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A B S T R A C T

In recent years, the popularity of intelligent and autonomous vehicles has grown notably. In fact, there already
exist commercial models with a high degree of autonomy as regards self-driving capabilities. A key feature for
this kind of vehicle is object detection, which is commonly performed in 2D space. This has some inherent
issues as an object and the depiction of such an object would be classified as the actual object, which is
inadequate since urban environments are full of billboards, printed adverts and posters that would likely make
these systems fail. In order to overcome this problem, a 3D sensor could be leveraged, although this would
make the platform more expensive, energy inefficient and computationally complex. Thus, we propose the use
of structure from motion to reconstruct the three-dimensional information of the scene from a set of images,
and merge the 2D and 3D data to differentiate actual objects from depictions. As expected, our approach is
able to work with a regular color camera. No 3D sensors whatsoever are required. As the experiments confirm,
our approach is able to distinguish between actual pedestrians and depictions of them more than 87% of times
in synthetic and real-world tests in the worst scenarios, while the accuracy is of almost 98% in the best case.
1. Introduction

The future of transportation now undeniably lies in intelligent
and autonomous vehicles. These kinds of vehicles are packed with
a range of sensors that, in the case of intelligent vehicles, gives the
driver access to much greater understanding of the road, so safety is
increased and the driving task optimized. In the case of autonomous
cars, they are able to drive themselves with no interaction from the
driver. The sensors of choice commonly include color cameras and
LiDAR (Laser Imaging Detection and Ranging). They provide visual and
three-dimensional information on the environment at low level. The
data provided by these sensors are often processed to extract knowl-
edge. This is the case of segmentation systems that provide pixel-level
classification or object detectors.

The methods that work on images already provide high accuracy,
but have a significant flaw inherent to the input data, being that all
the objects with similar features would be classified as the same object
despite being different. For instance, if we feed images of an actual
person and the depiction of a person in a billboard to an object detector,
it would provide the same label for both, namely, person. This issue is
critical when it comes to intelligent and self-driving cars as the urban
environment is full of these depictions, in elements such as billboards,
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posters, bus shelters, and adverts. If we rely just on a 2D object detector,
it will likely fail in these cases.

However, LiDAR could be used to classify three-dimensional data,
thus resolving the issue. Nonetheless, these kind of classifiers are too
computationally complex to be deployed on actual self-driving and
intelligent car hardware.

Thus, in order to mix the advantages of three-dimensional data
with the accuracy of the image-based object detectors, we propose
a pipeline that builds a 3D representation of the environment from
images. Concurrently, a 2D object detector is used to segment the
persons. The result would include actual persons and depictions of
persons. Once both representations are computed, the 3D data for each
person in the scene is extracted. Finally, a planarity test is carried out
to correctly classify the actual persons and discard the depictions.

The main contributions of our proposal are listed as following:

• We implemented a novel method that fuses 2D and 3D informa-
tion to handle the problems that 2D object detectors have with
object depictions in urban environments.

• We tested our system with both simulated and real data from
custom and state of the art datasets that are established in the
literature.
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• We compared the performance of our system versus a state of the
art 3D convolutional neural network, showing that our proposal
outperforms this method for our task. Therefore, we prove that
the combination of 2D and 3D information achieves better results
than single 2D or 3D methods for this kind of task.

The rest of the work is structured as follows. First, we review the
ost important works in 2D and 3D object detection in Section 2. In

ection 3, our proposal is then explained in depth. Section 4 includes
nformation about the data setups we use to carry out the experiments
escribed in Sections 5 and 6. Finally, conclusions, limitations and
uture works are explained in Section 7.

. Related works

In this section, we review state-of-the-art methods for detecting
bjects in images and in three-dimensional data. As far as object
etection in images is concerned, we can classify the methods into two
amilies:

• One-stage detectors. These types of detectors perform classifica-
tion and regression from the characteristics in a straightforward
manner.

• Two-stage detectors. These types of detectors perform classifica-
tion and regression in two phases: they generate the features in
one phase, generate the bounding boxes in another phase, and
these are then combined for classification.

Furthermore, this classification can be subdivided according to
hether the detectors use anchor boxes (bounding boxes calculated
ffline), that is, whether they are anchor-based or anchor-free.

Among the one-stage detectors, YOLOv4 (You Only Look Once
4) (Bochkovskiy et al., 2020) brings together a number of techniques
hat have proven to work well independently. The authors’ main goal
s to obtain a fast detector that maintains competitive accuracy in real
ime. It consists of three parts. The first part of the detector, known as
he backbone, is a convolutional neural network used only to extract
eatures. In the second part, known as the neck, a technique is applied
o mix and match these features. Finally, the third part, known as the
ead, performs the detection from the features.

The SSD (Single Shot Detector) detector (Liu et al., 2016) consists
f a VGG16 (Visual Geometry Group, 16 blocks) (Simonyan & Zis-
erman, 2014) neural network, but replacing the dense layers with
onvolutional layers. In addition, 4 more convolution layers are added
o further reduce the size of the features, thus obtaining features at
ifferent scales. Finally, each of the outputs of each convolution layer
s combined in the last layer, where the detection is performed.

