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NON-LINEAR DYNAMICAL EXCITATIONS 
IN LOW-DIMENSIONAL MAGNETS 
H.J.M. DE GROOT, L.J. DE JONGH, M. ELMASSALAMI, 

H.H.A. SMIT and R.C. THIEL 

Kamerlingh Onnes Laboratorium der Rijksuniversiteit Leiden, Nieuwsteeg 18, 2311 SB 
Leiden, Nederland 

M~ssbauer effect spectroscopy provides an excellent probe to 
study domain wall dynamics in the quasi l-d Ising-type mag- 
netic chain. Theoretical aspects of moving domain walls (non- 
linear excitations, kinks, solitons) are briefly discussed, 
both for quantum and classical l-d systems. We review expe- 
rimental data on Fe(N2H5)2(S04)2, RbFeCI3.2H20 and 
FeCI2(NCsHs) 2. Analysis of the spectra is performed in two 
different ways: by extracting linewidths, and by fitting to 
the Blume-Tjon relaxation model, which is argued to give the 
exact description for the M~ssbauer spectrum of a magnetic 
chain, subject to free-kink behaviour. Differences between 
this theory and experiments are discussed. 

i. INTRODUCTION 

In a number of previous papers /1-4/ we have shown that the dy- 
namics of domain walls (kinks, solitons) and other nonlinear excita- 
tions in magnetic chains may be conveniently studied by means of the 
M~ssbauer effect (ME). Domain walls are highly localized excitations, 
corresponding to transition-regions between two different but ener- 
getically degenerate ground states. In a ferromagnet such walls con- 
nect neighbouring spin-up and spin-down regions, whereas in an anti- 
ferromagnet they form the liaison between the two ground state-confi- 
gurations obtained by interchange of the two sublattices (cf. fig.l). 

Evidently, the passage of a kink at a given site flips the 
electronic spin of the atom. If the atom has a M~ssbauer nucleus the 
hyperfine field Bhf will likewise be reversed, so that the flip rate 
may be probed, provided that it is within the frequency window of the 
M~ssbauer effect (0.I MHz - 5.102 MHz for 57Fe). Flips of the 
electronic spins are of course also observed byQME due to other types 
of relaxation effects as e.g. (super-)paramagnetic relaxation /6/. 
However, the physics behind it is much richer, and consequently it 
can easily be identified and separated from the other effects, as 
will be discussed below. 

Perhaps superfluously, we remark that nonlinear phenomena are by 
no means restricted to magnetism. During the last few years they have 
become increasingly more important in many different fields, notably 
in the various branches of solid state physics and chemistry. They 
occur in ferro- and antiferromagnetics /5/, structural transitions 
/7/, commensurate-incommensurate problems /8/, hydrogen-bonded struc- 
tures /9/, polymeric chains /i0/, spin- and charge-density-wave sys- 
tems /11,12/, etc., etc. In general one may expect a dynamical behav- 
iour to be associated with these walls. In truly one-dimensional sys- 
tems they can move freely, whereas in higher dimensions walls tend to 
be pinned by lattice defects, magnetostatic effects, etc. Neverthe- 
less, dynamic effects on a smaller scale may still occur, due e.g. to 
meandering of the walls /13/. In certain cases these effects are al- 
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Fig. i. Non-linear excitations in magnetic chains. 
a,b Topological excitation (~-soliton) in a classical ferro- and 

anti ferromagnetic chain. 
c,d Topological excitation (domain wall) in the S=�89 antiferro- 

and ferromagnetic Ising chain. 
e Wall-pair excitation in a ferromagnetic S=�89 Ising chain (this 

excitation is topologically equivalent to the ground-state). 

most negligible, as for the ordered 3-d ferromagnet, where, except 
for a small critical region (AT/T c = 0.01) around the phase transi- 
tion the wall-pattern appears to be static. On the other hand, in 
disordered or random 3-d and 2-d systems, wall-dynamics (or cluster- 
dynamics) is again possible /14/ over wide temperature ranges above 
the freezing temperature, as for example in spin glasses and amor- 
phous magnets. It is our conviction that the M~ssbauer effect pre- 
sents an excellent probe for the study of these other nonlinear pro- 
blems as well, so that the ideas developed in the course of magnetic 
domain-wall studies in quasi l-d systems may actually have a much 
wider applicability. 

The outline of this brief review is as follows. In the next sec- 
tion some experimental details of the investigated samples are sum- 
marized. In sections 3 and 4 the relevant theoretical concepts on the 
domain wall behaviour are given. An illustrative example of the ob- 
served line-broadening is presented in section 5. Thereupon the more 
extensive methods of analysis of the M~ssbauer spectra are outlined 
in section 6, and are applied to the other experimental results in 
the last section. 

2. DETAILS OF THE INVESTIGATED COMPOUNDS 

In the course of a systematic investigation of nonlinear effects 
we have studied several quasi l-d magnets with Ising-type anisotropy. 
In the present section we briefly discuss the magnetic properties of 
the compounds, which are listed in table I. All are high-spin Fe 2+ 
compounds, for which the strong magnetic anisotropies are due to 
crystal field effects. 

