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Abstract: Convolutional codes form an important class of codes that have memory. One natural way to
study these codes is by means of input state output representations. In this paper we study the minimum
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consider rate 1/n and use the linear system setting called (A, B,C,D) input-state-space representations
of convolutional codes for our analysis. Previous results on this area were recently derived assuming that
the matrix A, in the input-state-output representation, is nonsingular. This work completes this thread of
research by treating the nontrivial case in which A is singular. Codewords generated by weight-2 inputs
are relevant to determine the effective free distance of Turbo codes.
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1. Introduction

In this work we are interested in investigating codewords of 1/n convolutional codes that are
produced by weight-2 information sequences. These codewords play an important role in the
computation of the effective free distance in the context of Turbo codes (see [14]) and therefore a better
understanding of this particular set of codewords may lead to improvements in the construction of Turbo
codes. In this work we focus on the mathematical analysis of these set rather than on possible direct
consequences in the performance of Turbo codes. We perform this mathematical investigation within
the so-called input state output representations.

Convolutional codes can be modelled by means of input state output representations in the framework
of linear time-invariant systems (see [3, 5, 6, 8, 16, 27, 30] for an introduction of the basic theory of this
approach). The main advantage of this approach is that the dynamics of the state (memory) of the
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system (convolutional code) are explicit in this representation. Moreover this enables the application of
the huge and powerful machine of systems theory problems in the context of coding theory.

In [14] Divsalar and McEliece studied codewords of convolutional codes that are produced by
weight-2 information sequences, derived some theoretical bounds for the effective free distance and
posed a conjecture. In this paper, we also make use of a state-space representations but choose
representations as introduced in [30] which are slightly different to the driven variable representations
used in [14]. These representations led to several important theoretical and practical results of
convolutional codes (see [7,8,10,18,21,25,26]) and we continue the study in [19] using the (A, B,C,D)
input state output representation of finite-weight convolutional codes. In [19], an upper bound on the
effective free distance distance was provided for the particular case in which the matrix A in the input
state output representation is an invertible matrix. In this paper we consider the case in which the matrix
A is singular. Thus, this work can be considered as an extension of previous results. When the matrix A,
that represents the update of the state of the system, is nonsingular, the last input entering into the system
must immediately steer the state vector to the zero vector in order to obtain a finite-weight codeword.
However, when A is singular, this is not necessarily true, and the state vector might remain nonzero
some time after the last input has been introduced into the system. For this reason the extension of
the results in [19] to the general case is not straightforward as we show in this work. Nevertheless, we
present new characterizations of this set of codewords and provide an upper-bound on the effective free
distance. As we show in the this paper, the analysis of these systems (with A singular) turned out to be
highly nontrival and so the optimally of the upper-bound could not be formally proven.

The paper is organized as follows: In Section 2 we briefly introduce finite-weight convolutional
codes defined over any Galois field and a particular input-state-output representation of such codes. We
also recall the relevance of codewords generated by weight-2 inputs and their relation to turbo codes.
Section 3 is devoted to provide the main results of the paper. In particular, for a given convolutional
code C of dimension one defined over any finite field with an input-state-output representation given by
(A, B,C,D) and A a singular matrix, we analyse the dynamics that can occur between the input and the
state of the system in this case. We present a conjecture and a novel upper bound on zmin(C) based on
this conjecture and, in turn, an upper bound on the effective free distance of C. Finally, we present and
study a concrete construction of a class of convolutional codes for which we can compute zmin(C) up
to a difference of one value and provide an example to illustrate the results. We conclude the paper by
presenting some conclusion and possible future work within this thread of research.

2. Basic definitions and properties of Turbo codes and linear systems

In this paper, we denote by F = GF(q) the Galois field of q elements and F[z] the polynomial ring on
the variable z with coefficients in F.

Consider the matrices A ∈ Fδ×δ, B ∈ Fδ×k, C ∈ F(n−k)×δ and D ∈ F(n−k)×k. Following [30] and [28],
a rate k/n convolutional code C of complexity δ can be described by the linear system governed by the
equations

~xt+1 = A~xt + B~ut

~yt = C~xt + D~ut

}
, t = 0, 1, 2, . . . (2.1)
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~vt =

(
~yt

~ut

)
, x0 = 0, (2.2)

where for each time instant t, ~xt ∈ F
δ is the state vector, ~ut ∈ F

k is the input (also call information vector)
and ~yt ∈ F

n−k is the parity vector. In linear systems theory, this representation is known as the input-
state-output representation. This representation was introduced by Rosenthal, York and Schumacher
(see [28]) and it has been widely used in the last years to analyze and construct convolutional codes
[8, 9, 29, 30]. In terms of Linear Systems, the complexity δ, is the McMillan degree of the linear system
(2.2). In the following, we adopt the notation used by McEliece [24] and we call a convolutional code
of rate k/n and complexity δ an (n, k, δ)-code.

Note that the description given by expression (2.2) is in general not unique. But if C has complexity
δ, then it is possible to choose the matrices A, B, C, and D of sizes δ× δ, δ× k, (n− k)× δ and (n− k)× k,
respectively. In convolutional coding theory, an input-state-output representation (A, B,C,D), having
the above sizes, is called a minimal representation and it is characterized through the condition that the
pair (A, B) is controllable, that is (see [29]), the controllability matrix has full rank, rank Φδ(A, B) = δ,
where

Φ j(A, B) :=
(
B AB · · · A j−2B A j−1B

)
, j ∈ N.

The controllablility matrix is a well-known matrix in the area of system theory as it allows to
characterized the controlability of the linear system. If (A, B) is a controllable pair, then we call the
smallest integer κ having the property that rank Φκ(A, B) = δ the controllability index of (A, B). On the
other hand, we say that (A,C) is an observable pair if (AT ,CT ) is a controllable pair (see [29]). If the
pair (A, B) is controllable, it means that, by an appropriate choice of input vectors, it is possible to drive
a given state vector to any other state vector in finite time. Analogously, the observability of the pair
(A,C) means that it is possible to determine the state vector at a given time t0 by observing the output
vectors for a finite number of time steps beginning with t0 (see, for example, [28, 30]).

Following the approach adopted in [29] we only consider {~vt}t≥0 in Eq (2.2) to be a finite-weight
codeword (see [29] for more details of the algebraic reasons to do so), that is, Equation (2.2) holds for
all t = 0, 1, 2, . . . and there is an integer γ such that ~xγ+1 = 0, ~ut = 0, for t ≥ γ + 1, and therefore,
~yt = 0 for t ≥ γ + 1, so the code sequence has finite weight. In this work we denote such a finite-weight
codeword byVγ.

