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Abstract. Convolutional codes are discrete linear systems over a finite field and can be defined as
\BbbF [d]-modules, where \BbbF [d] is the ring of polynomials with coefficient in a finite field \BbbF . In this paper we
study the algebraic properties of periodic convolutional codes of period 2 and their representation by
means of input-state-output representations. We show that they can be described as \BbbF [d2]-modules
and present explicit representation of the set of equivalent encoders. We investigate their state-
space representation and present two different but equivalent types of state-space realizations for
these codes. These novel representations can be implemented by realizing two linear time-invariant
systems separately and switching the input (or the output) that is entering (or leaving) the system.
We investigate their minimality and provide necessary and also sufficient conditions in terms of the
reachability and observability properties of the two linear systems involved. The ideas presented here
can be easily generalized for codes with period larger than 2.
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1. Introduction. Convolutional codes form a powerful and widely used class of
codes which are implemented in a variety of contexts, including wireless standards and
satellite communications. As their encoders are linear time-invariant (LTI) systems
over a finite field, a strong connection exists between the standard theory of discrete
LTI over the real or complex field and the theory of convolutional codes, which uses
finite fields [1, 2, 3]. This connection has led to many fundamental results in the
state-space and trellis representations which are essential for the implementation and
decoding of convolutional codes.

The codewords of a convolutional code are generated by a finite state LTI system
(the encoder) that receives as input a streaming of data (the message) to be encoded,
processes them, and eventually produces as output the to-be-sent codeword. In order
to physically build a hardware implementation of an encoder (typically synthesized
by means of shift registers), it is necessary to derive a state-space machine, which
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2928 FORNASINI, NAPP, PEREIRA, PINTO, AND ROCHA

corresponds to viewing the encoder as a set of states with well-defined transitions
among them. Moreover, this state machine is extremely important also in figuring
out how to decode the data in order to reconstruct the original message; e.g., it helps
to derive minimal trellis representations to implement the Viterbi algorithm [4, 5].
The problem of deriving state representations from an input-output map is the so-
called realization problem, which has been thoroughly studied in the area of systems
theory [6] and also in the context of convolutional codes [1, 7, 8, 9, 10, 11].

In this work we aim at investigating the realization problem of time-varying
convolutional codes. Time-varying (in particular, periodic) convolutional codes are
generated by processing the information through several different encoders, in con-
trast to standard LTI convolutional codes, which use one single encoder. This class of
codes has attracted much attention after Costello conjectured in [12] (see also [13, 14])
that periodic convolutional codes can attain larger free distance, and therefore bet-
ter error-correction capabilities, than their time-invariant counterparts. From the
practical point of view this class of codes is also very important, as it is a capacity-
approaching class of codes (as turbo codes and low-density parity-check codes) [15].
In the last decades researchers have investigated such codes developing their alge-
braic properties and building concrete optimal constructions; see [16, 17, 18, 19, 20].
However, the realization problem of these codes remains barely unexplored and only
preliminary or partial results are known [21, 22, 23].

In this paper we shall concentrate our investigation on the class of periodic convo-
lutional codes and focus on two main goals. In the first part of the paper we analyze
the structural properties of these codes, and for the sake of simplicity we restrict our-
selves to period p = 2. Periodic convolutional codes of period 2, also called 2-periodic
convolutional codes, can be constructed based on two time-invariant convolutional
codes. We show that if time-invariant convolutional codes are defined mathematically
as \BbbF [d]-modules, 2-periodic convolutional codes can be defined as \BbbF [d2]-modules whose
generator matrices have entries in \BbbF [d].

In order to derive our results we will make extensive use of an associated LTI code,
called lifted code, that is built by extending the coefficient of the information vectors
and the codewords of the periodic code. This will provide a tool for investigating some
properties of a periodic code \scrC p; e.g., it allows us to characterize the set of equivalent
encoders of \scrC p. Moreover, as two full column rank generator matrices can produce a
noninjective 2-periodic code, the injectivity of 2-periodic codes needs to be studied,
and in section 3 conditions are provided for guaranteeing that two time-invariant
encoders generate an injective 2-periodic convolutional code.

The second part of the paper is devoted to investigating state-space representa-
tions. The first observation is that one cannot expect, in general, to obtain a periodic
input-state-output representation of a periodic convolutional code by means of the
individual realizations of each of the associated time-invariant codes; see [22, 23]. To
overcome this difficulty we introduce periodic encoding maps in such a way that their
images are periodic convolutional codes. This will allow us to present two different
ways of constructing state-space realizations that produce a 2-periodic convolutional
code. The first one is carried out by realizing a transfer function defined in terms of
the two LTI encoders of the associated time-invariant codes and switching periodically
the outputs produced by the two resulting state-space machines. The second approach
can be implemented in the same fashion but switching periodically the input (rather
than the output) that enters in each state system. Both approaches provide effective
procedures to implement 2-periodic convolutional codes. The algebraic properties of
these realizations are then studied; in particular, we focus on the minimality of such
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STATE REALIZATIONS OF PERIODIC CONVOLUTIONAL CODES 2929

representations. Necessary and sufficient conditions in terms of the observability and
reachability properties of an associated LTI system are presented. We also show that
one can build a certain polynomial matrix to derive necessary and sufficient condi-
tions for a realization to be minimal in terms of this matrix. These conditions can be
efficiently checked, and we provide an example to illustrate this fact.

It is important to note that there exists a large body of literature on periodic LTI
state-space systems [24, 25, 26, 27, 28, 29]. However, these systems are different from
the ones considered in this paper. In the classical literature on periodic state-space
systems, periodicity is present in the state updating equations, that is, the periodic
system is described by xt+1 = A(t)xt + B(t)ut, yt = C(t)xt + D(t)ut, where A(t),
B(t), C(t), and D(t) are periodic. If this is the state description of a convolutional
code, it is not obvious whether such periodic representations can be also described
by periodic encoding maps and vice versa. Some partial results in this regard were
presented in [23]. Also related is the thread of research in periodic behaviors [26,
30, 28, 31], where periodicity is defined in term of the trajectories of the system
(behavior) following the ideas of Willems [32]. Within this behavioral framework
the periodic convolutional codes considered in this paper are discrete finite support
behaviors described by periodic image representations [33].

The remainder of the paper is organized as follows. In section 2, we collect some
preliminaries on convolutional codes as well as periodic convolutional codes and study
the algebraic properties of periodic convolutional codes. In particular, we introduce
the lifted code and study injectivity and equivalent encoders for these codes. In section
3, we recall a simple state-space realization of LTI convolutional codes and introduce
two novel state realizations to implement periodic convolutional codes. In section 4,
we investigate minimality issues of the representations presented in section 3. Finally,
in section 5 we draw some conclusions.

This paper extends [34], where some preliminary results were drawn concerning a
state-space realization of periodic convolutional codes which is analogous to the first
one presented here.

