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Abstract: Viral metagenomics is increasingly applied in clinical diagnostic settings for detection
of pathogenic viruses. While several benchmarking studies have been published on the use of
metagenomic classifiers for abundance and diversity profiling of bacterial populations, studies on
the comparative performance of the classifiers for virus pathogen detection are scarce. In this study,
metagenomic data sets (n = 88) from a clinical cohort of patients with respiratory complaints were
used for comparison of the performance of five taxonomic classifiers: Centrifuge, Clark, Kaiju,
Kraken2, and Genome Detective. A total of 1144 positive and negative PCR results for a total of
13 respiratory viruses were used as gold standard. Sensitivity and specificity of these classifiers ranged
from 83 to 100% and 90 to 99%, respectively, and was dependent on the classification level and data
pre-processing. Exclusion of human reads generally resulted in increased specificity. Normalization
of read counts for genome length resulted in a minor effect on overall performance, however it
negatively affected the detection of targets with read counts around detection level. Correlation
of sequence read counts with PCR Ct-values varied per classifier, data pre-processing (R2 range
15.1–63.4%), and per virus, with outliers up to 3 log10 reads magnitude beyond the predicted read
count for viruses with high sequence diversity. In this benchmarking study, sensitivity and specificity
were within the ranges of use for diagnostic practice when the cut-off for defining a positive result
was considered per classifier.

Keywords: viral metagenomics; bioinformatics; pathogen detection; next-generation sequencing

1. Introduction

In the era of next-generation sequencing (NGS), clinical metagenomics, the analysis of
all microbial genetic material in clinical samples, is being introduced in diagnostic laborato-
ries and revolutionizing the diagnostics of infectious diseases [1–4]. As opposed to running
a series of pathogen targeted diagnostic PCR assays to identify suspected pathogens, one
single metagenomic run enables the detection of all potential pathogens in a clinical sam-
ple [5,6]. The use of this method, also known as shotgun high-throughput sequencing,
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has resulted in the detection of several pathogens missed by current routine diagnostic
procedures [1,7]. For a large part the clinical application of metagenomic sequencing
for pathogen detection has focused on patients with encephalitis [1,8–12]. However, pa-
tients with clinical syndromes suspected from an infectious disease but with negative
conventional test results are increasingly considered as candidates for metagenomic testing.
With sequencing costs decreasing and the significance of detection of unexpected, novel
viruses being underscored by the currently pandemic SARS-CoV-2 [13], metagenomics is
increasingly moving towards implementation in diagnostic laboratories.

Performance testing is typically part of the implementation procedure in diagnos-
tic laboratories to ensure the quality of diagnostic test results. Accurate bioinformatic
identification of viral pathogens depends on both the classification algorithm and the
database [14–16]. Metagenomic sequencing in the past has been mainly oriented at pro-
filing of bacterial genomes in the context of microbiome comparisons in research settings,
and most bioinformatic tools currently available have been designed for that specific pur-
pose [17,18]. Some of the previously bacterial oriented classifiers are now being used for
other domains, including viruses. However, viral metagenomics for pathogen detection
has specific challenges such as the low abundancy of viral sequences for some targets,
and incomplete or inaccurate reference sequences. The high diversity of viral sequences
due to the high mutation rate of RNA viruses further complicates accurate detection and
identification [19]. While the number of benchmarking studies published on the use of
metagenomic classifiers for bacterial abundancy profiling is increasing, studies on the
performance of classifiers for virus pathogen detection remain scarce. Publications on the
performance of the computational analysis of viral metagenomics are usually limited to in
silico analysis of artificial sequence data [14,20,21] or mock samples [22,23]. Though both
sensitivity and specificity can be deduced when using simulated datasets, they usually
do not represent the complexity of data sets from clinical samples which typically contain
sequences from wet lab reagents that have been referred to as the ‘kitome’ [22,24,25]. These
factors can affect the sensitivity and specificity of the overall procedure and may result
in incorrect diagnoses. In contrast, performance studies that use real-world samples are
usually hindered by the huge number of negative metagenomic findings in the absence
of gold standard results for validation. Therefore, the performance parameters typically
reported are recall (sensitivity), precision (positive predictive value), and F1 (the harmonic
mean of recall and precision); while specificity is usually not assessed because negative
findings by metagenomics are poorly defined.

