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F I E L D - I N D U C E D  T R A N S I T I O N S  IN L O W - D I M E N S I O N A L  A N T I F E R R O M A G N E T S  AND IN 

A S P I N - P E I E R L S  S Y S T E M  

L.J. de J O N G H ,  H.B. BROM, H.J.M. de G R O O T ,  Th.W. H I J M A N S  and W.H. K O R V I N G  

Kamerlingh Onnes Laboratory, State Unit,ersity of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands 

Field-induced transitions in weakly anisotropic low-d antiferromagnets provide a rich field of critical phenomena, closely 
related to topics outside magnetism. We discuss phase diagrams for quasi 1-d and 2-d antiferromagnets, which relate to 1-d 
solitons, the 2-d commensurate-incommensurate (C-IC) transition, the Kosterlitz-Thouless transition and the random-field 
problem. We also review (and present new) experimental data on the Spin-Peierls compound in TTF-AuBDT in the light of 
current theory. At low temperatures a field-induced C-IC transition to a soliton-lattice phase is predicted, which is confirmed 
by our data. 

1. Introduction 

Field-induced transitions in low-dimensional (low-d) 
antiferromagnets provide a rich and interesting field of 
critical phenomena, that remains still largely unex- 
plored. We briefly review a number of studies recently 
performed within our group. Firstly we consider the 
behavior for quasi 1-d and quasi 2-d antiferromagnets 
with weak antisotropy and no coupling to the lattice 
[1,2]. Subsequently we discuss field-dependent studies 
[3-6] on the Spin-Peierls system TTF-AuCaS4(CF3) 4 
(TTF-AuBDT), where we study the dimerization insta- 
bility of a system of antiferromagnetic Heisenberg chains 
that are spin-phonon coupled to the 3-d crystal lattice. 

2. Phase-diagrams of low-d antiferromagnets 

The discussion in this section is based on the Ham- 
iltonian 

o ~ = - 2 J  E s i ' s j  E { -  : - 2 - O~skx - D:sk, + gtLBSB.s  k ) 
U,i~ k 

Here J = J S ( S  + I) and J <O, b , = D ~ S ( S  + I) and 
D~>0,  D . = D ~ S ( S + I )  and D :>0 .  The s i are unit 
vectors and summation is over nearest neighbor pairs. 
The D. term establishes a planar ( X Y )  anisotropy, 
whereas the b~ term singles out the X-axis as the 
preferential axis (lsing-type anisotropy). 

We first recall current ideas about the phase diagram 
for the 3-d case (fig. la). We specialize to the uniaxially 
symmetric case by taking [)~ = 0  in (1) and put the 
magnetic field parallel to the easy axis ( B =  B~). The 
resulting phase diagram is sketched in fig. la. At low 
temperatures a lst-order spin fop (SF) transition occurs 
at a critical field B~e at which the moments flop from 
the easy axis to the perpendicular orientation. This is 
because for B~ > Bsf the difference in Zeeman energy, 
½(X±-Xll)82,  between perpendicular and parallel 
orientation exceeds the anisotropy energy b,. that 
favours the X-axis (in an antiferromagnet one has XIp << 

X ± at low temperatures). The value for Bsf follows from 
b~ = ½(X • - xIOB~ • At (much) higher fields a 2nd-order 
transition to the paramagnetic phase occurs (saturation 
field at T=0) .  We denote the different phase by P 
(paramagnetic), I (ordered Ising-type) and X Y  (ordered 
planar of XY-type), and the boundaries by I-P, X Y - P  
and I - X Y .  In 3-d antiferromagnets the lst-order spin- 
flop line I - X Y  bifurcates in the 2nd-order I -P  and 
X Y - P  lines at the bicritical point (B 2, T 2). 

The features of the 3-d phase diagram are confirmed 
by experiments on e.g. GdAIO 3, MnCI 2 .4H20 and 
MnF 2. In particular, the lst-order character of the SF 
transition has been confirmed [7], provided that correc- 
tions are made for dipolar interactions not included in 
Hamihonian (1) (demagnetizing effects). 