Finally, RetinaNet (Lin et al., 2017) is a detector that uses a variant
f ResNet (He et al., 2016) as the basis of a feature pyramid network
o extract features and bounding boxes at different scales. It then uses
wo subnetworks. The first subnetwork predicts the class of objects. The
econd subnetwork regresses the location of the objects.

Nonetheless, there are some of prominent methods that do not use
redefined bounding boxes.

CornerNet (Law & Deng, 2018) is a method that directly regresses
he upper left-hand corner and the lower right-hand corner of the
ounding box independently from the features. One network is used
or the upper left-hand corner and another network for the lower right-
and corner. Finally, vectors, known as embeddings, are learned to
epresent these corners. These embeddings are used to associate the
orners of the same object.

CenterNet (Duan et al., 2019) is the continuation of CornerNet. This
ethod adds information about the center of the object. CornerNet is
sed to obtain the corners and the bounding box, and checks whether
here is an object inside each bounding box. To do this, the embeddings
re used to verify whether there is a point belonging to the same class
2

n the central region of the bounding box.
Among the two-stage anchor-based detectors, Faster R-CNN (Region-
Convolutional Neural Network) (Ren et al., 2015) is a well-known
method, part of the family of R-CNN (Girshick et al., 2014) and Fast
R-CNN (Girshick, 2015), that first generates a feature map from the
image. Using this map and with a RPN (Region Proposal Network), it
generates candidate bounding boxes. The features, together with the
bounding boxes, are combined in a final layer in which feature vectors
are obtained for each bounding box. These vectors are used as input to
a classifier.

R-FCN (Region-based Fully Convolutional Network) (Dai et al.,
2016) is somewhat similar to Faster R-CNN in that it also uses an RPN
from the feature map. However, in this method, the bounding boxes
and the features are processed in a layer known as Position-Sensitive
Score Maps. In this layer, matrices are produced that represent a type
of percentage overlap between the features and the bounding boxes.
From the matrices, the classes and locations are calculated.

Of the anchor-free methods, RepPoints (Yang et al., 2019) can be
highlighted. Firstly, like virtually all detectors, features are obtained
from the image by means of convolutional layers. It is made up of
two parts: a first part that performs the regression of 9 points that are
modified by a refinement process, generating a bounding box, and a
second part which performs classification from the bounding boxes and
the features.

In general, although 2D image-based methods achieve good re-
sults in terms of inference time and/or accuracy, none of them is
able to solve the problem addressed in this paper, which consists of
determining that a person on a billboard is, in reality, not a person.

Regarding the detection of 3D objects, we will distinguish the
methods according to the type of environment in which this detection
is applied, indoor and outdoor.

In an indoor environment, the objects to be detected are those that
would be found in closed environments, such as tables, chairs, doors
and sofas. In this respect, it is worth mentioning works that achieved
good results in the challenges of the ModelNet (Wu et al., 2015a) and
SUNRGB-D (Song et al., 2015) datasets.

The seminal work by Wu et al. (2015b) introduced the ModelNet
dataset and a CDBN (Convolutional Deep Belief Network) to represent
and learn 3D shapes as probability distributions of binary variables on
volumetric voxel grids. The accuracy of this method was relatively low,
but the work paved the way for future research.

Another approach to this problem is presented by Xu and Todorovic
(2016), in which an optimal CNN (Convolutional Neural Network)
hyperparameter beam search and architecture is proposed. This system
models different network configurations as states, which are connected
in a directed graph. The system traverses the graph, using a heuristic
function that produces the next best state, an improved version of the
architecture and hyperparameter set.

Frustum PointNet (Qi et al., 2018) obtains a set of candidate 2D
bounding boxes using a 2D convolutional neural network. From each
candidate 2D region, a point cloud is obtained, consisting of all the
points that fall within the field of view in which the object is located.
These point clouds enter a PointNet network that will predict the class
of the object. It should be noted that this model has problems when
there is more than one object of the same category within the field of
view, as the 3D bounding box returned for each object is mixed with the
other. In addition, it depends on 2D detection, and so if the 2D detector
does not work properly (low light, occlusions, etc.), the 3D detection
will have poor results.

3DSS (3-Dimensional Sliding Shapes) (Song & Xiao, 2016) uses the
same candidate elicitation technique, but in three dimensions using a
RPN. From the bounding boxes, it obtains its projections in 2D and
trains a hybrid convolutional neural network so that the bounding
boxes serve as input to a 3D Convolutional Neural Network and the
projections to a 2D Convolutional Neural Network. RPN has problems
with flat objects, such as TVs or monitors, which affects detection

because if a good 3D bounding box is not obtained, detection will not
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work well. It also fails with objects whose category has great variance,
e.g. the box category.