Here, we perform a comparison of five taxonomic classifiers: Centrifuge [26], Clark [18],
Kaiju [27], Kraken 2 [28], and Genome Detective [29]. The classifiers were tested using
metagenomic shotgun sequencing data obtained from a cohort of chronic obstructive pul-
monary disease patients (COPD) with a clinical exacerbation and therefore suspected of a
respiratory infection. For these samples, 1144 PCR test results were used as gold standard
to infer both sensitivity and specificity of the classifiers. For each classifier, we present
appropriate benchmark scores for virus classification in the diagnostic setting.

2. Materials and Methods
2.1. Clinical Samples and PCR Results

Clinical respiratory samples were used to obtain metagenomic data sets. In total
88 nasal washings were taken from 63 patients with COPD suspected for respiratory
infection as previously described [30]. Each sample was tested using a respiratory PCR
panel resulting in 1144 real-time positive and negative PCR results for 13 viral respiratory
targets as previously described [30]. The respiratory viruses addressed by this respiratory
panel and cohort prevalence are shown in Table 1.
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Table 1. Overview of respiratory PCR panel targets and their test results.

PCR Family Genus Species Alternative Naming # PCR Positive
Samples

# PCR Negative
Samples PCR Ct-Values

Target Viruses (Range)

HRV Picorna-viridae Enterovirus Rhinovirus A, B, C,
Enterovirus D 14 74 19–38

PIV1, PIV3 Paramyxo-viridae Respiro-virus Human respirovirus 1 Human parainfluenza
virus 1 - 88 -

Human respirovirus 3 Human parainfluenza
virus 3 2 86 26–36

PIV2, PIV4 Paramyxo-viridae Ortho-rubulavirus Human orthorubulavirus 2 Human parainfluenza
virus 2 - 88 -

Human orthorubulavirus 4 Human parainfluenza
virus 4 1 87 24

INF Orthomyxoviridae Alphainfluenzavirus Influenza A virus 3 85 29–36
Influenza B virus - 88 -

ACoV Corona-viridae Alpha-coronavirus Human coronavirus NL63 2 86 32
Human coronavirus 229E - 88 -

BCoV Corona-viridae Betacoronavirus
Human coronavirus HKU1,
Betacoronavirus 1; Human

coronavirus OC43
2 86 27

HMPV Pneumo-viridae Metapneumovirus Human metapneumo-virus - 88 -
RSV Pneumo-viridae Orthopneumovirus Human orthopneumo-virus - 88 -

Total
Total PCR results: 1144

(13 targets tested in
88 samples)

24 1120 19–38
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2.2. Metagenomic Next-Generation Sequencing (mNGS)

The metagenomic datasets used for comparison were generated as described be-
fore [30]. In short, clinical samples were spiked with equine arteritis virus (EAV) and
phocine herpesvirus 1 (PhHV-1), as internal positive controls for RNA and DNA detection
per sample, throughout the entire workflow. Negative and positive washings were used as
respectively environmental and positive run controls. Subsequently, extraction of nucleic
acids was performed using the Magnapure 96 DNA and Viral NA Small volume extraction
kit on the MagnaPure 96 system (Roche, Basel, Switzerland). Library preparation was
performed utilizing the NEBNext Ultra II Directional RNA Library prep kit for Illumina
(New England Biolabs, Ipswich, MA, USA) using single, unique adaptors and a protocol
optimized for processing RNA and DNA simultaneously in a single tube [25]. Sequencing
was performed on an Illumina NextSeq 500 sequencing system (Illumina, San Diego, CA,
USA) at GenomeScan BV (Leiden, The Netherlands), obtaining approximately 10 million
150 bp paired-end reads per sample.

2.3. Pre-Processing of Data

To exclude variability based on pre-processing procedures, the identical procedure was
followed prior to analysis of the sequence data by all classifiers in the current comparison.
Illumina 150 bp paired-end sequence reads were demultiplexed by standard Illumina
software followed by trimming, adapter clipping, and filtering of low-complexity reads
using Trimmomatic [v. 0.36] [31]. This was performed for all classifiers, regardless of quality
filtering options that have been previously used in combination with specific classifiers
in literature. Human reads were excluded after mapping them to the human genome
GRCh38 [32] using Bowtie2 with standard settings [33]. Unmapped reads were used for
further analysis for the classification tests excluding human reads.

