysis is carried out only on the detected
anomalous waveforms in order to produce a dense 3D point cloud. Figure 4.11a illustrates
some of these detections. Also, shown is an anomalous waveform and one of the learnt
models which is constructed using the learnt dictionaries for each layer. The anomalies,
both in the point cloud and waveform have been highlighted with a box. The conifer in

Figure 4.11a(A) conceals a large part of a vehicle that has two surfaces at varying depths.

Transmitted Laser Beam
1 f\ Scanned Voxel - 530nm Scanned Voxel - 1800nm Scanned Voxel - 700nm

Time(ns)

Phaton Count

0 50 100 150 200 250
Range ()

(a) An integrated waveform for 40x40 pixels of a scene made (b) Colour coded scene: Red - anoma-
up of forest floor, a tree and a vehicle hidden underneath. lies; Green - tree; and Floor - brown.

Figure 4.9: Anomaly detection on simulated scenes.
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This is obvious in 4.11a(D), highlighted with a box between layer 7 and 8. Subtle anoma-
lies are also detected, e.g., in Figure 4.11a(C) where only a tiny corner of the vehicle falls
within the sensor field of view. Figure 4.8 shows reconstruction error computed using
4.2.3.7 for each individual layer. These results also label the species of the trees using a
discriminative optimisation routine 3.1.1.9. Spectral and structural anomalies are added
in the form of man-made objects and bare ground. Most of these objects are closer to
the ground, Layer 7 and 8 clearly show the existence of these anomalies at 15, 20, 34, 69,
103, etc. Samples 34 and 69 record high reconstruction error as this is bare forest floor
with some undergrowth. Layer 1 and 9 record the lowest reconstruction error as these
layers record mostly background and system noise. Figure 4.9a illustrates an integrated
waveform for a scene, made up of three materials: i)forest floor, ii) a conifer tree; and iii)

a vehicle hiding in the undergrowth.

4.4 | Summary

This chapter suggests a two phase approach to anomaly detection and target detection in
dense cluttered environments. This approach is the first piece of work that we are aware
of which aims to look for spectral and depth anomalies in raw FW-MSL waveforms.
Eight different spectra are introduced in a cluttered forest scenes in the form of man-
made objects and vegetation. The suggested approach is widely applicable no matter
the sensor modality. This has been considered as a precursor to find interesting signals,
worthy of more detailed sampling and analysis in order to detect man-made objects, e.g.

vehicles under foliage, or mines underwater.

0.7 T T T T T T T T T Tree bark
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L R A TE IARIIETILEY (ITLRTICIS TELTRSTEER ST A S A TSRO ASRAS eitserd Soil
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Figure 4.10: Material spectrum of an individual tree with a hidden anomaly.
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The proposed approach is not restrictive and separate passive hype-spectral imagery
registered with LiDAR measurements can also be used as long as the training and test
measurements are registered or geo-referenced with respect to the sensor. Any number
of tree species can be learnt within this framework and as a by-product, the proposed
approach allows segmentation of individual foot-prints for semantic scene labelling. This
will be explored in detail in future works. FW-MSL data generation method proposed
in this chapter generates synthetic data using natural terrain modeller along with a ray-
tracer. Comparing this to past MSL work on studying tree physiology [178], the synthetic

data is as good as real measurements.
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(a) (A) A 3D point cloud of test sample 37, which is detected as an anomaly
using the proposed algorithm confirms the presence of large two surfaced ob-
ject. The detection peaks are shown in between layer 7 and 8. (B) Large
section of a man-made object detected on test sample 41. (C) A small subtle
anomaly is being detected on layer 8 of test sample 21. (D) and (E) are two
anomalies where the ground spectra along with undergrowth dominates the
coefficient space. (F) Layer-wise reconstruction of representative models are
shown along with test sample 37. The reconstruction is build using dictionar-
ies learnt on individual layers for 32 different wavelengths.
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(b) Test FW-LiDAR signals belonging to 2 different conifer species for a single
wavelength partitioned in to 9 layers using Y — W. In one of the experiments
105 samples belonging to two different conifer species are used. Anomalies are
introduced in the form of man-made objects at different depths and layers.

Figure 4.11: A 3D point cloud of the test sample and FW-LiDAR signals belonging to 2
different conifer species. Anomalies are introduced in the form of man-made objects at
different depths and layers.
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Chapter 5

Peak Modelling & Classification
from Aerial LIDAR Signals

Section 2.2.1 provides the basics of waveform modelling and a review on techniques that
model LIDAR waveforms. In this chapter, we present a novel approach, a multi-parameter
learning technique called simultaneous peak extraction and discrimination (SPeED). For
the sake of completion, we highlight some of the most popular techniques over the last

decade and their strengths and weaknesses. These are listed in Table 5.1.

Hernandez et al. [86] propose a method to fit the waveforms with a set of four piecewise
exponential functions. This method creates a grammar of such functions that can be
defined and adapted. They have shown how Bayesian analysis of TCSPC data can both
detect very low signal levels, even buried in the background, and resolve surfaces at the
order of 1 ¢m at a distance of 330 m. Ye et al. [190] proposed a parallel implementation of
[86]. The processing time for each pixel takes 1 second on a high-end laptop machine with
16GB RAM and 2.6GhZ clock speed. Altmann et al. [8] employ a Bayesian hierarchical
model and propose a RIMCMC algorithm to detect and identify targets at long ranges
using a TCSPC sensor. In their work, they assume the presence of a single target per
pixel and prior distributions for their models, which might not be realistic for specific

applications.
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Super-resolution: More recently, Bhandari et al. show comparable results to the origi-
nal RIMCMC approach [86] using a non-iterative method to process the ToF data. Their
approach, under comparable resolution, claims to allow deterministic and fixed time pro-
cessing of lower complexity. However, they assume a maximum of two targets per pixel.
Jutzi et al. [100] employ an iterative Levenberg-Marquardt method and model surface
properties using a set of Gaussian functions. They show that surfaces with a distance
corresponding to less than 0.15m can be resolved. Unlike methods [20, 100], we do not
make single, opaque or dual target assumptions and demonstrate the capability of en-
coding locally computed curvature information with their spectral response into target
specific signatures. Our experiments show that surfaces with a distance corresponding to

less than 0.04m can be resolved compared to previous methods.

Motivation for a New Approach: The above discussed methods have their own
merits and demerits. So far we have tried to highlight some of them in Table 5.1. We

have identified few key operational requirements for waveform fitting algorithms:

e Speed - time taken to extract finite number of peaks (e.g. for our experiments we

set n = 10) peaks per waveform.

e Resolvability - the minimum surface distance (m) that can be resolved between two

peaks. We desire high resolvability at higher speed;
e Echo Model - does the method allow or use a library of echo models;

e Simultaneous classification - does an algorithm detect and classify each peak simul-

taneously?
e Multi-peak detection - does the method support full-waveform LiDAR?

e Time and memory complexity - algorithmic complexity per iteration, high complex-

ity is not desirable;

e RMSE - we evaluate the quality by computing the root mean square error between

original and fitted waveform, low RMSE is desirable.
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ALGORITHMS

CRITERIA RJMCMC [86] | NNLS-1 [177] | NNLS-2 [46] | EM [13§] FRI [20] MP-MCMC [120] | SPeED
Speed Poor High High Medium Higher Highest
Resolvability | Med-High Med-Low Med-Low Med-Low High Med-High Highest
Echo Model Plece—vv1sej Gaussian Generghsed Gaussian Library Adapt.we

Exponential Gaussian echo library
Simultaneous | No No No No No Yes Yes
Classification
Mlﬂtl_l.)eak Yes Yes Yes Yes Yes Yes Yes
Detection
Time : : . .

. High Medium Medium Med-High NA Low-Med Low-Med

Complexity
Memory Medium Large Large Large NA Medium Medium
Complexity & & &
RMSE Low Low-Med Low-Med Low-Med NA Low Lowest

-Speed -Fix echo model -Fix echo model -Dual peak -Complex to
Drawback Complexit -Resolvability -Resolvability -Resolvability assumption implement

“OmpIexIty -No noise est. -No noise est. -No noise est. -No noise est. -Noise est.

Table 5.1: Comparison Criteria for Waveform Fitting Algorithms

S[RUSIS V(I [PHOY WOl UOHEIYIsSe]) 2y SUIoPOIY Yoo -G 1oidet)
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Figure 5.1: The Proposed Approach.

The methods compared in Table 5.1 have their own advantages and disadvantages. The

method we propose can:

e resolve relatively close surfaces (< 0.05m); this was tested against comparable tech-

niques with fixed instrument response function (IRF);

e detect multiple (finite) number of peaks and label them, simultaneously, i.e. full-

waveform compatible;
e be less complex (memory and time);

e estimate accurate peak parameters using a pre-defined dictionary (using their re-

spective labels for classification); or

e generate an adaptive dictionary (generated on-line for each peak), based on the

initial peak estimates.

Figure 5.1 illustrates the steps involved:
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1. Pre-process waveform by smoothing (improve signal-to-noise ratio) the original

waveform with a Gaussian of pre-defined half-width (Step 1 in Figure 5.1).

2. Check if the stop criteria is satisfied. The algorithm stops if the maximum number
of peaks is reached or the reconstruction error is below a certain threshold (Step 2

in Figure 5.1).

3. Find inflection points n - this implies that the waveform will be decomposed into
n elementary components. We initialise the peak parameters, estimate background

noise and rank them (Steps 3 - 6 in Algorithm 5.1).

4. If a pre-defined set of elementary functions, a dictionary, D, is known, we solve Eq.
5.1.3.1. However, if a dictionary is not known, we use the initial peak parameters
of the top ranked peaks (Step 6, Figure 5.1), to generate an adaptive dictionary
(Eq (5.1.3.2)), D, (Step 7, Figure 5.1).

5. Solve Eq (5.1.3.1) and classify peak (Steps 8 - 9, Figure 5.1).

6. Remove the peak from the original waveform and go to Step 2.

5.1 | Simultaneous Peak Extraction & Discrimination

5.1.1 | Pre-processing & Inflection Point Estimates

The number of peaks needed to approximate a LiDAR waveform can be derived from
the inflection points within that waveform. We make an assumption [89] that for n
peaks within a waveform there will be 2n inflection points at most. We pre-process the
waveform, convolving the waveform with a Gaussian function of pre-defined width. The
choice of the half-width can be tailored to the sensor system or dataset [89] or tailored to
the half-width of the impulse response (which is known in most cases). If the half-width
is unknown, then the return pulse from a calibration target (e.g. a Spectralon response at
normal incident angle [52]) or a flat surface can be used. A smoothing function (Gaussian)

is used to smooth the signal. The integrated area is set to one in order to maintain the

83



Chapter 5: Peak Modelling & Classification from Aerial LiDAR Signals

energy level (i.e. photon counts) of the original waveform. This is also a coarse way
of diminishing false inflection points caused due to random system or atmospheric noise
(e.g. dark photons). However, such a strategy can also result in low resolvability, i.e.
two peaks appear close enough together that only two inflection points, instead of four,
are detected, evident in [89]. In contrast: i) we do not approximate each peak with a
Gaussian; ii) our experiments also show that using a much smaller half-width (1.5 bins)
and ‘remove peak and repeat’ (Step 10 Figure 5.1) strategy we are able to maintain

high-resolvability with very low RMSE (see Table 5.2).

5.1.2 | Noise Estimation, Parameter Initialisation & Ranking

We use the inflection points to extract initial peak parameters on position (u), variance
(0), i.e. full-width at half maximum (FWHM) and amplitude (A) using the positions of
the inflection points. For a given LiDAR waveform, y;, using the positions of consecutive
inflection points, to;_1 and to, the position py, half-width, o, and amplitude A; of the

k' peak are given by:

(tog—1 + tor)

= AL (5.1.2.1)
o — \t%l; bor| (5.1.2.2)

Finally, we also estimate mean background noise. An initial estimate from the region
within the original waveform where no peaks are expected. For our experiments, we use
the first 10 and last 10 bins of the waveform. We use the above values to generate a large

dictionary (i.e. a set of elementary functions).

5.1.3 | Peak Estimation and Discrimination - A Sparse Solution

We propose a novel way (Steps 7 - 10, Figure 5.1) of estimating peak parameters inspired

by the concept of sparsity. We formulate the peak extraction and discrimination of LIDAR

84



Chapter 5: Peak Modelling & Classification from Aerial LiDAR Signals

signals as a sparse approximation problem. Chapter 3 introduces the concept of sparse
approximation and dictionary learning. We re-write the original problem (see Section
3.1.1.2) of signal approximation for a LiDAR signal and present a dictionary selection

and learning approach.

We propose two scenarios:

e Dictionary Selection - A dictionary matrix is known or fixed, e.g. mathematical
priors (generalised Gaussian (GG)). This is because, in our experiments, simulations
and real-world, the instrument response function (IRF) can be modelled using a GG.
In this scenario, we make use of Algorithm 4 as an optimisation technique in the
SPeED pipeline (Figure 5.1) to solve (5.1.3.1). The fixed dictionary atoms and their
corresponding sparse measurement vectors provide the contributions of each atom

and the peak parameters, e.g. mean (u), amplitude (A), shape (p).

e Dictionary Learning - A dictionary can be learnt or modified from the input data.
This is the case when training data is made available. Algorithm 5 illustrates how
we treat the input (per class) as a data matrix and update the dictionary atoms. It
is important to note that the atoms are orthonormal. The advantage of doing this

is to reduce redundancy in the dictionary matrix.

Given a LiDAR signal, y € R” and a known set of elementary functions, a dictionary,
D € RP*K | we aim to find a non-negative sparse coefficient vector, x € R¥ which implies
the contribution of each elementary function in D. Hence, for a selected support set s,

the sparsest solution x, can be found:

argmin ||y — Da:ST ||§ + Bil|zs||1, st ||zs ||o < To (5.1.3.1)

Ts=
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Algorithm 4: ADAPTIVE DICTIONARY (D) SELECTION

Initialise: s =¢, K =0,z =0and ry =y
Output: z,

begin

while k < K & max(D*r;,) > 0 do
(4,7) < max(D7ry)

S« SUJ

xs < argmin||y — Dozl ||s + Bi|z][o
xs=0

mu—y—szf
¥k’<—k+1

| x|s‘_xs

5.1.3.1 | Dictionary Generated using Mathematical Priors

If the dictionary matrix is unknown, we generate one for each peak based on some prior
knowledge (e.g. initial peak parameters or past literature [119, 177, 86]) and solve Eq.

(5.1.3.1). For our experiments, we use a generalised Gaussian peak library:

A1/2

S APy — P 5.1.3.2
T 1) exp( ly — pl?), ( )

gg(y> M, A7 P) =

where, y is a zero vector of finite length, p is the peak location, A is the amplitude
and p controls the shape of the peak. Samples are then drawn using the Gamma (I)

distribution.

For our experiments we work with a finite number of shapes (p = 1.5—38). For each p, we

generate GG samples, i.e. N dictionary atoms, using arbitrary location, inverse scale, and

[=emal\ [=malf\ e\ [=esd ) [=essl ()
=) | m[\g\—,}ﬂ\[\_ — s ijﬂ_
[——s=s] [\_\—mu\ ﬂ_\—»w\ [\_\m “—mﬂ_

Figure 5.2: Peak dictionary illustrating exemplar atoms generated using Eq. (5.1.3.2) for
a peak
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Algorithm 5: ADAPTIVE DICTIONARY LEARNING

Initialise: s =¢, K =0, X =0and ry =Y
Output: X
1 begin

while k£ < K & max(DTr;) > 0 do

(i, 5) < max(D"r)

S« 5U]J

X, « argmin||Y — DITXT||, + 5 ]|X]];
X=0

// For a given sparsity level {

YX;, ~ UXVT

D, — UVT

Th+1 < L- DSXS

k—k+1

X]s «— X,

FWHM parameters, u, A and o, respectively. The GG dictionary atoms are generated
by a transformation of Gamma random samples. Previous methods [119, 177, 89] employ
several optimisation schemes that select a single peak from a library of elementary func-
tions. These methods are not accurate when approximating asymmetric peaks. A single
peak is a composition of a family of functions. Our approach handles such a situation
by extracting a sparse contribution vector (sparsity constraint in Eq. (5.1.3.1)) which is
further used, along with peak parameters = {A, p, o, X}, as a feature vector to classify

each peak.

5.1.3.2 | Orthonormal Dictionary Learning

We cannot always model a library of peaks in advance or select and approximate each
peak with a single function. This is due to several factors: i) unknown instrumental (e.g.
different sensors have a different instrumental), ii) interaction of the unknown instrumen-
tal with different materials or geometry may result in several unknown but asymmetric
shapes. The assumption we make here is that such peaks are repetitive (this is mostly
true for forests and urban man-made objects). We use a small subset of the data as a
training set in order to learn new mixtures of elementary functions and their contribu-

tions. Given the training data, we propose to use a single orthonormal dictionary ¥, a
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GG dictionary (Eq. (5.1.3.2)) as a good initialisation which is updated using Algorithm
5. Figure 5.2 illustrates exemplar dictionary atoms with different shapes, controlled using
p. We illustrate and discuss the impact of dictionary learning and selection for waveform

modelling in Section 5.3.

We re-write the original sparse approximation as an alternating strategy jointly optimising

the coefficients X and the dictionary D as follows:

1. Coefficient update given a dictionary D:

argmin |[Y — DX |2 + 5[|X]|]; (5.1.3.3)
X

=0

2. Dictionary update given a coefficient X:
argmin ||[Y — DX ||3, |IDy| = 1,Vk=1,...,N (5.1.3.4)
D

under some constraint on D, e.g. only updating atoms with more information

(SVD), see Algorithm 5.

The proof of steps 6 and 7 (Algorithm 5) can be found in [111].

