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Abstract. Cross-correlations between Cosmic Microwave Background (CMB) temperature
and polarization anisotropies and µ-spectral distortions have been considered to measure
(squeezed) primordial scalar bispectra in a range of scales inaccessible to primary CMB
bispectra. In this work we address whether it is possible to constrain tensor non-Gaussianities
with these cross-correlations. We find that only primordial tensor bispectra with statistical
anisotropies leave distinct signatures, while isotropic tensor bispectra leave either vanishing or
highly suppressed signatures. We discuss how the angular dependence of squeezed bispectra
in terms of the short and long momenta determine the non-zero cross-correlations. We also
discuss how these non-vanishing configurations are affected by the way in which primordial
bispectra transform under parity. By employing the so-called BipoSH formalism to capture
the observational effects of statistical anisotropies, we make Fisher-forecasts to assess the
detection prospects from µT , µE and µB cross-correlations. Observing statistical anisotropies
in squeezed 〈γγγ〉 and 〈γγζ〉 bispectra is going to be challenging as the imprint of tensor
perturbations on µ-distortions is subdominant to scalar perturbations, therefore requiring
a large, independent amplification of the effect of tensor perturbations in the µ-epoch. In
absence of such a mechanism, statistical anisotropies in squeezed 〈ζζγ〉 bispectrum are the
most relevant sources of µT , µE and µB cross-correlations. In particular, we point out that
in anisotropic inflationary models where 〈ζζζ〉 leaves potentially observable signatures in µT
and µE, the detection prospects of 〈ζζγ〉 from µB are enhanced.
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1 Introduction

It is well-known that the simplest single field slow-roll models of inflation predict a negligible
level of non-Gaussianity (NG) in the statistics of both the scalar and tensor primordial
perturbations [1, 2]. As a result, a net measurement of a non-Gaussian signal would be
critical to falsify the simplest scenario and explore the true particle content and symmetry
breaking pattern that characterizes the inflationary epoch. At present, the measurements of
the bispectrum of the Cosmic Microwave Background (CMB) temperature and polarization
anisotropies made by the Planck satellite have provided the tightest constraints on scalar
primordial NGs [3]. However, NGs sourced by primordial gravitational waves are poorly
constrained and have only been considered for a handful of models (see e.g. [4, 5] and refs.
therein). These poor constraints are primarily caused by the fact that primordial gravitational
waves are best constrained through CMB B modes and attempts to use B modes in search
for NGs (partly) sourced by gravitational waves have not yet been made. Current best
constraints are derived from the temperature T and polarization E-mode measurements,
which are dominated by the Gaussian scalar covariance.

– 1 –



J
C
A
P
0
2
(
2
0
2
2
)
0
0
4

Despite observations that suggest that primordial perturbations from inflation are almost
Gaussian, the lack of a net observation of a NG signal does not allow us to disregard any valid
alternative scenario. In fact, the current constraints allow for variety of non-conventional
models, such as models with non-attractor phases [6–11], multi-field models (see e.g. the
reviews [12, 13]), models with extra (spinning) fields [14, 15] and extra gauge fields [16–
21], models with non-Bunch Davies initial states [22–24], and alternate symmetry breaking
patterns [25–37]. Some of these alternative descriptions of the inflationary epoch lead to
non-negligible primordial bispectra peaking in the so-called squeezed limit, i.e. in momentum
configurations where one of the three momenta is much smaller than the other two, indicating
a non-zero correlation between large and small scales. The amplitude of NGs associated to
this configuration, f loc

NL, has already been constrained by the Planck satellite for pure scalar
bispectra as f loc,sss

NL = −0.9 ± 5.1 [3]. Forthcoming CMB experiments involving B modes
aim to constrain also f loc,tss

NL ∼ 1, f loc,ttt
NL ∼ 1 [4]. However, recently several complementary

approaches to test cross-correlations between long and short scales have been proposed. One
example is the cross-correlation between CMB temperature and polarization anisotropies
and µ- and y-spectral distortions (SD) [38–45]. Another example is the cross-correlation
between the anisotropies in the stochastic gravitational wave background (SGWB) and CMB
temperature anisotropies [46–49]. Squeezed NGs may leave observable imprints also on
galaxies [50–53] and the 21-cm emission (see e.g. [54]). All these alternative observational
channels aim to provide a measure of (squeezed) NG over a range of scales inaccessible by
auto-correlating CMB T , E and B modes alone.

In this work we aim to review and extend existing analyses on the cross-correlation
between µ-spectral distortions and CMB temperature and polarization anisotropies by consid-
ering B modes. By admitting statistical anisotropies in scalar and tensor squeezed bispectra,
we compute their effects on the 〈µ`1T`2〉, 〈µ`1E`2〉, 〈µ`1B`2〉 cross-correlations. Statistical
anisotropies in squeezed NGs induce statistical anisotropies in these cross-correlations, result-
ing in non-zero off-diagonal (`1 6= `2) values. We will investigate how the angular dependence
of anisotropic squeezed bispectra in terms of the short and long momenta influence the non-
zero multipole configurations `1`2. We also discuss how these non-vanishing configurations
are affected by the way in which primordial bispectra transform under parity transformation.
These provide a new way to test theories admitting violation of statistical isotropy and
parity symmetry in the primordial universe. To characterize the observational imprints of
these statistical anisotropies, we introduce the so-called BipoSH coefficients [55–57] and make
Fisher-forecasts to assess detectability. Besides reproducing previous results on the 〈ζζζ〉
bispectrum, we show new results on NGs involving primordial gravitational waves. We find
that for almost scale-invariant spectra in the µ-distortion window k ∼ 1 − 106 Mpc−1, in
order to detect statistical anisotropies in 〈γγγ〉 and 〈γγζ〉 squeezed bispectra, we need an
amplification mechanism that is able to enhance the tensor power spectrum by at least
six orders of magnitude with respect to the level constrained at the characteristic scales of
the Planck experiment (k . 0.05Mpc−1). In absence of such a mechanism, we must rely
on 〈ζζγ〉 bispectrum to constrain the tensor sector. We point out that in models where
statistical anisotropies in 〈ζζζ〉 bispectrum leave potentially observable signatures in 〈µ`1T`2〉
and 〈µ`1E`2〉 cross-correlations, the detection prospects of statistical anisotropies in 〈ζζγ〉
from 〈µ`1B`2〉 are enhanced. This last statement is quite intriguing as it is totally model
independent. The forecasts we present are valid assuming cosmic variance limited T , E and
B modes and assuming PIXIE-like noise levels on the µ modes. Despite introducing generic
statistical anisotropies in squeezed bispectra in terms of spin-weighted spherical harmonics
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(see eqs. (2.19)–(2.22)), the analysis can be repeated for a specific inflationary model through
the implementation of publicly available numerical codes. Our results may be relevant in
sight of the CMB experiments that are going after the first detection of CMB B modes from
tensor perturbations (LiteBIRD [58, 59], PICO [60]) and µ-spectral distortions (PIXIE and
its advanced iterations [61, 62] and possible probe class mission proposals [63]).

The paper is organized as follows. In section 2 we explain the conventions used to
introduce statistical anisotropies in squeezed primordial NGs from inflation. We also briefly
review CMB temperature and polarization anisotropies and µ-spectral distortions, providing
known results and computational conventions employed. In section 3 we compute the effects
of statistical anisotropies in (squeezed) primordial bispectra on the cross-correlations between
the CMB temperature and polarization anisotropies and µ-spectral distortions. We comment
on the results obtained. In section 4 we derive Fisher-forecasts on the detectability of the
signatures discussed in section 3 by employing the BipoSH formalism. In section 5 we consider
various phenomenological and model building aspects of our findings. Finally, in section 6 we
conclude. Some technical details can be found in the appendix.

2 Preliminaries

2.1 Primordial perturbations from inflation
Here, we provide the conventions used to describe primordial perturbations from inflation.
First, we define the Fourier transform decomposition of scalar and tensor perturbations as

ζ(~x) =
∫

d3k

(2π)3 e
i~k·~x ζ~k , (2.1)

and
γij(~x) =

∫
d3k

(2π)3 e
i~k·~x ∑

λ=R/L

[
γλ~k ε

λ
ij(k̂)

]
. (2.2)

Here, for the purpose of what follows, we are decomposing tensor perturbations in terms of
the chiral polarization basis defined through

εR,Lij = 1√
2

[
ε+ij ± i ε

×
ij

]
, (2.3)

γR,L = 1√
2

[γ+ ± i γ×] , (2.4)

where γ+,× and ε+,×ij are the usual linear polarizations of tensor perturbations.
We remind that, if the tensor wave-vector is written in polar coordinates as

k̂ = (sin θ cosφ, sin θ sinφ, cos θ) , (2.5)

we can define the linear polarization tensors in terms of two unit vectors perpendicular to k̂ as

ε+ij = (u1)i(u1)j − (u2)i(u2)j , (2.6)
ε×ij = (u1)i(u2)j + (u2)i(u1)j , (2.7)

where

u1 = (sinφ,− cosφ, 0) , u2 =
{

(cos θ cosφ, cos θ sinφ,− sin θ) if θ < π/2
− (cos θ cosφ, cos θ sinφ,− sin θ) if θ > π/2 .

(2.8)

– 3 –
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The chiral polarization basis introduced is normalized such that it satisfies the following
identities (see e.g. [64])

εLij(~k)εijL (~k) = εRij(~k)εijR(~k) = 0 ,

εLij(~k)εijR(~k) = 2 ,

εRij(−~k) = εLij(~k) ,

εR∗ij (~k) = εLij(~k),
γR∗~k = γL−~k ,

klε
mljε

(λ)i
j (~k) = −iαλkε(λ)im(~k) , (2.9)

where αR = +1 and αL = −1, and εmlj denotes the Levi-Civita anti-symmetric symbol.
We define the primordial power spectra as

〈ζ~k1
ζ~k2
〉 = (2π)3δ(3)(~k1 + ~k2)Pζ(~k1) , (2.10)

〈γij(~k1)γij(~k2)〉 = (2π)3δ(3)(~k1 + ~k2)Pt(~k1) , (2.11)

where
γij(~k) =

∑
λ=R/L

[
γλ~k ε

λ
ij(k̂)

]
. (2.12)

As usual, the isotropic parts of scalar and tensor power spectra from inflation can be
expressed as

Pζ(k) = 2π2

k3 As(k) , Pt(k) = 2π2

k3 At(k) , (2.13)

where As(k) and At(k) are dimensionless amplitudes. Here, we are implicitly assuming
invariance under translations during inflation. Notice that we can also define the polarized-
power spectra of tensor perturbations

〈γR~k1
γR∗~k2
〉 = (2π)3δ(3)(~k1 + ~k2)PR(~k1) , (2.14)

〈γL~k1
γL∗~k2
〉 = (2π)3δ(3)(~k1 + ~k2)PL(~k1) . (2.15)

These power spectra can be used to define the quantity χ

χ = PR − PL
PR + PL

, (2.16)

which is usually referred as chirality of tensor perturbations. This gives the asymmetry
between the R- and L-handed power spectra caused by some parity violation mechanism
arising in the primordial universe. Assuming parity is a symmetry of the theory, PR,L are
related to Pt by

PR,L = Pt
4 . (2.17)

Finally, we define the primoridal bispectra

〈ζ~k1
ζ~k2
ζ~k3
〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bζζζ(~k1,~k2,~k3)

〈ζ~k1
ζ~k2
γλ3
~k3
〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bλ3

ζζγ(~k1,~k2,~k3)

〈γλ1
~k1
γλ2
~k2
ζ~k3
〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bλ1λ2

γγζ (~k1,~k2,~k3)

〈γλ1
~k1
γλ2
~k2
γλ3
~k3
〉 = (2π)3δ(3)(~k1 + ~k2 + ~k3)Bλ1λ2λ3

γγγ (~k1,~k2,~k3) , (2.18)

– 4 –
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where we assumed invariance under translations. If we account for the invariance under
rotations, the bispectra would depend only by the moduli of the momenta.