The compound RbFeCI3.2H20 is a quasi l-d Ising antiferromagnet 
with effective spin S = �89 In this case the Fe 2+ ion has a doublet 
electronic ground state, the other levels being at least 60 K higher 
in energy /15/. Therefore, the low-temperature magnetic properties 
are well described by the hamiltonian 

N-I 
x x y y sZs z 

: -2Jx i:lZ [SiSi+l + ~(SiSi+l + i i+l ]] ' (1) 
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Table I 
Anisotropy and exchange constants together with calculated and expe- 
rimental values for the soliton energies for the various compounds. 

compound E calc Eexp 
eff. spin J/k B Dz/k B Dx/k B s s 

S (K) (K) (K) (K) (K) 

RbFeCI3.2H20 �89 -39 - - 39 

115• 

(B=0T) 

105• 

(B=I.5T) 

1 3.3 10.5 9.2 22 

FeCI2 (NCsHs)2 60 _+ 5 

�89 25 - - 25 

Fe(N2Hs)2(SO4) 2 2 -2.0 5.6 0.8 20.2 44 • 5 

with intrachain exchange constant Jx < 0 and e = �89 + Jz)/Jx. The 
magnetic coupling between the chains is two orders of magnitude 
smaller than Jz" The value of J_ was obtained by Kopinga et al. /16/, 
from an analysls of the specifi~ heat. An accurate value for ~ is not 
known, but an upper limit ca R be estimated from the anisotropy in the 
g-factor, since E = (gL/g11] 2. From the behaviour of the magnetic 
susceptibility (X) /15/ it was found that gx = gll = 9.6 and 
g- z = gl = 0.5. Thus the anisotropy is strong (e = 0.2) and almost 
u~axial (J. = Jz] ' with the x-axis as the easy axis. 

The s~cond compound, FeCI2(NC5Hs) 2 is an approximation of the 
Ising-type ferromagnetic chain /17/. In an earlier short note /2/ we 
have already presented x-data for this system, and in a phenomenolog- 
ical approach we compared these with the prediction for the ferromag- 
netic S = �89 Ising chain, i.e. eq.(1) with Jx > 0 and e = 0. Good 
agreement was obtained with Jx/kB = 25 K. Meanwhile we have studied 
the crystal-field symmetry in more detail, through its effects on the 
M~ssbauer and the optical /18/ spectra. It appears that the total 
splitting of the lowest quintuplet of the (L=2, S=2) Fe 2+ ion amounts 
to 130 K. It can be divided into a doublet and a triplet, the latter 
being lowest in energy. The splitting of the triplet is 20 K. There- 
fore the lowest three levels determine the low-temperature properties 
and it is appropriate to take up a description in terms of an effec- 
tive spin S = i. The hamiltonian for the magnetic chain can be 
written as the sum of an isotropic Heisenberg interaction plus 
orthorhombic anisotropy terms. 

=  [-2J  i i+l Dx(s2)2 + Dz(S )2] (2) 
i 
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The anisotropy constants Dx,D z are given in table I and were chosen 
so that they reproduce the sp%itting of the lowest three levels for 
S = i. The value of the exchange-constant J/k B = 3.3 K was deduced 
from the high-temperature tail of the X-curve, which was fitted to 
the Curie-Weiss expression X = C/(T-e~. This yields an estimate for 
the exchange-parameter, since J/k B = 3/4 e/S(S+I) for the quasi l-d 
magnet. 

The third system, Fe(N2Hs)2(SO~) 2 is an S = 2 antiferromagnetic 
chain and can also be described by a Hamiltonian of the form (2), 
with J < 0. Values for J/k B and the easy-plane anisotropy D z were ob- 
tained by Witteveen et al. /19/. We estimated the strength of the 
Ising-anisotropy D x from the value of the in-plane "spinflop" field 
/19/ Bsf = 7.5 T with the relation D x = g2~B2 B~f/161JI S 2. We have 
also recalculated the low-temperature crystal-field properties /20/ 
for this compound, and the results support the S = 2 picture, since 
the overall splitting of the levels in the lowest quintuplet amounts 
to 25 K. Also the magnitude of the easy-plane anisotropy D z is in 
agreement with the crystal-field calculations. As regards the easy- 
axis anisotropy Dx, its magnitude is too small to be determined from 
the M~ssbauer data because after subtraction of the lattice contribu- 
tion one has DVzz = 0. 

3. KINKS IN MAGNETIC CHAINS 

Theoretically it has been known for some time already /21/ that 
the motion of domain walls in anisotropic ferromagnets (see fig. i) 
should obey the sine-Gordon equation, so that they can be considered 
as soliton-type excitations. They are highly stable, localized exci- 
tations, and should be able to propagate along the chains as long as 
the interaction is not of the pure Ising-type. More recently it was 
shown that the same type of excitations can be expected in antifer- 
romagnetic chains as well /22,23/. 