5.2 | Multi-spectral Aerial LIDAR (Austria Trials)

Aerial trails were carried out in collaboration with Carbomap Ltd. UK and RIEGL
Gmbh, Austria in 2015. Two study areas were chosen for this paper: i) Site 1 - Schwengen-
thal (46°55'39.7" N, 15°56'56.4" E), Austria (blue box in Figure 5.3); ii) Site 2 - Berthold-
stein (46°55'55.8" N, 15°57'24.2" E), Pertlstein, Austria (orange box, Figure 5.3). The
data was collected, on two separate flight missions, using three different sensors, LMS-
Q1560 [145], LMS-Q780 [144] and VQ-880-G [146], operating at 1550, 1064 and 532nm,
respectively. The raw data stream was pre-processed by RIEGL for data reduction and
noise removal. The sampled data was stored in the RIEGL Data Recorder DR560 to-

gether with scan angle and a high-accuracy GPS time stamp [177]. These can be exported
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as the ASPRS laser .las or a more waveform friendly format PulseWaves [93].  All the
detected pulses and their respective waveforms were stored in the .pls and .wwvs files,
respectively. The waveform processing software and algorithms for the Riegl sensors,

reported in this work, has been developed around the PulseWaves format.

The Austrian multi-spectral ALS dataset comes with its own set of challenges: i) wave-
form registration and calibration for three different sensors; and, ii) the lack of any
ground truth data. We solve the registration problem by conducting an octree based
nearest search. In theory, under no navigational, instrumental errors, the nearest neigh-
bouring points should corresponds to the same geographic location when scanned on two
separate missions. However, the angle of incidence, environmental circumstances and
aircraft drift means that the exact same location cannot be scanned. An octree based
nearest search method is a suboptimal solution. Discrepancies after the data registration
process is applied is illustrated in Figure 5.3 (Left), the Schwengenthal site. The blue
and pink dots corresponds to the same geographic location scanned by the LMS-Q1560
and LMS-Q780 sensors on two separate flight paths. The octree based nearest-neighbour

point cloud matches and waveform matches are shown in Figure 5.5 and Figure 5.4.

5.2.1 | Mobile FW-LiDAR Backpack System (Edinburgh Trials)

In collaboration with Carbomap, we developed a backpack system carrying the Riegl

VUX-1LR. Figure 5.6 illustrates the backpack system. The timestamp raw waveform
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Figure 5.3: The study areas. (Left) Site 1 - Schwengenthal, Austria. Markers in pink and
blue represent a small group of co-registered scan points collected using the LMS-Q560
and LMS-Q780 sensors. The waveforms are illustrated in Figure 5.4. (Center) A zoomed
out view of the scan area. (Right) Site 2 - Bertholstein, Austria.

89




Chapter 5: Peak Modelling & Classification from Aerial LiDAR Signals

80

o]
o

LMS-Q1560
LMS-Q780 60

[2]
o

40

20”
= 0

0 50 100 0 50 100
Time

Echo
Strength

N
o

N
o

o
Y

[oe]
o

80

(2]
o

60

40

Echo
Strength
N
o

20

N
o

0 WV, W 0
0 50 100 0 50 100
Time
Figure 5.4: Example waveforms from Site 1 - Schwengenthal collected using the LMS-
Q1560 (blue) and LMS-Q780 (pink) sensors.

contain range and intensity information for each incoming pulse. The data is stored in
the Pulsewave format [93]. Our waveform processing software, written in C++/CUDA,
can extracts multiple peaks from the raw LiDAR waveforms and outputs a 3D point

cloud.

Figure 5.10 illustrates the path, highlighted on a Google map image of University of
Edinburgh’s King’s buildings campus. We walked using the backpack system (Figure

5.6) and logging the data on a handheld laptop.

Figure 5.5: Nearest-neighbour correspondences between the LMS-Q1560 and LMS-Q780
point cloud data.
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(a) A custom designed (b) The waveform processing software (middle) was developed in
pack-frame with the C++/CUDA and the raw data from Riegl’s VUX-1LR was processed
Riegl VUX-1LR, a on a NVIDIA TX1 (left).

GPS reciever and a

data-logging laptop

(not shown in the

image).

Figure 5.6: Full-waveform LiDAR backpack system for terrestrial scanning

5.3 | Point Cloud Classification Results

We employ and analyse our approach on the synthetic scenes and ALS data collected over
sub-urban Austria. Since the real data lacks any ground truth, we use the 3D point cloud
generated using our simulator as ground truth data. Three different scenes are simulated
with different tree species: i) Tree 1 - Picea Engelannii; ii) Tree 2 - Pinus Nigra; iii) Tree
3 - Pinus Parviflora. Each tree is sampled into 40 x 40 pixel grid with a grid size of 0.5m.
Unlike [187] we chose to sample the waveforms in 400 time bins for each pixel and corrupt

them with Poisson noise.

5.3.1 | Metrics used for Comparison

For the analysis, we use metrics that not only measures signal (peak) approximation
accuracy but also the impact of the learnt dictionary on peak approximation. Unlike

[187], we use a distance metric to quantify 3D point cloud similarity between two objects.

1. True Discovery Rate (TDR) - We define TDR or sensitivity as the ratio between

total number of true detections, the time bin index of a detected peak that agrees
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with the ground truth, and the total number of true peaks.

# of true detections

TDR (%) = (5.3.1.1)

total # of true peaks
2. False Discovery rate (FDR) - This metric emphasises the number of false alarms
raised by the algorithm. It is the opposite of the true detections and can be defined

as

# of false detections

FDR =
(%) total # of detected peaks

(5.3.1.2)

We report the TDR and FDR values on the simulated tree dataset using our pro-
posed and the RIMCMC algorithm in Table 5.2.

3. Modified Hausdorff Distance (MHD) - This is a popular distance measure [61]
for object matching, computing the similarity between two objects based on their
shape attributes. If the Euclidean distance between a point p and p is defined as
d(p,p) = ||p—p||, then the distance between a point p and set of points P = {ﬁi}fvzpl

can be written as d(p,P) = min|[p — p||. We define the generalised Hausdorff
peP
distance as

d(P,P) = maxd(p, P). (5.3.1.3)

peP

The directed distances d(P,P) and d(P,P) are combined into an undirected dis-

tance measure as follows

M(d(P,P),d(P,P)) = di(P’le I %Zd(P, P)

(5.3.1.4)

Table 5.2 lists MHD values (lower values signify higher similarity) for the three tree
species used in our experiments when compared against the GT 3D point cloud.
We use the 3D modelled point cloud (generated using our simulator Figure 4.5) as

the ground truth.
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4. Root mean square error (RMSE) - this is the simplest of all the metrics,
measuring the root mean square error between the truth and modelled waveforms

using our approach

18 _
RMSE = EZ(Q—W, (5.3.1.5)

i=1

where [; is the true waveform, [;, the estimated waveform of length B. The RMSE
entries in Table 5.2 are averaged values for each tree using different reference beams

(2, 4, 8 & 16).

5. Time and Avg. No. of Peaks - These metrics record the average time taken to
process a single waveform and the average number of peaks extracted per waveform.

We average this out for 40 x 40 pixel grids.

6. Impact of Dictionary Learning - This is not a metric per say, however, a way
to quantify what is the contribution of the learnt dictionary (i.e. does the dic-
tionary have a structure?) towards peak estimation and discrimination. Figure
5.7 illustrates histograms and cumulative distribution function (CDF) of the learnt
dictionary atoms. The distinctive shapes of different target CDF’s is due to the
sparsity constraint, allowing more than one peak to contribute towards peak estima-
tion. Further, such distributions can be highly beneficial in designing probabilistic

clustering [124] algorithms.

We compare our approach with the RIMCMC approach [86]. Recently, variants of this
algorithm [178, 8] have been proposed. Although robust, they have a fundamental flaw,
they are not suitable for practical purposes due to high time complexity. When using
the SPeED algorithm on the simulated and real-data, we follow the steps illustrated in

Figure 5.1 and repeat the experiment using different outgoing pulses (2, 4, 8 & 16ns).
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5.3.2 | Results on Simulated Data

Recovering tree cross-section & On-line Classification - We assess the cross-section
of the tree plot by comparing the processed (deconvolved using SPeED and RJMCMC)
waveform result with the GT data generated using our simulator. Figure 4.7a shows an
exemplar waveform one of the trees and approximated using the SPeED algorithm. The
performance of our algorithm is by far the best when the outgoing pulse is as small as
2ns. Unlike previous methods [100, 187, 178, 177], we show that surfaces with a dis-
tance corresponding to less than 0.05m can be resolved for multiple peaks per pixel. For
Tree 1, Picea Engleannii, with an outgoing pulse of 2ns, the improvement on the average
number of peaks extracted per waveform when compared to the RIMCMC approach is
2.3 times. We show that, on average, 1.4 times more true detections (~ 91%) can be
achieved and reduce the time required by 234 times (0.047 s) to process an individual
waveform. However, the improvement is even more significant when we compare wider
outgoing pulses. Wider pulses make it difficult to separate surfaces whose separation is
smaller than the waveform width. For example, with Tree 3, Pinus Parviflora, we observe
~2 times more true detections when compared to the RIMCMC approach. However, the
RIJMCMC has low false detection rate < 10%. RJMCMC is meant to estimate the peak
parameters but does not have an on-line classification method. Figure 5.7b illustrates the
3D point cloud data extracted using the SPeED algorithm. Each 3D point is classified
into different categories - vegetation, forest floor and vehicle. This is not the case with
the RIMCMC approach, however, the peak parameters can be used for classification.
Figure 5.7a illustrates the point cloud extracted using the RJMCMC approach (after
4800 iterations). The MHD score for both approaches have been listed in Table 5.2. The
SPeED algorithm has lower scores for all the trees used in our experiments even with a
wide pulse width of 16ns. Finally, we estimate the peak shape CDF’s for different target
spectra (vegetation, forest floor and vehicle) learnt using Algorithm 5. It is evident from

Figure 5.7 that a diverse set of dictionary atoms are selected for different targets.
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(a) Unsupervised classification results (2ns pulses) for three different species using the
RIMCMC approach at 600, 1200, 2400 and 4800 iterations. (Top) Picea Engelannii, (Mid-
dle) Pinus Nigra and (Bottom) Pinus Paviflora.
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(b) Unsupervised classification results (using 4 different pulse widths - 2, 4, 8 and 16) for
three different species. (Top) Picea Engelannii, (Middle) Pinus Nigra and (Bottom) Pinus
Paviflora.
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Picea Engelannii Pinus Nigra Pinus Parviflora

Method Pulse Duration 2ns 4ns 8ns 16mns 2ns 4ns 8ns 1l6ns || 2ns 4ns 8ns 16ns
TDR (%) 90.98 | 87.38 | 72.38 | 68.89 || 92.80 | 87.56 | 83.38 | 76.25 || 94.15 | 90.46 | 85.93 | 79.93

FDR (%) 21.70 | 17.57 | 15.12 | 17.12 | 13.34 | 10.48 | 10.78 | 10.04 || 4.120 | 4.00 | 3.86 | 4.69

SPeED MHD 0.232 | 0.223 | 0.263 | 0.299 || 0.148 | 0.146 | 0.163 | 0.204 || 0.280 | 0.293 | 0.324 | 0.407
Time (s) 0.047 | 0.042 | 0.034 | 0.034 || 0.027 | 0.024 | 0.023 | 0.020 || 0.046 | 0.043 | 0.041 | 0.043

Avg. No. Peaks | 3.134 | 2.848 | 2.292 | 2.237 | 1.793 | 1.638 | 1.565 | 1.340 || 2.998 | 2.877 | 2.728 | 2.547

RMSE 0.022 | 0.038 | 0.122 | 0.117 || 0.042 | 0.082 | 0.117 | 0.236 || 0.064 | 0.067 | 0.098 | 0.089

Iterations 600 1200 2400 4800 | 600 1200 2400 4800 | 600 1200 2400 4800

TDR (%) 57.11 | 61.86 | 64.55 | 64.32 || 62.40 | 64.55 | 66.44 | 60.58 || 38.25 | 41.26 | 42.62 | 42.92

RIMCMC (2ns) FDR (%) 3.070 | 0.620 | 0.140 | 2.16 || 4.190 | 1.50 | 0.220 | 9.26 | 3.67 | 0.720 | 0.140 | 1.51
MHD 2.525 | 1.001 | 0.643 | 0.522 || 4.784 | 1.964 | 0.579 | 0.324 || 2.619 | 1.156 | 0.818 | 0.729

Time (s) 1.723 | 2.866 | 6.06 | 11.014 || 1.424 | 2.915 | 5.325 | 10.11 || 1.32 | 2.57 | 5.1 9.55

Avg. No. Peaks | 1.213 | 1.272 | 1.325 | 1.351 1.08 | 1.098 | 1.115 | 1.118 || 1.05 | 1.265 | 1.30 | 1.325

RMSE 0.351 | 0.198 | 0.183 | 0.188 || 0.197 | 0.184 | 0.176 | 0.199 || 0.410 | 0.392 | 0.354 | 0.368

Table 5.2: Statistics of the Peak Estimation and Discrimination (TDR - True dection rate (%), FDR - False detection rate (%), MHD
- Modified Hausdorff distance, RMSE - Root mean square error). The 2ns pulse is used for the RIMCMC approach at 600, 1200, 2400
and 4800 iterations.
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Figure 5.7: (Left column) Shape parameter (p) histograms of different targets - vegetation
(blue), forest floor (orange) and vehicle (yellow) for each tree specie. (Right column) The
cumulative peak shape p distribution for different targets within each scene.
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k S Expt. 1 | Expt. 2 | Expt. 3
0.99 (100,100) 1.000 1.000 0.987
0.90 (100,100) 0.994 0.990 0.970
0.50 (100,100) 0.994 0.991 0.967
0.20 (100,100) 0.988 0.972 0.953
0.99 | (10,100,100,10) 0.991 1.000 0.950
0.90 | (10,100,100,10) 0.998 0.990 0.920
0.50 | (10,100,100,10) 0.997 0.988 0.945
0.20 | (10,100,100,10) 0.994 0.972 0.917

Table 5.3: Average prediction accuracy on unseen data

Training Time (s) Training Time per datapoint

k S Expt. 1 | Expt. 2 | Expt. 3 | Expt. 1 | Expt. 2 Expt. 3
0.99 | (100,100) 1.858 0.961 0.459 0.543 0.413 0.132
0.90 | (100,100) 1.510 0.987 0.460 0.441 0.424 0.132
0.50 | (100,100) 0.990 0.436 0.348 0.289 0.187 0.100
0.20 | (100,100) 0.513 0.065 0.086 0.150 0.028 0.024
0.99 | (10,100,100,10) | 3.593 1.594 0.923 1.051 0.685 0.266
0.90 | (10,100,100,10) | 2.441 1.094 0.760 0.714 0.470 0.218
0.50 | (10,100,100,10) | 1.703 1.019 0.378 0.498 0.438 0.108
0.20 | (10,100,100,10) | 1.190 0.446 0.278 0.350 0.191 0.080

Table 5.4: Average training time for MLP

Off-line Classification using MLP - The characteristics of the LIDAR waveform peaks
were captured using different parameters, 0 = {A, p, o, X}, which lay the basis for the
classification. Three different experiments were run. The first two experiments (1 and
2) were binary classifiers with the only two classes being vegetation and forest floor.
The last experiment had four classes - leaves, bark, vehicle and forest floor. Given the
relatively simple nature of the dataset (7 parameters associated with one label), a simple
multi-layer perceptron (MLP) [84], a deep neural network, is used for classification. The

hyper-parameters to be tuned for the implementation of the MLP are:

e k: Proportion of data used as training set. (1 — k is then the testing set)
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e hidden_layer_size(S): The number of neurons in each hidden layer.

In Table 5.3, a selection of the results from the experiments are shown. Other hyperpa-
rameter combinations were tried but the optimal ones are reported. All the neurons are
activated by the 'relu’ function. The optimization method chosen is the Adam optimizer
with an initial learning rate of 0.001. Each experiment is run 20 times and the results are

averaged over all runs. In Table 5.4, we report the time taken to train the MLP network.

5.3.3 | Results from Multi-Spectral Aerial LIDAR Scans

The multi-spectral dataset, used in our experiments, was collected on two separate oc-
casions flying over a semi-urban environment in Austria. Riegl Gmbh carried out these
missions in 2015. The raw waveforms, in the Pulse Waves [93] format and the 3D point
cloud in the .las, laser format [153], was made available. The original point cloud data
(.las) was generated using Riegl’s propriety peak detection algorithm. As a pre-cursor to
peak modelling, we solve the registration problem by using performing a nearest search

operation for each 3D point using an Octree algorithm (Figure 5.3).

Experiments on real-world datasets show that SPeED can not only improve on the
existing peak detection algorithms used by Riegl but also classify individual peaks.
Similar to the simulation experiments, the characteristics of the real LIDAR waveform
peaks were captured using different parameters, § = {A,p, o, X}, which lay the ba-
sis for the classification. However, in a separate experiment, we add geometric fea-
tures: anisotropy, sphericity, planarity, and linearity (introduced in Chapter 6), making

0={Ap,o0, X,S P AP, S L}
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Figure 5.8: (Top) Unsupervised classification results using the SPeED algorithm on the Riegl dataset collected in Austria. (A) Observed
scene, (B) 1550nm, (C) 1064nm and (D) Combined result. (Bottom) Cumulative peak shape (p) distributions for different targets.
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ROI (rendered) Individual voxels Voxel Point Density

Figure 5.9: Site 2 - Bertholstein, Austria 3D point cloud classification results. (Left) -
Classification results rendered and colour coded: buildings (Red), high vegetation (dark
green), lower vegetation (green). (Middle) - We compute geometry features (introduced
in chapter 6) in individual 3D voxels (each voxel is colour coded). (Right) Each voxel is
colour coded (white - high point density and black - low point density).

