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ABSTRACT
This paper takes 3D-mapping-aided (3DMA) GNSS as an example and investigates the outlier detection for pattern matching
based positioning. Three different test statistics, two in the measurement domain and one in the position domain, are presented.
Two 3D city maps with different levels of detail were used, one of which contained two obvious errors, to demonstrate the
performance of 3DMAGNSS positioning in the presence of errors in the mapping data. The experiments tested were conducted
alongside busy roads in the London Borough of Camden, where a total of 8 sets of 2-minute static pedestrian navigation data
were collected with a u-blox EVK M8T GNSS receiver. The results confirm that both 3D mapping errors and temporary
environmental changes (such as passing vehicles) can have a significant negative impact on the performance of 3DMA GNSS
positioning. After applying outlier detection, single-epoch 3DMA GNSS algorithm reduces the horizontal RMS position error
by approximately 15% compared to that without outlier detection. The filtering algorithm attenuates the effects of temporary
environmental changes, providing an improvement of about 15% over single-epoch positioning, while the outlier algorithm
further reduces the RMS error to a comparable level to that of using high-accuracy maps, about 4.7m.

I. INTRODUCTION
Pattern matching is one of the techniques commonly used in the field of navigation and positioning. Applications based on
pattern matching, such as Wi-Fi positioning, image matching and terrain-referenced navigation [1], are well known as typical
examples. These techniques start by delineating a range of candidate positions and then compare predictions made by mapping
or other databases with actual observations to score these candidates and give a positioning solution.

Pattern matching techniques are also being applied to GNSS positioning in challenging environments. In urban canyons, the
performance of conventional GNSS navigation and positioning is unsatisfactory for a range of applications such as pedestrian
and vehicle navigation, with horizontal position errors in some extreme cases exceeding tens of metres [2, 3]. Non-line-
of-sight (NLOS) reception and multi-path effects are often considered to be two important culprits in the corruption of
GNSS performance [1–5]. Some studies have demonstrated different 3D-mapping-aided (3DMA) GNSS techniques that can
significantly improve GNSS positioning accuracy in urban environments [4, 6–9]. Many of these techniques score candidate
positions by comparing observations with predictions of satellite visibility and/or signal propagation pathmade from 3D building
models, which are typical applications of pattern matching-based positioning.

The quality of the prediction strongly influences the performance of pattern matching. However, the reliability and resilience of
the mapping data itself is often overlooked. The mapping data may be incorrect for various reasons. One of the intuitive points
is that the environment may be changing all the time, but the mapping data cannot be updated in a timely manner. Temporary
changes in the environment, such as road construction, temporarily parked cars, etc., are not usually included in the mapping
database. This paper therefore investigates outlier detection for positioning techniques based on pattern matching, focusing on
3DMA GNSS.

An outlier refers to a measurement that shows a large error due to a fault somewhere. In 3DMA GNSS, predictions inevitably



contain some errors because it is impossible for mapping to provide a complete and accurate representation of the surrounding
environment. Incorrect predictions may arise from errors in the 3D mapping data itself. The level of detail (LoD) and accuracy
of geographical data depends to a large extent on the nature of the data, spatial scale, acquisition technique, and available
funding [10]. The lagging nature of the mapping data may result in new buildings and temporary structures being omitted and
recently demolished buildings being included. In addition, some random environmental variations that are not included in the
mapping data but have an impact on the GNSS signal, such as passing vehicles and street furniture, can also lead to incorrect
predictions. Current 3DMA GNSS algorithms usually just treat them as noise sources. One or two erroneous predictions in
an epoch usually have a limited impact on the position solution. Excessive prediction errors, however, normally degrade the
positioning accuracy. Outlier detection is therefore needed to identify and exclude potentially affected measurements.

There are many applications that could benefit from this work. Those applications where 3DMA GNSS positioning can be
applied could gain performance improvements, such as navigation for pedestrians and vehicles, emergency call location for
people and vehicles, navigation for the visually impaired, location-based services, mobile gaming, etc. Other applications based
on pattern matching, such as indoor positioning based on signal characteristics, can also draw some ideas or inspiration from
this work.

This paper has been divided into 5 sections. In Section II, various 3D mapping-based GNSS positioning methods are briefly
reviewed, followed by a discussion of the necessity of outlier detection for 3DMA GNSS and some common approaches to
detecting outliers. Then, in Section III, two outlier detection methods designed based on the characteristics of 3DMA GNSS
are proposed. Section IV presents the test results of a GNSS dataset collected from multiple test sites in London. The position
solutions using different outlier detection methods are compared. In addition, the results without any outlier detection are
included as a reference. Finally, the conclusions are summarised in Section V.

II. BACKGROUND
In an open environment, stand-alone GNSS can provide location solutions with an accuracy of within a few metres. In urban
canyons, however, the complex environment makes it almost impossible for GNSS to deliver its full capability. Tall buildings and
leafy trees on each side of the road, together with large vehicles travelling on the road, all affect the satellite signal propagation to
varying degrees. In particular, the negative effects of blocking and reflections caused by buildings are significant [3,11,12]. The
phenomenon of receiving a mixture of line-of-sight (LOS) and reflected signals is known as multipath interference, while the
phenomenon of receiving only reflected signals is known as non-line-of-sight (NLOS) reception [1]. The frequent occurrence
of these two phenomena are two key reasons for the frustration of conventional GNSS positioning in cities [1–5].

II.1. 3D-Mapping-Aided GNSS
A building can be represented at different levels of detail (LoD), as shown in Figure 1. It can be depicted as a 3D prismatic
solid with a unique height (LoD1), but can also be abstracted as a footprint or roof print (LoD0), or as a more detailed 3D mesh
with a standard type, generalized roof (LoD2), or even as an delicate architectural model without restrictions (LoD3) [13, 14].
The additional information that 3D building data brings to positioning and navigation includes, but is not limited to, building
location, building orientation and roof height, enriches and enables new methods for dealing with issues such as multipath and
NLOS reception that often occur in urban environments.