In the experimental examples given in the present work, the an- 
isotropy is very strong. To treat such anisotropic cases two possible 
routes present themselves. First, one may describe the Ising-type 
chain by a classical Heisenberg hamiltonian (2) with a uniaxial or 
orthorhombic anisotropy-term. Second, one may consider a strong ex- 
change anisotropy in a quantum-mechanical interaction hamiltonian 
(i). Both cases will be discussed below. In the first treatment, one 
starts with the hamiltonian for classical spin vectors ~., as given 
by eq.(2), with J > 0 for the ferromagnetic and J < 0 fo~ the anti- 
ferromagnetic chain. If we choose Dx, D~> 0 it follows that the total 
energy in the system is lowest when t~he spins are along the x-axis, 
the z- and y-direction corresponding to the hard and the intermediate 
axis respectively. Also for orthorhombic symmetry the anisotropy can 
be considered as effectively Ising. As seen in fig. 1 for both the 
ferro ~ and antiferromagnetic domain wall, the moments rotate through 
an angle ~ over the wall-width. If the wall is N spins wide, the 
energy may be estimated as the sum of exchange- and anisotropy terms 
/24/, yielding 

E = ~21Jl S2/N + ND S 2 (3) 
s x 

The wall-energy and wall-width d s = a~N (a o the lattice-constant) may 
be obtained by minimizing E s ~with U respect to N, and one finds 
E~ ~ /~D-~ and N ~ /~J~x I . The domain wall is indeed localized, and 
h~s finite width due to the fact that the two terms in eq.(3) com- 
pete. Such a competition between two energy-terms is a general 
property of kink-bearing systems. Since systems with two (or more) 
competing energy-terms are quite abundant in nature, this explains at 



H.J.M. de Groot, et al., Low-dimensional magnets 97 

Table II 
Relations between the parameters in the anisotropic Heisenberg hamil- 
tonian (3) and the sine-Gordon hamiltonian (4) for the ferromagnetic 
(J > 0) and the antiferromagnetic (J < 0) case. 

E o m 2 c o E s = 8mE o 

J > 0 �89 JS2 Dx/J 2/DzJ S 4S 2 /DxJ 

J < 0 �89 2 Dx/r j i 4iJl S 4S 2 JIDxJ l 

the same time the succes of the domain wall concept in describing 
physical phenomena. 

As regards the magnetic chain hamiltonian (2) with J < 0 it has 
been shown /22/ that in the continuum limit this reduces to the 
classical sine-Gordon (SG) hamiltonian 

X SG 4E O f ~[~j + ( )2 m2 2 cOS 2%] (4) 
--~ O 

This hamiltonian has been completely solved, and it is known that 
three types of excitations may occur: spin waves, solitons and anti- 
solitons (kinks), and breathers /25/. The kink-excitations are extre- 
mely stable, since they are not conserved by the normal conservation 
laws for energy and momentum, but are topologically inequivalent to 
the ground state. The relations between the parameters in hamilto- 
nians (4) and (2) are given in table II. In eq.(4) E O determines the 
energy-scale, ~ denotes the position on the chain and is measured in 
lattice units, and the field '%(~) corresponds to the angle of the 
moments with the x-axis. The maximum (cutoff) velocity of the kink is 
given by c o and the mass m is the inverse of the width d s of the 
kink. 

It is important to note that for the antiferromagnet the SG 
parameters do not depend on D z, i.e. the uniaxial Ising anisotropy D x 
which breaks the symmetry is already sufficient to allow propagation 
of kinks. This is not so for the ferromagnetic case. There the trans- 
formation from (2) to (4) in the continuum limit is more complex and 
is in fact only possible for D~ >> Dy. However, it was shown recently 
/26,27/ that even when this condition is not fulfilled, topologically 
stable kinks occur, where the energy of such a kink is well approxi- 
mated by the prediction from the SG theory: E s = 4S 2 J~l �9 The 
difference comes in the maximum velocity c o that depends on the 

~ ~ ~ V~e t~2sy r ;~~ o2p~ i~s ~D~?zX ~�89 "0 theIt 

kinks are static (c~ = 0), whereas in the SG limit (D. >> D~) one 
obtains c o = 2 J~S. Thus the orthorhombicity of the anlsotropy is 
a necessary prerequisite for the dynamics of ferromagnetic kinks, 
whereas for antiferromagnetic kinks a uniaxial symmetry is sufficient 
to yield propagation (with cutoff velocity c o = 4fJt S). 

In actual experimental examples the anisotropy can be very 
strong, as is the case for RbFeCI3.2H20 (see section 2 and table I). 
From the expression d s = ~ it is clear that for strong aniso- 
tropy the wall-width may ultimately become less than one lattice 
unit. Obviously in this limit the classical SG description based upon 
the continuum limit (wide walls) cannot be applied. One has to take 
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recourse to another formalism, and this brings us to the second ap- 
proach, namely the quantum analogue hamiltonian (I), with strong 
exchange anisotropy, where the spin-components are now quantum- 
mechanical operators (and S = �89 It was first noted by Villain /23/ 
that also in this case walls do exist and may exhibi~ dynamical be- 
haviour, although the physical picture differs somewhat from the SG 
interpretation in the above. There the kinks may be considered as 
free particles that obey usual free-gas statistics. In the S = �89 
Ising-type chain with small transverse exchange (~ << i), on the 
other hand, they should rather be considered as tightly bound to a 
given site i, with a hopping probability towards the sites i• As 
argued by Ishimura and Shiba /28/, the hamiltonian (i) can be reduced 
to the l-d tight-binding model for electrons. In this formalism a 
soliton-band appears, where different states correspond to walls with 
different momentum k. For the antiferromagnet /23/ (all J < 0) the 
wall-energy is expressed as 