Site 1: Schwengentha, Austria - Figure 5.8 (Top) illustrates waveform decomposition
and classification results of the Schwengenta site in Austria, Figure 5.3. The scene illus-
trates points classified into three different classes - buildings (brown), forest floor (red)
and vegetation (green) at 1550nm, 1064nm and the combination of these wavelengths,
simultaneously. It is important to note that the peak decomposition or extraction and
classification is carried in a single step and an unsupervised clustering methodology for
classification is used; the peak dictionaries are built using a generalised Gaussians using
equation (5.1.3.2). The classification approach on site 1 does not consider any geometric
properties (presented in Chapter 6). The results are not quantitatively assessed as no
ground-truth data is available. Figure 5.8 (Bottom) shows the cumulative peak shape (p)
distributions for different targets - buildings (blue), forest floor (orange) and vegetation

(yellow).

Site 2: Bertholstein, Austria - For site 2, we classify the waveform data in two steps:
i) first individual peaks are modelled and classified using the dictionary approach, SPeED
(5.1); and ii) we compute geometric features (presented in chapter 6) from the point cloud
data. The motivation behind this is if we get any improvement combining geometry and
spectral information. We combine these in to a feature vector and classified using an
unsupervised clustering approach. The results are presented in Figure 5.9. The colour

coded image is rendered for better visualisation.
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Figure 5.10: Terrestrial LIDAR data was collected at the King’s buildings campus using
the backpack system.

5.3.4 | Results on Terrestrial LIDAR Data (Edinburgh Trials)

The Riegl’s VUX-1LR is a compact full-waveform LiDAR system capable of recording
multiple peaks. We designed a backpack system using the VUX-1LR sensor and walked
around University of Edinburgh’s King’s buildings. The setup is presented in to Section
5.2.1. Figure 5.10 illustrates the path taken wearing the backpack system. The sensor
comes with an additional GPS receiver as an add-on and this was calibrated at the
beginning of the trial in a carpark. The SPeED algorithm was applied on the raw data
from VUX-1LR and geo-referenced point cloud data is shown in Figure 5.11. The colours

here represent: first returns (blue), first of many (green) and last returns (orange).

Figure 5.11: Geo-referenced point cloud data generated using the waveform processing
algorithm, SPeED. The colours here represent: first returns (blue), first-of-many (green)
and last returns (orange)
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5.4 | Summary

In this work, we presented a new approach to peak modelling and classification for wave-
form enabled LiDAR systems. Not all existing approaches perform peak modelling and
classification simultaneously on-line. Instead, they rely on a complex peak extraction
method (which are not robust to multiple peaks) that leads to a 3D point cloud which
can be further analysed for structure. On the contrary, the approaches that have an on-
line classification stage use peak parameters - amplitude, shape and width to determine
class membership. These approaches tend to enforce shape memberships which are bi-
nary. Our approach, SPeED, is significantly different, we believe that an individual peak
is composed of elementary shape functions (mathematically modelled or learnt from the
data) and its coefficient or contribution vector is a significant parameter in class sepa-
ration. Hence, we deviate from the binary membership to an orthonormal membership
provided the dictionary matrix is available or can be learnt from the training data. In
order to quantify the robustness and efficiency of our approach, we created a ray-tracing
system which generates synthetic scenes with three different tree species - Picea Enge-
lannit, Pinus Nigra and Pinus Parviflora. We compare our approach with the RIMCMC
approach and report results when compared using several metrics. The improvement
on the average number of peaks extracted using the SPeED algorithm when compared
against the RIMCMC approach is 2.3 times and further reducing the time complexity
by 234 times. This makes this approach highly suitable of real-time applications. When
comparing the MCMC based methods, the MP-MCMC approach [120] (0.07s per wave-
form or 50,000 waveforms/hour), on a high-end 8-core machine with 6GB RAM, shows
significant time reductions to the RIMCMC approach [86] and its parallel implementa-
tion [190] (1s per waveform). In comparison, our approach, on a quad-core machine with
16GB ram, reduces the time required to process each waveform by 1.8 times (0.039s per
waveform or 92,000 waveforms/hour). Unlike previous methods [100, 187, 178, 177], we
show that surfaces with a distance corresponding to less than 0.05m can be resolved for

multiple peaks per pixel.

103



Chapter 6

Object Classification from Single
Photon Counting LiDAR Signals

This chapter reports the analysis and discrimination of underwater multi-spectral single
photon light detection and ranging (LiDAR) signals. We propose to use two algorithms:
i) an unsupervised non-linear approach, the K-SAD method (Chapter 3), which in this
particular case, uses the joint spectral and geometric representations of underwater tar-
gets as input signals. The resulting sparse coefficients, target signatures, are then used
for classification; ii) a supervised approach, The SPeED algorithm that uses the multi-
spectral peak parameters as input signals. Using a labelled dataset, we extract individual
peaks (resulting in a 3D point cloud) and classify them, simultaneously. In addition we
propose two spectrally enhanced local-shape representations: spectral spin images (SSI)
and spectral shape representation (SSR). Our approach learns an optimal set of dictionary
elements, atoms and their respective contributions, coefficients using a non-linear kernel.
The shape and spectral adaptive quantisation of the dictionary atoms are optimised using
a generalised kernel objective function for maximum discrimination. Multi-spectral single
photon counting (SPC) measurements were made on scaled exemplars (known and un-
known targets) placed underwater that recreate different marine environments. Finally,

target material and shape discrimination results are presented.
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6.1 | Introduction

Multi-spectral (MS) Full-waveform (FW) terrestrial and aerial light detection and rang-
ing (LiDAR) has enabled researchers to simultaneously measure range and material re-
flectance. This has advantages in remote sensing [81], bathymetric mapping [54], defence
and security [53], restoration and archaeology [65]. In several such cases, e.g. discrete re-
turn (DR) LiDAR, the 3D data made available lacks semantic and contextual knowledge
of the surfaces and volumes of the scene. Researchers have tackled this problem using

spatial filtering methods based on local regions [80] and descriptor selection [185, 136].

In order to account for occlusion and viewpoint, part-based local discriminatory models
were proposed [2, 64]. Spin Images [97] is one of the most popular due to its simplicity in
construction and its robustness to occlusions. Given a set of 3D point cloud, spin images
creates a 2D local representation that captures shape information for each point. This
work presents two novel shape representations for multi/hyper-spectral data, dubbed
spectral spin images (SSI) and spectral shape representations (SSR). Both, SST and SSR
fuse volumetric properties of 3D objects and their spectral properties. It is only recently
that LiDAR systems have been built and tested for underwater applications. Commercial
and academic focus [54] on bathymetric LIDAR has been on shallow waters and use either
monochromatic laser sources or a maximum of two wavelengths. This work is the first to
report signal analysis and discrimination of such underwater LiDAR data for underwater

mine counter-measures (MCM).

6.1.1 | Data Acquisition: Setup & Targets

The multi-spectral depth imaging system [114] used in this study is based on the time-of-
flight (ToF') approach using a time-correlated single photon counting (TCSPC) technique.
Figure 6.1a illustrates a schematic of the experimental set-up. The TCSPC module,
Hydraharp in Figure 6.1 time-stamps each photon event reflecting off a target and records
it using a single-photon detector. The photon counts can then be time gated in to

histograms, a full-waveform, whose inherent nature may depend on several factors, e.g.,
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Figure 6.1: a) A schematic of the experimental set-up; b) (left) an exemplar under
investigation with different targets; ¢) full-waveform LiDAR signatures for a single pixel.

the laser wavelength, surface geometry and transmission medium. Figure 6.1b illustrates

an image of the ezemplar investigated in a tank filled with clear unfiltered tap water.

Making such measurements is the first step to demonstrate how LiDAR could be used as

an alternative to acoustic sensors for MCM purposes in very challenging environments.

6.2 | LiDAR Data Analysis

6.2.1 | 3D Shape Analysis: Point & Histogram Features

In stage 1, the following assumptions were made when processing raw multi-spectral SPC
data: i) one peak per waveform was extracted at each wavelength; ii) SPC waveforms
are aligned and normalised with respect to the Spectralon target, with 10% reflectance;
iii) the laser beam width was less than the surface differential. For a beam width of

300 pm, the smallest target diameter under-investigation was around 0.5 em; finally, iv) a
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Table 6.1: Experiment Key Parameters

Parameter Value
Environment Clear unfiltered tap water
Laser System NKT Photonics supercontinuum

laser source and tuneable filter

fibre-coupled to the transceiver unit

[luminating Wavelength | 500nm - 725nm

Laser Beam Diameter ~ 300um
Laser Repetition Rate 19.5MHz

Acquisition Mode Exemplar 1: 200 x 200 pixels
Area: bem x bem

Pixel acquisition time: 10ms

Histogram bin width 2ps
Histogram Length 4500 bins (after gating)
Avg. Optical Power ~ 300nW
|L o
(- (]
o ol. s
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= e
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Figure 6.2: (a) The cylindrical co-ordinate system and its oriented-point basis. (b) Two
different oriented-points and their neighbourhood points shown with a red ellipse on one
of the exemplars used. (c¢) Spin maps for the two oriented-points.

fixed stand-off distance from the sensor is assumed and the sensor is stationary.

6.2.2 | Spin Images

The FW processing module outputs a dense 3D point cloud, B = {x1,...,xx}, where
xx € RY3. In order to capture local surface variations Spin Images (SI) [97] are computed

on the point cloud B.

SI is a technique that maps all the vertices B € R?® onto R? based on an oriented-point
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basis (p,n). Oriented-points, or a local-reference coordinates are 3-D surface points which
have a normal vector associated, i.e. direction. The normals are computed for all the
points in B around a local-region, controlled using radius, r. Using (p,n) a local 2-D
basis is formed which corresponds to a local-reference coordinate systems. Figure 6.2(a)
illustrates a tangent plane P, an oriented point p with normal n and the line I through
p. The point p — {z,y, z} is mapped onto a new 2-D coordinate system (a, 3); where,
« is the non-negative perpendicular distance to the normal line £ and  is the signed
perpendicular distance to the tangent plane P. For each oriented-point in P a spin map,

Sp is created. The mapping function of a spin map, Sp — («, ) can be expressed as:

(\/Ilﬂf—pH2 —(n‘(a?—p))z,n-(x—p)>. (6.2.2.1)

The projection function of Eq. (6.2.2.1) is applied to all the vertices of a 3D point cloud
resulting in a set of points in (a, #) coordinates. Only one oriented-point is required
in order to express all the 3D points in a local neighbourhood. Once the mapping is
computed, 2D points («, ) are accumulated into discrete bins. The maximum size of
an object expressed in oriented point coordinates is controlled by au,az, Bmaz- These are
computed by taking the maximum of all the values of a and | 5 | of all the different
oriented-point bases. The bin size, b, which effects the spin image size, should be chosen
to be large enough so that the local descriptiveness of an object remains relatively high.

The spin image size (i, j) can be expressed as:

- 2/6max
Ty

+1,  j= O‘”;‘”f +1 (6.2.2.2)

All the neighbouring points to an oriented-point basis are accumulated into discrete bins

in the following manner:

i = [W] . = [9] (6.2.2.3)

In [97], authors suggest a bi-linear interpolation scheme to handle outliers, ensuring the
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spin images are not sparse to a large degree. The contribution of a 2-D point is spread
to the four surrounding bins using a bi-linear interpolation technique. The weights that

are used to increment the bins are:
a =« —1b, b=p(—jb (6.2.2.4)

Figure 6.2(b-c) illustrates two local oriented-point bases and their corresponding greyscale
spin images. Each 3D point xy has an associated spin image which embedded neighbour-
ing geometric properties of a surface in a 192 dimension feature vector, Sp. There are

other methods by which regional geometric variation can be captured, see below.

6.2.3 | Curvature Representation (CR)

The FW processing leads to a dense 3D point cloud. In order to capture local surface
variations, a regional variance-covariance matrix was computed on the 3D point cloud.
The radius, r, of the region shown in Figure 6.3 can be altered depending on the point
cloud density. West et al. [183] show how Eigenvalues can be used to describe the local,
spatial distribution of the 3D point cloud. They compute discrete moments within a

neighbourhood that can describe the planarity, linearity, sphericity and anisotropy.

Table 6.2 illustrates how these properties are computed, provided the Eigenvalues & >
&y > &;. The Eigenvalues computed are rotational [183] and view-point invariant. Four

local 3D surface features, Anisotropy, Ag, Planarity, Pe, Sphericity, Se and Linearity, L¢

Figure 6.3: Raster images of different geometric features computed for each 3D point,
controlled using a local neighbourhood radius, r. (a) Anisotropy Ag, b) Planarity P, ¢)
Sphericity Se and d) Linearity Le Table 6.2.

109



Chapter 6: Object Classification from Single Photon Counting LiDAR Signals

Table 6.2: Curvature Representations using Eigenvalues

. : E1—=&E P &
Linearity Lg £ Sphericity S¢ | &
; Ea—&3 ; E1=&3
Planarity Pe = Anisotropy Ag =
Stage 1
3 E e Curvature-based
: REE LIDAR Ddta 3 3D Spin Images Depth :
R, Representation L,
l Geometric Feature Computation
Simultaneous Peak Extraction & 3
Discrimination (SPeED) : Peak Parameters
[
Unsupervised Generalised
Gaussian (GG) Dictionaries o o
' Spectral Shap " \\.I_-/'F- <
See chapterd e F_‘ewesemmlor_'. =
* In the above approach, we use a GG dictionary to model See chapter 3
waveform peaks as part of the SPeED algorithm. The output label S ol
set generated is the purely a result based on the peak parameters
and are bound to have errors. However, the labelled data can then Object-specific Kernelised S R o DR
be used in a semi-supervised learning framework. We only use a Simultaneous Approximation and _."‘ Segmented 3D Point :
subset of these labels and the spectal shape representations Discrimination (K-SAD) ; Cloud

(SSA) to leam object specific dictionaries.

Figure 6.4: The adopted approach to process multi-spectral TCSPC LiDAR data. Figure
5.1 illustrates the flowchart for the supervised algorithm, SPeED and algorithm 3 lists the
pseudo-code for the K-SAD algorithm. In this chapter, as noted in the infogram above,
the K-SAD algorithm is used as a semi-supervised classification algorithm.

are computed within a neighbourhood, governed by radius r, of each 3D point. Finally,

the depth D, per pixel completes the SSR vector.

6.3 | TCSPC Object Discrimination Algorithm

The approach, illustrated in Figure 6.4, is divided in to two stages: i) Stage 1 - An
unsupervised method for point cloud computation and geometric feature computation;
and ii) Stage 2 - A semi-supervised method for point cloud classification using spectral

shape representations.
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6.3.1 | Stage 1 - Waveform Processing

We propose the idea of combining spectral (material) signatures with geometric cues.
Spectral response and the depth is computed by processing the raw LiDAR waveform
using the SPeED algorithm. Curvature based geometric cues are computed (Section

6.2.3) on the resulting point cloud.

We generate the 3D point cloud using the SPeED (Chapter 4) algorithm followed by the
computation of geometric features (Section 6.2.3). The steps involved in the 3D point

cloud generation are:

1. Pre-process waveform by smoothing (improve signal-to-noise ratio) the original

waveform with a Gaussian of pre-defined half-width (Step 1 in Figure 5.1).

2. Check for the stop criteria. The algorithm stops if the maximum number of peaks

is reached or the reconstruction error is below a certain threshold (Step 2 in Figure

5.1).

3. Find inflection points n. This implies that the waveform will be decomposed in to

Adaptive Dictionary Learning - Peak Finding

25 T T T T T
20 - Data .
Estimated

Z el i
e 15
=
310} -
@]

5 - -

O | 1 1 |

0 200 400 600 800 1000 1200

Range Bins

Figure 6.5: Multiple peaks estimated (red curve) using the SPeED algorithm on the
original SPC histogram (green).
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n elementary components. We initialise the peak parameters, estimate background

noise and rank them (Steps 3 - 6 in Algorithm 5.1).

4. If a pre-defined set of elementary functions, a dictionary, D, is known, we solve Eq
5.1.3.1. However, if a dictionary is not known, we use the initial peak parameters
of the top ranked peaks (Step 6, Figure 5.1), to generate an adaptive dictionary
Eq. (5.1.3.2), D, (Step 7, Figure 5.1).

5. Solve Eq. (5.1.3.1) and classify peak (Steps 8 - 9, Figure 5.1).

6. Remove the peak from the original waveform and go to Step 2.

Geometric Feature Computation In Chapter 4, a generalised Gaussian (GG) dic-
tionary matrix was used to process aerial and terrestrial LiDAR data. The transmitted
beam by the super-continuum laser source in our experiments (shown in Figure 6.1) was
an exponential pulse. Figure 6.5 illustrates one such return, green curve. An exponential

pulse has the form

f(t) = k‘(e‘ﬁ1 — e_th), (t > O),
TretrTn In(72/7T7)

where, k = ———,andt, =

s (6.3.1.1)

and the degree of modulation on the backscattering beam depends on the surface ge-
ometry and its spectral reflectance. For the SPeED algorithm, a dictionary matrix is
generated which is build using the GG Eq. (5.1.3.2) and the exponential model Eq.
(6.3.1.1).

For the analysis of urban and forest scenes using laser scanning, several classification and
feature relevance algorithms [81, 183] have been proposed. However, these methods do
not truly embed the full-waveform properties and the spectral reflectance of the observed
objects. The proposed SSR representation captures such variations from the waveform
and the point cloud data. For each waveform the peak parameters (Eq. 5.1.2.1 and

5.1.3.2) are extracted using the SPeED algorithm.
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Figure 6.6: Reflectance spectra extracted using our technique for different materials (plas-
tic, metal, sand, concrete).