Hence, it follows that both the input and the state sequence (and hence the output) must to have finite
support in a finite-weight codeword. The set of finite-weight codewords has a module structure over the
polynomial ring F[z] (see [29]). By abuse of notation, we will denote this module by C(A, B,C,D) and
we refer to it as the finite-weight convolutional code generated by the matrices A, B, C, D. Proposition
2.4 of [29] gives us a characterization of finite-weight codewords. Let us denote by Vγ a finite-weight

codeword sequence constituted by
(
~y0

~u0

)
,

(
~y1

~u1

)
, . . . ,

(
~yγ
~uγ

)
∈ Fn represents with

(
~y0

~u0

)
and

(
~yγ
~uγ

)
, 0. Hence,

the Eqs of (2.2) are satisfied for all t ≥ 0 and

(
AγB Aγ−1B · · · AB B

)


~u0

~u1
...

~uγ−1

~uγ


= 0. (2.3)
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Remark 2.1. Notice that it is easy to check that if S is an invertible matrix, then it holds that

C(S AS −1, S B,CS −1,D) = C(A, B,C,D).

The representation considered here, i.e., (2.2), is indeed the description of the dynamics of a rational
and systematic encoder, since by Lemma 2.14 of [29], if C(A, B,C,D) is an (n, k, δ)-code, then, the
matrices A, B, C and D describe a proper rational transfer function of C(A, B,C,D), given by

T (z) = C(zI − A)−1B + D.

Furthermore, G(z) =

(
T (z)

Ik

)
is a systematic encoder of C(A, B,C,D).

Remark 2.2. We note that the state-space realizations considered in this work are different from the
driving variable realizations often found in the coding literature [15, 23], given by

~xt+1 = A~xt + B~ut

~vt = C~xt + D~ut

}
, (2.4)

where ~ut ∈ F
k is the information vector, ~vt ∈ F

n the codewords that are, in this case, the outputs of the
linear system and ~xt ∈ F

δ as above. Although driving-variable representations have been considered
the standard way in which convolutional codes were presented in terms of linear systems, many authors
have considered linear systems as described in (2.1) and (2.2) in the last decades as they have many
advantages when analyzing convolutional codes [28, 29, 33]. One of these advantages is that in the
driving variable representations, the matrix A has to be nilpotent whereas in the one described in
(2.1) and (2.2) the matrix A does not have such a restriction. This fact facilitates the construction of
optimal input state output representations of convolutional codes (see [29, 32, 33]). Another advantage
of the setting considered in this paper is that these representations are particularly suitable not only for
constructing convolutional codes but also for dealing with finite-weight codewords, see [29,30] for more
details. These properties allow us to derive new results regarding lowest weight of the parity vectors of
the convolutional code C generated by information sequences of weight two.

Block codes having optimal error correcting capabilities, i.e., with maximum minimum, are quite
well-understood, e.g. the class of Reed-Solomon codes [20,34]. However, in order to derive codes with
efficient performance, i.e., codes coming closest to the Shannon limit, having large minimum distance
it is same times not enough. To achieve optimal performance parallel concatenation of convolutional
codes, known as Turbo Codes, were presented by Glavieux and Thitimajshima, see [2]. In a turbo
code TC two convolutional codes, C1 and C2 of rates k/n1 and k/n2, respectively, are connected via
an inter-leaver in such a way that the first encoder, C1, operates directly on the input information ~ut

(t = 0, 1, 2, . . .) and the second one, C2, encodes the interleaved input information, denoted by P~ut

(t = 0, 1, 2, . . .), where P is a permutation matrix of order k. Therefore, a codeword of these code in
divided in the parity vectors of both encoders followed by the information vector. In [4] the input-
state-output representation for the turbo code TC was introduced from the state representation of the
constituent encoders. For more results on these concatenated (convolutional) codes within a linear
systems approach the reader is reffered to [8], [9], [11], [15] and [17].

The most important parameter through which the constituent convolutional codes influence the turbo
code performance is zmin(C) (see [1], [12], [13] and [14]), which it is defined below.
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Definition 2.1. Let C be a convolutional code. We define zmin(C) as the lowest weight of the parity
vectors of the convolutional code C generated by information sequences of weight two.

In [1] and [14] it was shown that the performance of turbo codes is primarily driven by the weight-2
input minimum distance, which is directly related to the minimum weight among the set of codeword
sequences generated by input sequences of weight two. Hence, if one considers a TCwith C1 = C2 = C,
its weight-2 input minimum distance, which is also referred to as the effective free distance of TC [1],
dfree,eff(TC), is described as

dfree,eff(TC) = 2 + 2 zmin(C). (2.5)

3. Upper bounds on the effective free distance of 1/n turbo codes

On a AWGN cannel, code performance is determined largely by the effective free distance. In this
section, we get bounds on this distance. Moreover, the design objective for the constituent recursive
convolutional encoders of a turbo code is to obtain zmin as large as possible. In [1] it was shown that in
the binary case there exists a rate 1/n recursive systematic convolutional code C with complexity δ that
achieve the maximum value of zmin(C), described by

zmin(C) ≤ (n − 1)(2δ−1 + 2).

Consequently, for a turbo code TC with two equal systematic convolutional codes, they obtain the
following upper bound on the effective free distance of TC

dfree,eff(TC) ≤ 2 + 2(n − 1)(2δ−1 + 2).

Recently, in [19] turbo codes were again studied within a linear systems point of view, over finite
field. In particular, they consider a turbo code obtained by the concatenation of two identical 1/n
recursive systematic convolutional codes C given by its input-state-output representation (A, B,C,D)
where the matrix A is invertible. They studied how to obtain the value of zmin(C), and derived an upper
bound that we present next. First, we need to introduce the following definition, which refers to the
minimum time instant at which the last nonzero input is introduced into the system.

As at each time instant the input belongs to the field, in the case the rate is 1/n, we use the typography
ut rather than ~ut, to distinguish between scalars and vectors.

Definition 3.1. We define ŝ to be the least s for which there exists a finite-weight codeword Vγ of a
convolutional code C generated by a vector (u0, u1, . . . , us, us+1, . . . , uγ) with weight equal to two and
u0,us , 0. Such an ŝ is called the minimum effective index of C.