An important step forward was made by Sedaghat et al. (2016) who
introduced object orientation prediction, in addition to the class label
itself, to increase classification accuracy. Their ORION network is a
3DCNN (3-Dimensional Convolutional Neural Network) that produces
class labels and orientations as outputs and uses both to contribute to
training. By adding orientation estimation as an auxiliary task during
training, they were able to learn orientation invariance and increase
accuracy.

VRN (Voxception-ResNet) Ensemble (Brock et al., 2016) comprises
an encoder network, the latent layer and a decoder network. The en-
coder network consists of 4 convolutional layers and a fully connected
layer, followed by a linear projection from the fully connected layer
to the latent layer. The decoder network has an identical architecture,
but inverted, and its weights are not linked to those of the encoder.
The output of each element in the final layer can be interpreted as the
prediction that a voxel is present at a given location.

Finally, in order to approximate the results to real life scenarios,
Par3DNet (Gomez-Donoso et al., 2020) used a 3DCNN to perform object
ecognition over tridimensional partial views of the objects, making an
n-depth analysis of the easiest and hardest views to classify an object.

Most of these approaches work with a voxelised representation of
he point clouds and predict the categories from the voxels by means
f a 3D deep convolutional neural network or similar. Although, for
xample, VRN Ensemble performs best in the challenges, the voxelisa-
ion operations it uses are too computationally complex for real-time
xecution.

For the outdoor environment, the KITTI dataset (Geiger et al.,
013) is used as a reference. KITTI is a state-of-the-art dataset of
rban objects. The main classes typically used to test the models are
edestrians, cyclists and cars.

As this dataset is the most widely used for urban object detection,
e can find many proposals, such as MV3D (Multi-View 3D object
etection network) (Chen et al., 2017) and Vote3Deep (Engelcke et al.,
017).

MV3D is a pipeline, the input of which is 3D data from different
erspectives (bird’s eye view and frontal view) and the RGB image. It
s composed of two phases, a first phase consisting of a 3D Proposal
etwork that will use the bird’s eye view to generate candidate 3D
ounding boxes. The second phase is a Region-based Fusion Network.
he bounding boxes are projected in both views and in the image,
ith the regions corresponding to the bounding boxes being obtained.
inally, features are extracted from the three views, fused, and sent
s input to a classifier. Although it appears to be highly accurate in
enerating the bounding boxes, it has problems with small objects, such
s cyclists and pedestrians, and also has difficulties with scenes where
here are many objects moving vertically.

Vote3Deep, on the other hand, only works with point clouds repre-
ented as a 3D grid. This model uses a 3DCNN together with a voting
lgorithm and L1 regularization. The voting algorithm consists of per-
orming the convolutions, but only on the elements that are non-zero
nd obtaining the same result as a normal convolution, but with greater
fficiency. It is fast, although the prediction speed could be increased
y developing a GPU (Graphics Processing Unit) implementation of the
oting algorithm. Moreover, the authors present two models, one for
ar detection and one for pedestrian and cyclist detection, because they
eed to change the kernel size in the last layer due to the size of cars
ompared to pedestrians or cyclists. Therefore, if they were to present
single model for all 3 classes, the results would be affected.

In summary, three-dimensional object detectors could solve the pro-
osed problem because they learn from 3D information. However, such
ethods do not yet have sufficiently high success rates. In addition,
pure three-dimensional approach requires too much computational
3

ower to be deployed in intelligent vehicles.
Regarding methods intended exclusively for pedestrian recognition,
many use only color images. In Benenson et al. (2014), Dollár et al.
(2009), Dollar et al. (2011), we can find a review with the most
significant approaches in the early years using traditional classifiers
over images. Most of these are based on handcrafted features and the
accuracy is too poor to be used in real life scenarios.

Subsequently, with the advent of deep learning, researchers moved
into CNN architectures to perform this classification. In Brunetti et al.
(2018), the authors present an exhaustive review of computer vision
and deep learning techniques for pedestrian detection and tracking. The
most common approach is presented in works such as Lan et al. (2018),
where a single stage detector (YOLO) is used to predict a bounding box
and its category confidence. The authors present a modification with
pass-through layers and additional connections to improve the quality
of the features and their accuracy. In the case of Liu et al. (2019a), the
authors propose a feature detector (Center and Scale Prediction) that is
able to search for central points where there are pedestrians, and obtain
the scale of the detection with a Fully Convolution Network (FCN). By
performing the search on the center of the pedestrians instead of on
boxes in the image, it is more robust to occlusions. However, systems
that work with color images present the problem we aim to solve in
this paper.