We next discuss the quasi 2-d and quasi l-d antifer- 
romagnets, for which the phase-diagrams are found to 
be quite different (fig. lb,c). In both cases the "spin- 
flop" no longer corresponds with a lst-order transition, 
and also the nature of the other phase boundaries is 
different. We have recently shown [1,2] that good in- 
sight in the underlying physics is obtained on basis of 
the concept of the effective field-dependent anisotropy, 
L)~rf(Bx), which arises from the competition between the 
Zeeman energy and the anisotropy terms in Hamilto- 
nian (1). For the uniaxial case De,(B,.) is simply given 
by: [)~rr(B~)= l):, - ½(X ~ -Xir)B)  ~. Using 1),. = ½(X 
-Xjr )B~ one immediately obtains: 

beff (B~) =/~),c (1 - B Z / B ~ ) .  (2) 

Since beff(B~) becomes zero and changes sign at B x = 
B~f, the behavior for the 2-d case is the following. For 
Be T Bse one has a 2-d Heisenberg system with vanishing 
Ising-type anisotropy. The I - X Y  and the I -P  phase 
boundaries become a single line of 2rid-order transi- 
tions, representing the decrease to zero with vanishing 
anisotropy [8] of the anisotropy-induced T c of the weakly 
anosotropic 2-d Heisenberg antiferromagnet. We recall 
that for the 3-d case the zero-anisotropy limit obtained 
at B~ = B~r corresponds with a finite T~, namely the 
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Fig. l, Phase diagrams of weakly anisotropic Heisenberg anti- 
ferromagnets: (a) 3-d; (b) quasi 2-d: (c) quasi l-d. 

bicritital point. This is because the 3-d Heisenberg 
antiferromagnet does have a finite T~, and therefore 
T 2 = T~, u~i~ e: 0. However the 2-d Heisenberg model has 
no transition at T:# 0, so that T 2 = fc Heis = 0. 

For fields B~ > B~r one has Z)eff(Bx) < 0, correspond- 
ing to a planar-type anisotropy that increases with field. 
This part of the phase diagram should therefore be 
identical to that of the isotropic Heisenberg antiferro- 
magnet in a magnetic field [9]. The T~(B~) rapidly 
increases for B, > B~e from T =  0 towards the Tcvalue 
of the 2-d X Y  model (dashed curve in fig. lb).  But 
before reaching this the curve will bend backwards due 

to saturation effects occurring in high fields (g/,BB, = 
I J I). We note that the X Y - P  boundary in this case 
corresponds with a line of Kosterlitz Thouless transi- 
tions. 

Except for the behavior for B, $ B~f (dashed curve), 
these ideas are well confirmed by the experimental 
phase diagrams of K2MnF 4 [10] and Mn(HCOO) 2. 
2 H 2 0  [l 1], which approximate the 2-d Heisenberg an- 
tiferromagnet with S -  5 /2 .  For K 2 M n F  4 the I P and 
1 XY boundaries indeed form a continuous curve, that 
is fully described by theoretical predictions on basis of 
the above model. For Mn(HCOO) 2 . 2H~O also the fnll 
XY P boundary is available experimentally. The SF- 
transition in 2-d antiferromagnets is ill all cases found 
to be of 2nd-order [1,2,101 in contrast with the 3-d 
antiferromagnets [7]. Similarly broad SF behavior oc- 
curs in quasi 1-d antiferromagnets [12]. There an ex- 
planation can be given in terms of excitation of l-d 
soliton-pair states, which contribute to the magnetiza- 
tion and destroy the lst-order character (see below). 
Therefore we have tried [1,2] to explain the broadening 
of the spinflop in quasi 2-d systems also in terms of 
domain wall-type excitations. In 2-d one has to consider 
the possibility of large, meandering domain walls, be- 
sides the small droplet-like excitations. We found close 
relationships between the 2-d antiferromagnet in a field 
and such problems as the 2-d commensurate incom- 
mensurate transition, the Kosterlitz Thouless transition 
and the massive Thirring model. However. il turns out 
[1,2] that the excitation energies of any of these nonlin- 
ear excitations, are too high to explain the observed 
broadening at very low temperatures. We finally arrived 
at an explanation in terms of random fields, arising 
from small amounts of lattice imperfections or impuri- 
ties in the samples, It is predicted [13] that such random 
fields may effectively destroy the l st-order character of 
a transition through the creation of domain walls. Our 
finding that this occurs in the quasi 2-d systems and not 
in the 3-d antiferromagnets would put the lower critical 
dimensionality for the random field problem at d,. 2 
[14]. We found that the observed exponential broad- 
ening of the spinflop in K2MnF 4 could he well ex- 
plained in such terms, assuming a concentration of 
imperfections of about 10 3. which appears to be rea- 
sonable. 