2.2 Statistical anisotropies in squeezed bispectra

As will become clearer later on, for an inflationary model to be testable via SD-CMB cross-
correlations, it is essential for it to have two main features: non-trivial squeezed bispectra and
scale dependent power spectra and bispectra, so that the amplitude of primordial (scalar and
tensor) perturbations can grow at the scales sensitive to spectral distortions. Moreover, here
we want to introduce statistical anisotropies in primordial correlators. In fact, as we will see
later on, introducing statistical anisotropies will turn out to be crucial for tensor bispectra to
leave non-negligible signatures on the observables under consideration.

Instead of relying on a specific model, we adopt a phenomenological approach to introduce
statistical anisotropies in the squeezed bispectra of primordial perturbations.1 As we are
admitting statistical anisotropies, we can allow bispectra to depend on the full three wave-
vectors ~ki appearing inside the bispectra. However, due to the residual translational symmetry,
bispectra can be written in terms of only two independent momenta, which in the case of
squeezed bispectra is convenient to take as the long and short momenta ~kl and ~ks. Therefore,
our bispectra will depend over the long and short modes wave-numbers kl and ks, and their
directions k̂l and k̂s. In particular, the directional dependence can be expressed through an
expansion in terms of spin-weighted spherical harmonics (defined as in eq. (A.3)) that capture
all the possible ways in which we can introduce statistical anisotropies. Thus, the leading
order contribution to the squeezed limit bispectra can be expressed as2

Bζζζ(−~kl/2 + ~ks,−~kl/2− ~ks,~kl)|~kl→0 = 4π
∑
L1,M1

∑
L2,M2

YL1M1(k̂l)YL2M2(k̂s)

× f sss
L1,M1,L2,M2(ks, kl)Pζ(kl)Pζ(ks) , (2.19)

Bλ3
ζζγ(−~kl/2 + ~ks,−~kl/2− ~ks,~kl)|~kl→0 = 4π ξλ3

∑
L1,M1

∑
L2,M2

±2YL1M1(k̂l)YL2M2(k̂s)

× f sst
L1,M1,L2,M2(ks, kl)Pt(kl)Pζ(ks) , (2.20)

Bλ1λ2
γγζ (−~kl/2 + ~ks,−~kl/2− ~ks,~kl)|~kl→0 = 4π ξλ1λ2

∑
L1,M1

∑
L2,M2

YL1M1(k̂l)YL2M2(k̂s)

× f tts
L1,M1,L2,M2(ks, kl)Pζ(kl)Pt(ks) , (2.21)

1Even if we will not consider a specific inflationary model, we want to point out that the amplitude of
squeezed primordial bispectra may be severally constrained by soft theorems in models of inflation with given
symmetry patterns. See, e.g., the earliest investigations [1, 65–67], but also the more recent refs. [68–76],
which investigated soft theorems in more general scenarios. It is not the purpose of this work to have a
deep look at this issue, which should be taken in mind when constraining the parameter space of a given
inflationary scenario.

2As said, these parametrizations rely on the fact that in the squeezed limit bispectra may depend on the
directions of short and long modes only. The spin-weights of the spherical harmonics corresponding to a given
angular dependence k̂i reflect the spin of the corresponding field X~ki

in the bispectrum. Therefore, a spin-0
weight is associated to a long scalar, and a spin-±2 weight is associated to a long tensor (the precise sign of the
weight is determined by the polarization state of the long tensor, −2 for R-handed tensors, +2 for L-handed
tensors). In the squeezed limit, the product of two short scalars or tensors in the form X~ks

X−~ks
is globally a

spin-0 field, yielding to a spin-0 weight.
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Bλ1λ2λ3
γγγ (−~kl/2 + ~ks,−~kl/2− ~ks,~kl)|~kl→0 = 4π ξλ1λ2λ3

∑
L1,M1

∑
L2,M2

±2YL1M1(k̂l)YL2M2(k̂s)

× f ttt
L1,M1,L2,M2(ks, kl)Pt(kl)Pt(ks) , (2.22)

where ξλ3 , ξλ1λ2 , ξλ1λ2λ3 are polarization coefficients sensitive to the polarization states of
tensor perturbations appearing in the cosmological correlators, fxxxLi,Mi

are non-Gaussian
amplitudes (which in principle may depend on the short and long momenta ks and kl) and
Pi(k) are the isotropic parts of scalar and tensor power spectra as in eq. (2.13). Having used
spherical harmonics to characterize the directional dependencies, a 4π normalization factor
has been included.

While a pure scalar bispectrum is insensitive to parity violation unless L1 + L2 = odd
(see e.g. [77], or apply the parity transformation rule of spherical harmonics, eq. (A.7)), the
violation of parity symmetry in bispectra involving tensors can be also introduced through
the polarization coefficients. In this case, we would say that these coefficients are parity-even
when

ξL = ξR , ξLL = ξRR , ξLR = ξRL , ξLLL = ξRRR , ξRRL = ξLLR , (2.23)

while parity-odd when they obey

ξL = −ξR , ξLL = −ξRR , ξLR = −ξRL , ξLLL = −ξRRR , ξRRL = −ξLLR .
(2.24)

Bispectra involving tensors may also experience maximum violation of parity through3

BL
ζζγ � BR

ζζγ , BLL
γγζ � BRR

γγζ , B
RL
γγγ , BLLL

γγγ � BRRR
γγγ , BLLR

γγγ , B
RRL
γγγ . (2.25)

Notice, also, that the rotationally invariant case of eqs. (2.19) and (2.21) is recovered in the
limit L1 = L2 = M1 = M2 = 0, while a rationally invariant limit of eqs. (2.20) and (2.22) can
not be defined.

In the following we assume scalar and tensor dimensionless power spectra to obey the
power laws

As(k) = GsAs(kCMB)
(

k

kSD

)ns−1
, (2.26)

and
At(k) = GtAt(kCMB)

(
k

kSD

)nt
, (2.27)

where the pivot scales kCMB and kSD label characteristic CMB T , E and B modes anisotropies
and SD scales, respectively. In this work we choose kCMB = 0.05Mpc−1 and kSD = 1Mpc−1,
but an anologous analysis can be performed for different choices of these characteristic scales.
In particular, our choice of kSD here reflects the order of magnitude of the smallest primordial
tensor mode that source µ modes (see figure 1). Also, we introduced the quantities Gi’s
defined as

Gs = As(kSD)
As(kCMB) , Gt = At(kSD)

At(kCMB) . (2.28)

Physically, they represent the growth factor of scalar (tensor) perturbations on the charac-
teristic SD scale with respect to the CMB scale. For the scalar and tensor amplitudes at

3Here, we are assuming primordial gravitational waves with a predominant L-handed polarization. Alterna-
tively, one can assume a predominant R-handed polarization as well.
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the pivot CMB scale we consider the combined Planck + BICEP2/Keck Array BK15 upper
limits [78]

As(kCMB) ' 2.1× 10−9 , At(kCMB) < 0.056As(kCMB) . (2.29)

We leave the tilts nt and ns − 1 generic.

2.3 Review of CMB anisotropies

Here, we give a brief overview of the physics of the CMB and how we characterize CMB
anisotropies. In general, the CMB fluctuation field includes four different polarization states,
the so-called Stokes parameters, which are encoded in a 2× 2 density matrix4

ρij = 1
2

(
∆T + ∆Q ∆U − i∆V

∆U + i∆V ∆T −∆Q

)
, (2.30)

where ∆T , ∆Q, ∆U , and ∆V are the so-called CMB Stokes parameters (see e.g. [79]).
CMB fluctuations (both temperature and polarization) are functions of the position and

direction on the sky n̂, and they can be expanded on the sphere in terms of a spin-weighted
basis [80]

∆T (n̂) =
∑
`,m

aI`mY`m(n̂) , (2.31)

∆V (n̂) =
∑
`,m

aV`mY`m(n̂) , (2.32)

∆±P (n̂) = (∆Q ± i∆U )(n̂) =
∑
`,m

a±2
`m ±2Y`m(n̂) , (2.33)

where sY`m denotes again the spin-weighted spherical harmonics. This decomposition is
possible since the ∆T and ∆V polarization fields turn out to be spin-0 fields on the sphere,
while the (∆Q±i∆U ) combination is a spin ±2 field [80]. In particular, this last feature implies
that ∆Q and ∆U polarization modes are not invariant under a rotation on the polarization
plane (while ∆T and ∆V modes are). In general, we would prefer a description of the CMB
polarization in terms of spin-0 quantities that are invariant under rotations. In order to define
these quantities, we need to act on ∆±P the spin raising and lowering operators ð and ð̄ (see
appendix A) as

∆E(n̂) = −1
2
[
ð̄2∆+

P (n̂) + ð2∆−P (n̂)
]
, (2.34)

∆B(n̂) = i

2
[
ð̄2∆+

P (n̂)− ð2∆−P (n̂)
]
. (2.35)

Here, we have introduced the so-called E and B polarization modes. These modes offer an
alternative description of CMB linear polarization which, differently from Q and U modes, is
invariant under a rotation on the polarization plane. In the following, we will use the E,B
modes to refer to the linear polarization field.

The connection between primordial perturbations from inflation and CMB anisotropies
is made through a set of Boltzmann equations (see e.g. [80–82]), which describe the time

4When we refer to the Stokes parameters, we take only the relative fluctuations over the respective mean
value, i.e. ∆T = (∆T − T0)/T0 and so on.

– 7 –



J
C
A
P
0
2
(
2
0
2
2
)
0
0
4

dependent evolution of CMB polarization modes at linear level and predict the expected
amount of each polarization mode today. These equations take care of two main contributions:
the Compton scattering between CMB photons and electrons and the gravitational redshift
which relates CMB anisotropies to primordial perturbations.

In particular, we can define the so-called spherical harmonic coefficients of each (rota-
tionally invariant) CMB mode on the sky as

aX`m =
∫
d2n̂ Y`m(n̂) ∆X(n̂) , (2.36)

where X = T,E,B, V .
The coefficients of the unpolarized (X = T ) and E,B-mode polarization (X = E,B)

anisotropies given by the scalar (ζ) and the tensor perturbations (γR,L) from inflation, are
expressed, respectively, as [83, 84]

a
(s)X
`m = 4π(−i)`

∫
d3~k

(2π)3T
X
`(s)(k)Y ∗`m(k̂) ζ~k , (2.37)

a
(t)X
`m = 4π(−i)`

∫
d3~k

(2π)3T
X
`(t)(k)

[
−2Y

∗
`m(k̂) γR~k + (−1)x +2Y

∗
`m(k̂) γL~k

]
, (2.38)

where T X`(s)(k) and T X`(t)(k) are the scalar and tensor CMB transfer functions, respectively,
and x takes 0 (1) for X = T,E (X = B). Due to the fact that the conventional physics of
the CMB is invariant under parity transformations, usually aV`m = 0.

It is clear from the equations just introduced that CMB fluctuations are closely related
to initial primordial perturbations, which are set by the inflationary epoch, and thus they are
a direct probe of the physics of the early universe. We evaluated CMB transfer functions using
the publicly available Boltzmann numerical code CAMB [85] according to the best-fit Planck
2018 LCDM cosmology (H0 = 67.32 km/sMpc−1, Ωbh

2 = 0.0224, Ωch
2 = 0.120, Ωkh

2 = 0,
TCMB = 2.7255K, As(k∗) = 2.1 × 10−9 at the pivot scale k∗ = 0.05Mpc−1, ns = 0.966,
τ = 0.0543 [86]).