Finally, some works use a LiDAR to perform classification of three-
dimensional data. In Liu et al. (2019b), the authors present a pedestrian
detection system using template matching. As a first step, they segment
the ground and filter the points in grid cells whose height difference
does not correspond to humans. They then perform a Kernel Density
Estimation (KDE) clustering to extract candidate pedestrians. Finally,
they project the candidates in a range image, extract features from
the contour and compare the cosine similarity with the template of
an actual pedestrian. This kind of approach suffers when point clouds
are sparse or occluded. Furthermore, in Wu et al. (2021), the authors
propose a multi-LiDAR system where they fuse the classification scores
of the left-hand and right-hand LiDARs to improve the accuracy. This
system is composed of three stages: object proposal, fine classification
and score fusion. The object proposal generates object candidates, using
ground segmentation and point clustering. These are therefore passed
to an object classifier, a Support Vector Machine (SVM). In the fine
classification step, a set of features (153 dimensions) are generated,
representing the number of points, covariance matrix and rotational
projection statistics. The system provides the pedestrian likelihood
estimation for every cluster. Finally, the results are fused in the score
fusion stage. However, these systems are computationally expensive
and do not provide the speed of execution required by a real-time
system.

3. Reconstruction and classification pipeline

In this section, we provide an in-depth description of our proposed
reconstruction and classification pipeline. We first provide a general
description, and each subsection focuses then on one stage of the
pipeline. As mentioned, this work presents a new method that mixes
2D and 3D data in order to discriminate actual persons from elements
that look like persons, but are not. Our method draws on the idea that
actual persons are not flat, but have three-dimensional volume, while
elements that show representations of personas, such as billboards,
posters, adverts, bus shelters and so on, are flat. The input of our
method is a sequence of images and the output is the classification
in either person or background. To achieve this goal, we propose the
pipeline displayed in Fig. 1. It is worth mentioning that this method is
intended to be applied to intelligent vehicles in urban environments.

First, a sequence of images is captured as the vehicle moves with
its built-in regular color camera. The images are then fed to two
different methods running simultaneously. On one hand, the sequence

is processed by a Structure from Motion (SfM) algorithm that provides
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Fig. 1. Our proposal takes a number of images to perform a three-dimensional reconstruction of the scene using SfM, thus retrieving a point cloud. Concurrently, the persons are
detected using a 2D object detector. The 3D points are projected into the image plane, and the corresponding points of the persons are extracted. A planarity test is carried out
to finally classify each detected person as an actual person or background.
a three-dimensional representation of the environment. This represen-
tation is actually a point cloud. On the other hand, the last image of the
sequence is fed to a 2D object detector in order to detect the persons
that are present in the scene. As a result of this step, a collection of
bounding boxes are computed, each corresponding to an object that
looks like a person. Once we obtain the point cloud of the scene and
the position of all the elements in the image that look like persons, the
next stage consists of projecting the 3D points to the last image of the
sequence. This can be done since the SfM algorithm also generates the
poses of the camera for each image in the sequence. We extract the
points inside the bounding boxes of each element retrieved by the 2D
object detector. As a result, a collection of point clouds is obtained.
Finally, for each point cloud a planarity test is carried out. If the object
is flat, it is classified as background. Otherwise, it is classified as a
person.

The following subsections further delve into each part of the pro-
posed pipeline.

3.1. Three-dimensional reconstruction

The first stage of the proposed pipeline comprises a three-dimens-
ional reconstruction, namely, we obtain a point cloud of the scene.
To do so, we leverage an SfM method (Özyesil et al., 2017). Specif-
ically, we use the OpenSfM (Mapillary, 2021) implementation. The
SfM method takes a sequence of images as input. A feature detection,
matching and filtering process is then run. Finally, a bundle adjustment
algorithm is also executed, in order for the best alignment to be
obtained. As a result of this method, a point cloud and the estimated
poses of the camera are computed, as shown in Fig. 2.

In this case, the input sequence is composed of 8 images and the
feature detection of choice is HAHOG. The matching is carried out by
a K-Means (Jin & Han, 2010) algorithm.

3.2. 2D object detection

A 2D object detector is also run in the first stage of our proposal.
We use YOLOv3 (Redmon & Farhadi, 2018) to perform this task. This
method is a deep-learning-based architecture that takes an image as an
input and provides the location of every detected object in the image,
that is, it computes their bounding boxes.

We chose this approach because it is the best performer in terms of
accuracy whilst keeping the computation cost at bay. We adopted the
model as provided by the original authors. Finally, it is worth noting
that this architecture is able to detect a range of different objects, but
we only consider those labeled as persons. As this algorithm leverages
visual features, every element in the scene that looks like a person
would be classified as one, including objects that are not actually
persons, as seen in Fig. 3.
4

3.3. Point cloud instance segmentation

Once the point cloud of the scene and the bounding boxes of the
elements labeled as persons are obtained, the next step is to segment
the 3D points that belong to each of them. To do so, we project the
point cloud to the current image. This process is straightforward as
we already computed the camera pose [𝑅 | 𝑡] in the three-dimensional
reconstruction step explained in Section 3.1, and the intrinsic parame-
ters are also known. Thus, we can use Eq. (1) to project each 3D point
[𝑋 𝑌 𝑍] in the point cloud to the image plane.
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The points [𝑢 𝑣] that are inside of each bounding box are then
collected so that the corresponding [𝑋 𝑌 𝑍] of each element labeled
as object is obtained, as shown in Fig. 4. As a result of this step, a point
cloud is returned for each object labeled as a person by the 2D object
detector.