LoD0 LoD1 LoD2 LoD3

Figure 1: Representation of the same building at different LoDs (CityGML 3.0)

Over the past decade, there has been a lot of interest in 3DMA GNSS. This improves performance in dense urban areas by
using maps of the buildings to predict which signals are directly visible at any given location. Many different approaches have
been demonstrated. According to the different principles of solution determination, they can be divided into shadow matching
and 3DMA ranging. The former uses the signal strength measurements, while the latter uses the pseudo-ranges similar to the
conventional GNSS method.

Shadowmatching adopts the idea of pattern matching and determines the solution by comparing the received signal strength with
the satellite visibility prediction at a series of candidate positions. The concept was independently proposed by four different
research groups [15–18], and the authors of [19, 20] then initially demonstrated the potential of shadow matching technique in



cross-street positioning with an accuracy of several metres. All of the different research groups that have worked on shadow
matching have converged on the approach of hypothesis testing. The main difference lies in the methods of scoring candidate
positions and obtaining the overall position solution from the candidate position scores. In the early research [21], the measured
satellite visibility is a binary value obtained by a hard threshold on the SNR value. The degree of matching between the visibility
prediction and measurement used the exclusive not or (XNOR) logical operation that returns true if its inputs are the same,
otherwise false. The position solution is determined by a weighted average of the coordinates of several candidate points with
high scores. Some subsequent studies [20,22–24] have shown better performance using probability-based satellite visibility and
Bayesian theory-based matching determination. Some different research groups have also demonstrated continuous positioning
based on particle filtering [23, 25].

There are many different approaches to 3DMA ranging. Among them, one of the most intuitive approaches is to exclude
the NLOS signals detected by using 3D models from the calculation [26–28]. These methods require a fairly accurate initial
position to enable subsequent NLOS detection algorithms to confidently predict satellite visibility without much time. In urban
environments, most positioning applications cannot provide a sufficiently accurate solution within a few seconds after launching.
Therefore, these methods are mostly used in continuous positioning.

Many research groups tend to use NLOS measurements instead of simply deleting them. Hypothesis testing is one of the
commonly used methods. At a series of candidate positions generated around a rough position solution, the path delay of the
NLOS signal can be estimated by the 3D building model. These candidate positions are then scored based on the path prediction
and the actual measurement [7, 29–31]. However, the primary limitation of these approaches is that the propagation path
calculation requires a large amount of computing resources. The pseudo-range error distribution of the LOS signal conforms
to a symmetric distribution, while the counterpart of the NLOS signal is asymmetric. A version of likelihood-based ranging is
proposed [6] to use a different combination of error distributions at each candidate position based on the visibility predictions
from 3D mapping data, which enables those NLOS pseudo-ranges to participate in the position calculation without explicitly
computing the additional distance travelled by them.

II.2. UCL’s 3DMA GNSS Core Algorithms
UCL’s 3DMA GNSS algorithms consist mainly of shadow matching (SM), likelihood-based ranging (LBR) and an integration
algorithm, as shown in Figure 2. Both SM and LBR are performed in the way of hypothesis testing on the candidate positions.
The candidate positions are a set of three-dimensional coordinates. For land positioning and navigation applications, in order
to reduce the complexity of the problem, the height dimension is set to the sum of the terrain height at that horizontal position
and the height of the user device above the ground.

Candidate 
Positions

Visibility 
Prediction

Shadow 
Matching

Solution 
Integration

Likelihood-based 
Ranging

Position Solution/
Scoring Surface

3D Mapping

Figure 2: Components of the 3DMA GNSS Core Algorithms



3D mapping data is used to predict the visibility of each satellite signal (i.e., LOS or NLOS) at each candidate position. This
step is relatively computationally intensive and time consuming. Therefore, an intermediate product called building boundaries
has been introduced to achieve the goal of being able to operate in real time over a large number of candidate positions. The
building boundary (BB) refers to the maximum elevation of all buildings within a certain distance at a given azimuth. In other
words, it is the minimum elevation of a satellite that allows users to receive its signals directly in that direction. The building
boundary is pre-computed and stored for each candidate position. When required, the signal can be classified as LOS or NLOS
by simply comparing the satellite elevation with the building boundary at the corresponding azimuth.

The shadow matching (SM) algorithm [20] compares the satellite visibility predictions with the counterpart determined by the
received signal strength to calculate the degree of matching at different candidate positions, thereby giving the optimal solution.
The algorithm comprises the following steps [6, 20]:

• The predicted visibility of each satellite signal at each candidate position is obtained.

• For each received signal, the probability that it is direct LOS is determined from the measurement of C/N0 using an
appropriate statistical model.

• A matching score is obtained by evaluating each satellite at each candidate position based on the match between its
predicted visibility to measured C/N0.

• The final score for each candidate position is a combination of the matching scores for each satellite at that position.

The likelihood-based ranging (LBR) algorithm [6] applies different statistical distributions to pseudo-range errors according
to satellite visibility predictions, and then evaluates the correspondence between the measured and predicted pseudo-ranges to
give the positioning solution. The algorithm comprises the following steps [6]:

• The predicted visibility of each satellite signal at each candidate position is obtained.

• At each candidate position, one of the satellites predicted to be direct LOS is selected as the reference.

• At each candidate position, the measurement innovation for each satellite is obtained by subtracting the direct LOS
range and some known errors, such as satellite clock errors, atmospheric delays and inter-constellation offsets, from the
measured pseudo-range, and then differencing with respect to the reference satellite to remove receiver clock offset.

• At each candidate position, the cumulative probability of the measurement innovation on a skew-normal distribution is
determined for each satellite predicted to be NLOS. These NLOS innovations are then replaced by corresponding direct
LOS innovations with the same cumulative probability.

• The final score for each candidate position is calculated using the modified measurement innovations and their error
covariance matrix.

As shown in Figure 3, the intention of SM is to improve the accuracy in the direction perpendicular to the street, whereas LBR
is considered to be more accurate in the direction along the street. Therefore, a hypothesis-domain integration algorithm is
executed to give a comprehensive single score for each candidate position based on the scoring surfaces from SM and LBR.
Finally, the position solution is obtained by using the combined scores to weight the candidate positions.

Filtered solutions are used in almost all pedestrian and vehicle navigation applications. Compared to single epoch positioning,
the filtering algorithm delineates a better search area and provides a priori for the current solution based on the position and
velocity solution from the previous epoch. Therefore, the filtered solution is more accurate and reliable compared to the
single-epoch one.