In [19] an upper bound on the value of zmin(C) among all convolutional codes with equal set of
parameters (n, 1, δ) was introduced, as we show in the following theorem.

Theorem 3.1. [Corollary 1 of [19]] Let C(A, B,C,D) be an (n, 1, δ)-code, in such a way that the pair
(A, B) is controllable and A is an invertible matrix. Let ŝ be the minimum effective index of C. Then,

zmin(C) ≤ (n − 1)(ŝ + 1),

and, in turn, the effective free distance of TC satisfies

dfree,eff(TC) ≤ 2 + 2(n − 1)(ŝ + 1).
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The authors of [19] give conditions for an (n, 1, δ)-code to achieve such a bound and they moreover
present a concrete construction of an 1/n recursive systematic convolutional code C whose zmin(C) is as
maximum as possible for these parameters.

Remark 3.1. If we consider that case in which the matrix A is nonsingular, we get zmin(C) over the
parity vectors of finite-weight codewords Vγ generated by input vectors (u0, u1, . . . , us) of weight two
with u0,us , 0, with γ = s, since at time instant s the state of the system must go to zero. Thus, the
last input us entering into the system has to yield xs+1 = 0. More concretely, let Vγ be a finite-weight
codeword generated by an information vector (u0, u1, . . . , us, us+1, . . . , uγ) of weight two with u0,us , 0.
Then,

( AγB Aγ−1B · · · Aγ−sB · · · AB B )



u0

u1

.

.

.
us

.

.

.
uγ−1

uγ


= Aγ−s ( AsB As−1B · · · AB B )


u0

u1

.

.

.
us−1

us

 = 0 (3.1)

implies

(
AsB As−1B · · · AB B

)


u0

u1
...

us−1

us


= 0,

since A is nonsingular. In other words, if A is nonsingular, it follows that the minimum effective index ŝ
of C is obtained by the minimum of the integers s that satisfy the conditions indicated at the beginning
of the remark. Moreover, Theorem 1 of [19] indicates that zmin(C) is derived only by the weight of the
parity vectors of any finite-weight codewordVŝ of the convolutional code produced by sequences with
length ŝ + 1 ≥ δ + 1 where the two nonzero inputs are the first and the last ones.

When the matrix A is singular we may have that

(
AsB As−1B · · · AB B

)


u0

u1
...

us−1

us


, 0

but relation (3.1) holds. This intuitively means that the state of the system (A, B,C,D) does not
necessarily vanish at instant s and could remains nonzero for some time after the second (that is, the
last) input us , 0 enters into the system. Moreover, let Vγ and Ṽγ̃ be two finite-weight codewords
with input vectors (u0, u1, . . . , us, us+1 . . . , uγ) and (ũ0, ũ1, . . . , ũs̃, ũs̃+1 . . . , ũγ̃) of weight two with u0,us,
ũ0, ũs̃ , 0 and such that s̃ > s. As opposed to the case in which A is nonsingular, in this case we cannot
ensure that

wt(y0, . . . , ys, ys+1, . . . , yγ) ≤ wt(ỹ0, . . . , ỹs, . . . , ỹs̃, ỹs̃+1, . . . , ỹγ̃),

that is, the minimum effective index ŝ given in Definition 3.1 is not directly related to zmin(C) is in the
case where the matrix A is singular. Therefore, the ideas used to show Theorem 3.1 for A nonsingular
cannot be straightforward applied in this case and we need to use a different approach.
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3.1. zmin of a rate 1/n recursive systematic convolutional code C(A, B,C,D) with A singular.

Next, we investigate the set of finite-weight codewords generated by input vectors of weight two
which give us the value of zmin when an (n, 1, δ)-code C is given by an input-state-output representation
(A, B,C,D) such that the matrix A that updates the state vector of the system is singular. As noted in
Remark 3.1 the length γ + 1 of the finite-weight codeword Vγ can be much larger than the minimum
time instant of the last nonzero input, denoted by s. Note that in these γ − s instants, the corresponding
input is zero but the state is nonzero and continues to generates outputs vectors yi = Cxi, i = s+1, . . . , γ.
This makes it difficult to obtain an upper bound on zmin in terms of the minimum effective index.
Nevertheless, we can delimit the inputs that will generate the finite-weight codewords where zmin will
be reached, as we will see at the end of this section.

Now suppose that C(A, B,C,D) is a rate 1/n convolutional code with complexity δ. Then, the
matrices (A, B) form a controllable pair, so

rank Φκ(A, B) = rank
(
B AB · · · Aκ−1B

)
= δ, (3.2)

where κ is the so-called controllability index of (A, B). Also, in the case that C(A, B,C,D) is an (n, 1, δ)-
code with (A, B) controllable, it follows that the controllability index κ is equal to the complexity δ,
κ = δ.

Now, let Vγ be a finite-weight codeword with u0 , 0. Then, relations (2.3) and (3.2), imply
necessarily γ > κ − 1 and therefore, we get the following result.

Lemma 3.1. Let C(A, B,C,D), with (A, B) controllable, be an (n, 1, δ)-code. It holds that the length
γ + 1 of a finite-weight codeword with input weight 2 satisfies that γ ≥ δ.

Among all the parity vectors of finite-weight codewords generated by input vectors of weight two
we can restrict ourselves to a smaller set in order to compute zmin(C), as stated in the following lemma.

Lemma 3.2. Let C(A, B,C,D) be an (n, 1, δ)-code with the pair (A, B) controllable. LetVγ be a finite-
weight codeword generated by the input vector (u0, u1, . . . , us, us+1 . . . , uγ) of weight two with u0,us , 0.
Then, the codeword Vγ+m generated by the input vector (u0, u1, . . . , us, us+1 . . . , uγ, uγ+1, . . . , uγ+m) of
weight two with u0,us , 0 is a finite-weight codeword for all m ∈ N. Moreover,

wt(~y0, . . . ,~ys, ~ys+1, . . . ,~yγ) ≤ wt(~̃y0, ~̃y1, . . . , ~̃ys, ~ys+1, . . . , ~̃yγ, . . . , ~̃yγ+m).