2.4 Review of µ-type spectral distortions
Next, we provide a brief review of µ-type SD. Primordial perturbations from inflation on super-
horizon scales induce acoustic perturbations in the pre-recombination photon-baryon plasma.
When these perturbations finally re-enter the horizon, they start to oscillate, dissipating
energy in to the photon-baryon plasma — a phenomenon known as diffusion damping (also
called Silk damping) [87–90]. At very high redshift (redshifts z & 106), Compton (and double
Compton) scattering in the photon-baryon plasma is efficient enough to maintain kinetic
equilibrium even in presence of heat injection. As a consequence, the photon number density
distribution is forced to be the that of a Bose-Einstein fluid at equilibrium with zero chemical
potential, i.e. a black body spectrum:

n(ν) = 1/[ex − 1] , (2.39)

where x = hν/kBTγ , with Tγ denoting the CMB temperature at a given time, and h and kB
are the Planck and Boltzmann constants, respectively.

At redshifts 5 × 104 < z < 106,5 some of the thermalization processes start to be
inefficient, while photons can still maintain an internal thermal equilibrium and conserve

5At redshifts smaller than 5× 104 also Compton scattering becomes inefficient, yielding to another type of
distortions as a result of diffusion damping, the so-called y-type distortions, which probe the thermal history
during recombination and reionization (see e.g. [91] and refs. therein).
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the photon number density by means of electron-photon elastic Compton scattering. Thus,
as a result of heat injection, the CMB photon number density distribution gets a non-zero
chemical potential

n(ν)|µ = 1/[ex+µ(ν) − 1] . (2.40)

This chemical potential µ is what we refer to as µ distortions of the CMB, or µ modes.
Since the heat in the CMB is caused by perturbations seeded by primordial perturbations
during inflation, µ distortions from acoustic dissipation have a primordial origin, and can
therefore be expressed in terms of the primordial power spectra [90, 92]. In full generality,
the expectation value of µ modes in the CMB monopole due to primordial perturbations can
be parametrized as6

〈µprimord(~x)〉 = 1
2π2

∫ ∞
0

dk k2Wi(k)Pi(k) , (2.41)

where i = ζ, t andWi(k) are the SD-transfer function which for scalar and tensor perturbations
can be evaluated analytically as (see e.g. [95])

Wζ(k) ≈ 1.4
∫ ∞
zµ,y

dz
32k2

45aHτ̇ D
2 2 sin2(krs) e−2k2/k2

D e−(z/zdc)5/2 (2.42)

and

Wt(k) ≈ 1.4
∫ ∞
zµ,y

dz
4aH
45τ̇ Tγ(kη) Tθ(k/τ ′) e−Γη e−(z/zdc)5/2

. (2.43)

Here we have introduced several quantities: zµ,y ' 5× 104 is the µ-y distortions transition
red-shift, and zdc ' 2× 106 is the red-shift at which thermalization processes are very efficient
and µ modes can not arise. a is the usual scale factor

a = 1
1 + z

. (2.44)

The quantity τ̇ is the differential optical depth, given by

τ̇ = σTNec ' 4.4× 10−21 (1 + z)3 sec−1 = 4.5× 10−7 (1 + z)3 Mpc−1 . (2.45)

D2 is the mode-specific efficiency factor

D2 = [1 + 4/15Rν ]−2 , (2.46)

where Rν ' 0.41 is the fractional contribution of massless neutrinos to the energy density of
relativistic species. The quantity rs(z), defined as

rs(z) = 1√
3

∫
dt

a
= 1√

3

∫ z

0

dz′

H(z′) (2.47)

is the sound horizon at a given redshift.
kD is the damping scale

kD(z) = 4.0× 10−6 (1 + z)3/2 Mpc−1 . (2.48)
6See e.g. [87, 88, 90, 93] for more details about the derivation of the scalar SD-transfer function due to the

dissipation of scalar perturbations, and [94–96] for the same derivation in the case of tensor perturbations.
Here, we limit to give the expression of the transfer functions in units of c = 1 and using the Mpc as the
fundamental unit for lengths, times and energies.
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Figure 1. Plot of the µ modes transfer function for scalar and tensor perturbations.

The function Tγ(x) denotes the tensor transfer function from inflation and is given by

Tγ(x) = 2
{ 6∑
n=0

an [njn(x)− xjn+1(x)]
}2

, (2.49)

where jn(x) denote spherical Bessel functions with the numerical coefficients a0 = 1, a2 =
0.243807, a4 = 5.28424× 10−2 and a6 = 6.13545× 10−3 (The odd values are vanishing).

e−Γη ≈ 1 , (2.50)

Tθ(ξ) ≈
1 + 4.48ξ + 91.0ξ2

1 + 4.64ξ + 90.2ξ2 + 100ξ3 + 55.0ξ4 , (2.51)

where ξ = k/τ ′, with τ ′ = aτ̇ = τ̇ /(1 + z).
For smooth power spectra, we can make the approximation 2 sin2(krs) ' 1, which is very

accurate for nearly scale invariant scalar perturbations. In such a case, the scalar transfer
function would simplify considerably into [97]

W approx
ζ (k) ≈ 2.27

[
e−2k2/k2

D

]zdc

zµ,y
. (2.52)

As it is shown e.g. in [95], eqs. (2.42) and (2.43) are efficient and optimal for forecast purposes.
Figure 1 shows that tensor perturbations contribute to the generation of µ-distortions

over a vast range of scales, k ' 1− 106 Mpc−1, and have a power-law decay for contributions
k > 106 Mpc−1. In contrast, the dissipation of scalar perturbations is limited to scales
k ' 50− 104 Mpc−1, with a strong exponential decay for contributions k > 104 Mpc−1. The
peak of the scalar transfer function is about five orders of magnitude greater than that
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of the tensor transfer function. These differences in the µ-transfer functions arise because
perturbations in the photon fluid sourced by primordial perturbations dissipate their energy
differently. In general, perturbations in the photon fluid dissipate through photon-electron
scattering and free-streaming effects. However, tensor perturbations dissipate only through
free-streaming effects, and so the dissipation cuts off as a power law as rather than an
exponential as is the case for scalar modes. Consequently, dissipation of the photon fluid
perturbations sourced by tensor perturbations extends over a larger range of scales. Moreover,
as transverse, traceless perturbations, tensor perturbations are not significantly attenuated by
the CMB photon fluid (as is the case of longitudinal scalar perturbations), hence the tensor
dissipation rate is suppressed relative to scalar dissipation. That is, the heat injection is
much more inefficient in the case of tensor perturbations, leading to five orders of magnitude
difference observed in figure 1.

By removing the expectation value from eq. (2.41), we can write down its explicit
connection to primordial perturbations as

µprimord,s(~x) =
∫
d3~k1 d

3~k2
(2π)6 ζ(~k1) ζ(~k2)

√
Wζ (k1)

√
Wζ (k2) ei~k+·~x (2.53)

for scalar perturbations and

µprimord,t(~x) =
∫
d3~k1 d

3~k2
(2π)6 γij(~k1) γij(~k2)

√
Wt (k1)

√
Wt (k2) ei~k+·~x (2.54)

for tensor perturbations, where ~k+ = ~k1 + ~k2 and ~x is the position on the last scattering
surface.

As we have done with the CMB T , E and B modes, we can make an angular expansion
of eqs. (2.53) and (2.54) in spherical harmonics as

aµ`m =
∫
dx̂ Y ∗`m(x̂)µprimord(~x) , (2.55)

which for scalar and tensor perturbations becomes respectively

aµ,s`m = 4π (−i)`
∫
d3~k1 d

3~k2
(2π)6 Y ∗`m(k̂+) ζ(~k1) ζ(~k2)

√
Wζ (k1)

√
Wζ (k2) j`(k+rL) (2.56)

and

aµ,t`m = 4π (−i)`
∫
d3~k1 d

3~k2
(2π)6 Y ∗`m(k̂+) γij(~k1) γij(~k2)

√
Wt (k1)

√
Wt (k2) j`(k+rL) . (2.57)

Here, rL ' 1.4× 104 Mpc is the distance to the last scattering surface and we have made use
of the following identities

ei
~k·~x =

∑
`

(2`+ 1)i`P`(k̂ · x̂) j`(kx) , (2.58)

and
P`(k̂ · x̂) = 4π

2`+ 1
∑
m

Y`m(k̂)Y ∗`m(x̂) . (2.59)

Using the conventions and the results summarized in this section, we proceed in the next
section to compute all possible cross-correlations between CMB µ-spectral distortions (which
we henceforth refer to as “SD”) and CMB T , E and B anisotropies (henceforth referred to
as “CMB”).
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3 Non-Gaussianities from SD-CMB cross-correlations

3.1 Definition of SD-CMB cross-correlations
We start this section by defining the following 〈µX〉 angular cross-correlation

CµX`1`2m1m2
= 〈aµ`1m1

aX∗`2m2〉 , (3.1)

where X = T,E,B.
Note that, by construction, eq. (3.1) is sensitive to primordial NGs, since it is proportional

to the expectation value of the products of three (primordial) fields. In [38, 43, 97–99] the
effects of pure scalar NGs in the 〈µT 〉 and 〈µE〉 cross-correlations were considered. As
emphasized in these references, SD-CMB cross-correlations are sensitive to the squeezed
limit of the scalar bispectrum. The physical reason behind this is that, even if we cross-
correlate CMB anisotropies and µ-distortions at the same angular scales, the primordial
perturbations that seeded them refer to very different scales. In particular, µ-distortions
are generated by primordial perturbations evaluated at scales much smaller than CMB
temperature and polarization anisotropies.7 Schematically, in the cross-correlations of the
type (3.1) µ-distortions and a CMB anisotropies mode X take non-negligible contributions
by short and long modes respectively, as

µ ∝ ζ~ks ζ−~ks , γ~ks γ−~ks T,E ∝ ζ~kl , γ~kl B ∝ γ~kl , (3.2)

where we have assumed that CMB B modes are sourced by tensor perturbations only (on
large scales).

In the following, we show an original computation of the effects of statistical anisotropies
in primordial NGs defined in section 2.2 on the cross-correlations of the type (3.1). In fact the
presence of arbitrary breakings of statistical isotropy in our primordial correlators as evident
in eqs. (2.19)–(2.22) is something new with respect to previous analyses.

3.2 〈µT 〉
Here, we focus on the 〈µT 〉 (angular) cross-correlation. Mathematically this reads

CµT`1`2m1m2
= 〈aµ`1m1

aT∗`2m2〉 . (3.3)

By considering the scheme in eq. (3.2) this cross-correlation is affected by all the types of
primordial bispectra considered in section 2.2, i.e. schematically

CµT`1`2m1m2
∝ 〈ζ~ksζ−~ksζ~kl〉, 〈γ~ksγ−~ksζ~kl〉, 〈γ~ksγ−~ksγ~kl〉, 〈ζ~ksζ−~ksγ~kl〉 . (3.4)

In the following, we compute all these contributions separately.