Two multi-epoch 3DMA GNSS algorithms have been described in detail in [32]. Since 3DMA GNSS particle filtering and grid
filtering have similar performance, only the results of particle filtering are demonstrated in this paper. Figure 4 shows the six
stages of the 3DMA GNSS particle filter with outlier detection applied.

In contrast to the particle filtering algorithm described in [32], the algorithm used in this paper introduces one of the outlier
detection techniques mentioned in sections III.2 and III.3 during the initialisation and 3DMA GNSS scoring stages, while all
other parts remain the same.

The initialisation of the 3DMA GNSS particle filter is made up of two components: position and velocity. The position
initialisation uses a single-epoch 3DMAGNSS positioning algorithmwith outlier detection, followed by sampling the likelihood
surface to generate a set of particles with equal weights. The velocity is initialised by least-squares estimation from pseudo-range
rate measurements weighted by the corresponding signal strength and average LOS probability. During the system propagation
step, the state estimate of each particle changes according to a predetermined system transition model, while its probability
remains constant. Particles can be treated as candidate positions in the 3DMA GNSS algorithm. Subsequently, the 3DMA
scores for each particle can be determined by shadow matching, likelihood-based ranging and hypothesis-domain integration,
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Figure 4: Components of particle filter-based 3DMA GNSS algorithm with outlier detection

supplemented by 3DMA outlier detection. In the position measurement update stage, the weight for each particle is updated
with the propagated likelihood and the newly calculated 3DMA scores, and the filtered position solution is obtained by the
weighted average position of the particles. The velocity and clock drift are maintained by an extended Kalman filter, where
the velocity state estimate is held constant with increasing error covariance in the prediction step and the measurement error
is weighted according to the measured signal strength and average LOS probability in the update step. Finally, particles are
re-sampled as required according to the likelihood distribution to remove the low weights and duplicate the high weights to
attenuate the degeneration problem.

A more detailed description of the above algorithms can be found in [6,32]. Single-epoch 3DMA GNSS has been demonstrated
in Canary Wharf [6], and a multi-epoch version incorporating either particle or grid filtering has been demonstrated in the City
of London and Canary Wharf [32].



II.3. The Need for Outlier Detection
An outlier is an observation that appears to deviate significantly from the other members of the sample in which it is located
[33, 34]. In navigation, outliers may cause corruption of the position solution. A robust navigation system therefore usually
contains modules to detect and eliminate (or correct if possible) outlying measurements [1].

There are many reasons for outliers. An outlier sometimes indicates erroneous data. For example, GNSS observations may
not have been collected correctly due to human and instrument error. An outlier may also arise from factors that have been
neglected. In an urban environment, the blocking and reflecting effects on satellite signals are important causes of outliers. In
3DMA GNSS, 3D city models are therefore used to predict satellite visibility and, in some studies, to estimate reflection paths.
With this aiding information, many outlier measurements can be justifiably removed or even corrected. However, this auxiliary
information is not perfect. Errors will inevitably occur in the generation of these aiding data, potentially resulting in new
outliers. Incorrect 3D aids may limit improvements in positioning performance and in some cases even have a negative impact.
Consequently, outlier detection for 3D aiding information is necessary to help improve the reliability of 3DMA techniques,
which eventually benefits positioning accuracy.

Some outliers arise because of the 3D city model used. 3DMA techniques rely heavily on the LoD and accuracy of the models
used. Inaccurate mapping data may directly produce incorrect aiding information. First, the LoD of the model deserves to
be noted. Figure 5 illustrates the blocking effect of a building model with different LoDs on the signal from a given satellite.
Receivers in the shadow will be assumed not to receive the LOS signal from that satellite. The shadow outlined in green is from
the LoD2 model, while the one outlined in red is from the LoD1 model. It can be clearly seen that the models with different
LoDs leave different shadows, with the non-overlapping parts being filled in with red and green. As a result, 3DMA GNSS can
produce incorrect aiding information over the red shaded areas.

Figure 5: Signal blocking areas for the LoD1 and LoD2 models (outlined in red and green, respectively) of a building
*The figure is adapted from [35]

Second, there may be some measurement errors in the building model, including but not limited to building coordinates,
orientation and height attributes. Building height data, for instance, can be easily converted into LoD1 building models.
Ordnance Survey (OS) and OpenStreetMap (OSM) are two popular providers of building height information in the UK. OS
directly provides building heights with an error of 2.4 m at 99% confidence level [36], while OSM provides height information
for only some of the buildings, with the remaining building heights being deduced from the number of above-ground levels.

Finally, the 3D models may suffer from being out of date. Any 3D model has a certain update interval, for example, the building
height attributes provided by Ordnance Survey are updated every six months [37]. In the interval between updates, any newly
constructed buildings will be omitted from the database, and newly demolished ones will be retained. The height of buildings
under construction may change significantly on a weekly or even daily basis, further challenging the timeliness of updates to the
3D model.

Outliers may also be caused by some unmapped obstacles. These obstacles are not usually included in the 3D model, but can
indeed lead to inaccurate 3D aiding information. For instance, the satellite signal may be temporarily blocked by large vehicles



passing in an adjacent lane, or by large, leafy trees on the roadside. These unmapped objects may cause inaccurate predictions
of satellite visibility and signal propagation path based on the 3D model alone, affecting the accuracy of positioning.

II.4. Outlier Detection Methods
In conventional GNSS positioning, consistency checking is one of the most common outlier detection techniques and has been
integrated by many modern receivers into their fault detection and exclusion (FDE) modules. This technique is based on the
assumption that measurements from direct LOS signals exhibit better consistency in the positioning solution than those from
NLOS and severely multipath contaminated signals [1]. In single-epoch GNSS positioning, consistency is usually quantified in
the measurement domain by the normalized residual:

δz′j =

∣∣δzj∣∣
σj

(1)

where δzj is the residual of the measurement from satellite j, and σj is the associated standard deviation. The residual refers
to the difference between the measurement, ρ̃, and the prediction of its measurement obtained from the least squares solution,
ρ̂, given by

δzj = ρ̃j − ρ̂j (2)

The corresponding standard deviation is usually an empirically determined constant or a value based on signal strength and/or
satellite elevation. In general, a smaller ratio from Equation (1) indicates better consistency and a lower fault probability for
the corresponding measurement. Thus, the ratios from all observations are compared with a predefined threshold and those
exceeding the threshold are labelled and rejected as outliers.