2. Preliminaries. In this section, we recall some facts about LTI convolutional
codes and periodic convolutional codes.

We also introduce an LTI code associated to a periodic code, called the lifted
code, which will play an important role in the remaining part of the paper.

2.1. Time-invariant convolutional codes. Let \BbbF be a finite field, and let \BbbF [d]
be the ring of polynomials with coefficient in \BbbF . Denote also by \BbbF n[d] and \BbbF n\times k[d] the
set of vectors of length n and the n\times k matrices, respectively, with entries in \BbbF [d].

Convolutional encoders can be thought as black boxes where the information (or
message) goes in, is transformed (encoded), and then is sent out as a codeword to be
transmitted. If we introduce a variable d, usually called the delay operator, to indicate
the instant in which each information arrives or each codeword is transmitted, then
we can represent the message as a polynomial sequence

u(d) = u0 + u1d+ u2d
2 + \cdot \cdot \cdot \in \BbbF k[d]

and the codeword in a similar way:

v(d) = v0 + v1d+ v2d
2 + \cdot \cdot \cdot \in \BbbF n[d].

We introduce the notion of LTI convolutional code as follows [11, 35, 36, 37, 38].

D
ow

nl
oa

de
d 

10
/1

8/
22

 to
 1

93
.1

37
.1

69
.1

35
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2930 FORNASINI, NAPP, PEREIRA, PINTO, AND ROCHA

Definition 2.1. A time-invariant convolutional code \scrC of rate k/n is a submodule
of \BbbF n[d] of rank k. A full column rank matrix G(d) \in \BbbF n\times k[d] such that

\scrC = \{ v(d) \in \BbbF n[d] : v(d) = G(d)u(d);u(d) \in \BbbF k[d]\} = Im\BbbF [d] G(d)

is called an encoder of \scrC , u(d) is the information vector, and v(d) is the codeword.

The encoders of a code \scrC are not unique; however, they only differ by right
multiplication by unimodular matrices over \BbbF [d].

G(d) is called column reduced if the sum of its column degrees attains the minimal
possible value among all the encoders of the same code. If G(d) \in \BbbF n\times k[d] has column
degrees \nu 1, . . . , \nu k, it can be written as

G(d) = Ghc

\left[     
d\nu 1

d\nu 2

. . .

d\nu k

\right]     +Grem(d),

where the ``remainder"" Grem(d) is a polynomial matrix such that the degree of column
i is less than \nu i, i = 1, . . . , k, and Ghc \in \BbbF n\times k is a matrix whose ith column contains
the coefficients of d\nu i in the ith column of G(d). Ghc is called the leading column
coefficient matrix and G(d) is column reduced if and only if Ghc has full column rank.
An encoder G(d) is said to be delay-free if G(0) has full column rank. See also [38, 39]
for more details.

Note that the list of column degrees (also known as Forney indices) of a column
reduced encoder is unique up to a permutation. We define the degree \delta of a convolu-
tional code as the sum of the column degrees of one, and hence any, column reduced
encoder. A code \scrC of rate k/n and degree \delta is said to be an (n, k, \delta ) code.

The distance of a code is directly connected with its capacity of correcting errors
introduced during transmission. Thus, one of the main objectives of coding theory is
the construction of convolutional codes with a large free distance, which is defined as
follows.

Definition 2.2. The free distance of a convolutional code \scrC is given by

dfree(\scrC ) = min

\Biggl\{ \infty \sum 
\ell =0

wt
\bigl( 
v\ell 
\bigr) 
: v(d) \in \scrC \setminus \{ 0\} 

\Biggr\} 
,

where wt denotes the Hamming weight, that is, wt(v\ell ) corresponds to the number of
nonzero components of v\ell , and v\ell is the coefficient of d\ell in v(d).

2.2. Periodic convolutional codes. In this work we consider convolutional
codes \scrC with periodic encoding maps. Next we introduce the definition of such en-
coders (or encoding maps) together with the definition of the corresponding periodic
(time-varying) convolutional codes; see [12, 14, 17].

Definition 2.3. Given r full column rank polynomial matrices G0(d), G1(d), . . . ,
Gr - 1(d) \in \BbbF n\times k[d], the periodic encoding map induced by G0(d), G1(d), . . . , Gr - 1(d)
is defined as

\Phi (G0,G1,...,Gr - 1) : \BbbF k[d] \rightarrow \BbbF n[d],
u(d) \mapsto \rightarrow v(d)

with v(d) =
\sum +\infty 

i=0 vid
i and vr\ell +t = (Gt(d)u(d))r\ell +t, t = 0, 1, . . . , r  - 1, \ell \in \BbbN 0, and

where (Gt(d)u(d))r\ell +t represents the (r\ell + t)-coefficient of the polynomial Gt(d)u(d).
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The corresponding periodic convolutional code \scrC p is

\scrC p = \{ v(d) \in \BbbF n[d] : \exists u(d) \in \BbbF k[d] s.t. (2.1) holds\} = Im\BbbF [d] \Phi (G0,G1,...,Gr - 1),

(2.1) v(d) = \Phi (G0,G1,...,Gr - 1)(u(d)).

Such code will be called an r-periodic convolutional code of rate k/n.

Note that such periodic codes are not necessarily \BbbF [d]-submodules of \BbbF n[d].

Example 2.1. Consider the encoding map \Phi (G0,G1) : \BbbF [d] \rightarrow \BbbF 3[d] such that

G0(d) =
\Bigl[ 
d
1
d

\Bigr] 
and G1(d) =

\Bigl[ 
0
1
1

\Bigr] 
. Consider also the information word u(d) = 1.

The corresponding codeword v(d) is given by v(d) = v0 + v1d+ \cdot \cdot \cdot + vkd
k, where

v0 =
\bigl( 
G0(d)u(d)

\bigr) 
0
=
\Bigl( \Bigl[ 

d
1
d

\Bigr] \Bigr) 
0
=
\Bigl[ 
0
1
0

\Bigr] 
;

v1 =
\bigl( 
G1(d)u(d)

\bigr) 
1
=
\Bigl( \Bigl[ 

0
1
1

\Bigr] \Bigr) 
1
=
\Bigl[ 
0
0
0

\Bigr] 
; vj =

\Bigl[ 
0
0
0

\Bigr] 
, j \geq 1.

So v(d) =
\Bigl[ 
0
1
0

\Bigr] 
is a codeword of the code.

Consider now the word dv(d), and investigate whether or not this is a codeword.

dv(d) =
\Bigl[ 
0
d
0

\Bigr] 
is a codeword if and only if there exists an information word a(d) such

that \Phi (G0,G1)(a(d)) =
\Bigl[ 
0
d
0

\Bigr] 
. Let us now compute \Phi (G0,G1)(a(d)) =: w(d). We then

have that

(w(d))0 =
\bigl( 
G0(d)a(d)

\bigr) 
0
=
\Bigl( \Bigl[ 

d
1
d

\Bigr] 
a(d)

\Bigr) 
0
=
\Bigl( \Bigl[ 

0
a(d)
0

\Bigr] \Bigr) 
0
.