As the bounding boxes are not fitted to the shape of the persons,
but, rather, they are rectangular, some background and traces of the
floor are also included. Thus, the 3D points of these undesired artifacts
must be filtered so that the point clouds only depict the elements of
interest. Our filtering process is thus as follows. First, we compute the
mean of the whole point cloud and a Z filtering is performed, removing
the points that are beyond the mean for a given value 𝑓1. This is done
to remove the background points. The mean of the remaining points
is then computed and another Z-filtering of the mean ± a new fixed
value 𝑓2 is performed, so only the points corresponding to the subject
of interest are kept. 𝑓1 and 𝑓2 are set to 0.5 and 1.5 in the experiments.

3.4. Planarity test

As mentioned, in order to tell actual persons apart from persons
depicted in bus shelters, billboards, adverts posters or other elements
that look like persons but are actually not, we can take advantage
of their three-dimensional data. The former have volume in the three
dimensions whilst the latter are completely flat. Thus, in order to
detect whether the point cloud extracted of an object is flat or not, we
implemented a planarity test.

The planarity test taps Random Sample Consensus (RANSAC) (Fis-
chler & Bolles, 1981). This algorithm, applied to three-dimensional
data, is typically used for detecting geometric primitives in point
clouds. The method samples some points from the input data and fits
the primitive, which in this case is a planar surface. It then checks
the congruency level of the whole point cloud within a threshold and
provides the number of inliers. This process is repeated a fixed number
of times 𝑖𝑡 and the larger number of inliers is reported. In our case, we
run RANSAC for 𝑖𝑡 = 1000, in order to assure the predominant plane
will likely be fitted. The number of points to sample from the point
cloud in each iteration is 3, which is the minimum required to define
a plane. The threshold to consider that a point is congruent with the
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Fig. 2. The top row depicts images from three random image sequences obtained by the camera that are used to perform the scene reconstruction. The bottom row shows SfM
reconstructions from the images sequences that contain the top row image samples.
Fig. 3. The object detector of choice is YOLOv3. Note that this architecture labels as a person anything that is visually similar to a person, despite not actually being one. This
kind of error is highly dangerous and problematic, for example, in autonomous driving tasks.
estimated plane is the mean distance between the neighboring points
of the input point cloud. Thus, this distance is a function of the density
of the point cloud. The final threshold is this mean distance plus a fixed
value 𝑡1. We do this because the point cloud yields no real scale as it is
computed by an SfM method. If we make 𝑡1 larger, more points will be
congruent to the fitted plane and the surface described by these points
would be less planar. In contrast, if 𝑡1 is more restrictive, fewer points
would be attached to a fitted plane so the best plane returned is likely
to be a local one instead of the predominant one.
5

Finally, as the number of inliers is returned by RANSAC, we com-
pute the relative number of points (𝑅𝑁𝑃 ) that are inliers by dividing
the returned inliers by the total number of points in the input point
cloud. This makes the score robust to clouds with different sizes.

The normal vector of the plane is then used to state its orientation.
First, the normal vector is computed using Eq. (2) from the returned
plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑, and its angle in the Z direction regarding the
global coordinate frame is then also calculated. Finally, if the angle in
the Z axis is within the 25–155 degree range, it means the plane is
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Fig. 4. The 3D data of each object labeled as person is computed by extracting the 3D points from the scene point cloud that are inside the bounding box detected in the image.
Table 1
Experimental results (accuracy) on simulated data modifying 𝑡1 values from 0.001 to
0.05 and 𝑅𝑁𝑃 value equal to 80%. The background class is divided into two subclasses:
samples that were captured parallel to the camera (A) and 45 degrees to the camera
(B). Total samples used in this experimentation: 214 for background(B), 140 for actual
pedestrian and 229 for background(A).
𝑡1 value 𝑅𝑁𝑃 value Actual ped. Background(A) Background(B)

0.001 80% 100% 80.35% 0.009%
0.01 80% 99.29% 100% 80.84%
0.02 80% 99.29% 100% 98.13%
0.03 80% 86.43% 100% 98.6%
0.04 80% 81.4% 100% 99.5%
0.05 80% 76.43% 100% 100%

perpendicular to the ground plane and the algorithm continues. This
is done to ensure that the computed plane does not depict undesired
artifacts, like the floor or ground, but those belonging to the object of
interest.

𝑛 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎
√

𝑎2+𝑏2+𝑐2
𝑏

√

𝑎2+𝑏2+𝑐2
𝑐

√

𝑎2+𝑏2+𝑐2

⎞

⎟

⎟

⎟

⎟

⎠

(2)

If the plane is perpendicular to the floor and the final normalized
score is above a fixed value 𝑇 , the corresponding object is considered
as background (flat surface). Otherwise, it is considered as an actual
person (not a flat surface). Experiments conducted in order to set the
best threshold 𝑇 are described in Section 5.

