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SUMMARY

Rapidly detecting problems in the quality of care is of utmost importance for the well-being of patients.
Without proper inspection schemes, such problems can go undetected for years. Cumulative sum
(CUSUM) charts have proven to be useful for quality control, yet available methodology for survival
outcomes is limited. The few available continuous time inspection charts usually require the researcher to
specify an expected increase in the failure rate in advance, thereby requiring prior knowledge about the
problem at hand. Misspecifying parameters can lead to false positive alerts and large detection delays. To
solve this problem, we take a more general approach to derive the new Continuous time Generalized Rapid
response CUSUM (CGR-CUSUM) chart. We find an expression for the approximate average run length
(average time to detection) and illustrate the possible gain in detection speed by using the CGR-CUSUM
over other commonly used monitoring schemes on a real-life data set from the DutchArthroplasty Register
as well as in simulation studies. Besides the inspection of medical procedures, the CGR-CUSUM can also
be used for other real-time inspection schemes such as industrial production lines and quality control of
services.

Keywords: Benchmarking; Continuous time; Control charts; CUSUM; Generalized likelihood ratio; Quality of care;
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2 D. GOMON AND OTHERS

1. INTRODUCTION

Rapid detection of deterioration in the quality of care can spare patients unnecessary health burdens. There
are currently many inspection schemes that can be used to monitor the quality of care, such as funnel
plots (Spiegelhalter, 2005) and a variety of Cumulative sum (CUSUM) charts (Steiner and others, 2000;
Biswas and Kalbfleisch, 2008). A particularly attractive property of CUSUM charts is that they can be
used to sequentially check for a decrease in the quality of a process. Ideally, the inspection scheme is also
tailored to the outcome type. In this article, we are interested in inspecting survival outcomes, where every
individual can experience a failure at any time after their entry into the study. As an example, the Dutch
Arthroplasty Register (LROI) is interested in simultaneously monitoring the quality of orthopedic care
at multiple hospitals performing total hip replacement surgery by considering the information provided
by the time of implant failure as soon as it occurs, as well as the information provided by patients not
experiencing implant failures. To facilitate such real-time inspection, Biswas and Kalbfleisch (2008)
developed a CUSUM chart for survival outcomes, followed by Sego and others (2009) and Begun and
others (2019). Each of these charts uses different assumptions in the CUSUM model and is therefore
applicable in different scenarios. One similarity is that all of them require the researcher to specify an
expected increase in the future rate of failure. When this quantity is chosen incorrectly, the charts may
experience delays in detection and produce false negative signals.

Our main goal in this article is to develop a method that no longer requires the researcher to specify
many parameters in advance, thereby requiring less prior information for inspection and leading to faster
detection times in practical applications. For this reason, we devise a generalization of the CUSUM chart by
Biswas and Kalbfleisch (2008), which we call the Continuous time Generalized Rapid response CUSUM
(CGR-CUSUM). Biswas and Kalbfleisch (2008) chose to only consider the information provided by
patients until 1 year after their procedure. In contrast, the CGR-CUSUM is constructed using all available
information on any patient at all times. A consequence of these changes is that generally our chart leads
to quicker detection of underperforming hospitals, thereby contributing to the improvement of the quality
of care.

Other methods for the continuous time inspection of the quality of care include the uEWMA chart for
survival time data by Steiner and Jones (2009) and the STRAND chart by Grigg (2018). Grigg (2018)
briefly discusses the differences among the BK-CUSUM, uEWMA, and STRAND charts and concludes
that the uEWMA and STRAND charts are particularly suitable for quick detection when failures are
clustered. In contrast, the BK-CUSUM and the CGR-CUSUM are designed to detect increased failure
rates without a specific mechanism for clusters.

We derive an approximation for the average run length (average time to detection) of the CGR-CUSUM,
by means of considering a simplification of the CGR-CUSUM called the Continuous time Generalised
Initial response CUSUM (CGI-CUSUM). Additionally, we consider an adjusted Biswas and Kalbfleisch
(2008) CUSUM procedure which uses the information of all patients at all times, which we call the
BK-CUSUM for convenience. Similarly, we present an approximation to the average run length of the
BK-CUSUM and compare this approximation with the approximation found for the CGR-CUSUM. This
comparison demonstrates how incorrect prior information can significantly increase the detection times of
the BK-CUSUM procedure, which then also carries over to the Biswas and Kalbfleisch (2008) CUSUM.

The new CGR-CUSUM chart can be a very useful tool in practical applications where the future
expected rate of failure is not known in advance or likely to vary over the time of the study. As this
occurs often in medical applications, the CGR-CUSUM chart can significantly improve the quality of
care worldwide by inspecting current procedures. In contrast to the multi-chart CUSUM scheme of
Han and Tsung (2007), where the possible increase in failure rate is considered over a finite probable
domain, the CGR-CUSUM only requires the construction of one chart and the increase in failure rate can
also be limited to a fixed domain. On top of this, the CGR-CUSUM is not limited to medical applications.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac041/6705266 by Jacob H

eeren user on 12 O
ctober 2022



CGR-CUSUM: a continuous time cumulative sum chart 3

The chart can be used to inspect any procedures involving “survival” outcomes, such as production lines
and customer satisfaction inspection.

In Section 2 of this article, the relevant quantities, notation, the CGR-CUSUM and BK-CUSUM are
introduced. An approximate average run length is derived for both procedures. In Section 3, all methods
are applied to a data set from the LROI. In Section 4, a simulation study is performed to compare the
average run lengths of aforementioned procedures under restrictions on their null (hypothesis) average
run length. Additionally, a simulation study is performed using the data from this register where the type
I error of the charts over time is restricted under the null rate. The article concludes with a discussion and
recommendations for practice.