6.3.2 | Stage 2 - Non-linear Dictionary Learning of SSR

The three spectral parameters, p, o and [ in Eq. 5.1.3.2 is combined with the spin images
(SI), Section 6.2.3 and curvature representation (CR), Section 6.2.3 to form the Spectral

Spin Image (SSI) and the Spectral Shape Representation (SSR), respectively.

A combined per-pixel representation with SSI can be written as:
I [V OV S GV ) S (6.3.2.1)
Alternatively, when SSR is used, the combined per-pixel representation is written as:

(whils = [{B o oo fo o, Ae, Pr, Se. Le | € R (6:3.2.2)

In 6.3.2.1, p,o and B correspond to the spectral features and S corresponds to the spin
images, Section 6.2.3. Eq. 6.3.2.2 is identical to 6.3.2.1, except we replace the Sz vector

with four scalars, represented by A., P., S., L. and D,, as discussed in Section 6.2.3.

For each pixel, the combined spectral and depth representation is a vector of length 240

and 52 for SSI and SSR, respectively. For the experiments reported here, A = 16. The
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IR KU\

Figure 6.7: Results of underwater foliage penetration and point cloud classification.

stage 1 outcome, a label set, is purely based on the waveform parameters, p,c and .
Classification purely based on spectral properties is bound to have errors. This is also
evident from the multi-spectral aerial LiDAR scans (Section 5.3.3). However, a subset of
randomly selected pixels and their labels can be used to train a semi-supervised learning
framework. We use only a small subset of pixels, the spectal shape representations (SSR)
and their corresponding labels to learn object-specific dictionaries and classify them using

the K-SAD algorithm (See Algorithm 3).

6.4 | Results and Discussion

The discriminatory performance of our approach is analysed using several handmade in-
house exemplars. These are listed in Table 6.3. Target Tin_1 - Tin_4 have several objects
of varied material, listed in Table 6.4, securely attached to the surface of a mason jar
tin. We use Float_1 target to analyse the classification accuracy when targets are hidden
behind dense foliage underwater. Metallic balls and plastic objects were suspended using

a fishing thread behind aquatic plants. Classification results are illustrated in Figure 6.7.

Table 6.3: Targets under investigation. These are designed using materials (Table 6.4)

Image

Target ID| Tind | T2 | T3 | Tid
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Two sets of experiments were carried out: i) Material Discrimination: classify target
signatures into three constituent materials, sand, plastic and metal, used to make the
exemplar; ii) Mine Discrimination: classify different mine types, which not only differ in
shape but also in material. Four different mines were used, Plastic 1, a cuboid shaped
mine, Plastic 2, a spherical shaped mine, Metal 1 and Metal 2, small and large spherical

shaped metallic mines, respectively.

6.4.1 | Experiment 1 - Material Discrimination

The confusion matrix for material discrimination is shown in Table 6.5. A subset of 8520
target signatures, equally divided into three different materials was selected. A 10-fold
cross-validation classification was then performed using the proposed approach resulting
in a mean classification error rate of 0.021%. Table 6.1 summarises the sensor equipment
and acquisition parameters used. The exemplar was lowered underwater and kept at a
distance of 1.33m from the SPC sensor. In order to limit the influence of any ambient
illumination, the experiment was conducted in a dark room. The instrumental response
was measured using a reference, a Spectralon panel, which was placed approximately at
normal incidence to the beam. For each pixel a 4500 bin time-gated histogram is created
with a depth resolution of 300um. Such measurements are repeated for 16 wavelengths
ranging between 500nm to 725nm, equally spaced by 15nm. The choice of the wavelengths
hinges on a detailed study previously performed. A detailed explanation of a similar

experiment is reported in [114].

6.4.2 | Experiment 2 - Mine Discrimination

The aim of this experiment was to seek answers for the following questions: i) can mines
with structural variation but similar spectral signatures be classified correctly?, and,
ii) what impact do the Geometric features, Section 6.2.3, have on classification? Table
6.7 lists the confusion matrix for mine classification when geometric properties are in-

cluded, using the full SSR representation, Eq. 6.3.2.2 or 6.3.2.1. A subset of 7350 target
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Material U-can Mortar
Manufacturer | TBP Ltd, UK
Used in Tin_2 and Tin_4
Material Textured spray paint
Manufacturer | The Valspar Corp, UK
Used in Tin_1- Tin 4 and Float_1
Material Waterproof glue
Manufacturer | Gorilla Glue Europe, UK
Used in Tin_1- Tin_4 and Float_1
Material Sure Catch Power Line
Manufacturer | SureCatch World, Malaysia
Used in Float_1
Material Building sand
Manufacturer | B&Q, UK
Used in Tin_1
Material Mason tin lids
Manufacturer | ASDA, UK
Used in Tin_1- Tin_4
Material Lego block
Manufacturer | The Lego Group, Denmark
Used in Tin_1, Tin_3 and Float_1
Material Lego block
Manufacturer | The Lego Group, Denmark
R Y Used in Tin_1 and Tin_3

¢ © Material Metallic spheres
Manufacturer | RS Components, UK

‘ ‘ Used in Tin_1- Tin_4 and Float_1

Table 6.4: List of all the materials used in our experiments.

signatures, equally divided into five different classes was selected. The mean classification
error went up by 3.6% when geometry based DR was neglected. The effect on accuracy
of classification for four different mines with and without DR is listed in Table 6.6. Figure
6.8 illustrates the learnt coefficients, Q, clustered into different mine types. The 3D point

cloud, shown within, is segmented not only on the basis of their spectral content but also

Table 6.5: Confusion Matrix - Material Discrimination

Sand | Plastic | Metal

Sand || 0.9721 | 0.0144 0.0133

Plastic | 0.0151 | 0.9823 | 0.0024
Metal || 0.0140 | 0.0035 | 0.98239

116




Chapter 6: Object Classification from Single Photon Counting LiDAR Signals

Table 6.6: Effect of Depth Representation (DR) on accuracy

Plastic 1 | Plastic 2 | Metal 1 | Metal 2
Without DR(%) 92.65 95.65 97.62 98.10
With DR(%) 97.55 99.05 99.46 98.91

Table 6.7: Confusion Matrix - Mine Discrimination

Plastic 1 | Plastic 2 | Metal 1 | Metal 2 | Sand

Plastic 1 0.9755 0 0.0020 0 0.0224
Plastic 2 0.0054 0.9905 0.0007 0.0020 | 0.0014
Metal 1 0.0014 0.0027 0.9946 0 0.0014
Metal 2 0.0014 0.0068 0 0.9891 | 0.0027
Sand 0.0102 0.0007 0 0.0007 | 0.9884

Planarity P_

2

Sphericity S,

Figure 6.8: Mine clusters using the spectral depth codes, Q, on the spectral axis, echo
area; and the depth axis, linearity and sphericity, respectively.

their geometric features. For illustration purposes, the clusters are plotted along three

dimensions, area-under-curve, Ay, sphericity, Se and linearity, L¢, respectively.

117



Chapter 6: Object Classification from Single Photon Counting LiDAR Signals

6.5 | Summary

A novel spectral-depth representation is presented that is highly discriminatory in charac-
terising different target signatures underwater. Several custom-made realistically scaled
exemplars with known and unknown targets have been investigated using a multi-spectral
single photon counting LiDAR system. Multi-spectral measurements were made under-
water on targets with different shapes and materials, Section 6.1.1. Using the proposed
spectral shape representation sparse codes are optimised for maximum discrimination
between different materials and mines, demonstrating accuracies of 97.8% and 98.7%,
respectively. Combining depth with spectral data, the approach is very effective at dis-
criminating targets of different shapes, but with similar spectral response, or conversely
of similar shape but having different spectra. When spectral features alone are consid-
ered, the discrimination error reported for Plastic 1 mine is 7.35%. But, when spectral
and depth representation is considered, the error reduces to 2.45%, Table 6.6. This work
is the first to report the analysis and discrimination of multi-spectral underwater single

photon counting LiDAR signals as an alternative to acoustic MCM.
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Object Classification from Sonar

using Dictionary Selection

Modern day sonar systems operate at high data rates and pixel resolution which may
result in information overload for human operators, but conversely provide sufficient tem-
poral and spatial resolution for automatic target recognition (ATR). This work proposes
an approach that finds efficient representations for training and classification of different
mine like objects (MLOs) and natural rocks in underwater signals, e.g. sonar echoes and
images. The focus is on the design and selection of a compact, optimal and non-linear
subspace, a dictionary, based on the mathematical models of acoustic signals. Here, the
traditional sparse approximation formulation is decoupled and modified by an additional
discriminating objective function and a corresponding selection strategy is proposed.
During training, using a set of labelled sonar signals, a single optimised discriminatory
dictionary is learnt which can then be used to represent MLOs. During classification, this
dictionary together with optimised coefficient vectors is used to label scene entities. Eval-
uation of our approach has resulted in classification accuracies of 96%, 95% and 94% on
sonar echoes (the Connectionist Sonar benchmark dataset), realistic synthetic side-scan

images and real Synthetic Aperture Sonar (SAS) data, respectively.

Unlike the methods briefly discussed in Section 2.1, this work focusses on a signal ap-

proximation and discrimination approach that applies to both 1-D and 2-D data. Our
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approach learns an optimised lower-dimensional subspace of labelled training data, mak-
ing it quite adaptable to classify unseen target signatures. The mathematical represen-
tation proposed is fairly simple, easy to implement and does not require highly complex
classification routines. The work presented here is developed from an earlier approach
[53] to classify various tree species using synthetic 1D photon count histograms. Here it
has been extended to represent and classify multiple types of targets in both 1D sonar

echoes and 2D sonar images.

A two stage approach to underwater sonar signal discrimination is proposed. Experiments
are also carried out on 1-D sonar signals and 2-D imagery. In the 1-D case, the clutter
rejection problem is tackled, i.e. differentiating between backscattered sonar returns
from man-made objects, e.g. mines, and naturally occurring sea-floor, e.g. rocks. In the
2-D case, the dictionaries are adapted to curve singularities and strong gradients, e.g.

extracting features from strong contrast caused due to target shadows underwater.

Below we highlight some of our findings when the SAD algorithm was applied to 1D and

2D sonar datasets:

A generalised algorithm for traditional 1D sonar returns and more advanced 2-D
sonar imagery is proposed. This approach thus decouples the signal coding stage

from the dictionary selection stage.

e In contrast to some of the work in dictionary learning [188], [4] and [186] where
dictionary atoms are learnt from the data, a dictionary building and selection ap-
proach based on mathematical models of underwater sound signals is suggested in

section 7.2.

e We use the objective function, presented in chapter 3, that maximises the inter-class

discrimination and minimises the intra-class distance of MLOs.

e This work reports 96% accuracy on the Connectionist sonar dataset [74]. This is

reported in section 7.3.

A classification accuracy of 95% is also reported on the simulated side-scan sonar
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image dataset, Section 7.4.1; and, real SAS data coming from the COLOSSUS 2
trials operated by the CMRE (Centre for Maritime Research and Experimentation),

section 7.4, respectively.

e With a 23.24% decrease in the misclassification error rate on the CMRE MUSCLE
SAS imagery, the impact of dictionary selection and merging is discussed in section

7.5.

7.1 | Problem Formulation

Discriminatory Sparse Representation We formulate the MLO classification prob-
lem as a SAD problem (see (4.2.3.1)). Let Y be a data matrix in a P-dimensional space,
ie., Y = [y,...,yn] € RP*N. Each signal within Y can be sparsely represented using a

linear combination of the columns in a dictionary matrix, D = [dy, ..., dx] € RE*P.

The solution to a sparse representation can then be written as an optimisation problem.
In (4.2.3.1), the codebook D is a dictionary matrix, where K » P. The term G (X) is
a discriminatory function that minimises inter-class and maximises intra-class variance.
Detailed explanation on G (X) and step by step implementation of SAD is given in section
3.1.1. The penalising terms, 8, and S5, control the importance of the sparsity constraint

and the reconstruction error, respectively.

The solution to (4.2.3.1) can be divided into two steps: i) solve (4.2.3.1) with respect to
X and D and the dictionary, i.e, codebook, D is retained; ii) for each test signal, the
coefficients are obtained by optimising (4.2.3.1) with respect to X only. The individual
modules within each stage are explained in detail below along with their implementation

details.

7.2 | Proposed approach

A MLO classification system with discriminative traits is proposed and shown in Figure

7.1. Pseudocode is presented in algorithm 6 and is divided into two stages:
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Stage 1 - Training
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Figure 7.1: The proposed system has been adapted to the MLO classification problem
by encompassing a dictionary building routine specifically for underwater sonar signals.
The prediction module is a generic classifier with class labels as its output.
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1. Training: The optimisation stage, section 7.2. Stage 1 takes the sonar signals
along with their labels and returns a single optimised discriminatory dictionary
for all mine targets and their coefficients. This stage is further divided in to two

modules:

a) Dictionary Building - a large set of orthogonal bases are defined based on math-
ematical models of MLO. This information is used as a known prior in order to
create a large pool of dictionary atoms from which an optimised subset can be

selected. See section 7.2.

b) Simultaneous Approximation and Discrimination - a modified discriminatory
constraint is proposed that allows approximation and discrimination of the in-
put signals with a small subset of dictionary atoms. The learnt discriminatory
dictionary and their optimised coefficient vectors along with their labels are used

by stage 2 for classification. See Section 3.1.1.

2. Classification: Each test signal is classified into different MLO categories using
the learnt dictionaries and coefficients from stage 1. Finally, confusion matrices

and misclassification error plots are generated by comparing the predicted label set
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Algorithm 6: PSEUDO-CODE - PROPOSED APPROACH

Input: Data matrix Y € RV labelled set, Q

Output: Dictionary D, Coefficients X and Ly,.q;,, training label set
begin

// Stage I - Dictionary Building

Build dictionaries using Algorithm 7

// Stage II - SAD (Optimisation)

Solve (4.2.3.1) using Algorithm 2

// Stage III - Prediction

Classify test samples using steps 5,6 and 7 of Algorithm 2

Algorithm 7: PSEUDO-CODE - DICTIONARY BUILDING

Input: Signal dimension, P, number of atoms, K
Output: Dictionary matrix, D,

// Stage I - Dictionary Building
Dictionary matrix Dy, < [ ]

begin

D < MakeDCT (K, P) // (7.2.0.3)

D apor < MakeGabor( ) // (7.2.0.4)
Djar < MakeHaar (K, P) // (7 2.0.5)

D4 < MakePDFB (K, P)

Dinit < [Ddct Dhaar Dgabor Dpdfb]

against known ground truth.

Stage I - Dictionary Building

The pseudo-code for stage 1 is presented in Algorithm 7. A crucial step in the proposed
MLO classification is to design an appropriate dictionary. A dictionary matrix with
maximum “compactness” or “sparseness” properties can be considered as a transforma-
tion matrix, synthesised from a filter bank that represents the input data in a different
domain, e.g., frequency or time-frequency. Representing input signals for recognition
purposes involves dictionary building and selection [38]. Once a dictionary is selected,
for the orthogonal case, the coefficients can be computed as an inner product of signal
and dictionary atoms. However, in a non-orthogonal case, the coefficients are the inner
product of the signal and the dictionary inverse. An over-completeness of the dictionary
is assumed, i.e, the number of atoms is far greater than the signal dimension, a large pool

is generated from which an orthogonal sub-dictionary can be efficiently selected.
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Transform design has been studied since the 1960s and the elements of dictionary de-
sign, their mathematical definitions and properties have been well established. Signal
transforms that can be adapted into dictionaries have been broadly divided into two cat-
egories: (i) Linear & non-linear transforms, e.g. DCT, Gabor and Haar; and, (ii) High-
dimensional analytic dictionaries designed using multi-resolution directional filter banks,

e.g. contourlets and curvelets (Algorithm 7).

Given a basis, {d;}5 , € R?, of a K dimensional subspace, a signal y € R can be linearly

approximated by projecting onto the subset of K basis elements. This can be written as

y~ Y. (diy)d (7.2.0.1)

kE[k

However, in the non-linear case, each signal is allowed to use a different set of dictionary

atoms in order to achieve best approximation. Equation 7.2.0.1 can be re-written as
S Z Dz}, (7.2.0.2)

where, I;(y), is an index set adapted to each signal, y.

DCT, Gabor and Haar Transforms

The most common of all linear transforms is the Fourier Transform [29]. The Fourier
basis describes a signal in terms of its frequency content, a combination of orthogonal
waveforms. It is also a method of expressing a periodic function in terms of several basis
functions. Although, such a basis is an ideal choice for representing smooth and periodic
functions, discontinuities cannot be well approximated due to the lack of localisation

properties of Fourier basis functions.

