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The acoustic characteristics of noise from fricatives and stop releases are difficult to analyze. The spectral char-

acteristics of such noise are multi-dimensional, and popular methods for analyzing them typically rely on reducing

this complex information to one or a few discrete numbers, such as spectral moments or coefficients of discrete

cosine transformations. In this paper, I propose using function-on-scalar regression models as a method for ana-

lyzing and mass-comparing spectra with minimal reduction of the complexity in the signal. The method is further

useful for analyzing how spectra change as a function of time. The usefulness of this method is demonstrated with

a corpus analysis of Danish aspirated stop releases, using the DanPASS corpus. The analysis finds that /t/

releases are invariably affricated; /k/ releases are highly affected by coarticulatory context; and /p/ releases are

almost always dominated by aspiration in the latter half of the release, but are affricated in the first half in certain

contexts.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

When analyzing the dynamics of spectral characteristics,
researchers usually resort to using a small number of discrete
measurements aimed at capturing as much of the relevant
spectral information as possible. For vowels and sonorant con-
sonants, an example would be formants; for obstruent conso-
nants, examples would be spectral moments and coefficients
of discrete cosine transformations. The goal of this paper is
to demonstrate function-on-scalar regression (FOSR; Reiss
et al., 2010; Greven & Scheipl, 2017a; Bauer et al., 2018) as
a method for taking the entire spectrum into account when
analyzing sources of variance in the acoustic signal. Rather
than relying on discrete measurements, FOSR allows for the
use of complete spectra as dependent variables. FOSR gives
a clear and easily interpretable overview of the influence of
various factors on time-varying spectral characteristics, and
does so with minimal reduction of the information in the acous-
tic signal. Other recent studies have compared full (temporally
static) spectra in order to illuminate differences between
palatalized and non-palatalized consonants using smoothing
spline ANOVA (Iskarous & Kavitskaya, 2018) and generalized
additive models (Nance & Kirkham, 2020), and functional
regression models have been used in the analysis of phonetic
data previously (e.g. Pouplier et al., 2014, 2017; Cederbaum
et al., 2016; Carignan et al., 2020; Volkmann et al., 2021).
However, to the extent of my knowledge, this is the first study
to use FOSR to analyze characteristics of speech spectra.1

As a case study, I focus on the spectral characteristics of
Danish stop releases, how they change over time, and how
they are affected by various contextual variables. It is well-
established that the aspirated alveolar stop /t/ in Standard Dan-
ish is usually strongly affricated. This was pointed out early on
by Otto Jespersen (1899: 335), who noted that foreigners
would often perceive Danish /t/ as an affricate [ts] – particularly
before high front vowels. He maintained that /t/ was still an
aspirated stop, but assumed that Danish was undergoing a
sound change whereby all aspirated stops would eventually
become affricates, as had happened in some varieties of Ger-
man a millennium earlier with the Second Consonant Shift. He
assumed that /t/ was most advanced in this sound change, fol-
lowed by /k/, and finally /p/. This paper uses function-on-scalar
regression models to explore the outcome of Jespersen’s pre-
diction more than a century later. This is not straightforward:
f spectra
ependent
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the boundary between an aspirated stop and an affricated one
is fuzzy, as is the boundary between an affricated stop and a
proper affricate. I approach this question by looking holistically
and dynamically at time-varying spectral characteristics
throughout stop releases, and how they vary, in a corpus of
spontaneous spoken Danish.

The results of the case study show that /t/ releases are
invariably affricated, but that aspiration also plays an important
role in /t/ releases. Affrication is also found in /p k/ releases, but
only plays an important role in certain phonetic contexts, which
vary by place of articulation. The state of affairs does not seem
to have changed much since Otto Jespersen’s time: /t/ is still
heavily affricated, and affrication remains less prominent in
/p k/.

In the following subsection, I introduce a general problem in
acoustic phonetic research: there are multiple competing
methods for measuring frication noise, which all rely on boiling
down the information available in the spectrum to a small num-
ber of variables. Subsequently, I argue that smoothing-based
approaches to dynamic data analysis, and FOSR in particular,
may be solutions to this problem. In Section 2, I introduce the
case, viz. the releases of aspirated Danish stops and their
position on the blurry aspirated–affricated continuum, as well
as the data used to explore this case. In Section 3, I describe
three statistical models, one for each of /p t k/, and the results
of these models are presented and interpreted. In Section 4, I
discuss the advantages and challenges of using FOSR for
analyzing spectral variance, and in Chapter 5, a brief conclu-
sion is given.
1.1. Measuring frication

It has long been established that frication at different places
of articulation (whether in fricatives, stop releases, or other-
wise), has distinct spectral properties (see Kopp & Green,
1946). A classic method for differentiating places of articulation
in frication is locating peaks and valleys in spectral energy dis-
tribution, essentially by ‘eyeballing’ spectrograms (e.g. Hughes
& Halle, 1956; Strevens, 1960).

Forrest et al. (1988) popularized treating the complex spec-
trum as a probability mass function, and analyzing it by calcu-
lating four moments: 1) the ‘mean frequency’, or center of
gravity (COG); 2) standard deviation (SD), 3) skewness, and
4) kurtosis. COG reflects the mean distribution of energy
across the spectrum; SD reflects how much the energy devi-
ates from the mean; skewness reflects how much the energy
distribution is skewed relative to the mean, and in which direc-
tion; kurtosis reflects the peakedness of the energy distribu-
tion. Forrest et al. found that spectral moments distinguished
fairly well between places of articulation in stop bursts, and that
particularly COG, skewness, and kurtosis distinguished fairly
well between places of articulation in alveolar and post-
alveolar fricatives; Stoel-Gammon et al. (1994) on the other
hand found that SD is particularly stable in determining the dif-
ference between dental and alveolar stop bursts. Subsequent
studies testing this have not been particularly stable (see e.g.
Shadle & Mair, 1996), but COG in particular has remained a
very popular measure in the analysis of spectral properties of
fricatives often without taking into account higher moments.
This is problematic, since spectra often correspond to func-
tions that are far from normally distributed. The mean value
from a non-normal distribution does not give a very full picture
of the shape of the distribution, and spectra with quite different
shapes may have the same COG. As an example, Gordon
et al. (2002: 152ff.) find nearly identical mean COG in Western
Aleut [x v], but the spectral shapes are otherwise quite distinct.

A number of other candidate measures have been pro-
posed in the literature for analyzing frication, mainly for deter-
mining the precise place of articulation of fricatives. Jongman
et al. (2000) find that the different places of articulation in Eng-
lish fricatives are distinguished fairly well using the average
location of the spectral peak. Koenig et al. (2013) show that
the mid-frequency spectral peak – the frequency with the high-
est amplitude within a 3000–7000 Hz band – captures the fairly
subtle difference between labialized and non-labialized /s/ in
adolescents.

Another proposed method is using cepstral coefficients
derived from a discrete cosine transform of the spectrum
(DCT; Watson & Harrington, 1999). DCT reduces the high
dimensionality of the spectrum to (typically) four discrete val-
ues, corresponding to the amplitude of half-cycle cosine waves
derived from the spectrum. DCT0 reflects the mean amplitude
of the spectrum; DCT1 reflects the linear slope; DCT2 reflects
the curvature; and DCT3 reflects the amplitude at higher fre-
quencies. In a comparison of /ʃ ç/ in different varieties of Ger-
man, Jannedy and Weirich (2017) show that DCT-based
classification more closely approximates the perception of
these sounds than classification based on spectral moments,
and DCT coefficients have been shown to yield more correct
classifications of place of articulation than spectral moments
in both voiceless stops (Bunnell et al., 2004) and fricatives
(Spinu & Lilley, 2016). While DCT coefficients give a fuller pic-
ture of spectral shape than spectral moments, they are also
more difficult to interpret.

Measurements such as the ones discussed above have
often been taken at fixed points in time, such as the midpoint
or some pre-determined range around the midpoint of frica-
tives or affricates; Mücke et al. (2014) refer to these points in
time as ‘magic moments’. Magic moments give us a limited pic-
ture of the acoustic nature of these sounds; affricates are
inherently dynamic, and Reidy (2016a) shows even sibilant
coronal fricatives vary dynamically throughout their time
course in language-specific ways. Spectral properties of stop
releases are usually measured only at the burst, which in aspi-
rated stops is a relatively small initial portion of the release
(see e.g. Chodroff & Wilson, 2014).

Summing up, most existing approaches to quantifying frica-
tion reduce the complex time-varying information from spectra
to something more manageable. This is very reasonable,
because 1) many statistical methods frequently used in linguis-
tics cannot necessarily handle variables with high dimensional-
ity, and 2) it is a goal in itself to propose the simplest possible
model of how language works with the highest possible
explanatory value. With regards to 1), statistical models which
can take into account complex dynamic information are
increasingly being used, as discussed below, and this paper
demonstrates how FOSR can be used to model time-varying
spectral information with little reduction of dimensionality. With
regards to 2), deciding on a model of language which balances
simplicity and explanatory value can simply not be done if we
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have not tested complex models. Studies mentioned above
have shown how some patterns can only be uncovered by
increasing dimensionality. For example, Reidy (2016a) shows
that the language-specific nature of spectral dynamics in frica-
tives only becomes apparent when measuring spectral proper-
ties at several timepoints, and Jannedy and Weirich (2017)
show that the spectral differences between [ç ʃ] in German
(which are currently undergoing a merger) are more readily
apparent when using a measure which takes more of the spec-
trum into account (i.e., using DCT coefficients rather than
moments).