2. METHODS

2.1. Model and data

Following Biswas and Kalbfleisch (2008), consider a hospital with subjects i = 1, 2, ... arriving (entering
the study) according to a Poisson process with rate ψ . Let Si denote the time of the entry of subject i
into the study, relative to the starting time t = 0. Denote by Xi the time from entry until failure, such
that Ti = Si + Xi is the chronological time of failure. Consider only right-censored observations, and
let Ri denote the chronological time of right-censoring of observation i. Let the p-vector Zi denote the
relevant covariates of subject i. Assume that there is a known null distribution for the subject-specific
time to failure, denoted by the hazard rate hi(x). We make use of the Cox proportional hazards model to
incorporate the covariates, such that hi(x) = h0(x) exp

(
Z�

i βββ
)

with regression coefficients βββ and known
baseline hazard rate h0. Let Yi(t) = 1{Si ≤ t ≤ min{Ti, Ri}} be an indicator whether subject i is active
at time t. Define Ñi(t) = 1{Ti ≤ t} and subsequently define Ni(t) = ∫ t

0 Yi(u)dÑi(u) for t > 0 as the
counting process for an observed failure of subject i. Define N (t) = ∑

i≥1 Ni(t) as the counting process
for the total number of failures observed at the hospital. Define the cumulative intensity of subject i as
�i(t) = ∫ t

0 λi(u)du with λi(u) = Yi(u) · hi(u). Let the superscript θ indicate an increase in the hazard rate
such that �θ

i (t) = �i(t) · exp(θ) and hθi (t) = hi(t) · exp(θ) and F θ
i the associated cumulative distribution

function. We call exp(θ) the hazard ratio and say that the process is in control when θ = 0 and out of
control when θ > 0. Define �(t) = ∑

i≥1�i(t) as the total cumulative intensity at the hospital at time
t. For aforementioned counting processes, define dN (t) = N (t + dt) − N (t), with dt an infinitesimally
small quantity. It follows that:

P (dNi(t) = 1|Ti ≥ t, Si, Zi) =
{

eθhi(t − Si)dt, if 0 ≤ t − Si,

0, else.
(2.1)

We denote the right-hand side of (2.1) by d�θ
i (t). Finally, let �Ni(t) = Ni(t)− Ni(t−) be the increment

of Ni at time t with t− the time “just before” time t.

2.2. Continuous time Generalized Rapid response CUSUM

The CUSUM procedure developed by Biswas and Kalbfleisch (2008) can be used to test whether the
hazard rate at a hospital has increased from �i to �θ

i for some fixed and known θ > 0, at some unknown
time after the start of the study. This procedure is very useful when there is some prior knowledge about
the true hazard ratio eθ , but may lead to delays in detection when this is not the case or when the rate of
failure is variable. For this reason, we will consider a more general test, where the expected hazard ratio
no longer needs to be specified in advance, much like the GLR Statistic in Siegmund and Venkatraman
(1995) is a generalization of the original CUSUM procedure of Page (1954).
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4 D. GOMON AND OTHERS

To achieve this, we test the null hypothesis of no change against the alternative of a sudden change in
hazard rate at some unknown time s > 0, affecting all subjects at risk at time s and thereafter:

H0 : Xi ∼ �i(t), i = 1, 2, ... H1 :
Xi ∼ �i(t)| t < s, i = 1, 2, ...
Xi ∼ �θ

i (t)
∣∣ t ≥ s, i = 1, 2, ...

(2.2)

with θ > 0. Let us find the likelihood ratio for a test of θ = 0 against θ = θ1 with θ1 > 0 an unknown
constant. The likelihood for the aggregated counting process N (t) at study time t with n subjects is then
given by

∏n
i=1

(∏
0≤u≤t λ

θ
i (u)

�Ni(u)
)

exp
(−�θ

i (t)
)

(see Aalen and others, 2008, Section 5.1). Note that
�Ni(u) is non-zero only at the time of failure of subject i, where it is equal to one. This yields a likelihood
ratio statistic at time t of:

LR(t) = sup
θ≥0

∏n
i=1

(∏
0≤u≤t exp(θ)λi(u)�Ni(u)

)
exp (− exp(θ)�i(t))∏n

i=1

(∏
0≤u≤t λi(u)�Ni(u)

)
exp (−�i(t))

=
n∏

i=1

(
exp(θ̂(t))

)Ni(t)
exp

(
− exp(θ̂(t))�i(t)

)
exp(−�i(t))

,

where θ̂ (t) is the maximum likelihood estimate of θ at time t. This maximum likelihood estimator θ̂ (t)
can be determined by maximizing the likelihood at a hospital where patients are failing with cumulative
intensity eθ�i(t) up to time t over θ and is given by:

θ̂ (t) = max
(

0, log
(

N (t)

�(t)

))
. (2.3)

The logarithm of the LR statistic is then given by:

U (t) := log(LR(t)) = θ̂ (t)N (t)−
(

exp(θ̂(t))− 1
)
�(t).

Note that this quantity will increase when a failure is observed, and drift downwards at all other times. A
preliminary chart is then given by:

G(t) = max
s: 0≤s≤t

{
θ̂ (s, t)N (s, t)−

(
exp

(
θ̂ (s, t)

)
− 1

)
�(s, t)

}
, (2.4)

where s indicates that the quantity is determined using the information provided by all active patients in
the time frame (s, t):

N (s, t) = N (t)− N (s)
�(s, t) = �(t)−�(s)

and θ̂ (s, t) = max
(

0, log
(

N (s, t)

�(s, t)

))
. (2.5)

In contrast to the method developed by Biswas and Kalbfleisch (2008), it is not possible to determine this
chart recursively as the maximum likelihood estimator needs to be determined over multiple time frames.
This makes the chart very computationally expensive. We therefore consider simpler hypotheses:

H0 : Xi ∼ �i, i = 1, 2, ... H1 :
Xi ∼ �i, i = 1, 2, ..., ν − 1
Xi ∼ �θ

i , i = ν, ν + 1, ....
(2.6)
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CGR-CUSUM: a continuous time cumulative sum chart 5

with θ > 0 and ν ≥ 1 both unknown in advance. We then test the null hypothesis of no change against the
alternative that the rate of failure at the hospital has increased to eθ�i, starting from some subject ν ≥ 1.
These hypotheses make sense in a medical context, where the hazard rate is likely to depend on the entry
time of the patient.