Proof. Since Vγ is a finite-weight codeword, taking into account relation (2.3), we know that Aγu0 +

Aγ−sus = 0. In particular, Am(Aγu0 + Aγ−sus) = Aγ+mu0 + Aγ+m−sus = 0, so Vγ+m is a finite-weight
codeword. Now, observe that the components of the parity vector (~y0, ~y1, . . . ,~ys) ofVγ are given by the
following relations

~y0 = Du0

~y j = CA j−1Bu0 for j = 1, 2, . . . , s − 1
~ys = CAs−1Bu0 + Dus

~y j = CA j−1Bu0 + CA j−sBus for j = s + 1, . . . , γ
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and the components of the parity vector (~̃y0, ~̃y1, . . . , ~̃ys, ~ys+1, . . . , ~̃yγ, . . . , ~̃yγ+m) ofVγ+m are in fact

~̃y0 = Du0 = ~y0
~̃y j = CA j−1Bu0 = ~y j for j = 1, 2, . . . , s − 1
~̃ys = CAs−1Bu0 + Dus = ~ys
~̃y j = CA j−1Bu0 + CA j−sBus for j = s + 1, . . . , γ + m

So,
wt(~y0, . . . ,~ys, ~ys+1, . . . ,~yγ) ≤ wt(~̃y0, ~̃y1, . . . , ~̃ys, ~ys+1, . . . , ~̃yγ, . . . , ~̃yγ+m).

�

Assume now that C(A, B,C,D) is a rate 1/n convolutional code with A singular. It is well-known that
if (A, B) is a controllable pair, we can assume without loss of generality (see Remark 2.1) that

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
pδ−1 pδ−2 pδ−3 . . . p0


, B =



0
0
...

0
1


(3.3)

(the so-called controllable canonical realization [22]). If A is a singular matrix, then there exists an
integer τ ≥ 1 such that pδ− j = 0 for j = 1, 2, . . . , τ and pδ−τ−1 , 0.

In the remain of this section, we work with the controllable canonical form of (A, B) with A singular.
Let Vγ be a finite-weight codeword generated by an information vector (u0, u1, . . . , us, us+1, . . . , uγ) of
weight two, with only u0, us , 0. From (2.3) we have that

Aγ−s
(

AsB As−1B · · · AB B
)


u0

u1
...

us−1

us


= 0,

that is,
AsBu0 + Bus ∈ ker(Aγ−s). (3.4)

So we focus our attention in the kernel of the matrix Aη, for η ≥ 1.
The following result provide us with the structure of the η-th power of the matrix A, that we will

need later on. Throughout all the paper, we denote by Oα×β the α × β zero matrix and by Im the identity
matrix of size m.

Lemma 3.3. Let (A, B,C,D) be the controllable canonical realization of an (n, 1, δ) convolutional code
C, that is, A and B are matrices as in (3.3). Assume that A is singular and let τ be the integer such that
pδ− j = 0 for j = 1, 2, . . . , τ and pδ−τ−1 , 0. Denote by Aη the η-th power of A for η ≥ 1 and by a(η)i j the
element of Aη corresponding to the row i and the column j. Then:
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1. If η ≤ δ − 1, then

Aη =

(
O(δ−η)×η A(η)12

A(η)21 A(η)22

)
,

where A(η)12 = I(δ−η) and A(η)21 and A(η)22 are matrices of sizes η×η, and η× (δ−η), respectively.
Furthermore, the matrix A(η)21 is a square matrix such that

• If η ≤ τ, then A(η)21 = O(δ−η)×(δ−η)

• If η > τ, then the elements (a(η)i j) i = δ − η + 1, . . . , δ
j = 1, . . . , δ

are given by

a(η)i j =



0 if

 i = δ − η + 1, . . . , δ

j = 1, . . . , τ

a(η − 1)i+1, j if

 i = δ − η + 1, . . . , δ − 1

j = τ + 1, . . . , η

pη−2a(η − 1)δ−η, j + · · · + p1a(η − 1)δ−1, j + p0a(η − 1)δ, j if

 i = δ

j = τ + 1, . . . , η

and the elements (a(η)i j) i = δ − η + 1, . . . , δ
j = η + 1, . . . , δ

of the matrix A(η)22 are given by

• If η ≤ τ, then

a(η)
i j =



0 if

 i = δ − η + 1, . . . , δ
j = η + 1, . . . , τ

a(η − 1)i+1, j if

 i = δ − η + 1, . . . , δ − 1
j = τ + 1, . . . , δ

pη−2a(η − 1)δ−η+2, j + · · · + p0a(η − 1)δ, j if

 i = δ

j = η + 1, . . . , τ + η

pδ− j+η−1 + pη−2a(η − 1)δ−η+2, j + · · · + p0a(η − 1)δ, j if

 i = δ

j = τ + η + 1, . . . , δ

• If η > τ, then

a(η)i j =


a(η − 1)i+1, j if

 i = δ − η + 1, . . . , δ − 1
j = η + 1, . . . , δ

pη−2a(η − 1)δ−η+2, j + · · · + p0a(η − 1)δ, j if

 i = δ

j = η + 1, . . . , δ

2. If η ≥ δ, then

A(η) =

(
O(δ−1)×τ A(η)12

0 A(η)22

)
(3.5)

where A(η)12 and A(η)22 are matrices of sizes (δ − 1) × (δ − τ) and 1 × (δ − τ), whose elements are
given by
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• For the matrix A(η)12, a(η)i j = a(η − 1)i+1, j, for i = 1, . . . , δ − 1 and j = τ + 1 . . . , δ.

• For the matrix A(η)22,

a(η)δ, j = pδ−τ−1a(η − 1)τ+1, j + · · · + p0a(η − 1)δ, j for j = τ + 1, . . . , δ

Proof. We can consider that the η-th power of A can be expressed in matrix blocks as follows:

Aη =

(
A(η)11 A(η)12

A(η)21 A(η)22

)
,

where A(η)11, A(η)12, A(η)21 and A(η)22 are matrices of sizes (δ − η) × η, (δ − η) × (δ − η), η × η, and
η × (δ − η), respectively. We will make the proof using the induction method on the power η of A.

By computation, we get that

A2 =

(
O(δ−2)×2 Iδ−2

A(2)21 A(2)22

)
where the matrix A(2)21 is of size 2 × 2 such that

• If τ = 1, then

A(2)21 =

(
0 a(1)δ,2
0 p0a(1)δ,2

)
• If τ ≥ 2, then A(2)21 = O2×2.