Discrete Cosine Transforms In the discrete domain, the Fourier Transform have
been extended in the complex and real domain as the discrete Fourier transform (DFT)
[31] and the discrete cosine transform (DCT) [5], respectively. Figure 7.2a illustrates a

subset of example DCT atoms of size 14 x 14 used in the experiments. Due to the use
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(a) DCT, Gabor, Haar and Contourlet atoms used in the experiments.
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Figure 7.2: a. Some of the dictionary atoms used in the experiments. The order of these
atoms is optimised for every input signal. b. An illustration showing that the DCT
approximation is more accurate using the same number of coefficients when compared
with DFT.

of real numbers and the small number of basis vectors required to approximate an input
signal, the DCT transforms have been extremely popular with the image processing and
compression communities [112]. As illustrated in Figure 7.2b, for the same number of
samples, the DCT approximates the signal with a higher accuracy. Unlike the Fourier

Transform, the DCT does not assume a periodic extension of the signal, resulting in
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smooth boundaries, a better approximation. A two-dimensional DCT can be written as:

N—-1M-1

MZ: Cos [%(22 + 1)]

i=0 j=0

F(u,v) = 2

:

™

ol

(2 + 1)] (7.2.0.3)
Gabor Transform A natural extension of the Fourier Transform is the Short Time
Fourier Transform (STFT) [7], which provides better localisation and limits the effect
of irregularities. The STFT was later generalised by Janssen et al. [94] which further
developed into the Gabor Transform. The Gabor transform in the 2-dimensional case

takes the form:

<72 - 92
G(Z,9) = exp [—% [E] + [UE] ] cos (27 f%),
y
T =wxcosf + ysinb

g =1ycost —xsinb, (7.2.0.4)

where o, and o, are the standard deviation of the Gaussian envelope in 2D. Using (7.2.0.4)
a filter bank is created, where f controls the frequency resolutions of the transform and 6
controls the directionality, i.e. orientation. This is highly beneficial to represent spectral
sonar signatures, illustrated in Figure 7.4. Figure 7.2a illustrates some examples of 2D

Gabor atoms of different sizes and orientations.

Haar Transform The Haar transform has been extremely popular for image compres-
sion and sonar imagery is the Haar transform. Due to its discontinuous nature it can
detect discontinuities and sudden transitions in signals. In [154], the authors have used

this extensively in identifying sudden intensity changes between targets and their shadows
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on the sea-bed. A Haar function takes the form

-

1 0<az<1/2

P(y) =14 -1 1/2 <z < 1,0r more generally,

0, otherwise
\

D 1(y) = ®(2y — k), (7.2.0.5)

where j is non-negative integer and 0 < k¥ < 2/ — 1. Equation (7.2.0.5) is orthogonal in
[0, 1], with Sé D, (y) @y (y)de = 0,Y(4, j) # (I.m). Examples of Haar like wavelet filters

for different scales are shown in Figure 7.2a.

Pyramidal Directional Filter Banks (PDFB) - Contourlets

Wavelets, e.g. Gabor and Haar transforms, are efficient in capturing piecewise smooth
signals and are well adapted to point singularities, especially in one dimension. This
is shown in Section 7.4.2 where Haar and Gabor seem to provide good approximation
and discrimination of targets which have dominant point singularities. However, in two-
dimensions, interesting phenomena can be arranged along lines, curves, hyperplanes and
other non-point like structures, for which wavelets are not well adapted. Wavelets may be
less effective for images where the singularities dominate both scale or space, e.g. shape

and directionality.

The intrinsic geometric or shape features of underwater mines in the two dimensional
case require transforms that can capture not only directional details but also anisotropic
and smooth curves. With regards to this, Ridgelets [37] and Contourlets were proposed
[59] which are adapted to straight and curved singularities, respectively. In this work,
contourlets were chosen to capture curve singularities and two dimensional Gabor and

Haar transforms for straight singularities.

The pyramidal directional filter banks (PDFB) or Contourlets are implemented by decou-
pling the multi-scale and the directional decompositions using Laplacian Pyramid (LP)
[35] and directional filter banks (DFB) [16], respectively. Such transforms are extremely

useful in capturing high curve content in images, e.g. spherical or hemi-spherical shaped
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(a) (Top) One-level LP decomposition and reconstruction using low-pass
analysis, H and synthesis, G, filters, respectively. M is the sampling
matrix, o is the coarse approximation, g is the prediction error between f
and f’. (Bottom) 2D spectrum partition using directional filter banks and a
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(b) Curves’ parabolic scaling relation which can be effectively approximated using
contourlets. (Top) Parabolic scaling relation of curve fitting. (Bottom) Different
support sizes with scale and orientation filters using a Laplacian Pyramid and
directional filter banks (DFB), respectively.
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Figure 7.3: Construction of the PDFB or contourlet transforms.

mines have high curvatures on edges. The basic idea behind LP is the following. A
coarse approximation of the original signal is derived using a low-pass filter and then
down-sampled. The approximation is then up-sampled to predict the original signal.
Finally, a prediction error is derived by taking the difference between the approximated

signal and the original signal. This is illustrated in Figure 7.3a. In order to solve the curve
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singularity problem a set of DFB is used. The DFB is made up of two building blocks, a
two-channel quincunx filter bank (QFB) [157], @, and a shearing operator that handles
pixel reordering. Finally, a three-level wedge-shaped frequency partition of contourlets is
achieved by equally dividing the frequency spectrum into horizontal and vertical bands,

as shown in Figure 7.3a.

Figure 7.3b illustrates the parabolic scaling of a curve and how LP and DFB combine to
form the contourlet transform. The parametric representation of the discontinuity curve
obeys

u(v) ~ —,v ~0, (7.2.0.6)

where k is the local curvature of the curve. The support sizes of the contourlet functions
change according to the parabolic scaling. In order to fit a discontinuous curve at fine

scales the width w and the length [ of the basis function have to satisfy

kI?
R —
87

(7.2.0.7)
Combining scale, the LP and direction, the DFB results in a contourlet function. The
LP scheme allows capture of point discontinuities and the DFB’s are used to solve curve-
singularities which are highly effective in capturing curvature information in a 2D setting

[59)].

Stage II - Dictionary Optimisation

Algorithm 2 can re-order, select a subset of dictionary atoms from a large over-complete
dictionary and generates its corresponding coefficient vectors. These vectors are then
used as feature vectors for object classification. The ordering and the coefficients of the
dictionary atoms differ for each object class so a supervised dictionary learning approach

is formulated using training samples and a cross-validation test is conducted.

Stage I1I - Classification Step II generates a large set of dictionary atoms based on
a priori knowledge of the targets. Merging and re-ordering the atoms with respect to

maximum discrimination can be achieved using Algorithm 2. Unlike previous works, a
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single dictionary is learnt for the entire labelled training set. Using an optimal dictionary,
Dy, a coefficient matrix X,., is computed for all the test samples. The coefficient
matrix Xy.s is used as a feature matrix and a k-nearest neighbour (k-NN) classification
is performed. Steps 5 - 7 compute a similarity matrix of X;.s, sorts the distances and finds
a majority label for k-NN. The value for k was set to 3 for all the experiments. Finally,
using the predicted labels, L,,cqix and the original labels, L,,,, confusion matrices and

misclassification error rates are computed.

7.3 | 1-D Sonar Echoes - Experiments & Results

Region-of-interest (ROI) selection based on automatic anomaly detection can be a highly
useful tool when surveying large areas of sea-floor. In such scenarios, signal classification
of traditional sonar returns is of huge importance. The analysis of backscattered sonar
echoes can narrow down areas of interest, highlighting anomalous underwater regions by
discriminating between seabed response and target echoes. Recently, Pailhas et al. [131]
proposed to use bio-inspired adaptive chirps and presented echo discrimination of man-
made materials from natural materials. Motivated by these results, as an on-going study,
this work only presents approximation and discrimination results on 1-D sonar echoes.
Whereas Pailhas et al. present results on sonar chirps, our approach is tested on three
different sonar datasets, (i) Connectionist Sonar echo database, (ii) Synthetic side scan

images and (iii) Real SAS images. The connectionist sonar set is a benchmark dataset
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Figure 7.4: Spectral envelope of a mine and rock sonar return from the Connectionist
Sonar Dataset.
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Table 7.1: State-of-the-art and benchmark rate of misclassification results on the Con-
nectionist dataset. Our approach performs best in both set of experiments.

Rate of Misclassification (%)

Technique Angle Dependent Angle Independent
Original Data + KNN 15.82 17.32
Neural Networks [74] 9.60 15.30
K-SVD + KNN [4] 16.75 18.75
TS3V M [117] 6.20 NA
Non-Linear PCA [75] NA 17.71
Our Approach 3.64 5.21

from the UCI repository [74]. In total, there are 208 recordings, 111 backscattered sonar
echoes from metal cylinders at various angles and 97 backscattered sonar echoes obtained
from rocks. The backscattered signals are obtained from a variety of different aspect
angles, spanning 180 degrees for different rocks and 90 degrees for metallic cylinders.

The transmitted sonar pulse is a frequency-modulated up-chirp.

The targets were approximately 5ft in length and returns were collected at a range of
10m. Instead of using the raw data, authors in [74] extract a spectral envelope on the
temporal signal by shifting a set of synthetic sampling aperture. This is carried out on
the STFT spectrogram of the sonar return by integrating the area under each window.
Figure 7.4 illustrates an example of a spectral envelope created for a single mine and rock

sonar time series, respectively.

Working only on the spectral envelopes, the performance of the proposed algorithm is
tested in terms of misclassification rate and reliability. State-of-the-art results and bench-

marked results are also reported.

In the original work [74], the authors propose a neural network model to learn and classify
these signals into two classes, rock and mine. They suggest two sets of experiments. In the
“aspect-angle independent” experiment, the whole data set is used without controlling for
aspect angle. In the“aspect-angle dependent” experiment the training and testing sets
were carefully controlled to ensure that each set contained cases from different aspect

angles in appropriate proportions. For both sets of experiments, the data is randomly
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Figure 7.5: Effect of pre-defined dictionary on classification.

partitioned into 13 sets with 16 data points each. These sets were then used to create
12 training sets and 1 test set. Using a learnt neural network average classification rate
of 84.7% and 90.4% was achieved for the aspect-angle independent and aspect-angle

dependent experiment, respectively.

In [75], the authors propose a method, derived from the generative topographic mapping
(GTM) [22], a non-linear generalisation of principal component analysis (PCA). The
GTM method explicitly constructs a non-linear mapping from the L—dimensional latent
space [0, 1]L into a D—dimensional data space R”. They take a different approach to
avoid over-fitting and carry out 30 test runs with an average classification accuracy of
71.2%. By careful parameter selection they report a classification accuracy of 82.3%.
Classification results using a simple k—nearest neighbour (K-NN) algorithm, treating

each spectral signature as a feature vector, are also reported in Table 7.1.

Recently, Malchiodi et. al [117] proposed a modified support vector (SV) based approach
to a learning algorithm for partially labelled data. They report state-of-the-art results
on the aspect-angle-dependent experiment with classification accuracy of 93.8%. Table
7.1 also illustrates classification results using a dictionary learning algorithm [4], where

dictionary atoms are labelled exemplars chosen from the training dataset.
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In contrast to other works, our approach achieves accuracies of 96.36% and 94.79% on
the angle dependent and the angle independent datasets, respectively. The dictionary
selection and merging technique proposed in this paper outperforms the current state-of-
the-art results. This is evident in Table 7.1, especially for angle independent experiment

where reduction in the error rate is 59% compared to the previous best approach [74].

The above experiments were repeated by fixing individual dictionary categories. The
effect of the pre-defined dictionary on the misclassification error is evident in Figure
7.5. The misclassification error reported here is a mean error for 2 different classes:
sonar returns from mines and rock, respectively. Due to discontinuities in the data
it can be seen that the DCT and Haar dictionary bases preform well individually when
compared to the contourlets and the Gabor bases. A combination of all the bases does not
generate the sparsest solution and may not be the best strategy in this case. Signals with
dominant point singularity features can be well approximated with the DCT compared
to computationally expensive Contourlets or PDFB filters. Although this seems to be
true for 1-D sonar signals, we show in Section 7.4 that this is not always true, especially

for 2-D images.

7.4 | Sonar Images - Experiments & Results

New SAS sensors offer a higher resolution which can match classical optical images. For
example, the CMRE, MUSCLE SAS, system can achieve up to 2cm pixel resolution.
Thanks to this resolution, direct analysis on the highlights of the target rather than on
its shadow is possible. In this work the experiments were carried out on both synthetic

and real SAS imagery.

7.4.1 | Simulated Side-scan Imagery

Before working on the real dataset, a simulated side-scan image set was created using

an in-house simulator previously reported in [132]. The dataset is divided into two sets,
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Figure 7.6: Example side-scan images from Dataset02, created using a real-time side-
scan simulator [132]. Images shown here have a 5em pixel resolution and are on a plain
featureless sea-bed.
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Table 7.2: Dataset01 confusion matrix, using Eigenfaces [132]. Image pixel resolution
was set to Hem and no noise was added.

Cylinder | Cube | Manta | Rockan
Cylinder | 0.7272 0.2605 0 0.0123
Cube 0.2099 | 0.7716 0 0.0185
Manta 0 0 0.9815 | 0.0185
Rockan 0.0259 0.0432 0 0.9309

Table 7.3: Dataset01 confusion matrix, using our approach. Image pixel resolution was
set to bem and no noise was added.

Cylinder | Cube | Manta | Rockan
Cylinder | 0.9185 0.0815 0 0
Cube 0.0790 | 0.9185 0 0.0025
Manta 0 0 1.0000 0
Rockan 0.0543 0.0840 | 0.0062 | 0.8556

Dataset01 and Dataset02. The Dataset01 dataset is made up of 4 targets: (i) cube,
(ii) cylinder, (iii) manta, and (iv) rockan. Dataset02 is made up of 7 different mine like
objects: (i) box (ii) cube, (iii) cylinder, (iv) hemisphere type 1, (v) hemisphere type 2,
(vi) manta, and (vii) rockan sensed under different sea-bed conditions. Dataset01 is a
subset selected from Dataset02. Another motivation behind creating a synthetic dataset
is the lack of benchmarked labelled side-scan data, making it difficult to compare different

classification techniques.

Experiments on Dataset01: Unlike Dataset02, shown in Figure 7.6, Dataset01 is a
difficult set to classify due to visual similarities between the cylinder and cube target
images. In [132], an Eigenfaces approach, motivated by the PCA technique for dimen-
sionality reduction was used to learn appearance based features and tested on the same
datasets, Dataset01 and Dataset02. Our approach demonstrates superior classification

accuracy when compared to the Eigenfaces approach [132].

The confusion matrix of Dataset01, when classified using our proposed technique is listed
in Table 7.3. In order to compare against the technique reported in [132], these exper-

iments were carried out at 5cm pixel resolution and no noise was added. Under such
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Figure 7.7: Misclassification rate for Dataset01 illustrated as a function of SNR: (a) at
3em, (b) at 7em and (c) at 18em pixel resolution.
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DATASETO1 - MISCLASSIFICATION OF TARGETS AS A FUNCTION OF PIXEL RESOLUTION
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(a) The proposed approach gives lowest misclassification errors at 7cm and 10em

pixel resolutions.
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(b) With pixel resolution as low as 10cm pixel resolution, the rate of misclassifi-
cation stays below 25% at —5dB SNR.

Figure 7.8: The effect of pixel resolution on misclassification error for Dataset01 using
the proposed approach. (a) Misclassification error rate for individual targets illustrated
as a function of pixel resolution. (b) Mean misclassification rate of different target at
different pixel resolutions is illustrated as a function of Rayleigh noise.
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Table 7.4: Dataset02 confusion matrix, using the proposed approach. Image pixel reso-
lution was set to bem and no noise was added.

Box Cube | Cylinder | Hem’l | Hem’2 | Manta | Rockan

Box 0.9840 | 0.0012 0.0099 0.0025 0 0 0.0025
Cube 0.0136 | 0.9840 | 0.0012 0 0.0012 0 0

Cylinder | 0.0049 0 0.9901 0.0025 0 0 0.0025
Hem’1 0 0 0 1.00 0 0 0
Hem’2 0 0 0 0.0012 0.99 0 0
Manta 0 0 0 0 0 1.00 0

Rockan | 0.0284 | 0.0025 0.0457 0.0235 0 0 0.90

conditions, it can be seen that the proposed technique outperforms the Eigenfaces tech-

nique on all except the Rockan target class.

To prove the robustness of the proposed approach experiments under deteriorating pixel
resolution and SNR were also carried out. Figure 7.7 illustrates misclassification curves
as a function of Rayleigh noise for four different MLOs. Under the influence of noise the
proposed technique produces low misclassification rates compared to previously reported
results in [132]. Even at 18cm pixel resolution, the mean misclassification stays below
30%. This is evident in Figure 7.8a. Figure 7.8b shows improved classification accuracy
when the signal resolution is degraded and the noise levels are increased. It can be seen
that with even with a 10cm pixel resolution the rate of misclassification error stays below

25% even at —5dB SNR.

Experiments on Dataset02: The misclassification error curves as a function of pixel
resolution and Rayleigh noise are presented in Figure 7.9. Under the influence of noise
and the resolution as low as 18¢m our method produces low misclassification rates. This
is evident in Figure 7.10 as the misclassification rate stays below 10% for different pixel
resolutions. The confusion matrix for Dataset02 was generated at S5em pixel resolution
and no noise was added. Only Cube, Cylinder, Manta and Rockan classes were chosen for
the Eigenfaces experiment as reported in [132], Table 7.5. The confusion matrix under
similar experimental conditions using the proposed approach is presented in Table 7.4.

Improved classification rates can be seen for the Cube and Manta class. To prove the
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Figure 7.9: Misclassification rate for Dataset02 illustrated as a function of SNR at (a) at
3em, (b) at 7em and (c) at 18em pixel resolution.
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Figure 7.10: Misclassification rate for different pixel resolutions of Dataset02 illustrated
as a function of Rayleigh noise. Even at 10cm pixel resolution, the rate of misclassification
stays below 22% for —20dB SNR.

Table 7.5: Dataset02 confusion matrix using Eigenfaces [132]. Image pixel resolution was
set to bem and no noise was added.

Cylinder | Cube | Manta | Rockan
Cylinder | 0.9938 0 0.0025 | 0.0037
Cube 0 0.9210 0 0.0790
Manta 0.0025 0 0.9963 | 0.0037
Rockan 0.0025 0.0309 | 0.0012 | 0.9654

robustness of the proposed approach experiments under deteriorating pixel resolution and
signal SNR were also carried out for Dataset02. Figure 7.9 illustrates the misclassification
curves as a function of Rayleigh noise for seven different MLOs. Figure 7.10 highlights

the robustness of the proposed technique, especially when images are under the influence

Figure 7.11: Real synthetic aperture sonar exemplar images of mine like objects from the
MUSCLE SAS dataset.
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Table 7.6: Confusion matrix, using our approach on the MUSCLE SAS image dataset.

