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A B S T R A C T 

Despite the advances provided by large-scale photometric surv e ys, stellar features – such as metallicity – generally remain 

limited to spectroscopic observations often of bright, nearby low-extinction stars. To rectify this, we present a neural network 

approach for estimating the metallicities and distances of red giant stars with 8-band photometry and parallaxes from Gaia 

EDR3 and the 2MASS and WISE surv e ys. The algorithm accounts for uncertainties in the predictions arising from the range of 
possible outputs at each input and from the range of models compatible with the training set (through drop-out). A two-stage 
procedure is adopted where an initial network to estimate photoastrometric parallaxes is trained using a large sample of noisy 

parallax data from Gaia EDR3 and then a secondary network is trained using spectroscopic metallicities from the APOGEE and 

LAMOST surv e ys and an augmented feature space utilizing the first-stage parallax estimates. The algorithm produces metallicity 

predictions with an average uncertainty of ±0 . 19 dex . The methodology is applied to stars within the Galactic bar/bulge with 

particular focus on a sample of 1.69 million objects with Gaia radial velocities. We demonstrate the use and validity of our 
approach by inspecting both spatial and kinematic gradients with metallicity in the Galactic bar/bulge reco v ering previous results 
on the vertical metallicity gradient ( −0.528 ± 0.002 dex kpc −1 ) and the vertex deviation of the bar ( −21 . 29 ± 2 . 74 deg ). 

Key words: methods: statistical – stars: distances – Galaxy: abundances – Galaxy: bulge – Galaxy: stellar content. 
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.  I N T RO D U C T I O N  

ne o v erarching goal of studying the Milky Way is to reveal its
etailed formation and evolution, and place our Galaxy in the context 
f galaxy formation across the Univ erse (Bland-Ha wthorn & Gerhard
016 ; Barbuy, Chiappini & Gerhard 2018 ). With the advent of
arge-scale spectroscopic surv e ys (RAVE, Steinmetz et al. 2020 ; 
POGEE, Ahumada et al. 2020 ; LAMOST, Cui et al. 2012 ; Gaia -
SO, Gilmore et al. 2012 ; SEGUE, Yanny et al. 2009 ; and GALAH,
uder et al. 2021 , and in future DESI, DESI Collaboration et al.
016 ; WEAVE, Dalton et al. 2014 ; 4-MOST, de Jong et al. 2019 ;
nd Milky Way Mapper, Kollmeier et al. 2017 ), we have highly
etailed observations of > 10 6 stars allowing characterisation of their 
f fecti ve temperatures, surface gravities, radial velocities, chemical 
ompositions, masses, ages, and more, from which we can make 
rogress on this goal by elucidating and separating the series of
vents and processes that have shaped our Galaxy o v er cosmic time.

Ho we ver, despite the utility of spectroscopic data, these surv e ys do
ave limitations of scope when applied to some problems. As noted 
y Ivezi ́c et al. ( 2008 ) and Huang et al. ( 2022 ), taking spectroscopic
ata for very distant or faint objects can quickly become difficult. 
his causes man y surv e ys to have complex selection criteria to ensure
ood spectroscopic data can be taken. These criteria typically limit 
bservations to specific object classes within a limited sky region 
aking the application of such data to large-scale populations or 

tructures difficult, as only a small portion of these groupings may 
e included in the selection criteria. For example, when attempting to 
tudy the inner regions of the Milky Way’s disc and bulge, the large
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istances and extreme extinction effects put many stars beyond the 
eaches of spectroscopic observations. This area of the sky therefore 
ends to have relatively few spectroscopic observations, which makes 
nalysis of these interesting populations difficult (although the 
nfrared APOGEE and in future MOONS, Cirasuolo et al. 2014 ,
urv e ys are rapidly changing this state of affairs). 

On the other hand, we have large-scale photometric surv e ys,
hich typically are not bound by the same criteria that tend to

imit spectroscopic observations. This allows them to be far more 
 xpansiv e, generally observing many classes of object across the
hole sky (or often at least half) to a significantly greater depth. For

xample, Gaia (Gaia Collaboration 2021 ), 2MASS (Skrutskie et al. 
006 ), and WISE (Wright et al. 2010 ) have all observed the entire
ky across the optical to infrared, whilst SDSS (Aihara et al. 2011 ),
an-STARRS (Chambers et al. 2016 ), DES (Abbott et al. 2021 ),
ky-Mapper (Wolf et al. 2018 ), and GALEX (Bianchi, Shiao &
hilker 2017 ) among others hav e surv e yed large fractions of the
ky. Ho we ver, unless designed with filters with specific sensitivity to
tellar metallicity or surface gravity like Sky-Mapper’s u and v bands
Keller et al. 2007 ), broad-band photometric data tend to struggle to
ccurately determine stellar parameters without additional input. 

Thus, we reach our aim with this research: to develop a method
hat can determine stellar properties with the utility of spectroscopic 
ata, while retaining the scope and scale of photometric surv e ys.
rom this, we would then be able to analyse, on a much deeper level,

he stellar populations and structures that stretch across the Milky 
ay. 
Attempts to determine stellar metallicity from photometry have 

ad some past successes, through leveraging the subtle sensitivity 
f broad-band colours to metallicity. One early approach was the 
ultraviolet (UV) excess’ method (Wallerstein 1962 ) which can be 
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Figure 1. The sensitivity of WISE to stellar metallicity: Ratios of MARCS models with infrared bandpasses o v erplotted normalized at λ = 35 000 Å. The 
reference model has T eff = 3500 K, log g = 0 dex , and [M / H] = 0 dex . The green and purple lines show models with [M / H] = −1 dex and [M / H] = 1 dex , 
and blue and red lines T eff = 3200 K and T eff = 4000 K. Note the strong gradients in W 2 due to the CO feature. The effects of temperature and metallicity 
variations in W 2 can be distinguished using the bluer 2MASS bands. 
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alibrated to map both stellar temperatures and metallicities using the
arge number of metal lines in bluer and UV bandpasses. This method
as been adapted for use with modern photometric surv e ys, using the
DSS (Ivezi ́c et al. 2008 ) and Pan-STARRS (Thomas et al. 2019 ) ( g
r ) and ( u − g ) colours to estimate metallicities. In a similar vein, the
etallicity sensitivity of the Ca H & K region at ∼3950 Å has been

argeted using narrow-band filters in the PRISTINE (Starkenburg
t al. 2017 ) and Sky-Mapper (Wolf et al. 2018 ) surv e ys (see Huang
t al. 2022 ; Lin, Casagrande & Asplund 2022 , for catalogues of
tellar parameters derived from Sky-Mapper data). Due to the strong
ffects of extinction on UV/near-UV, these methods are less ef fecti ve
or studying faint or distant objects within the highly extincted inner

ilky Way (although see Arentsen et al. 2020 for a study of metal-
oor stars in the Galactic bulge using the PRISTINE surv e y). 
For more highly extincted regions, infrared photometric surveys

re more attractive. Schlaufman & Casey ( 2014 ), Koposov et al.
 2015 ), Li et al. ( 2016 ), and Casey et al. ( 2018 ) have all demonstrated
ow the infrared WISE surv e y (Wright et al. 2010 ) can be used to both
eparate dwarf and giant stars and also estimate stellar metallicities
or red stars. In particular, the WISE colour ( W 1 − W 2) displays a
trong correlation with stellar metallicity ( W 1 and W 2 have ef fecti ve
avelengths of 3 . 4 and 4 . 6 μm, respectively). This is primarily due

o the presence of a CO feature in the spectrum of M giants. In
ig. 1 , we show ratios of stellar spectra from the MARCS model grid
Gustafsson et al. 2008 ). Increasing the metallicity we observe the
olecular features (particularly the CO band in the W 2 bandpass)
eaken whilst the flux in K s and W 1 are essentially unaffected leading

o bluer ( K s − W 2) and ( W 1 − W 2) for more metal-rich stars. These
olours also vary with effective temperature (redder for hotter stars)
gain due to CO variation but this de generac y can be remo v ed by
ombining with bluer colours such as ( J − K s ). This metallicity
ensitivity of the WISE bands was utilized most recently by Grady,
elokurov & Evans ( 2021 ), who used machine learning regression
odels with Gaia , 2MASS, and WISE bands to estimate metallicities

f stars in the Magellanic Clouds. This impro v ed on past works
y allowing the subtler metallicity sensitivity of other photometric
NRAS 516, 5521–5537 (2022) 
olours to be included. For example, they found that by including
aia ( G BP − G RP ) and 2MASS ( J − H ) they were able to add

dditional metallicity information beyond that provided by ( W 1 −
 2). This work provided metallicity estimations with high accuracy

 ±0.13 dex for −1 ≤ [Fe/H] ≤ −0.5) allowing for detailed mapping
f the mean metallicity of the Magellanic Clouds. Ho we ver, this
ethod was not used on stars within the Milky Way. 
Past research has therefore left a gap for broadly applying
etallicity estimation to large-scale photometric surv e ys of the Milky
ay. It should be noted that WISE information is often utilized in

tellar characterization pipelines that provide metallicity estimates
e.g. Anders et al. 2022 ; Lin et al. 2022 ); although, these methods rely
n theoretical stellar models, or isochrones, which can be uncertain
or cool stars with significant molecular contributions to their atmo-
pheres. Here, we provide a complementary data-driven approach
o instead learn the correlations between photometric colours and
etallicities obtained from large spectroscopic surv e ys. We thus

ypass complexities in detailed stellar modelling. In doing this, we
upplement Gaia EDR3 (Gaia Collaboration 2021 ) astrometry with
etallicity information. Such a combination allows us to study the

patial, kinematic, and abundance trends within the Galaxy, and,
hus, we are able use this new methodology to probe the evolution
nd origins of various Milky Way structures. 