3-scalars contribution. The contributions from the 3-scalars primordial bispectrum is
given by substituting eqs. (2.37) and (2.56) into (3.3). We get

CµT`1`2m1m2
= i`2−`1 16π2

∫
d3k d3k1 d

3k2
(2π)9 T T`2(s)(k) j`1(k+rL)

√
Wζ (k1)

√
Wζ (k2)

× Y ∗`1m1(k̂+)Y`2m2(k̂)
[
〈ζ~k1

ζ~k2
ζ−~k〉

]
. (3.5)

7Due to Silk Damping, CMB temperature and polarization anisotropies caused by primordial perturbations
are highly suppressed beyond comoving scales k > 0.15Mpc−1, whereas observationally significant µ-spectral
distortions can be generated by primordial perturbations between comoving scales k ∼ 1− 106 Mpc−1.
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We can integrate one of the three momenta by employing the Dirac delta in the definition of
primordial bispectra (2.18). We obtain

CµT`1`2m1m2
= i`2−`1 16π2

∫
d3k1 d

3k2
(2π)6 T T`2(s)(k+) j`1(k+rL)

√
Wζ (k1)

√
Wζ (k2)

× Y ∗`1m1(k̂+)Y`2m2(k̂+)
[
Bζζζ(~k1,~k2,−~k+)

]
. (3.6)

Note that it is much more convenient switching the momenta integrations from ~k1,~k2 to
~k+,~k− by the change of variable ~k± = ~k1 ± ~k2. This leads to

CµT`1`2m1m2
= i`2−`12π2

∫
d3k+ d

3k−
(2π)6 T T`2(s)(k+) j`1(k+rL)

√
Wζ

(
|(~k+ + ~k−)/2|

)
×
√
Wζ

(
|(~k+ − ~k−)/2|

)
Y ∗`1m1(k̂+)Y`2m2(k̂+)

×
[
Bζζζ((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)

]
. (3.7)

Due to the simultaneous presence of the SD and CMB transfer functions, the integration over
~k+ and ~k− gives a non-negligible contribution only on the very squeezed configurations where
~k+ → 0, i.e. when a scalar wavelength-mode is much greater than the other two scalar modes.

By substituting the squeezed bispectrum (2.19) into (3.7), we get

CµT`1`2m1m2
= i`2−`1 64π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(s)(k+) j`1(k+rL)Wζ (k−)Pζ(k−)Pζ(k+)

×

 ∑
L1,M1

∑
L2,M2

f sss
L1,M1,L2,M2

∫
dk̂− YL2M2(k̂−)

∫
dk̂+ YL1M1(−k̂+)Y`2m2(k̂+)Y ∗`1m1(k̂+)

 ,
(3.8)

where we have rescaled the momentum k− (~k′− = ~k−/2). Here, the angular integration over
k̂− is trivial as it is non-zero only if L2 = M2 = 0, while the angular integration over k̂+ can
be done in terms of Wigner 3-j symbols (see eq. (B.1) in appendix B) and we get

CµT`1`2m1m2
= i`2−`1 64π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(s)(k+) j`1(k+rL)Wζ (k−)Pζ(k−)Pζ(k+)

×

 ∑
L1,M1

f sss
L1,M1 (−1)m1+L1

√
(2`1 + 1)(2`2 + 1)(2L1 + 1)

(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

) ,
(3.9)

where for brevity here and afterwards we will indicate fxxxL1,M1
≡ fxxxL1,M1,0,0.

We can rewrite this equation in terms of dimensionless amplitudes as

CµT, ζζζ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

)

×4π I`1`2,L1M1,T
ζζζ , (3.10)

where we defined the integral

I`1`2,L1M1,T
ζζζ =

∫
d ln k+ d ln k− T T`2(s)(k+) j`1(k+rL)Wζ (k−) As(k−)As(k+) f sss

L1,M1 , (3.11)

which is sensitive to the physical details of a given inflationary model.
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1-scalar 2-tensors contribution. The contribution from the 1-scalar 2-tensors primordial
bispectrum is obtained by substituting eqs. (2.37) and (2.57) into (3.3). We get

CµT`1`2m1m2
= i`2−`1

∑
λ, λ′

16π2
∫
d3k d3k1 d

3k2
(2π)9 T T`2(s)(k) j`1(k+rL)Y ∗`1m1(k̂+)

× ελij(~k1)εij,λ′(~k2)
√
Wt (k1)

√
Wt (k2)

× Y`2m2(k̂)
[
〈γλ~k1

γλ
′

~k2
ζ−~k〉

]
. (3.12)

As before, we can integrate out one of the three momenta, employing the Dirac delta in the
definition of the primordial bispectra and switching to the momenta ~k+,~k−. We obtain

CµT`1`2m1m2
= i`2−`1

∑
λ, λ′

2π2
∫
d3k+ d

3k−
(2π)6 T T`2(s)(k+) j`1(k+rL)

×
√
Wt

(
|(~k+ + ~k−)/2|

)√
Wt

(
|(~k+ − ~k−)/2|

)
× ελij

(
(~k+ + ~k−)/2

)
εij,λ

′ ((~k+ − ~k−)/2
)
Y ∗`1m1(k̂+)Y`2m2(k̂+)

×
[
Bλλ′((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)

]
. (3.13)

Again, the integration over the momenta gives a non-negligible contribution only in the
squeezed configurations when the scalar wavelength-mode is much greater than the two
tensor modes.

By substituting the squeezed bispectrum (2.21) in eq. (3.13), and expressing the angular
integrations in terms of the Wigner 3-j symbols as above, we get the final result

CµT`1`2m1m2
= i`2−`1 128π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(s)(k+) j`1(k+rL)Wζ (k−)Pt(k−)Pζ(k+)

×

 ∑
L1,M1

f stt
L1,M1 (−1)m1+L1

√
(2`1 + 1)(2`2 + 1)(2L1 + 1)

(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

)
×

∑
λ, λ′

ξλλ′

 . (3.14)

We can express this result in terms of dimensionless amplitudes as

CµT, γγζ`1`2m1m2
=
∑
L1,M1

(−1)m1+L1
√

(2`1 + 1)(2`2 + 1)(2L1 + 1)
(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

)

× 8π

∑
λ, λ′

ξλλ′

 I`1`2,L1M1,T
γγζ , (3.15)

where

I`1`2,L1M1,T
γγζ =

∫
d ln k+ d ln k− T T`2(s)(k+) j`1(k+rL)Wt (k−) At(k−)As(k+) f stt

L1,M1 . (3.16)
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2-scalars 1-tensor contribution. The contribution from the 2-scalars 1-tensor primordial
bispectrum is found by substituting eqs. (2.38) and (2.56) into (3.3). We get

CµT`1`2m1m2
= i`2−`1 16π2

∫
d3k d3k1 d

3k2
(2π)9 T T`2(t)(k) j`1(k+rL)

√
Wζ (k1)

√
Wζ (k2)

× Y ∗`1m1(k̂+)
[
−2Y`2m2(k̂) 〈ζ~k1

ζ~k2
γL−~k〉+ +2Y`2m2(k̂) 〈ζ~k1

ζ~k2
γR−~k〉

]
. (3.17)

By integrating out one of the three momenta by employing the Dirac delta in the definition
of the primordial bispectra and going through the same steps as above we arrive at

CµT`1`2m1m2
= i`2−`1 2π2

∫
d3k+ d

3k−
(2π)6 T T`2(t)(k+) j`1(k+rL)

×
√
Wζ

(
|(~k+ + ~k−)/2|

)√
Wζ

(
|(~k+ − ~k−)/2|

)
× Y ∗`1m1(k̂+)

[
−2Y`2m2(k̂+)BL((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)

++2Y`2m2(k̂+)BR((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)
]
. (3.18)

By substituting the squeezed bispectrum (2.20) into (3.18), we can rewrite this as

CµT`1`2m1m2
= i`2−`1 64π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(t)(k+) j`1(k+rL)Wζ (k−)Pζ(k−)Pt(k+)

×
∑
L1,M1

∑
L2,M2

f sst
L1,M1,L2,M2

∫
dk̂− YL2M2(k̂−)

×
∫
dk̂+

[
ξL +2YL1M1(−k̂+)−2Y`2m2(k̂+)Y ∗`1m1(k̂+)

+ ξR −2YL1M1(−k̂+) +2Y`2m2(k̂+)Y ∗`1m1(k̂+)
]
. (3.19)

As before, we now express the angular integrations in terms of Wigner 3-j symbols

CµT`1`2m1m2
= i`2−`1 64π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(t)(k+) j`1(k+rL)Wζ (k−)Pζ(k−)Pt(k+)

×
∑
L1,M1

(−1)m1+L1 f sst
L1,M1

√
(2`1 + 1)(2`2 + 1)(2L1 + 1)

(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)

×
[
ξL + (−1)`1+`2+L1 ξR

]
. (3.20)

We can express the final result in terms of dimensionless amplitudes as

CµT, ζζγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)

×4π I`1`2,L1M1,T
ζζγ , (3.21)

where

I`1`2,L1M1,T
ζζγ =

∫
d ln k+ d ln k− T T`2(t)(k+) j`1(k+rL)Wζ (k−) As(k−)At(k+) f sst

L1,M1

×
[
ξL + (−1)`1+`2+L1 ξR

]
. (3.22)
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3-tensors contribution. The contribution from the 3-tensors primordial bispectrum is
given by substituting eqs. (2.38) and (2.57) into (3.3). We get

CµT`1`2m1m2
= i`2−`1

∑
λ, λ′

16π2
∫
d3k d3k1 d

3k2
(2π)9 T T`2(t)(k) j`1(k+rL)Y ∗`1m1(k̂+)

× ελij(~k1)εij,λ′(~k2)
√
Wt (k1)

√
Wt (k2)

×
[
−2Y`2m2(k̂) 〈γλ~k1

γλ
′
~k2
γL−~k〉+ +2Y`2m2(k̂) 〈γλ~k1

γλ
′
~k2
γR−~k〉

]
. (3.23)

By going through steps analogous to above we arrive at

CµT`1`2m1m2
= i`2−`1

∑
λ, λ′

2π2
∫
d3k+ d

3k−
(2π)6 T T`2(t)(k+) j`1(k+rL) ελij

(
(~k+ + ~k−)/2

)
× εij,λ

′ ((~k+ − ~k−)/2
)√

Wt

(
|(~k+ + ~k−)/2|

)√
Wt

(
|(~k+ − ~k−)/2|

)
× Y ∗`1m1(k̂+)

[
−2Y`2m2(k̂+)Bλλ′L((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)

+ +2Y`2m2(k̂+)Bλλ′R((~k+ + ~k−)/2, (~k+ − ~k−)/2,−~k+)
]
. (3.24)

By substituting the squeezed bispectrum (2.22) into (3.24), we find

CµT`1`2m1m2
= i`2−`1 128π3

∫
dk+ dk−

(2π)6 k2
+ k

2
− T T`2(t)(k+)Wt (k−) j`1(k+rL)Pt(k+)Pt(k−)

×
∑
L1,M1

∑
L2,M2

f sst
L1,M1,L2,M2

∫
dk̂− YL2M2(k̂−)

×
∫
dk̂+

[
(ξLLL + ξLLR) +2YL1M1(−k̂+)−2Y`2m2(k̂+)Y ∗`1m1(k̂+)

+ (ξRRL + ξRRR)−2YL1M1(−k̂+) +2Y`2m2(k̂+)Y ∗`1m1(k̂+)
]
. (3.25)

The angular integrations are expressed in terms of Wigner 3-j symbols as above and we obtain
the final result

CµT, γγγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)
×8π I`1`2,L1M1,T

γγγ , (3.26)

where

I`1`2,L1M1,T
γγγ =

∫
d ln k+ d ln k− T T`2(t)(k+) j`1(k+rL)Wt (k−) At(k+)At(k−) f ttt

L1,M1

×
[
(ξLLL + ξLLR) + (−1)`1+`2+L1 (ξRRL + ξRRR)

]
. (3.27)

3.3 〈µE〉
Here, we focus on the 〈µE〉 (angular) cross-correlation defined as

CµE`1`2m1m2
= 〈aµ`1m1

aE∗`2m2〉 . (3.28)

The computations resemble the 〈µT 〉 case, apart for the substitution T → E. Therefore, in
the following we show only the final results.
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3-scalars contribution.