Es(k) =IJxl (i + 2 ecos2k) (5) 

For the ferromagnet /29/ (Jx > 0) the situation is again different, 
and it can be shown that the wall-energy then equals 

E(k) =IJxl [i - �89 e 2 + 26 cos2k] (6) 

We obtained eq.(6) by applying the Villain model to the S = �89 Ising- 
type ferromagnetic chain with orthorhombic exchange-anisotropy, where 
6 = �89 If one wishes to associate the band-structure with 
partlcl~-type motion, this can easily be achieved by defining the ve- 
locity as v(k) = 5E(k)/bk for both cases. As in the classical case it 
follows for the antiferromagnet that kink motion is already possible 
for uniaxial anisotropy, whereas for the ferromagnet the orthorhombic 
symmetry is crucial, there being no dispersion if 6 = 0. 

In the continuous SG system the topological conservation is very 
strict. Therefore single kinks may only enter the chain from the 
ends, and furthermore it is possible to excite them in pairs in the 
middle of the chain (cf. fig. i). The same holds for the l-d S = �89 
system. Nevertheless, kinks will be present at any temperature be- 
cause of entropy considerations. According to a well-known simple but 
powerful argument, first formulated by Landau /30/, long-range order 
in l-d systems is impossible for T r 0, due to the formation of do- 
main walls. If the wall-density amounts to n s, the energy- and 
entropy-contributions of the walls to the free energy density may be 
estimated as 

Af = n s (E s - T An ns I) , (7) 

since each wall has a mean free space n[I. It follows immediately 
that for n s sufficiently low, Af becomes negative at T r 0. Thus a 
certain number of walls will always be present. (In fact walls are 
present even at T = 0, if the effect of quantum fluctuations is taken 
into account). 

At sufficiently low temperatures, the density of kinks will be 
very low and one may neglect interactions between them. For a system 
described by the SG hamiltonian, the density is then calculated as 

SG ( s189 
n s = .z. ms(Es/kBT] 2 exp(-Es/kBT ] (8) 
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from an ideal kink-gas treatment /31/. The average kink velocity is 
given by the ~lassical thermal distribution and amounts to 
v~ = c~(E~/2k~T) -~. In the discrete S = �89 system the wall-density may 
- b . . . .  be o tained /32/ by calculating the thermal average over the states 

in the band. This yields 

-Jx/kBT 
n~ M = e Io(2gJx/kBT ) , (9) 

with I o the modified Bessel-function. In this case the average wall 
velocity amounts to Vs=(4kBT/h~)Io-l(2eJx/kRTlsinh(2eJx/kBT ) . 

From the above equations it appears t~at in both the classical 
SG and the QM cases the kink-density is exponentially dependent on 
the kink creation energy E s. In a M~ssbauer experiment one measures 
this kink-density ns, since one observes /1,33/ the flip rate 
F = nsV through line broadening (relaxation effects) and narrowing 
o~ the o~served hyperfine pattern. The ME probe is insensitive to the 
kink structure, since the passage of a kink at a given site is so 
rapid (i0 -II sec) that the ME nucleus experiences it as an instanta- 
neous flip of the hyperfine field ~hf' even if the wall-width should 
be substantial. It is therefore the wall-statistics that is studied 
in the experiments described below. 

4. THE INFLUENCE OF KINKS ON THE MOSSBAUER-LINEWIDTH 

In principle, all the physics of the static as well as the dy- 
namic properties is contained in the spin-spin correlation functions. 
As a consequence of the fact that the passage of a wall is very fast 
compared to characteristic ME times, the perpendicular (to the easy 
axis) spin-components present over the wall-width (cf. fig. la,b) 
will have no effect on the ME spectrum /1,33/ (in the pure Ising-flip 
there are no perpendicular components at all). The major effects will 
be due to the component parallel to the easy axis <Sx(~,t)Sx(0,0)>. 
At low temperatures, where the kink-densities are so low that the 
interactions between kinks can be neglected and the dilute free-kink- 
gas model may be applied to describe the dynamics, this quantity is 
given /22,32/ to a very good approximation by the expression 

< SX(~,t)Sx(0,0)> = S 2 exp [i~v - 2ns(~2 + v2t2) �89 s t (lO) 

where v = 0 for the ferromagnet and v = 1 for the antiferromagnet. 
Since the ME is a local probe, it is the autocorrelation function 
that is measured. Putting ~ = 0 in eq.(9), this function is found to 
be 

< Sx(t)Sx(0)> = S 2 exp(-2F t) , (ii) 

with F = nsV s the flip rate Eqs (i0) and (ii) were argued /32/ to 
be valid both for the classical case as well as for the quantum-case. 