This paper is split into four main components: neural network
NN) set-up, distance estimation, metallicity estimation, and a
rief analysis of the properties of a bar -b ulge sample. Section 2
escribes the general set-up of the NN algorithm we will use in
he subsequent methods. Section 3 describes our machine learning-
nhanced approach to refine the distances we use in our analysis,
llowing us to impro v e object positional information and refine
bsolute magnitude calculations. Section 4 co v ers the estimation of
etallicities through the use of our NN algorithms, and the creation

f our final output catalogue. Section 5 describes an investigation of
he spatial and kinematic gradients of a bar -b ulge sample separated by
ur photometric metallicities, before we close with our conclusions
n Section 6 . 
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Figure 2. Diagram of the adopted NN architecture. Input features are fed 
into the NN, which trains the nodes/layers with the drop-out modifier active. 
Then, for predictions, the layers predict a value with a combined uncertainty 
from the drop-out stochasticity and the secondary ‘uncertainty’ output node. 
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.  N N  SET-U P  

or the most accurate predictions of photometric metallicity, we opt 
or a NN machine learning algorithm. Typically, NN architectures 
re trained with a set of input features, which are fed through a
on-linear layered network to return an output value. The network 
ayers are constructed from a set of inter-connected nodes, with the 
trength of the connections (or weights) tuned through training to 
llow the model to learn patterns in the input data. Training is guided
y the network’s ‘loss function’, which guides the penalty the model 
eceives for returning poor predictions of the outputs compared to 
he training set, and which the network aims to minimize. The most
ommon loss function is the mean squared error between the NN’s 
utput and desired target values – although this can be customized 
nd tuned for the desired set-up. 

Using the Python implementation of the Torch machine learning 
ibrary, Pytorch (Paszke et al. 2019 ), we work with a NN with the
rchitecture shown in Fig. 2 and described in-detail in Appendix A .
or a set of input features, x , each layer in the network, h , follows 

 = af ( x) + b, (1) 

here f ( x ) is the non-linear response function of the layer, and the
atrix of weights a and vector of biases b are constants refined by

he training process. Thus, for a network of n layers, we return an
utput value, y , from outputs of one layer being sequentially input to
he next. This gives us: 

 = a n f ( a n −1 f ( . . . f ( a 2 f ( a 1 f ( x) + b 1 )) + b 2 . . . ) 

+ b n −1 ) + b n . (2) 

he network is trained iteratively with the network tuning a i and 
 i to impro v e the loss function. By improving the average loss
unction o v er the full training set, the network is able to learn the
orrelation between x and y and predict outputs for new sets of
nput features. This allows for accurate and robust fitting, while also 
llowing f ( x ) to be customized and modified to best suit a chosen
roblem. 
Ho we ver, NNs do not tend have a measure of ‘confidence’ in their

stimations and instead usually return a single value for a set of input
eatures. For us to include a measure of the network’s predictive 
onfidence, we add two small modifications adapted from Leung & 

ovy ( 2019a ): an uncertainty output node and node drop-out. 
.1 Uncertainty node 

e include a secondary output node into the NN architecture, as
arked in Fig. 2 . This node provides one uncertainty measure, σ pred ,

nown as the model’s ‘predictive uncertainty’. This is the variance 
n the training data that is not accounted for by the uncertainties
oted in the training set’s output targets. Even with perfect data,
here are ‘hidden variables’ that impact the outputs. This manifests 
s identical training inputs into the NN returning a range of outputs.
uring the training process, the output uncertainty was fed into the
N’s customized loss function, and allows us to return an output
alue along with an uncertainty measure. 

We adopt the loss function from Leung & Bovy ( 2019a ). With y i 
s the target value from the training set with uncertainty σ data, i ,
nd ˆ y i the value returned by the NN with uncertainty σ pred, i 

from the ‘uncertainty node’), the logarithm of the joint variance is
etermined as s i = ln ( σ 2 

data ,i + σ 2 
pred ,i ). The loss function, J ( y i , ˆ y i ),

s then defined as 

 ( y i , ˆ y i ) = 

1 

n 

n ∑ 

i= 1 

1 

2 
( y i − ˆ y i ) 

2 e −s i + 

1 

2 
s i . (3) 

he predictive uncertainty, σ pred is refined by the training process, 
ith each iteration of training incrementally refining the uncertainty 
utput when calculating the loss function. The function in equa- 
ion ( 3 ) is designed such that the network minimizes loss from poor
redictions by maximizing the predictive uncertainty. However, this 
rive is countered by the final additive term which increases loss for
igh predictive uncertainty. In this way, the network optimizes to find
he largest predictive uncertainty for the given data, but is penalized
or selecting extremely large or small values. 

.2 Drop-out 

rop-out (Hinton et al. 2012 ) is a common NN operation used to
issuade o v erfitting during the training stage by randomly ‘dropping’
 fraction of the nodes in each layer. This modifies equation ( 1 ) to
e 

 = a g( x) + b, (4) 

here g( x) = P f ( x). Here, P is a function that applies a Bernoulli
istribution to each node within a layer (and thus modifies the
esponse of f ( x )). The Bernoulli function causes some chosen fraction
f nodes within a layer to be temporarily ‘zeroed’ out, and thus
ave no effect on the current training or prediction pass. This limits
he effect one node or branch can have to the o v erall output, as
ther nodes in the network must learn to ‘co v er’ for those hidden
y the drop-out process. With drop-out active, the network tends 
o learn the problem as a cohesive unit, and a v oids the creation a
mall number of o v erinfluential nodes that can dictate the network’s
redictions. 
Ho we ver, in our case, drop-out can have a secondary function to

dd stochasticity to the model (Gal & Ghahramani 2016 ). As each
un of the network has a random fraction of nodes missing, we can
onsider each run to be a slightly different network. So, if a set of
nput features are repeatedly passed through the NN, the variations 
ue to drop-out will cause different outputs to be returned each
ime. While predicting from our network, we return an ensemble of
etworks with slight variations due to the randomness of drop-out, 
ll of which are consistent with the training data. When we input new
eatures, we return a distribution of output values from the ensemble
f networks – a distribution we can consider as a probability. We
herefore consider our model to be a Bayesian NN, which returns
MNRAS 516, 5521–5537 (2022) 
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 probabilistic distribution rather than a single value. From such a
istribution, we draw a prediction (mean) and an implicit uncertainty
standard deviation). 