CµE, ζζζ`1`2m1m2
=
∑
L1,M1

(−1)m1+L1
√

(2`1 + 1)(2`2 + 1)(2L1 + 1)
(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

)

× 4π I`1`2,L1M1,E
ζζζ , (3.29)

where

I`1`2,L1M1,E
ζζζ =

∫
d ln k+ d ln k− T E`2(s)(k+) j`1(k+rL)Ws (k−) As(k−)As(k+) f sss

L1,M1 . (3.30)

1-scalar 2-tensors contribution.

CµE, γγζ`1`2m1m2
=
∑
L1,M1

(−1)m1+L1
√

(2`1 + 1)(2`2 + 1)(2L1 + 1)
(
`1 `2 L1
0 0 0

)(
`1 `2 L1
−m1 m2 M1

)

× 8π

∑
λ, λ′

ξλλ′

 I`1`2,L1M1,E
γγζ , (3.31)

where

I`1`2,L1M1,E
γγζ =

∫
d ln k+ d ln k− T E`2(s)(k+) j`1(k+rL)Wt (k−) At(k−)As(k+) f stt

L1,M1 . (3.32)

2-scalars 1-tensor contribution.

CµE, ζζγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)

×4π I`1`2,L1M1,E
ζζγ , (3.33)

where

I`1`2,L1M1,E
ζζγ =

∫
d ln k+ d ln k− T E`2(t)(k+) j`1(k+rL)Wt (k−) At(k+)As(k−) f sst

L1,M1

×
[
ξL + (−1)`1+`2+L1 ξR

]
. (3.34)

3-tensors contribution.

CµE, γγγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)
×8π I`1`2,L1M1,E

γγγ , (3.35)

where

I`1`2,L1M1,E
γγγ =

∫
d ln k+ d ln k− T E`2(t)(k+) j`1(k+rL)Wt (k−) At(k+)At(k−) f ttt

L1,M1

×
[
(ξLLL + ξLLR) + (−1)`1+`2+L1 (ξRRL + ξRRR)

]
. (3.36)
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3.4 〈µB〉

Here, we focus on the 〈µB〉 (angular) cross-correlation defined as

CµB`1`2m1m2
= 〈aµ`1m1

a
(t)B∗
`2m2
〉 . (3.37)

Again, following the scheme (3.2), this cross-correlation will be proportional to the 1-graviton
2 scalars and 3-gravitons squeezed bispectra

CµB`1`2m1m2
∝ 〈ζ~ksζ−~ksγ~kl〉, 〈γ~ksγ−~ksγ~kl〉 . (3.38)

The computations resemble the 〈µT 〉 case, apart for the exchange T → B and the sign flip
+→ − inside the square parenthesis in eqs. (3.22) and (3.27). Therefore, in the following we
give only the final results.

2-scalars 1-tensor contribution.

CµB, ζζγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)

×4π I`1`2,L1M1,B
ζζγ , (3.39)

where

I`1`2,L1M1,B
ζζγ =

∫
d ln k+ d ln k− T B`2(t)(k+) j`1(k+rL)Wt (k−) At(k+)As(k−) f sst

L1,M1

×
[
ξL − (−1)`1+`2+L1 ξR

]
. (3.40)

3-tensors contribution.

CµB, γγγ`1`2m1m2
= i`2−`1

∑
L1,M1

(−1)m1+L1
√

(2`1 +1)(2`2 +1)(2L1 +1)
(
`1 `2 L1
0 2 −2

)(
`1 `2 L1
−m1 m2 M1

)
×8π I`1`2,L1M1,B

γγγ , (3.41)

where

I`1`2,L1M1,B
γγγ =

∫
d ln k+ d ln k− T B`2(t)(k+) j`1(k+rL)Wt (k−) At(k+)At(k−) f ttt

L1,M1

×
[
(ξLLL + ξLLR)− (−1)`1+`2+L1 (ξRRL + ξRRR)

]
. (3.42)

3.5 Comments

Let us make a few comments about these results. It turns out that 〈µ`1X`2〉 angular cross-
correlations may get m-dependent off-diagonal values (`1 6= `2) as a result of statistical
anisotropies (induced by the long-mode k̂l angular dependence) introduced in the squeezed
primordial bispectra defined in section 2.2.

By virtue of the angular momentum algebra of the Wigner symbols, non-vanishing
signals are limited to |`1−`2| ≤ L1. For analogous reasons, in cases where the long-wavelength
mode is a tensor (〈ζζγ〉 and 〈γγγ〉), a non-zero signature requires L1 ≥ 2. This means that
by introducing the k̂l dependence, we generate at least quadrupolar statistical anisotropies.
Moreover, depending by the way in which primordial bispectra transform under parity
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transformation, only a given `1, `2 doublet can get a non-zero contribution. By applying the
property of the Wigner symbols (B.3) we can easily verify the following identities

CµX, ζζζ`1`2m1m2
= (−1)`1+`2+L1 CµX, ζζζ`1`2m1m2

, (3.43)

CµX, γγζ`1`2m1m2
= (−1)`1+`2+L1 CµX, γγζ`1`2m1m2

, (3.44)

withX = T,E. Therefore, by collecting together what we found in this section and eq. (2.23), it
is straightforward to realize that for the 〈ζζζ〉 bispectrum and bispectra involving tensors with
parity-even polarization coefficients we get a non-zero contribution in `1, `2 doublets satisfying

`1 + `2 + L1 =
{
even when X = E, T
odd when X = B .

(3.45)

The same holds for the 〈γγζ〉 bispectrum with maximum violation of parity as described in
eq. (2.25). Moreover, a 〈γγζ〉 bispectrum with parity-odd polarization coefficients would leave
no signatures as

∑
λλ′ ξλλ′ = 0. On the other hand, by eq. (2.24) it follows that for 〈ζζγ〉 and

〈γγγ〉 bispectra with parity-odd polarization coefficents a non-zero signal is confined to

`1 + `2 + L1 =
{
odd when X = E, T
even when X = B .

(3.46)

Finally, no general conditions (apart for the constraint |`1 − `2| ≤ L1) apply to 〈ζζγ〉 and
〈γγγ〉 bispectra with maximum parity violation.

From our explicit calculations we note that the k̂−(≡ k̂s) dependence in the angular
integrations is always through the spin-0 spherical harmonics YL2M2(k̂−) only (see e.g. eq. (3.8)).
Therefore, the resultant angular integration over k̂− is always zero unless L2 = 0, i.e. in
absence of a k̂− angular dependence. It follows that statistical anisotropies induced by
the k̂s dependence (and labelled by L2 6= 0) get erased and do not contribute to SD-CMB
cross-correlations. The physical interpretation of this comes from the physics of the spectral
distortions: when we compute the µ-distortion from the dissipation of acoustic-waves, we
need to average the effect of primordial perturbations inside a spherical shell around the last
scattering surface with a radius of order the dissipation scale at recombination (see, e.g., [38]).
As a consequence, any k̂s explicit angular dependence is averaged out to zero. For the same
reason a k̂s angular dependence induced by a long tensor mode in a rotationally invariant
squeezed bispectrum is erased when averaging over this same spherical shell. Therefore,
isotropic squeezed 〈γζζ〉 and 〈γγγ〉 bispectra leave no signatures to SD-CMB cross-correlations.
This motivates a-posteriori our decision to study the statistically anisotropic case as we are
mostly interested on signatures from bispectra involving tensor perturbations.

We end this section by noting that a similar less general discussion was first pointed out
in [40], where the authors found that diagonal and off-diagonal 〈µT 〉 cross-correlations with
|`1 − `2| = 2 arise in scalar bispectra with a quadrupolar asymmetry (corresponding to our
〈ζζζ〉, L1 = 2, L2 = 0 case).

In the next section, we aim to quantify the detectability prospects of the signatures
studied in this section.

4 Forecasts

In this section, we make Fisher forecasts on the detectability of statistical anisotropies in
primordial NGs with the cross-correlations we have computed in section 3. We will look into
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both parity preserving and parity violating patterns. As shown above, statistical anisotropies
in squeezed bispectra could lead to off-diagonal elements in the SD-CMB cross-correlations
CµT`1`2 , C

µE
`1`2

and CµB`1`2 .
Such statistical anisotropies are most effectively analyzed with the so-called BipoSH

formalism [55–57]. Here we give a brief description of this formalism, referring to the original
literature for more details. We begin by considering a generic cross-correlation in real space
between two observables O1 and O2

〈O1(x̂1)O2(x̂2)〉 , (4.1)

where x̂1 and x̂2 correspond to two different directions in the sky. We can expand this
quantity as

〈O1(x̂1)O2(x̂2)〉 =
∑

`1`2,LM

ALM,O1O2

`1`2
{Y`1(x̂1)⊗ Y`2(x̂2)}LM , (4.2)

where we have introduced the bipolar spherical harmonics

{Y`1(x̂1)⊗ Y`2(x̂2)}LM =
∑
m1m2

CLM`1m1`2m2Y`1m1(x̂1)Y`2m2(x̂2) . (4.3)

The quantities CLM`1m1`2m2
are the so-called Clebsch-Gordan coefficients (see appendix B). By

inverting eq. (4.2) and doing the angular integrations we get the BipoSH coefficients

ALM,O1O2

`1`2
=

∑
m1m2

(−1)m2 CLM`1m1`2−m2 〈O
1
`1m1O

2
`2m2〉 . (4.4)

When statistical isotropy holds, the BipoSH coefficients vanish for L > 0 and for L = 0 we
recover the usual diagonal angular correlations

A00,O1O2

`1`2
= δ`1`2(−1)`1(2`1 + 1)1/2 〈O1

`1O
2
`2〉 . (4.5)

On the other hand, when statistical isotropy is broken, we can use (4.4) for L > 0 to
characterize the anisotopies. In particular, we can build the following unbiased estimator for
the BipoSH coefficients

ÂLM,O1O2

`1`2
=

∑
m1m2

(−1)m2 CLM`1m1`2−m2 O
1
`1m1O

2
`2m2 . (4.6)

Assuming it depends on the parameters θi and θj of an underlying theory, we can define the
resultant Fisher-matrix as

Fθi,θj =
∂ALM,O1O2

`1`2

∂θi

∂A∗L
′M ′,O1O2

`′1`
′
2

∂θj

(
C−1
AA∗

)
ij
, (4.7)

where the covariance matrix reads

CAA∗ = 〈ÂLM,O1O2

`1`2
Â∗L

′M ′,O1O2

`′1`
′
2

〉 . (4.8)

In the following we will use these BipoSH coefficients and eq. (4.7) to make Fisher forecasts on
the detectability of statistical anisotropies in primordial (scalar and tensor) NGs in SD-CMB
cross-correlations.
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4.1 3-scalars bispectrum
The SD-CMB cross-correlators sensitive to this primordial bispectrum are CµT`1`2m1m2

and
CµE`1`2m1m2

angular cross-spectra. By substituting (3.10) and (3.29) into (4.4) and employing
the properties of the Wigner symbols (refer to eq. (B.4) of appendix B) we get the following
BipoSH coefficients

ALM,µT
`1`2

= δMM1 i
`1−`2

√
(2`1 + 1)(2`2 + 1)

(
`1 `2 L
0 0 0

)
× 4π I`1`2,LM,T

ζζζ , (4.9)

and

ALM,µE
`1`2

= i`1−`2
√

(2`1 + 1)(2`2 + 1)
(
`1 `2 L
0 0 0

)
× 4π I`1`2,LM,E

ζζζ , (4.10)

where I`1`2,LM,T
ζζζ and I`1`2,LM,E

ζζζ are as in eqs. (3.11) and (3.30).
The variance of the quantities just introduced reads