DEFINITION 1 The continuous time generalized rapid response CUSUM (CGR-CUSUM) chart is given
by:

CGR(t) = max
ν≥1

{
θ̂≥ν(t)N≥ν(t)−

(
exp

(
θ̂≥ν(t)

)
− 1

)
�≥ν(t)

}
(2.7)

with (subjects sorted according to chronological arrival time):

N≥ν(t) = ∑
i≥ν Ni(t)

�≥ν(t) = ∑
i≥ν �i(t)

and θ̂≥ν(t) = max
(

0, log
(

N≥ν(t)
�≥ν(t)

))
. (2.8)

In the CGR-CUSUM patients prior to the νth patient no longer contribute to the chart at all, whereas in
G(t) all patients active after time t−s still contribute to the value of the chart. This difference is highlighted
in Figure S1 of the Supplementary material available at Biostatistics online. To employ a testing procedure,
we construct the chart CGR(t) at every relevant time point t and reject the null hypothesis (producing a
signal) as soon as CGR(t) ≥ h for some h > 0. This constant h is called the control limit and can be
chosen in accordance with some desired property of the procedure such as the average run length of the
chart defined below.

DEFINITION 2 Denote by τh = inf {t > 0 : CGR(t) ≥ h} the time it takes for a CGR-CUSUM to produce
a signal. The average run length (ARL) is then defined as E[τh]. We refer to the in control average run
length as the expected time to detection when exp(θ) = 1 and out of control average run length when
exp(θ) > 1.

2.3. An approximation to the ARL

In this section, we will derive an upper bound for the average run length of the CGR-CUSUM in the
out-of-control case. The maximization term in (2.7) poses a significant challenge in approximating the
ARL. It turns out that we can derive a bound on the ARL through comparison with a simpler version of the
CGR chart. For this reason, we consider the Continuous time Generalised Initial response (CGI) CUSUM
chart. This chart can be used to test the hypotheses of an initial change in the rate of failure:

H0 :Xi ∼ �i, i = 1, 2, ... H1 :Xi ∼ �θ
i , i = 1, 2, ....

DEFINITION 3 The Continuous time Generalized Initial response CUSUM (CGI-CUSUM) with θ̂ (t) as in
(2.3) is given by:

CGI(t) = θ̂ (t)N (t)−
(

exp(θ̂(t))− 1
)
�(t).

Note how the CGI chart is simply the CGR chart without the maximization term. The CGI-CUSUM
is not a chart which should be used in practice as it cannot be used to sequentially detect a changepoint
in the process, but instead it is merely a tool for theory. Due to its simpler expression, it is possible to
determine the asymptotic distribution of the chart under some assumptions. One of the key assumptions
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6 D. GOMON AND OTHERS

is that subjects arrive according to a Poisson process with rate ψ , allowing us to equate the number of
patients to time by n ≈ ψ · t.

THEOREM 2.1 Suppose that subjects arrive according to a Poisson process with rate ψ under suitable
regularity conditions. Then, for θ > 0:

√
t (CGI(t)− (θ + exp(−θ)− 1)I (θ , t))

d→ N (
0, tθ 2I (θ , t)

)
,

and when θ = 0 (using the shape k/scale b parametrization):

t · CGI(t)
d→ 


(
k = 1

2
, b = t

)

where I (θ , t) = ψ
∫ t

0 EZi

[
F θ

i (s)
]

ds is the Fisher information in all observations at time t.

The proof of this theorem, the required regularity conditions as well as the derivation of the Fisher
information can be found in the Supplementary materials Sections 2, 3, and 4. The usefulness of this
result depends on the availability of an expression for I (θ , t). A discussion on how to calculate the Fisher
information, as well as some examples for the PVF family of distributions can be found in Section S7 of
the Supplementary material available at Biostatistics online. We determine an approximate (asymptotic)
average run length for the CGI chart by equating the expected value of the asymptotic distribution to the
control limit h.

LEMMA 2.2 We find an approximate average run length ̂ARLCGI(θ , h) for the CGI-CUSUM when
exp(θ) > 1 by solving the following equation for t:

(θ + exp(−θ)− 1) I (θ , t) = h. (2.9)

For exp(θ) = 1, this method yields no approximation to the ARL, and it is therefore not possible to
determine theoretical control limits which restrict the in control ARL. It is possible to approximate the
value of the in control average run length by means of Monte Carlo simulation when it is of interest.
Note that due to the convergence requirement, this approximate ARL will not yield good approximations
for small values of the control limit h. The theoretical out-of-control ARL will be evaluated by means of
simulation in Section 4.1.

Note that the CGR-CUSUM is simply a CGI-CUSUM maximized over the last n − ν patients. As a
result, the CGR-CUSUM is always larger or equal than the CGI-CUSUM. This property allows us to
compare the average run lengths of the CGR- and CGI-CUSUM charts.

REMARK 2.3 Suppose that subjects are failing with an increased hazard rate�i exp(θ) from the beginning
of the study. Then the average run lengths of the charts can be compared as follows:

ARLCGR(θ , h) ≤ ARLCGI(θ , h).

In most practical applications, an upper bound is sufficient as the interest lies in restricting the run time
of the chart from above when the failure rate is higher than expected.