All the above-mentioned measures are derived from the
spectrum rather than directly from the waveform, so it follows
that the method used for spectral estimation may have an influ-
ence on the results. The most common method is fast Fourier
transformation (FFT). FFT is very efficient, but in some ways
not particularly suitable for acoustic data. The Fourier basis
is periodic, making FFT highly suitable for periodic data, such
as voiced portions of speech, but less suitable for noisy, ran-
domly generated data, such as voiceless portions of speech
(Ramsay & Silverman, 2005: ch. 3.4). For noisy data, it is the-
oretically preferable to use a lower variance spectral estimate
such as that provided by multitaper spectral estimation
(Blacklock, 2004). Note however that Reidy (2015) showed
that the spectral moments derived from FFT spectra and mul-
titaper spectra may be practically equivalent.
1.2. Smoothing approaches to the analysis of dynamic data

In the past years, following Baayen’s (2008) popularization
of mixed-effects regression models in linguistics, there has
been a rapid increase in the use of sophisticated statistical
techniques in linguistics. A general problem in the field has
been the analysis of dynamically varying data, in particular
data from time series. If some measure – say, COG – varies
as a function of time, then a linear model by necessity
assumes that the variation follows a straight line. As
Sóskuthy (2017) demonstrates for formants, this is a poor
assumption; variation as a function of time is often non-
linear. A solution to this problem is the use of smoothed curves.
Given a number of data points associated with e.g. a time ser-
ies, a smoothing function (see de Boor, 2001; Wood et al.,
2016) can be used to approximate a continuous curve corre-
sponding to the data’s non-linear variation as a function of
time. Smoothing involves reducing the observations to a num-
ber of basis functions (or ‘knots’), and using a penalizing
smoothing parameter to determine the smoothness or wiggli-
ness of the resulting curve (see Gubian et al., 2015). Combin-
ing too many basis functions with a low smoothing penalty will
lead to overfitting, resulting in curves that include irrelevant
information in the signal; conversely, combining too few basis
functions with a high smoothing penalty will likely lead to
underfitting, resulting in curves that omit relevant information
in the signal.

Generalized additive (mixed) models (GAMMs) have
quickly become popular in linguistics (see e.g. Baayen et al.,
2017; Wieling, 2018; van Rij et al., 2020a; Sóskuthy, 2021).
These are similar to linear mixed-effects models, but allow
for the inclusion of smooth effects. They are typically used
for time series analysis, but have also been used to analyze
e.g. EEG registration (Baayen et al., 2018; Voeten, 2020: ch.
5), geo-linguistic variation (e.g. Wieling et al., 2011, 2014;
Puggaard, 2021; Puggaard-Rode, forthc.), and speech spectra
(Nance & Kirkham, 2020) dynamically.

Functional data analysis (FDA; Ramsay & Silverman, 2005;
Ramsay et al., 2009; Gubian et al., 2015; Pouplier et al., 2017)
has overall had less influence on statistical modeling in linguis-
tics. FDA is a family of statistical methods which extend exist-
ing methods to account for functional data. In practice, this
means that curves can be used as input variables rather than
discrete values. An example is the functional extension of prin-
cipal components analysis (FPCA), which can be used to
determine the primary sources of variation in curves. Gubian
et al. (2015) use FPCA to jointly analyze how F1 and F2 pat-
tern in the realization of diphthongs and hiatuses in Spanish,
respectively, and Puggaard-Rode (forthc.: ch. 6) combines
GAMMs and FPCA to analyze how speech spectra of stop
release midpoints vary geographically in traditional regional
varieties of Danish.

1.3. Function-on-scalar regression

Functional regression models are suitable when one or
more variables are of a functional nature (Bauer et al., 2018).
If an independent variable is functional and the response vari-
able is constant over the functional domain, this can be mod-
eled with scalar-on-function regression. This could e.g. be
useful for researchers seeking to predict reaction times from
pitch contours (e.g. Cutler, 1976); pitch contours consist of
complex functional data, which will otherwise have to be either
simplified or tightly controlled in the experimental set-up. If the
response variable is functional and all independent variables
are constant over the functional domain, this is suitably mod-
eled with function-on-scalar regression. This, in contrast, could
be useful for researchers seeking to predict the shape of pitch
contours from a range of predictor variables, such as prag-
matic context or duration. It is likewise useful for modeling
how the spectrum of a speech sound is affected by e.g. contex-
tual variables, as I will show below.

There are several approaches to modeling function-on-
scalar data (an overview is given in Greven & Scheipl,
2017b: 110ff.). Here, I will focus on the implementation pre-
sented by Scheipl et al. (2015, 2016), Greven and Scheipl
(2017a) and Bauer et al. (2018). The model can be summa-
rized with the formula below, from Bauer et al. (ibid.: 353).

g E Yi tð Þjvi ;Ei tð Þ
� �� � ¼ b0 tð Þ þ

XR

r¼1

f r ðvri ; tÞ þ EiðtÞ

ɡ(�) is a pre-specified link function mapping the predictor to the
functional domain; in the case of a Gaussian model, this is sim-
ply the identity. The expected value E(�) of each observation
i = 1, . . ., n of the response variable Y as a function of t condi-
tional on a set of covariates v and residual functional error E(t)
corresponds to the sum of 1) the functional intercept b0(t), 2) R
covariate effects fr(�), each of which form a subset vr of the full
covariate set and may vary over the functional domain t, and 3)
residual functional error E(t).

Functional regression models and GAMMs are conceptually
very similar. GAMMs are often fitted using the R package mgcv

(Wood, 2017a, 2021), which allows for significant flexibility in
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the selection of spline bases (Wood, 2017a: ch. 5), residual
error distributions (Wood et al., 2016), and smoothing parame-
ter estimation methods (Wood, 2011; Wood et al., 2015), as
well as handling of autocorrelated residuals (Baayen et al.,
2018), and which can handle very large data sets (Wood
et al., 2017). Wood (2017a: 290ff.) gives a number of examples
of how functional regression models can be implemented in
mgcv. Perhaps for this reason, the framework for functional
regression modeling I adhere to here is sometimes referred
to as (generalized) functional additive mixed modeling
(Scheipl et al., 2015, 2016).

Functional additive regression models are implemented in
the pffr function of the R package refund (Goldsmith
et al., 2021). This function uses the mgcv computation engine,
and inherits the same flexibility as GAMMs fitted with mgcv.
The syntax is also similar to mgcv, except there are several
more term constructors for including various kinds of variables;
most of these are not discussed here. An advantage of using
refund rather than mgcv to fit FOSR models is that depen-
dent and independent functional variables can be explicitly
included in model formulas, allowing the user to conceptualize
a problem as FOSR. In a model of spectral variance formalized
in mgcv, the response variable would have to be an amplitude
measure, whereas in a model formalized in refund, the
response variable can be the spectral shape, which is concep-
tually more satisfactory. Note that this has no influence on how
the models are fitted ‘under the hood’; from a computational
perspective, they are the same (e.g. Morris, 2017). In Appendix
A, I show how a simplified version of the models presented in
Section 4.1 are fitted with pffr, and compare this to how that
same model would be fitted with the bam function in mgcv. Fur-
thermore, the model fitting and selection procedure is fully doc-
umented in annotated form in Puggaard-Rode (2022).

Functional regression models are usually high-dimensional
and the number of underlying data points is often very high.
This can make traditional significance tests unreliable, as
these are highly affected by sample size (see e.g. Kühberger
et al., 2015 and references therein). Wood (2013) proposes
an F-test for calculating significance of nonlinear variables in
GAMMs, and the results of this test are also reported in the
output of pffr; however, researchers should exercise caution
in interpreting the resulting p-values, as even tiny effects will
appear highly significant if the sample size is sufficiently large.
This is also the case for likelihood ratio tests of nested models.
For this reason, I do not report p-values in this chapter. This
issue is not specific to FOSR models, but holds for essentially
all frequentist models with very high sample sizes.

In any case, p-values and associated measures of non-
linear effects can only tell us if there is an effect, they cannot
tell us much about the nature of that effect. A more suitable
way to explore non-linear effects in exploratory studies such
as this one is to visualize them. If the goal is hypothesis testing,
Bauer et al. (2018) propose several different solutions. Marra
and Wood (2012) propose a method for calculating confidence
intervals of non-linear effects; this method can be used to
quantify and visualize the uncertainty associated with non-
linear fitted effects along the functional grid. Bauer et al.
(2018) propose a more precise bootstrap-based method for
calculating confidence intervals, but this precision comes at a
significant computational cost.
2. The case: Stop releases in Danish

It is not a goal of this paper to determine whether /p t k/ are
phonetic affricates in Danish. The boundary between an aspi-
rated stop and an affricated one is fuzzy, as is the boundary
between an affricated stop and a proper affricate. In the end,
a decision can only be made with targeted articulatory studies
comparing Danish with other languages with clear-cut stop–af-
fricate distinctions. This is rather an exploratory study aimed at
better understanding the distribution of spectral properties in
Danish stop releases. I focus on the following broad questions,
which are more readily answerable:

� How do the spectral characteristics of Danish stop releases vary
across time?