But this implies that (a(d))0 = 0 since (dv(d))0 = 0.
Now

(w(d))1 =
\bigl( 
G1(d)a(d)

\bigr) 
1
=
\Bigl( \Bigl[ 

0
1
1

\Bigr] 
a(d)

\Bigr) 
1
=

\biggl( \biggl[ 
0

a(d)
a(d)

\biggr] \biggr) 
1

,

which implies that \biggl( \biggl[ 
0

a(d)
a(d)

\biggr] \biggr) 
1

=
\Bigl[ 
0
1
0

\Bigr] 
,

since (dv(d))1 =
\Bigl[ 
0
1
0

\Bigr] 
. Thus on the one hand (a(d))1 = 1 and on the other hand

(a(d))1 = 0, which is impossible. So, we can conclude that although v(d) is a
codeword, dv(d) is not, meaning that the periodic code Im(\Phi (G0,G1)) is not an \BbbF [d]-
submodule of \BbbF 3[d].

Two sequences of polynomial matricesG0(d), . . . , Gr - 1(d) and \widetilde G0(d), . . . , \widetilde Gr - 1(d)
are said to be equivalent if the corresponding periodic encoding maps have the same
image (i.e., if the corresponding periodic convolutional codes coincide).

For simplicity we will assume r = 2 and denote G0(d) = G(d) and G1(d) = J(d).
Let

G(d) =

s\sum 
i=0

Gid
i and J(d) =

s\sum 
i=0

Jid
i

be two full column rank matrices with Gi, Ji \in \BbbF n\times k, i = 0, 1, . . . , s, and introduce
the following matrices:

(2.2) R(d) =

s\sum 
i=0

Rid
i and S(d) =

s\sum 
i=0

Sid
i,
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where Ri = Gi and Si = Ji, if i = 2j, and Ri = Ji and Si = Gi, if i = 2j + 1,
for j \in \BbbN . Moreover, given u(d) =

\sum 
i\in \BbbN uid

i \in \BbbF k[d] define p0(d
2) \in \BbbF k[d2] and

p1(d
2) \in \BbbF k[d2] as follows:

(2.3) p0(d
2) =

\sum 
j\in \BbbN 

u2jd
2j and p1(d

2) =
\sum 
j\in \BbbN 

u2j+1d
2j .

Clearly we have

\Phi (G,J)(u(d)) =
\bigl[ 
R(d) dS(d)

\bigr] \biggl[ p0(d
2)

p1(d
2)

\biggr] 
,

which implies that \scrC p = \Phi (G0,G1) is an \BbbF [d2]-module in \BbbF n[d]. So, a 2-periodic con-
volutional code of rate k/n is an \BbbF [d2]-module which admits a representation of the
type

\bigl[ 
R(d) dS(d)

\bigr] 
, with R(d), S(d) \in \BbbF n\times k[d], i.e, \scrC p = Im\BbbF [d2]

\bigl[ 
R(d) dS(d)

\bigr] 
.

We call a representation of this type an \BbbF [d2]-generator of the code \scrC p.
The next result, whose simple proof we omit, characterizes all \BbbF [d2]-generators of

a code \scrC p.
Lemma 2.1. Let R(d), S(d) \in \BbbF n\times k[d] such that \scrC p = Im\BbbF [d2]

\bigl[ 
R(d) dS(d)

\bigr] 
. If\bigl[ 

R\prime (d) dS\prime (d)
\bigr] 
, with R\prime (d), S\prime (d) \in \BbbF n\times k[d], is another \BbbF [d2]-generator of \scrC p, it

follows that \bigl[ 
R\prime (d) dS\prime (d)

\bigr] 
=
\bigl[ 
R(d) dS(d)

\bigr] \biggl[ U11(d
2) 0

U21(d
2) U22(d

2)

\biggr] 
,

where U11(d
2), U21(d

2), U22(d
2) \in \BbbF k\times k[d2] and U11(d

2), U22(d
2) are unimodular, i.e.,

detU11(d
2), detU22(d

2) \in \BbbF \setminus \{ 0\} .

2.3. Lifted code. Consider the linear map

\scrL : \BbbF n[d] \rightarrow \BbbF 2n[d]

defined by

(2.4) \scrL (v(d)) = vL(d), where (vL(d))\ell =

\biggl( \biggl[ 
In

d - 1In

\biggr] 
v(d)

\biggr) 
2\ell 

,

where for v(d) =
\sum +\infty 

i=0 vid
i \in \BbbF n[d], d - 1v(d) is defined as d - 1v(d) =

\sum +\infty 
i=0 vi+1d

i \in 
\BbbF n[d].

We associate with a periodic convolutional code of period 2, \scrC p, a time-invariant
convolutional code \scrC L, the lifted version of \scrC p, defined as

\scrC L =
\bigl\{ \widetilde v(d) \in \BbbF 2n[d] : \widetilde v(d) = \scrL (v(d)), v(d) \in \scrC p

\bigr\} 
.

If

G(d) =

s\sum 
i=0

Gid
i and J(d) =

s\sum 
i=0

Jid
i

are two full column rank matrices with Gi, Ji \in \BbbF n\times k, i = 0, 1, . . . , s, then v(d) =
\Phi (G,J)(u(d)) can be written as\biggl( \biggl[ 

In
d - 1In

\biggr] 
v(d)

\biggr) 
2\ell 

=

\biggl( \biggl[ 
G(d)

d - 1J(d)

\biggr] 
u(d)

\biggr) 
2\ell 

, \ell \in \BbbN 0,
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where d - 1J(d) =
\sum s - 1

i=0 Ji+1d
i. Moreover, it is possible to make the decomposition\biggl[ 
G(d)

d - 1J(d)

\biggr] 
= L

\bigl( 
d2
\bigr) \biggl[ Ik

d - 1Ik

\biggr] 
with

(2.5) L (d) =

\biggl[ 
G0 0
J1 J0

\biggr] 
+

\biggl[ 
G2 G1

J3 J2

\biggr] 
d+

\biggl[ 
G4 G3

J5 J4

\biggr] 
d2 + \cdot \cdot \cdot .

In shorter notation,
L (d) =

\bigl[ 
L0 (d) | L1 (d)

\bigr] 
,

where the blocks Lt (d) have size 2n\times k, t = 0, 1, and are given by

L0(d) =
\sum 
i\in \BbbN 0

\Biggl[ 
G2i

J2i+1

\Biggr] 
di,

L1(d) =
\sum 
i\in \BbbN 0

\Biggl[ 
G2i - 1

J2i

\Biggr] 
di, with G - 1 = 0.

Thus, the lifted code can be represented as

(2.6) \scrC L =
\bigl\{ \widetilde v(d) : \widetilde v(d) = L(d)\widetilde u(d), \~u(d) \in \BbbF 2k[d]

\bigr\} 
,

where \widetilde v(d) = \scrL (v(d)) and \widetilde u(d) = \scrL (u(d)). This immediately leads to the following
result.