Due to the found upper bound, we can now determine the CGI chart on out-of-control samples in
simulation studies to obtain information on the ARL of the CGR chart for comparable samples. This

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac041/6705266 by Jacob H

eeren user on 12 O
ctober 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data


CGR-CUSUM: a continuous time cumulative sum chart 7

negates the need to construct the CGR chart when approximating the ARL, saving a lot of computation
time. Another way to reduce the computation time of the CGR- and CGI-CUSUM charts is given in the
following corollary.

REMARK 2.4 The value of the CGR-CUSUM and CGI-CUSUM can only increase at a time point when a
failure is observed. As a consequence, for detection purposes it is sufficient to only determine the value
of the charts at the times of failure.

2.4. The Biswas and Kalbfleisch (2008) CUSUM and CGR-CUSUM

By a priori fixing a value θ1 > 0 for θ in the chart G(t) (see (2.4)) we would recover the CUSUM procedure
developed by Biswas and Kalbfleisch (2008). The biggest advantage of the CGR-CUSUM over the Biswas
and Kalbfleisch (2008) CUSUM is that we no longer need to specify this expected hazard ratio, allowing
for a more general test requiring less prior knowledge. Besides this, the maximum likelihood estimator
allows for updating the parameter to the most recent failure rates. In contrast, the maximum likelihood
estimator needs time to converge to the true value, possibly causing delays in detection when compared
to the Biswas and Kalbfleisch (2008) CUSUM with correctly specified θ1.

Biswas and Kalbfleisch (2008) note that 1-year postprocedure survival outcomes are often employed
for medical inspection schemes and decide to consider subjects as active only for C = 1 year after the
procedure. This limitation allows them to derive a closed-form approximation to the average run length
of the chart. We decide not to disregard the information provided by patients 1-year postprocedure. The
value of the chart is then based on more complete information, possibly leading to quicker detection times.
With this approach, determining an expected run length shorter than C = 1 year is possible, in contrast
to Biswas and Kalbfleisch (2008). Our new approach then also leads towards an approximate ARL for
the Biswas and Kalbfleisch (2008) CUSUM procedure with the C = 1 limitation relaxed. Further on in
this article, we will only consider the Biswas and Kalbfleisch (2008) CUSUM procedure with the C = 1
limitation relaxed, as it is more similar to our CGR chart. We call this chart the BK-CUSUM chart.

DEFINITION 4 The BK-CUSUM is given by:

BK(t) = max
s: 0≤s≤t

{θ1N (s, t)− (exp(θ1)− 1)�(s, t)},

with notation as in (2.5) where exp(θ1) is the expected hazard ratio chosen in advance.

Taking a similar approach to Section 2.3, it is possible to determine an approximate average run length
for the BK-CUSUM procedure.

COROLLARY 1 Suppose θ1 is chosen such that exp(θ1)/ exp(θ) < θ1 + exp(−θ). We find an approximate
average run length ̂ARLBK(θ , h) by solving the following equation for t:

(
θ1 + exp(−θ)− exp(θ1)

exp(θ)

)
I (θ , t) = h. (2.10)

The proof can be found in Section S5 of the Supplementary material available at Biostatistics online.
Due to the restriction on θ1 it is not always possible to use this expression for the approximate ARL.

As I (θ , t) is non-negative for every t ≥ 0, the approximate ARL for the CGR and the BK-CUSUM can be
compared. It can easily be seen that when θ1 
= θ , the left side of (2.9) is guaranteed to be larger than the
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8 D. GOMON AND OTHERS

left side of (2.10) for t > 0. This means that when the expected hazard ratio exp(θ1) is misspecified, the
approximate ARL of the CGI chart will be smaller than that of the BK-CUSUM chart therefore yielding
faster out-of-control detection speeds.

The difference between the CGR-CUSUM and BK-CUSUM lies in the hypotheses used for constructing
the chart, where the CGR-CUSUM is used to detect a change in hazard rate for all patients entering after
some patient entry time and the BK-CUSUM to detect a spontaneous change in hazard rates for all patients
at risk after some chronological time. This difference is shown visually in Figure S1 of the Supplementary
material available at Biostatistics online.

3. APPLICATION TO LROI

We demonstrate the possible gain in detection speed when using the CGR-CUSUM over the BK-CUSUM
by applying both methods on a hip replacement data set from the LROI. The LROI is the Dutch national
registry of all orthopedic implants (e.g., hip, elbow, wrist, ankle, knee, shoulder, finger, and thumb), with a
reported completeness of more than 95% for registered hip and knee surgical procedures (van Steenbergen
and others, 2015; Dutch Arthroplasty Register (LROI), 2020).

3.1. The data set

The data used for the analysis consists of information on total hip replacement surgeries at 97 hospitals
across the Netherlands from 01/01/2014 up until 01/01/2020 and was received under agreement LROI
2020−053. Available variables are the dates of all primary procedures, time until failure of the prosthesis
(our main interest), and/or death of the patient as well as multiple characteristics of each patient which can
be found in Table S2 of the Supplementary material available at Biostatistics online. Three characteristics
of patients had more than 0.5% of missing values, which were BMI (1.8%), Smoking indicator (4.5%)
and Charnley Score (5.3%). Using the R package mice (van Buuren and Groothuis-Oudshoorn, 2011),
we imputed missing values to obtain a complete data set.

3.2. Baseline: yearly funnel plot

The current method employed by the LROI for comparing implant surgery performance between hospitals
is a yearly risk-adjusted funnel plot over all available data of the recent 3–6 years. The funnel plot uses
1-year postsurgery failure as binary outcome, therefore not allowing for continuous inspection of the
quality of care. van Schie and others (2020) have used the funnel plot as the “golden standard” for the
LROI, indicating which hospitals had problems in their quality of care. As we have no information on
the true failure rate and problems at the hospitals in question, we will compare detection times with the
funnel plot as well.