2.4. Metagenomic Classifiers

Bioinformatic metagenomics tools designed for taxonomic classification were selected
for benchmarking based on the following criteria: applicable for viral metagenomics for
pathogen detection; available either as download or webserver; and it is either widely used
or showed potential of diagnostics implementation in the future. Some tools considered
were excluded due to lack of support or details on how to use the tool, or non-functioning
webservers. An overview of characteristics of the selected classifiers can be found in Table 2.

Table 2. Overview of characteristics of the classifiers evaluated.

Centrifuge
[26]

Clark
[18]

Kaiju
[27]

Kraken 2
[28]

Genome
Detective [29]

License Open source Open source Open source Open source Commercial/free to use
web application

Version 1.0.4 1.2.6.1 1.7.3 2.0.8-beta 1.126

Sequencing technology
compatibility Short/long reads Short/long reads Short/long reads Short/long reads Short reads (long reads

experimentally)

Pre-processing No No No No Yes

Type of alignment NT NT AA NT
NT/AA

including de novo
assembly

Algorithm
characteristics

Exact matches of 22 bp
with target with default
five labels per sequence,

LCA optional

Exact matches of 31 bp
with target with highest

number of hits

Maximum exact
matches (MEM) of AA,
up to five mismatched
optional *. LCA in case

of multiple hits

Exact matches of 35 bp.
LCA in case of multiple

hits

Combined results of NT
and AA hits based on

scoring. LCA in case of
multiple hits

Database (compression)
Compressed index NT

database of only unique
sequences

Compressed index NT
database of only unique

sequences

No compression,
AA database

Compressed index
NT database

No compression, viral
subset of Swiss-Prot

UniRef90 protein
database

NT; nucleotide, AA; amino acid; LCA, lowest common ancestor. * Greedy-5 mode was used in the current study.
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2.5. Reference Database

For comparison of classification performance, a single database was used as start-
ing point for the classifiers Centrifuge, Clark, Kaiju, and Kraken 2: viral genomes from
NCBI/RefSeq [34] (downloaded on 27 December 2020). Genome Detective was used as a
service, and it uses its own database that was generated on 3 March 2020 (version 1.130) by
Genome Detective.

2.6. Metagenomic Classifiers and Characteristics
2.6.1. Centrifuge

Classification with Centrifuge (version 1.0.4) [26] is based on exact matches of at least
22 base pair nucleotide sequences with the reference index, using k-mers of user-defined
length. Centrifuge by default allows five classification labels per sequence read. For a
realistic comparison, in the current study, this setting was adapted to maximum one label
per sequence (the lowest common ancestor) to mimic results of Kraken2 and other classifiers
where only one label per sequence read is given. Preceding classification, Centrifuge builds
small reference indexes based on adapted versions of the Burrows–Wheeler transform
(BWT) [35] and the Ferragina–Manzini (FM) index [36] resulting in a compressed index of
only unique genomic sequences.

2.6.2. Clark

Clark (version 1.2.6.1) [18] is a taxonomic classifier based on reduced k-mers using
nucleotide-level classification. It uses a compressed index database containing unique
target specific k-spectrum of target sequences. For the current comparison the default
execution mode was used.

2.6.3. Kaiju

Kaiju (version 1.7.3) [27] is a taxonomic classifier that assigns sequence reads using
amino acid-level classification. Sequence reads are translated into six possible open reading
frames and split into fragments according to the detected stop codons. Classification with
Kaiju can be performed using two settings, both based on an adjusted backward alignment
search algorithm of BWT [35]. For the current comparison study, the greedy mode was
used providing high sensitivity because it allows up to five mismatches to further increase
the highest scoring matches. In this mode Kaiju assesses six possible ORF’s using the amino
acid scores of Blosum62 [37] to obtain the highest scoring match.