On the other hand, the matrix A(2)22 is a matrix of size 2 × (δ − 2) given by

• If τ = 1, then

A2 =

(
a(1)δ,3 a(1)δ,4 · · · a(1)δ,δ−1 a(1)δ,δ

pδ−τ−1 + p0a(1)δ,3 pδ−τ−2 + p0a(1)δ,4 · · · p2 + p0a(1)δ,δ−1 p1 + p0a(1)δ,δ

)
• If τ ≥ 1, then

A2 =

(
0 · · · 0 a(1)δ,τ+1 a(1)δ,τ+2 · · · a(1)δ,δ−1 a(1)δ,δ
0 · · · 0 p0a(1)δ,τ+1 pδ−τ−1 + p0a(1)δ,τ+2 · · · p2 + p0a(1)δ,δ−1 p1 + p0a(1)δ,δ

)
Now, assume that Aη = (a(η)i j) i = 1, . . . , δ

j = 1, . . . , δ
is given by the statement of the lemma.

If η < δ, then,

Aη+1 = AAη = A
(
O(δ−η)×η Iδ−η
A(η)21 A(η)22

)
=

(
O(δ−η−1)×(η+1) Iδ−η−1

A(η + 1)21 A(η + 1)22

)
where the matrices A(η + 1)21 and A(η + 1)22 are of sizes (η + 1) × (η + 1) and (η + 1) × (δ − η − 1),
respectively, whose elements are given by

• For the matrix A(η + 1)21:

– If η + 1 ≤ τ, then a(η + 1)i j = 0 for all i = δ − η, . . . , δ and j = 1, . . . , η + 1,
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– If η + 1 > τ, then

a(η + 1)i j =



0 if

 i = δ − η, . . . , δ

j = 1, . . . , τ

a(η)i+1, j if

 i = δ − η, . . . , δ − 1

j = τ + 1, . . . , η + 1

pη−1a(η)δ−η+1, j + · · · + p0a(η)δ, j if

 i = δ

j = τ + 1, . . . , η + 1

• For the matrix A(η + 1)22:

– If η + 1 ≤ τ, then

a(η)i j =



0 if

 i = δ − η, . . . , δ

j = η + 2, . . . , τ

a(η)i+1, j if

 i = δ − η, . . . , δ − 1
j = τ + 1, . . . , δ

pη−1a(η)δ−η+1, j + · · · + p0a(η)δ, j if

 i = δ

j = η + 2, . . . , τ + η + 1

pδ− j+η−1 + pη−1a(η)δ−η+1, j + · · · + p0a(η)δ, j if

 i = δ

j = τ + η + 1, . . . , δ

– If η + 1 > τ, then

a(η + 1)i j =


a(η)i+1, j if

 i = δ − η, . . . , δ − 1
j = η + 2, . . . , δ

pη−1a(η)δ−η+1, j + pη−2a(η)δ−η, j + · · · + p0a(η)δ, j if

 i = δ

j = η + 2, . . . , δ

Assume now that η ≥ δ and that matrix Aη is given by relation (3.5). Observe that the matrix A
contains the identity matrix of size (δ − 1) × (δ − 1) (see (3.3)) and the last row of it is(

0 0 · · · pδ−τ−1 · · · p1 p0

)
.

In particular, A =

(
O(δ−1)×1 Iδ−1

0 A(1)22

)
. For the above reasoning, we can consider that Aη has the following

structure

Aη =

(
O1×τ A(η)12

O(δ−1)×τ A(η)22

)
.

Consequently,

Aη+1 =

O(δ−1)×1 Iδ−1

0 A(1)22

  O1×τ A(η)12

O(δ−1)×τ A(η)22

 =

O(δ−1)×τ A(η)22

O1×τ A(1)22A(η)22

 =

O(δ−1)×τ A(η + 1)12

O1×τ A(η + 1)22

 .
where the matrices A(η + 1)12 and A(η + 1)22 are of sizes (δ − 1) × (δ − τ) and 1 × (δ − τ), respectively,
satisfying
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• A(η + 1)12 = A(η)22

• A(η + 1)22 = (a(η + 1)δ, j) j=τ+1,...,δ with

a(η + 1)δ, j = pδ−τ−1a(η)τ+1, j + pδ−τ−2a(η)τ+2, j + · · · + p0a(η)δ, j for j = τ + 1, . . . , δ.

So we have proof by the induction method that the η-th power of A is given by the statement of the
lemma. �

Now, letVγ be a finite-weight codeword generated by the input vector (u0, u1, . . . , us, us+1 . . . , uγ) of
weight two with u0,us , 0. From relation (3.4) we know that AsBu0 + Bus ∈ ker(Aγ−s). Next result give
us the dimension of the kernel of the the η-th power of A. Such a kernel we will need later on.

Lemma 3.4. Let (A, B,C,D) be the the controllable canonical realization of an (n, 1, δ) convolutional
code C, that is, A and B are matrices as in (3.3). Assume that A is singular and let τ be the integer such
that pδ− j = 0 for j = 1, 2, . . . , τ and pδ−τ−1 , 0. Denote by a(η)

j the j-th column of the matrix Aη, for each
η ≥ 1, that is,

Aη =
(
a(η)

1 a(η)
2 · · · a(η)

τ−1 a(η)
τ · · · a(η)

δ

)
.

Then, the following holds:

a) If 1 ≤ η ≤ τ− 1, then a(η)
j = 0 for j = 1, 2, . . . , η and the column vectors {a(η)

η+1, . . . , a
(η)
τ , . . . , a

(η)
δ } are

linearly independent. In particular, dim(ker Aη) = η.
b) If τ ≤ η ≤ δ− 1, then a(η)

j = 0 for j = 1, 2, . . . , τ and the column vectors {a(η)
τ+1, . . . , a

(η)
δ } are linearly

independent. In particular, dim(ker Aη) = τ.
c) If η ≥ δ, then a(η)

j = 0 for j = 1, 2, . . . , τ and dim(ker Aη) ≥ τ.

Proof. Taking into account Lemma 3.3, which give us the structure of Aη, we obtain that

a) If η = 1, 2, . . . , τ − 1, then the first η columns of Aη are zero and the column vectors
{a(η)

η+1, . . . , a
(η)
τ , . . . , a

(η)
δ } are linearly independent, since they contains the identity matrix of size

δ − η. Consequently, dim(ker Aη) = η.
b) If τ ≤ η ≤ δ, then the first τ columns of Aη are zero and the column vectors {a(η)

τ+1, . . . , a
(η)
δ } are

linearly independent, since they contains the identity matrix of size δ − τ. So dim(ker Aη) = τ.
c) If η ≥ δ, then the first τ columns of Aη are zero but we cannot know which columns of the δ − τ

last columns of Aη are linearly independent. In particular, dim(ker Aη) ≥ τ.