However, the residuals are sensitive to outliers. An outlying measurement may lead to large residuals for some other non-faulty
measurements, resulting in good measurements being incorrectly excluded. A commonly used method to mitigate this issue
is sequential testing. It is an iterative process where in each iteration the measurement with the largest residual is rejected,
followed by recalculating new residuals with the remaining measurements until all residuals fall within the threshold or there
are not enough measurements for outlier detection.

Sequential testing based on individual residuals can also sometimes incorrectly reject good observations, since the largest
residual does not always correspond to a bad measurement, especially in the presence of multiple outliers. An enhanced version
of the sequential testing is to perform a chi-square test on the measurement residuals as a whole. The vector consisting of
residuals is assumed to be an m-dimensional Gaussian random vector with a mean of 0 and a covariance of Cδz, and hence
the square of its Mahalanobis distance to the origin is chi-squared distributed with m degrees of freedom. The test statistic is
therefore given by

s2 = δzTC−1
δz δz (3)

where δz is the residual vector, and Cδz is the covariance matrix. When the test statistic exceeds a threshold, each of the parallel
solutions that exclude an observation is calculated, and the one with the lowest chi-square test statistic is accepted. The process
is iterated until the test statistic falls below the threshold.

An alternative to the "top-down" sequential testing approach is the "bottom-up" subset comparison [38]. The "bottom-up"
method starts by taking a subset of measurements and then expands the subset by adding additional measurements that are
consistent with it. The quality of the subset is important for this type of method, as a minimal subset adulterated with faulty
observations may directly degrade the performance of outlier detection.

In addition to the measurement domain, outlier detection can also be performed in the position domain. Combinations of
measurements containing outliers usually give different position solutions than those without fault observations. Therefore,
solutions can be calculated separately using different combinations of measurements and compared with each other. If two
solutions are significantly different, it is reasonable to assume that the measurement used to calculate one solution but not the
other may be an outlier.

3DMA GNSS works in a different way to conventional GNSS positioning techniques. Essentially, 3DMA GNSS evaluates the
similarity between the observations, including pseudo-range and signal strength, and the predictions made from the 3Dmapping
data on an array of candidate positions, and derives a solution based on the distribution of similarity. As conventional residuals
are not present in 3DMA GNSS, the residual-based outlier detection commonly used in conventional GNSS positioning is not
applicable at all. Therefore, 3DMA GNSS requires some new methods of outlier detection based on its own characteristics.



III. PROPOSED OUTLIER DETECTION METHODS
Several different test statistics in the measurement and position domains are proposed for shadowmatching (SM) and likelihood-
based ranging (LBR). Then sequential testing and subset comparison methods are presented in Sections III.2 and III.3, respec-
tively.

III.1. Test Statistic
UCL’s 3DMA GNSS positioning algorithm contains two positioning modules, shadow matching (SM) and likelihood-based
ranging (LBR), which employ two different types of measurements, C/N0 and pseudo-range, respectively, to calculate the
position solution. Therefore, different test statistics need to be designed for each of them in their respective measurement
domains.

The main idea of the test statistic in the measurement domain is to use the 3DMA GNSS solution obtained from a subset of
measurements to estimate the excluded measurements, and the outlying measurements should be significantly different from
their corresponding predictions.

The test statistic for SM, Sj
SM

2
, in the measurement domain is then derived by comparing the LOS probability estimated from

the C/N0 measurement with that given by the building boundary averaged over the position solution distribution calculated
with the other measurements,

Sj
SM

2
=

[
p(LOS|C/N0)

j − p̄(LOS|BB)j
]2

σ2
v

(4)

where σv is the standard deviation of the difference in satellite visibility, p(LOS|C/N0)
j is the inferred LOS probability of

satellite j based on its C/N0 measurement (please see Appendix A.3 in [6] for details), p̄(LOS|BB)j is the average LOS
probability based on the building boundary data at the azimuth and elevation where satellite j is located, and σv is the standard
deviation of the difference in satellite visibility, given by,

p̄(LOS|BB)j =

∑
p Λ

−j
p p(LOS|BB)jp∑

p Λ
−j
p

(5)

σv =
p(LOS|BB)max − p(LOS|BB)min

3
√
2

=
0.9− 0.1

3
√
2

≈ 0.19 (6)

where Λ−j
p is the likelihood of candidate position p from the integrated 3DMA GNSS solution calculated with a subset of

measurements excluding satellite j, p(LOS|BB)jp is the LOS probability from building boundaries at the azimuth and elevation
of satellite j, and p(LOS|BB)max = 0.9 and p(LOS|BB)min = 0.1 are the upper and lower bounds on the LOS probability
of the satellite, respectively.

The test statistic for LBR in its measurement domain is determined by the remapped measurement innovation weighted by the
same 3DMA GNSS solution as in the SM,

Sj
LBR

2
=

δz̄′j
2

σ2
δz,j

(7)

where δz̄′j and σ2
δz,j are the weighted pseudo-range measurement innovation and its corresponding variance, respectively, given

by

δz̄′j =

∑
p Λ

−j
p δz′p,j∑
p Λ

−j
p

(8)

σ2
δz,j =

∑
p Λ

−j
p Cδz,p,j∑
p Λ

−j
p

(9)

where δz′p,j is the remapped measurement innovation for satellite j at candidate position p, and Cδz,p,j is the corresponding
measurement error covariance, both of which are obtained from the intermediate step of the LBR (please see Appendix A.4
in [6] for details).

In the position domain, the horizontal radial distance between the SM and LBR solutions is not suitable as the test statistic. This
is because, as shown in Figure 3, SM sometimes only contributes to accuracy in the cross-street direction and is susceptible
to ambiguity problems at locations with similar sky maps (especially when the number of satellites is small), whereas LBR
contributes more to accuracy in the along-street direction.