Cylinder | Truncated Cone | Wedge

Cylinder 0.9402 0.0513 0.0085
Truncated Cone 0 0.9829 0.0171
Wedge 0 0.1026 0.8974

of low pixel resolution and low SNR. At 10cm pixel resolution, the rate of misclassification

stays below 22% when the SNR is as low as —20dB.

7.4.2 | Real SAS Imagery

Experiments on real synthetic aperture sonar images were also carried out. The SAS
datasets used in this paper were gathered by NATO during the COLOSSUS 2 trials us-
ing the MUSCLE SAS system. A description can be found in [77]. Work by Blair et al.
[23] focussed on detection and classification of mines on full-size images captured using
MUSCLE SAS, unlike [132], where a neatly cropped region-of-interest (ROI) is centred on
the targets and used for training and testing. Authors in [23] compare linear, non-linear
support vector machines (SVM) and Gaussian process (GP) classifiers reporting classifi-
cation accuracies with uncertainties. The focus of our approach is on classification and
to learn an optimal and discriminatory dictionaries for different MLOs using a very small
subset of this dataset with hand labelled exemplars. Figure 7.11 shows some example
images of mine like objects imaged using the MUSCLE SAS sensor on the sea-bed. The

dataset is divided into three classes: (i) Cylinder, (ii) Truncated Cone, and (iii) Wedge.

Similar to the synthesised side-scan sonar data, the labelled dataset is divided into train-
ing and testing sets and a 10-fold cross-validation experiment is performed. The confusion
matrix from these experiments is shown in Table 7.6. Noticeably, our approach correctly

labels all the entries in the cylinder and truncated cone.

141



Chapter 7: Object Classification from Sonar using Dictionary Selection

EFFECT ON CLASSIFICATION WITHOUT DIFFERENT DICTIONARY ATOMS
100

%
80
70
60
50
40
30

20 12.82 1538 82 14.52

10 7.69
0 | s— —

Without Contourlets Without DCT Without Haar Without Gabor

RATE OF MISCLASSIFICATION (%)
8
B
o

M Cylinder m Truncated Cone M Wedge

Figure 7.12: Impact of different dictionary categories on rate of misclassification for
different MLOs.

7.5 | Summary

7.5.1 | What is an optimal dictionary?

Recent work in the field of sparsity based classification argue that learning an optimal
dictionary that is adapted to the input data, for example using the K-SVD algorithm [4]
produces state-of-the-art classification results. This work shows that it may not be true
always, especially when the training data is not easily available or labelled. Experiments
in this work show that relying on orthogonal dictionaries learnt from the training set
is inefficient in classification tasks. This can be seen in Table 7.1, where the proposed
approach in this chapter is also compared to a dictionary learning approach which uses

input data as training samples [4].

In order to study the impact each set of orthogonal basis has on the classification task an
experiment was conducted on the CMRE MUSCLE SAS dataset. Similar to experiments
in section 7.4, for each experiment, the SAD optimisation is performed excluding each of

the basis set, e.g. DCT, Haar, Gabor and Contourlets. Excluding 2-D DCT coefficients
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MUSCLE SAS IMAGE DATASET - EFFECT OF PRE-DEFINED DICTIONARY
100

90
80

70

60

50
40
30

21.36 20.51
20

1111

1111
5.12
0.85

Cylinder Truncated Cone Wedge

RATE OF MISCLASSIFICATION (%)

H Contourlets [ DCT MHaar MGabor B Combined

Figure 7.13: Effect of pre-defined dictionary on target classification.

results in higher misclassification error for all three MLOs. This can be seen in Figure
7.12. Leaving out Contourlet coefficients results in higher misclassification error rates
for wedge shaped MLOs which have dominant curved singularities. This is evident in
Figure 7.13 where Haar transforms provide better approximation and discrimination for
cylindrical MLOs with dominant linear point singularities; and, Contourlets improve
classification accuracies when compared directly to Gabor transforms for truncated-cone

MLOs with dominant curve singularities.

Figure 7.13 illustrates classification results for three different MLO classes. The exper-
iment where a combined dictionary is selected before the SAD optimisation is applied,
see Section 3.1.1, is illustrated as Combined in Figure 7.13. In contrast to Figure 7.5, a
combined pool of different pre-defined bases produces the least misclassification errors.
Least misclassification errors is also reported on Dataset01 and Dataset02, Figure 7.9

and Figure 7.7, respectively.
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At
¥l

Figure 7.14: (Top) Example images of 4 different targets. (Bottom) Targets under 5%,
16%, 25% and 50% occlusion.

7.5.2 | Importance of SNR & Pixel Resolution

Signal to noise ratio (SNR) in SAS images limits the efficiency of detection and classi-
fication algorithms. In this work, the effect of noise on the classification process is also
tested. Sonar noise is modelled by a coherent Rayleigh noise for the synthetic datasets,
Dataset02 and Dataset01. Both datasets are tested for different SNR values, high SNR,
40dB to low SNR, -20dB. Snapshots of different targets under noise are shown in Figure
7.6. The proposed algorithm have been run for different SNR values, 40dB to -20dB and
the results show that the combined mean percentage of misclassification for all targets

stays below 26% and below 11% for Dataset01 and Dataset02, respectively.

Similar experiments were run for different pixel resolutions, 3cm to 18cm. Figure 7.8a
illustrate misclassification errors on simulated SAS datasets. The minimum percentage
of misclassification error is achieved at 7cm pixel resolution and 10cm for Dataset01 and
Dataset02, respectively. Experiments also suggest that it is not always true that adapting
dictionary atoms to input data leads to least classification errors. Section 7.3 supports

this argument with state-of-the-art results on the connectionist sonar dataset.

7.5.3 | Effect of occlusion on classification accuracy?

Occlusions are not always due to obscuring objects but may also be due to faulty sensors or
a soiled field of view due to debris on the sensor lens, for example. Proposing classification

and detection techniques and testing them against such occlusions are crucial for systems
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DATASETO3 AT 5CM PIXEL RESOLUTION - EFFECT OF OCCLUSION ON CLASSIFICATION
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Figure 7.15: Rate of misclassification for 7 different targets achieved using the proposed
approach on Dataset03 by varying the percentage of occluded pixels.
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Figure 7.16: Rate of misclassification for 4 different targets achieved using the proposed
approach on Dataset(1 by varying the percentage of occluded pixels.

engineering and decision making in underwater missions. Figure 7.14 illustrates target
examples before and after occlusion. The amount of occlusion varies between 5% — 50%.
Similar to previous experiments on simulated data, studying the effects of SNR and pixel
resolution, Dataset01 and Dataset03 are chosen for occlusion experiments. The rate of
misclassification is presented in Figure 7.15 and Figure 7.16 corresponds to Dataset01 and
Dataset03. It can be seen that the rate of misclassification for majority of the targets,

except Rockan, box and cylinder, stays below 50%, doing better than random guess.

Future work will focus on two fronts: (i) signal classification of backscattered sonar returns
using bio-inspired chirps, and, (ii) adapting and applying the proposed technique to raw
full-waveform multi-spectral LIDAR data underwater, studying the effects of foliage and

different materials.
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Conclusion

In this work, we present several signal processing pipelines with novel sparse approxi-
mation and dictionary learning algorithms for 1D, 2D and 3D datasets. We exploit the
concept of sparsity in signal reconstruction using an over-complete and orthogonal set of

basis or dictionaries, which can be fixed or learnt from the input data.

We show that intelligent encoding (Chapter 3.2) can be more practical and efficient
in comparison to robust signal modelling techniques, especially when processing full-
waveform LiDAR signals. The idea of compressed representation of time-series FW-
LiDAR data (Chapter 4 and 6), geometric (shape) properties combined with spectral
signatures (Chapter 6), can detect spectral anomalies (Chapter 4) and classify objects in

LiDAR and sonar data (Chapter 7).

The non-linear dictionary learning algorithm (K-SAD Algorithm 3) addresses on two
central problems: i) handling non-linearity in the input space by improving classification
accuracy on existing publicly available datasets; ii) further reducing the learning and clas-
sification algorithm run-time through kernel matrix approximation. This work combines
an orthogonal incoherent discriminatory dictionary learning method in the non-linear

space with an efficient approximation of a kernel matrix.

We complement the small runtime required by the orthogonal DL step with a fast kernel

approximation stage. We report state-of-the-art results on large-scale high-dimensional
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datasets and report an average classification accuracy of 97% on 8-bit digits, face and
RGB-D images. Unlike most sparsity based classifiers our approach uses the coefficients

as target signatures.

Chapter 4 shows how the methodology can be applied to anomaly detection from aerial
full-waveform LiDAR signals. We show that semantic relationships across layers of the
tree and on the ground can be learnt using the sparse coefficients. The concept of nor-
mality in FW-LiDAR signals is represented using the sparse discriminative subspace
algorithm. We learn sparse coefficients across multiple wavelengths and tree layers for
various materials, e.g. bark, needle and metal. The anomaly detection approach is tested

on simulated full-waveform data.

In chapter 5, we address the problem of simultaneously modelling and classifying FW-
LiDAR signals. In our experiments, we model the instrumental response and its cor-
responding backscatter using a family of generalised Gaussian functions. Our proposed
approach, SPeED (Chapter 4), is significantly different. We suppose that an individ-
ual peak is composed of elementary shape functions (mathematically modelled or learnt
from the data) and its coefficient or contribution vector is a significant parameter in class
separation. The elementary shapes can be fixed (e.g. generalised Gaussian) or can be
learned from the data (Algorithm 5). The SPeED algorithm learns peak parameters, e.g.
location, amplitude and shape, from the data. We show that these parameters can be

used in unsupervised and supervised classification.

We compare our approach with the RIMCMC approach and report results using several
metrics. The improvement on the average number of peaks extracted using the SPeED
algorithm when compared against the RIMCMC approach [85] is 2.3 times and reducing

the time complexity by 234 times. This makes our approach highly suitable in practice.

The proposed algorithms are further tested on underwater time correlated single pho-
ton counting data for mine countermeasures. A novel spectral-depth representation is
presented that is highly discriminative in characterising different target signatures un-

derwater. Several custom-made realistically scaled exemplars with known and unknown
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targets have been investigated using a multi-spectral single photon counting LiDAR sys-
tem. Multi-spectral measurements were made on targets with different shapes and ma-
terials. Our approach combines shape and spectral representations using sparse codes.
These are optimised for maximum discrimination. Combining depth with spectral data,
the approach is very efficient in classifying targets of different shapes. This work is the
first to report the analysis and discrimination of multi-spectral underwater, single photon

counting LiDAR signals as an alternative to acoustic MCM.

In Chapter 7, we have shown that a union of discriminatory dictionaries can be selected
along with their respective coefficients for mine classification tasks (1D and 2D Sonar
datasets). Our approach has been tested on traditional 1-D sonar returns with an ac-
curacy of 96%, 2-D realistic side-scan sonar imagery with an accuracy of 95% and 2-D
SAS imagery with an accuracy of 94%. With a 23.24% decrease in the mis-classification
error rate on the CMRE MUSCLE SAS imagery, we have studied the impact of differ-
ent orthogonal basis sets on target mis-classification rates. An optimal union of such
dictionaries is then selected using an optimisation routine which maximises sparsity and

dictionary discrimination.

Our approach mathematically models target signals and uses such models a-priori for
dictionary design. We have also tried to answer the following questions: (i) Can a com-
bined dictionary optimised for discriminating different MLO classes and natural rocks
be found and learnt? (ii) What influence does noise and pixel resolution have on ac-
curacy? We show, for mine counter-measures, when classifying 2D images, a combined
pool of pre-defined dictionary atoms produces the least misclassification error. This was
reported on both side scan and synthetic aperture sonar images. Similar experiments
were run for different pixel resolutions, 3cm to 18cm. Our experiments shows a minimum
mis-classification error is achieved at 7em pixel resolution and 10cm for DatasetO1 and

Dataset02, respectively.
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Appendix A

Proposition Proof

Proof for proposition 1 We apply the majorisation-minimisation method to solve our
non-linear cost function J(X) (3.2.1.1) using a surrogate function M (X,X;) = (X —
Xt)T(aI — DTD) (X — Xt). Hence by design j(X) = J(X) + Q(X, Xt) coincides with

J (X) at Xy. Solving the modified cost function leads to

A

J(X) = ®]

train

(I)train - 2¢)T

train

DX +

X"D'DX + (X — X)) (oI - D'D)(X - X,) (A.0.0.1)

0J(X
'\< ) = *2DT¢train - 2(@1 - DTD)Xt +
0X
1
251X =0= X* = TB1 (Xt + _DTq)train -
«

51)

ZX, + G(Xy)), o (A.0.0.2)

Proof for proposition 2 The reduced rank procrustes rotation (Theorem 4 in [195])

shows that for the minimisation problem for D in
min || ®@rain — DX ||? (A.0.0.3)

subject to D'D = I, has a unique solution D* = UV, where ®,,,,, X’ = UXVT. In
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contrast to this work, where the dictionary learnt is a kernel dictionary, the proof in [195]

is in the linear domain.

150



Bibliography

[1]

8]

N. Aeronautics and H. R. C. Space Administration (NASA): HQ. Apollo 15 Press
Kit. Bibliogov, 2012.

S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via
a sparse, part-based representation. Pattern Analysis and Machine Intelligence,

IEEFE Transactions on, 26(11):1475-1490, 2004.

M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and

symbolic outlier mining techniques. Intelligent Data Analysis, 10(6):521-538, 2006.

M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. Signal Processing, IEEE Transac-

tions on, 54(11):4311-4322, 2006.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. Computers,

IEEE Transactions on, 100(1):90-93, 1974.

M. Alexa and A. Adamson. On normals and projection operators for surfaces
defined by point sets. In Proceedings of the First Furographics conference on Point-

Based Graphics, pages 149-155. Eurographics Association, 2004.

J. B. Allen and L. R. Rabiner. A unified approach to short-time fourier analysis
and synthesis. Proceedings of the IEEE, 65(11):1558-1564, 1977.

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin. Robust
bayesian target detection algorithm for depth imaging from sparse single-photon

data. IEEE Transactions on Computational Imaging, 2(4):456-467, 2016.

151



BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M.-C. Amann, T. Bosch, R. Myllyla, M. Rioux, and M. Lescure. Laser ranging: a
critical review of usual techniques for distance measurement. Optical Engineering,

40(1):10-19, 2001.

W. Armbruster. Bayesian hypothesis generation and verification. Pattern Recogni-

tion and Image Analysis, 18(2):269-274, 2008.

W. Armbruster. Exploiting range imagery: techniques and applications. In Interna-
tional Symposium on Photoelectronic Detection and Imaging 2009, pages 738203—

738203. International Society for Optics and Photonics, 2009.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American math-

ematical society, 68(3):337-404, 1950.

M. Attene, S. Marini, M. Spagnuolo, and B. Falcidieno. Part-in-whole 3d shape
matching and docking. The Visual Computer, 27(11):991-1004, 2011.

S. D. Babacan, R. Molina, and A. K. Katsaggelos. Bayesian compressive sensing

using laplace priors. IEEE Transactions on Image Processing, 19(1):53-63, 2010.

A. Baldridge, S. Hook, C. Grove, and G. Rivera. The aster spectral library version
2.0. Remote Sensing of Environment, 113(4):711-715, 2009.

R. H. Bamberger and M. J. Smith. A filter bank for the directional decomposition
of images: theory and design. Signal Processing, IEEE Transactions on, 40(4):882—
893, 1992.

D. Baron, S. Sarvotham, and R. G. Baraniuk. Bayesian compressive sensing via

belief propagation. IEEE Transactions on Signal Processing, 58(1):269-280, 2010.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183-202, 2009.

J. Behley, V. Steinhage, and A. B. Cremers. Laser-based segment classification using
a mixture of bag-of-words. In Proc. of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2013.

152



BIBLIOGRAPHY

[20]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

A. Bhandari, A. M. Wallace, and R. Raskar. Super-resolved time-of-flight sensing
via fri sampling theory. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on, pages 4009-4013. IEEE, 2016.

A. D. Bimbo and P. Pala. Content-based retrieval of 3d models. ACM Trans.
Multimedia Comput. Commun. Appl., 2(1):20-43, Feb. 2006.

C. M. Bishop, M. Svensén, and C. K. Williams. Gtm: The generative topographic

mapping. Neural computation, 10(1):215-234, 1998.

C. Blair, J. Thompson, and N. M. Robertson. Identifying anomalous objects in SAS
imagery using uncertainty. In Information Fusion (Fusion), 2015 18th International

Conference on, pages 1410-1416. IEEE, 2015.

M. Blum, J. T. Springenberg, J. Wiilfing, and M. Riedmiller. A learned feature
descriptor for object recognition in rgh-d data. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 1298-1303. IEEE, 2012.

T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sens-

ing. Applied and computational harmonic analysis, 27(3):265-274, 20009.

L. Bo, X. Ren, and D. Fox. Depth kernel descriptors for object recognition. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 821—
826. IEEE, 2011.

L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for rgh-d based object

recognition. In Experimental Robotics, pages 387-402. Springer, 2013.

D. Borrmann, J. Elseberg, K. Lingemann, and A. Niichter. The 3d hough transform
for plane detection in point clouds: A review and a new accumulator design. 3D

Research, 2(2):1-13, 2011.
R. Bracewell. The Fourier transform and iis applications. New York, 5, 1965.