We return our uncertainty from the drop-out stochasticity as σ drop .
hen, with both the drop-out uncertainty, σ drop , and the predictive
ncertainty, σ pred , calculated, we can determine the final uncertainty
f each prediction, σ total , by 

total = 

√ 

σ 2 
drop + σ 2 

pred . (5) 

.  DI STA N C E  ESTIMATION  

efore we begin estimating metallicities, our method requires a
obust measure of stellar distances. Distances allow us to calcu-
ate absolute magnitudes for our sample stars, which can provide
ssential information on intrinsic stellar properties for the NN’s
odel. 
While using Gaia parallaxes directly would be the ideal choice

or data-driven analysis, there are a number of limitations to such an
pproach. As described by Bailer-Jones et al. ( 2021 ), transforming
etween parallax and distance can lead to issues if done naively.
bjects with � ≈ 0, even with well-constrained uncertainties, will

end to have very large fractional errors. This equates to extremely
arge distance uncertainties for stars beyond a few kpc. Additionally,
alid parallaxes in the Gaia catalogue can have negative values due
o the random scatter from uncertainties at small parallaxes, which
akes the naive r = 1/ � relation impractical to apply. The approach

eveloped by Bailer-Jones ( 2015 ) instead adds a statistical prior to
istance prediction that works to guide estimates for objects with
oorly informative Gaia parallaxes. From this, a distance estimation
an be drawn allowing us to a v oid the limitations of the raw Gaia
ata. 
Ho we ver, for this work, we aimed to focus on a large proportion

f the Milky Way’s stars. Therefore, many of the objects in our
amples exist in the distance regime where prior information becomes
ominant o v er Gaia parallax information. While this was expected
ehaviour for this approach, we found some estimates to be strongly
ependent on the parameters of the prior rather than being guided by
aia measurements – which reduce the utility of these distances for
ur methodology. 
In an attempt to reduce the impact of the prior, Bailer-Jones et al.

 2021 ) adjust their method to also include a star’s photometric
nformation (producing ‘photogeometric’ distances). Briefly, this
econdary approach uses a colour–magnitude prior (derived from
aia photometric bands) to restrict the range of absolute magnitudes

n object of a given colour can hav e. Thus, the y constrain the distance
robability function their method returns. With this addition, they
nd an impro v ement in the precision of stars with poorly informative
arallaxes. 
Our approach follows on from this idea, expanding the addition

f photometric information through the inclusion of a wide range
f additional bands (see Hogg, Eilers & Rix 2019 , for a similar
pproach also utilizing spectroscopic information). Ho we ver, instead
f using this data as a constraint on our distance estimates, we instead
sed our photometric information and NN algorithm to estimate an
ndependent parallax value. This ‘photometric parallax’ was then
ombined with the parallaxes from Gaia , and allowed us to return
alues with much lower uncertainties. Thus, we reduced the regime
here parallax information is uninformative, and thus limited the
umber of objects where the Bailer-Jones et al. ( 2021 ) prior has a
ignificant impact. 
NRAS 516, 5521–5537 (2022) 
.1 Data collection 

n order to augment existing distance information with photometric
ata, we required accurate astrometry and a wide range of photomet-
ic colours. 

We followed the lead of Grady et al. ( 2021 ), and selected our data
rom three photometric surv e ys: Gaia EDR3 (Gaia Collaboration
016 , 2021 ; Riello et al. 2021 ; Seabroke et al. 2021 ), 2MASS (Skrut-
kie et al. 2006 ), and the unWISE catalogue (Schlafly, Meisner &
reen 2019 ). The Gaia surv e y is an optical photometric surv e y, with

hree bands ( G , G RP , and G BP ) between 330 and 1050nm, and focuses
n observing accurate sky positions, proper motions, parallaxes, and
adial velocity information. The 2MASS survey instead observes in
ear-infrared, with three bands, J , H , and K s, with peak sensitivity
t 1235, 1662, and 2159 nm, respectively, which grants information
o separate giant and main-sequence stars (Majewski et al. 2003 )
s well as bolster extinction measurements (as will be discussed
ater). Finally, the unWISE surv e y is built upon the results of the

ISE catalogue described previously (Wright et al. 2010 ), but with
ltered image processing to retain observation resolution in star-
ense regions. This increases the available number of objects with
ISE bands ( W 1, W 2, W 3, and W 4 at 3.4, 4.6, 12, and 22 μm,

espectively), and thus greater coverage at large distances and within
igh-density sky regions. For our sample, we a v oided the W 3 and W 4
ands due to the small number of objects with accurate observations,
hich would have limited the maximum potential size of our

ample. 
With access to the H and W 2 bands, we made use of the Rayleigh–

eans Colour Excess (RJCE) Method (Maje wski, Zaso wski & Nide-
er 2011 ) to determine accurate extinction corrections for objects
n our sample. This approach relies on the fact that, for most
tellar types, intrinsic ( H - W 2) colour is nearly constant. Therefore,
ignificant reddening in this colour can provide a good measure of the
xtinction effects on a star-by-star basis. To transform the extinction
o the other photometric bands, we used the extinction coefficients
rom Wang & Chen ( 2019 ). 

Objects were chosen to ensure good photometry by filtering for
igh-quality observations. We limit the Gaia BP/RP flux excess to
3.0, limit the astrometric renormalized unit weight error to values
1.4, and select only for objects with ‘good’ W 1 and W 2 photometry

rom the UnWISE quality flags. We further ensured our entire sample
ad velocity information (proper motion, radial velocity) from Gaia ,
hich provided kinematic information for stars within our sample.
his kinematic information, when combined with the distances from
ur method, could then allow us to calculate three-dimensional (3D)
elocities for each star, and thus analyse the kinematic distributions
f our sample objects. Due to the limitations of Gaia ’s radial
elocity measurements, requiring radial velocities remained the
argest limit on our sample size, with only 0.4 per cent of the full
urv e y catalogue having radial velocity information. Corrections
o Gaia parallaxes were also made at this stage, accounting for
ero-point errors in the measurements described in Lindegren et al.
 2021 ). 

.2 Methodology 

ur method leveraged the NN architecture described in Section 2 ,
nd a ‘pseudo-absolute magnitude’ measure described by Arenou &
uri ( 1999 ). We anticipated that, if we chose to have the NN predict a
alue of parallax directly from photometric data, the algorithm would
truggle to learn a direct correlation between a star’s photometric
olour and its distance. Ho we ver, as the absolute magnitude of a star
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Figure 3. Plot of object pseudo-absolute J magnitudes against J - H colour. 
Both axes have been corrected for extinction using the RJCE method 
(Majewski et al. 2011 ). The giant-dwarf cut is shown with the main sequence 
in red, and the red clump/giant branch in blue. 
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Figure 4. Plot of parallax uncertainty against object distance for Gaia 
parallaxes (red), our NN parallaxes (blue), and the combined unified parallax 
(green). Note that this sample is not limited to only objects with Gaia radial 
velocities. 
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s intrinsic to the star, it is therefore independent of object distance.
e were thus able to use this as a target for the NN to predict, rather

han attempting to estimate parallax directly. 
We used the pseudo-absolute magnitude defined in the 2MASS 

 -band, M J , pseudo , as the basis for our analysis, where � was the
aia parallax and J c was the extinction-corrected apparent J -band 
agnitude. M J , pseudo was therefore defined as 

 J, pseudo = � 10 0 . 2 J c . (6) 

his value acted as a good proxy for absolute magnitude by combin-
ng parallax and magnitude information. The NN therefore made its 
redictions within the pseudo-absolute magnitude parameter space, 
ather than parallax space, and was therefore generalizable beyond 
he scope of the training data. Had we estimated parallax alone, the
N would struggle to predict reliably towards (and beyond) the edges 
f the parameter space – especially towards distant object parallaxes 
t the smallest end of our range. Furthermore, this formulation 
or pseudo-absolute magnitude allowed the Gaussian uncertainties 
n parallax to be translated into Gaussian uncertainties in pseudo- 
bsolute magnitude space. 

Initially, we used this value to filter our sample for giant stars.
ue to their intrinsic brightness, giant stars are ideal targets for

ong distance analysis of the Milky Way’s population. Therefore, to 
 v oid the NN’s attention being split between dwarf and giant stars
hile training – and thus lowering the model’s o v erall performance 
we remo v ed non-giant stars from our sample. The giant and

warf populations were clearly visible in colour–pseudo-absolute 
agnitude space, and so we were able to apply a simple cut in these

arameters. With M J and M H being 2MASS J and H extinction- 
orrected apparent magnitudes, respectively, and the J -band pseudo- 
bsolute magnitude being M J , pseudo , we selected only objects where 

 J, pseudo < 492 . 101( M J − M H ) − 53 . 827 . (7) 

his cut is shown clearly in Fig. 3 , separating the red clump and giant
ranch from the main sequence. 
From this, we set the NN to accept 16 photometric colours as our

nput array, x , (described in Appendix A ), and to predict the pseudo-
bsolute magnitude, y . As mentioned previously, using M J , pseudo had 
he notable advantage of inheriting the Gaussian uncertainties of the 
aia parallaxes. We then returned a NN-refined parallax value, μNN , 
s 