In cases where SM and LBR perform well, the sky plots above their position solutions are usually very similar. Therefore, the
3DMA position solution can be used to create a vector consisting of the average LOS probabilities, as follows,

p̄(LOS|BB) =
[
p̄(LOS|BB)1 p̄(LOS|BB)2 · · · p̄(LOS|BB)j

]T (10)

where p̄(LOS|BB)j can be calculated using Equation (5). Note that the size of this LOS probability vector always remains the
same as the total number of observed satellites and does not vary with the exclusion of outliers.

After converting into visibility vectors, comparisons between positional solutions will be conducted by comparing the corre-
sponding visibility vectors. Euclidean distance and cosine distance adopt different perspectives (distance and angle respectively)
to measure the difference between vectors. Euclidean distances placemore emphasis on absolute differences in numerical values,
while cosine distances focus more on relative deviations in the direction of the vectors.

The Euclidean distance between vectors A and B is calculated by,

DE(A,B) = ∥A − B∥ =

√∑
i

(Ai −Bi)
2 (11)

where ∥ · ∥ denotes L2 norm that calculates the distance of the vector coordinate from the origin of the vector space.

The cosine distance between two vectors is computed by,

DC(A,B) = 1− A · B
∥A∥∥B∥ = 1−

∑
i AiBi√∑

i A
2
i

√∑
i B

2
i

(12)

However, there may be some problems with using cosine distances directly to compare visibility vectors. For example, when
A = [0.9, 0.9, 0.9] andB = [0.1, 0.1, 0.1], the cosine distance is 0, which is clearlywrong. Therefore, before using Equation (12),
the visibility vector need to be pre-processed by joining the original vector, p̄(LOS|BB), and its complement, 1− p̄(LOS|BB),
as follows,

p̄′(LOS|BB) =

[
p̄(LOS|BB)

1− p̄(LOS|BB)

]
(13)

where p̄′(LOS|BB) is still a vector.

Consequently, the test statistic for 3DMA GNSS positioning in the position domain can be derived by,

D = D(LBR,SM) (14)

where D(LBR,SM) stands for Euclidean or cosine distance between the visibility vectors consisting of the average satellite
visibility calculated from the likelihoods of LBR and SM using Equation (10).

III.2. Sequential Testing Method
The sequential testing method is one of the most commonly used outlier detection methods. It iterates through all the available
measurements. At each iteration, a 3DMA position solution is calculated using all available measurements except one that
is assumed to be an outlier. The excluded measurement is then evaluated for consistency with the remaining ones in the
measurement domain by using Equations (4) and (7). After traversing all measurements, if any inconsistency alarm is raised,
the one most inconsistent with the other measurements is excluded. The process is repeated until all measurements pass the
consistency check, or there are insufficient measurements left.

The consistency of the measurements is assessed by the SM and LBR in two different dimensions, signal strength and ranging,
respectively. Therefore, an integrated test statistic for satellite j to combine the test statistics on the different dimensions is
calculated by,

Sj
INT

2
= Sj

XΣXSj
X

T
(15)

where the test statistic vector, Sj
X , is formed by,

Sj
X =

[
Sj
SM Sj

LBR

]
(16)



and the weighting matrix, ΣX , can be the inverse of the covariance matrix calculated by,

ΣX =

[
σ2
SM 0
0 σ2

LBR

]−1

(17)

σ2
SM =

1

Nin − 1

Nin∑
j

Sj
SM

2
(18)

σ2
LBR =

1

Nin − 1

Nin∑
j

Sj
LBR

2
(19)

where Nin is the number of satellites to be examined, and the test statistics for both SM and LBR are assumed to be normally
distributed with zero mean. The largest integrated test statistic is then compared to an empirically determined threshold to
determine whether to exclude the corresponding satellite. The determination of this threshold is discussed in Section IV.2.

III.3. Subset Comparison Method
The subset comparison method is introduced as an alternative to the sequential method for consistency checking. Figure 6
illustrates the flowchart for 3DMA GNSS outlier detection based on the random sample consensus (RANSAC) algorithm.
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Figure 6: Components of the RANSAC-based outlier detection algorithm

First, a subset is randomly drawn from all the measurements, from which a 3DMA position solution is calculated. Among the
remaining measurements, Equations (4) and (7) are used to quantify their consistency with the subset solution, with the 3DMA
GNSS solutions used in Equations (5), (8) and (9) being calculated using the subset only. A threshold is then introduced, below
which measurements are determined to be consistent with the subset solution and are admitted to the subset to constitute a
consensus set (CS). The choice of this threshold is described in Section IV.2. The position solution is subsequently updated
based on the newly generated CS and its quality is evaluated by a loss function (also known as a cost function). The cost, CR,



is derived from the test statistic, D, in the position domain (i.e., Equation (14)) and is given by

CR = D
/
αNCS (20)

where NCS is the number of elements in the consensus set, and α is the weighting factor, usually taking a value greater than
or equal to 1. The value of α is set to 1 in the following experiment, indicating that the cost is independent of the number of
elements. Finally, the whole process is repeated until a solution with a sufficiently low cost is found, or the number of iterations
reaches the upper limit. The solution with the lowest cost is determined as the final solution.

IV. EXPERIMENTAL TESTS
IV.1. Experimental Setup
A number of experiments were conducted in Camden, London to demonstrate the proposed outlier detection algorithms. The
3D building models used for testing included the LoD1 model provided by Ordnance Survey (OS) and the LoD2 model provided
by BlueSky (BS). In the test environment shown in Figure 7, the University College Hospital (UCH) building and the UCL
Cruciform Building are highlighted because of their significantly different representations on the OS and BS maps.

University College Hospital

Cruciform Building

T1

T2

T3

T4

70 m

Figure 7: Test environment (background image captured from ©Google Earth)

Figure 8 shows the relative heights of the buildings in the test environment. The dark blue blocks in the figure represent the
ground, whose absolute height is set to 0 (as a reference), while the other blocks represent the buildings, whose colour indicates
their relative height to the ground.

The UCH building is approximately 80 metres tall and is significantly taller than the two buildings adjacent to it, which is
consistent with the height shown on the BSmap. However, the height of the UCH building is only about 25metres in the OSmap,
which is completely inconsistent with the reality. The Cruciform Building, slightly below the UCH building, is cross-shaped
according to the aerial photograph in Figure 7. The shape of the building is more correctly modelled on the BS map than on the
OS map where it is simply abstracted as a square.