S. Briechle, A. Sizov, O. Tretyak, V. Antropov, N. Molitor, and P. Krzystek. Uav-

based detection of unknown radioactive biomass deposits in chernobyl’s exclusion

153



BIBLIOGRAPHY

[34]

[35]

[36]

[38]

[39]

zone. International Archives of the Photogrammetry, Remote Sensing & Spatial

Information Sciences, 42(2), 2018.

E. O. Brigham and E. O. Brigham. The fast Fourier transform, volume 7. Prentice-
Hall Englewood Cliffs, NJ, 1974.

N. Brodu and D. Lague. 3D terrestrial lidar data classification of complex natural
scenes using a multi-scale dimensionality criterion: Applications in geomorphology.

ISPRS Journal of Photogrammetry and Remote Sensing, 68:121-134, 2012.

O. Bryt and M. Elad. Compression of facial images using the k-svd algorithm.

Journal of Visual Communication and Image Representation, 19(4):270-282, 2008.

G. Burel and H. Hénocq. Three-dimensional invariants and their application to

object recognition. Signal Processing, 45(1):1 — 22, 1995.

P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code.
Communications, IEEE Transactions on, 31(4):532-540, 1983.

R. J. Campbell and P. J. Flynn. Eigenshapes for 3d object recognition in range
data. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society

Conference on., volume 2. IEEE, 1999.

E. J. Candes and D. L. Donoho. Ridgelets: A key to higher-dimensional intermit-
tency? Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 357(1760):2495-2509, 1999.

E. J. Candes and M. B. Wakin. An introduction to compressive sampling. Signal
Processing Magazine, IEEFE, 25(2):21-30, 2008.

L. Cao, N. C. Coops, J. L. Innes, J. Dai, H. Ruan, and G. She. Tree species
classification in subtropical forests using small-footprint full-waveform lidar data.
International Journal of Applied Farth Observation and Geoinformation, 49:39-51,
2016.

154



BIBLIOGRAPHY

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A. Rundensteiner. Scalable
distance-based outlier detection over high-volume data streams. In Data FEngi-
neering (ICDE), 2014 IEEE 30th International Conference on, pages 76-87. IEEE,
2014.

J. B. Case. Automation in photogrammetry. Technical report, DEFENSE MAP-
PING AGENCY WASHINGTON DC, 1980.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
computing surveys (CSUR), 41(3):15, 2009.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete se-

quences: A survey. [EFE Transactions on Knowledge and Data Engineering,

24(5):823-839, 2012.

A. P. Charaniya, R. Manduchi, and S. K. Lodha. Supervised parametric classifica-
tion of aerial lidar data. In Computer Vision and Pattern Recognition Workshop,

2004. CVPRW’04. Conference on, pages 30-30. IEEE.

A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. P. Deseilligny, W. Puech, et al. Pro-
cessing full-waveform lidar data: modelling raw signals. In International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007, pages

102-107, 2007.

A. Chauve, C. Mallet, F. Bretar, S. Durrieu, M. P. Deseilligny, W. Puech, et al. Pro-
cessing full-waveform lidar data: modelling raw signals. In International Archives

of Photogrammetry, Remote Sensing and Spatial Information Sciences 2007, pages

102-107, 2007.

N. Chehata, L. Guo, and C. Mallet. Contribution of airborne full-waveform lidar
and image data for urban scene classification. In Image Processing (ICIP), 2009

16th IEEFE International Conference on, pages 1669-1672. IEEE, 2009.

155



BIBLIOGRAPHY

[48]

[49]

[52]

[53]

[54]

[56]

N. Chehata, L. Guo, and C. Mallet. Contribution of airborne full-waveform lidar
and image data for urban scene classification. In 16" IEEE International Confer-

ence on Image Processing (ICIP), 2009, pages 1669-1672. IEEE, 2009.

C. Chen, B. Yang, S. Song, X. Peng, and R. Huang. Automatic clearance anomaly
detection for transmission line corridors utilizing uav-borne lidar data. Remote

Sensing, 10(4):613, 2018.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis

pursuit. SIAM review, 43(1):129-159, 2001.

Y. Cheng, R. Cai, C. Zhang, Z. Li, X. Zhao, K. Huang, and Y. Rui. Query adap-
tive similarity measure for rgb-d object recognition. In Proceedings of the IEEE

International Conference on Computer Vision, pages 145-153, 2015.

P. S. Chhabra, A. Maccarone, A. McCarthy, A. M. Wallace, and G. S. Buller.
Discriminating underwater lidar target signatures using sparse multi-spectral depth

codes. In Sensor Signal Processing for Defence (SSPD). IEEE, 2016.

P. S. Chhabra, A. M. Wallace, and J. R. Hopgood. Anomaly detection in clutter
using spectrally enhanced ladar. In SPIE Defense+ Security, pages 946508-946508.

International Society for Optics and Photonics, 2015.

A. G. Cottin, D. L. Forbes, and B. F. Long. Shallow seabed mapping and classifi-
cation using waveform analysis and bathymetry from shoals lidar data. Canadian

Journal of Remote Sensing, 35(5):422-434, 2009.

P. Csakdany and A. M. Wallace. Representation and classification of 3-d ob-
jects. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 33(4):638-647, 2003.

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R. Bradski. Self-supervised
monocular road detection in desert terrain. In Robotics: science and systems,

volume 38. Philadelphia, 2006.

156



BIBLIOGRAPHY

[57]

[58]

[60]

[61]

[62]

[63]

[64]

[65]

T. V. de Guélis, H. Chepfer, R. Guzman, M. Bonazzola, D. M. Winker, and V. Noel.
Space lidar observations constrain longwave cloud feedback. Scientific reports, 8,

2018.

T. K. Dey, K. Li, C. Luo, P. Ranjan, 1. Safa, and Y. Wang. Persistent heat signature
for pose-oblivious matching of incomplete models. In Computer Graphics Forum,

volume 29, pages 1545-1554. Wiley Online Library, 2010.

M. N. Do and M. Vetterli. The contourlet transform: an efficient directional
multiresolution image representation. Image Processing, IEEE Transactions on,

14(12):2091-2106, 2005.

D. L. Donoho, Y. Tsaig, I. Drori, and J.-L.. Starck. Sparse solution of underdeter-
mined systems of linear equations by stagewise orthogonal matching pursuit. /EFE

Transactions on Information Theory, 58(2):1094-1121, 2012.

M.-P. Dubuisson and A. K. Jain. A modified hausdorff distance for object matching.
In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision € Image

Processing., Proceedings of the 12th IAPR International Conference on, volume 1,

pages 566-568. IEEE, 1994.

R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and

curves in pictures. Communications of the ACM, 15(1):11-15, 1972.

E. Fakiris, G. Papatheodorou, M. Geraga, and G. Ferentinos. An automatic target
detection algorithm for swath sonar backscatter imagery, using image texture and

independent component analysis. Remote Sensing, 8(5):373, 2016.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object de-
tection with discriminatively trained part-based models. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, 32(9):1627-1645, 2010.

J. C. Fernandez-Diaz, W. E. Carter, R. L. Shrestha, and C. L. Glennie. Now you

see it... now you don’t: Understanding airborne mapping lidar collection and data

157



BIBLIOGRAPHY

[68]

[69]

[74]

product generation for archaeological research in mesoamerica. Remote Sensing,

6(10):9951-10001, 2014.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse re-
construction: Application to compressed sensing and other inverse problems. IEEE

Journal of selected topics in signal processing, 1(4):586-597, 2007.

P. Gagnon, J. Agnard, C. Nolette, M. Boulianne, et al. A microcomputer-based
general photogrammetric system. Photogrammetric Engineering and Remote Sens-

ing, 56(5):623-625, 1990.

M. J. Gangeh, A. Ghodsi, and M. S. Kamel. Kernelized supervised dictionary
learning. IEEE Transactions on Signal Processing, 61(19):4753-4767, 2013.

R. Garg and R. Khandekar. Gradient descent with sparsification: an iterative
algorithm for sparse recovery with restricted isometry property. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 337-344.
ACM, 2009.

N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global registration.

In Symposium on geometry processing, volume 2, page 5, 2005.

N. Gold, M. G. Frasch, C. L. Herry, B. S. Richardson, and X. Wang. A doubly
stochastic change point detection algorithm for noisy biological signals. Frontiers

in physiology, 8:1112, 2018.

A. Golts and M. Elad. Linearized kernel dictionary learning. IFEE Journal of
Selected Topics in Signal Processing, 10(4):726-739, 2016.

J. Gomez and D. Dasgupta. Evolving fuzzy classifiers for intrusion detection. In
Proceedings of the 2002 IEEE Workshop on Information Assurance, volume 6, pages
321-323. New York: IEEE Computer Press, 2002.

R. P. Gorman and T. J. Sejnowski. Analysis of hidden units in a layered network

trained to classify sonar targets. Neural networks, 1(1):75-89, 1988.

158



BIBLIOGRAPHY

[75]

[76]

[79]

[80]

[31]

[82]

M. Griebel and A. Hullmann. Dimensionality reduction of high-dimensional data
with a nonlinear principal component aligned generative topographic mapping.

SIAM Journal on Scientific Computing, 36(3):A1027-A1047, 2014.

J. Groen, E. Coiras, J. D. R. Vera, and B. Evans. Model-based sea mine classifi-
cation with synthetic aperture sonar. IET radar, sonar €& navigation, 4(1):62-73,

2010.

J. Groen, E. Coiras, and D. Williams. Detection rate statistics in synthetic aperture
sonar images. In Proc Intl Conf ¢ Exh underwater acoustic measurements, pages

367-374, 2009.

C. Gronwall, T. Chevalier, G. Tolt, and P. Andersson. An approach to target
detection in forested scenes. In SPIE Defense and Security Symposium, pages

695005-695008. International Society for Optics and Photonics, 2008.

C. Gronwall, G. Tolt, T. Chevalier, and H. Larsson. Spatial filtering for detection

of partly occluded targets. Optical engineering, 50(4):047201-047201, 2011.

C. Gronwall, G. Tolt, T. Chevalier, and H. Larsson. Spatial filtering for detection

of partly occluded targets. Optical engineering, 50(4):047201-047201, 2011.

L. Guo, N. Chehata, C. Mallet, and S. Boukir. Relevance of airborne lidar and
multispectral image data for urban scene classification using random forests. ISPRS

Journal of Photogrammetry and Remote Sensing, 66(1):56-66, 2011.

N. Halko, P.-G. Martinsson, Y. Shkolnisky, and M. Tygert. An algorithm for the
principal component analysis of large data sets. SIAM Journal on Scientific com-

puting, 33(5):2580-2594, 2011.

J. C. Harsanyi and C.-I. Chang. Hyperspectral image classification and dimen-
sionality reduction: an orthogonal subspace projection approach. Geoscience and

Remote Sensing, IEEE Transactions on, 32(4):779-785, 1994.

159



BIBLIOGRAPHY

[84]

[85]

[36]

[89]

[90]

[91]

[92]

[93]

S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,

1994.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson. Bayesian analysis of lidar
signals with multiple returns. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(12):2170-2180, 2007.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson. Bayesian analysis of lidar
signals with multiple returns. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(12):2170-2180, 2007.

R. Hoff. Vertical structure of arctic haze observed by lidar. Journal of Applied
Meteorology, 27(2):125-139, 1988.

M. A. Hofton, J. B. Minster, and J. B. Blair. Decomposition of laser altimeter
waveforms. Geoscience and Remote Sensing, IEEE Transactions on, 38(4):1989—

1996, 2000.

M. A. Hofton, J. B. Minster, and J. B. Blair. Decomposition of laser altimeter
waveforms. Geoscience and Remote Sensing, IEEE Transactions on, 38(4):1989—

1996, 2000.

B. K. P. Horn. Extended gaussian images. Proceedings of the IEEE, 72(12):1671—
1686, 1984.

C. Hug, A. Ullrich, and A. Grimm. Litemapper-5600-a waveform-digitizing lidar
terrain and vegetation mapping system. International Archives of Photogrammetry,

Remote Sensing and Spatial Information Sciences, 36(Part 8):W2, 2004.

O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth. Adaptive anomaly detection in per-
formance metric streams. IEEFE Transactions on Network and Service Management,

15(1):217-231, 2018.

M. Isenburg. The pulsewaves format, Dec. 2015.

160



BIBLIOGRAPHY

[94]

[95]

[96]

[98]

[99]

100]

[101]

102]

A. Janssen. Gabor representation of generalized functions. Journal of Mathematical

Analysis and Applications, 83(2):377-394, 1981.

S. Ji, Y. Xue, L. Carin, et al. Bayesian compressive sensing. [EEE Transactions

on Signal Processing, 56(6):2346, 2008.

7. Jiang, Z. Lin, and L. S. Davis. Label consistent k-svd: Learning a discriminative
dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(11):2651-2664, 2013.

A. E. Johnson and M. Hebert. Using spin images for efficient object recognition
in cluttered 3d scenes. IEEFE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, 21(5):433-449, 1999.

B. Jutzi and U. Stilla. Range determination with waveform recording laser systems
using a wiener filter. {ISPRS} Journal of Photogrammetry and Remote Sensing,
61(2):95 — 107, 2006.

B. Jutzi and U. Stilla. Range determination with waveform recording laser systems
using a wiener filter. ISPRS Journal of Photogrammetry and Remote Sensing,

61(2):95-107, 2006.

B. Jutzi and U. Stilla. Range determination with waveform recording laser systems
using a Wiener filter. Journal of Photogrammetry and Remote Sensing, 61(2):95—
107, 2006.

N. B. Karahanoglu and H. Erdogan. A* orthogonal matching pursuit: Best-first
search for compressed sensing signal recovery. Digital Signal Processing, 22(4):555—

568, 2012.

M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical
harmonic representation of 3d shape descriptors. In Proceedings of the 2003 FEu-
rographics/ACM SIGGRAPH symposium on Geometry processing, pages 156—164.

Eurographics Association, 2003.

161



BIBLIOGRAPHY

103]

[104]

[105]

[106]

107]

108

[109]

[110]

[111]

A. M. Kim. Simulating full-waveform LIDAR. PhD thesis, Monterey, California.
Naval Postgraduate School, 2009.

M. Kirchhof, B. Jutzi, and U. Stilla. Iterative processing of laser scanning data by
full waveform analysis. ISPRS Journal of Photogrammetry and Remote Sensing,

63(1):99-114, 2008.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale 11-
regularized logistic regression. Journal of Machine learning research, 8(Jul):1519—

1555, 2007.

H.-P. Kriegel, P. Kroger, and A. Zimek. Outlier detection techniques. Tutorial at
KDD, 10, 2010.

J.-Y. Kwok and I.-H. Tsang. The pre-image problem in kernel methods. IEFEE

transactions on neural networks, 15(6):1517-1525, 2004.

K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d
object dataset. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 1817-1824. IEEE, 2011.

K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object recognition
combining rgh and depth information. In Robotics and Automation (ICRA), 2011

IEEFE International Conference on, pages 4007-4013. IEEE, 2011.

K.-C. Lee, J. Ho, and D. J. Kriegman. Acquiring linear subspaces for face recogni-
tion under variable lighting. IEEE Transactions on pattern analysis and machine

intelligence, 27(5):684-698, 2005.

S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. Learning unions of or-
thonormal bases with thresholded singular value decomposition. In Proceed-
ings.(ICASSP’05). IEEFE International Conference on Acoustics, Speech, and Signal
Processing, 2005., volume 5, pages v—293. IEEE, 2005.

162



BIBLIOGRAPHY

[112]

113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

A. S. Lewis and G. Knowles. Image compression using the 2-d wavelet transform.

Image Processing, IEEE Transactions on, 1(2):244-250, 1992.

D. Ludwig, A. Kongable, S. Krywick, H. T. Albrecht, G. Kamrath, J. Milam,
D. Brown, G. J. Fetzer, and K. Hanna. Identifying targets under trees: jigsaw 3d

ladar test results. volume 5086, pages 16—26, 2003.

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat,
Y. Petillot, and G. S. Buller. Underwater depth imaging using time-correlated

single-photon counting. Optics Express, 23(26):33911-33926, 2015.

L. A. Magruder and A. L. Neuenschwander. Lidar full-waveform data analysis
for detection of faint returns through obscurants. In SPIE Defense, Security, and
Sensing, pages 73230L—73230L. International Society for Optics and Photonics,

2009.

J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 34(4):791-804, 2012.

D. Malchiodi and T. Legnani. Avoiding the cluster hypothesis in sv classification
of partially labeled data. In Recent Advances of Neural Network Models and Appli-

cations, pages 33—40. Springer, 2014.

C. Mallet and F. Bretar. Full-waveform topographic lidar: State-of-the-art. ISPRS

Journal of Photogrammetry and Remote Sensing, 64(1):1-16, 20009.

C. Mallet, F. Bretar, M. Roux, U. Soergel, and C. Heipke. Relevance assessment
of full-waveform lidar data for urban area classification. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 66(6):S71-S84, 2011.

C. Mallet, F. Lafarge, M. Roux, U. Soergel, F. Bretar, and C. Heipke. A marked
point process for modeling lidar waveforms. IEEFE transactions on image processing,

19(12):3204-3221, 2010.

163



BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

B. C. Matei, Y. Tan, H. S. Sawhney, and R. Kumar. Rapid and scalable 3d object
recognition using lidar data. In Defense and Security Symposium, pages 623401

623401. International Society for Optics and Photonics, 2006.

P. McCool, Y. Altmann, A. Perperidis, and S. McLaughlin. Robust markov random
field outlier detection and removal in subsampled images. In Statistical Signal

Processing Workshop (SSP), 2016 IEEE, pages 1-5. IEEE, 2016.
G. Medioni, C.-K. Tang, and M.-S. Lee. Tensor voting: Theory and applications.

