
Deeper clinical document understanding using relation extraction
Ul Haq, H.; Kocaman, V.; Talby, D.; Veyseh, A.P.B.; Dernoncourt, F.; Nguyen, T.H.; Lai,
V.D.

Citation
Ul Haq, H., Kocaman, V., & Talby, D. (2022). Deeper clinical document understanding
using relation extraction. Proceedings Of The Workshop On Scientific Document
Understanding. Retrieved from https://hdl.handle.net/1887/3465976
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3465976
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3465976
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Hasham Ul Haq1, Veysel Kocaman1 and David Talby1

1John Snow Labs inc. 16192 Coastal Highway, Lewes, DE 19958, USA

Abstract
The surging amount of biomedical literature & digital clinical records presents a growing need for text mining techniques
that can not only identify but also semantically relate entities in unstructured data. In this paper we propose a text mining
framework comprising of Named Entity Recognition (NER) and Relation Extraction (RE) models, which expands on previous
work in three main ways. First, we introduce two new RE model architectures – an accuracy-optimized one based on BioBERT
and a speed-optimized one utilizing crafted features over a Fully Connected Neural Network (FCNN). Second, we evaluate
both models on public benchmark datasets and obtain new state-of-the-art F1 scores on the 2012 i2b2 Clinical Temporal
Relations challenge (F1 of 73.6, +1.2% over the previous SOTA), the 2010 i2b2 Clinical Relations challenge (F1 of 69.1, +1.2%),
the 2019 Phenotype-Gene Relations dataset (F1 of 87.9, +8.5%), the 2012 Adverse Drug Events Drug-Reaction dataset (F1 of
90.0, +6.3%), and the 2018 n2c2 Posology Relations dataset (F1 of 96.7, +0.6%). Third, we show two practical applications of this
framework – for building a biomedical knowledge graph and for improving the accuracy of mapping entities to clinical codes.
The system is built using the Spark NLP library which provides a production-grade, natively scalable, hardware-optimized,
trainable & tunable NLP framework.
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1. Introduction
Biomedical literature has witnessed exponential rise in
the past decade. MEDLINE currently holds more than
26 million records from 5639 publications, and has in-
dexed more than 5 million records in the past seven years
alone [1]. Furthermore, public databases like https://clini-
caltrials.gov have seen an explosion of trials data as the
aftermath of the novel Covid-19 outbreak.

In addition, wide-spread adoption of Electronic Health
Records (EHRs), has made copious amount of free-text
data available in digital format. This unstructured data is
usually documented by healthcare professionals during
the course of patient care, such as clinical notes, discharge
summaries, lab reports, and pathology reports [2]. While
publications and literature are growing rapidly, there still
lacks structured knowledge that can be easily processed
by computer programs. Relation Extraction becomes
even more pertinent in biomedical research as it can
provide the critical links required to generate knowledge
graphs for better analysis and research, and even text
summarization. Relating entities also help us improve
medical coding by enriching vanilla entity chunks with
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surrounding information to get more accurate codes.
Relation extraction is generally regarded as a classifi-

cation problem where entity pairs - usually identified by
NER models - are classified to determine their relation-
ship type in a given context. These models are trained to
identify semantic relations between recognized entities
as illustrated in Figure 1.

Figure 1: A Relation Extraction model semantically relating
symptoms and body organs in a sample text.

Since the classification implicitly relies on context,
transformers basedmodels like BERT [3] have been shown
to outperform traditional methods of dependency pars-
ing. Recently, there is also an increasing trend of jointly
training large BERT models on NER and RE tasks with
shared layers and features [4]. However, even in joint
learning, the RE classification is still contingent upon
entity spans identified by the NER model.
While the trend of training large transformer models

continues, applying them on large datasets remains a
challenge as they require significant computational re-
sources. Furthermore, long documents containing high
number of entity spans can exponentially increase prob-
able entity pairs for RE classification - requiring signifi-
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cantly more resources and processing time.
In this study we focus on three major aspects of RE; the

model architectures and their scalability, evaluating the
models on benchmark datasets, and training and using RE
for general use-cases. We also study the application of RE
for understanding different aspects of clinical documents
like extracting and relating dates to generate timeline of a
patient’s data on a timeline, or parsing and understanding
trial results on large cohorts for analysis.

Following are the novel contributions of this paper:

• Introducing two new RE architectures.
• Evaluating and comparing performance of the
proposed models on benchmark datasets.