2.6.4. Kraken 2

Kraken 2 (version 2.0.8-beta) [28] is a classifier designed to improve the large memory
requirements of the former version of Kraken [17], resulting in a reduction of in general
85% of the size of the index database. Kraken 2 uses a probabilistic, compact hash table to
map minimizers to the lowest common ancestors (LCA), and stores only minimizers from
the reference sequence library in its index reference [28].

2.6.5. Genome Detective

Genome Detective [29] is a commercially available bioinformatic pipeline that includes
the entire workflow from automated quality control, de novo assembly of reads and
classification of viruses. After automated adapter trimming and filtering low-quality
reads using Trimmomatic [31], viral reads are selected based on Diamond [38] protein
alignment using as reference protein sequences from Swissprot Uniref 90 [39]. Viral reads
are sorted in buckets, after which all sequences in one bucket are de novo assembled into
contigs using SPAdes [40] or metaSPAdes [41]. Subsequently, contigs are processed by
BLASTx and BLASTn [42] against databases containing NCBI Refseq [34] sequences and
some additional virus sequences. Potential hits represented by the contigs are assigned
to individual species using the Advanced Genome Aligner [43], and coverage the viral
genomes is calculated. For analysis using Genome Detective sequence reads were first
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pre-processed with Trimmomatic [31] manually, similar for other tools (see Pre-processing
of data), prior to automated filtering by the Genome Detective pipeline.

2.7. Performance, Statistical Analysis, and ROC

Sensitivity and specificity were calculated for the classifiers based on the application
of PCRs (designed for detection of 13 targets) for 88 samples with 24 PCR positive and
1120 PCR negative results. Receiver Operating Characteristic (ROC) curves were generated
for results of classification at species, genus, and family levels, by varying the number of
sequence-read counts used as cut-off for defining a positive result (resolution: 1000 steps
from one read to the maximum number of sequence reads for each PCR target per sam-
ple). Area under the curve (AUC), the ROC distance to the closest error-free point (0,1,
informedness) curve, positive and negative predictive values were calculated. Furthermore,
correlation (R2) of sequence read counts with PCR cycle threshold (Ct) value were analyzed.

3. Results
3.1. Performance: Sensitivity, Specificity, and ROC

The performance of the selected taxonomic classifiers Centrifuge, Clark, Kaiju, Kraken 2,
and Genome Detective for metagenomic virus pathogen detection was assessed using
datasets from 88 respiratory samples with 24 positive and 1120 negative PCR results
available as gold standard. To exclude variability based on different default databases
provided with the classifiers, a single database of reference genome sequences was used in
combination with a standardized dataset for all classifiers. Raw NGS reads were filtered
and classified, both prior and after the exclusion of human sequence reads, and after
exclusion of human reads combined with normalization of reads based on the target viral
genome length. ROC curves are shown for all classifiers, for assignments at species, genus
and family level for the NGS data in Figure 1, and Supplementary Table S1. Detection
parameters (ROC distance to the upper left corner of the graph, sensitivity and selectivity,
and AUC) at three taxonomic levels calculated for the NGS data, before and after exclusion
of human reads, with or without normalization of assigned reads by corresponding genome
sequence lengths are additionally shown in Figure 2. Overall, sensitivity, specificity, and
AUC ranged from 83 to 100%, 90 to 99%, and 91 to 98%, respectively, and varied per
level of taxonomic classification, per classifier, and with the exclusion of human reads
prior to classification. Classification at species and genus levels tended to result in lower
sensitivity and higher ROC distances, but higher selectivity when compared with family
level classification, for most of the classifiers evaluated. Extraction of human sequence
reads prior to classification resulted in comparable sensitivity at all levels of assignment
for all classifiers except CLARK for which sensitivity plummeted at species and genus
levels. Selectivity was mainly increased after extraction of human reads, for classification
at all levels, except for Kaiju and Kraken2, for which decreased selectivity values at family
level were observed. Extraction of human reads reduced the differences in selectivity
between the classifiers that were observed at genus and family level prior to extraction.
The ROC distances were overall smallest, and the AUC highest, when using amino-acid
based classifier Kaiju, the latter at species and family levels and was comparable with
Kraken2 at genus level. Normalization of assigned read counts by corresponding genome
length resulted in minor changes in performance when considering 1 read as the threshold
for defining positive results. Sensitivity was dramatically reduced to 13–33% at species
level after read normalization when a threshold of 10 reads was applied, while sensitivity
was 75–88% without read normalization in combination with a threshold of 10 reads,
(Supplementary Table S1). This indicates that normalization of reads can negatively affect
the detection of targets with read counts around detection level.
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Figure 1. ROC curves calculated based on reads of taxonomic assignment at three. taxonomic levels
(species, genus, and family) by the five classifiers, based on PCR-targets, (a), without extraction
of human reads and (b), after extraction of human reads, (c), after extraction of human reads and
normalization of reads by corresponding genome lengths (resolution of 1000 steps from one read to
the maximum number of sequence reads for each PCR target per sample).
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Figure 2. Sensitivity, selectivity, AUC, and ROC distance calculated based on assignment at three
taxonomic levels (species, genus, and family) by the five classifiers for three types of pre-processing
of the NGS datasets, a, without extraction of human reads and b, after extraction of human reads, c,
after extraction of human reads and normalization of reads by corresponding genome lengths.