3.3. The baseline hazard

In any practical application, the determination of the baseline is of great importance when considering
the BK- and CGR-CUSUM charts as this greatly influences the detection speed and false detection rate.
In both cases, the baseline is completely fixed by a null hazard rate and the corresponding Cox regression
coefficients. In good scientific practice, these quantities should be determined using an in control data set,
where failures are known to be happening at an acceptable rate. In reality, it is often difficult to obtain such
a set for many different reasons. Because of this, we determine the null hazard rate and Cox coefficients
using the whole data set as training set. This implies that the average national failure rate over all hospitals
is up to the desired standard. The same is done for the funnel plot.

The yearly funnel plot requires a yearly determination of the baseline. To make a fair comparison
between the funnel plot and CUSUM methods, we therefore determine the baseline hazard rate, failure
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CGR-CUSUM: a continuous time cumulative sum chart 9

proportion, and risk-adjustment coefficients using the whole data set restricted to the first 3, 4, 5, and 6
years of information for both methods. This was achieved by using the Cox proportional hazards function
in the R package survival developed by Therneau (2020). This way, all methods use the same information
for the construction of the charts and thereby all use the same “standard of care.” We start with determining
parameters at the 3-year margin to have a sufficient amount of information for the determination of the
null parameters.

3.4. Determining control limits

We determine control limits for the risk-adjusted BK- and CGR-CUSUM charts by restricting the simulated
probability of a type I error to 0.05 over a period of 6 years. The procedure is described in Section S6 of the
Supplementary material available at Biostatistics online. Due to the extremely low failure rate in the data,
we chose to restrict eθ̂ (t) ≤ 6. This comes down to believing the hazard rate at a hospital cannot be more
than six times the baseline. Without this limitation, the CGR-CUSUM made very large jumps for patients
experiencing near instant failure (first or second day after surgery), almost always leading to detection.
The determined control limits and a summary of detection times with respect to the hospitals detected by
the funnel plot in the first 3 years can be found in Table 2. The continuous time procedures have their
detection time rounded upwards to the closest month, to show what detection times are realistic when
constructing the charts monthly. We also include the detection times achieved by the monthly Bernoulli
CUSUM procedure suggested by van Schie and others (2020). They chose to take a control limit of
h = 3.5 in correspondence to other literature. Exact detection times for all detected hospitals can be found
in Table S1 of the Supplementary material available at Biostatistics online.

3.5. Result: average detection delays

As the Bernoulli CUSUM and funnel plot both use one year post implant failure as outcome and the same
risk-adjustment model, they can both detect exactly the same hospitals at the end of the third year. This is
different for the continuous time CUSUM charts: both the BK- and CGR-CUSUM do not detect hospitals
5 and 19 and yielded one and two “false” detections, respectively. Overall, the continuous time CUSUM
procedures yield (much) faster detection times, but also signal very different hospitals than the discrete
time methods, especially after the 4-year mark. There are multiple reasons for this. We will explain some
of the possible mechanisms which cause a mismatch in detections between the methods by means of some
examples in Figure 1. A general observation is that the Bernoulli CUSUM has a 1-year delay compared
to the continuous time charts. In Figure 1(a), we can see that hospital 5 was signaled by the funnel plot
and Bernoulli CUSUM but not by the BK- and CGR-CUSUM charts. Whereas the continuous time charts
show a downward motion after a period of multiple consecutive failures, the Bernoulli CUSUM does not.
This is most likely due to the fact that the Bernoulli CUSUM and funnel plot only consider whether an
implant has failed within 1 year, and disregard the time of death. The BK-CUSUM has a similar problem,
where multiple consecutive failures in a short period of time can trigger a false alarm, even if implants
fail at reasonable times. A possible example of this can be seen in Figure 1(b). We can see that the many
consecutive failures make the chart jump upwards by log(2) every time, independent of the probability
of failure of those implants at that point in time, thereby rapidly hitting the control limit and afterwards
quickly dropping to zero. In contrast to this, the CGR-CUSUM can produce a signal when a few very
unlikely failures happen in rapid succession, as can be seen in Figure 1(c). We can see that the Bernoulli
CUSUM also almost hits the control limit at a later point, as the upward jumps in the Bernoulli CUSUM
chart also depend on the likelihood of failure. Finally, Figure 1(d) shows a hospital which was only detected
by the funnel plot. We can see that the hospital experiences a steady stream of failures as the value of the
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10 D. GOMON AND OTHERS

Fig. 1. The (Bernoulli) CUSUM, BK-CUSUM, and CGR-CUSUM charts for four hospitals with their control limits
(same color/linetype). The control limits can be found in Table 2. (a) Hospital 5, (b) Hospital 68, (c) Hospital 83, and
(d) Hospital 42.

charts is never zero, meaning the proportion of failures at this hospital is reasonably high. The CUSUM
charts however indicate that failures are happening at an acceptable rate (possibly slightly higher than
target).

The main take-away from this section is that using the continuous time methods it is possible to detect
most hospitals signaled by the discrete time methods (much) faster, while guaranteeing a lower percentage
of false positive signals. This follows from the fact that the type I error probability for the funnel plot was
restricted to approximately 0.05 in 3 years, while we chose control limits for the BK- and CGR-CUSUM
such that the probability of a type I error in 6 years was 0.05. Coincidentally, the Bernoulli CUSUM
control limit of h = 3.5, although chosen with a different reasoning, corresponds closely to limiting
the type I error in 3 years to 0.05 (h = 3.3). Additionally, the results found in this section have to be
considered in the correct perspective. We cannot simply state whether the right hospitals were detected
at all by any of the charts as we have no information about the true failure rates. For this reason, it is
crucial to compare the performance of the charts on a set of hospitals where the true performance of the
participating hospitals/implants is known. This will be done in the next section by means of comparing
the (average) run length of the procedures under restrictions of the ARL and type I errors when hospitals
are performing as expected.
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CGR-CUSUM: a continuous time cumulative sum chart 11

4. SIMULATION STUDIES

In Section 3, we did not know which hospitals were in control. In order to truly compare the performance
of the BK- and CGR-CUSUM charts it is crucial to know which hospitals are out of control. This section
will compare the methods when the true failure rates at the hospitals are known by means of simulation
studies.