Finally, we return to the peculiar bifurcation behav- 
ior (fig. lb)  of the I - P  into the I X Y  and XY P 
boundaries, as observed in both M n ( H C O O ) 2 . 2 H & )  
[11] and K 2 M n F  4 [10]. This phenomenon cannot be 
explained in terms of the effective anisotropy model and 
probably also arises from random field effects [1,2], 
Recent theoretical work [15] on weakly anisotropic 2-d 
systems with random fields or anisotropies points to the 
possible existence of a glassy or floating phase in be- 
tween the 1- and P-phases. The floating phase may only 
exist for broad walls (as is the case for B, - B~t ), since 
these are not pinned by defects. Then the bifurcation 
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might correspond with a Lifshitz point. A similar behav- 
ior has also been observed in a 3-d diluted antiferro- 
magnet [7]. 

We next discuss the behavior in the quasi 1-d antifer- 
romagnet [(CH3)4]MnC13 (TMMC) shown in fig. lc. 
Since the pure 1-d antiferromagnet has no finite T~, 
irrespective of the symmetry of the Hamiltonian, the 
observed transition is due to the weak interchain cou- 
pling J ' .  Nevertheless, the value of T c is directly related 
to the 1-d correlation length ~aa(T) along the chain, as 
follows from the relation kBTc--IJ ' l~ld(T~) ,  which 
equates the thermal energy at T c to the interaction 
energy between correlated chain segments on adjacent 
chains. It is found experimentally [16,17] that T~ varies 
extremely strongly with field (fig. lc), which is ex- 
plained as follows. For TMMC the anisotropy at tem- 
peratures close to T~ is described by an easy XY plane 
(eq. (1)), with the moments mainly along X for B < B~f 
(fig. 2a) and along Y for B > B~f (fig. 2b). In this field 
range the symmetry is thus planar with a weak inplane 
ising anisotropy that vanishes at Bsf. The symmetry- 
breaking Ising component allows the thermal excitation 
of solitons (domain walls, kinks), which are transition- 
regions between domains corresponding to the inter- 
change of the two antiferromagnetic sublattices (fig. 
2a,b). The presence in TMMC of these excitations has 
been well-established by e.g. NMR and neutron scatter- 
ing experiments [17]. 

Since the kinks drastically affect the correlation 
length, we may put ~d  = 1/2n~, with n~ the soliton 
density n~ = 22~/~(EJkBT)1/2exp(-EJkBT). For 
the antiferromagnet the soliton excitation energy on 
basis of eqs. (1) and (2) is E~ = 4 [,]L)~ff(B)l 1/2, which 
vanishes at B~f. The exponential in n~ explains the 
drastic dependence of T~ on B, since T c oc ~la cc 1/n~. 
This simple relation reproduces the relative variation of 
T,(B) for TMMC very well (fig. lc), where T~(0)and B~f 
follow from experiment. 

For the quasi 1-d antiferromagnets the SF-transition 
is not lst-order. An explanation in terms of the soliton 

×I ~Z 
B,< Bsf " , ,~  y - 

I_1.I_[_I_,_,_,_.__._._,_,_,_,_,_,_, co) 
- t - I  - I -  I -  I -  I-r-~'~'-~--~- %" i" I -  l ' l "  I -  T" 

l Bx> Bsf 
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Fig. 2. Solitons in the quasi 1-d antiferromagnet. 

model [1,2,18,19] is based upon the excitation of wall- 
pairs in the ordered phase, as sketched in fig. 2c. As in 
the above, the energy 2E~ of the pairs will decrease for 
B ~ B~f, so that their density and wallwidth d~= 
I j / b ~ f f ( B )  I 1/2 will increase. Since the moments rotate 
over the wallwidth, the wall-pair states contribute to the 
magnetization and thereby the 1st-order character of the 
SF-transition (discontinuous jump) is destroyed. With 
this model the observed [12] SF-transition in KzF eF  s 
can be well accounted for [1,2]. We finally note that our 
wall-pair-state model is in agreement with the droplet 
theory of Bruce and Wallace [20] for dimension d = 1 + 
6 in the limit 8 ---, 0. 