Lemma 2.2. Let \scrC p and \widetilde \scrC p be two periodic convolutional codes as in Defini-

tion 2.3. Then \scrC p = \widetilde \scrC p if and only if the corresponding lifted codes \scrC L
p and \widetilde \scrC L

p ,
respectively, coincide.

The next theorem easily follows from (2.5) and characterizes the time-invariant
encoders which can be regarded as lifted versions of periodic encoding maps.

Theorem 2.1. Let L(d) be an encoder of a (2n, 2k, \delta ) convolutional code \scrC =
Im\BbbF [d] L(d). Then there exists G(d), J(d) such that \scrC = \scrL 

\bigl( 
Im\BbbF [d] \Phi (G,J)

\bigr) 
if and only

if there exists U \in \BbbF 2k\times 2k invertible such that

L(0)U =

\biggl[ 
\ast 0
\ast \ast 

\biggr] 
.

Proof. ``If part:"" Consider the encoder of \scrC , L(d)U , and write

L(d)U =

\Biggl[ 
L11(d) dL12(d)

L21(d) L22(d)

\Biggr] 
,

with L11(d), dL12(d), L21(d), L22(d) \in \BbbF [d]n\times k. Then

G(d) = L11(d
2) + dL12(d

2) and J(d) = dL21(d
2) + L22(d

2)

are such that \scrC = \scrL 
\bigl( 
Im\BbbF [d] \Phi (G,J)

\bigr) 
.

The ``only if part"" is immediate.
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2934 FORNASINI, NAPP, PEREIRA, PINTO, AND ROCHA

2.4. Injectivity. Injectivity is a fundamental property of an encoding map since
it allows one to recover unambiguously the message from the codeword. If G(d) is
an encoder of a time-invariant convolutional code, then it is injective because it has
full column rank. However, full column rank matrices G(d) and J(d) may yield
noninjective periodic encoding maps, and this fact is illustrated in the next example.
However, if G0 and J0 are full column rank, i.e., if G(d) and J(d) are delay-free, then
we have injectivity; see Corollary 2.1 below.

Example 2.2. Consider the polynomials

G(d) = G1d+G3d
3 and J(d) = J0 + J2d

2.

Then \Phi (G,J) is not injective since with u = 1 we obtain v = 0.

The next result is straightforward.

Theorem 2.2. \Phi (G,J) is injective if and only if L(d) in (2.5) is full column rank.

As L(0) =

\biggl[ 
G0 0
J1 J0

\biggr] 
the next corollary follows.

Corollary 2.1. If G(d) and J(d) are delay-free, then the periodic encoding map
\Phi (G,J) is injective.

The next result states that injectivity of a periodic convolutional code \scrC p is a
property of \scrC p and it is an immediate consequence of Lemma 2.2 and Theorem 2.2.

Lemma 2.3. The polynomial matrices G(d) and J(d) generate an injective peri-
odic encoding map \Phi (G,J) if and only if all equivalent pairs of polynomial matrices
generate an injective periodic encoding map.

3. State-space realizations. In this section we review an additional way of
generating convolutional codes. More concretely, we consider linear systems the-
ory descriptions known as state-space representations. These descriptions were first
adopted by Massey and Sain [2] and studied later on by many researchers [35, 11, 36].
We start by recalling basic facts on these representations together with a simple
state-space realization for LTI convolutional codes. We then propose two different,
but equivalent, classes of state-space realizations of the periodic encoding map \Phi (G,J).
The notions of realizations of codes and of encoding maps are defined below.

3.1. State-space realizations of time-invariant convolutional codes. In
what follows, we sometimes identify an element a(d) =

\sum 
i\in \BbbN 0

aid
i \in \BbbF [d] with the

sequence a0 = (a(d))0, a1 = (a(d))1, . . . formed by its coefficients and also use the
notation a(\ell ) to denote a\ell = (a(d))\ell . The same applies for vectors with components
in \BbbF [d].

A state-space system\biggl\{ 
x(\ell + 1) = Ax(\ell ) +Bu(\ell ),

v(\ell ) = Cx(\ell ) +Du(\ell ),
\ell \in \BbbN 0,

denoted by (A,B,C,D), where A \in \BbbF m\times m, B \in \BbbF m\times k, C \in \BbbF n\times m, and D \in \BbbF n\times k,
with state x, input u, and output v, is said to be an m-dimensional state-space
realization of the time-invariant (n, k, \delta ) convolutional code \scrC if \scrC is the output be-
havior of (A,B,C,D) corresponding to finite support input sequences u (i.e., to in-
formation sequences u(d) \in \BbbF k[d]) and to zero initial conditions, i.e., x(0) = 0. Since
\scrC consists of codewords v(d) \in \BbbF n[d], (A,B,C,D) must produce finite support output
sequences v for all finite support input sequences u and zero initial state.
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Remark 3.1. The state-space realizations considered in this work are the ones
usually found in the coding literature and differ from the realizations considered in [35,
40], where convolutional codes are represented by

(3.1)

\left\{       
x(\ell + 1) = Ax(\ell ) +Bu(\ell ),

y(\ell ) = Cx(\ell ) +Du(\ell ),

v(\ell ) =

\biggl[ 
y(\ell )
u(\ell )

\biggr] 
,

x(0) = 0,

and the convolutional code is constituted by the finite support input-output sequences,
v, corresponding to finite support state sequences; see [35] for details on this realiza-
tion.

State-space realizations of convolutional codes can be obtained as state-space
realizations of encoders. If G(d) \in \BbbF n\times k[d] is an encoder of \scrC , (A,B,C,D) is a
state-space realization of G(d) if

G(d) = C(I  - Ad) - 1Bd+D.

If G(d) =
\sum 

i\in \BbbN 0
Gid

i, with Gi \in \BbbF n\times k, then this means that

G0 = D, Gi = CAi - 1B, i \geq 1.

It is well known that G(d) admits many realizations. Moreover, a state-space re-
alization (A,B,C,D) of G(d) has minimal dimension among all the realizations of
G(d) if (A,B) is reachable and (A,C) is observable, i.e., the polynomial matrices\bigl[ 
d - 1I  - A | B

\bigr] 
and

\biggl[ 
d - 1I  - A

C

\biggr] 
have, respectively, right and left polynomial in-

verses (in d - 1). In this case, (A,B,C,D) is called a minimal realization of G(d). The
minimal dimension \mu (G) of a state-space realization of G(d) is called the McMillan
degree of G(d) [6].

The next lemma gives a way to compute the McMillan degree of a polynomial
matrix.

Lemma 3.1 (see [36]). Let G(d) \in \BbbF n\times k[d] be a polynomial matrix. The McMil-

lan degree of G(d) is equal to the maximal degree of the full size minors of

\biggl[ 
G(d)
Ik

\biggr] 
or,

equivalently, to the maximal degree of the minors of G(d).