�

Remark 3.2. Observe that if η ≥ τ, the dimension, and in particular, a basis of the subspace ker(Aη), is
independent of η.

Remark 3.3. Lemma 3.3 also shows the relation of recurrence existing between the last column of
the different powers of the matrix A. Indeed, if C(A, B,C,D) is an (n, 1, δ)-code with the conditions of

Lemma 3.3, and we write a(η)
δ =



a(η)1,δ

a(η)2,δ
...

a(η)δ−1,δ

a(η)δ,δ


for the last column of Aη, η = 2, 3, . . ..Then:

a(η)i,δ = a(η − 1)i+1,δ for i = 1, 2, . . . , δ − 1
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and
a(η)δ,δ = pδ−1a(η − 1)1,δ + pδ−2a(η − 1)2,δ + · · · + p1a(η − 1)δ−1,δ + p0a(η − 1)δ,δ

Next we investigate how are the codewords that need to be considered to compute zmin(C). We shall
analyse several sets of finite-weight codewordsVγ sorted by their length γ in order to restrict the set of
possible codewords that we need to considered to find the minimum of the weight of its parity vectors
that yield zmin(C). This, of course, will optimize the computations required to compute the exact value
of zmin(C).

Theorem 3.2. Let C(A, B,C,D) be an (n, 1, δ)-code with (A, B) in canonical controllable form and A
singular. Let τ be the integer as in Lemma 3.3. Let Vγ be the set of finite-weight codewords of C
generated by an information vector (u0, u1, . . . , us, us+1, . . . , uγ) with u0, us , 0 and ui = 0 for i < {0, s}.
Then, the lowest weight of the parity vectors of Vγ with s + τ ≤ γ ≤ s + δ − 1 is achieved for s ≤
qδ − (qτ(q − 1)).

Proof. Let Vγ be a finite-weight codeword of C generated by an information vector
(u0, u1, . . . , us, . . . , uγ) of weight two with u0,us , 0. Then,

(
AγB Aγ−1B · · · Aγ−sB · · · AB B

)


u0

u1
...

us
...

uγ−1

uγ


= Aγ−s

(
AsBu0 + Bus

)
= 0,

so
(
AsBu0 + Bus

)
∈ ker Aγ−s. It follows from Remark 3.2 that ker Aγ−s is the same subspace for any γ

and s, provided τ ≤ γ − s ≤ δ − 1. As we consider the case in which s + τ ≤ γ ≤ s + δ − 1 it follows
from statement b) of Lemma 3.4 that dim(ker Aγ−s) = τ and a basis for ker Aγ−s ⊆ Fδ×1 is given by the
column vectors:

Bker Aγ−s = {e1, e2, . . . , eτ}

where ei denotes the i-th vector of the canonical basis of Fδ×1, for i = 1, 2, . . . , τ. Therefore, one has
that AsBu0 + Buŝ must be of the form (d1, d2, . . . , dτ, 0, . . . , 0)T or, equivalently (observe the structure of
matrix B given by (3.3)),

AsB =



d1

d2
...

dτ
0
...

0
dδ


where dδ , 0 as we require us , 0. (3.6)
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Hence, s is in fact the smallest integer such that the last column of As is a vector like

(
any τ elements︷     ︸︸     ︷
∗, ∗, . . . , ∗ , 0, . . . , 0,

a nonzero element︷︸︸︷
∗ )T .

Remark 3.3 provides the structure of the elements of the last column of As, that it can be seen as a
feedback polynomial of a Linear Feedback Shift Register (LFSR). The maximum cycle of a LFSR of
length δ is qδ if the associated polynomial is primitive.

The number of states of the form (3.6) is qdim(ker Aγ−s) = qτ times the (q−1) possible nonzero elements
for the last row of AsB. This leads to the following upper-bound on s:

s ≤ qδ − (qτ(q − 1)),

which concludes the proof. �

In the following result we study the set of codewords with length γ + 1 such that γ < s + τ.

Theorem 3.3. Let C(A, B,C,D) be an (n, 1, δ)-code with (A, B) in canonical controllable form and A
singular. Let τ be the integer as in Lemma 3.3. Let Vγ be the set of finite-weight codewords of C
generated by an information vector (u0, u1, . . . , us, us+1, . . . , uγ) with u0, us , 0 and ui = 0 for i < {0, s}.
Then, the lowest weight of the parity vectors ofVγ with γ < s +τ, is achieved for s ≤ qδ− (q(γ−s)(q−1)).

Proof. The proof follows the same idea used in the proof of Theorem 3.2. Note that by Lemma 3.1 we
have that γ ≥ δ. Also it holds from Lemma 3.4 that dim(ker Aγ−s) = γ − s < τ. Hence, for each value
of γ and s such that γ − s < τ we have that s is the smallest integer such that the last column of As is a
vector of the form

(
any γ − s elements︷     ︸︸     ︷
∗, ∗, . . . , ∗ , 0, . . . , 0,

a nonzero element︷︸︸︷
∗ )T . (3.7)

As there are qδ possible states and q(γ−s)(q− 1) different states are of the form (3.7), the maximum value
of s such that AsBu0 − Bus is not in the kernel of Aγ−s is qδ − (q(γ−s)(q − 1)) which yields the result. �

4. Optimal upper-bound on zmin for a class of (n, 1, δ) recursive systematic convolutional codes

In this section we present a concrete construction of a class of convolutional codes with δ ≥ 2 for
which we can compute the minimum effective index and the exact value of zmin up to a difference of
one value. Furthermore, we can show that such upper-bound is optimal and we do that by presenting a
particular example that reaches the provided upper-bound. To this end we need a class of matrices that
have been very useful for the construction of convolutional codes with large Hamming distance, namely,
the so-called superregular matrices.

Definition 4.1 (Page 1314 of [31]). Let A be an n × ` matrix over a finite field F. We say that A is a
superregular matrix if every square submatrix of A is nonsingular.

The following Lemma is an immediate consequence of Definition 4.1 and it gives a lower bound on
the weight of a linear combination of columns of a superregular matrix.

Lemma 4.1 (Lemma 3 of [10]). Let A be a superregular matrix over a finite field F of size n × `, with
n ≥ `. It follows that any nontrivial linear combination of m different columns of A cannot have more
than m − 1 entries equal to zero.
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In the following result we present a particular construction based on a input-state-output
representation where the pair (A, B) is in canonical controllable form with A singular, C a superregular
matrix and D a column of C. We establish that the lowest weight of the parity vectors ofVγ is achieved
in fact by the ones generated by weight-2 input sequences (u0, u1, . . . , uγ) with u0 , 0 and u1 , 0.
Furthermore, we establish a lower and an upper bound of zmin(C) for these case.