3. Phase diagram of the Spin-Peierls system 
T 1 T - A u B D T  

The Spin-Peierls (SP) transition has been observed 
in only a few quasi 1-d Heisenberg antiferromagnets 
(with S = ½). It is the magnetic analogue of the regular 
Peierls transition in a 1-d metal (for reviews see e.g. refs. 
[19,21 23]). By introducing a coupling between the spins 
and the surrounding lattice (3-d phonon field) the an- 
tiferromagnetic chain is rendered unstable to sponta- 
neous dimerization below the SP transition temperature 
Tsv. Theory predicts that on applying a magnetic fled 
the distortion wave vector remains fixed at the dimeriza- 
tion value ~/a up to a critical field B c ~-kBTsp/g~B. 
Above B c and at low temperatures the system is predic- 
ted to pass via an intermediate high-field phase from the 
dimerized into the paramagnetic phase. For the nature 
of this intermediate phase several proposals have been 
made. Recent theories [24-28] predict an incom- 
mensurate phase (soliton lattice) so that the transition 
at B c is a commensurate incommensurate (C-IC)  
transition (with commensurate the dimerized chain is 
meant). It is of interest to recall the analogy between the 
SP-transition and the regular Peierls transition [21,22], 
which becomes evident by mapping the Heisenberg 
Hamil tonian onto that of a chain of interacting spinless 
fermions by the Jordan-Wigner  transformation. The 
variation of B then corresponds with a change in the 
chemical potential, and hence in the number of par- 
ticles. Thus the SP transition in a magnetic field offers 
the unique possibility of investigating Peierls-type 
transitions as a function of bandfilling. Again there are 
close connections with other physical systems like soli- 
tons in polyacetylene, the lock-in transition in the 1-d 
quantum Sine-Gordon  system (or the 2-d classical 
S ine-Gordon  system), and the antiferromagnetic spin- 
flop transition. 

Due to its low Tsv = 2.03 K, and the correspondingly 
low B~ = 2.26 T, the compound T T F - A u B D T  is par- 
ticularly suited for such field dependent studies. Our 
group has performed field-dependent specific heat, 
magnetic susceptibility, pulse-NMR and magnetization 
measurements [3-6]. In fig. 3 we show the experimental 
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phase diagram and compare it with theoretical predict- 
ions by Bulaevskii et al. (BBK) [29] and by Cross [30]. 
The latter theory is in good agreement with the experi- 
ment. The phases in the diagram are the paramagnetic 
(P) phase, the (dimerized) commensurate (C) phase, and 
the incommensurate (IC) phase. In fig. 4a we show the 
inverse H W H M  of the proton spin-echo in the pulse- 
N M R  experiment [6] as a function of field at T =  0.57 
K and T = 1.35 K. The low-T data show a sharp transi- 
tion around B c = 2.26 T accompanied with some hyster- 
esis (0.04 T). Similar jumps were seen up to 1.0 K, 
whereafter the transition becomes less abrupt, as seen 
for T =  1.35 K in fig. 4a. This would indicate that the 
transition becomes lst-order below about 1 K. The 
shape of the echo-signal at T = 1.0 K for various fields 
around B~ shown in fig. 4a agrees with this idea, since 
the echo-signal appears to be composed of a broad and 
a narrow component over an interval of 0.04 T around 
B~,, suggesting the coexistence of two phases. 