At this point, it is worth noting that actual pedestrians in an urban
environment are non-static. This impacts on the SfM pipeline as it is
likely not to provide a completely faithful reconstruction of the person
but a very noisy one. Our approach takes advantage of this matter, as
we are searching for planar surfaces and these are unlike those shown
in Fig. 5.
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Table 2
Experimental results (accuracy) on simulated data modifying 𝑡1 values from 0.001 to
0.05 and 𝑅𝑁𝑃 value equal to 60%. The background class is divided into two subclasses:
samples that were captured parallel to the camera (A) and 45 degrees to the camera
(B). Total samples used in this experimentation: 214 for background(B), 140 for actual
pedestrian and 229 for background(A).
𝑡1 value 𝑅𝑁𝑃 value Actual ped. Background(A) Background(B)

0.001 60% 100% 98.25% 27.57%
0.01 60% 97.8% 100% 97.2%
0.02 60% 82.86% 100% 100%
0.03 60% 72.86% 100% 100%
0.04 60% 64.93% 100% 100%
0.05 60% 57.9% 100% 100%

Table 3
Experimental results (accuracy) on simulated data modifying 𝑡1 values from 0.001 to
0.05 and 𝑅𝑁𝑃 value equal to 40%. The background class is divided into two subclasses:
samples that were captured parallel to the camera (A) and 45 degrees to the camera
(B). Total samples used in this experimentation: 214 for background(B), 140 for actual
pedestrian and 229 for background(A).
𝑡1 value 𝑅𝑁𝑃 value Actual ped. Background(A) Background(B)

0.001 40% 100% 100% 88.78%
0.01 40% 82.14% 100% 100%
0.02 40% 64.28% 100% 100%
0.03 40% 52.86% 100% 100%
0.04 40% 40.71% 100% 100%
0.05 40% 31.43% 100% 100%

4. Datasets and data acquisition

To validate our approach, we used several synthetic and real-world
datasets, which are explained in this section. To perform the exper-
iments, three different datasets were used. First, a synthetic dataset
that includes actual persons and elements that look like persons was
compiled. Then, a dataset captured in a real urban environment was
involved in the experiments as well. Some experiments also included
a real-world custom dataset of pedestrians and billboards, posters,
adverts and similar elements that were captured for qualitative eval-
uation.
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Fig. 5. (a) Image from a random sequence from The University of Sydney Campus Dataset. (b) 3D noisy reconstruction done with OpenSfM from the image sequences. (c)
Front-view of the 3D noisy reconstruction of the person with the black bounding box. (d) Side-view of the 3D noisy reconstruction of the person with the black bounding box.
Both (c) and (d) are from the same person.
Fig. 6. Random samples of the synthetic dataset featuring planar surfaces and three-dimensional models of persons.
4.1. Custom synthetic dataset

First, we collected a synthetic dataset comprising planar surfaces
covered by images of persons in urban environments and three-
dimensional models of persons in a range of poses. This synthetic
dataset also allows us to isolate the subject of interest from neighboring
and background elements that would affect the performance of the
methods that are tested with it.

The split of the planar surface dataset aims to simulate those urban
objects that are visually similar to, but are actually not, persons, for
instance, billboards, adverts or posters. Several blocks were placed in
a simulated environment. The planar surfaces, which are covered with
images of persons extracted from the Pascal VOC (Everingham et al.,
2015) dataset, are in parallel (A on Table 1, 2 and 3) and at 45 degrees
(B on Table 1, 2 and 3) on the pavement with respect to the simulated
car. The car took pictures as it moved around the environment. In total,
140 images of persons were placed on the flat surfaces and 443 images
were captured of this setup.

The split of real persons consists of images of three-dimensional
models of persons in a variety of poses and appearance. These models
were also placed in the simulated world as the virtual car moved around
it whilst capturing images. Finally, 20 models of persons in 17 poses
were used. This setup allowed us to capture 1768 images. Random
samples of this dataset are shown in Fig. 6.

4.2. Custom real dataset

This dataset was created with the aim of testing our system with
real data in different scenarios. We captured 46 examples of actual
pedestrians and 30 examples of objects that are visually similar to, but
are actually not, pedestrians. The dataset size is smaller compared to
4.1 and 4.3 because image sequences were captured manually using
a smartphone camera. However, every image was captured from the
perspective of a vehicle to make data more valuable. Random samples
of this dataset are shown in Fig. 7.
7

4.3. The university of Sydney campus dataset

The University of Sydney Campus dataset (Zhou et al., 2019) is
composed of different data streams produced by a range of sensors built
into an intelligent vehicle. The streams include two color cameras, a
LiDAR and GPS positioning, among others. The dataset depicts the same
route around the University of Sydney campus for about 60 consecutive
weeks, such that a range of different situations, weather and lightning
conditions, and changes in the urban environment are captured. As our
approach only requires images to work, the left-hand color camera of
the vehicle is used for the experiments, while the remaining streams
are discarded.

5. Experiments and results

In this section, we present the experimentation carried out to val-
idate our approach. It is worth noting that we used synthetic data,
real data and a well-known state of the art dataset. In addition, we
also tested the different thresholds and parameters that are used in our
proposal.