In many practical applications, the time to detection after problems occur is of crucial importance in
monitoring the quality of the process. Therefore, comparing the performance of inspection schemes in
terms of detection speed is important. The expressions found in Section 2 for the approximate average
run length of the charts provide a way to compare the charts on a theoretical basis. The equations yielded
approximations and depend strongly on the convergence rate of the maximum likelihood estimate. A
simulation study can provide a better picture on the finite sample performance of said methods. Besides
the detection speed, other quantities such as the type I error and power over time are of interest and will
be considered later on in this section.

In Section 3, we chose to impose an upper limit for the MLE eθ̂ (t) < 6 in the CGR-CUSUM, due
to the extremely low failure rates in the LROI data. In this section, we also investigate the unrestricted
CGR-CUSUM, to investigate the impact of this decision. All simulation studies performed in this section
will follow the simulation procedure stated in Section S6 of the Supplementary material available at
Biostatistics online.

4.1. A comparison of ARLs

The main goal of this simulation section will be to compare the BK-CUSUM with the new CGR-CUSUM
procedure on detection speed for out of control instances. A core assumption of the considered methods is
that the change in failure rate happens instantaneously (instead of gradually) and that the true change can
be quantified as a fixed increase exp(θ) of the hazard rate. In many practical applications, both assumptions
are not likely to hold. We want to examine the effect of wrongly choosing the expected change in failure
rate exp(θ1) in the BK-CUSUM.

To this end, we consider the CGR-CUSUM and two BK-CUSUM procedures with exp(θ1) = 1.4 and
1.8, respectively. We cannot use equal control limits for all charts as this would lead to different properties
under the null. For this reason, we determine control limits h for each procedure such that the in control
(exp(θ) = 1) average run lengths of the procedures are approximately equal to 15 years on a simulated
sample size of N = 3000 hospitals. We simulate patient entry by a Poisson process with rate ψ = 2.28
(in days), corresponding to the largest hospitals in the LROI data set. For the in control hazard, we use
an exponential distribution with rate λ = 0.002 (time in days), so that approximately half of the subjects
have failed 1-year postprocedure. The failure rate was chosen to be much higher than in the LROI data
set for computational reasons. For this simulation study, risk-adjustment procedures were not considered.
For the out of control situation, we want to explore what happens when the chosen θ1 is far away from
the true value, so we choose true failure rates exp(θ) ∈ {1.2, 1.4, ..., 3} to generate out of control data sets
containing N = 3000 hospitals with the arrival rate and null hazard rate as before.

The run lengths of the two BK-CUSUM procedures are determined for each out of control data set. We
determine the run length of the CGI chart on these data sets, giving us an upper bound on the run length
of the CGR chart. The results can be found in Table 1, as well as the expected theoretical value of the run
length as determined using equations (2.9) and (2.10). The calculation of the Fisher information for the
exponential case is discussed in Section S7 of the Supplementary material available at Biostatistics online.
A notable result is that at exp(θ) = 1.4 the BK-CUSUM with exp(θ1) = 1.4 clearly performs better than
the CGR-CUSUM, but the BK-CUSUM with exp(θ1) = 1.8 performs worse than the CGR-CUSUM.
This already indicates that the impact of misspecifying θ1 can be quite large. Surprisingly, at exp(θ) = 1.8
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Table 1. Average/median run length, as well as standard deviation and approximate ARL (determined
using (2.10) and (2.9)) for two BK-CUSUM with exp(θ) = 1.4 and 1.8, as well as the CGR-CUSUM
(exp(θ) = 1) and CGI-CUSUM exp(θ) > 1. Each of the quantities has been determined on a sample of
N = 3000 hospitals with hazard ratio exp(θ)

BK-CUSUM BK-CUSUM CGR/CGI
eθ = 1.4, h = 6.82 eθ = 1.8, h = 8.35 h = 7.73

eθ ARL (SD) MRL Theory ARL (SD) MRL Theory ARL (SD) MRL Theory

1 5510 (4930) 4056 ∞ 5478 (4739) 4104 ∞ 5528 (4666) 4398 ∞
1.2 409 (184) 374 1352 639 (366) 572 ∞ 480 (163) 474 511
1.4 205 (57) 198 227 240 (100) 223 490 229 (72) 228 243
1.6 152 (33) 148 159 153 (48) 145 177 153 (48) 151 162
1.8 127 (24) 125 130 119 (31) 116 128 117 (37) 117 123
2 110 (20) 109 112 101 (23) 99 106 95 (30) 94 100
2.2 99 (16) 98 101 89 (19) 87 92 81 (25) 80 85
2.4 91 (15) 91 92 81 (16) 80 82 71 (23) 71 74
2.6 85 (13) 84 85 74 (14) 73 75 63 (20) 62 65
2.8 79 (12) 79 80 69 (13) 68 70 57 (18) 57 59
3 75 (11) 75 75 65 (12) 64 66 52 (17) 51 54

Table 2. Difference in detection speed (months) of columns with respect to rows. Positive indicating quicker
detection and negative indicating slower detection speeds. Values determined on hospitals detected by the
funnel plot in the first 3 years, with missing detections omitted