Note that if G(d) is column reduced, \mu (G) is equal to the sum of the column
degrees of G(d); i.e., \mu (G) is equal to the degree of the code. Column reduced encoders
of a code have minimal McMillan degree among all encoders of the code, and they
are also called minimal encoders.

If G(d) \in \BbbF n\times k[d] is an encoder of a code \scrC , there exists a unimodular matrix

U(d) \in \BbbF k\times k[d] such that \widetilde G(d) = G(d)U(d) is column reduced and therefore a minimal
encoder of \scrC .

The next proposition, adapted from [11, 36], provides a minimal state-space
realization for a column reduced encoder, and therefore a minimal state-space realiza-
tion of the code, in the sense that it is a state-space realization of minimal dimension
among all the state-space realizations for which the output behavior corresponding to
polynomial inputs and zero initial state is equal to the code.
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2936 FORNASINI, NAPP, PEREIRA, PINTO, AND ROCHA

Proposition 3.1. Let G(d) \in \BbbF n\times k[d] be a column reduced matrix with rank

k and column degrees \nu 1, . . . , \nu k. Consider m =
\sum k

i=1 \nu i. Let G(d) have columns
gi(d) =

\sum \nu i

\ell =0 g\ell ,id
\ell , i = 1, . . . , k, where g\ell ,i \in \BbbF n. For i = 1, . . . , k define the matrices

Ai =

\left[      
0 \cdot \cdot \cdot \cdot \cdot \cdot 0

1
...

. . .
...

1 0

\right]      \in \BbbF \nu i\times \nu i , Bi =

\left[     
1
0
...
0

\right]     \in \BbbF \nu i , Ci =
\bigl[ 
g1,i \cdot \cdot \cdot g\nu i,i

\bigr] 
\in \BbbF n\times \nu i .

Then a minimal state-space realization of G(d) is given by the matrix quadruple
(A,B,C,D) \in \BbbF m\times m \times \BbbF m\times k \times \BbbF n\times m \times \BbbF n\times k, where

A =

\left[   A1

. . .

Ak

\right]   , B =

\left[   B1

. . .

Bk

\right]   ,

C =
\bigl[ 
C1 \cdot \cdot \cdot Ck

\bigr] 
, D =

\bigl[ 
g0,1 \cdot \cdot \cdot g0,k

\bigr] 
= G(0).

In the case where \nu i = 0, the ith blocks of A and C are void and in B a zero column
occurs.

We immediately conclude that the dimension of a minimal realization of a con-
volutional code is equal to its degree.

Remark 3.2. The above procedure gives a state-space realization (A,B,C,D) of
any polynomial matrix G(d) \in \BbbF n\times k[d]. Such a realization is always reachable, but it
might be nonobservable, and in this case it will be not a minimal state-space realiza-
tion of G(d). However, if G(d) is column reduced, then (A,B,C,D) is observable and
hence minimal.

3.2. State-space realizations of 2-periodic convolutional codes. In this
section we study how the theory of LTI systems can be used to obtain state-space
realizations for periodic convolutional codes. We shall propose two different, but
equivalent, classes of state-space representations for periodic convolutional codes and
study their properties.

3.2.1. Switched output realizations. Let G(d), J(d) \in \BbbF n\times k[d] be two full
column rank matrices and \scrC p the 2-periodic convolutional code with encoding map

\Phi (G,J). Moreover, let \Sigma = (A,B,C,D) be a realization of

\biggl[ 
G(d)
J(d)

\biggr] 
, with C =\biggl[ 

C1

C2

\biggr] 
, C1, C2 \in \BbbF n\times m, where m is the state-space dimension of \Sigma , and D =

\biggl[ 
G0

J0

\biggr] 
,

G0, J0 \in \BbbF n\times k.

Let

\biggl[ 
v(1)(d)
v(2)(d)

\biggr] 
, with v(1)(d) =

\sum 
i\in \BbbN v

(1)
i di \in \BbbF n[d] and v(2)(d) =

\sum 
i\in \BbbN v

(2)
i di \in 

\BbbF n[d], be the output of \Sigma corresponding to the input u(d) \in \BbbF k[d]. Now consider as

a new output the sequence w(d) \in \BbbF n[d] defined as w2j = v
(1)
2j and w2j+1 = v

(2)
2j+1,

j \in \BbbN .
In this way, we obtain the system \Sigma p represented in Figure 1.
Note that in \Sigma p only one switch is on at each time instant and the switches change

from on to off alternatively. The switch corresponding to v(1) is on at the initial time
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A,B

C1, D1

C2, D2

+
u x, u

v(1)

v(2)

w

\Sigma 

Fig. 1. Representation of system \Sigma p.

instant, and the initial state is zero. The system \Sigma p is called a periodic switched output
state-space system, and it corresponds to the following periodic state-space equations:

(3.2)

\biggl\{ 
x(\ell + 1) = A(\ell )x(\ell ) +B(\ell )u(\ell ),

w(\ell ) = C(\ell )x(\ell ) +D(\ell )u(\ell ),

with
A(\ell ) := A , B(\ell ) := B,

C(2\ell ) := C1 , D(2\ell ) := G0,

C(2\ell + 1) := C2 , D(2\ell + 1) := J0, \ell \in \BbbN 0.

For short, we write \Sigma p = (A,B,C(\ell ), D(\ell )).
A system \Sigma p given by (3.2) is a state-space realization of the periodic encoding

map \Phi (G,J) if for zero initial state the output w(d) of \Sigma p that corresponds to an input

u(d) is equal to \Phi (G,J)(u(d)) for all u(d) \in \BbbF k[d].
The next result provides necessary and sufficient conditions for \Sigma p to be a realiza-

tion of \Phi (G,J). These conditions can be easily verified using the well-known realization
theory for LTI systems.

Theorem 3.1. A periodic switched output system \Sigma p described by (3.2) is a re-
alization of the periodic encoding map \Phi (G,J) if and only if the system \Sigma given by\biggl( 
A,B,

\biggl[ 
C1

C2

\biggr] 
,

\biggl[ 
G0

J0

\biggr] \biggr) 
is a realization of

\biggl[ 
G(d)
J(d)

\biggr] 
.

Proof. ``If part:"" Clearly, if \Sigma is a realization of

\biggl[ 
G(d)
J(d)

\biggr] 
, then \Sigma p is a realization

of \Phi (G,J).
``Only if part:"" Assume now that \Sigma p is a realization of \Phi (G,J). Then

(w(d))2m =

\left(  \left[  2m\sum 
j=1

C1A
j - 1Bdj +G0

\right]  u(d)

\right)  
2m

and

(w(d))2m+1 =

\left(  \left[  2m+1\sum 
j=1

C2A
j - 2Bdj + J0

\right]  u(d)

\right)  
2m+1

.