� How are their time-varying characteristics affected by different pho-
netic contexts? An example could be coarticulation effects following
from features of the following vowel, like backness, height, and
rounding, all of which affect the size and shape of the vocal tract.

In the section below, I discuss the aspirate–affricate contin-
uum from a theoretical perspective. Subsequently, I discuss
the Danish stops /p t k/ and their position on this continuum.
Finally, I introduce the corpus used for the study (DanPASS;
Grønnum, 2009), and introduce the acoustic analysis of the
data.
2.1. Aspirated stops, affricated stops, and affricates

The production of both stop consonants and affricates has
been modeled thoroughly in the work of Fant (1960) and Ste-
vens (e.g. 1993a, 1993b, 1998: chs. 7–8). A shared compo-
nent of both types of sound is a complete occlusion
somewhere in the oral cavity, which allows intraoral air pres-
sure to build up. Another shared component is a release
phase, in which this pressure is released, resulting in a rapid
sequence of acoustic events, including an initial brief transient
followed by frication. The transient shows a fairly even distribu-
tion of noise throughout the spectrum. Frication noise is subse-
quently generated at or near the point of occlusion; due to the
high pressure behind the constriction and the narrow gap in the
oral cavity, the escaping air becomes turbulent and excites the
area around the constriction. The nature of this noise gradually
changes as the approximation gradually widens. In aspirated
stops, air will continue to escape through the open glottis for
some time after the release, and turbulence noise generated
at the area around the vocal folds continually excites the vocal
tract. The different stages of an aspirated stop release are
shown on a spectrogram in Fig. 1; visualizations of stops in this
section are all from the corpus used for the case study (see
Section 2.3.1).

The energy distribution of the turbulent frication noise
depends on the nature of the obstruction (Shadle, 1991). In
labials, since there is no cavity in front of the obstruction, the
frication noise is generated directly at the lips, causing a fairly
even distribution of noise throughout the spectrum, with a slight
linear drop in amplitude at increasing frequencies. In alveolars,
the turbulent air stream impinges on the teeth immediately in
front of the constriction, meaning there is only a very small cav-
ity anterior to the constriction, causing high resonance frequen-
cies around 5000 Hz to be excited. In velars, the turbulent air



Fig. 1. Different stages of an aspirated stop release, exemplified in a token of /k/ before
a low back vowel. ‘t’ is short for ‘transient’. The spectrogram shows frequencies from 0 to
8000 Hz.

2 In a traditional binary feature account, affricates are often represented with both
[–continuant] and [+continuant] (e.g. Sagey, 1986).
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stream impinges on the hard palate at an oblique angle, before
being filtered through a sizeable front cavity, causing relatively
low resonance frequencies somewhat below 2000 Hz; note,
however, that the exact point of occlusion in velars is variable
and depends on surrounding vowel(s), since the tongue body
is less precisely controlled than the tip and blade (Ouni,
2014), and the tongue body is itself more directly involved in
the production of vowels than the tip and blade. A more fronted
obstruction will cause the air stream to more directly impinge
on the hard palate, causing higher resonance frequencies.
Examples of aspirated bilabial, alveolar, and velar stops are
shown in Fig. 2; /k/ is shown before a high front vowel and a
low back vowel to visualize the clearly variable spectral char-
acteristics in these environments.

During aspiration, low-frequency noise is generated as the
airstream passing through the glottis impinges on the vocal
folds, epiglottis, and surfaces directly above the glottis; this tur-
bulence noise further excites the natural resonances of the oral
cavity, which (as in vowels) largely depend on e.g. the position
of the tongue. The aspiration noise is present throughout the
release, but is initially dominated by frication. As the obstruc-
tion above the glottis opens, aspiration noise will gradually
overtake frication noise in prominence (Hanson & Stevens,
2003).

In voiceless unaspirated stops, the frication phase is very
brief, but it is an important cue to place of articulation. There
are two primary place cues in stops: the spectral characteris-
tics of the initial frication phase (e.g. Stevens, 1971; Stevens
& Blumstein, 1978; Blumstein & Stevens, 1979, 1980), and
the transitions of formants as the articulators move from occlu-
sion to vowel (Kewley-Port, 1982, 1983; Kewley-Port et al.,
1983; Stevens et al., 1999). In aspirated stops, formant transi-
tions are relatively weak, because movement of the articula-
tors typically happens before the onset of voicing, making
frication all the more important as a place cue. Frication is also
usually more acoustically salient in aspirated stops relative to
unaspirated stops: since the glottis is spread during at least
part of the closure, there is a greater build-up of supraglottal
air pressure, causing quicker releases and greater burst inten-
sities than in unaspirated stops (see e.g. Löfqvist, 1975, 1980;
Jaeger, 1983). Long voicing lag can in itself lead to affrication
in certain environments: when devoiced, high front vowels can
be acoustically similar to fricatives (Mortensen, 2012). This can
lead to the common sound change whereby /k/ ? /tʃ/ before /i/
(Hock, 1991; Ohala, 1992), as observed in e.g. Slavic, Indo-
Iranian, and Middle Chinese (Guion, 1998 and references
therein), and the common phonological process where /t/ is
realized as an affricate or fricative before /i/, as observed in
e.g. Finnish and Korean (Kim, 2001; Hall & Hamann, 2006;
Hall et al., 2006).

There are no clear heuristics to decide whether a particular
speech sound is an affricated aspirated stop or an affricate – at
least not from the acoustic signal alone. In phonology, a deci-
sion may be reached on the basis of behavior. Affricates are
often assumed to contain a feature like [stop] as well as one
usually used in the representation of fricatives, such as [stri-
dent] (e.g. Jakobson et al., 1951) or [continuant] (e.g.
Lombardi, 1990)2; see Lin (2011) for an overview of how affri-
cates have been modeled in phonological theory. If an occlusive
with a lot of frication behaves like an aspirated stop to all extents
and purposes, it should probably be considered an aspirated
stop at the phonological level; there will be no need to posit a
[continuant] feature. If it patterns with fricatives, or shows other
forms of exceptional behavior, those would be grounds for con-
sidering it an affricate at the phonological level.

From a phonetic perspective, Stevens (1993a) defines affri-
cates as sounds which have two separate constrictions formed
by the primary articulator. The anterior constriction forms a
complete closure, while the posterior one forms a close
approximation. In affricates, frication noise is generated at this
posterior constriction, while in stops, frication noise is gener-
ated directly at the point of occlusion. This distinction is difficult
to extend to acoustics or to gauge impressionistically. In prac-
tice, most decisions about stop–affricate category membership
is likely based on intuition; a sound is categorized as an affri-
cate if frication lasts for more than a certain proportion of the
release.
2.2. Danish aspirated stops

In Section 1, I mentioned Otto Jespersen – his early obser-
vation that /p t k/ were becoming increasingly affricated, and
his claim that they would eventually develop into affricates.
Today, more than a century after Jespersen’s observations,
the affrication of /t/ has been established several times over,
has been shown to be exceptionless, and is taken for granted
in the literature. Fischer-Jørgensen (1954: 50) reports that the
frequency range of the aspiration noise of /t/ is “exactly the
same” as for /s/ throughout most of the release. While it is com-
mon for the initial burst noise of stops to have a similar fre-
quency range to homorganic fricatives, this usually makes up
a smaller portion of aspirated releases. Brink and Lund
(1975) tracked the development of affrication in /t/ across more
than a century of recordings from Copenhagen, and showed
that it went from a widespread phenomenon in the mid-19th
century to an exceptionless phenomenon in the mid-20th cen-
tury. While earlier sources would often transcribe /t/ with both
affrication and aspiration (e.g. Brink & Lund, 1975; Basbøll &
Wagner, 1985), [ts] has emerged as the standard transcription
in the last few decades (e.g. Grønnum, 1998). Recently,
Schachtenhaufen (2022) has proposed acknowledging the
sound as a pure affricate and transcribing it as simply [ts].



Fig. 2. Examples of aspirated stops at different places of articulation. The spectrograms show frequencies from 0 to 8000 Hz.
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However, both frication and aspiration are often clearly present
in /t/ releases, as exemplified in Fig. 3.