NN = M J, pseudo 10 −0 . 2 J c , (8) 

nd similar for the uncertainty σ NN from the uncertainty node. 
To train the network, we followed a method of ‘cross-training’ 

hich functioned similarly to common cross-validation methods. 
As every object in our data sample has a Gaia parallax, we chose

o train the NN on our sample rather than some external source.
n order to train our sample, we split our sample into eight equal
chunks’ which we iterated through. For each chunk, the remaining 
88 per cent was used to train our network, and returned new

arallaxes for objects within the chosen chunk. After each iteration, 
e reset the NN’s training for the new chunk which a v oids biases

rising from objects appearing in both the training and prediction 
ata sets. 
With the network’s predictions applied to our entire sample, we 

ad derived a set of parallaxes from stellar photometry alone. We
herefore considered these results as independent measurements to 
he parallaxes reported by Gaia . Thus, we combine the two values
o impro v e the o v erall parallax uncertainty. F or an object with a
aia parallax, μGaia , and associated uncertainty, σ Gaia , and with a 
N-predicted parallax, μNN , and associated uncertainty, σ NN , we 

alculate our combined parallax, μnew , and combined uncertainty, 
new as 

new = 

(
μGaia 

σ 2 
Gaia 

+ 

μNN 

σ 2 
NN 

)(
1 

σ 2 
Gaia 

+ 

1 

σ 2 
NN 

)−1 

, (9) 

nd 

1 

σnew 
= 

√ 

1 

σ 2 
Gaia 

+ 

1 

σ 2 
NN 

. (10) 

herefore, we produced a unified parallax value with much narrower 
rror than the initial Gaia parallaxes, reducing the number of stars
ith poorly-informative parallaxes – and so reduced the proportion 
f objects for which the Bailer–Jones statistical prior was dominant 
or distance estimation. 

We note this impro v ement in Fig. 4 , where we sho w ho w parallax
ncertainties vary with distance for our Gaia data, our NN’s outputs,
nd for the unified parallax value. For this comparison, we have
emo v ed the limit of only selecting objects with Gaia radial velocity
MNRAS 516, 5521–5537 (2022) 

art/stac2550_f3.eps
art/stac2550_f4.eps


5526 C. P. Fallows and J. L. Sanders 

M

Figure 5. Plot of NN-estimated distance uncertainties against the corre- 
sponding absolute distances. Note that these contour plots are logarithmic, 
and the upper and lower curves are the 84th and 16th percentiles, respectively. 
Further, note that this sample is not limited to only objects with Gaia radial 
velocities. 
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Table 1. Table of mean distance uncertainties for binned absolute distance 
ranges. All distances are reported in pc. Percentage uncertainties are taken 
with respect to the mid-point of the bin. 

Distance bounds Distance unc. Unc. (per cent) 

0 < d < 2000 ± 35.018 3.5 
2000 < d < 4000 ± 110.750 3.7 
4000 < d < 6000 ± 369.182 7.38 
6000 < d < 8000 ± 748.284 10.67 
8000 < d < 10 000 ± 1142.063 12.69 
10 000 < d < 12 000 ± 1571.712 14.28 
12 000 < d < 14 000 ± 2072.115 15.94 
14 000 < d < 16 000 ± 2672.450 17.81 
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nformation. As objects with radial velocities will tend to be brighter,
aia parallaxes tend to be good, and our NN-based approach
as limited impact. Removing this limit shows a more general
omparison between the Gaia and NN parallax performance, and
ighlights clearly where our method provides improvement. It is clear
hat, at around 6.1 kpc, our NN parallax uncertainties become smaller
han those from Gaia . At distances beyond this, our parallaxes are
herefore more informative than those from Gaia , and our unified
alue retains a low uncertainty out to larger distances. 

With each object given a NN-enhanced parallax, we calculated
ew distance estimations. We apply the method of Bailer-Jones et al.
 2021 ), which uses the parallax information and simulation-backed
rior distributions to return an estimated parallax. Our NN-enhanced
arallaxes form a notable reduction in the number of uninformative
arallaxes, decreasing the parallax uncertainty for around 58 per cent
f our o v erall sample. When we focus only on objects with Gaia
arallax/uncertainty < 2.0, we find around 89 per cent of objects
ee an impro v ement from our method. These distances were taken
orward to calculate objects positions and absolute magnitudes. 

.3 Validation 

o validate the accuracy of the distance predictions, we had three
easures: the uncertainty output calculated by the NN, and two sam-

les with comparison distance estimates. These comparison distance
amples were those calculated by Bailer-Jones et al. ( 2021 ), and those
alculated from the AstroNN algorithm (Leung & Bovy 2019b ). 

.3.1 Network uncertainty 

rom the NN, we obtained a predicted value of distance (and an
ssociated uncertainty) for each object. We found that this value is
ow for the majority of our sample, with the mean uncertainty of our
hole sample being ±159 . 7 pc . We plot these uncertainties versus

stimated distances in Fig. 5 , with uncertainties binned by absolute
istance shown in Table 1 . We note that, as with Fig. 4 , this plot
s not limited to only objects with Gaia radial velocity information.
s discussed in Section 3.2 , this gives us a better sense of our NN’s
NRAS 516, 5521–5537 (2022) 
erformance than if we only focus on the brighter sample with radial
elocity data. 

As expected, distance uncertainties remained small for closer
bjects, and become larger for distant objects. The distance uncertain-
ies remained below 10 per cent for objects closer than approximately
 kpc, with the furthest objects in our sample having distance
ncertainties less than 20 per cent. 

.3.2 Bailer-Jones et al. ( 2021 ) distance comparison 

e compared our network’s performance in comparison to the
hotogeometric values calculated by Bailer-Jones et al. ( 2021 ). These
eference distance values were the values we initially hoped to
mpro v e upon with our method. We used much the same method,
ut applied our NN to reduce the impact of prior terms on the
istance estimates. It was therefore expected for there to be good
greement between the two data sets where parallaxes are highly-
nformati ve, and significant di vergence in the regime where fractional
aia parallax uncertainties were large (i.e. very high uncertainty,
r very small parallaxes) and the NN had a stronger influence. If
ur approach returned accurate distances, we expected to see the
ajority of stars match between the two samples, with divergences in

arallax space remaining symmetric and becoming more prominent
or objects further away. We show this comparison for our sample
n the left-hand panel of Fig. 6 , where we see a clear correlation
etween the two methods (for good parallaxes) with a large scatter
ue to the impact of the NN. 
We further highlight the right-hand panel of Fig. 6 , where we se-

ected a larger comparison sample without the restriction of requiring
adial velocity data for all stars. This allowed us to observe additional
bjects at large distances ( ≥10 kpc ) as well as fainter objects at closer
anges. The minor o v erestimation bias for Bailer-Jones et al. ( 2021 )
istances between 4 and 8 kpc appeared to be due to a divergence
n the underlying methods. As our distance estimates used the same
rior choices as Bailer-Jones et al. ( 2021 ), the primary differences
etween the results arose from our NN providing an improvement
 v er the base Gaia parallaxes. Thus, this bias maps the regime where
ur distances were more weakly constrained by the statistical prior
istribution than in Bailer-Jones et al. ( 2021 ) work. Beyond this
egion, where parallax measurements became too noisy for our NN-
ased approach to impro v e upon, the two methods again converge as
he prior distribution comes to dominate the distance estimates. 

.3.3 AstroNN distance comparison 

inally, we compared our distance estimations to those calculated
y Leung & Bovy ( 2019b ) with the AstroNN machine learning
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Figure 6. Logarithmic contour plot of NN distances from our work versus distances from Bailer-Jones et al. ( 2021 ) for our main sample (left-hand panel). We 
also perform the same comparison for a sample without the prerequisite of radial velocity data allowing comparisons out to greater distance (right-hand panel). 
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Figure 7. Plot of NN distances from our sample versus distances from 

AstroNN (abo v e), with comparison residuals (below). Note, this contour 
plot is logarithmic, and is not limited to only stars with Gaia radial velocities. 
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ackage. The AstroNN package is based on similar NN algorithms 
o our own, and uses APOGEE DR17 spectral data to estimate 
strophysical parameters such as stellar abundances, ages, and 
istances. Therefore, we used these distances as an independent 
ample from which we could draw comparisons to our own results. 

Using a sample of 11 318 common stars (not limited to only
hose with Gaia radial velocities), we plotted the comparison in 
ig. 7 . It was clear there was a strong correlation between the

wo methods with narro w de viations. The dif ferences were also
ymmetric, suggesting no significant systematic errors in our method 
hat had caused notable biasing. Ho we ver, as the majority of our
ample o v erlap e xisted at distances less than ∼4 kpc , a large
roportion of sample objects had informative parallaxes. Therefore, 
e expected to see this strong agreement when comparing these 

wo approaches. Overall, we concluded that our method has very 
ood agreement with the AstroNN distances, and further confirms 
he reliability of our distance estimates. 