Several experimental sites around themismapped buildingswere selected, with yellow arrows in Figure 7marking their locations.
On each side of the street at each test site, a u-blox EVK M8T GNSS receiver was used to collect 2 minutes of GNSS data from
the three constellations of GPS, GLONASS and Galileo at a recording frequency of 1 Hz. The antenna was placed stationary at
1.1 metres above the ground. The relative distances from the antenna to nearby landmarks were measured by a laser rangefinder,
and the coordinates of the true positions were subsequently extracted from the Ordnance Survey MasterMap in the form of east
and north on the OSGB36 datum.
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Figure 8: Height maps generated from the Ordnance Survey (OS) and BlueSky (BS) data

Table 1 summarises the experimental information including the number of epochs in each segment, the true position, and
statistics on the number, C/N0 and elevation of the observed satellites. The ID shown in the first column of the table consists
of the test site and the orientation relative to the street. For example, T1_N represents that the data was collected on the north
side of the street at test site T1 marked in Figure 7.

Table 1: Experimental information

ID No. of
epochs

True position coordinates, m
(Easting, Northing)

Average No.
of signals

Mean & SD∗

C/N0, dB-Hz
Mean & SD∗

elevation,
degrees

No. of satellites
affected by map
discrepancies

T1_N 120 (529455.33, 182345.04) 19.0 35.9, 9.0 38.3, 22.6 2
T1_S 120 (529458.74, 182339.39) 17.9 36.2, 10.0 39.3, 23.8 1
T2_N 119 (529523.09, 182208.10) 17.0 35.6, 10.8 41.7, 22.5 2
T2_S 120 (529529.08, 182199.13) 16.8 36.3, 10.5 41.4, 22.5 2
T3_W 119 (529383.08, 182290.97) 20.0 32.1, 8.2 38.5, 21.0 1
T3_E 120 (529389.38, 182295.83) 18.4 34.6, 10.6 40.6, 20.4 2
T4_W 120 (529410.39, 182250.62) 21.0 33.5, 8.0 37.7, 20.8 3
T4_E 119 (529416.02, 182254.40) 19.2 35.7, 8.4 40.1, 21.3 3
∗ SD stands for standard deviation.

Figure 11 in Appendix A illustrates the sky plots generated from, respectively, the OS and BS maps at the true location of each
test site, where the coloured dots represent observed satellites and the blue lines delineate the minimum elevation angles of
the LOS satellite (i.e. the building boundary), with satellites above the boundary predicted to be LOS (indicated in green) and
those below the boundary predicted to be NLOS (indicated in red). The sky plots confirm that some satellite visibility can be
incorrectly predicted due to the use of inaccurate 3D mapping data.

To validate the effectiveness of the proposed outlier detection methods for 3DMA GNSS positioning, the following algorithms
were implemented, tested and compared:

• Conv: Single-epoch conventional GNSS with terrain height aiding

• S1: Single-epoch 3DMA GNSS without outlier detection

• S2: Single-epoch 3DMA GNSS with the sequential testing method described in Section III.2

• S3: Single-epoch 3DMA GNSS with the subset comparison method described in Section III.3



• M1: Multi-epoch 3DMA GNSS particle filter without outlier detection

• M2: Multi-epoch 3DMA GNSS particle filter with the sequential testing method described in Section III.2

• M3: Multi-epoch 3DMA GNSS particle filter with the subset comparison method described in Section III.2

The single-epoch conventional GNSS positioning solution was computed for comparison without the use of building model.
On the high accuracy map provided by BS, the single-epoch 3DMA GNSS positioning algorithm without outlier detection was
executed to determine the performance of 3DMA GNSS positioning in the absence of obvious mapping errors.

IV.2. Selection of Parameters
The 3DMA GNSS algorithms contain several empirical parameters that need to be determined in advance. Therefore, another
dataset collected with the same equipment and configuration at different locations in the City of London on different dates
was used to tune the parameters in the 3DMA GNSS algorithm, ensuring that the tuning and testing data were completely
independent of each other.

The two thresholds mentioned in Sections III.2 and III.3 for outlier determination were determined after a range of different
values were tried. Figure 9 shows the horizontal RMS errors for the single epoch 3DMA GNSS algorithm using OS maps with,
respectively, sequential testing method and subset comparison method at different thresholds. Therefore, 3 and 2.5 are chosen
as the thresholds for outlier determination for the sequential testing and subset comparison methods, respectively.
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Figure 9: Selection of thresholds for outlier determination (single-epoch positioning, OS map)

IV.3. Experimental Results
Figure 10 shows the root mean square (RMS) horizontal position errors obtained from the tests on the dataset collected from
the four experimental sites in London. As all methods include a terrain height aiding technique, only errors in the horizontal
radial direction were assessed. The grey bar in Figure 10 represents the conventional GNSS positioning results, while the other
coloured bars represent, respectively, the positioning results of the single- and multi-epoch 3DMA GNSS algorithm without
and with different outlier detection methods on maps with different LoDs. Detailed results are presented in Figures 12 to 19 and
Tables 2 to 4 in Appendix A.

The results show a significant improvement in accuracy of all 3DMA GNSS positioning algorithms involved in the experiment
compared to conventional GNSS positioning. Compared to the 3DMA GNSS positioning using OS LoD1 maps, the one using
BS LoD2 maps shows a clear lead in accuracy in all tests except for the test site T3_E, indicating that the accuracy of the maps
does affect the accuracy of 3DMA GNSS. As shown in Figure 10, in single-epoch positioning without outlier detection, for
example, the overall RMS error of the 3DMA GNSS solution using BS maps is nearly 30% smaller than that using the less
accurate OS maps, especially at T2_S where this difference even reaches about 75%.

However, the mapping quality is not the only factor that largely influences the performance of 3DMA GNSS positioning. It
can be clearly seen from Figures 12 to 19 that there are some significant fluctuations in the single-epoch 3DMA GNSS results,
regardless of the accuracy of the maps used, which could be due to transient effects on the GNSS signals caused by passing
vehicles. The positioning performance at test site T3 is significantly worse than the other test locations, and the difference in
performance using OS and BS maps is not significant, suggesting that the main factor constraining 3DMA GNSS performance
at T3 may not be mapping errors.