While there is consensus about the affricated status of /t/,
possible affrication patterns in /p k/ have never been investi-
gated. The most straightforward explanation for this is that
no one ever noticed salient affrication in /p k/. This could either
be because there truly is no affrication in /p k/, or because
labial and dorsal frication are simply less salient than coronal
frication. On the one hand, since /p t k/ show class behavior
in other matters (e.g. phonotactics; Vestergaard, 1967), we
might also expect them to show class behavior in phonetic
implementation; on the other hand, Chodroff and Wilson
(2018) recently found only moderate signs of class behavior
in the realization of place cues in a large-scale study of Amer-
ican English /p t k/.
Fig. 3. Examples of a Danish /t/ release with a clear aspiration phase. The spectrogram
shows frequencies from 0 to 8000 Hz.
The timing of gestures in Danish aspirated stops is seem-
ingly different from comparable Germanic languages. In Ice-
landic and Swedish, peak glottal opening is achieved
relatively early during the closure of aspirated stops
(Pétursson, 1976; Löfqvist, 1980); also in English and German,
the glottis is typically fully spread sometime before the stop
release (Sawashima, 1970; Hoole et al., 1984). Furthermore,
closures in aspirated stops are typically longer than in unaspi-
rated stops (Lisker, 1957; Löfqvist, 1976; Stathopoulos &
Weismer, 1983; Braunschweiler, 1997). This ensures that
supraglottal air pressure is high at the time of the release. In
Danish, however, peak glottal opening typically falls just after
the release of the stop (Frøkjær-Jensen et al., 1971), and clo-
sure duration is shortest in unaspirated stops (Fischer-
Jørgensen, 1969, 1972). Taken together, these two facts about
Danish aspirated stops – late peak glottal opening, and rela-
tively short closure duration – mean that there are fewer mech-
anisms in place to ensure high supraglottal air pressure at the
time of release, and accordingly, less guarantee of a prominent
burst. This can partially explain why a constriction is retained
for relatively long during Danish stop releases, since higher
air pressure at the time of release in itself causes quicker
movement of the articulators as the muscular tension forming
the constriction is released. Functionally, it can also explain
the ‘need’ for affricated releases in Danish: if the place cues
of the burst are not otherwise so prominent, they can be
strengthened by retaining constriction following the release.

From a phonological perspective, Danish /p t k/ show similar
behavior. Their phonotactic behavior is similar to that of
unaspirated stops (Vestergaard, 1967), and they all show the
same patterns of positional allophony, with loss of aspiration
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(or affrication) after /s/ and medially before schwa, and loss of
release syllable-finally (although they are optionally released
phrase-finally; Grønnum, 2005). When loan words with alveo-
lar affricates are nativized and adapted to Danish phonology,
the affricate is generally reanalyzed as /s/ rather than /t/, as
in the following examples; etymologies are from DSL (2018).3
/ts
[sɑːˀ]
3 A counterexamp
/ is reanalyzed as
tsar
le is tzatziki, whic
/t/, and the seco
‘czar’
h is nativized as [t
nd as ambisyllabi
from Russian [tsarj]

[suˈkhiːni]
 zucchini
 ‘zucchini’
 from Italian [tsukˈkino]

[sen]
 zen
 ‘zen’
 from Japanese [dzen]

[ˈsyɐ̯ek]
 Zürich
 ‘Zurich’
 from German [ˈtsyːʁɪç]

[suˈnɑːmi]
 tsunami
 ‘tsunami’
 from Japanese [tsɨnami]
Fig. 4. Example of a segmented /t/ token.

Table 1
Number of aspirated stops included in the study, along with mean VOT values.

Phoneme Number Mean duration (stressed),
ms

Mean duration (unstressed),
ms
In a study of Danish speakers’ productive acquisition of Stan-
dard Chinese coronal obstruents (Puggaard, 2020), it was fur-
ther shown that the most common error in the production of
(non-aspirated) /ts/ is realizing it with no closure phase, i.e. sim-
ilar or identical to /s/. Native speakers of Danish do not map
Standard Chinese /ts/ to their native /t/ phoneme. They do,
however, tend to map Standard Chinese /tsʰ/ to their native /t/
phoneme, further cementing that both affrication and aspiration
are crucial cues to Danish /t/.

2.3. Methods and materials

2.3.1. The DanPASS corpus

The data for this study comes from the Danish Phonetically
Annotated Spontaneous Speech (DanPASS) corpus
(Grønnum, 2009, 2016). This corpus was established to obtain
high-quality recordings of unscripted Danish speech. The
recordings are of single speakers or pairs of speakers solving
unscripted tasks. The corpus has already served as the basis
for studies on plosive reduction (Pharao, 2011), the relation-
ship between vowel height and voice onset time (Mortensen
& Tøndering, 2013), and intervocalic stop voicing (Puggaard-
Rode et al., 2022a), as well as a number of other studies;
see Grønnum (2016) for a full list.

The corpus consists of monologues recorded in 1996, and
dialogues recorded in 2004. Only the monologues are used
in this study, since these are more simple to analyze. These
consist of 171 minutes of speech from 18 speakers. 13 were
men and 5 were women, and they were between 20 and
68 years old at the time of recording (mean = 29 years). Each
speaker contributed a mean of 9m27s (range 6m13s –
15m49s). Age is not taken into account in the statistical mod-
eling of the data, so the heterogeneity in age across speakers
should not be a problem, especially since we have no reason
to assume that there was significant change in the realization
of /p t k/ across the speakers’ age span. The gender imbalance
should also not be a problem, since most mixed modeling
frameworks (including the one used here) do not assume bal-
anced variables (e.g. Wood, 2017: ch. 2).

The recordings are segmented at the levels of prosodic
phrase, word, and syllable, and transcribed both orthographi-
cally, phonemically, phonetically, and prosodically, as well as
coded for morphology and parts-of-speech. Technical details
about the recordings can be found in Grønnum (2009). The
ʰætˈsiki] (DSL, 2018); here, the first
c /t.s/.
monologues consist of speakers performing three different
tasks. In the network task (Swerts & Collier, 1992), they
describe various shapes and colors. In the city task (Swerts,
1994), they describe routes drawn on a city map. In the house
task (Terken, 1984), they describe how to build a house model
using provided building blocks.
2.3.2. Acoustic analysis

The initial acoustic analysis was done using Praat
(Boersma, 2001; Boersma & Weenink, 2019). An automated
script was used to locate all aspirated stops (i.e. members of
/p t k/) in simple onsets in the DanPASS monologues, and
combine them into a single sound file with a subset of the (rel-
evant) original annotations. This was an edited version of the
script used by Puggaard-Rode et al. (2022b) written by Dirk
Jan Vet. This located a total of 2,539 stops. The release
phases of the stops were segmented primarily on the basis
of the waveform, with the burst taken as the beginning of the
release and the first signs of periodicity taken as the end (fol-
lowing Francis et al., 2003). If multiple bursts were present,
the final one was chosen (following Cho & Ladefoged, 1999).
This process was partially automatized by a Praat script
searching for sudden increases in amplitude, but required
extensive manual correction. An example of a segmented /t/
release can be seen in Fig. 4. 205 tokens were excluded dur-
ing this process if there was no discernible closure. The distri-
bution of stops by phonemic category is shown in Table 1,
along with the mean duration of release for stressed and
unstressed tokens. This is equivalent to positive voice onset
time (VOT). Note that in some cases, the mean VOT values
differ quite dramatically from those reported by Mortensen
and Tøndering (2013), also on the basis of the DanPASS cor-
pus; this is likely because they follow Fischer-Jørgensen and
Hutters (1981) in going by the onset of higher formants rather
/p/ 642 57 41
/t/ 850 79 68
/k/ 842 59 46



5 The values were standardized by subtracting the mean and dividing by two standard
deviations, following Gelman and Hill (2006).
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than the first signs of periodicity, which leads to higher overall
values, particularly for /k/. Fischer-Jørgensen and Hutters
(1981) recommend this landmark because it yields relatively
stable VOT values across vowel types; however, voicing is
clearly and consistently present in the waveform and spectro-
gram before the onset of higher formants, meaning that this
landmark is not suitable for an analysis of spectral variance
where we would like to avoid the presence of intrusive voicing
and (in this case) the first formant.

Subsequently, a Praat script (available in Puggaard-Rode,
2022) was used to extract the release duration and information
about the phonetic context from each stop. The phonetic con-
text in question is four binary variables describing the height,
backness, and rounding of the following vowel, as well as
stress. For this purpose, [i y u ɪ ʏ ʊ e ø o] are all defined as high
vowels. Danish has a very complex vowel system, and these
vowels all have a mean F1 below 400 Hz in modern Standard
Danish (Grønnum, 1995; Juul et al., 2016). [u ʊ o ʌ ɔ ɑ ɒ] are
the relevant back vowels, and [y u ʊ ø o œ ɔ ɶ ɒ] are the rel-
evant rounded vowels.

Each stop was split into 20 equally long time steps. This is
too coarse-grained to tease apart very dynamic sequences,
such as the segue from initial transient to frication, but should
be fine-grained enough to capture gross changes in affrication.
The recordings are filtered to include a frequency range of
500–12,000 Hz. Frequencies below 500 Hz were filtered away
to avoid a potential influence of intrusive voicing or low fre-
quency ambient noise. Frequencies above 12,000 Hz were fil-
tered because they rarely play a significant role in speech. In
fact, 12,000 Hz is a relatively high cut-off point compared to
similar studies, but was chosen due to a study by Pharao
and Maegaard (2017) on sociolinguistic variation in Danish /t/
showing that mean COG for fronted realizations of /t/ can go
above 6000 Hz, suggesting that very high frequencies may
occasionally play a role. For each time step, the four first spec-
tral moments were also extracted; the spectral moments are
not used for this analysis, but are published alongside the
other data used for the analysis (Puggaard-Rode, 2022).