.  META LLICITY  ESTIMATION  

ith an accurate measure of distance determined for each object, we 
pplied our method to predict stellar metallicities. 

.1 Data collection 

e built two samples from which we can estimate metallicities: a 
raining (TG) sample, and a photometric-only (PO) test sample. 

The PO sample followed the approach detailed in Section 3.1 , 
rawing astrometric and photometric data from Gaia EDR3 and 
he 2MASS and UnWISE surv e ys. We also included the distance
stimations determined in Section 3 , and applied the same filtering 
o ensure Gaia astrometry includes radial velocities for kinematic 
nalysis. This sample acts as our ‘output’ sample, upon which we 
ill be applying our method for predicting metallicities. 
Our TG sample contained the data we will use to train our NN

lgorithms. This was built from matching objects from our PO 

ample with iron abundance measurements ([Fe/H]) derived from 

wo spectroscopic surv e ys, APOGEE-2 (SDSS DR16) (Majewski 
t al. 2017 ; Ahumada et al. 2020 ) and LAMOST DR6 (Cui et al.
012 ). This sample co v ers the magnitude range of 9 ≤ G ≤ 15.6 in
he Gaia G -band. This spectroscopic information can then be used
s the data set our NN is trained to estimate from photometric data.
e acknowledge that while broad-band photometry will be sensitive 

o o v erall stellar metallicity, we use spectroscopic iron abundance as
n accurate proxy for this value. 

We remo v ed objects with poor spectroscopic data by e xcluding
ources with σT eff /T eff > 1 and σ log g /log g > 1. As the range of
etallicities in the training data crosses [Fe/H] = 0, using fractional

ncertainties causes us to filter valid objects with small absolute 
etallicities. Thus, we do not apply this filter to metallicity. We

nstead incorporate training data uncertainties as part of the NN’s 
raining process (as described in Section 2 ) which accounts for

etallicity uncertainties in the training data set. 
Together, these two spectroscopic surv e ys pro vided a large sample

f objects, mainly due to the large sky region and depths observed
y the LAMOST surv e y. We were therefore confident our train-
ng sample had high-quality metallicities with minimal bias from 

patially unbalanced data sets. We note that, thanks to calibration 
etween giant stars in LAMOST and APOGEE data sets, the two
pectroscopic surv e ys shared a good agreement with their metallicity
bservations (Anguiano et al. 2018 ). Thus, while small discrepancies 
MNRAS 516, 5521–5537 (2022) 
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Figure 8. Plot of NN-estimated photometric metallicities from our cross- 
validation versus metallicities from spectroscopic observations (abo v e), with 
comparison residuals (below). Note, this contour plot is logarithmic. 
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ay occur, we felt confident using the two surv e ys concurrently.
dditionally, in situations where objects appear in both APOGEE

nd LAMOST, we preferred the higher resolution APOGEE data
nd included only this value in our sample. 

.2 Methodology 

e built our network with architecture described in Section 2 , and
elected input features constructed from 16 photometric colours and
ight absolute magnitudes (as described in Appendix A ). For training,
e used the input features alongside our TG sample’s spectroscopic
etallicities to optimize the network to predict metallicities from

hotometry. 
A major deviation from the method used in Section 3 was the

nclusion of an extra weighting term to the network’s loss function
hich w ork ed to down-weight objects with [Fe/H] ≈ 0. This aimed

o oppose the significant o v erab undance of near -solar metallicities
n our TG sample. Without mitigation, the netw ork w ould learn this
mbalance as a trend in the data, and return values which follow
his bias. Thus, we would hav e e xpected the algorithm preferentially
eturn metallicities close to zero, as (when av eraged o v er the entire
ata set) these predictions would be generally accurate. 
Our weighting term took the form of a linear multiplier on the

etwork’s loss function. Modifying equation ( 3 ), with this weighting
erm as W = | [Fe/H] | + C (where C is a constant), the weighted loss
unction is 

 ( y i , ˆ y i ) = 

1 

n 

n ∑ 

i= 1 

W 

2 
( y i − ˆ y i ) 

2 e −s i + 

1 

2 
s i . (11) 

This weighting acted to decrease the ‘loss’ penalty when training
n objects with [Fe/H] ≈ 0, and increased the penalty linearly
or objects with much larger or smaller metallicities. Thus, the
etwork put less effort into accurately predicting objects with solar-
ike metallicities, as penalties were significantly smaller for poor
stimations. The weighting was also tuned with the constant, C,
hich changed the minimum (and maximum) weight an object can
e allocated. For our training, we selected C = 0.5, such that the
enalty multiplier for an object with [Fe/H] = 0 was × 0.5 and an
bject with [Fe/H] = −2 was × 2.5. We chose this value to increase
he network’s sensitivity to very low- and high-metallicity objects,
hile reducing the priority of metallicities between −0.5 < [Fe/H]
 0.5 (the metallicity region of the majority of our TG sample).
his ensured that objects with near-solar metallicities still retained a
mall impact on the network training, while maximizing the relative
eighting between the high and low ends of the metallicity range. 
One small side-effect of this weighting procedure was a reduction

n accuracy for objects with [Fe/H] ≈ 0, due to the network
onsidering them as lo wer priority. Ho we ver, this had a negligible
ffect on the o v erall prediction accurac y: The larger population
f objects with [Fe/H] ≈ 0 somewhat offset this effect, while the
mpro v ements to high-/low-metallicity predictions provided much

ore significant enhancement. 
We also note that the inclusion of the weighting term in equa-

ion ( 11 ) may have also caused a small increase in the uncertainties
utput by the network. As s i incorporates the predictive uncertainty of
he NN, the network may have returned slightly larger uncertainties
o account for the weighting term. For objects at high- and low-

etallicities, which would be most affected by the weighting term,
his uncertainty increase would be the most severe. In this case, we
ould expect the potency of the weighting term’s bias-reduction
ould have been reduced. 
NRAS 516, 5521–5537 (2022) 
The success of this approach was not perfect, as we found that
ncertainties still vary with respect to predicted metallicity. As shown
n Fig. 8 , even with the weighting term included, the prediction
ncertainty w as f ar larger for the highest and lowest metallicity
bjects. Ho we ver, for the majority of our sample, the uncertainties
emained small enough to be sufficient for our purposes. 

There are two potential approaches to mitigate this in future work:
ore complex weighting criteria, to better reduce the impact of

nbalanced data; or observing a greater number of objects with
xtremely high/low metallicities. While weighting may work to
uccessfully mitigate this issue in some instances, removal of the
mbalance altogether would be preferred, which can only be achieved
hrough the latter of these two solutions. 

The use of narrower bands, especially those bluer than in our data,
ay form a notable impro v ement o v er using broad-band photometry

lone. The benefits of these bands for measuring stellar parameters
ave been shown by Keller et al. ( 2007 ) and Arentsen et al. ( 2020 ).
o we v er, the e xtreme e xtinction effects in these bands within re gions

uch as the mid-plane or central bulge add additional complexities
o their inclusion into our data set. 

.3 Validation 

o validate the prediction accuracy, we had two measures: the uncer-
ainty output calculated by the NN, and its performance compared
gainst spectroscopically determined metallicities. 

From the network’s uncertainty measure, we found a very high
onfidence in the metallicity predictions being made. We returned a
ean uncertainty output of ±0 . 185 dex o v er our entire sample. We

how our metallicity uncertainties binned by predicted metallicity in
able 2 . This reiterates the correlation shown in Fig. 9 . It is clear that
ithin the range −0.5 < [Fe/H] < 0.5 our predictions perform the
est with an uncertainty of ±0.15, and we have worse performance
t low metallicities ([Fe/H] < −1.5). We also found that, while there
s a large tail of high uncertainty predictions, these outputs only
ake up a small fraction of our entire sample: 97.49 per cent of our
O sample has uncertainties below ±0 . 5 dex . In comparison, the
pectroscopic metallicities in the range −0.5 < [Fe/H] < 0.5 have a
ean uncertainty of ±0 . 046 dex , meaning our best-case metallicities

ave uncertainties about three times that of the spectroscopic data.
e find these uncertainties are comparable to the results of other
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Table 2. Table of mean metallicity uncertainties for binned metallicity 
ranges. Note that the top-most row shows the mean metallicity uncertainty 
o v er the entire sample. 