Median (IQR) difference in detection speed (months) for
hospitals detected by funnel plot in the first 3 years

Funnel plot Bernoulli CUSUM BK-CUSUM CGR-CUSUM
p = 0.95 h = 3.5, eθ = 2 h = 5.1, eθ = 2 h = 6.8, eθ̂ (t) ≤ 6

yearly monthly monthly monthly

Funnel plot 0 (0–0) 9 (6–12) 15 (12–17.5) 17 (15–18)
Bernoulli CUSUM 0 (0–0) 7 (4.5–8) 9 (5–10)
BK-CUSUM 0 (0–0) 1 (−0.5 to 3)
CGR-CUSUM 0 (0–0)

the CGR-CUSUM outperforms the other two charts with respect to ARL, but has the largest standard
deviation in detection times. In contrast, for small values of θ the SD of the BK-CUSUM charts is larger.
Finally, for very large values of exp(θ) > 2 the CGR-CUSUM seems to be the clear winner. Noticeably,
the run lengths of the BK-CUSUM are way more right-skewed than those of the CGR-CUSUM. This can
be explained by the nonvariable (θ1) size of jumps the BK-CUSUM charts can make, in contrast to the
variable (θ̂ (t)) jump size of the CGR-CUSUM. All in all, we can conclude that with respect to detection
speed the BK-CUSUM is the preferred chart when the true hazard ratio is small (exp(θ) ≤ 1.4) and/or
we have a lot of confidence in our prior knowledge. The approximate average run lengths determined
using (2.10) and (2.9) seem to work quite well both for the BK-CUSUM as well as for the CGR-CUSUM,
especially for large (exp(θ) > 1.2) true hazard ratios.

These simulation results give rise to the presumption that the CGR-CUSUM should perform better
when the rate of failure is variable, especially combined with large values of θ . This is also what we saw
in Section 3, when we applied the CGR-CUSUM to a real-life data set.
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CGR-CUSUM: a continuous time cumulative sum chart 13

Fig. 2. (a) Estimated arrival rate as well as the subdivision of the hospitals into four groups. (b) Simulated power
of the Bernoulli and continuous time CUSUM charts on a sample size of N = 500 out of control (exp(θ1) = 2)
hospitals using control limit values such that the simulated in control type I error α ≈ 0.1 in 6 years (see Table 3). (c)
Figure (b) faceted over the different values of ψ . (d) Comparison of the power over time of two BK-CUSUM charts
(exp(θ1) ∈ {2, 4}) and the CGR-CUSUM with exp(θ̂(t)) ≤ 6.

4.2. Power under type I error restriction

Instead of restricting the in control ARL, Biswas and Kalbfleisch (2008) and Begun and others (2019)
have chosen to restrict the simulated in control type I error to 0.15 in 5 years and 0.1 in 8 years respectively.
Besides this, hospitals vary in size and therefore the number of patients treated per day. This difference in
patients treated per time unit, in our model expressed by the parameter ψ , has a strong influence on the
detection speed and power of the procedures.

For this reason, in this section, we will determine the power over time of two BK-CUSUM procedures
(eθ1 ∈ {2, 4}), two CGR-CUSUM (eθ ≤ {∞, 6}) procedures and the Bernoulli CUSUM (eθ1 = 2) for
hospitals of different sizes under a restricted type I error. We consider four groups of hospitals by size,
with ψ ∈ {0.2, 0.6, 1, 1.7}. These values were determined by subdividing the hospitals in the LROI data
set into four groups by size and averaging over their estimated patient arrival rate, see Figure 2(a). Using
the simulation procedure in Section S6 of the Supplementary material available at Biostatistics online
with resampling, we find control limits for all considered methods by limiting the risk-adjusted simulated
type I error in 6 years to α ≈ 0.1 on N = 500 in control hospitals, see Table 3. Note that the control limits

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac041/6705266 by Jacob H

eeren user on 12 O
ctober 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac041#supplementary-data


14 D. GOMON AND OTHERS

Table 3. Control limits determined on a sample size of N = 500 in control (eθ = 1) hospitals such that
the type I error in 6 years α ≈ 0.1

Control limit h

Bernoulli CUSUM BK-CUSUM BK-CUSUM CGR-CUSUM CGR-CUSUM
ψ eθ1 = 2 eθ1 = 2 eθ1 = 4 N/A eθ̂ (t) ≤ 6

0.2 2.62 3.15 4.64 7.31 4.68
0.6 3.71 4.19 5.81 7.73 5.79
1 4.34 4.76 6.34 8.27 6.51

1.7 4.72 5.41 6.79 8.54 6.69

for the unrestricted CGR-CUSUM are very close together for all values of ψ . This is a consequence of no
longer bounding the MLE θ̂ (t) from above.

We then simulate N = 500 out of control (exp(θ) = 2) hospitals for each considered value of ψ . The
detection times on these data sets are then determined for each chart using the control limits in Table 3.
The resulting power over time for the BK-CUSUM (eθ1 = 2), the Bernoulli CUSUM and CGR-CUSUM
can be seen in Figures 2(b) and (c). The BK-CUSUM with correctly specified parameters clearly has the
best power over time for hospitals of all sizes. The CGR-CUSUM performs worse than the Bernoulli
CUSUM for low arrival rates, but does better as the arrival rate increases. This is due to the very high
value of the control limit for the CGR-CUSUM, causing detections to be delayed.