• Training themodels on custom datasets and demon-
strating how RE can be used to get a structured
output for specific use-cases.

• Studying the use-case of putting the history and
medical history of patients on a timeline.

• Analyzing the benefits of using RE to get more
precise entity chunks for achieving better perfor-
mance while mapping them to medical codes.

2. Approach
We treat RE as a classification problem where each exam-
ple is a pair of biomedical entities appearing in a given
context - the entities being NER chunks, and context be-
ing the sentence / entire document - and develop two
novel solutions; the first one comprising of a simpler
FCNN architecture for speed, and the second one based
on the BioBERT [5] architecture for accuracy. We exper-
iment both approaches and compare their results.
For our first RE solution we rely on entity spans and

types identified by the NER model to develop distinct fea-
tures to feed to an FCNN for classification. At first we gen-
erate distinct pairs of entities (e.g. symptom-treatment),
and then generate custom features for each pair. These
features include semantic similarity of the entities, syn-
tactic distance of the two entities, dependency structure
of the entire document, embedding vectors of the entity
spans, as well as embedding vectors for 100 tokens within
the vicinity of each entity. Figure 2 explains our model
architecture in detail. We then concatenate these features
and feed them to fully connected layers with leaky relu
activation. We also use batch normalisation after each
affine transformation before feeding to the final softmax
layer with cross-entropy loss function. We use softmax
cross-entropy instead of binary cross-entropy loss to keep
the architecture flexible for scaling on datasets having
multiple relation types.
Our second solution focuses on a higher accuracy, as

well as exploration of relations across long documents,
and is based on [6]. In our implementation, we implement

Figure 2: Overview of the first RE model. All the features are
vertically stacked in a single feature vector. The feature vector
is kept dynamic with additional padding for compatibility
across different embedding sizes, and complex dependency
structures.

the model in Apache Spark for scalability, take check-
points from the BioBERT model, and train an end-to-end
BERT model for RE. Similar to the first solution, this ar-
chitecture also depends on the entity spans identified by
the base NERmodel, and uses the entire document as con-
text string while training the model. The original paper
used sequence length of 128 tokens for the context string,
which we keep constant, and instead experiment with the
content of the context string, training data augmentation,
and fine-tuning techniques.

We use Spark NLP’s [7] NER models [8] as foundation
for the RE models as these NER models provide entity
spans required for performing RE. In a single inference
pipeline, the RE models are placed sequentially after the
the NER model, and are fed the results of the NER model,
the context, embeddings, and dependency tree for feature
generation. Apart from feature generation, the depen-
dency tree also helps regularize candidate entity pairs
for RE classification as we can eliminate pairs having
a larger syntactic distance. This modular approach of
arranging components reduces coupling and achieves a
higher degree of memory and computational efficiency
as components like sentences, tokens, and embeddings
are shared between NER and RE models and don’t need
to be executed again. Since the NER model is essentially
a token classifier and produces prediction per token, we
convert the tokens to chunks using BIO tags.

3. Experiments
We test the models on public datasets, report evaluation
metrics, and analyse the results on examples. In addition
to public datasets, we explain the process of annotating
and training models on new datasets. We then study the



utility of applying RE for some use-cases like knowledge
graph generation and improved entity resolution (the
process of mapping entity chunks to medical codes).

3.1. Performance on Public Datasets
We test both model architectures on seven public datasets
by using the official training-test split for training and
testing themodels, and reportmacro-average f1 scores for
each one of them in Table 1. These datasets include the
2012 i2b2 challenge for evaluating temporal relations in
clinical text [9], the 2010 i2b2/VA challenge on concepts,
assertions, and relations in clinical text [10], the Drug-
Drug-Interaction (DDI) dataset for linking drugs with
dispositions and reactions [11], the Chemical–protein
interaction (CPI) dataset for linking genes/proteins with
drug chemicals [12], the Phenotype-Gene Relations (PGR)
dataset for relating human phenotypes and genes [13],
the adverse drug events dataset for relating drugs with
their reactions [14], and the posology relations task based
on the 2018 n2c2 task [15]. For the sake of brevity we
don’t delve into the details for each dataset, and specific
details for each dataset can be found in the cited resources.
As explained in Table 1, the BERT model achieves new
SOTA metrics on 5 public datasets, and out performs
the lighter FCNN model due to better contextual aware-
ness. However, it is more than 3 time slower and has
much higher memory requirements. Table 2 compares
the speed difference of the two architectures. Hyperpa-
rameter setting and sample Python code for training an
RE model from scratch is in Appendix A & C.