In particular, for u(d) = ei, i = 1, . . . , k, where ei denotes the ith vector of the
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2938 FORNASINI, NAPP, PEREIRA, PINTO, AND ROCHA

canonical basis of \BbbF k, we obtain

(3.3) (w(d))2m =

\left[  \left(  2m\sum 
j=1

C1A
j - 1Bdj +G0

\right)  ei

\right]  
2m

=

\Biggl\{ 
G0ei, m = 0,

C1A
2m - 1Bei, m \geq 1,

and

(w(d))2m+1 =

\left[  \left(  2m+1\sum 
j=1

C2A
j - 1Bdj + J0

\right)  ei

\right]  
2m+1

= C2A
2mBei, m \geq 0,

while for u(d) = dei,

(3.4) (w(d))2m =

\left[  \left(  2m\sum 
j=1

C1A
j - 1Bdj +G0

\right)  dei

\right]  
2m

= C1A
2m - 2Bei, m \geq 1,

and

(w(d))2m+1 =

\left[  \left(  2m+1\sum 
j=1

C2A
j - 1Bdj + J0

\right)  dei

\right]  
2m+1

=

\Biggl\{ 
J0ei, m = 0,

C2A
2mBei, m \geq 1.

On the other hand, for u(d) = ei,

(3.5) (w(d))2m = (G(d)u(d))2m = (G(d)ei)2m

and
(w(d))2m+1 = (J(d)u(d))2m+1 = (J(d)ei)2m+1 ,

whereas for u(d) = dei,

(3.6) (w(d))2m = (G(d)u(d))2m = (G(d)dei)2m = (G(d)ei)2m - 1

and
(w(d))2m+1 = (J(d)u(d))2m+1 = (J(d)dei)2m+1 = (J(d)ei)2m .

Now, from (3.3) and (3.5), and (3.4) and (3.6), we respectively get

(G(d)ei)2m =

\Biggl\{ 
G0ei, m = 0,

C1A
2m - 1Bei, m \geq 1,

and
(G(d)ei)2m - 1 = C1A

2m - 2Bei, m \geq 1,

which implies that

G(d) = G0 +

\infty \sum 
\ell =1

C1A
\ell  - 1Bd\ell .

Hence (A,B,C1, G0) is a state-space realization of G(d). The proof that (A,B,C2, J0)
is a state-space realization of J(d) is analogous.

In the next example we present a periodic switched output realization of a 2-
periodic convolutional code of rate 2

3 over \BbbF 2.
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Example 3.1. Let \scrC p be the 2-periodic convolutional code with encoding map
\Phi (G0,G1) : \BbbF 2

2[d] \rightarrow \BbbF 3
2[d] such that

G0(d) =

\left[  1 + d 0
1 + d 1 + d
1 d

\right]  and G1(d) =

\left[  1 + d 1
1 1 + d
0 1 + d

\right]  .

The system \Sigma =

\biggl( 
A,B,

\biggl[ 
C1

C2

\biggr] 
,

\biggl[ 
D1

D2

\biggr] \biggr) 
with

A =

\biggl[ 
0 0
0 0

\biggr] 
, B =

\biggl[ 
1
1

\biggr] 
,

C1 =

\left[  1 0
1 1
0 1

\right]  , C2 =

\left[  1 0
0 1
0 1

\right]  , D1 =

\left[  1 0
1 1
1 0

\right]  , D2 =

\left[  1 1
1 1
0 1

\right]  
is a realization of

\biggl[ 
G0(d)
G1(d)

\biggr] 
, and therefore the corresponding periodic switched out-

put system \Sigma p described in (3.2) is a realization of the encoding map \Phi (G0,G1) and
consequently a realization of \scrC p.

This code was introduced in [14], where it was shown to have distance 4, whereas
any time-invariant convolutional code of the same rate 2

3 and degree 2 over \BbbF 2 cannot
have distance larger than 3. Note that time-invariant (3, 2, 2) convolutional codes have
minimal realizations of dimension 2 (equal to its degree), which is the same dimension
of the realization presented in the above example.

3.2.2. Switched input realizations. Consider now the polynomial matrices
R(d) and S(d) defined as in (2.2). Let \widehat \Sigma = ( \widehat A, \widehat B, \widehat C, \widehat D) be a realization of\bigl[ 
R(d) S(d)

\bigr] 
, with state-space dimension r, and let \widehat B =

\Bigl[ \widehat B1
\widehat B2

\Bigr] 
and \widehat D =\Bigl[ \widehat D1

\widehat D2

\Bigr] 
be partitioned according to the partition of

\bigl[ 
R(d) S(d)

\bigr] 
.

Write the input of \Sigma as

\biggl[ 
u(1)(d)
u(2)(d)

\biggr] 
, with u(1)(d) = p0(d

2) \in \BbbF k[d] and u(2)(d) =

dp1(d
2) \in \BbbF k[d], where p0(d

2) and p1(d
2) are defined as in (2.3), that is, they are such

that message u(d) can be written as u(d) = p0(d
2) + dp1(d

2).

In this way, we obtain the system \widehat \Sigma p represented in Figure 2.
In the scheme, the switches alternate between the positions on and off at each

time instant; at time t = 0, the switch corresponding to u(1) is on, and the state initial
condition is zero. \widehat \Sigma p will be called a periodic switched input state-space system. It
corresponds to the following periodic state-space equations:

(3.7)

\Biggl\{ \widehat x(\ell + 1) = \widehat A(\ell )\widehat x(\ell ) + \widehat B(\ell )u(\ell ),

w(\ell ) = \widehat C(\ell )\widehat x(\ell ) + \widehat D(\ell )u(\ell ),

where \widehat A(\ell ) = \widehat A and \widehat C(\ell ) = \widehat C are fixed and

\widehat B(2\ell ) = \widehat B1, \widehat B(2\ell + 1) = \widehat B2 ,

\widehat D(2\ell ) = \widehat D1 = R(0) = G0 and \widehat D(2\ell + 1) = \widehat D2 = S(0) = J0, \ell \in \BbbN 0.

For short, we write \widehat \Sigma p = ( \widehat A, \widehat B(\ell ), \widehat C, \widehat D(\ell )).
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\widehat B1

\widehat B2

\widehat D2

\widehat D1

\widehat A \widehat C +
u(d)

u(1)(d)

u(2)(d)

x v(d)

\widehat \Sigma 
Fig. 2. Representation of system \widehat \Sigma p.

\widehat \Sigma p is said to be a state-space realization of the periodic encoding map \Phi (G,J) if,

for zero initial state, the output v(d) of \widehat \Sigma p, corresponding to an input u(d), is equal
to \Phi (G,J)(u(d)) for all u(d) \in \BbbF k[d].

The following result is important since it explicitly provides a relation between
the realizations of the periodic encoding maps and time-invariant realizations.

Theorem 3.2. A periodic switched input system \widehat \Sigma p, described by (3.7), is a re-

alization of the periodic encoding map \Phi (G,J) if and only if the system \widehat \Sigma described by\Bigl( \widehat A, \Bigl[ \widehat B1
\widehat B2

\Bigr] 
, \widehat C,

\Bigl[ \widehat D1
\widehat D2

\Bigr] \Bigr) 
is a time-invariant realization of

\bigl[ 
R(d) S(d)

\bigr] 
.