The experimental results also show that outlier detection has a greater impact on the results using OS maps than that using
BS maps. In the case of single-epoch positioning with OS maps, according to the RMS position errors shown in Figure 10,
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Figure 10: Horizontal radial position root mean square (RMS) error of the 3DMA GNSS algorithms with BS and OS maps

the 3DMA GNSS algorithms with subset comparison method applied achieved an overall performance improvement of around
15% compared to the one without. A closer investigation of the single-epoch GNSS results for each of the test sites presented
in Table 2 in Appendix A reveals that subset comparison method is most effective in Sites T1_S and T4_W, achieving an
improvement of more than 20% in RMS error. However, in the remaining sites, the algorithms with outlier detection do not
show a major numerical improvement compared to the one without. In addition, compared to the case without outlier detection,
the single-epoch results with outlier detection show a 20% reduction in the maximum error at the 90% confidence level, while the
maximum error at the 50% confidence level rises by only 7%, indicating that outlier detection makes a significant contribution
to the reliability of the 3DMA GNSS positioning. In the case of using BS maps, the improvement in RMS error due to outlier
detection is not significant.

The main reason behind the outlier detection not performing as expected at some test sites may be the false alarms and missed
detections. Both the SM and LBR algorithms are based on statistics and already include a certain amount of fault tolerance.
Therefore, outlier detection for them is difficult. When some of the critical faulty measurements, such as those incorrectly
selected as reference satellites in LBR, are detected and excluded, the solution is improved substantially. However, instead
of improving performance, the exclusion of some less critical faulty measurements may increase uncertainty and weaken the
effectiveness of outlier detection. Another possible reason for weakening the effectiveness of outlier detection is the increased
uncertainty due to the exclusion of measurements. With the exclusion of some potential outliers, the solution for one of SM and
LBR may be improved, while the other may suffer an increase in uncertainty due to the reduced number of measurements, thus
diminishing the effectiveness of outlier detection. A possible mitigation option is to correct the faulty measurements to allow
them to contribute to the positioning again, rather than eliminating them outright.

The introduction of filtering algorithms enhances the performance of 3DMA GNSS positioning. As illustrated in Figure 10, the
multi-epoch 3DMA GNSS shows a reduction in RMS error of about 12% when using OS maps, while only a slight difference
is shown when using BS maps. The filtering algorithm adjusts the 3DMA GNSS search area according to the previous position
solution, reducing the occurrence of ambiguity problems and alleviating the problem of large sudden shifts in the position
solution compared to the previous epoch caused by temporary environmental changes. It can be observed in Figures 12 to 19



that the error variation curves are smoother for the multi-epoch 3DMA GNSS compared to the single-epoch, demonstrating the
filter’s role in improving reliability.

As expected, the multi-epoch 3DMA GNSS with outlier detection performed best in the tests compared to the other algorithms.
In the case of using OS maps, its performance rivals that of using BS LoD2 maps. This improvement is attributed to the
combination of filtering and outlier detection. The mixture of mapping errors and temporary environmental changes makes it
difficult for 3DMA outlier detection algorithms to handle them properly at the same time. The filtering creates a better search
area for 3DMA GNSS based on the solution from the previous epoch. Outlier detection, in return, brings a further improvement
of about 16% compared to multi-epoch 3DMA GNSS without outlier detection.

The performance of the sequential testing method and the subset comparison method is similar in multi-epoch positioning,
while the subset comparison method is superior in single-epoch case. This may be because when the sequential testing method
incorrectly excludes some measurements, the remaining consistently misleads the outlier algorithm to further exclude good
measurements, whereas the subset comparison method focuses only on measurements in the consensus set and is less affected
by noise. In terms of computational efficiency, the sequential method is more efficient than subset comparison method.

V. CONCLUSIONS
The results of the experiments conducted in London confirm that 3D mapping errors can have a noticeable negative impact on
the performance of 3DMA GNSS positioning. At all test sites except site T3, the horizontal RMS position error of the 3DMA
GNSS algorithm using the high accuracy LoD2 map provided by BS is between 2 and 3 metres, which is significantly lower
than that using the OS map with significant mapping errors.

Two outlier detection methods were introduced into the 3DMA GNSS algorithm. The sequential detection method uses test
statistics in the measurement domain to directly exclude the suspected faulty measurements, while the subset comparisonmethod
uses test statistics in the position domain to evaluate the consensus sets found by the test statistics in the measurement domain
and leaves the most consistent ones. The performance of the sequential test and the subset comparison methods are similar,
probably because they use the same test statistics. For single-epoch 3DMA GNSS, after applying outlier detection, the 3DMA
GNSS algorithm reduced the RMS horizontal position error by approximately 15% compared to the original, but still worse than
3DMA GNSS with BS maps. The proposed outlier detection methods are most effective at test sites T1_S and T4_W, and result
in an improvement in RMS position error of more than 30%. However, at the other test sites, the outlier detection algorithms
deliver a limited improvement and do not perform as good as expected, suggesting that more time is needed to improve them.

The interplay of mapping data errors and temporary environmental changes makes it difficult for outlier detection to handle
multiple outlying measurements properly at the same time. The introduction of filtering provides 3DMA GNSS with a priori
information to define the search area, allowing the latter to find outlying measurements more easily. The final results also show
that the 3DMA filtering with outlier detection performs the best of all the algorithms in this test, and its performance with OS
LoD1 maps rivals that of BS LoD2 maps.

VI. FUTURE WORK
The current version of the outlier detection algorithms for 3DMA GNSS positioning is still in its early stages and has much
room for improvement. Areas worth exploring further include:

• Correction of outlying measurements to allow them to re-contribute to positioning.

Directly removing outliers may not only increase the uncertainty in the shadow matching solution, but may also degrade
the satellite geometry in likelihood-based ranging. Thus, the outliers may be able to be corrected by correcting the
corresponding satellite visibility predictions so that they can re-contribute to the positioning and improve the quality of
the solution.

• Flagging of mapping data errors.