Dataset FCNN BioBERT Curr-SOTA

i2b2-Temporal 68.7 73.6 72.41
i2b2-Clinical 60.4 69.1 67.97
DDI 69.2 72.1 84.1
CPI 65.8 74.3 88.9
PGR 81.2 87.9 79.4
ADE Corpus 89.2 90.0 83.7
Posology 87.8 96.7 96.1

Table 1
Macro-averaged F1 scores of both RE models on public
datasets. FCNN refers to the Speed-Optimized FCNN ar-
chitecture, while BioBERT refers to the Accuracy-Optimized
BioBERT architecture. The SOTA metrics are obtained from
[16], [17], [18], [19], [20], [21], and [22] respectively.

3.2. Performance on Private Datasets
In addition to the public datasets, we sampled approxi-
mately 5000 clinical notes and manually annotated them
with the help of domain experts on the following guide-
lines: We selected general entities (e.g, body part, date,

Dataset FCNN RE Model BERT RE Model

1k Notes 104 584
10k Notes 925 5197

Table 2
Time in seconds taken by both models to run a sample batch of
documents on a single linux machine with with 64GB of RAM,
and an 8-Core CPU (without GPU hardware acceleration).

test result) that can compliment core entities (e.g, symp-
tom, procedure, test) as the first entity and disjoint entity
types - meaning the entities should not have relation
among themselves - from the the core entities for the
second entity as explained in Table 3. Since the first en-
tity can relate to multiple entities in the second column,
we can define the relation between the two entity types
as one-to-many, and can keep the relation types to a
minimum i.e. are the two entities related or not. This
approach helps reduce annotation complexity resulting
in faster annotation times, and a higher inter-annotator
agreement. For annotation purposes we utilized the pub-
licly available Annotation Lab tool.

model Entity 1 Entity 2

re_bodypart_procedure_test Body Part
Procedure

Test

re_test_result_date Test
Test Result

Date

re_bodypart_problem Body Part Symptom

re_test_problem_finding Test Symptom

re_bodypart_directions Body Part Direction

Table 3
Entity types in column Entity 2 do not have relations among
themselves

4. Practical Applications of
Relation Extraction

The ability to semantically relate entities paves way for
a lot of opportunities and use-cases. For example, the RE
model for Adverse Drug Events can be used to identify
drugs that caused reactions in large trial datasets. Figure
3 shows the output of running the ADE RE model on
sample text. Similarly, lab results, discharge notes, and
prescriptions can be parsed to get a structured output as
illustrated in Figure 4.
In addition of using the public models, following are

some of the use-cases we explored with our general-
purpose models:



Figure 3: Output of the ADE RE model on sample data. Ar-
rows with 0 represent the two entities are not related, while 1
represents that the reaction is caused by the drug.

Figure 4: Output of the Posology RE model on sample data.

4.1. Generating Knowledge Graph with
Relations

Most notable benefit of RE is the ability to generate
knowledge graphs from unstructured text. For this exper-
iment, we used pretrained Spark NLP NER models and
the general-purpose RE models explained in the previous
section to process medical reports with the primary goal
of generating a concise structured output of a report. For
instance, we relate procedures with dates and findings
to recognize dates of a procedure and its findings along
with any existing condition. We use the relations be-
tween body parts and procedures to get more specific
details of the location of the procedure. Similarly, relating
body parts with findings like test results and measure-
ments can add more details to the final output in specific
use-cases. More granularity can be achieved by having
further subdivisions of body parts. For instance, in our
experiment, we divide the body part in three parts; the
primary body part (e.g, lung), a sub-part (e.g, lobe), and
direction/laterlity (e.g, left) of the body part. In practice,
these specifc entities trickle from the NERmodel down to
the RE models. A graph generated from a sample report
can be seen in Figure 5.
Furthermore, the structured data can help create a

patient timeline which can show progress of a certain

Figure 5: A graphical representation (with CPT, ICD &
SNOMED codes) of the structured data extracted from a sam-
ple text.

condition over a certain duration. A sample timeline
monitoring coronary calcium score and cyst can be seen
in Figure 6. Such information can be used to analyse
multiple trends like effectiveness of a drug for treating a
certain condition on large datasets.

Figure 6: A sample timeline of a patient showing calcium
score trend, and evolution of cyst over multiple scans in a
month.