[Fe/H] bounds [Fe/H] unc. Obj. counts 

−3.5 < [Fe/H] < 1.5 ± 0.185 1 697 077 
−3.5 < [Fe/H] < −2.5 ± 4.042 713 
−2.5 < [Fe/H] < −1.5 ± 1.713 12 392 
−1.5 < [Fe/H] < −0.5 ± 0.404 145 177 
−0.5 < [Fe/H] < 0.5 ± 0.150 1 538 047 
0.5 < [Fe/H] < 1.5 ± 0.537 736 
1.5 < [Fe/H] < 2.5 ± 1.009 12 

Figure 9. Plot of metallicity uncertainty against metallicity for our NN- 
estimated photometric metallicity values. The lowest uncertainty predictions 
are those with absolute metallicity close to 0.0 dex (the highest population 
region), with uncertainties becoming more significant at the edges of our 
distribution. 
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Figure 10. Plot of NN metallicity uncertainties (solid red) and the residuals 
between the NN and spectroscopic metallicities (blue dashed) from Fig. 7 ’s 
lower panel, plotted against absolute predicted metallicity. These uncertainties 
diverge notably from the trend shown in Fig. 9 , as these are objects from 

our spectroscopically-matched TG sample – and thus, tend to be closer and 
brighter than many objects in our output sample. 
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hotometric metallicity methods, with Grady et al. ( 2021 ) finding an
ncertainty of ±0.21 ([Fe/H] > −0.5), Huang et al. ( 2022 ) finding
n uncertainty of approximately ±0.12 ( −0.5 < [Fe/H] < 0.5), and
in et al. ( 2022 ) finding an uncertainty of ±0.2 dex. Furthermore, we
irectly compare our metallicities to those from Huang et al. ( 2022 )
nd Lin et al. ( 2022 ) in Appendix B , and find reasonable agreement
o these methods. 

We note that the range of Fig. 9 extends beyond the metallicity
ange of our TG sample. The minimum metallicity from the spectro- 
copically measured giant stars was −2.49 dex, and the maximum 

etallicity being 0.74 dex. Outside of this range, the NN must
 xtrapolate be yond the training data – and thus causes returned 
ncertainties to be very large. This is most apparent abo v e 0.74
ex, where uncertainties become extremely large beyond the extent 
f the training data. We therefore recognize that metallicities at the 
xtreme edges of our metallicity distribution should be ignored in 
urther analyses (either by specific cuts to metallicity, or by filtering 
or extreme metallicity uncertainties). 

We further compared the predictions made by our NN to metal- 
icities from APOGEE and LAMOST, providing a measure of the 
reco v ery accurac y’ of the netw ork. This w ork ed to cross-check
he uncertainty values outputted by the NN, ensuring that the 
etwork retains its high accuracy when compared to ‘true’ data 
 alues. This v alidation is achie ved through a method of out-of-bag
ross-validation. We selected a fraction of our TG sample to be 
emo v ed from the network’s training process, which we then used
o validate the model’s predictions. We chose a validation sample 
plit of 15 per cent of our TG sample, leaving 85 per cent to train
he network. The network’s predictions on the validation sample 
ere then compared to the spectroscopic measurement, with the 

omparison shown in Fig. 8 . We find there is a good correlation
etween our method and the spectroscopic data, suggesting our 
pproach is successful in accurately reproducing metallicity values. 
o we ver, we do confirm the minor bias apparent in the residuals at
igh and low metallicities, with an o v erestimation of metallicities
elow [Fe/H] < −0.5 and a smaller biasing of underestimated 
etallicities for high [Fe/H] objects. This ‘regression to the mean’ 

ffect is a common issue for NN algorithms using unbalanced data
ets, and so suggests our weighting term has not fully remo v ed these
ffects. Analyses using lower metallicity objects must take this into 
ccount. 

We finally analyse the effect the weighting term may be having
n the predicted metallicity uncertainties, as noted in the previous 
ection. We compare the NN’s output uncertainties to the residual 
catter in the lower panel of Fig. 8 . If the network is predicting
arger uncertainties due to inclusion of the weighting term, we would
xpect the output uncertainties to be much larger than the scatter in
he residuals. We plot this in Fig. 10 . Note that we have significantly
ewer objects at [Fe/H] < −1 (137 objects) than for [Fe/H] > −1
15 430 objects), and so our trends are poor beyond this threshold.
his figure shows clearly that, for the metallicity range where we
ave large numbers of objects, we see a good agreement between
N uncertainties and residual scatter. Thus, we conclude that the 
eighting term does not appear to be causing the NN uncertainties

o be output significantly larger than expected. Furthermore, we 
ote that the uncertainties shown in Fig. 9 and Table 2 may be
 v erestimated at the low-[Fe/H] regime, as they are significantly
arger than we would expect from the residual scatter trend. 

.  RESULTS  A N D  ANALYSI S  

ith the completion of the metallicity estimation, we returned 
ur PO sample of 1 689 885 objects with: Gaia astrometry; eight
hotometric colours from Gaia , 2MASS, and WISE; kinematic 
nformation from Gaia proper motions and radial velocities; and 
MNRAS 516, 5521–5537 (2022) 
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hotometric metallicity estimations. Furthermore, we calculated 3D
alactocentric coordinates and velocities based on our distance

stimates. Using a right-handed coordinate system, we converted
aia astrometry (sky positions and velocities) into Galactic positions

nd velocities. In this system, the X -axis is along the Sun–Galactic
entre (GC) direction with positive towards the GC. The longitudinal
xis, Y , sits perpendicular to X along the Galactic plane, with positive
 in the direction of positive Galactic longitude. The vertical axis, Z ,

s directed out of the Galactic plane with positi ve to wards Galactic
orth. All axes have their origin at the GC. 
We applied our catalogue to determine the out-of-plane metallicity

radient of the Galactic bulge, and to identify the v erte x angle of the
ilky Way’s bar from stellar kinematics and metallicity. 

.1 Vertical metallicity gradient in the Galactic bulge 

he presence of a metallicity gradient, vertically out of the Galactic
lane, in the region of the bulge has been identified in many
revious studies. This gradient is suggested by some to be the
ffect of o v erlapping populations within the bulge region (Barbuy
t al. 2018 ). These intersecting structures include bulge and bar
opulations, as well as the surrounding disc and halo structures.
s we observ e a way from the Galactic plane, we see the changing

nfluence on each of these independent components, which creates
 gradient in the observed metallicity distribution. Alternatively,
ther work proposes that this gradient instead forms from the
inematic separation of different populations during the formation
f the bulge and bar (Debattista et al. 2017 ). Due to bursts of star
ormation during bulge formation, populations of metal-poor and
etal-rich stars can become separated kinematically into hotter and

older velocity distributions. This causes a metallicity gradient to
e observed, without the need for distinct, o v erlapping populations.
s summarized by Ness & Freeman ( 2016 ), gradients have been
bserved in past literature of around −0.45 dex kpc −1 (Ness et al.
013 ), with some methods observing as low as −0.6 dex kpc −1 

Zoccali et al. 2008 ) and as high as −0.35 dex kpc −1 (Minniti et al.
995 ). 
To draw this trend from our data, we first defined our selection

egion of the ‘bulge’. Using our 3D Galactocentric Cartesian co-
rdinates, we defined our bulge region to be within 2.5-kpc radius
along the plane) of the GC – selecting a cylindrical volume centred
n the GC. We also applied filtering on selected objects, removing
tars with metallicity uncertainties greater than ±0.5 dex, positional
ncertainties greater than ±1 kpc, and velocity uncertainties greater
han ±250 km s −1 . We note that the filter on metallicity uncertainty
ill ensure we are only selecting objects with ‘good’ metallicity

stimations, but will also introduce a bias into the gradient observed.
iltering out objects with metallicity uncertainty greater than ±0.5
ex will predominantly remove objects with [Fe/H] < −1 dex and
Fe/H] > 0.5 dex. Thus, the trends we observe in metallicity will
otentially ignore populations of high- or low-metallicity stars that
ould otherwise shift the mean metallicity at a chosen position

n the Galaxy, and cause our reco v ered gradient to be under or
 v erestimated. 
Initially, we plot stellar metallicity against object height

bo v e/below the Galactic plane, Z , for the PO sample in the left-
and panel of Fig. 11 . It is clear the trends visible are very noisy,
ith a large uncertainty across the range of Z -values shown. We
nd this is a limitation due to the small number of objects with
aia radial velocity information within the volume, limiting us to
nly 22 280 objects. This small subsample leads to a large scatter in
edian metallicity with Z -height, and reduces the strength of trends
NRAS 516, 5521–5537 (2022) 
e can dra w. F ortunately, we do not need velocity information to
raw a positional metallicity gradient, and thus we could remove
his requirement when collecting our data set and expect to see more
bjects within the sample volume. 
Including objects without radial velocities, we applied our NN