σ2(ALM,µX
`1`2

) =
∑
m1m′1

∑
m2m′2

[
Cµµ`1`1m1m′1

CXX`2`2m2m′2
+ CµX`1`2m1m′2

CXµ`2`1m2m′1

]
(4.11)

× (−1)m2+m′2CLM`1m1`2−m2 C
LM
`1m′1`2−m

′
2
' Cµµ`1 CXX`2 , (4.12)

where X = T,E and the last approximation holds in the regime of small primordial NGs,
where we should expect (

CµX`m

)2
� CXX`m Cµµ`m . (4.13)

Here the CXX`m ’s are the CMB total X-mode power spectra, which we will assume to be cosmic-
variance limited on large scales. Moreover, given the current and planned experiments aiming
to measure the µ-spectral distortions of the CMB, we expect that the experimental noise in
the µ modes angular power spectrum dominates over the signal, i.e. Cµµ`m,N � Cµµ`m,sign.8

For a PIXIE-like experiment the expected level of noise is given by [61, 62]

Cµµ,PIXIE
`m,N = µ2

N × e(`/84)2
, (4.14)

where µN = 4.96× 10−8. Under these assumptions, we get

σ2(ALM,µX
`1`2

) ' Cµµ`1,NC
XX
`2 . (4.15)

Therefore, we get the following Fisher matrix for the parameter fsssL = fsssL,M from ALM,µX
`1`2

,9

FL =
`max∑
`1,`2=2

ÃLM,µX
`1`2

Ã∗LM,µX
`1`2

Cµµ`1,NC
XX
`2

, (4.16)

8See [38] for more details in this regards. Needless to say, assuming we can build a (very futuristic)
experiment where we can make a cosmic-variance limited measurement of µ-distortions, a lot of further
improvement in the detection of squeezed bispectra should be expected, in line with ref. [100]. However, here
we are not focusing in this scenario and consider noise of planned CMB experiments.

9Here and afterwards we drop the M dependences on the coefficients fxxxLM ’s as the forecasts do not depend
by M .

– 21 –



J
C
A
P
0
2
(
2
0
2
2
)
0
0
4

101 102

max

104 104

fss
s

L
Gs = 1

T
E
T+E

0.2 0.0 0.2
ns 1

103 103

104 104

fss
s

L

Gs = 1
L = 0
L = 1
L = 2

Figure 2. Plot of the expected 1-sigma error on f sss
L from µT and µE for a PIXIE-like level of noise.

Plain lines corresponds to L = 0, dashed lines to L = 1, dot-dashed lines to L = 2. Left Panel: ∆f sss
L

vs `max for scale invariant scalar power spectrum. Right panel: ∆f sss
L vs ns − 1.

where ÃLM,µX
`1`2

= ∂ALM,µX
`1`2

/∂fsssL . Assuming that our observables are Gaussian distributed
the expected 1-sigma error on fsssL is given by

∆fsssL = F
−1/2
L . (4.17)

If we want to combine the T and E modes in our estimate, we need to write down the
following joint-Fisher matrix

FL =
`max∑
`1,`2=2

ÃLM
`1`2 · C

−1
AA∗, `1`2 · Ã

∗LM,T
`1`2

, (4.18)

where

ÃLM
`1`2 =

Ã
LM,µT
`1`2

ÃLM,µE
`1`2

 , CAA∗, `1`2 '

C
µµ
`1,NC

TT
`2

Cµµ`1,NC
TE
`2

Cµµ`1,NC
TE
`2

Cµµ`1,NC
EE
`2

 . (4.19)

Therefore

C−1
AA∗, `1`2 '



CEE`2

Cµµ
`1,N

(
CTT
`2

CEE
`2
−(CTE

`2
)2
) −

CTE`2

Cµµ
`1,N

(
CTT
`2

CEE
`2
−(CTE

`2
)2
)

−
CTE`2

Cµµ
`1,N

(
CTT
`2

CEE
`2
−(CTE

`2
)2
) CTT`2

Cµµ
`1,N

(
CTT
`2

CEE
`2
−(CTE

`2
)2
)

 . (4.20)

It is worth to stress that our expressions for the Fisher matrix are valid when considering
a full-sky experiment. In a real world experiment, the F-matrix is damped by a factor fsky,
where fsky is the portion of the sky covered by a given CMB survey. In figure 2 we plot
the expected 1-sigma error on f sssL for different kind of statistical anisotropies labeled by
L = 0, 1, 2 obtained combining the CµT`m and CµE`m angular cross-spectra. The plots are made
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L a b c

0 3.7× 103 −2.55 −0.58
1 3.9× 103 −2.55 −0.58
2 4.8× 103 −2.55 −0.58

Table 1. Values of the parameters in eq. (4.22).

taking Gs = 1 and varying the scalar-tilt at the SD scales. From our numerical results we
obtain the following scaling formula10

∆fsssL |T+E = a 10b(ns−1)+c(ns−1)2
. (4.21)

Analyzing the expression for the Fisher matrix (4.18), this formula can be generalized to
Gs 6= 1 and with generic level of noise µN as

∆fsssL |T+E = a

Gs

(
µN

4.96× 10−8

)
10b(ns−1)+c(ns−1)2

. (4.22)

In table 1 we summarize the values of the fit parameters a, b, c for the various L-poles. Our
results suggest that the detectability prospects decrease by increasing the L-pole labelling a
given statistical anisotropy. However, by admitting statistical anisotropies with L ≤ 2, the
detectability prospects remain commensurate.

4.2 2-tensors 1-scalar bispectrum

As in the previous subsection, SD-CMB cross-correlators sensitive to the 2-tensors 1-scalar pri-
mordial bispectrum are CµT`1`2m1m2

and CµE`1`2m1m2
angular cross-spectra. By substituting (3.15)

and (3.31) into (4.4) we get

ALM,µT
`1`2

= i`1−`2
√

(2`1 + 1)(2`2 + 1)
(
`1 `2 L
0 0 0

)

× 8π
(∑
λλ′

ξλλ′

)
I`1`2,LM,T
γγζ , (4.23)

and

ALM,µE
`1`2

= i`1−`2
√

(2`1 + 1)(2`2 + 1)
(
`1 `2 L
0 0 0

)

× 8π
(∑
λλ′

ξλλ′

)
I`1`2,LM,E
γγζ , (4.24)

10Here and afterwards the scalar and tensor tilts dependence is the result of fits in the ns − 1 (nt) region
space [−0.3, 0.3] (the relative errors are within 1%). We verified that, by modifying this region, the dependence
over ns is not significantly altered (the relative errors stay within 10% for |ns − 1| ≤ 1). In contrary, the
dependence over nt is much more sensitive to the tensor-tilt region considered, so the corresponding fits should
be considered as very rough estimates. This sensitivity to nt is due to the soft decay at k > 104 Mpc−1 of
the tensor SD-transfer function, allowing for increasing scales to contribute in the integrals as (3.16) with
increasing values of nt.
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Figure 3. Plot of the expected 1-sigma error on f tts
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tensor-to-scalar ratio at CMB scales is taken rCMB = 0.01. Plain lines corresponds to L = 0, dashed
lines to L = 1, dot-dashed lines to L = 2. Left Panel: ∆f tts

L vs `max for scale invariant tensor power
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L vs nt.

L a b c

0 1.6× 1010 −1.91 −1.52
1 1.7× 1010 −1.91 −1.52
2 2.1× 1010 −1.91 −1.52

Table 2. Values of the parameters in eq. (4.25).

where I`1`2,LM,T
γγζ and I`1`2,LM,E

γγζ are as in eqs. (3.16) and (3.32). Here we adopt the convention
|ξRR| = |ξLL| = 1, and we assume ξLR = ξRL = 0.11 In figure 3 we plot the expected 1-sigma
error on f ttsL for L = 0, 1, 2. Using the plots and the expression of the Fisher matrix we can
get the following scaling formula of the expected 1-sigma error

∆f ttsL |T+E = a

Gt

(
µN

4.96× 10−8

) ( 0.01
rCMB

)
10b(nt)+c(nt)2

, (4.25)

where rCMB denotes the tensor-to-scalar ratio at CMB scales, and the values of the parameters
are given in table 2. Again, we notice a degradation in the detection prospects with increasing
levels of statistical anisotropies, while the dependence on the other relevant parameters is not
altered by the kind of statistical anisotropy.

4.3 2-scalars 1-tensor bispectrum

Intuitively, the SD-CMB cross-correlation most sensitive to the 2-scalars 1-tensor primordial
bispectrum is the CµB`1`2m1m2

cross-spectrum. In fact, cross-correlations of µ modes with T
and E modes generated by tensor perturbations are expected to be limited by the scalar

11We are not considering the contribution of squeezed 〈γγζ〉 bispectra that involve mixed chiralities. These
bispectra are typically very sensitive to the details and the symmetry breaking patterns of the underlying
model (see e.g. [15, 34]). However, we would expect 〈γRγLζ〉 and 〈γLγRζ〉 to give a signature at most of the
same order of magnitude than 〈γRγRζ〉 and 〈γLγLζ〉, leading to an improvement of only a factor 2 in the
1-sigma error on f ttsL .
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Figure 4. Plot of the expected 1-sigma error on f sst
2 from µB for PIXIE-like level of noise and

cosmic-variance limited fully delensed B modes. The tensor-to-scalar ratio at CMB scales is taken
rCMB = 0.01. Left Panel: ∆f sst

2 vs `max for scale invariant scalar power spectrum. Right panel: ∆f sst
2
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induced cosmic variance-limited T - and E-mode power spectra. On large scales, the CMB
tensor transfer functions T X`(t) are comparable in size to the scalar transfer functions T X`(s).
Therefore, the µT (µE) and µB Fisher matrices per unit-` scale as

FµTL
FµBL

∣∣∣
`
∼ CBB`
CTT`

∼ rCMB . (4.26)

As rCMB < 0.056, we have an increase of at least 1 order of magnitude in the 1-sigma error
on fsstL by using µT and µE rather than µB.

By substituting eq. (3.39) into eq. (4.4) and employing the properties of the Wigner
symbols we get

ALM,µB
`1`2

= i`1−`2
√

(2`1 + 1)(2`2 + 1)
(
`1 `2 L
0 2 −2

)
× 4π I`1`2,LM,B

ζζγ , (4.27)

where I`1`2,LM,B
ζζγ is as in eq. (3.40). Here we adopt the convention |ξR| = |ξL| = 1.

The computation of the Fisher matrix for f tssL resembles the computations above and
we get

FL =
`max∑
`1,`2=2

ÃLM,µB
`1`2

Ã∗LM,µB
`1`2

Cµµ`1,NC
BB
`2

, (4.28)

where ÃLM,µB
`1`2

= ∂ALM,µB
`1`2

/∂fsstL . In figure 4 we plot the expected 1-sigma error on fsstL ,
with L = 2, for the different ways in which the 〈ζζγ〉 bispectrum transforms under parity
transformation. From the results of the forecasts and the expression of the Fisher matrix, we
obtain the following scaling formula

∆fsst2 |B = a

Gs

(
µN

4.96× 10−8

) ( 0.01
rCMB

)1/2
10b(ns−1)+c(ns−1)2

. (4.29)
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Transformation under parity a b c

even parity 6.8× 104 −2.55 −0.58
odd parity 8.5× 104 −2.55 −0.58

maximum parity violation 1.0× 105 −2.55 −0.58

Table 3. Values of the parameters in eq. (4.29).

Transformation under parity a b c

even parity 5.9× 1011 −1.91 −1.52
odd parity 7.3× 1011 −1.91 −1.52

maximum parity violation 9.0× 1011 −1.91 −1.52

Table 4. Values of the parameters in eq. (4.32).