The most striking effect in the M~ssbauer spectrum is the ano- 
malous increase in the linewidth AF. This excess linewidth is 
directly related /i/ to the autocorrelation function by the expres- 
sion AF ~ F~/(2~ + F 21. The ME is thus sensitive to the kink- 
process in the temperature region where F~ is comparable to the char- 
acteristic time of the ME experiment determined by. the nuclear 
Larmor-frequency ~L = 107 s-l" Thus at high temperatures, where the 
flip rate is very fast compared to eL, one has AF ~ I/F~. In this 
region the "exchange-narrowing" of the effective hyperfine field due 
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to high-frequency fluctuations of the electronic spin is the main 
mechanism that causes line-broadening. As the temperature is lowered 
~F will pass through a maximum near ~L" Then another physical process 
takes over, namely nuclear spin relaxation. Finally, for slow fluc- 
tuations Fm << ~L one has ~F ~ F~, so that the broadening will again 
disappear. Thus the whole line broadening process can be seen as 
arising from the combination of relaxation due to transitions between 
different nuclear spin-states induced by the electronic spin-flips 
and the vanishing of ~hf at high T when the flip rate becomes very 
fast. 

Since ~L is of the order of 107s -I, the ME provides a valuable 
complementary probe to investigate the wall-dynamics, as compared to 
quasi-elastic neutron-scattering. There one may probe the full 
(space-time) fourier-transform of the correlation function, the dy- 
namic structure factor, which is expressed as 

$2 q*2 
4~ns [ + (~)2 + (2ns12]-3/2 

Sx(k'~) - v , (12) 
s s 

with q* = q for the ferromagnet and q* = q-~ for the antiferromagnet 
/32/. Eq.(12) describes the shape of the central peak that appears in 
the neutron diffraction pattern and may be probed by varying both k 
and ~. However, one is restricted in frequency to 109 Hz as a lower 
limit. Considering that Sx(k,~) peaks at ~ = 0 with a FWHM 
A~ = 1.53 F , the lowest values for F that may be obtained with good 
accuracy ar~ of the order of 10 -2 THe. Therefore only processes that 
take place on short time-scales (t < i0 -I0 sec) are detected by 
neutron scattering. The ME, although a local probe, measures orders 
of magnitude longer (time scales 10-9-10 -5 s) and thus provides 
additional information about the dynamics of the kinks close to the 
maximum of the central peak, given by eq.(12). 

5. LINE BROADENING IN Fe(N2H5)2(SO4) 2 

As an example we show in fig. 2 some ME spectra taken for 
Fe(N2H5)2(SO4) 2. At the highest temperatures, only the quadrupole 
splitting is present and a doublet is observed. As the temperature is 
lowered, F~ decreases and the effective hyperfine field Bhf increas- 
es. At 6.3 K (well above T c = 6.0 K) one already has a fully magnet- 
ically split spectrum, but still with very broad lines. At the lowest 
temperatures measured, the lines are narrow again, since the relaxa- 
tion is outside the M~ssbauer frequency window. The spectra were 
fitted with a superposition of lorentzian lines, and in fig. 3 we 
have plotted the linewidth F = ~F + F o versus T -I. In the ideal case 
F o would be equal to the natural linewidth (0.194 mm/sec for 57Fe). 
In an experimental system however, there is always some excess line- 
width that may be caused by effects such as small vibrations in the 
equipment. We have taken F_ from an experiment on FexZnl_ x 
(N2H5)2(SO4)2, with x = 0.07. ~ince Zn 2+ is nonmagnetic, most of the 
(magnetic) Fe ions (= 85%) are in a nonmagnetic surrounding. A spec- 
trum was taken at T = 4.2 K (well below T_ = 6.0 K in the pure Fe 
compound) and indeed a narrow quadrupole ~oublet was observed. We 
note that this experiment at the same time definitely excludes the 
possibility of ascribing the observed broadening to single-ion re- 
laxation effects. The experimental linewidth in this spectrum 
(F = 0.32 mm/sec) was used as rest linewidth F o in the analysis of 
the spectra taken for the pure compound. From fig. 4 one concludes 
that AF increases and decreases exponentially as the temperature 
decreases, in agreement with the prediction from the kink free-gas 
theory. The decrease of ~F, however, is much sharper below T c. We 
interpret this as a blocking of the walls by the 3-d long-range 
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Fe (N2H 5 )2 (5 0 4 )2 
Fig. 2. Some representative MSss- 
bauer transmission spectra taken 
from Fe(N2H5)2(SO4) 2 at different 
temperatures. 
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o r d e r ,  so t h a t  t h e  p r o p a g a t i o n  s t o p s  and t h u s  t h e  r e l a x a t i o n  i n  t h e  
ME disappears. 