Overall, Kaiju outperformed all classifiers when ROC distance, AUC, and sensitivity
were considered, but had consistently lower selectivity values than Centrifuge and Genome
Detective.
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In this patient cohort, with an incidence of 21% (24/88 samples) of respiratory viruses,
the positive and negative predictive values at species levels were 42–67% and 99–100%,
respectively (see Supplementary Table S1).

3.2. Correlation Read Counts and Ct-Values

The correlation between sequence read counts at Ct-value for the corresponding PCR
target viruses for all classifiers is shown in Figure 3 and Supplementary Table S2. Correla-
tion (R2, %), linear regression slope and intercept varied per virus species, per taxonomic
classifier, and was dependent on the extraction of human reads. Correlation ranged from
15.1% for CLARK (no exclusion of human reads, species level) to 62.7% for Kaiju-based
classification at species level (after exclusion of human reads with normalization of as-
signed reads by corresponding genome sequence lengths). The most consistent results
(when comparing R2 prior and after human reads exclusion, and after normalization)
were demonstrated by Kaiju and Genome Detective with overall outperformance of Kaiju
classifier at all classification levels (61.8–62.7% versus 42.3–43.9% for Centrifuge). Reads
assigned to rhinoviruses were most common outliers in relation to Ct-value and varied up
to 3 log10 reads difference from the predicted read count (LR), possibly resulting from their
high divergence within species. This was in contrast to read counts of other viruses (for
example influenza viruses), which were closer to the predicted correlation line. Extraction
of human sequence reads resulted in an increase in R2 for CLARK classifier at species
and family level, a decrease for Centrifuge and Kraken at all levels, and resulted in minor
changes for amino acid-based classifiers Genome Detective and Kaiju at all levels. Decrease
in absolute or relative number of total reads after pre-processing (extraction of human reads
in combination with normalization of assigned reads by corresponding genome lengths)
led to a decrease in intercept values for all classifiers.

These data support that a more accurate taxonomic classification assists semi-quantitative
performance of metagenomic classification tools.
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Figure 3. Correlation between the number of sequence reads assigned (species level) and Ct-values
of virus-specific PCRs, for the five taxonomic classifiers evaluated, (a), without extraction of human
reads and (b), after extraction of human reads, (c), after normalization of reads by corresponding
genome lengths.
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4. Discussion

In this study, we compared the performance of five taxonomic classification tools
for virus pathogen detection, using datasets from well-characterized clinical samples.
In contrast to previously reported comparisons with datasets from real samples, both
sensitivity and specificity could be assessed using a unique set of 1144 PCR results as gold
standard. A uniform database was created to exclude variability based on differences in
availability of genomes in databases provided with the classifiers. In general, sensitivity
and specificity were within ranges applicable to diagnostic practice. Exclusion of human
reads generally resulted in increased specificity. Normalization of read counts for genome
length negatively affected the detection of targets with read counts around detection level.
The correlation of sequence read counts with PCR Ct-values was highest for viruses with
relatively lower sequence diversity.