4.2. Enriching Chunks for more Accurate
Coding

Entity Resolver models map entity chunks to medical
codes like CPT [23], ICD [24], SNOMED [25], MeSH [26],
RxNorm [27] etc based on semantic similarity. This task
becomes challenging due to two major reasons. First, the
inherent noise of the text like abbreviations, acronyms,
and synonyms can result in false positive results. Sec-
ond, medical codes are sensitive to variables like severity,
location in human body, administration type, diagnosis
method, etc; For a given condition or treatment, there
could be different codes (within the same ontology) de-
pending on the aforementioned factors. This challenge



Ontology Base Chunk Base Code Enriched Chunk Enriched Code

CPT CT Scan 3324F CT Scan Chest (multi-slice) contrast 71260
SNOMED CT CT Scan 169072007 CT Scan Chest (multi-slice) contrast 169069000
ICD-10 Lesion L98. 9 Lesion liver K76. 9
SNOMED Lesion 300577008 Lesion liver 300331000

Table 4
Comparison of entity resolution results - more enriched and specifc entity chunks result in a more accurate code.

is more prominent in ontologies with wider vocabularies
like SNOMED.

RE provides solution to both problems; First, it intrin-
sically cleans the input for the resolver models of stop
words and noise without additional effort. Second, it adds
additional information to the core entity chunks from
surrounding context; With the help of relations, simple
entities can be enriched with precise information to get
accurate codes. For example, a chunk CT Scan - identified
as a procedure - can be enriched with the imaging tech-
nique to achieve a more accurate CPT/SNOMED code.
Enriching it further with the location of the procedure
(e.g, chest) would result in an even accurate chunk that
can be resolved to a more specific CPT/SNOMED code.
Table 4 compares base chunks with enriched chunks that
include body parts, demonstrating the benefits of en-
riched entity chunks for improved coding.

5. Conclusion
In this paper we presented two new model architectures
for RE while enabling scalability. We then tested the
models on public datasets and reported evaluation met-
rics. The model metrics show that the BioBERT based
model outperforms the lighter FCNN model, and obtains
new state-of-the-art accuracy on on three benchmarks.
However, for datasets with a small number of relation
types, the simpler FCNN model may be a compelling
option not only due to faster run times, but also much
lower memory requirements compared to the BioBERT
model, allowing to process larger datasets on commodity
hardware. We also explain how to train RE models from
scratch and describe the design behind the pre-trained
models available as part of Spark NLP library.

We then study practical use cases where RE plays the
salient role of linking entities together to generate knowl-
edge graphs, patient timelines, and structured summaries
of medical notes. Relating dates to primary procedures
and problems can help create a timeline for each patient.
Finally, using granular NER models together with dis-
crete REmodels to clean and enrich entity chunks enables
better entity resolution to clinical codes.
Given the complex nature of RE, and the pivotal role

of contextual information, a common approach is to limit

relations within a certain syntactic span as even BERT
models have token sequence limit. A future research
direction could be to focus on improving contextual rep-
resentation of large documents to allow relations over
lengthy contextual spans. A second future research di-
rection is to test whether auxiliary data - either from
medically annotated data or through transfer learning
from healthcare-specific language models - can deliver
higher accuracy Relation Extraction on the same neural
network architectures.
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A. A. Hyperparameter Settings
Since optimal hyperparameter values vary for each dataset,
a range of values which performed best in all the datasets
can be seen in Table 5.

Parameter FCNN BERT Tested Range

Dropout rate 0.5 0.2 0.2-0.5
Batch size 64 - 128 64 8-128
Learning rate 0.0003 0.001 0.0001-0.005
Epoch 50 - 70 2-5 1-100
Optimizer Adam Adam Adam
LR Decay 0.005 0.005 0.002-0.005

Table 5
Best performing hyperparameter value ranges on multiple
datasets.

B. B. Preparing training data for
RE model in Spark NLP

Since RE is a classification task, the primary inputs are
the context string (sentence), and a pair of entities. If
there are multiple pairs in a single context string, we
treat them as disjoint inputs as each input encapsulates
the required inputs like entity chunk pairs and context
- which are then used to create input features. We can
create a csv formatted file where each row is a training
example for the model, and contains the aforementioned
inputs. Exact schema of the training file can be found in
the training notebook [28].

C. C. Training an RE Model in
Spark NLP

Code for training an RE mode is provided as a google
colab notebook [28]. As majority of the public datasets
are protected and can not be shared, they need to be
obtain from their official websites and converted to the
required format before training.
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