Multitaper spectra were generated for each time step using
R (R Core Team, 2020; RStudio Team, 2021).4 The study relies
on multitaper spectra for both theoretical reasons (outlined in
Section 1.1) and practical reasons. From a practical perspective,
multitaper spectra consist of fewer frequency bins than FFT
spectra, making their use in statistical models less computation-
ally expensive. The parameters used for spectral estimation (the
number of tapers K = 8 and the time-bandwidth parameter
nW = 4) were set to match previous studies by Romeo et al.
(2013) and Reidy (2015).

Three tokens of /k/ were excluded because their total
release duration was below 10 ms, and the algorithm used to
generate the spectra does not function for sound files shorter
than 0.5 ms. The multitaper spectra are the dependent variable
in the statistical analysis; each consists of a vector of ampli-
tude values by frequency ranges. The study uses raw ampli-
tude on the W/m2 scale rather than the more commonly used
transformed amplitude on the decibel scale; models were
4 This was done using the add-on packages tuneR (Ligges, 2021) and multitaper

(Rahim, 2014; Rahim & Burr, 2020), with convenience functions published with the
package nzilbb.labbcat (Fromont, 2021) based on code from Reidy (2013, 2016b).
The code is published in Puggaard-Rode (2022).
tested on both scales and yielded practically similar results,
but the results are somewhat easier to interpret when using
raw values. This is discussed in more detail in Puggaard-
Rode (forthc.: chs. 5–6). The frequency ranges differ in size
depending on the duration of the time step; longer time steps
have more fine-grained spectra. For each spectrum, the ampli-
tude values were standardized,5 since plenty of non-linguistic
factors can lead to deviations in overall amplitude level. Only
the frequency range between 500–10,000 Hz was used for the
statistical analysis of /t/ spectra, and 500–8000 Hz for /p k/,
since the minor activity above these limits seemed to be essen-
tially random noise, which interfered with the clarity of the
results.
3. The study

This section covers the statistical analysis and interpreta-
tion of the results. I first discuss the model specification, pre-
sent the results for each stop in turn, and link the results to
their presumed underlying articulatory mechanisms.

3.1. Model specification

All statistics were calculated using R (R Core Team, 2020;
RStudio Team, 2021) and a number of add-on packages.6 All
code is freely available in annotated form online (Puggaard-
Rode, 2022); this includes various residual and autocorrelation
plots. Separate FOSR models were fitted for each stop with mul-
titaper spectra as the dependent variables. The spectra are
smoothed using P-splines with the number of basis functions
for the global intercept set as the mean number of amplitude
observations per spectrum (corresponding to 32 for /t/, 19 for
/k/, and 17 for /p/), which seems to strike a good balance
between signal and noise. For the functional responses, 6 basis
functions were used for the /t/ model and 5 for the /k/ and /p/
models, guided by the selection procedure proposed by Pya
and Wood (2016). P-splines are useful for sparsely distributed
data, i.e. when the number of observations per function differs
(Wood, 2017b). Time step is included as a non-linear indepen-
dent variable, smoothed with thin plate regression splines
(Wood, 2003) with 16 basis functions to ensure quite high gran-
ularity in the temporal dimension. Smoothing penalization
parameters were automatically selected using fast restricted
maximum likelihood estimation (Wood, 2011). The residuals for
the models are reasonably normally distributed, although for
the /p/ model, they are somewhat leptokurtic (kurtosis = 5.45);
however, Gaussian models with a high number of observations
should be quite robust to violations of normality (e.g. Knief &
Forstmeier, 2021).

A major advantage of GAMMs is the ability to account for
autocorrelated residual error (Baayen et al., 2018; Wieling,
2018); for example, measurements taken at adjacent steps
in a time series are likely to be correlated simply because they
As mentioned above, refund (Goldsmith et al., 2021) was used to fit FOSR models
and for various health checks, and mgcv (Wood, 2017a, 2021), itsadug (van Rij et al.,
2020b), and moments (Komsta & Novomestky, 2015) were used for additional health
checks of the resulting models. ggplot2 (Wickham, 2016; Wickham et al., 2021) was
used for generic visualizations, with added convenience functions from FoSIntro (Bauer
2021).
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are adjacent, which adds unwanted structure to the model
residuals. This also applies to adjacent amplitude values in
the frequency domain. One way to correct for this is by setting
a q-parameter, often corresponding to the autocorrelation at
‘lag-1’, i.e. the mean correlation between adjacent measure-
ments. This correction, called an AR(1) model, can also be
included in FOSR models. AR(1) models are included in all
models with q set at 0.1 above the lag-1 autocorrelation in a
corresponding model with no correction.7 Autocorrelation along
the frequency domain in the AR(1)-corrected models is negligi-
ble and short-range (between 0.06–0.16 at lag-1). Note that all
models display moderate negative autocorrelation at higher
lags, which is stable across different values for q (between
0.14–0.39 at lag-8). This is demonstrated in Fig. 5, which shows
autocorrelation plots for the model of /t/ releases from four differ-
ent models with different parameter settings for q. Note that the
models for both /k/ and /p/ show less autocorrelation (both pos-
itive and negative) than the model for /t/.

Another method for accounting for autocorrelated errors is
the use of functional random intercepts, potentially with
smoothing parameters set using splines based on functional
principal components (Scheipl et al., 2015; Greven &
Scheipl, 2017a; Bauer et al., 2018). Pouplier et al. (2017)
argue in favor of the latter approach because 1) the influence
of random effects can then be more readily decomposed, and
2) the basis for the correction is computed directly from the
data, while the parameter setting used for AR(1)-correction is
necessarily somewhat ad hoc. The latter approach can also
be implemented in pffr, but at a significant computational
cost. It is less computationally heavy to account for autocorre-
lation using another spline basis, such as thin plate regression
splines. Recall that these are used to model variation along the
time domain; Scheipl et al. (2015: appendix C.1) show that this
approach can be used to simultaneously model a predictor
variable and minimize autocorrelation along a functional
domain (in this case the time domain). They further suggest
that remaining residual structure can be accounted for by
including scalar random intercepts, in this case corresponding
to an intercept for each individual stop token. These are not
included in the final models here, but I show in the accompany-
ing code that adding such a scalar random intercept adds a
significant computational load while accounting for very little
variance in this case (Puggaard-Rode, 2022).

The model further includes by-category smooths for a num-
ber of independent binary variables: speaker sex, following
vowel height, backness, and rounding, as well as stress. The
influence of speaker sex on the spectral profile has not been
discussed much above, but is also included here, since previ-
ous studies have shown a gender effect on the spectral profile
of fricatives (e.g. Stuart-Smith, 2007). I am interested only in
how these variables affect the time-varying characteristics of
spectra, so no main effects were included for these variables.
These are contrast coded (see Schad et al., 2020), such that
absence of the feature in question is numerically coded as
�½ and presence as +½; the speaker sex variable was (ran-
domly) coded as �½ female, +½ male. Contrast coding of cat-
egorical variables is similar to centralizing continuous
7 Autocorrelation remained somewhat too high when q corresponded exactly to lag-1,
which is why q is increased here.
variables, and ensures that the global intercept corresponds
to a weighted global mean, which makes the final results much
easier to interpret. For each of these effects, by-speaker ran-
dom slopes were also included (except for speaker sex, which
logically cannot vary by-speaker).8 Including interaction effects
(e.g. backness � rounding) would be possible, but I have opted
against doing so here, since it would make the results unneces-
sarily complicated for an exploratory study such as this one. The
model formulae can be expressed as follows, where all variables
are standardized (or pseudo-normalized via contrast-coding):

amplitudeijðFÞ ¼ aðFÞ þ cðtij ; FÞ þ sexðti ; FÞ þ stressðtij ; FÞ
þ heightðtij ; FÞ þ backnessðtij ; FÞ
þ roundnessðtij ; FÞ þ speakerj cðtij ; FÞ
þ speakerj stressðtij FÞ þ speakerj heightðtij ; FÞ
þ speakerj backnessðtij ; FÞ
þ speakerj roundnessðtij ; FÞ þ qei�1 þ EijðFÞ

where i indexes each observation, j indexes each speaker, F is
frequency, t is time, a(F) denotes the smooth functional inter-
cept, c(tij, F) denotes the non-linear time variable, and Eij(F)
denotes the functional residual error. The individual error of
an observation ei is further modulated by the error of the pre-
ceding observation ei-1 by a factor of q; this is the AR(1) pro-
cess described above (Baayen et al., 2018). In Appendix A, I
describe how a simplified model is fitted with pffr, and com-
pare this to how a similar model would be fitted as a GAMM with
mgcv.

As discussed in Section 5.4, I do not report p-values for the
FOSR models, as they likely reflect the very large number of
observations (almost 550,000 normalized amplitude values
for the largest model) rather than practical significance. I do
report the rest of the model summary, which is similar to sum-
maries of GAMMs fitted with mgcv. I do not include random
effects in the summaries, but they are included in the accom-
panying code (Puggaard-Rode, 2022). Model summaries
include estimated degrees of freedom (edf), which reflect the
linearity of a variable, with a low edf near 1 indicating that
the variable is near-linear; reference degrees of freedom (ref.
df), which reflect the complexity of fitting a variable; and
F-values, which reflect how much variation in the data is
accounted for by a variable. As such, ref.df and F combined
reflect the fitting–complexity tradeoff of including a variable,
and these are usually used to calculate p-values, following
the procedure described by Wood (2013; 2017: ch. 6.12). As
this study is largely exploratory, I take F-values as a proxy
for the influence of individual variables, and do not otherwise
touch on statistical significance in the traditional sense. This
may not be satisfactory for all kinds of studies, and I return
to the issue of null-hypothesis significance testing in Section 4.