We recall that the echo-shape is the Fourier trans- 
form of the inhomogeneous part of the lineshape, as 
caused by the local fields exerted by the electron spins 

of the TTF molecules on the proton spins. By calculat- 
ing the line-shape for different possible spin-configura- 
tions and comparing it with the experiment, information 
on the magnetic structure of the high-field phase is 
obtained. We have shown [6] that the echo-shape for 
B > B~ is in good agreement with what is calculated for 
the soliton-lattice model of Nakano and Fukuyama [24]. 
In their model a C IC transition occurs at B c, above 
which the system is described by domains of dimerized 
regions separated by walls over which the lattice is 
incommensurate. Each wall carries a net spin ½ pointing 
parallel to the field, such that the wall density is de- 
termined by the value of the magnetization (at T - 0  
only the walls contribute to M). Apart from the net 
spin ~ there is also associated with each soliton a 
non-vanishing staggered magnetization. We have argued 
that the latter in fact gives the dominant  contribution to 
the N M R  linewidth [6]. In the theory there is no con- 
sensus on whether the C - I C  transition is lst-  or 2nd- 
order, whereas the P - I C  transition from the para- 
magnetic phase is 2nd-order. Experimentally, broad 
transitions are observed along the P IC line in both the 
spin-echo width (fig. 4b) and in the differential suscept- 
ibility X (fig. 5a). So broad in fact that it is not possible 
to say experimentally whether it is 2nd- or higher order. 
The C IC transition appears to be lst-order on basis of 
the N M R  data, but 2nd-order on basis of the magneti- 
zation (see fig. 5b, and below). 

For some time we have even put in doubt whether 
the X maxima observed at the P - I C  line did indicate a 
true phase transition at all [3,18,19]. This arose e.g. from 
time-dependent effects which emerged from a compari- 
son of the ac X measured at 1880 Hz and the isothermal 
(static) X derived from the M ( B )  curve measured at 
1.10 K [3]. These effects prompted us to extend the 
measurements of X and M to lower temperatures, and 
some of our latest results are shown in figs. 5a,b. Quite 
surprisingly the ac X curves shown are independent of 
the frequency in the covered range of 18-1880 Hz, 
although in the IC-phase the differential X is much 
smaller than the static X. This indicates a relaxation 
effect with an extremely small relaxation frequency (i.e. 
lower than l Hz, but larger than 0.01 Hz since time-ef- 
fects larger than 100 s have not been seen m the 
magnetization studies). 

Such extreme relaxation effects are compatible 
though with the soliton-lattice picture for the IC-phase. 
We recall that the value of M determines the density of 
domain walls, so that to obtain a variation AM by a 
field variation AB, a change kn~ of the soliton density 
is needed. To obtain such a An~ in the experimental 
molecular crystal may very well imply a large time 
constant [27]. From the nature of the SP-transition it is 
highly probable that domain walls in adjacent chains 
are coupled to form planar-type walls extending over 
large distances. Further, to arrive at the discommensura- 
tions across the wall width implies the tilting of large 
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organic  molecules.  It is thus  conceivable  that  a An 
entai ls  large t ime cons t an t s  (see also ref. [27]). 

F r o m  the M ( B )  curves in fig. 5b it can be conc luded  
that  the static X for B > 3 T is nearly i n d e p e n d e n t  of  
t empe ra tu r e  in bo th  the IC and the P phase.  Only  for 
fields closer  to B~, t empera tu re  d e p e n d e n t  effects  are 
seen.  This has been  conf i rmed  in isofield runs of  M 
versus t empera ture .  The  conc lus ion  is that  for B > 3 T 
the static X and  M are a lmost  insensi t ive to the 1 U 
t ransi t ion.  The  knee obse rved  in fig. 5a for a field of  5.2 
T is there fore  only due  to the t i m e - d e p e n d e n t  effects  
m e n t i o n e d  above.  The  general  appea rance  of  the M ( B )  
curves  would  agree with a 2nd-,  ra ther  than  with a 
l s t - o rde r  C - I C  t ransi t ion.  However ,  s imilar  smoo th  
curves  were obse rved  [19,22] for T T F  CuBDT,  which 

never theless  show a c c o m p a n y i n g  hysteresis .  We ob-  
served no hysteresis  for T T F - A u B D T  in the M ( B )  
curves,  but  s ince it is p robab ly  small (0.04 T) on basis  of  
the N M R  results,  it may have gone unnot iced .  
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