5.1. Experiments with custom synthetic dataset

As mentioned in Section 4.1, a custom synthetic dataset was created
to determine whether our system is capable of differentiating these
samples of pedestrians. We first tested the system with this dataset
because we can control the scene, which cannot be done with real data.

Before implementing the experimentation and obtaining the final
results in simulation, two variables need to be set up: the fixed value for
RANSAC (𝑡1) and the fixed planarity value (𝑅𝑁𝑃 ) previously described.
To do so, an extensive and rigorous experimentation is performed.
This experimentation consists of studying the results depending on the
value of the variables. All the results are expressed in terms of %
accuracy. First, fixing the 𝑅𝑁𝑃 value to 80%, we perform the real or
fake classification task changing 𝑡1 values from 0.001 to 0.05. In the
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Fig. 7. Random samples of the real custom dataset with actual and fake pedestrians.
Fig. 8. (First row) Images from four random image sequences obtained by the simulated camera that will be used to perform the scene reconstruction. (Second row) SfM
reconstructions from the image sequences that contain the top row image samples. (Third row) Front-view of RANSAC plane calculations colored in red over the SfM 3D
reconstruction in black. (Fourth row) Side-view of RANSAC plane calculations colored in red over the SfM 3D reconstruction in black.
second place, 𝑅𝑁𝑃 is decreased to 60% for the same 𝑡1 values. Finally,
we use 40% as the 𝑅𝑁𝑃 value again with 𝑡1 values between 0.001 and
0.05. No higher or smaller 𝑡1 or 𝑅𝑁𝑃 values are needed because these
results already prove the theoretical concept of these variables.

Tables 1–3 show the aforementioned behavior that these variables
generate in the results. The best results are obtained in the first exper-
iment, with a 𝑡1 value equal to 0.02 and an 𝑅𝑁𝑃 value equal to 80%.
Additionally, Fig. 8 shows several results from this experimentation.
Although these results are obtained with simulation data, it is a good
starting point to demonstrate that our system is able to classify and dis-
tinguish the desired samples correctly. Therefore, the experimentation
in real environments starts from these values for the variables.

5.2. Experiments with custom real dataset

Starting with the parameter values obtained in the previous exper-
imentation, we test our system with the Custom Real Dataset from
8

Section 4.2. To recall, this dataset contains 37 samples of actual static
people and 30 samples of fake people.

In Table 4, we can observe that the RNP and t1 values from the
simulation results are sufficiently precise to produce decent results,
especially with fake pedestrians. This issue arises because 3D recon-
structions of fake people in real scenarios contain more noise than
in simulation. Therefore, decreasing RNP value and applying filtering
operations are the optimal steps to handle this noise, as can be seen in
Table 4.

Once our system is able to obtain decent results with static pedes-
trians, we add dynamic pedestrian detection by calculating the angle of
the plane normal vector with the Z axis, as is explained in Section 3.4.
Hence, we add 9 dynamic samples to the real dataset, and we test our
system with an RNP value of 50%, while modifying the t1 value from
0.02 to 0.06. The results, shown in Table 5, demonstrates that a t1
value of 0.06 yields the best results when adding dynamic pedestrians,
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Fig. 9. (First row) Images from four random image sequences obtained by the real camera from the Custom Real Dataset 4.2. (Second row) SfM reconstructions from the image
sequences that contain the top row image samples. (Third row) Front-view of RANSAC plane calculations colored in red over the SfM 3D reconstruction in black. (Fourth row)
Side-view of RANSAC plane calculations colored in red over the SfM 3D reconstruction in black.
Table 4
Experimental results (accuracy) on real data from Section 4.2 modifying
𝑅𝑁𝑃 values from 80% to 50% and 𝑡1 value equal to 0.02. Background
class contains all the samples about fake people and pedestrians. Actual
pedestrian class contains only static pedestrians. Total samples used in
this experimentation: 30 for background, 37 for actual pedestrian.
𝑡1 value 𝑅𝑁𝑃 value Actual ped. Background

0.02 80% 94.6% 75.86%
0.02 70% 91.9% 75.86%
0.02 60% 89.2% 82.76%
0.02 50% 89.2% 93.1%

Table 5
Experimental results (accuracy) on real data from Section 4.3 modifying
𝑡1 values from 0.02 to 0.06 and 𝑅𝑁𝑃 value equal to 50%. Background
class contains all the samples about fake people and pedestrians. Actual
pedestrian class contains both static and dynamic pedestrians. Total
samples used in this experimentation: 30 for background, 37 for actual
static pedestrian and 9 for actual dynamic pedestrians.
𝑡1 value 𝑅𝑁𝑃 value Actual ped. Background

0.02 50% 100% 73.33%
0.03 50% 97.83% 76.67%
0.04 50% 97.83% 83.33%
0.05 50% 97.83% 80%
0.06 50% 97.83% 86.67%

detecting all of them correctly. Nonetheless, fake people or background
class drops from 93% to 87%. Although those results show that our
system performs with high accuracy, the number of samples of this
dataset is small, and so a final experimentation with a state of the art
dataset is needed to verify our results (see Fig. 9).
9