I primarily explore the model fits through two types of plots:
1) Spectrum intercepts, which visualize the functional inter-
cepts of the models, corresponding to an average release
spectrum when all other variables (including variation along
the time domain) are kept at zero. These are not very telling
8 Using factor smooths instead of random slopes would have given a more thorough
estimation of the by-speaker variation in the data (Baayen et al., 2018; Wieling, 2018;
Sóskuthy, 2021), but unfortunately these cannot currently be fitted with sparsely distributed
data.



Fig. 5. Autocorrelation along the frequency domain in models of /t/ with no correction (top left), AR(1) model with q = lag-1 (top right), AR(1) model with q = 0.1 below lag-1 (bottom left),
AR(1) model with q = 0.1 above lag-1 (bottom right).
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in themselves, but are important for interpreting other effects.
The spectrum intercepts are plotted with 95% confidence inter-
vals, computed in the manner proposed by Marra and Wood
(2012). 2) Spectro-temporal fits, which visualize variation in
the spectrum across time. The interpretation of these is similar
to spectrograms; they are ‘flipped’ spectra, with normalized
time along the x-axes, frequency along the y-axes, and grey-
scale shading indicating differences in fitted amplitude along
the time–frequency domains, with darker shading indicating
higher energy. These visualizations reflect the effect size of dif-
ferent variables. The plots of the main effect of time are com-
puted by combining the functional intercept with the fitted
effect of time; the plots of other variables are computed by
combining the functional intercept, the fitted (main) effect of
time, and the fitted time-varying effect of the variable in ques-
tion. This means that if the model finds no noticeable effect of
time, there will be no noticeable change along the horizontal
dimension; if there is no noticeable effect of a particular vari-
able, the plot associated with this variable will be similar or
identical to the plotted main effect of time. Since these plots
are two-dimensional, visualizing 95% confidence intervals
require separate plots for the upper and lower limits. Plotted
95% confidence intervals for the multidimensional variables
are included in Appendix B. These plots demonstrate the
uncertainty associated with each fitted effect, and I will refer
to these plots throughout the paper.

3.2. Results

The results of the three different models will be presented in
separate sections below, starting with the model for /t/.
3.2.1. /t/

The model of /t/ releases has a high effect size of R2 = 0.53.
The functional intercept (see Fig. 6) shows an energy peak
around 3500–5000 Hz, with comparatively little energy else-
where, particularly above 8000 Hz. Since all the binary vari-
ables in the statistical model are contrast coded, the
intercept reflects a grand weighted mean across time with all
contextual variables kept at zero. Since the intercept summa-
rizes a dynamic series of events, it is not in itself very meaning-
ful. In the spectro-temporal fits (Figs. 7–8), any changes on the
horizontal dimension are a result of spectral characteristics
changing as a function of time.

The /t/ model shows a strong main effect of time in the
expected direction, as shown in Fig. 7. Initially, energy is
skewed towards the higher end of the spectrum, with a fairly
strong energy peak in the 3500–5500 Hz range (as in the inter-
cept spectrum, Fig. 6), but also reasonably equal distribution of
energy in the 5500–8000 Hz range. Increased energy above
the main peak gradually tapers off, and in the final three-
fourths of releases, energy is broadly distributed below
5000 Hz, including at the lowest frequencies visualized
(500 Hz); this is comparable to the concrete example of a /t/
release shown in Fig. 3, which shows a similar development
over time. The main effect of time is quite robust, as visible
from 95% confidence intervals (see Appendix B.1).

Spectro-temporal fits for each direction of the individual vari-
ables are shown in Fig. 8. Table 2 shows the model summary.
Fig. 8 reflects a residual issue with this modeling technique. In
contexts where we expect reduced affrication and earlier onset
of aspiration, as in e.g. non-high vowels relative to high vowels,
the figures show a relatively early increase in energy at low



Fig. 6. Intercept spectrum for /t/.

Fig. 7. Fitted time-varying spectrum of /t/ (main effect of time).
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frequencies, but also tend to show a sudden final increase in
energy at higher frequencies. There is no linguistic reason to
expect this, and it is consistent across models; I assume that
this is a technical issue that does not reflect the data or the lin-
guistic reality.

Overall, men show relatively little energy above the peak in
the intercept spectrum, and lower frequencies (indicative of
aspiration)9 begin dominating relatively early. Women show
strong initial energy in frequencies above 5000 Hz, and although
lower frequencies come into play late in the release, frequencies
up to 5000 Hz are excited throughout the release. The effect of
sex is robust (see Appendix B.1) and associated with a large F-
score.

Lower frequencies start dominating towards the end of the
release in unstressed syllables, and much earlier in stressed
syllables; this core effect is quite stable, but there is significant
uncertainty associated with the size of the effect (see Appendix
B.1). Lower frequencies also dominate relatively late before
high vowels, and frequencies above 6000 Hz are also more
excited at the beginning of the release in this context. This is
a strong effect associated with a high F-score. Again, these
two effects are stable, but the size of the effects is relatively
uncertain, and there is significant uncertainty associated with
how vowel height otherwise affects the release. Lower fre-
9 As mentioned in Section 5.2, during aspiration, low-frequency noise is generated at or
near the glottis, and the turbulent airstream excites the resonant frequencies of the oral
cavity. The dominance relationship between these sources may differ, but in both cases,
the primary frequencies being excited are well below those excited during alveolar frication.
quencies dominate relatively early before back vowels and
round vowels. In both of these contexts, there is also a coartic-
ulatory effect at the start of the release: relatively high frequen-
cies are excited before round and non-back vowels. These
variables are less influential, with a particularly low F-score
for the roundness variable, and they are both associated with
significant uncertainty.

It is interesting that none of these variables are particularly
influential around the middle portion of the release; they may
affect whether particularly high frequencies are excited around
the start of the release, and whether/when lower frequencies
begin to dominate near the end of the release, but high energy
in frequencies 3500–5000 Hz in the middle of the release is a
consistent feature across all variables.
3.2.2. /k/

The model of /k/ releases has a high effect size of R2 = 0.56.
Recall that figures here do not extend above 8000 Hz. The
intercept spectrum (see Fig. 9) shows almost evenly dis-
tributed energy below 4000 Hz, with small peaks around
500 Hz and just below 4000 Hz, and overall decreasing energy
above 4000 Hz.

There is no strong main effect of time; there is little variance
across the time domain in Fig. 10, and the variance that we do
see is associated with significant uncertainty (see Appendix
B.2). The associated F-score is also relatively small.
Spectro-temporal fits for each direction of the individual vari-
ables are shown in Fig. 11. Table 3 shows the model summary.

There is a noticeable sex difference. There is little energy at
lower frequencies during the first half of the release for female
speakers, and more activity at frequencies above 4000 Hz.
Lower frequencies become dominant in the last quarter of
the release for female speakers, whereas for male speakers,
they are seemingly dominant throughout the release. The F-
score for this variable is high, and the patterns are quite robust
(see Appendix B.2).

As expected, phonetic context effects have a clear influence
on the /k/ spectral trajectory, particularly those effects that
reflect properties of the following vowel. Stressed syllables
have somewhat more energy at the lower band around 500–
1000 Hz, while unstressed syllables have more energy at the
higher band around 3500–4000 Hz, although lower frequen-
cies gradually become dominant in the latter half of the
release. Note, however, that the associated F-score is modest,
and the variable is associated with significant uncertainty (see
Appendix B.2).

Before high vowels, there is a lot of high frequency energy
between 3000–5000 Hz during the first half of the release, with
more diffuse distribution of energy before the onset of low-
frequency noise towards the end of the release; low frequency
energy overall dominates releases before non-high vowels.
This variable is associated with a large F-score. Non-back
vowels and non-round vowels show roughly the same patterns
as high vowels, although with slightly varying temporal align-
ment. The backness variable in particular is associated with
a very large F-score. High frequency noise lasts somewhat
longer for non-round vowels than non-back vowels. The F-
score associated with the roundness variable is also large.
All effects associated with features of the following vowel are
robust.



Fig. 8. Spectro-temporal fits of /t/ for each direction of the individual variables.
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Table 2
Summary of /t/ model.

edf ref.df F

Intercept 29.82 31 170.57
Time 49.02 57.82 18.51
Sex 31.45 39.16 40.16
Stress 41.2 52.08 12.37
Height 58.81 70.37 24.21
Backness 29.52 36.22 14.68
Roundness 24.26 29.56 8.95

Fig. 9. Intercept spectrum for /k/.

Fig. 10. Fitted time-varying spectrum of /k/ (main effect of time).

R. Puggaard-Rode / Journal of Phonetics 95 (2022) 101191 13
3.2.3. /p/

The model of /p/ releases has a very high effect size of
R2 = 0.7. The intercept spectrum (see Fig. 12) shows most
energy in the lowest frequencies, with energy gradually reduc-
ing at higher frequencies. Assuming that the more diffuse dis-
tribution of noise towards the end of the release is not
linguistically substantial, there is only a very marginal main
effect of time (see Fig. 13), although what we do see is quite
robust (see Appendix B.3).