Also shown in this figure are data for &F taken from source 
measurements in 57C0 in Co(N2H5)2(SO~) 2. In this compound the line- 
width is constant over the whole temperature region, and stays at a 
10w value, although this steady F o is somewhat larger than in the Fe- 
chain, due to the different and more difficult circumstances in a 
source-measurement. The reason for this behaviour is that in the Co- 
chain the anisotropy is of the XY instead of the Ising-type. It was 
explained in section 3 that the domain walls only occur when the 
symmetry is broken by an Ising-type component of sufficient strength. 
Therefore the absence of broadening in the otherwise isostructural 
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1. s I ~ ~:-Fe(N2Hs)2[S04)2- - -  . 

u 1"7 57 

~' ~ :~ Co:ColN2Hs)2(SQ) 2 

t/) T , liE- " E 

.~E 1. 0 
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No.s 
L ~  
Z 
_..1 

0.0 ' ' ' ' ' 

o.oo o.os o. o o. s 0.20 o.2s 

INVERSE TEMPERATURE (K -1) 
Fig. 3. Linewidth versus inverse temperature for the 
Fe(N2H 5)2 (SO4)2 (o) and Co(N2H 5)2 (S04)2 (A) compounds. The spectra 
were fitted with a superposition of lorentzian lines. The solid line 
represents the calculated behaviour according to the free-kink gas 
model, with E s = 44 K. The residual linewidth (Fo) at high tempe- 
ratures is somewhat less than at low temperatures. 

Co-compound provides additional evidence in favour of the kink-model 
explanation for the broadening in the Fe compound. 

The set of experiments discussed in the above yield strong evi- 
dence that the relaxation effects are due to collective spin process- 
es in the quasi l-d Ising system, and also the specific features 
predicted by the kink free-gas model appear to be nicely reproduced. 
In practice, however, it is cumbersome (and even questionable) to 
extract AF directly from the spectra, and in order to improve the 
accuracy of the analyses, we have chosen another approac h which will 
be discussed in the next section. 

6. ANALYSIS OF THE MOSSBAUER DATA IN TERMS OF BLUME-TJON FITS 

In order to improve the method of analysis we decided to abandon 
the method of extracting linewidths directly, since it is not accu- 
rate enough. For the 57Fe nucleus there are actually four values of 

, differing by about one order of magnitude. This is reflected in 
t~e asymmetric line broadening of the doublet at the higher tempera- 
tures (cf. fig. 3). In addition the line shapes become nonlorentzian 
for F e = eL, and the number of lines changes from two (the quadrupole 
doublet) to six or eight (the fully hyperfine split spectrum). This 
makes it impossible to determine AF directly in the region close to 
e L, which is just where crucial information about the flipping pro- 
cess can be obtained. Finally, there is quite a lot more potential 
information contained in the spectra on this process, notably in the 
form of the frequency (F ) dependence of the line-positions and the 
line-intensities, e 
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In order to take advantage of the complete information hidden in 
the M~ssbauer spectra, we have followed another approach, where we 
actually calculate exactly the resonance conditions (i.e. the total 
spectrum) for the MSssbauer nucleus in the presence of the nonlinear 
excitations. Since in the free-kink gas approximation the wall-motion 
causes stochastic spin-flips, this can be done in an elegant way. The 
resonance condition for the MSssbauer photon may be written as 

We,g(~)~ 2Fo I Re f dt exp[(i~- �89 Fo)t ] Z < e'1H-Ig'>< glU%H+Ule> . 
o e,g 

e',g' (13) 

Here he is the energy of the ME photon, I e> and I g> are the nuclear 
excited and ground-state, respectively, and U(t) = exp(-i~t) is the 
time-evolution operator for the total solid state, with hamiltonian 
~, that enters in the multipole-operator U%H+U, in the Heisenberg re- 
presentation. For U %= U = 1 (static limit), eq.(13) yields the super 
position of lorentzian lines with FWHM F that are normally used to 
fit spectra. In general, calculation of~ spectrum from eq.(13) 
will be fairly complex. For the present purpose, however, it may be 
greatly simplified. Since the dominant interactions between the ME 
nucleus and the solid state are the hyperfine interactions between 
the electrons and nucleus of the same atom, which are very small com- 
pared to the intra-nuclear interactions, the nuclear hamiltonian may 
be written as: ~ = ~_ + X + ~ with ~- the intra-nuclear hamiltoni- en c 
an, and ~en and ~c the perturbations due to the surrounding solid 
state. Here Xc represents the electric monopole interaction, which is 
of electrostatic origin and will be left aside in the discussion 
below. The time-dependence enters via the hamiltonian that describes 
the electronic-nuclear interaction ~ , which is given by ~ n=~+~_. @n e 
Here ~O is the electric quadrupole interaction and ~M = -g~n~hf (t~T 
is the-magnetic dipole interaction. The influence of s surrounding 
solid state is contained in the EFG tensor (Vzz(t), ~(t)) and the 
effective hyperfine field (~hf.(t)). However, since the quadrupole 
interaction is of electric orlgln (and is time-even), it is not dis- 
turbed by magnetic domain wall-processes. This is not the case for 
~hf" In principle, three contributions to ~hf may be distinguished, 
namely the contributions due to the Fermi-contact interactions, due 
to the orbital moment and due to the dipolar interaction. All these 
are proportional to ~ or ~ . Since the only effect relevant to the 
ME is the reversal of the total electronic spin upon the passage of a 
kink, i.e. the change of the sign of the components S i and~• , 
the time-dependent hyperfine field can be written as ~hf(t)=~ff(t), 
where f(t) is a stochastic variable that jumps between • each time a 
kink passes. 