We also compare the power over time of the BK-CUSUM (eθ = 2) with that of the CGR-CUSUM
(eθ̂ (t) ≤ 6) and the BK-CUSUM (eθ = 4) in Figure 2(d). In this figure, the CGR-CUSUM is clearly the
winner for all hospital sizes. The control limits for the restricted CGR-CUSUM are much smaller than for
the unrestricted CGR-CUSUM. This is because the unrestricted CGR-CUSUM can produce extremely
large estimates for θ̂ (t), therefore becoming very unstable even in the in control situation. The BK-CUSUM
(eθ1 = 4) with incorrectly specified parameters performs the worst for all hospital sizes. Notably, all three
procedures seem to converge towards the same power over time graph as the arrival rate increases, which
was not the case in Figure 2(c). We conclude that the CGR-CUSUM can yield the best power over time,
but depending on the nature of the data restricting the value of θ̂ (t) might be necessary to achieve such a
performance.

5. DISCUSSION

For almost all applications, the CGR-CUSUM will yield earlier detection times than the BK-CUSUM
since in general the change of failure rate at a hospital will not be of a fixed size and will happen gradually
instead of instantaneously. For this reason, the CGR-CUSUM will perform better in practical scenarios
where the expected true hazard ratio exp(θ) is not known in advance or variable over time. This was
demonstrated in our application of the charts to the LROI data set. The application of the BK- and CGR-
CUSUM charts on the LROI data set also showed that in practice the CGR-CUSUM outperforms the
BK-CUSUM with respect to detection times, while retaining a similar number of “false” detections. It is
important to note that we do not know whether the hospitals detected by the funnel plot were the hospitals
with “true” problems, instead operating in line with van Schie and others (2020) by taking the funnel plot
as the golden standard. We cannot be sure that the chosen expected hazard ratio for the BK-CUSUM was
in line with reality. All in all, we can conclude that the CGR-CUSUM is the preferred method for quality
inspection, especially for large arrival rate ψ . From the simulation study in Section 4.2, we concluded
that the CGR-CUSUM can yield better power than the BK-CUSUM, but might require appropriately
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restricting the values of θ̂ (t). Even though the CGR-CUSUM was created with the goal of specifying
fewer parameters, we believe that bounding θ̂ (t) is often more tractable than correctly specifying the
expected hazard ratio. This restriction was necessary for the LROI data, but not all survival data will
have an extremely low failure rate and therefore the CGR-CUSUM could also perform well without this
restriction, as was seen in Section 4.1.

5.1. Recommendations for practice

For practical applications, we suggest using the CGR-CUSUM for quality control, keeping in mind that it
restricting the maximum likelihood estimate to an appropriate range might be necessary (i.e., eθ̂ (t) ≤ 6).
For small volume hospitals the BK-CUSUM could be preferred, as long as there is some prior information
about the expected increase in failure rate. This way the small amount of information retained from patients
can be partly compensated by prior knowledge. The use of a funnel plot is not advised as it is not a real-time
procedure and has the potential disadvantage of an increased risk of a type I error incurred by performing
a multiple testing procedure.

We advise determining control limits h for CUSUM charts either by restricting the simulated probability
of a type I error over a time frame or by restricting the in control average run length of the charts. The first
method may be preferred due to the lower computational requirements.

Ideally, the baseline hazard rate should be determined on a data set which is known to be in control.
Realistically, this is unlikely to be feasible in many applications. The practice of considering the national
average rate of failure to be in control is often sufficient. An important consideration is that any major
change in the distribution of risk factors in the population will require a recalculation of control limits.
Whereas information on the failure of patients can be collected in real time, the aggregation of such data
over multiple hospitals is not likely to happen in real time. If the risk distribution has changed over this
frame of time, it might be necessary to reconstruct the CUSUM charts, possibly leading to new or different
detections.

5.2. Limitations

In the considered model, we assume that observations can only be right censored. This is because in the
setting of arthroplasty surgery left and interval censoring are of little interest. The same is not true for
competing risks mechanisms. Begun and others (2019) have considered a similar procedure to Biswas
and Kalbfleisch (2008) with the addition of frailty terms and competing risks, allowing for dependent
competing risks. Even though they could not find an indication that the competing risks of death and
revision surgery are dependent in their data, their methods can be carried over to our procedure as well.
Should we be interested in detecting a decrease in the rate of failure using the BK- or CGR-CUSUM,
a two-sided procedure as suggested by Page (1954) can be considered where the hypotheses of θ = 0
against θ = θ1 < 0 are used for constructing the likelihood ratio. This yields the CUSUM charts with
switched positive and negative signs.

5.3. Future work

Additions to the CGR-CUSUM and BK-CUSUM should be considered. Notably, the power of the unre-
stricted CGR-CUSUM was lacking for hospitals with a low volume of patients. This is largely due to
the (relatively) very high value of the control limit of the CGR-CUSUM (see Table 3). These values
are so high because the CGR-CUSUM will often have an initial spike upwards when the first failure is
observed due to the maximization over previous patients (i.e., all patients before the first failed patient are
ignored). When the volume of patients or failure rate is low, this leads to a large uncertainty in the deter-
mination of the MLE θ̂ (t). To counteract this, in Section 3, we introduced the upper limit θ̂ (t) ≤ ln(6).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac041/6705266 by Jacob H

eeren user on 12 O
ctober 2022



16 D. GOMON AND OTHERS

Another solution would be to impose a time-dependent control limit which is large at the start of the
study and decreases until it reaches a fixed value, allowing the CGR-CUSUM to converge before yielding
detections. A patient shuffling or weighing mechanism can be added to the CGR-CUSUM chart in order
to yield quicker detection in the case of clustered failures in the past. For this, the mechanisms used by
Steiner and Jones (2009) and Grigg (2018) can be used as inspiration. Finally, a mechanism where patients
have periods when they are not at risk of failure can be incorporated into the chart as well.

6. SOFTWARE

Software in the form of an R package, together with a sample input data set and complete documentation
are available on CRAN at https://cran.r-project.org/package=success. Code to reproduce the results in this
article can be found on GitHub at https://github.com/d-gomon/success_example.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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