Theorem 4.1. Let δ and n be any positive integers with δ ≥ 2, n ≥ δ+ 1 and q ≥ n + δ. Let C(A, B,C,D)
be an (n, 1, δ)-code described by the matrices

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . . 0
0 0 · · · 0 1
0 0 · · · 0 1


, B =


0
0
...

1

 , C =


c11 · · · c1,δ

c21 · · · c2,δ
...

c(n−1),1 · · · c(n−1),δ

 D =


c1,δ−1

c2,δ−1
...

c(n−1),δ−1

 (4.1)

of sizes δ × δ, δ × 1, (n − 1) × δ and (n − 1) × 1 respectively and where C is a superregular matrix. Then
we have that

(n − 1)(δ + 1) − 1 ≤ zmin(C) ≤ (n − 1)(δ + 1). (4.2)

Moreover, the minimum effective index ŝ achieves its minimum possible value, i.e., ŝ = 1 and so the
value of zmin(C) is reached in finite-weight codewords of minimum length γ = δ and it is calculate as

zmin(C) = wt(D) + wt(CB − D) +

δ−1∑
j=1

wt(CA jB −CA j−1B). (4.3)

Proof. Taking into account the structure of the matrices A and B of (4.1) and Lemma 3.3, the finite-
weight codeword of minimal length generated by input of weight two is Vδ. Furthermore, in this case
we have that u1 = −u0 and u2 = u3 = · · · = uδ = 0. Then, the parity check vectors ofVδ are of the form:

~y0 = Du0

~y1 = (CB − D)u0

~y2 = (CAB −CB)u0

~y3 = (CA2B −CAB)u0
... =

...

~yδ = (CAδ−1B −CAδ−2B)u0

(4.4)

where

~y1 = (CB − D)u0 =


c1,δ − c1,δ−1

c2,δ − c2,δ−1
...

c(n−1),δ − c(n−1),δ−1

 and ~y j = (CA j−1B −CA j−2B)u0 =


c1,δ− j+1

c2,δ− j+1
...

cn−1,δ− j+1

 ,
for j = 2, 3, . . . , δ. Furthermore, n − 2 ≤ wt(~y1) ≤ n − 1 since C is a superregular matrix and by Lemma
4.1 any nontrivial linear combination of two different columns of C cannot have more than 1 entry equal
to zero. Similarly, we can ensure that wt(~y j) = n−1, since C is superregular. So we obtain the following
bounds on the weigth of the parity vectors ~y j ofVδ.
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(n − 1)(δ + 1) − 1 ≤
δ∑

j=0

wt(~y j) = wt(D) + wt(CB − D) +

δ−1∑
j=1

wt(CA jB −CA j−1B) ≤ (n − 1)(δ + 1) (4.5)

Our aim now is to proof that in fact, zmin(C) is obtained from the minimum of the parity vectors of all
finite-weight codewords of lenght δ + 1. In order to do this, consider now a finite-weight codewordVγ

generated by a input vector (ū0, ū1, . . . , ūγ) of weight two with γ > δ. Then, there exists a time instant
r ≥ 1 such that ū0 , 0, ūr , 0 and ū j = 0 for j , 0, r. From Lemma 3.2, we know that if r = 1,
then we can ensure that the parity vector (~̄y0, ~̄y1, . . . , ~̄yγ) ofVγ have weight greater or equal to the parity
vector (~y0, ~y1, . . . ,~yδ) of any finite-weight codewordVδ of lenght δ+ 1. Furthermore, if r > 1, then from
the structure of matrices A, B,C,D, Lemma 3.3 and taking into account that C is superregular, then we
obtain the following bounds on the weight of the parity vector (~̄y0, ~̄y1, . . . , ~̄yγ)

(δ + r)n − δr ≤
γ∑

j=0

wt( ~̄jy) ≤ (n − 1)(δ + r). (4.6)

Taking into account relations (4.5) and (4.6) and the fact that δ < n, we obtain

δ∑
j=0

wt(~y j) ≤ (n − 1)(δ + 1) ≤ (δ + r)n − δr ≤
γ∑

j=0

wt( ~̄jy)

where (~y0, ~y1, . . . ,~yδ) and (~̄y0, ~̄y1, . . . , ~̄yγ) are the parity vectors of any codewordsVδ andVγ with γ > δ,
respectively. So we can conclude that zmin(C) is obtained by the minimum of the weight of the parity
vectors of all the finite-weight codewordsVδ generated by input vectors with length δ+1. Furthermore,
from relation (4.4), we deduce that in fact

zmin(C) = wt(D) + wt(CB − D) +

δ−1∑
j=1

wt(CA jB −CA j−1B).

�

In the following example, we show a convolutional code whose zmin(C) reaches the upper bound of
the relation (4.2).

Example 4.1. Let F be the Galois field of 7 elements and let C(A, B,C,D) be an (4, 1, 2)-code described
by the matrices

A =

(
0 1
0 1

)
, B =

(
0
1

)
, C =


4 5
5 2
2 3

 D =


4
5
2


It is easy to see that the the (4, 1, 2)-code described by the above matrices A, B,C and D satisfy the
hypothesis of Theorem 4.2. Then we know that the

zmin(C) = wt(D) + wt(CB − D) + wt(CAB −CB)

= wt(


4
5
3

) + wt(


1
4
1

) + wt(


4
5
2

) = 9

That is in this case the code attains the maximal value.
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In the example before the superregular matrix C is a Cauchy matrix and it is a small example. If
we need to construct a turbo code with a determinate zmin(C) we must to consider a bigger parameters
and consequently a bigger field. Work with a big finite field increases computational costs. In order to
minimize the size of the field we introduce a similar construction for a singular A similar to Theorem
4.1 in which we make use of the so-called extended Cauchy matrices (see [31]).

Theorem 4.2. Let F be the Galois field of q elements. Let δ and n be any positive integers with δ ≥ 2,
n ≥ δ + 1 and q ≥ n + δ − 1. Let C(A, B,C,D) be an (n, 1, δ)-code described by the matrices

A =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . . 0
0 0 · · · 0 1
0 0 · · · 0 1


, B =


0
0
...