Proof. ``If part:"" Assume that \widehat \Sigma is a realization of
\bigl[ 
R(d) S(d)

\bigr] 
. Then, clearly,\widehat \Sigma 1 =

\Bigl( \widehat A, \widehat B1, \widehat C, \widehat D1

\Bigr) 
is a realization of R(d) while \widehat \Sigma 2 =

\Bigl( \widehat A, \widehat B2, \widehat C, \widehat D2

\Bigr) 
is a realization

of S(d). Consider a message

u(d) =
\sum 
j\in \BbbN 

ujd
j = p0(d

2) + dp1(d
2) =

\sum 
j\in \BbbN 

u2jd
2j + d

\sum 
j\in \BbbN 

u2j+1d
2j .

When u(d) is fed into \widehat \Sigma p, due to the way the switches work, the sequences fed into\widehat \Sigma 1 and \widehat \Sigma 2 are, respectively, p0(d
2) and dp1(d

2). Therefore the output of \widehat \Sigma 1 is equal

to R(d)p0(d
2) whereas the output of \widehat \Sigma 2 is equal to S(d)dp1(d

2). Consequently, the

corresponding output of \widehat \Sigma p is

R(d)p0(d
2) + S(d)dp1(d

2) =
\bigl[ 
R(d) dS(d)

\bigr] \biggl[ p0(d
2)

p1(d
2)

\biggr] 
= \Phi (G,J)(u(d)),

as previously seen in section 2.2. In this way we conclude that \widehat \Sigma p is a realization of
\Phi (G,J).

``Only if part:"" Assume now that \widehat \Sigma p is a realization of \Phi (G,J). Let u(d) = ei,

where ei is the ith basis vector of the canonical basis of \BbbF k. When u(d) is fed into\widehat \Sigma p, the corresponding output is

w(d) = \Phi (G,J)(ei) = R(d)ei.
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On the other hand,

w(d) =
\sum 
j\in \BbbN 

wjd
j with wj =

\Biggl\{ \widehat D1ei, j = 0,\widehat C \widehat Aj - 1 \widehat B1ei, j \geq 1,

that is, w(d) =
\Bigl[ \widehat C(I  - \widehat Ad) - 1d \widehat B1 + \widehat D1

\Bigr] 
ei. Thus,

R(d)ei =
\Bigl[ \widehat C(I  - \widehat Ad) - 1d \widehat B1 + \widehat D1

\Bigr] 
ei.

Making i vary from 1 to k, this allows us to conclude that

R(d) = \widehat C(I  - \widehat Ad) - 1d \widehat B1 + \widehat D1,

i.e., \widehat \Sigma 1 is a time-invariant realization of R(d).

Let now u(d) = dei, and feed this input into \widehat \Sigma p. Then the corresponding output
is given by

w(d) = \Phi (G,J)(dei) = S(d)dei.

On the other hand,

w(d) =
\sum 
j\in \BbbN 

wjd
j with wj =

\Biggl\{ \widehat D2ei, j = 1,\widehat C \widehat Aj - 2 \widehat B2ei, j \geq 2.

Thus,

S(d)dei =

\left(  \widehat D2d+
\sum 
j\geq 2

\widehat C \widehat Aj - 2 \widehat B2d
j

\right)  ei

= d

\left(  \widehat D2 +
\sum 
j\geq 2

\widehat C \widehat Aj - 2 \widehat B2d
j - 1

\right)  ei

= d

\left(  \widehat D2 +
\sum 
\ell \geq 1

\widehat C \widehat A\ell  - 1 \widehat B2d
\ell 

\right)  ei

= d
\Bigl( \widehat D2 + \widehat C(I  - \widehat Ad) - 1d \widehat B2

\Bigr) 
ei.

Letting i vary from 1 to k, one concludes that

S(d)d =
\Bigl( \widehat D2 + \widehat C(I  - \widehat Ad) - 1d \widehat B2

\Bigr) 
d

and hence

S(d) = \widehat C(I  - \widehat Ad) - 1d \widehat B2 + \widehat D2,

which means that \widehat \Sigma 2 is a time-invariant realization of S(d).

Finally, since \widehat \Sigma 1 and \widehat \Sigma 2 are time-invariant realizations of R(d) and S(d), respec-

tively, it follows that \widehat \Sigma is a time-invariant realization of
\bigl[ 
R(d) S(d)

\bigr] 
.
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4. Minimality. In section 3 we studied switched output and switched input real-
izations of a periodic encoding map of a periodic convolutional code \scrC p. In this section
we will consider these realizations of \scrC p and study the question of their minimality.

A switched output (input) system \Sigma p

\Bigl( \widehat \Sigma p

\Bigr) 
is said to be a switched output (input)

realization of a periodic convolutional code \scrC p if the output behavior of \Sigma p

\Bigl( \widehat \Sigma p

\Bigr) 
corresponding to polynomial inputs and zero initial state is equal to \scrC p. A minimal
switched output (input) realization of \scrC p is a realization of \scrC p of this type with minimal
dimension among all realizations of \scrC p of the same type.

It is obvious that if \Phi (G,J) is a periodic encoding map of \scrC p, for some G(d), J(d) \in 
\BbbF n\times k[d], then all switched output realizations and switched input realizations of \Phi (G,J)

are realizations of the same type of \scrC p. On the other hand, if \Sigma p is a switched output

realization of \scrC p with associated system \Sigma =

\biggl( 
A,B,

\biggl[ 
C1

C2

\biggr] 
,

\biggl[ 
G0

J0

\biggr] \biggr) 
, with A \in \BbbF s\times s,

B \in \BbbF s\times k, C1, C2 \in \BbbF n\times s, and G0, J0 \in \BbbF n\times k, it is clear that \scrC p = Im\Phi (G,J), where

G(d) = G0 +

\infty \sum 
\ell =1

C1A
\ell  - 1Bd\ell and J(d) = J0 +

\infty \sum 
\ell =1

C2A
\ell  - 1Bd\ell .

The same happens when we consider switched input realizations; i.e., if \widehat \Sigma p is a

realization of \scrC p of this type, with associated systems \widehat \Sigma 1 = ( \widehat A, \widehat B1, \widehat C, \widehat D1) and\widehat \Sigma 2 = ( \widehat A, \widehat B2, \widehat C, \widehat D2) and

R(d) = \widehat D1+

\infty \sum 
\ell =1

\widehat C \widehat A\ell  - 1 \widehat B1d
\ell =

s\sum 
i=0

Rid
i and S(d) = \widehat D2+

\infty \sum 
\ell =1

\widehat C \widehat A\ell  - 1 \widehat B2d
\ell =

s\sum 
i=0

Sid
i,

then \widehat \Sigma p is a switched input realization of \Phi (G,J) where

G(d) =

s\sum 
i=0

Gid
i and J(d) =

s\sum 
i=0

Jid
i,

with Gi = Ri and Ji = Si for i = 2j, and Gi = Si and Ji = Ri for i = 2j + 1, j \in \BbbN .
So, we conclude that the switched output realizations and switched input realiza-

tions of a periodic convolutional code \scrC p are the realizations of the same type of the
periodic encoding maps of \scrC p. Thus, in order to investigate the minimal encoders of
\scrC p we study first the minimal realizations of the encoding maps of \scrC p since a minimal
encoder of \scrC p is also a minimal realization of a suitable periodic encoding map of \scrC p.