Some time ago already, Blume and Tjon (BT) /34/ proposed an 
exact treatment for the elaboration of eq.(13) in case of a process 
of the type described in eq.(13). Extending their work, Clauser, and 
Shenoy et al. obtained an expression that is easily handled in a 
computer fitting procedure, and is given by 

We,g(~) = Re Z (<e'IH-I g'>V) (V-I<glH+I e>)/(A - i~I) (14) 
?, 

e ,~' 
Here I is the unit matrix and V, A are the eigen vectors and eigen 
values of a Liouville operator ~x, defined by 

�9 x x FM ) - F I (15) ~x = W + I(~Q FQ + ~(M o 
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Here W is a matrix that contains all the physical information about 
the stochastic process and F is a diagonal matrix whose elements are 
the values assumed by the stochastic function f(t). These matrices 
are given by 

; FQ = , F M = W = F~ -F~ 

Thus the fact that ~hf jumps between two well-defined values 
permits the application o'~ the BT relaxation model. Within this 
formalism the resonance conditions for the M~ssbauer nucleus in the 
presence of stochastic domain-wall motion can be exactly calculated. 
This provides a way to test unambiguously whether soliton-type pro- 
cesses are indeed responsible for the relaxationeffects observed in 
the spectra. By fitting eq.(14) to the experimental data the analysis 
becomes quite straightforward. In the fitting procedures the proper- 
ties of the spectrum without relaxation effects are always determined 
separately at very low and very high temperatures, such that F is 
outside the M~ssbauer window set by the steady width F O. This leaves 
F~ as the only temperature-dependent adjustable parameter needed in 
fltting the computed spectra to the experimental ones and therefore 
this relaxation rate can be accurately studied as a function of dif- 
ferent thermodynamic parameters (temperature, magnetic field, impuri- 
ties). Some illustrative examples are discussed in the next section. 

Fig. 4. M~ssbauer spectra 
taken from RbFeCI3.2H20 
in an applied field 
B = 1.5 T. Solid lines 
represent the fits to the 
BT model. 
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7. EXPERIMENTAL RESULTS ANALYSED WITH THE BLUME-TJON MODEL 

In fig. 4, some representative spectra are shown /4/ that were 
taken for RbFeCI3.2H20 in a magnetic field B = 1.5 T applied along 
the c-axis. The solid lines represent the fits to the relaxation 
model described in the previous section and show how good the BT 
model may work in specific cases. We shall briefly discuss the 
phenomena that are seen in fig. 4. At the lowest temperature 
(T = 4.2 K) the lines are narrow (F = 0.26 mm/sec), but as the 
temperature is increased to 9.5 K the lines start to broaden, an 
indication that the flip rate F, is inside the M~ssbauer window. 
Further increase of T causes sti~l faster flipping and at T = 30 K 
the lines are narrow again and F~ is outside the window on the high- 
frequency side. The small splitting observed in the T = 30 K spectrum 
is due to the applied field. In fig. 5 another example is given /2/, 
namely Fe I cCdcCl2(NCsH5)2 with c = 0.47%. Again the solid lines are 
the fits t-o the relaxation model and the general features are com- 
parable to those in fig. 4. 

Results for F~ are given in figs. 6 and 7. The data in fig. 6 
concern RbFeCI3.2H20, both in zero field and for B c = 1.5 T. In zero 
field this system undergoes a transition towards 3-d long-range order 
at T N = 11.96 K, but it has the special property that for B c > 1.24 T 
the 3-d order is completely absent, even at the lowest temperatures 
/37/. This arises from the fact that in an antiferromagnet T c is 
reduced to zero by a sufficiently strong field. The value of T N is 
indicated by the arrow in fig. 6. The data in fig. 7 are for 
Fe I cCdcCI2(NC5H5)2 . Dilution of FeCI2(NCsH5) 2 with small amounts of 
nonmagnetic. Cd characteristically reduces the magnetic correlation 
length (~la ~ c -I), whereas the general behaviour of the magnetic 
chain is matx altered. Since k T = ~id j,l S2I , with J' the interchain B c 

Fig. 5. M~ssbauer spectra 
taken from 
FeI__Cd_(NC5H5) 2 with 
c=0.~7%~ Solid lines re- 
present the fits to the 
BT model. 
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Fig. 6 Results from the analysis with the BT model: flip rate versus 
inverse temperature for RbFeCI3.2H20, in zero field and in an applied 
field of B = 1.5 T. 
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exchange interaction, a decrease of ~Id reduces T c and thus has the 
same effect as application of a field B c in the case of RbFeCI3.2H20: 
the 3-d order is suppressed and T^ becomes lower with respect to the 
value in the pure compound (T c = ~.6 K; as indicated by the arrow in 
fig. 7). Such tricks enable a check on the blocking effect of 3-d 
order on the wall-dynamics, both in the ferromagnetic and in the 
antiferromagnetic examples. It appears that the effects of the 3-d 
order are comparable to those observed in Fe(N2H5)2(SO~)2 (fig. 3). 
In RbFeCI3.2H20 with B~ = 0, F~ varies exponentially with T -1 but 
drops sharply at T~ an~ rapidly falls outside the M~ssbauer window 
(fig. 6). The same-holds for pure FeCI2(NCsH5) 2. However, when T c is 
suppressed either by putting a field on the system or by diluting 
with nonmagnetic ions, F~ behaves exponentially down to the lowest 
frequencies that may be observed with the M6ssbauer nucleus. When the 
system is 3-d ordered the kinks should become frozen and accordingly 
no dynamics is observed. 