In table 3 we summarize the values of the fit parameters a, b, c. Here we have only explored
the case of quadrupolar statistical anisotropies (L = 2). Higher levels of statistical anisotropies
can be studied as well, but we leave such a study for more model dependent settings. We
found that detectability prospects slighly degrade when we consider parity violation signatures,
even if the final results still remain commensurate.

4.4 3-tensors bispectrum

Analogously to the previous subsection, the SD-CMB cross-correlation most sensitive to the
3-tensors primordial bispectrum is the CµB`1`2m1m2

cross-spectrum. The Fisher matrix reads

F =
`max∑
`1,`2=2

ÃLM,µB
`1`2

Ã∗LM,µB
`1`2

Cµµ`1,NC
BB
`2

, (4.30)

where ÃLM,µB
`1`2

= ∂ALM,µB
`1`2

/∂f tttL and

ALM,µB
`1`2

= i`1−`2
√

(2`1 + 1)(2`2 + 1)
(
`1 `2 L
0 2 −2

)
× 8π I`1`2,LM,B

γγγ , (4.31)

where I`1`2,LM,B
γγγ is as in eq. (3.42). Here we adopt the convention |ξRRR| = |ξLLL| = 1,

and we assume ξRRL = ξLLR = 0.12 In figure 5 we plot the expected 1-sigma error on f tttL
with L = 2 for the various ways in which the 〈γγγ〉 bispectrum transforms under parity
transformation. From our plots and the Fisher matrix we obtain the following scaling formula

∆f ttt2 |B = a

Gt

(
µN

4.96× 10−8

) ( 0.01
rCMB

)1/2
10b(nt)+c(nt)2

. (4.32)

In table 4 we summarize the values of the fit parameters a, b, c. As before, we have a
12As before, we are not including the contribution of squeezed bispectra with mixed chiralities. This can

lead to an improvement up to a factor 2 of the 1-sigma error on f ttt2 in the even parity and odd parity cases of
figure 5.
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slight dependence on the level of parity violation, while the dependence on the other relevant
parameters is not altered by the level of parity violation.

In the next section, we make some considerations about what we learn from these
forecasts and their validity. We also discuss various classes of inflationary models that could
be of relevance for the observables we are considering.

5 Model considerations

In this section, we consider various phenomenological and model building aspects of our
findings. We begin by commenting on the assumption of weak NGs. In performing our Fisher
matrix forecasts in the previous section, we implicitly assumed that primordial NGs are small
compared to the Gaussian part of the primordial correlators. Demanding that non-linear
effects from a given squeezed primordial correlation 〈xx′x′′〉 are subdominant than the linear
results, translates into the following condition

k3
l k

3
s 〈x(kl)x′(ks)x′′(ks)〉 � ∆x(kl)∆x′(ks)∆x′′(ks) , (5.1)

where ∆i = (Ai)1/2 denote the square roots of the dimensionless power spectra. By apply-
ing eq. (5.1) to primordial bispectra we get the following constraints to our non-Gaussian
amplitudes

f ttsL , f sssL �
(
As(kCMB)

)−1
' 105 , (5.2)

fsstL , f tttL �
(
As(kCMB) rCMB

)−1
' 105

rCMB
. (5.3)

These theoretical upper bounds should be matched with the 1-sigma error derived from the
plots above. Assuming almost scale invariant spectra in the window of scales where primordial
perturbations source µ-distortions, we got the following rough expressions for a PIXIE-like
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experiment

∆f ttsL ≈
1010

GT

( 0.01
rCMB

)1/2
, ∆fsssL ≈ 103

Gs
,

∆fsstL ≈ 104

Gs

( 0.01
rCMB

)1/2
, ∆f tttL ≈

1011

GT

( 0.01
rCMB

)1/2
.

(5.4)

Assuming rCMB ∼ 0.01− 0.001 and the absence of growth-mechanisms (Gi = 1), we get that
the expected 1-sigma error on 〈γγγ〉 and 〈γγζ〉 is larger than the theoretical upper bound.
This is something that was expected if we look at figure 1. The tensor µ modes transfer
function is about five orders of magnitude smaller than the scalar transfer function. Therefore,
in absence of mechanisms of amplifications of primordial perturbations we would expect

∆f ttsL ≈ 10−5 rCMB ∆fsssL , ∆f tttL ≈ 10−5 rCMB ∆f sstL , (5.5)

which is in agreement with (5.4) for Gi = 1. From eq. (5.5) it follows that we need the
following amplification of the tensor perturbations amplitude

GT ≈
105

rCMB
(5.6)

in order for 〈γγγ〉 and 〈γγζ〉 bispectra to reach the same level of detectability as 〈ζζζ〉
and 〈ζζγ〉. In absence of such an amplification of tensor perturbations, 〈γγγ〉 and 〈γγζ〉
bispectra are basically unconstrained by the cross-correlators between CMB µ modes and
CMB temperature and polarization anisotropies. Given the current upper bound on rCMB
from the Planck experiment, we need an amplification factor of at least GT & 106, (and
proportionally more if Gs is also greater than one). Such a huge, independent amplification
of tensor inflationary perturbations in the µ modes-era is typically not reachable within a
controlled approximation in inflationary models known to us. As noticed e.g. in [96], only
gravitational waves of post-inflationary origin appear to be realistic targets for µ-distortions
experiments. This suggests that from our current vantage point 〈ζζζ〉 and 〈ζζγ〉 are most
likely the only bispectra we may put realistic constraints using the cross-correlations we
are considering. However, model builders may some day concoct a model that successfully
independently amplifies primordial tensor perturbations with GT & 106.

By including the sky-damping factor fsky, we also get the scaling formulas

∆fsssL |T+E ∼
103

Gs fsky

(
µN

4.96× 10−8

)
10−2.55(ns−1)−0.58(ns−1)2

,

∆fsstL |B ∼
104

Gs fsky

(
µN

4.96× 10−8

)( 0.01
rCMB

)1/2
10−2.55(ns−1)−0.58(ns−1)2

. (5.7)

Combining these equations we get the following scaling13

∆fsstL |B ∼ 10
( 0.01
rCMB

)1/2
∆f sssL |T+E . (5.8)

13We note that this scaling is model dependent only insofar as the spectra can be parametrized as a power
law with a fixed (or weakly running index). There are a large class of models for which this isn’t the case,
necessitating a separate, though straightforward generalization of the present treatment.
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Assuming rCMB = 0.01 we get that O(1) squeezed non-Gaussian 〈ζζζ〉 (〈ζζγ〉) amplitudes
can be measured if the amplification of scalar perturbations satisfies Gs > 103 (104). These
results are particularly interesting since models with such amplification in the power spectra
typically also share an analogous amplification of the non-Gaussian amplitudes.

Examples of such scenarios are inflationary models of primordial black hole (PBH)
production (see, e.g., [101–108]). As shown e.g. in [109], though an ultra-slow-roll mechanism
we can enhance the power spectrum of scalar perturbations up to seven orders of magnitude,
reaching Gs = 107. Assuming such an amplification mechanism and an experiment with a
PIXIE-like level of noise with fsky = 0.1 and rCMB = 0.01, this would lead to ∆fsssL ' 10−3

and ∆fsstL ' 10−2. However, it is worth to stress that the presence of even a low level of
statistical anisotropies in these bispectra is necessary to get non-trivial signatures. To our
knowledge, the effects of statistical anisotropies in such models is still unexplored.

Similarly, interesting detection prospects have already been considered in literature
for the pure scalar (isotropic) bispectrum 〈ζζζ〉 from the µT and µE cross-correlations (see
e.g. [38, 43, 109]). Here we want to emphasize that in those models in which statistical
anisotropies in the 〈ζζζ〉 bispectrum leave detectable signatures in µT and µE, there is
also a possibility to detect a non-zero 〈ζζγ〉 bispectrum signal from the µB cross-correlator.
This is relevant as the 〈ζζγ〉 bispectrum reveals information on the underlying inflationary
scenario that are usually not contained in the 〈ζζζ〉 bispectrum. For example, a measurement
or constraint on 〈ζζγ〉 would allow us to probe: (i) the interactions between scalar and
tensor primordial perturbations, (ii) the gravitational waves induced by second order scalar
perturbations, (iii) a deeper insight in the violation of rotational and parity symmetries in
the primordial universe. In particular, this last feature is rather interesting. As we have
shown in section 3.5, depending on the kind of statistical anisotropy and the way in which
the 〈ζζγ〉 bispectrum transforms under parity symmetry we are able to predict the multipole
configurations that provide a non-zero signal. This implies that a detection of a non-zero
〈µ`1B`2〉 signal in certain `1, `2 doublets may provide detailed information about the violation
of the parity symmetry in inflationary models. Needless to say, a similar argument applies
also to 〈µ`1T`2〉 and 〈µ`1E`2〉 cross-correlations. In this case, parity violation signatures may
be left imprinted also by the 〈ζζζ〉 bispectrum with L1 = odd, L2 = 0 statistical anisotropies.
However, when L1 = even, we must rely solely on 〈γζζ〉 to probe parity violation.

In order for tensor NGs to be meaningfully detectable via SD-CMB cross correlations,
one evidently requires a large amplification of scalar and/or tensor modes at scales relevant for
µ-distortions, which moreover, must be sourced by a background that also violates statistical
isotropy. Although this may seem like a doubly contrived demand, there is evidently a class
of models for which the violation of statistical isotropy and the amplification of primordial
perturbations may go hand in hand. Inflation realized via a scalar field charged under a U(1)
symmetry with an inflaton dependent gauge kinetic coupling has been studied by the authors
of [110, 111] as a means to generate observable levels of statistical anisotropy. The model
action is given by

S =
∫
d4x
√
−g

[
M2
P

2 R− 1
2DµφD

µφ̄− f2(φ)
4 FµνF

µν − V (φ, φ̄)
]
. (5.9)

A non-zero expectation value for the gauge potential (which breaks isotropy) is sustained
during inflation through a combination of the gauge kinetic mixing and the minimal coupling
of the charged scalar to the U(1) field. The inflaton potential can correspond to a range of
universality classes, including hilltop, hybrid, and chaotic inflation, implying a large degree of
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parametric freedom in this class of models [110, 111]. The presence of higher dimensional
terms (in the power counting sense) implicit in the operator f2(φ)F 2 forces us to consider
the above as an effective action, for which the additional interaction g2(φ)FF̃ appears with
the same degree of (ir)relevance. The presence of the latter term, which for the modulus of
the charged scalar mimics that of an axionic coupling to FF̃ has been shown to generically
source large, secondarily produced primordial perturbations (e.g. [16, 18]). Although such an
iteration of the class of models represented by eq. (5.9) has not been studied in the literature
to our knowledge, it is of equal relevance from a power counting perspective, and places the
violation of statistical isotropy and the generation of enhanced scalars and tensors on an equal
footing. The parametric freedom in the choices of the three independent functions f(φ), g(φ)
and V (φ) ought to be suggestive to any interested model builders as a possibility to generate
the level of SD-CMB cross correlations relevant to the considerations of this paper.