L. Mora-Lépez and J. Mora. An adaptive algorithm for clustering cumulative proba-
bility distribution functions using the kolmogorov—smirnov two-sample test. Expert

Systems with Applications, 42(8):4016-4021, 2015.

E. Naesset. Practical large-scale forest stand inventory using a small-footprint air-
borne scanning laser. Scandinavian Journal of Forest Research, 19(2):164-179,

2004.
Neonscience. Reflections on remote sensing, ecology and the neon aop, 2012.

J. Neulist and W. Armbruster. Segmentation, classification, and pose estimation
of military vehicles in low resolution laser radar images. In Defense and Security,

pages 218-225. International Society for Optics and Photonics, 2005.

M. of Defence. Future character of conflict. Technical report, Ministry of Defence,

2010.

M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas. One point isometric match-
ing with the heat kernel. In Computer Graphics Forum, volume 29, pages 1555—
1564. Wiley Online Library, 2010.

M. Ovsjanikov, Q. Mérigot, F. Mémoli, and L. Guibas. One point isometric match-
ing with the heat kernel. In Computer Graphics Forum, volume 29, pages 1555—
1564. Wiley Online Library, 2010.

164



BIBLIOGRAPHY

[131]

132]

[133]

[134]

[135]

[136]

[137]

138

[139]

Y. Pailhas, C. Capus, K. Brown, and Y. Petillot. BioSonar: a bio-mimetic approach

to sonar systems concepts and applications. INTECH Open Access Publisher, 2011.

Y. Pailhas, Y. Petillot, and C. Capus. High-resolution sonars: what resolution do we
need for target recognition? EURASIP Journal on Advances in Signal Processing,

2010:1-13, 2010.

H. C. Palm, T. V. Haavardsholm, H. Ajer, and C. V. Jensen. Extraction and
classification of vehicles in ladar imagery. In SPIE Defense, Security, and Sensing,

pages 873102-873102. International Society for Optics and Photonics, 2013.

V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: A

survey of recent advances. IEEFE signal processing magazine, 32(3):53-69, 2015.

Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition. In
Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on, pages 40-44. IEEE, 1993.

A. Patterson IV, P. Mordohai, and K. Daniilidis. Object detection from large-scale
3d datasets using bottom-up and top-down descriptors. In Computer Vision-ECCV
2008, pages 553-566. Springer, 2008.

A. Persson, U. Séderman, J. Topel, and S. Ahlberg. Visualization and analysis of
full-waveform airborne laser scanner data. International Archives of Photogramme-

try, Remote Sensing and Spatial Information Sciences, 36(3/W19):103-108, 2005.

A. Persson, U. Séderman, J. T6pel, and S. Ahlberg. Visualization and analysis of
full-waveform airborne laser scanner data. International Archives of Photogramme-

try, Remote Sensing and Spatial Information Sciences, 36(3/W19):103-108, 2005.

B. Peterson, W. Ni, B. Blair, M. Hofton, P. Hyde, and R. Dubayah. Modeling lidar
waveforms using a radiative transfer model. INTERNATIONAL ARCHIVES OF
PHOTOGRAMMETRY REMOTE SENSING AND SPATIAL INFORMATION
SCIENCES, 34(3/W4):121-124, 2001.

165



BIBLIOGRAPHY

[140]

[141]

[142]

143

[144]

[145]

[146]

[147]

148]

J. Reitberger, P. Krzystek, and U. Stilla. Analysis of full waveform lidar data
for tree species classification. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 36(Part 3):228-233, 2006.

J. Reitberger, P. Krzystek, and U. Stilla. Analysis of full waveform lidar data
for tree species classification. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 36(Part 3):228-233, 2006.

J. Reitberger, P. Krzystek, and U. Stilla. 3d segmentation a nd classification of
single trees with full waveform LiDAR data. In Proceedings of SilviLaser 2008, 8"
International Conference on LiDAR Applications in Forest Assessment and Inven-

tory, pages 216-226, 2008.

J. Reitberger, P. Krzystek, and U. Stilla. 3d segmentation and classification of single
trees with full waveform lidar data. In Proceedings of SilviLaser 2008, Sth Inter-
national Conference on LiDAR Applications in Forest Assessment and Inventory,

pages 216-226, 2008.

Riegl. http://www.riegl.com/nc/products/airborne-

scanning/produktdetail /product/scanner/34/, Aug. 2017.

Riegl. http://www.riegl.com/nc/products/airborne-

scanning/produktdetail /product/scanner/38/, Aug. 2017.

Riegl. http://www.riegl.com/nc/products/airborne-

scanning/produktdetail /product/scanner/46/, Aug. 2017.

R. Rubinstein and M. Elad. Dictionaries for sparse representation modeling. Pro-

ceedings of the IEEE, 98(6), 2010.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and pose
using the viewpoint feature histogram. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 2155-2162. IEEE, 2010.

166



BIBLIOGRAPHY

[149]

[150]

151]

[152]

[153]

[154]

[155]

[156]

[157]

158

R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Learning informative point
classes for the acquisition of object model maps. In Control, Automation, Robotics
and Vision, 2008. ICARCYV 2008. 10th International Conference on, pages 643-650.
IEEE, 2008.

F. A. Sadjadi and E. L. Hall. Three-dimensional moment invariants. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, (2):127-136, 1980.

M. Salehi and L. Rashidi. A survey on anomaly detection in evolving data:|[with
application to forest fire risk prediction]. ACM SIGKDD Explorations Newsletter,

20(1):13-23, 2018.

F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human
face identification. In Applications of Computer Vision, 199/., Proceedings of the
Second IEEE Workshop on, pages 138-142. IEEE, 1994.

A. Samberg. An implementation of the asprs las standard. In ISPRS Workshop on

Laser Scanning and SilviLaser, pages 363-372, 2007.

J. Sawas and Y. Petillot. Cascade of boosted classifiers for automatic target recog-
nition in synthetic aperture sonar imagery. In Proceedings of Meetings on Acoustics,

volume 17, page 070074. Acoustical Society of America, 2013.

B. Scholkopft and K.-R. Mullert. Fisher discriminant analysis with kernels. Neural

networks for signal processing IX, 1(1):1, 1999.
B. Scotland. Wat at sea: Scotland’s story, June 2015.

J. M. Shapiro. Adaptive Mcclellan transformations for quincunx filter banks. Signal

Processing, IEEE Transactions on, 42(3):642-648, 1994.

R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng. Convolutional-
recursive deep learning for 3d object classification. In Advances in Neural Informa-

tion Processing Systems, pages 665673, 2012.

167



BIBLIOGRAPHY

[159]

[160]

[161]

[162]

[163]

164]

[165]

[166]

[167]

O. Steinvall. Laser radar work at foi. In Proc. SPIFE, volume 7382, pages 7382021,
2009.

U. Stilla, W. Yao, and B. Jutzi. Detection of weak laser pulses by full waveform
stacking. International Archives of Photogrammetry, Remote Sensing and Spatial

Information Sciences, 36(Part 3):W49A, 2007.

J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-
scale signature based on heat diffusion. In Computer Graphics Forum, volume 28,

pages 1383-1392. Wiley Online Library, 2009.

Z.-h. Sun, J.-h. Deng, and X.-w. Yan. Target detection and recognition techniques of
line imaging ladar sensor. In International Symposium on Photoelectronic Detection
and Imaging 2009, pages 73824C-73824C. International Society for Optics and

Photonics, 2009.

J. L. Tackett, D. M. Winker, B. J. Getzewich, M. A. Vaughan, S. A. Young, and
J. Kar. Calipso lidar level 3 aerosol profile product: version 3 algorithm design.

Atmospheric Measurement Techniques, 11(7):4129-4152, 2018.

J.-i. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and
change points from time series. IFEFE transactions on Knowledge and Data Engi-

neering, 18(4):482-492, 2006.

K. Thiel and A. Wehr. Performance capabilities of laser-scanners-an overview and
measurement principle analysis. International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, 36(Part 8):W2, 2004.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Transactions on information theory, 53(12):4655—
4666, 2007.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Simultaneous sparse approximation
via greedy pursuit. In Proceedings.(ICASSP’05). IEEE International Conference

168



BIBLIOGRAPHY

[168]

[169]

[170]

[171]

[172]

[173]

[174]

on Acoustics, Speech, and Signal Processing, 2005., volume 5, pages v—721. IEEE,
2005.

J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse

approximation. part i: Greedy pursuit. Signal Processing, 86(3):572-588, 2006.

C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos. Big data analytics: a

survey. Journal of Big data, 2(1):21, 2015.
B. L. Ulich. Imaging lidar system, Aug. 29 1989. US Patent 4,862,257.

M. Vaidyanathan, S. Blask, T. Higgins, W. Clifton, D. Davidsohn, R. Carson,
V. Reynolds, J. Pfannenstiel, R. Cannata, R. Marino, J. Drover, R. Hatch, D. Schue,
R. Freehart, G. Rowe, J. Mooney, C. Hart, B. Stanley, J. McLaughlin, E.-I. Lee,
J. Berenholtz, B. Aull, J. Zayhowski, A. Vasile, P. Ramaswami, K. Ingersoll,
T. Amoruso, I. Khan, W. Davis, and R. Heinrichs. Jigsaw phase iii: a miniatur-
ized airborne 3-d imaging laser radar with photon-counting sensitivity for foliage

penetration. volume 6550, pages 65500N-65500N-12, 2007.

M. Vaidyanathan, S. Blask, T. Higgins, W. Clifton, D. Davidsohn, R. Carson,
V. Reynolds, J. Pfannenstiel, R. Cannata, R. Marino, et al. Jigsaw phase iii:
a miniaturized airborne 3-d imaging laser radar with photon-counting sensitivity

for foliage penetration. In Defense and Security Symposium, volume 6550, pages

65500N—-65500N. International Society for Optics and Photonics, 2007.

H. Van Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa. Kernel dictionary
learning. In 2012 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2021-2024. IEEE, 2012.

J.-P. Vandeborre, V. Couillet, and M. Daoudi. A practical approach for 3d model
indexing by combining local and global invariants. In 3D Data Processing Visu-

alization and Transmission, 2002. Proceedings. First International Symposium on,

pages 644-647. IEEE, 2002.

169



BIBLIOGRAPHY

[175]

[176]

[177]

178]

[179]

[180]

[181]

[182]

J. Vauhkonen, T. Hakala, J. Suomalainen, S. Kaasalainen, O. Nevalainen, M. Vas-
taranta, M. Holopainen, and J. Hyyppa. Classification of spruce and pine trees
using active hyperspectral lidar. IEFEE Geoscience and Remote Sensing Letters,

10(5):1138-1141, 2013.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka. Gaussian decom-
position and calibration of a novel small-footprint full-waveform digitising airborne
laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2):100—
112, 2006.

W. Wagner, A. Ullrich, V. Ducic, T. Melzer, and N. Studnicka. Gaussian decom-
position and calibration of a novel small-footprint full-waveform digitising airborne
laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2):100—
112, 2006.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez,
I. H. Woodhouse, and G. S. Buller. Design and evaluation of multispectral lidar for

the recovery of arboreal parameters. 2014.

A. M. Wallace, J. Ye, N. J. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller.
Full wave form analysis for long-range 3d imaging laser radar. EURASIP Journal

on Advances in Signal Processing, 2010:33, 2010.

A. M. Wallace, J. Ye, N. J. Krichel, A. McCarthy, R. J. Collins, and G. S. Buller.
Full wave form analysis for long-range 3D imaging laser radar. EURASIP Journal

on Advances in Signal Processing, 2010:33, 2010.

G. Walton, M. S. Diederichs, K. Weinhardt, D. Delaloye, M. J. Lato, and A. Punkki-
nen. Change detection in drill and blast tunnels from point cloud data. International

Journal of Rock Mechanics and Mining Sciences, 105:172—181, 2018.

J. Wang, S. Kwon, and B. Shim. Generalized orthogonal matching pursuit. /EFE

Transactions on signal processing, 60(12):6202, 2012.

170



BIBLIOGRAPHY

[183)]

[184]

[185]

[186]

[187]

[188]

[189)]

[190]

191]

K. F. West, B. N. Webb, J. R. Lersch, S. Pothier, J. M. Triscari, and A. E. Iverson.
Context-driven automated target detection in 3d data. In Defense and Security,

pages 133-143. International Society for Optics and Photonics, 2004.

C. Williams and M. Seeger. Using the nystrom method to speed up kernel machines.
In Proceedings of the 14th annual conference on neural information processing sys-

tems, number EPFL-CONF-161322, pages 682-688, 2001.

0. J. Woodford, M.-T. Pham, A. Maki, F. Perbet, and B. Stenger. Demisting the
hough transform for 3d shape recognition and registration. International Journal

of Computer Vision, 106(3):332-341, 2014.

D. Wu, M. Yaghoobi, S. Kelly, M. Davies, and R. Clewes. A sparse regularized
model for raman spectral analysis. In Sensor Signal Processing for Defence (SSPD),

2014, pages 1-5. IEEE, 2014.

J. Wu, J. Van Aardt, and G. P. Asner. A comparison of signal deconvolution
algorithms based on small-footprint lidar waveform simulation. IEFE Transactions

on Geoscience and Remote Sensing, 49(6):2402-2414, 2011.

M. Yaghoobi, T. Blumensath, and M. E. Davies. Dictionary learning for sparse ap-
proximations with the majorization method. Signal Processing, IEEE Transactions

on, 57(6):2178-2191, 2009.

M. Yang, L. Zhang, X. Feng, and D. Zhang. Fisher discrimination dictionary
learning for sparse representation. In 2011 International Conference on Computer

Viston, pages 543-550. IEEE, 2011.

J. Ye, A. M. Wallace, A. Al Zain, and J. Thompson. Parallel bayesian inference
of range and reflectance from ladar profiles. Journal of Parallel and Distributed

Computing, 73(4):383-399, 2013.

Q. Zhang and B. Li. Discriminative k-svd for dictionary learning in face recognition.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 2691-2698. IEEE, 2010.

171



BIBLIOGRAPHY

[192] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering

method for very large databases. In ACM Sigmod Record, volume 25, pages 103—
114. ACM, 1996.

[193] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang. A survey of sparse representation:
algorithms and applications. IEEE Access, 3:490-530, 2015.

[194] N. Zhao, Y. Hu, and M. He. Target detection method based on the single laser
return waveform. In International Symposium on Photoelectronic Detection and
Imaging 2009, pages 73822A-73822A. International Society for Optics and Photon-
ics, 2009.

[195] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal

of computational and graphical statistics, 15(2):265-286, 2006.

172



	PCThesis-Mar-2021
	Introduction
	Background
	Motivation
	Contributions & Outline

	Literature Review
	Sound Navigation and Ranging (Sonar)
	Light Detection and Ranging (LiDAR)
	Waveform Processing
	Seeing Through Foliage and Clutter

	3D Data Processing: Shape and Geometry
	Sparse Representation & Dictionary Learning
	Categorisation of Sparse Recovery Algorithms
	Dictionary Learning

	Anomaly Detection

	Dictionary Learning & Non-linear Data Approximation
	Simultaneous Approximation & Discrimination
	Sparse Discriminative Signatures (SDS)
	Orthogonal or Over-complete Dictionaries

	Kernel Dictionary Learning
	Kernelised Orthogonal Dictionary Learning
	Problem
	Proposed Approach


	Evaluation on benchmark datasets
	The AT&T (formerly ORL) Face Dataset
	Extended YaleB Face Dataset
	MNIST USPS Digit Dataset

	Summary

	Anomaly Detection & Classification from Aerial LiDAR Signals
	Mapping using Waveform LiDAR
	Anomaly Detection in LiDAR signals
	Contributions and Outline
	Problem Definition 
	Layered Representation of a FW-LiDAR Signal
	The Concept of Normality
	Mapping Raw LiDAR Data into Sub-spaces

	Adopted Approach
	Step 1: Sparse Discriminative Signatures (SDS)
	Step 2: Layered Representation of SDS
	Step 3: Relationship Learning & Anomaly Detection


	Anomaly Detection Results
	Synthetic Data - Multi-Beam Modeller
	Layered Anomaly Score

	Summary

	Peak Modelling & Classification from Aerial LiDAR Signals
	Simultaneous Peak Extraction & Discrimination
	Pre-processing & Inflection Point Estimates
	Noise Estimation, Parameter Initialisation & Ranking
	Peak Estimation and Discrimination - A Sparse Solution
	Dictionary Generated using Mathematical Priors
	Orthonormal Dictionary Learning


	Multi-spectral Aerial LiDAR (Austria Trials)
	Mobile FW-LiDAR Backpack System (Edinburgh Trials)

	Point Cloud Classification Results
	Metrics used for Comparison
	Results on Simulated Data
	Results from Multi-Spectral Aerial LiDAR Scans
	Results on Terrestrial LiDAR Data (Edinburgh Trials)

	Summary

	Object Classification from Single Photon Counting LiDAR Signals
	Introduction
	Data Acquisition: Setup & Targets

	LiDAR Data Analysis
	3D Shape Analysis: Point & Histogram Features
	Spin Images
	Curvature Representation (CR)

	TCSPC Object Discrimination Algorithm
	Stage 1 - Waveform Processing
	Stage 2 - Non-linear Dictionary Learning of SSR

	Results and Discussion
	Experiment 1 - Material Discrimination
	Experiment 2 - Mine Discrimination

	Summary

	Object Classification from Sonar using Dictionary Selection
	Problem Formulation
	Proposed approach
	1-D Sonar Echoes - Experiments & Results
	Sonar Images - Experiments & Results
	Simulated Side-scan Imagery
	Real SAS Imagery

	Summary
	What is an optimal dictionary?
	Importance of SNR & Pixel Resolution
	Effect of occlusion on classification accuracy?


	Conclusion
	Proposition Proof
	Bibliography

	researchthesissubmission (PC)