The next lemmas are direct consequences of Lemma 3.1 and Theorem 3.1 and
study the minimality of switched output realizations of periodic encoding maps.

Lemma 4.1. Let \scrC p be a periodic convolutional code and \Phi (G,J) a periodic encod-

ing map of \scrC p for some full column rank matrices G(d), J(d) \in \BbbF n\times k[d]. A switched
output periodic system \Sigma p is a minimal switched output realization of \Phi (G,J) if and

only if the associated system \Sigma is a minimal realization of

\biggl[ 
G(d)
J(d)

\biggr] 
. Moreover, the

minimal dimension of a switched output realization of \Phi (G,J) is equal to the maximal

degree of the minors of

\biggl[ 
G(d)
J(d)

\biggr] 
and it is called the switched output McMillan degree

of \Phi (G,J).
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Definition 4.1. Given a 2-periodic convolutional code \scrC p, a periodic encoding
map of \scrC p is said to be switched output minimal if it has minimal switched output
McMillan degree, among all the encoding maps of \scrC p.

Lemma 4.2. If

\biggl[ 
G(d)
J(d)

\biggr] 
is not column reduced, then there exists a unimodular

matrix U(d) such that \Biggl[ \widetilde G(d)\widetilde J(d)
\Biggr] 
=

\biggl[ 
G(d)
J(d)

\biggr] 
U(d)

is column reduced, produces a periodic encoding map, \Phi ( \widetilde G, \widetilde J), equivalent to \Phi (G,J) and

is such that

\mu 

\Biggl( \Biggl[ \widetilde G(d)\widetilde J(d)
\Biggr] \Biggr) 

\leq \mu 

\biggl( \biggl[ 
G(d)
J(d)

\biggr] \biggr) 
.

Proof. The proof follows from the fact that

\Phi ( \widetilde G, \widetilde J)(u(d)) = \Phi (G,J)(U(d)u(d))

for all u(d) \in \BbbF k[d] and U(d) is unimodular.

So, given an encoding map \Phi (G,J) of a periodic code we can always find an
equivalent encoding map \Phi ( \widetilde G, \widetilde J) such that the corresponding time-invariant encoder\Biggl[ \widetilde G(d)\widetilde J(d)

\Biggr] 
is a column reduced encoder with McMillan degree smaller than or equal

to the McMillan degree of

\biggl[ 
G(d)
J(d)

\biggr] 
. This is achieved by right multiplication by a

unimodular matrix. In the case of time-invariant codes, this procedure allows us to
obtain a minimal encoder of the code since all column reduced encoders are minimal.
But the same does not hold for periodic codes; i.e., periodic encoding maps \Phi (G,J)

such that

\biggl[ 
G(d)
J(d)

\biggr] 
is a time-invariant column reduced encoder not necessarily switched

output minimal, as the following example shows.

Example 4.1. Consider the periodic code \scrC p = \Phi (G,J) with

G(d) = G0 and J(d) = J0 + J1d+ J2d
2 + J2d

3,

where G0, J0, J1, J2 \in \BbbF n\times k and G0 and J2 are full column rank matrices. Then\biggl[ 
G(d)
J(d)

\biggr] 
=

\biggl[ 
G0

J0 + J1d+ J2d
2 + J2d

3

\biggr] 
is column reduced, which implies \Phi (G,J) has switched output McMillan degree equal

to the sum of the column degrees of

\biggl[ 
G(d)
J(d)

\biggr] 
, which is equal to 3k. The corresponding

lifted code has encoder

L(d) =

\biggl[ 
G0 0
J1 J0

\biggr] 
+

\biggl[ 
0 0
J2 J2

\biggr] 
d,

and therefore

L(d)

\biggl[ 
Ik 0
 - Ik Ik

\biggr] 
=

\biggl[ 
G0 0

J1  - J0 J0 + J2d

\biggr] D
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is another encoder of the lifted code, which means that

\widetilde G(d) = G0 and \widetilde J(d) = J0 + (J1  - J0)d+ J2d
2

are such that \Phi ( \widetilde G, \widetilde J) is another encoding map which originates the periodic code \scrC p.
Since \Biggl[ \widetilde G(d)\widetilde J(d)

\Biggr] 
=

\biggl[ 
G0

J0 + (J1  - J0)d+ J2d
2

\biggr] 
is also column reduced, we have that the switched output McMillan degree of \Phi ( \widetilde G, \widetilde J)
is equal to 2k.

The previous example shows that there can exist two encoding maps, \Phi (G,J) and

\Phi ( \widetilde G, \widetilde J), of a periodic code, with
\biggl[ 
G(d)
J(d)

\biggr] 
and

\Biggl[ \widetilde G(d)\widetilde J(d)
\Biggr] 
column reduced, but with different

switched output McMillan degrees.
Regarding switched input realizations of periodic encoding maps, their minimality

is characterized in the next lemma, which is a consequence of Theorem 3.2.

Lemma 4.3. Let \scrC p be a periodic convolutional code, \Phi (G,J) a periodic encoding

map of \scrC p, for some G(d), J(d) \in \BbbF n\times k[d], and R(d), S(d) \in \BbbF n\times k[d] the matrices
obtained from G(d) and J(d) as defined in (2.2). The switched input periodic system\widehat \Sigma p is a minimal switched input realization of \Phi (G,J) if and only if the associated

system \widehat \Sigma is a minimal realization of
\bigl[ 
R(d) S(d)

\bigr] 
.

5. Conclusions and open questions. In this paper we have studied the alge-
braic properties of periodic convolutional codes and their representation by means of
input-state-output representations. The main ideas and results presented in this work
have to do with novel representations of this important class of convolutional codes.
First we show how these codes can be seen as \BbbF [d2]-modules and present concrete
representations of their equivalent encoders. As for the state-space representations,
we present two original different approaches to implement periodic codes that lead
to simple state realizations and investigate their minimality. Switched systems re-
alizations form a more involved class of systems than standard LTI systems, which
prevents us from applying directly well known mathematical results in systems the-
ory. Although some fundamental results were derived in this work, several questions
remain unanswered. Among them is the important issue of the minimality of the
switched output (input) realizations of a periodic code \scrC p rather than of a corre-
sponding periodic encoding map. This was only partially addressed here and is the
subject of current research.
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