o estimate metallicities for the larger sample. This is shown in the
iddle panel of Fig. 11 , which mirrors the left-hand panel while

howing a much stronger trend across the Z -height range. As we
xpect the gradient to be symmetric abo v e and below the plane,
e further plot the median metallicity against the absolute Z -height

n the right-hand panel of Fig. 11 , which increases the strength of
bserved trends and further constrains the level of uncertainty in a
easured gradient. 
We also note the clear gradient inversion visible within 500 pc of

he plane. This appears to retain the well-constrained uncertainties
etween approximately 250 and 500 pc, before the trend becomes
xtremely scattered towards the mid-plane. This is unexpected, as
onzalez & Gadotti ( 2016 ) note that many past works with spectro-

copic data have recovered a smooth metallicity–height relation, from
ower metallicity objects far from the plane, and higher metallicity
bjects towards the mid-plane. 
This metallicity gradient change towards lower latitudes has been

oted by Rich, Origlia & Valenti ( 2012 ), who observed the vertical
radient flattens below a vertical height of 550 pc. Furthermore,
abusiaux et al. ( 2014 ) found hints that the gradient indeed inverts
lose to the plane. This is proposed to have been due to early-
orming stars becoming trapped in the inner regions of the Galaxy
s it formed, and remaining bound in the mid-plane during bar
uckling. Alternati vely, this lo w-metallicity core population may
e the result of metal-poor gas being funnelled into the bulge by
he bar, forming this metallicity inversion towards the mid-plane.

e therefore find our results agree with these past findings, and
onfirm the presence of a low-metallicity population towards the
id-plane. 
We compute a metallicity gradient between 700 ≤ Z ≤ 1600 pc,

nd return a value of −0.5278 ± 0.0022 dex kpc −1 (outwards from
he galactic plane). It is useful to note that we are assuming a linear
elationship between metallicity and Z -height within the quoted range
nly, and so does not account for the gradient flattening at values of
 outside of our selection. 
We find a vertical metallicity gradient that is well within the

iterature range of values, although towards the steeper end. This
uggests our observed metallicity distribution diverges significantly
rom that found by Minniti et al. ( 1995 ) and slightly from that
f Ness et al. ( 2013 ). We suggest that such a discrepancy is
xpected between our method and those that use spectroscopic data.
ue to the selection criteria used by spectroscopic surv e ys, we

xpect to find our photometric-based data to be sampling a slightly
ifferent stellar distribution, and return a slightly different metallicity
radient. 
Furthermore, we note that the metallicity bias described in Sec-

ion 4.3 may have also biased our recovered gradient. As we expect
ow-metallicity populations to be more common at higher latitudes,
e expect the metallicity overestimation bias to have a stronger

mpact further from the plane. This would cause our gradient to be
easured as shallower, as the mean metallicity at higher latitudes
ould be increased, while the metallicity of the mid-plane would

emain mostly unchanged. 
Overall, our main conclusion from this analysis remains that our

ata has successfully returned positions and metallicity estimations,
hich accurately trace known abundance trends within the Milky
ay. 
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Figure 11. Logarithmic contour plot of median metallicity against an object’s height, Z , for objects within the bulge selection volume. We plot objects with 
radial velocity information (left-hand panel), objects without radial velocities (right-hand panel), and objects without radial velocities plotted against absolute 
Z -height (bottom panel). For the bottom panel, we find the median curve to peak at approximately 560 pc with a metallicity of 0.173 dex. Note that the upper 
and lower curves are the 84th and 16th percentiles, respectively. 
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.2 The vertex deviation of the bar 

s we have radial velocities from Gaia DR2, we have also been
ble to use our catalogue to analyse the kinematics of the Galactic
ar -b ulge. One quantity useful for probing the kinematic properties 
f the bar is the v erte x angle or v erte x deviation, that is the angle of
he major axis of the velocity ellipsoid relative to the GC direction
iving an indication of the orientation of the bar (Zhao, Spergel &
ich 1994 ). 
Vertex angles, l v , are defined as 

 v = 

1 

2 
arctan 

(
2 σ 2 

XY 

σ 2 
X − σ 2 

Y 

)
, (12) 

here σ 2 
X is the velocity dispersion on the Galactocentric X -axis, 

2 
Y is the dispersion in the Y -axis, and σ 2 

XY is the correlation term.
he angle is calculated from the Sun–GC line such that the value is
ithin | l v | ≤ 45 ◦. The angle is positive in the direction of positive
alactic longitude (anticlockwise rotated bar), and ne gativ e in the 
irection of ne gativ e longitude (clockwise rotated bar). For an 
xisymmetric velocity distribution, the vertex angle is ill-defined 
as the major and minor axes are equal) and we would expect any
easurement to be unconstrained. 
Existing literature has measured this value, and found a bar- 

ike signal for metal-rich bulge objects. Zhao et al. ( 1994 ) note
 v erte x angle of −65 ± 9 ◦ (for [Fe/H] ≥ 0.0), while Babusiaux
t al. ( 2010 ) measures an angle of −32 ± 9 ◦ (for [Fe/H] ≥ 0.3).
oth studies also found that low-metallicity objects show a high- 

catter, near-zero v erte x angle — and thus not a bar-like signal.
his suggests spherical or disc-like rotation in these metal-poor 
opulations. 
We note that, for our analysis, we use our Galactocentric co-

rdinate system ( X / Y / Z ) to determine the angle of the velocity
llipsoid, rather than the usual Galactic coordinates ( r / l / b ). For
he sk y re gion of interest, these are broadly equi v alent, but using
his definition does alter the returned ‘v erte x angle’ in comparison
o past literature. We selected these coordinates as it ensures all
bject v elocity v ectors hav e parallel ax es, which is not the case
hen using Galactic coordinates across large sky regions. Note 

hat the orientations of our axes are described at the end of
ection 3.2 . 
For this method, we developed a Bayesian inference process 

sing a STAN implementation in Python (CmdPyStan, Stan Dev 
eam 2021 ). We constructed a Markov Chain Monte Carlo method
MCMC), which accepted 3D v elocity v ectors, v i , (in the XYZ co-
rdinate system) and corresponding velocity uncertainty covariance 
atrices, � unc and e v aluated the log-likelihood as a two-component
aussian mixture model with distribution means, μn , and covariance 
atrices � v, n . Such a mixture model allows us to isolate a minor

anomalous’ component from the data, and return a stronger signal 
f interest. For this method, we e v aluated the log-likelihood of each
MNRAS 516, 5521–5537 (2022) 
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M

Figure 12. Plot of v erte x angle calculated for seven metallicity bins, drawn from ∼4200 objects within the selected bulge region. The angles plotted in red are 
measured with the velocity ellipsoid centred at the mean velocity of the data, while angles plotted in green are measured with the velocity ellipsoid centred at 
the velocity of the GC. The bin object counts, from low- to high-metallicity, are: 4, 73, 600, 1882, 981, 418, and 56. 
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aussian component as 

ln L n = 

−1 

2 

∑ 

i 

(
( v i − μn ) 

T ( � v ,n + � unc ,i ) 
−1 ( v i − μn ) + ln | � v ,n + � unc ,i(

he two components are thus e v aluated to assign member stars, with
he two-component distribution given by 

 total = λL a + (1 − λ) L b , (14) 

here a and b denote the two components, and λ is a ratio of the two
omponents where 0 ≤ λ ≤ 1, and L total is the o v erall log-likelihood.