We conclude this section by discussing some limitations of our forecasts. First, we stress
that the ∆fxxxL ’s derived above represent only the lower bound on the 1-sigma error, and
they corresponds to the exact error only when our observables are Gaussian distributed. In
our case the BipoSH coefficients ALM,O1O2

`1`2
approach a Gaussian distribution only in the

large-`1, `2 limit (see e.g. [112]). Since we are looking to relatively large scale effects (low CMB
multipoles), it is most likely that the real 1-sigma error is higher than what stated. Also, we
did not account for the contribution of galactic foregrounds. As noticed in [113, 114], these
should be taken into account for a real world experiment. On the other end, our forecasts are
valid assuming that the non-Gaussian amplitudes fxxxL are almost scale invariant functions
of the parameters of an underlying inflationary model. As shown in eq. (2.19), the squeezed
limit amplitudes fxxxL may depend on the short and soft modes ks and kl. A scale dependence
over ks and kl stronger than a logarithmic or a soft power law may modify our forecasts in a
non-trivial way. In such a case one should reabsorb the scale dependence in a parameter α as

fxxxL (ks, kl) = α(ks, kl) f̃xxxL , (5.10)

where f̃xxxL is a scale-invariant quantity. Therefore, we can reabsorb the quantity α(ks, kl)
inside the momenta integrations of e.g. eq. (3.11). The final forecast should be made on
f̃xxxL . Finally, we like to discuss the degradation of the detectability of 〈ζζγ〉 due to lensing
contamination on CMB B modes. By reproducing the plot in figure 4 accounting for
the contribution of the lensed B modes in the cosmic variance limit we get the results
summarized in figure 6.14 As shown, for values of the tensor-to-scalar-ratio within the aim
of the forthcoming CMB experiments (rCMB = 0.01, 0.001) the 1-sigma error increases at
most a factor 2, remaining of the same order of magnitude as the fully delensed case. This
suggests that accounting for the lensing contamination in the cosmic variance limit will not
significantly change the detectability prospects for the values of rCMB that next generation of
CMB experiments aims to measure.

6 Conclusion

In this work we have explored new observational channels to probe tensor primordial NGs by
exploiting the cross-correlations between the CMB µ-distortions and temperature and polar-
ization anisotropies. We have focused to the case where we introduce statistical anisotropies

14As an example, we only show the parity even case. We verified that the same qualitative conclusions arise
when considering the other cases.
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Figure 6. Plot of the expected 1-sigma error on f sst
2 for the parity even case as in figure 4 obtained

for different values of the tensor-to-scalar ratio at CMB scales. Straight lines: fully delensed B modes.
Dashed lines: lensed B modes.

in squeezed NGs, as isotropic NGs leave either vanishing or highly suppressed signatures on
the observables considered.

In detail, we have computed the effect of all the primordial (squeezed) bipectra involv-
ing both scalar and tensors on 〈X`1 µ`2〉 (X = T,E,B) cross-correlations. As statistical
anisotropies in squeezed bispectra induce statistical anisotropies in these cross-correlations, we
introduced the BipoSH formalism and BipoSH coefficients to study the detectability prospects
through Fisher-matrix forecasts.

We found that 〈ζζγ〉 and 〈ζζζ〉 are the only bispectra where we could realistically
observe statistical anisotropies by cross-correlating the observational channels of the current
and forthcoming CMB experiments, like Planck, LiteBIRD, PICO and PIXIE-like or proble
class missions. The signatures left by the 〈γγγ〉 and 〈γγζ〉 bispectra are limited by the
corresponding 〈ζζγ〉 and 〈ζζζ〉 bispectra unless a mechanism generates huge, independent
growth in tensor perturbations in the window of scales where primordial perturbations source
µ-distortions. In particular, tensor perturbations have to increase by over six orders of
magnitude with respect to the current constraints placed by the Planck experiment. What
makes the detection of 〈γγγ〉 and 〈γγζ〉 very challenging is that tensor perturbations dissipate
their energy much more inefficiently than scalar perturbations.

We also found that for those inflationary models where the detection prospects of
statistical anisotropies in the 〈ζζζ〉 bispectrum are enhanced by combining the 〈µ`1T`2〉 and
〈µ`1E`2〉 information, also the detection prospects for probing statistical anisotropies in 〈ζζγ〉
bispectrum from the cross-correlation 〈µ`1B`2 〉 are enhanced (see the model independent
eq. (5.8)). This is relevant as it provides us with an observational channel complementary to
the usual 〈BB〉 channel to find evidence of primordial gravitational waves in non-conventional
models of inflation.

Our final eq. (5.7) aims to predict the level of detectability of the 〈ζζζ〉 and 〈ζζγ〉
non-Gaussian amplitudes defined in (2.19) and (2.20). Our forecasts are valid provided that
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in the window of scales where µ modes are produced we can approximate the scale dependence
of the primordial power spectra as power-laws with almost constant spectral indexes, and
assuming that the non-Gaussian amplitudes are almost constant. In case of more general
scale-dependencies, a more detailed model-dependent analysis should be performed, using and
adapting the results derived in section 3. However, the general claim that the detectability
prospects of statistical anisotropies in 〈ζζγ〉 bispectrum are enhanced wherever we realize a
model able to enhance the detection prospects of statistical anisotropies in 〈ζζζ〉 bispectrum,
is universally valid, independently of the specific realization of inflation.

As a final remark, we stress that a detection of a net signature on the cross-correlations
we have considered in this work would imply a realization of inflation containing very peculiar
features, like huge growth mechanisms of primordial perturbations in a very localized window
of scales, and the presence of a controlled level of statistical anisotropies which must be
consistent with the bounds already placed by the current CMB experiments. These are
stringent constraints on inflationary model building, where any candidate model has to
simultaneously realize these two conditions. Henceforth, a detection of a signature through
these channels with forthcoming CMB experiments would most likely be sourced by non-
standard inflationary dynamics, possibly within the class of models represented in eq. (5.9)
with an additional interaction of the form g2(φ)FF̃ , although such a model has yet to be
studied in the literature to our knowledge. We argue that the observational channels of
primordial tensor NGs we proposed in this work will become important in a very futuristic
scenario, where we will be able to exploit the cosmic variance limit level of noise in CMB
experiments. In this regards, an analysis of the detection prospects of the signatures considered
here in an ultimate survey is left for future research.
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A Spin-raising and lowering operators and spin-weighted spherical har-
monics

Here, we briefly review the definitions of the spin-raising and lowering operators, giving an
example on how we can use them to define the weighted spherical harmonics. We refer to
e.g. [81] for more details. The spin raising ′∂ and lowering ′∂ operators acting on a generic
spin s function sf(θ, φ) defined on a 2D sphere are given by

′∂ sf(θ, φ) = − sins θ [∂θ + i csc θ∂φ] sin−s θsf(θ, φ) ,
′∂ sf(θ, φ) = − sin−s θ [∂θ − i csc θ∂φ] sins θsf(θ, φ) . (A.1)

In particular, the new functions ′∂ sf(θ, φ) and ′∂ sf(θ, φ) have spin s+1 and s−1, respectively.
For example, the spin raising and lowering operators acting twice on a generic spin-±2 function
±2f(µ, φ) which is factorized as ±2f(θ, φ) = ±2f̃(µ)eimφ (i.e. the CMB polarization fields) can
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be expressed as

′∂ 2
2f(θ, φ) =

(
−∂µ + m

1− µ2

)2 [
(1− µ2)2f(µ, φ)

]
,

′∂ 2
−2f(θ, φ) =

(
−∂µ −

m

1− µ2

)2 [
(1− µ2)−2f(µ, φ)

]
, (A.2)

where µ ≡ cos θ. In this way, just acting with a differential operator, we can easily define
spin-0 quantities starting from spin-2 ones. This procedure is used in the case of CMB to pass
from the P± spin-±2 linear polarization fields to the E and B modes, which are spin-0 fields.

Using eqs. (A.1), we can express the spin-weighted spherical harmonic functions on a
2D sphere, sY`m(θ, φ), in terms of the common spherical harmonics 0Y`m(θ, φ) = Y`m(θ, φ) by
acting with the spin raising/lowering operator as

sY`m(θ, φ) =
[(`− s)!

(`+ s)!

] 1
2 ′∂ sY`m(θ, φ) (0 ≤ s ≤ `) ,

sY`m(θ, φ) =
[(`+ s)!

(`− s)!

] 1
2

(−1)s ′∂ −sY`m(θ, φ) (−` ≤ s ≤ 0) . (A.3)

Then, it is possible to show the validity of the following relations

′∂ sY`m(θ, φ) = [(`− s)(`+ s+ 1)]
1
2 s+1Y`m(θ, φ) ,

′∂ sY`m(θ, φ) = − [(`+ s)(`− s+ 1)]
1
2 s−1Y`m(θ, φ) ,

′∂ ′∂ sY`m(θ, φ) = −(`− s)(`+ s+ 1) sY`m(θ, φ) m, (A.4)

which can be used to derive the following explicit expression of the weighted spherical
harmonics

sY`m(θ, φ) = eimφ
[(`+m)!(`−m)!

(`+ s)!(`− s)!
(2`+ 1)

4π

]1/2
sin2`(θ/2)

×
∑
r

(
`− s
r

)(
`+ s

r + s−m

)
(−1)`−r−s+mcot2r+s−m(θ/2) . (A.5)

It is straightforward to verify the orthogonality and completeness conditions for the
sY`m(θ, φ) as

∫ 2π

0
dφ

∫ 1

−1
d cos θ sY

∗
`′m′(θ, φ) sY`m(θ, φ) = δ`′,` δm′,m ,∑

`m

sY
∗
`m(θ, φ) sY`m(θ′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′) , (A.6)

as well as the following properties regarding the transformation under conjugate and parity

sY
∗
`m(θ, φ) = (−1)s+m−sY`−m(θ, φ) ,

sY`m(π − θ, φ+ π) = (−1)` −sY`m(θ, φ) . (A.7)
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B 3-j symbols, Gaunt integral and Clebsch-Gordan coefficients

In this appendix, we give some useful formulas regarding the angular integrals of products of
spherical harmonics. We will use x̂ to denote a given direction on the 2D sphere and d2Ωx to
indicate the infinitesimal solid angle on the sphere.

First, we define the quantity s1s2s3G
m1m2m3
`1`2`3

, which is known as “generalized” Gaunt
integral and it represents the angular integral of the product of three (weighted) spherical
harmonics. This can be written in terms of Wigner 3-j symbols as (see e.g. [115, 116])

s1s2s3G
m1m2m3
`1`2`3

=
∫
d2Ωx s1Y`1m1(x̂) s2Y`2m2(x̂) s3Y`3m3(x̂)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
−s1 −s2 −s3

)(
`1 `2 `3
m1 m2 m3

)
. (B.1)

The Wigner 3-j symbols are related to the spin-weighted spherical harmonics as

2∏
i=1

siY`imi(x̂) =
∑

`3m3s3

s3Y
∗
`3m3(x̂)

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

×
(
`1 `2 `3
−s1 −s2 −s3

)(
`1 `2 `3
m1 m2 m3

)
. (B.2)

Notice that eq. (B.1) follows once putting together eqs. (A.6) and (B.2).
Some useful properties of the Wigner 3-j symbols that we used in this work are(

`1 `2 `3
m1 m2 m3

)
= (−1)

∑
i
`i

(
`1 `2 `3
−m1 −m2 −m3

)
, (B.3)

and ∑
m1,m2

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `′3
m1 m2 m

′
3

)
= (2`3 + 1)−1 δ`3,`′3 δm3,m′3

. (B.4)

The 3-j symbols of the kind (
`1 `2 `3
m1 m2 −m3

)
(B.5)

are related to the Clebsh-Gordan coefficients

C`2m3
`1m1`2m2

= 〈`1m1`2m2|`3m3〉 (B.6)

by [117] (
`1 `2 `3
m1 m2 −m3

)
= (−1)`1−`2+m3

√
2`3 + 1

C`2m3
`1m1`2m2

. (B.7)

Therefore, the 3-j symbols of the form (B.5) vanish unless the selection rules are satisfied
as follows

|m1| ≤ `1 , |m2| ≤ `2 , |m3| ≤ `3 , m1 +m2 = m3 , (B.8)
|`1 − `2| ≤ `3 ≤ `1 + `2 (the triangle condition) , `1 + `2 + `3 ∈ Z . (B.9)

More properties of the Wigner 3-j symbols can be found in [117].
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