Inspired by the idea of simultaneous localization and mapping (SLAM) and the paper [39], incorrect building information
can be flagged (or corrected if possible) to benefit subsequent measurements.
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APPENDIX A DETAILED EXPERIMENTAL RESULTS

G07 Satellite predicted to be NLOSG07 Satellite predicted to be LOS G07 Satellite with conflicting predictions

Building boundary from BS map Building boundary from OS map

Skyplot on T1_N Skyplot on T1_S Skyplot on T2_N Skyplot on T2_S

Skyplot on T3_E Skyplot on T3_W Skyplot on T4_E Skyplot on T4_W

Figure 11: Sky plots generated from Ordnance Survey (OS) and BlueSky (BS) maps at Epoch 1 at the true location of each test site

List of abbreviations for the labels in Figures 12 to 19 and Tables 2 to 4

 Conv Single-epoch conventional GNSS with terrain height aiding 
 S1B Single-epoch 3DMA without outlier detection - BS map 
 S2B Single-epoch 3DMA with the sequential testing method - BS map 
 S3B Single-epoch 3DMA with the subset comparison method - BS map 
 M1B Multi-epoch 3DMA particle filter without outlier detection - BS map 
 M2B Multi-epoch 3DMA particle filter with the sequential testing method - BS map 
 M3B Multi-epoch 3DMA particle filter with the subset comparison method - BS map 
 S1O Single-epoch 3DMA without outlier detection - OS map 
 S2O Single-epoch 3DMA with the sequential testing method - OS map 
 S3O Single-epoch 3DMA with the subset comparison method - OS map 
 M1O Multi-epoch 3DMA particle filter without outlier detection - OS map 
 M2O Multi-epoch 3DMA particle filter with the sequential testing method - OS map 
 M3O Multi-epoch 3DMA particle filter with the subset comparison method - OS map 
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Figure 12: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T1_N
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Figure 13: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T1_S
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Figure 14: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T2_N
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Figure 15: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T2_S
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Figure 16: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T3_E
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Figure 17: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T3_W
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Figure 18: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T4_E
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Figure 19: Horizontal position errors for the solutions of the 3DMA GNSS algorithms on test site T4_W



Table 2: Horizontal radial position RMS errors (in metres)

Algorithm Test site
T1_N T1_S T2_N T2_S T3_W T3_E T4_W T4_E

Conv 15.43 17.20 5.76 8.75 29.82 19.60 18.16 18.18
S1B 3.52 2.55 2.37 2.19 9.26 6.29 1.96 2.79
S2B 2.97 5.00 3.79 2.06 8.34 5.69 2.07 2.82
S3B 2.92 2.69 2.62 2.20 8.66 5.92 2.01 2.78
M1B 3.60 2.13 2.15 1.51 9.01 6.88 2.28 3.08
M2B 2.60 2.45 2.32 1.72 8.41 5.42 2.00 2.92
M3B 2.08 2.73 2.34 1.81 7.83 6.47 1.91 2.91
S1O 5.45 10.18 2.56 3.47 11.22 5.13 3.06 4.56
S2O 4.39 10.83 2.66 3.30 8.68 4.96 2.36 5.21
S3O 5.36 6.38 2.72 3.38 9.85 5.11 1.88 4.16
M1O 5.63 4.76 2.70 2.90 11.26 5.26 2.22 5.17
M2O 3.91 2.66 2.95 3.19 8.70 4.85 2.32 5.47
M3O 4.50 2.81 2.93 2.77 9.04 5.50 2.02 4.62

Table 3: Maximum horizontal radial position error (in metres) at 90% confidence level

Algorithm Test site
T1_N T1_S T2_N T2_S T3_W T3_E T4_W T4_E

Conv 23.36 21.47 11.08 13.27 37.73 33.40 21.87 26.01
S1B 5.11 3.45 2.86 3.35 17.84 9.12 2.69 4.35
S2B 4.92 4.83 2.88 3.18 12.74 8.50 2.70 4.37
S3B 4.46 3.54 3.38 3.25 17.58 9.12 2.69 4.34
M1B 4.71 2.92 2.55 2.18 15.06 11.41 3.10 4.83
M2B 4.35 3.36 2.69 2.49 14.36 8.31 2.77 4.47
M3B 3.55 3.75 2.75 2.51 13.16 10.72 2.58 4.55
S1O 9.67 19.30 3.45 6.19 18.24 9.46 2.64 6.46
S2O 5.92 24.21 3.77 6.15 13.84 9.00 2.74 6.85
S3O 6.96 8.37 3.84 4.90 16.74 8.10 2.63 5.81
M1O 9.75 9.13 3.48 3.78 17.93 8.17 3.00 6.78
M2O 6.60 3.32 4.02 4.56 14.27 8.10 2.94 8.02
M3O 7.19 4.57 3.89 3.59 15.91 8.47 2.74 6.42



Table 4: Maximum horizontal radial position error (in metres) at 50% confidence level

Algorithm Test site
T1_N T1_S T2_N T2_S T3_W T3_E T4_W T4_E

Conv 13.83 17.03 3.08 7.61 29.98 12.89 17.89 17.74
S1B 1.60 2.43 2.34 1.85 6.18 6.23 1.97 2.15
S2B 1.57 2.64 2.34 1.76 4.09 5.50 1.97 2.16
S3B 1.76 2.63 2.50 1.88 4.82 5.67 2.01 2.19
M1B 1.44 2.00 2.12 1.39 3.78 6.11 2.31 2.49
M2B 1.46 2.40 2.31 1.54 3.93 5.03 1.97 2.24
M3B 1.43 2.71 2.28 1.59 3.66 5.64 1.89 2.36
S1O 4.10 3.67 2.29 2.51 8.66 3.56 1.76 4.18
S2O 3.70 2.62 2.46 2.42 6.74 2.93 2.26 4.10
S3O 4.03 2.18 2.39 2.95 7.28 3.91 1.66 3.92
M1O 4.28 2.51 2.70 3.03 8.69 3.34 2.12 5.50
M2O 2.93 2.31 2.72 2.93 6.07 2.66 2.37 4.89
M3O 3.75 2.02 2.83 2.95 5.76 3.41 1.97 4.22
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