In the FeI_cMcCI2(NCsH5) 2 systems the coupling between the 
chain-segments on both sides of an impurity should remain present if 
a magnetic impurity ion is taken for M instead of nonmagnetic Cd. 
This is confirmed by the data /38/ in fig. 8, where results for F m 
versus T -I with small amounts of magnetic impurities (Ni, Mn, Co, Cu] 
are shown. The data for the pure compound are included for compari- 
son. The Tc-Values correspond to those deduced from x-measurements. 
They differ slightly for each kind of magnetic impurity, as expected, 
since they obviously will depend on the strength of the interactions 

Fe ion. An inter- between the impurity moment and the neighbouring 2+ 
esting point is that both dilution experiments, with magnetic as well 
as nonmagnetic impurities, show no variation in the slope of the ex- 
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0,6 / ~  Fig. 9. Linewidth versus in- 

verse temperature for the 
pure FeCI 2 (NCsH 5 ) 2 and the 
two cadmium-diluted samples. 
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perimental curves. Only a slight shift along the temperature axis 
occurs. This is also seen in fig. 9, where we show the results of the 
method of analysis of the linewidth for the Cd-diluted compounds and 
the pure compounds. The most striking effect in this picture is the 
removal of T c in the Cd-containing compounds, revealing the full 
symmetric excess-linewidth behaviour. The shift towards higher tem- 
peratures upon dilution is indicated by the dashed line in this 
figure. 

The exponential variation of F,.~ with T -I is in good qualitative 
agreement with the predictions from the free-kink gas model. As was 
explained in section 3, one has F~ = nsV s and thus F ~ exp(-Es/kBT). 
However, if one compares the experimental values ~or E_ with the 
theoretical ones, one finds an important difference. Bot~ are men- 
tioned in table I for all compounds. It appears that the exponents 
observed are all of the order of 2E s. It is as if only wall-pair 
excitations (which have an excitation energy of 2E s) are seen in the 
M~ssbauer spectrum, in contrast to what the theory predicts. It may 
be noted that the prediction is not only from free-kink gas theory 
but also follows from the exact expression for the correlation length 
o~ the Ising chain (i.e. hamiltonian (i) with s = 0), 

o = _[~n(tanh~Jy/2kBTll]-l, ~hich may be approximated at low tem- 
peratures (T << ~x/kB) by ~• = �89 exp(Jx/kBTl. Since E= § Jx for 
e § u ~eq.(5)), this is in agreement with the free-kink ~as model, 
where one has /32/ ~id = �89 n~l ~ exp[Es~k~Tl. Furthermore~we remark 
that the same functional dependence of ~• obtained in transfer- 
matrix /32/ and finite-chain calculations /39/. Essentially, the tem- 
perature dependeD~e of the correlation length in Ising-type chains is 
thus given by ~ia ~ expIEs/kBT), with E s the excitation energy of a 
single kink. This has been verified in quite a number of experiments 
on domain walls in magnetic chains, notably the neutron scattering 
studies on TMMC /40/, and on CsCoCI 3 /41,42/ and CsCoBr 3 /43/. A 
recent study by two of us on the phase diagrams of quasi l-d antifer- 
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romagnets /44/ revealed the same dependence of ~id~ onl~s. We are 
therefore confident that the single-kink density n s i/~ u is indeed 
given by n s = exp(-Es/kBT ). 

However, the M~ssbauer experiments are quite conclusive as well. 
They yield F. = exp(-2E./kBT ), where E. is calculated from exchange 
and anisotrop~y constant~ determined in'separate experiments (X, spe- 
cific heat). A possible way-out of this dilemma would be that the F~ 
seen by the ME probe corresponds to the excitation of wall-pairs, the 
actual single-kink density being very much higher. For example, the 
typical experimental value F~ =i0 MHz yields a (very low) density 
n s = 2.10 -~ for RbFeCI3.2H20 if the relationship F~ = nsV s is as- 
sumed. On the other hand a more reasonable value of n_ = 4.10 -2 is 
obtained when at the appropriate temperature n s is calculated accord- 
ing to eq.(9), using the parameters in table I for this compound. 

We are presently engaged in trying to solve this puzzle. One 
possibility would be the existence of a soliton-lattice structure, 
static on M~ssbauer time scales, with kinks separated at regular 
average spacings due to repulsive interactions between them. The 
average density of single kinks should be dictated by entropy consi- 
derations. The additional wall-pair excitations would temporarily 
disrupt this structure, which would then be the effect seen by the ME 
probe. 
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