1

 , C =


c11 · · · c1δ

c21 · · · c2δ
...

c(n−1)1 · · · c(n−1)δ

 D =


c1δ−1

c2δ−1
...

c(n−1)δ−1


of sizes δ × δ, δ × 1, (n − 1) × δ and (n − 1) × 1 respectively and where C is a extended Cauchy matrix
with the first column ~c1 = (c11, c21, ldots, c(n−1),1) of ones. Then we have that

(n − 1)(δ + 1) − 1 ≤ zmin(C) ≤ (n − 1)(δ + 1)

Moreover, the value of zmin(C) is reached in a finite code word of minimum length γ = δ and it is
calculate as

zmin(C) = wt(D) + wt(CB − D) +

δ−1∑
j=1

wt(CA jB −CA j−1B)

Proof. The proof is analogous of Theorem 4.1. �

Example 4.2. Let F be the Galois field of 5 elements and let C(A, B,C,D) be an (4, 1, 2)-code described
by the matrices

A =

(
0 1
0 1

)
, B =

(
0
1

)
, C =


1 3
1 2
1 4

 D =


1
1
1


It is easy to see that the the (4, 1, 2)-code described by the above matrices A, B,C and D satisfy the
hypothesis of Theorem 4.2. Then we know that the

zmin(C) = wt(D) + wt(CB − D) + wt(CAB −CB)

= wt(


1
1
1

) + wt(


2
1
3

) + wt(


1
1
1

) = 9

That is in this case also the code attains the maximal value.

5. Conclusions and future work

In this work we study the lowest Hamming weight of the parity vectors generated by information
sequences of weight two, that is, zmin, of a 1/n convolutional code C(A, B,C,D) represented in terms
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of the input-state-output representation. We analyze how one can reduce the computations to derive
this value which is, in general, difficult to compute as it is the minimum over the large set of codeword
with inputs of weight two. In this work we reduce this set by studying the structure of the codewords
produced by the input-state-output system. This will lead to reduce the compute search to obtain the
exact value of zmin(C). We also presented a class of convolutional codes for which we know the form of
the codewords that lead to the computation of zmin and therefore allow us to determine its exact value up
to a difference of one unit.

It is left as an open problem to provide a specific lower and upper bounds on zmin(C), and
consequently, lower and upper bounds on the effective free distance over general finite fields. Also
it would be interesting to show that this hypothetical upper bound it tight by presenting a concrete
construction of a Turbo Code whose effective free distance reaches this bound. Also interesting it would
be to derive different constructions to the one given in Section 4 having better bounds.
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Neumann rings in terms of linear systems, Linear Algebra Appl., 494 (2016), 236–244.
https://doi.org/10.1016/j.laa.2016.01.019

AIMS Mathematics Volume 8, Issue 1, 713–732.

http://dx.doi.org/https://doi.org/10.1109/26.494303
http://dx.doi.org/https://doi.org/10.1109/ICC.1993.397441
http://dx.doi.org/http://dx.doi.org/10.12988/ijcms.2007.07020
http://dx.doi.org/https://doi.org/10.1016/j.amc.2003.03.001
http://dx.doi.org/https://doi.org/10.1016/j.laa.2015.05.034
http://dx.doi.org/https://doi.org/10.1016/j.laa.2016.01.019


731

8. J.-J. Climent, V. Herranz, C. Perea, A first approximation of concatenated convolutional
codes from linear systems theory viewpoint, Linear Algebra Appl., 425 (2007) , 673–699.
https://doi.org/10.1016/j.laa.2007.03.017

9. J.-J. Climent, V. Herranz, C. Perea, Linear system modelization of concatenated
block and convolutional codes, Linear Algebra Appl., 429 (2008), 1191–1212.
https://doi.org/10.1016/j.laa.2007.09.006

10. J.-J. Climent, D. Napp, C. Perea, R. Pinto, Maximum distance separable 2D convolutional codes,
IEEE T. Inform. Theory, 62 (2016), 669–680. https://doi.org/10.1109/TIT.2015.2509075

11. J. J. Climent, V. Herranz, C. Perea, Parallel concatenated convolutional codes from
linear systems theory viewpoint, Systems and Control Letters, 96 (2016), 15–22.
https://doi.org/10.1016/j.sysconle.2016.06.016

12. D. Divsalar, F. Pollara, Low Rate Turbo Codes for Deep Space Communications, Proceedings of
1995 IEEE Int. Symp. Info. Theory, (1995). https://doi.org/10.1109/ISIT.1995.531137

13. D. Divsalar, F. Pollara, Multiple turbo codes for deep-space communications, The
Telecommunications and Data Acquisition Progress Report, (1995).

14. D. Divsalar, R. J. McEliece, The effective free distance of turbo codes, Electron. Lett., 32 (1996),
445–446. https://doi.org/10.1049/el:19960321

15. D. Divsalar, R. J. McEliece, On the design of generalized concatenated coding systems with
interleavers, TMO Progress Report 42-134, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA, (1998).

16. M. I. Garcı́a-Planas, E. M. Soudit, L. E. Um, Convolutional codes under linear systems point of
view. Analysis of output-controllability, WSEAS Press. World Scientific and Engineering Academy
and Society, 11 (2012), 2224–2880.

17. M. I. Garcı́a-Planas, N. deCastro, Concatenated linear systems over rings and their application to
construction of concatenated families of convolutional codes, Linear algebra appl., 542 (2017),
624–647. https://doi.org/10.1016/j.laa.2017.12.009

18. V. Herranz, D. Napp, C. Perea, Serial concatenation of a block code and a 2D convolutional code,
Multidim. syst. sign. p., 30 (2019), 1113–1127. https://doi.org/10.1007/s11045-018-0591-3

19. V. Herranz, D. Napp, C. Perea, 1/n Turbo Codes from linear system point of view, Revista de
la Real Academia de Ciencias Exactas, Fı́sicas y Naturales. Serie A. Matemáticas, 114 (2020).
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25. A. L. M. Castañeda, J. M. Muñoz-Porras, F. J. Plaza-Martı́n, Rosenthal’s Decoding Algorithm
for Certain 1-Dimensional Convolutional Codes, IEEE T. Inform. Theory, 65 (2019), 7736–7741.
https://doi.org/10.1109/TIT.2019.2921370

26. D. Napp, R. Pereira, R. Pinto, P. Rocha, Periodic state-space representations of
periodic convolutional codes, Cryptography and Communications, 11 (2019), 585–595.
https://doi.org/10.1007/s12095-018-0313-6
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