Some of the by-variable time-varying characteristics of /p/
are clearer, as shown in Fig. 14. Table 4 shows the model
summary.

There are modest signs of higher frequencies being excited
more in the first half of releases produced by women, but not
by men. The sex effect is, however, quite weak; the overall pat-
tern is relatively robust, but the magnitude of the pattern is
associated with significant uncertainty (see Appendix B.3).
During the first portion of the release, unstressed tokens have
a broader distribution of energy throughout the spectrum, and
more energy at higher frequencies (above approx. 5000 Hz).
The stress variable is quite strong and robust. A similar pattern
is found before high vowels, with lower frequencies dominating
relatively late in the release. The height variable has a rela-
tively high F-score, and is also quite robust. To a lesser extent,
the same pattern is found before non-back vowels. There is no
obvious influence of round vowels, and this variable is associ-
ated with significant uncertainty (see Appendix B.3).
3.3. Linking the results to underlying articulatory mechanisms

In the preceding section, I described the patterns of energy
distribution that are visible in the spectro-temporal fits in prose.
In this section, I aim to provide a link between those represen-
tations and the articulatory mechanisms that presumably
underlie them. This discussion is necessarily somewhat spec-
ulative, but relies on established knowledge about the articula-
tion–acoustics link, and about the articulation of Danish
specifically.

While all stops show diffuse patterns of energy distribution
towards the end of the release, only /t/ clearly shows a strong
main effect of time, with a gradual downward trend in energy
distribution over time. During the first half of the release, high
frequencies are excited, often above and beyond what is nec-
essarily expected for an alveolar constriction. During the sec-
ond half of the release, lower frequency energy consistent
with a glottal noise source gradually becomes dominant. As
mentioned in Section 2.2 above, there is reason to assume
that oral air pressure is not particularly high at the time of
release in Danish aspirated stops, which provides both an
aerodynamic reason and a functional–phonological motivation
for why the constriction is maintained somewhat longer than in
comparable ‘aspiration languages’: there is no high air pres-
sure to ensure that the constriction is quickly released, and
to ensure a salient burst. Nevertheless, contrary to the general
conception in literature, alveolar constriction usually does not
dominate the entire release.

The relative timing of the shift in dominance from an alveolar
noise source to a glottal one is partially determined by contex-
tual factors like stress and vowel height. Speaker sex also
plays a role. Stop releases in stressed syllables show a larger
proportion of aspiration. In other words, phonetic reduction
mainly targets the aspiration in /t/ releases, not the frication.
Features of the following vowel affect the relative timing of
the dominance shift much more than they affect the distribution
of energy during the first half of the release, although high and
round vowels do show coarticulatory effects lasting throughout
the release. The linguistic upshot is that lengthy alveolar frica-
tion is an invariant feature of /t/ releases in Modern Standard
Danish, but the proportion of alveolar frication varies; some
degree of aspiration is almost always observed.

Stevens’ (1998) model of velar stop releases suggested
that the velar frication excites low resonance frequencies
mostly below 2000 Hz. The results here, however, show two
primary patterns of energy distribution: much higher resonance
frequencies around 4000 Hz, or resonance frequencies cen-
tered around the lower end of the spectrum. I presume that



Fig. 11. Spectro-temporal fits of /k/ for each direction of the individual variables.
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the former represents a velar noise source – likely fronted,
since a fronted velar constriction leads to a shorter distance
between the constriction and the hard palate, which the turbu-
lent air stream partially impinges on – and that the latter corre-
sponds primarily to a glottal noise source. However, it may be
difficult to tease apart a noise source in the back portion of the
velum and a glottal noise source. The dominant noise source is
mostly contextually determined. The main effect of time is mar-
ginal, although low-frequency aspiration is overall dominant
during the final portion of the release. Before high vowels



Table 3
Summary of /k/ model.

edf ref.df F

Intercept 17.31 18 191.77
Time 48 57.97 13.8
Sex 42.41 51.38 59.74
Stress 18.88 24.31 5.75
Height 55.03 62.98 58.87
Backness 45.66 54.54 384.85
Roundness 21.23 26.19 77.41

Fig. 12. Intercept spectrum for /p/.

Fig. 13. Fitted time-varying spectrum of /p/ (main effect of time).
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and non-back vowels in particular, noise at higher frequencies
is dominant during the first part of the release. If the following
vowel is high, the tongue dorsum logically remains fairly close
to the velum throughout the release, causing a dominant dor-
sal noise source, the characteristics of which vary on the basis
of other vowel features. The point of occlusion varies by back-
ness of the following vowel, such that the outgoing air impinges
more directly on the hard palate before front vowels, causing
more salient noise at higher frequencies. The energy from
the palatal noise source is dampened by lip rounding, which
increases the size of the oral cavity. The linguistic upshot is
that coarticulation has a major influence on spectral character-
istics throughout /k/ releases; this is in line with the general
observation that the point of occlusion in velar stops is prone
to coarticulatory variation (e.g. Ouni, 2014).

/p/ releases also vary in whether there is a primary glottal
noise source (a strong energy peak at lower frequencies), or
whether there is a primary labial noise source (no strong
energy peak at lower frequencies). There is no strong main
effect of time. In unstressed syllables, before high vowels,
and to some extent before non-back vowels, energy is more
broadly distributed throughout the spectrum, indicating a dom-
inant labial noise source. /p/ releases vary relatively little com-
pared to /t k/.

These results confirm the observation that /t/-affrication in
Modern Standard Danish is invariant. Generally, however, /t/
affrication does not last throughout the release; aspiration is
also an important component of /t/ releases, especially in
stressed position. There is also a frication component in /p k/
releases, but under many conditions, these releases are dom-
inated by a glottal noise source. During a /t/ release, the outgo-
ing air impinges on a hard surface – the teeth – immediately
downstream of the preceding occlusion. This is not the case
for either /p/ or /k/; the lips constitute a soft surface, and the
hard palate is further removed from the velar occlusion. As
such, it is well-understood why an alveolar noise source dom-
inates a glottal one more readily than corresponding bilabial or
velar noise sources.
4. Discussion: Function-on-scalar regression and the spectrum

This paper has introduced the use of FOSR in the analysis
of speech spectra and their variance as a function of time. This
method shows a lot of promise. It allows us to get around the
problem of choosing one or a few discrete measures to repre-
sent the spectrum, all of which come with their own set of
methodological problems. In a sense, analyzing these models
is similar to the classical technique of ‘eyeballing’ spectro-
grams, but in a way that allows the user to more efficiently
and reliably find systematic patterns of variation in the data,
to tease apart various influences on the results and compute
the uncertainty associated with each, and to filter out by-
speaker variation. Some lingering issues remain with the
method; some specific to this study, and some inherent to
the field. I will briefly address a few of these.

As with any kind of quantitative phonetic study, there are
significant researcher degrees of freedom involved in FOSR
modeling of spectra (see Roettger, 2019). Token selection,
spectral estimation, smoothing procedure, low-level software
implementation, as well as several other factors all have a
potentially non-trivial influence on the results. There is no easy
remedy to this, but transparent reporting and motivation of all
these choices goes a long way. I have aimed to do that here,
and the actual code used to implement the analysis is available
in annotated form (Puggaard-Rode, 2022).

FOSR modeling of spectra will generally involve highly mul-
tidimensional data, especially if the temporal dimension is also
taken into account. This makes the use of traditional methods
for significance testing problematic. I do not consider this to be
an issue in the current study. For one, the study is largely
exploratory, and the research questions are not necessarily
suitable for null hypothesis significance testing. With that said,
there are methods for testing the stability of the results. This
includes the 95% confidence intervals proposed by Marra
and Wood (2012), which are provided in Appendix B and which
I have referred to throughout. These are computationally effi-
cient, and visualize the uncertainty associated with fitted



Fig. 14. Spectro-temporal fits of /p/ for each direction of the individual variables.
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effects along the functional domain(s). This method is imple-
mented for FOSR visualization in the FoSIntro package in
R (Bauer, 2021). Additionally, there are functional implementa-
tions of discriminant analysis and regression trees which may
be used to explore the generalizability of results, and fully
Bayesian implementation of the analysis would make it possi-



Table 4
Summary of /p/ model.

edf ref.df F

Intercept 15.8 16 116.22
Time 68.86 72.91 35.1
Sex 27.21 34.96 8.37
Stress 17.85 22.28 43.62
Height 14.25 17.65 35.83
Backness 35.29 43.56 11.3
Roundness 13.08 16.9 2.57
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ble to readily quantify the uncertainty related to the results (see
e.g. Vasishth et al., 2018). This will hopefully be explored in
future research, but is beyond the scope of the current study.
The prospects of hypothesis testing in FOSR models is further
explored in a recent dissertation by Biswas (2022).