Previous studies have benchmarked metagenomic profilers, mainly for the use of bac-
terial profiling and DNA-to-DNA and DNA-to-protein classification methods were among
the best-scoring methods in comparison with DNA-to-marker (16S) methods [22,27,44–48].
In a study with simulated bacterial datasets comparing the performance of CLARK, Kraken
and Kaiju, sensitivity and precision were 75% and 95% and decreased when a lower num-
ber of reference genomes was available for the specific target [27]. As the same reference
database was used by all classifiers in this study, the only determining factors would
be the index database built from the reference database and the classification algorithm.
DNA-to-DNA methods have been applied in hundreds of published microbiome studies
(e.g., Kraken: 1438 citations; Kraken 2: 204 citations, by March 2021, according to their
official websites [48]). Centrifuge was designed as a follow-up of Kraken with enhanced
features, though misclassifications have also been reported in a comparison with simulated
datasets [22]. DNA-to-protein methods are generally more sensitive to novel and highly
variable sequences due to lower mutation rates of amino acid compared to nucleotide
sequences [22,27] as was seen in our study when classifying rhinoviruses by Kaiju. The
difference was especially visible in genera with limited availability of genomes in reference
databases [27].

Misclassification of human genomic sequence reads has been reported for most DNA
classifiers [22]. Protein-based classifiers had higher misclassification ranges of human
genome sequences (up to 15%), partially due to the larger number of target sequences in
their default databases [22]. Inclusion of the human genome in the reference database,
which is by default the case for Centrifuge and KrakenUniq [49] reduced the rate of
misclassification to negligible [22]. This finding is supported in our study, as exclusion of
human sequence reads prior to classification reduced misclassifications for all classifiers.
In general, reduction of false-positive hits can be achieved by assembly of sequences (for
example, by Genome Detective), thus reducing the number of hits based on short nucleotide
sequences used by k-mer based methods. Inclusion of genome coverage of mapped reads,
as adopted by Genome Detective and KrakenUniq [49], also can reduce false-positive hits.

One of the strengths of this study, the use of one single wet lab and sequencing
procedure, in order to enable comparison of the bioinformatic analyses, is also a limitation
of the study. The sensitivity and specificity results will likely vary when the classifiers
are used in combination with a different wet lab methodology. Therefore, no conclusions
can be drawn on the absolute numbers, sensitivity and specificity, of other workflows that
include the classifiers, since every step in the entire workflow can influence the overall
performance.

To our knowledge, a limited number of studies on the benchmarking of tools for viral
metagenomics for pathogen detection have been published. In a Switzerland-wide ring trial
based on spiked plasma samples, median F1 scores ranged from 70 to 100% for the different
pipelines, though since the entire workflow was analyzed, and thus no conclusions on
specific classifiers could be drawn [15]. A series of tools and programs were analyzed in a
COMPARE virus proficiency test using a single in silico dataset [14]. For Kraken discrepant
classification results that were observed, this was likely due to differences in the databases
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used by the participants. A recent European benchmark of 13 bioinformatic pipelines
currently in use for metagenomic virus diagnostics used datasets from clinical samples [16]
analyses using Centrifuge and Genome Detective software resulted in sensitivities of 93%
and 87%, respectively.

In conclusion, sensitivity and specificity of the classifiers evaluated in this study was
within the ranges that may be applied in clinical diagnostic settings. Performance testing for
viral metagenomics for pathogen detection is intrinsically different from benchmarking of
bacterial profiling and should incorporate parameters that are inherent to clinical diagnostic
use such as specificity calculations, sensitivity for divergent viruses and variants, and
importantly, a determined cut-off for defining a positive result for each workflow. Taking
these factors into account during validation and implementation of viral metagenomics
for pathogen detection contributes to optimal performance and applicability in clinical
diagnostic settings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11030340/s1, Table S1: Overview of performance
characteristics for the classifiers benchmarked in this study, at species, genus, and family level. Table
S2: Correlation between the number of sequence reads assigned and Ct-values of virus-specific PCRs,
for the five taxonomic classifiers evaluated, without extraction of human reads, after extraction of
human reads, and after normalization of reads by corresponding genome size.
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