5.3. Experiments with the university of Sydney campus dataset

Last but not least, we test our system with a state-of-the-art dataset
in intelligent vehicles. We ran the entire pipeline over almost 100
reconstructions extracted from this dataset, including both static and
dynamic samples. As there are not examples of fake pedestrians in this
dataset, we can only test it with actual pedestrians. From these 100
reconstructions, 185 pedestrians were extracted, of which 182 were
detected as actual pedestrians and 3 as background. These results show
that our system is able to detect actual pedestrians and background in
different situations and scenarios, detecting both static and non-static
samples as actual pedestrians. Fig. 10 shows examples of results from
this last experimentation. As can be seen in Fig. 10(a), when our system
classifies a person as a plane (planarity value greater than 𝑅𝑁𝑃 value),
the angle calculation between the normal vector of the detected plane
and the Z axis allows us to determine whether this person is indeed a
plane or not. In this case, the calculated plane is a horizontal plane, so
cannot be a depiction of a person, and is thus a moving pedestrian.

6. Comparison with a state of the art method

In this section, the comparison between our method and a state
of the art 3D convolutional neural network, named PointNet++ (Qi
et al., 2017), is made. First, PointNet++ is included in our method as
the final classifier, replacing RANSAC and RNP threshold. Therefore,
after the YOLOv3’s detection, when the 3D points from the real or
fake person are obtained, PointNet++ is executed to classify this object
in real or depicted person, using pre-trained weights from ModelNet
dataset. Second, we carry out the comparison only with real datasets,
from Sections 4.2 and 4.3, because the final goal of these methods is to
run them with real data.
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Fig. 10. (First row) Images from four random image sequences obtained by the real camera from the University of Sydney Campus dataset 4.3. (Second row) SfM reconstructions
from the image sequences that contain the top row image samples. (Third row) Front-view of RANSAC plane calculations colored in red over the SfM 3D reconstruction in black.
Table 6
Comparison between our method and the state of the art 3D convolu-
tional neural network PointNet++. The results are obtained using the
real data from the Custom Real Dataset from Section 4.2.

Actual ped. Background

Ours 97.83% 86.67%
PointNet++ 54.5% 98%

With respect to our custom dataset, Table 6 shows that PointNet++
barely classifies real people correctly. One limitation of this method is
that depends on the structure and density of the point clouds that were
used to train the model. In contrast, our method does not depend on
any specific data or sensor, instead it would work with any type of point
cloud. On the other hand, PointNet++ is able to classify fake people
with high accuracy, but our method is also able to achieve promising
and reliable results.

Finally, with respect to the state of the art dataset from Section 4.3,
our method outperforms PointNet++ when detecting both static and
dynamic objects achieving 98.38% of accuracy compared to the 22.22%
of PointNet++. Overall, our system performs better than the state of the
art method PointNet++, when detecting and classifying between actual
or fake pedestrians.

7. Conclusions and future work

In this work, a method is proposed for distinguishing actual objects
from depictions of objects for intelligent and autonomous vehicles.
The approach merges the output of a 2D object detector with a three-
dimensional reconstruction of the scene to rely on structural data to
finally classify the objects into actual pedestrians or depictions, such as
billboards, posters or printed adverts. The method works with notable
success in both synthetic and real-world environments, reaching 97%
accuracy in correctly classifying actual pedestrians and 87% accuracy
in classifying fake pedestrians (depictions of persons in billboards,
adverts or on any surface) in real environments. It is worth noting that
a pure 2D classifier, such as YoLo (Bochkovskiy et al., 2020) or SSD (Liu
10

et al., 2016) would miss all the fake samples.
The main advantage of our proposal is that it requires no 3D
sensor, such as LiDAR, or 3D cameras to provide accurate pedestrian
classification in urban environments.

Nonetheless, it has some limitations. We noticed that the accuracy
of the method decreases in the case of reflections, in shops windows,
for example. In these cases, our approach is prone to failure. The exper-
imentation also revealed that the Point Cloud Instance Segmentation
step sometimes returns a high number of background points, which
causes the following step to detect the dominant plane in the floor. As a
result, our approach would always find that the category is background,
regardless the actual category. The same effect could sometimes be
seen if the pedestrian was very close to a wall. In this case, all the
background points that lay in the wall would not be filtered and the
dominant plane would be detected in them, also being classified as
background instead of pedestrian.

As future work, we plan to further delve into the reflection issue
to tackle it properly. We also plan to enhance the filtering process
so that the floor points and the rest of points that do not belong
to the pedestrian are removed before running the planarity test. A
promising way to do this would be to involve pixel-wise classification
methods, such as Mask-RCNN (He et al., 2017). This would enable
us to accurately detect the actual pixels of the subject, but would be
more computationally expensive than the approach we currently use
to detect pedestrians. In addition, we plan to deploy our method in an
actual intelligent vehicle, so that we can test the approach in a fully
real-world environment.
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