The implementation of FOSR in this study shares a problem
with analyses based on e.g. spectral moments, mid-frequency
peaks, and DCT: the Hz-based frequency scale and the
W/m2-based amplitude scale are ‘physicalist’ in nature, in that
they represent the behavior of vibrations in the air, and not how
these vibrations are perceived by the human ear (Plummer &
Reidy, 2018). I use the Hz scale here because it results in a
model output which is more immediately interpretable for read-
ers with experience with analyzing spectrograms; I use the
W/m2 scale because it results in more clearly interpretable pat-
terns in the fitted models. It is, however, worth exploring in
future studies how the results would be affected by combining
perceptually motivated scales, such as the decibel scale for
amplitude, and the equivalent rectangular bandwidth (ERB)
scale, Bark scale, or mel scale for frequency.10 Note that the
latter two scales have been profitably used in combination with
DCT in previous studies (Bukmaier & Harrington, 2016;
Jannedy & Weirich, 2017).

The most serious lingering issue is the diffuse patterns
sometimes seen in the final time steps of the spectro-
temporal visualizations. These cannot be considered linguisti-
cally meaningful; there is no linguistic reason why high fre-
quencies above 4000 Hz would suddenly be excited
immediately before the onset of voicing in a stop–vowel
sequence, regardless of phonetic context. I can see three pos-
sible explanations for this: 1) the spectral characteristics of
aspiration are highly variable, making it impossible for the
model to make precise predictions, 2) the pseudo-
centralization (contrast coding) of categorical variables
sometimes causes the model to infer patterns that are not
meaningful for one pole of variables, or 3) it is caused by phase
variation. Regarding 2), consider /k/ before high and non-high
vowels: the model finds a strong increase in low frequency
energy in the final time steps before high vowels, which is lin-
guistically meaningful, as the glottal noise source becomes
dominant immediately before the onset of voicing. The model
finds a corresponding increase in high frequencies and
decrease in low frequencies in the final time steps before
non-high vowels, which is not linguistically meaningful, but is
10 Alternatively, the positions of knots used for smoothing could be placed according to a
(semi)-logarithmic scale, e.g. giving the model higher granularity in frequency regions
where humans have greater perceptual acuity. This could potentially achieve a similar
effect while keeping the ‘physicalist’ scales. In this study, the knots are equidistantly
spaced, but mgcv and consequently pffr allow the user to specify knot locations freely.
the direct opposite of the meaningful finding before high vow-
els. A possible solution would be to fit the model without
contrast-coded categorical variables, but this would make it
impossible to interpret models’ intercepts and main effects of
time, which I believe would seriously harm the interpretability
of the findings. Regarding 3), phase variation is a practical
problem in functional data analysis, where lateral displacement
in input curves can cause results to be blurred and distorted.
Managing phase variation in the analysis of functional data is
an area of active research (Marron et al., 2015; Bauer et al.,
2021).

5. Conclusion

This paper has introduced function-on-scalar regression as
a method for analyzing speech spectra and how they vary over
time. This method forgoes the need to boil down the complex,
multi-dimensional information in the spectrum to a few discrete
values, and it forgoes the need to rely on ‘magic moments’ in
time. By plotting the fit of a FOSR model, we can explore the
systematic influences of different variables on the spectrum
with visualizations that should be intuitively familiar to anyone
already used to working with spectrograms. I showed how this
tool can be fruitfully applied in the analysis of Danish stop
releases, how they vary over time, and how they are affected
by their phonetic environments.

The analysis finds that /t/, as expected from the literature, is
invariably affricated – but also that the spectrum is very
dynamic throughout /t/ releases, with affrication gradually turn-
ing to aspiration. Affrication dominates the majority of the spec-
trum, and much of the aspiration is lost in unstressed syllables.
Coarticulatory context effects may affect the entirety of /t/
releases, and not just the final portion. Coarticulatory context
effects greatly influence the spectra of /k/ releases. As the pre-
cise point of occlusion in velar stops is known to be largely
determined by the following vowel, these also have a great
influence on release noise in /k/, particularly in the first portion
of the release. The acoustic characteristics of /p/ releases
show less prominent coarticulatory context effects, which
mainly affect the first half of the release.

Availability of data and code

All code and data except actual sound files are available in
the DataverseNL repository (Puggaard-Rode 2022). Sound
files are available online, but are password protected (see
Grønnum 2016). Praat scripts and annotated R code are also
shared.
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Appendix A. Fitting FOSR models with pffr and bam

In this appendix, I will show how a relatively simple FOSR
model is fitted with refund::pffr, and then show how a cor-
responding GAMM could be fitted with mgcv::bam.

Assume that we want to fit a Gaussian FOSR model with
spectra is the response variable, time as a dynamic variable,
stress as a binary variable that varies dynamically over time,
and by-speaker random slopes for both the main effect of time
and the time-varying effect of stress. We smooth the data with
P-splines over the frequency domain, and thin plate regression
splines over the time domain, using 6 basis functions for the
frequency domain, 16 basis functions for the time domain,
and 20 basis functions for the functional intercept. We also
include an AR(1) model with the q-parameter set at 0.8. This
model can be formulated as.

amplitudeijðFÞ ¼ aðFÞ þ cðtij ; FÞ þ stressðtij ; FÞ þ speakerj cðtij ; FÞ
þ speakerj stressðtij ; FÞ þ 0:8 ei�1 þ EijðFÞ

This model is specified as follows:

refund::pffr(Y � s(timestep, k = 16) +
1

dif
1 The m=c(2

ference penal
s(speaker, timestep, bs="re") +
s(timestep, k = 16, by = stress) +
s(speaker, timestep, by = stress, bs="re"),
data = df, ydata = y_df,
bs.yindex = list(bs="ps", k = 6, m = c(2,1)),
bs.int = list(bs="ps", k = 20, m = c(2,1)),
rho = 0.8)
pffr includes both a scalar intercept and a functional intercept
by default, so it only has to be explicitly specified if these should
for some reason not be included. The response variable is
always denoted Y. Non-linear variables are constructed with s

(), which should be familiar from mgcv; also as in mgcv, they
are smoothed with thin plate regression splines unless another
spline basis is specified with the bs-parameter. The number of
basis functions for non-linear variables are given with the
k-parameter. Random effects are also constructed with s(),
with the smoothing basis parameter set as bs="re". The data
have to be stored in separate data frames: one with information
about the covariates and just one observation per function,
called by data, and one with all observations along the func-
tional domain, called by ydata. bs.yindex is used to tweak
the smoothing parameters for the functional domain; the default
is to use cubic P-splines (bs="ps") with 5 basis functions,
and first order difference penalties; here, the number of basis
functions is increased to 6.11 bs.int is used to tweak the
smoothing parameters for the global functional intercept; here,
,1) parameter specifies that the splines are cubic and use first order
ties.
the default is 8 basis functions, which I increase to 20. rho sets
the q-parameter to be used for an AR(1) model. pffr fits
Gaussian models by default, but other link functions can be
set with the family-parameter.

As mentioned in Section 1.3, pffr uses the mgcv compu-
tation engine, meaning that the same model can technically be
fitted as a GAMM. The formula passed on by pffr for the
above model is the following:

mgcv::bam(Y � s(x = yindex.vec, bs = "ps", k = 20,

m = c(2, 1)) + ti(timestep, k = c(16, 6), bs = c("tp",

"ps"), d = c(1, 1), yindex.vec, mc = c(TRUE, FALSE),

m = c(2, 1)) + ti(speaker, timestep, bs = c("re", "ps"),

d = c(2, 1), yindex.vec, mc = c(TRUE, FALSE), m = c(2, 1),

k = c(25, 6)) + ti(timestep, k = c(16, 6), by = stress,

d = c(1, 1), yindex.vec, mc = c(TRUE, FALSE), bs = c("tp",

"ps"), m = c(2, 1)) + ti(speaker, timestep, by = stress,

bs = c("re", "ps"), d = c(2, 1), yindex.vec,

mc = c(TRUE, FALSE), m = c(2, 1), k = c(25, 6)),

data = pffrdata, method = "fREML", chunk.size = 10000,

rho = 0.8)
The obvious upshot is that the relatively simple pffr-formula
expands to a very complex bam-formula. pffr constructs a
new data frame pffrdata, including a variable yindex.vec

which gives observations along the functional domain. The
functional intercept is constructed with an s()-term using the
parameter settings we gave in bs.int above, and the other
non-linear variables are modeled with pure interactions, con-
structed with ti()-terms, each of which potentially employ
multiple smoothing bases, order penalties, marginal centering
constraints (the mc-parameter), and marginal basis dimensions
(the d-parameter).

Appendix B. 95% confidence intervals for two-dimensional
dynamic variables

This appendix provides plots with 95% confidence intervals
for two-dimensional dynamic variables, following the method
proposed by Marra and Wood (2012). Unlike the spectro-
temporal fits shown in the article, these do not particularly look
like spectrograms, and include both poles of binary variables in
one plot. For the plot showing the main effect of time, red shad-
ing indicates a higher fitted value relative to the intercept, and
blue shading indicates a lower fitted value relative to the inter-
cept. For binary variables, red shading indicates a higher fitted
value for the positive pole, and blue shading indicates a higher
fitted value for the negative pole.



Appendix B.1. 95% confidence intervals of two-dimensional variables in the model of /t/ releases. (19,28).
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Appendix B.2. 95% confidence intervals of two-dimensional variables in the model of /k/ releases.
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Appendix B.3. 95% confidence intervals of two-dimensional variables in the model of /p/ releases.
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