From the major component in the mixture model, we infer
he mean velocity, μ and the velocity ellipsoid, � v , which has
omponents 

 v = 

⎛ 

⎝ 

σ 2 
X σ 2 

XY σ 2 
XZ 

σ 2 
XY σ 2 

Y σ 2 
YZ 

σ 2 
XZ σ 2 

YZ σ 2 
Z 

⎞ 

⎠ , (15) 

rom which the v erte x angle can be calculated using equation ( 12 ).
s the MCMC method returns a distribution of covariance matrices,
e output a distribution of v erte x angles. From this, we calculated a
edian value and percentile uncertainties for our v erte x angle. 
We selected our sample as an on-sky region, with | l | ≤ 5 ◦

nd | b | ≤ 10 ◦, and limited to distances between 6 and 10 kpc.
his forms a volume approximately 700-pc wide on the Y -axis,
NRAS 516, 5521–5537 (2022) 
.5 kpc on the Z -axis, and 2-kpc deep in the X -axis. We note
ere that this volume-based sample selection is strongly affected
y the distances, and thus the distance uncertainties, reported for
ach star. We therefore filtered our objects for only those with
istance uncertainties smaller than ±1 kpc, to limit the effect of
on-bulge/bar objects with large uncertainties being included in
he selection. We also applied filters on extreme metallicity uncer-
ainty ([Fe/H] unc < 1.0), extreme Galactocentric velocity uncertainty
velocity unc. < 250 km s −1 ), and perpendicular axis ( Y and Z )
ositional uncertainty (position unc. < 1 kpc). This selection region
s strongly limited by the maximum depth of objects with radial
elocity information, which causes our sample to be predominantly
bjects on the near-side of the bulge, with far fewer objects at greater
istances. 
To identify the cutoff between high- and low-metallicity samples,

e split our sample by metallicity into bins of width 0.35 dex
etween the range of −1.65 and + 0.8 dex. Due to the associated
ncertainties at extremely high- and low-metallicities, we observe
ery few objects with [Fe/H] unc < 1.0 outside of this range. We note
hat for objects beyond the range −0.5 < [Fe/H] < 0.5, the metallicity
ncertainty is larger than the 0.35-dex bins we use in Fig. 12 . We
herefore expect the bins within this ‘good’ range of metallicities
o be accurately binned with predominantly objects within the bin
ange and little contamination. Ho we ver, for metallicity ranges with
igher mean metallicity uncertainties, we expect contamination to be
igher between bins. This would cause us to return angles with large
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Table 3. Results of v erte x deviation calculations of the Milky Way’s bulge. 
The v erte x angle is the value returned by the analysis, the uncertainty is the 
difference between the 16th and 84th percentiles of the angle distribution. We 
also include the range (1st to 99th percentile) of the distribution, to illustrate 
the edges – and thus the broadness – of the two prediction distributions. 

[Fe/H] range (dex) [Fe/H] ≤ −0.6 [Fe/H] ≥ −0.4 

Vertex angle (deg) 6.8526 −21.2896 
Angle uncertainty (deg) ± 16.4271 ± 2.7367 
Angle range (deg) ± 108.9450 ± 13.2134 
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ncertainties in these bins, as the contaminant objects will bring a 
arger distribution of object kinematics. 

The v erte x angle was calculated within each bin. This binned
alculation is plotted in Fig. 12 . For low-metallicity bins, the v erte x
eviation is approximately zero, whilst for higher metallicities a large 
e gativ e angle is found. 
We further compare these values against a slightly modified v erte x

ngle calculation, where instead of centring the velocity ellipsoid on 
he fitted mean velocity of the data, we assume the mean velocity
s zero. As our sample appears to be biased towards objects on the
ear-side of the bulge, we find that high-metallicity objects have a 
ean velocity dominated by Galactic rotation. Centring the ellipsoid 

n this mean remo v es this net motion from our v erte x deviation
alculations, and gives a better fit to the kinematic data. 

Ho we ver, this is not the only approach to determine the v erte x an-
le from objects kinematics. If our data was more evenly distributed 
cross the bulge region, rather than predominantly on the near-side, 
e would expect to find the mean of the velocity distribution close

o zero in all axes (rather than dominated by galactic rotation). We
herefore estimate the v erte x angle with the ellipsoid means ‘zeroed’,
o emulate the angle we would return from an unbiased sample. This
zeroed’ approach will likely be a poorer fit to our biased data set,
ut we find the comparison useful to understand the angle we expect
o observe with a kinematically unbiased sample. 

We note that our initial method with the means estimated by the
lgorithm is noted as the ‘fitted’ ellipsoid, while the method with 
llipsoid means constrained at zero is the ‘zeroed’ ellipsoid. 

From this binned selection we selected two main samples: a 
igh-metallicity bin, and a low-metallicity bin. This maximized the 
umber of objects used to calculate the v erte x angle, and limited
he potential uncertainties from small sample sizes. We selected our 
ow-metallicity bin where [Fe/H] ≤ −0.7 and our high-metallicity 
in where [Fe/H] ≥ −0.4. Using these we retained large samples, 
nd reco v ered v erte x angles with minimized scatter. 

In the region between these two bins, where −0.7 ≤ [Fe/H] ≤
0.4, we found a mean angle of −18 . 449 ± 8 . 644 deg , which fell

etween that of the high- and low-metallicity bins and retained a 
arge uncertainty value. This suggested we were seeing an o v erlap
f the two regimes, where scatter in metallicity predictions make it
ifficult to differentiate the distinct kinematic profiles. We therefore 
 xcluded this re gion from our analysis, and focused on the selected
igh- and low-metallicity samples. 
We note that contamination between these two bins will be less

evere than for the smaller bins used in Fig. 12 . As we separate
ur two bins with the intermediate −0.7 ≤ [Fe/H] ≤ −0.4 region, 
here will be few objects with uncertainties extreme enough to 
ontaminate the other bin. The most significant issues will arise 
or objects with [Fe/H] < −1.5 dex, as their uncertainties become 
arge enough to potentially contaminate the binning. Ho we ver, as
oted previously, we have a very small sample of objects with 
hese very low metallicities. Thus while there may be contami- 
ation, we expect this to have a minor influence on the angles
alculated. 

With the metallicity ranges set, we re-applied the Bayesian model 
o draw a vertex angle for each of these two samples. These results
re shown in Table 3 and show that there was a clear difference
etween the velocity distribution of the low- and high-metallicity 
amples. The low-metallicity objects appear to have a small v erte x
ngle with a high uncertainty, suggesting minimal bar-like signal in 
he data. Conversely, we show a much more ne gativ e, low uncertainty
 erte x angle present in the high-metallicity sample, with an angle of
21 . 29 ± 2 . 74 deg . 
Our results therefore confirm the kinematic split of bulge popula- 
ions by metallicity. We observe that lower metallicity bulge objects 
how more axisymmetric kinematics around the GC, suggesting they 
re populations found in the spheroidal-shaped bulge or thick disc. 
n the other hand, higher metallicity objects show a large, low-
ncertainty v erte x angle, suggesting these objects instead have a
ar-like kinematic structure, and so will be members of the Milky
ay’s bar population. 
Ho we v er, the high-metallicity v erte x angles are much lower than

hose found by past works, with our measured angle being around
10 deg smaller although still within the uncertainties of the 
easurement from Babusiaux et al. ( 2014 ). This suggests that we

ither measure a bar that is rotated to a smaller angle than prior
 orks, or a weak er bar-lik e signal from a more axisymmetric velocity
istribution. 
We apply our ‘zeroed’ approach to these high- and low-metallicity 

amples, with both the ‘zeroed’ and fitted mean distributions shown in 
ig. 13 . It is clear that, for the low-metallicity sample, both the fitted
eans and the ‘zeroed’ means trace a similar spherically symmetric 

istribution, centred on the origin. On the other hand, for the high-
etallicity sample, the two distributions diverge significantly, with a 
 erte x angle of −47.32 ± 3.93 deg, compared to the fitted ellipsoid’s
 erte x angle of −21.29 ± 2.73 deg. While the fitted ellipsoid is the
etter fit for the data set, it is noticeably more spheroidal than the
uch more extended ‘zeroed’ ellipsoid. 
While the ‘zeroed’ approach is a slightly poorer fit to our data

et, this larger angle is much closer to the v erte x angle calculated
y past works (from −32 deg to −65 deg). This suggests that while
ur ellipsoid with fitted means is a better fit to our data set, the
elocity bias present means we return an angle that is smaller than
xpected. Our ‘zeroed’ ellipsoid being closer to the expected vertex 
ngle suggests that mitigation of this bias is necessary to fully reco v er
he bar v erte x angle. This can be done either through centring the
llipsoids on zero in all axes, or by building a data set with greater
epth to ensure a more balanced distribution of objects across the
ulge. In this case, we would expect the means of the velocity
istribution to tend towards zero, and so we would see a distribution
loser to that of the ‘zeroed’ ellipsoid. 

We do ho we ver conclude that we detect a clear difference in
 erte x angles measured for our high- and low-metallicity samples.
he observation that galaxy bar-populations are metal-rich (in 
omparison to other bulge components) has been discussed by Wegg 
t al. ( 2019 ), who suggest this describes a formation process where
he bar is formed from higher metallicity, kinematically cool stars 
hich orbit outside of the central bulge, and thus form this separate
opulation within the GC. They also note that a metal-rich bar has
lso been identified in other nearby galaxies (Gadotti et al. 2019 ),
otably including M31 (Saglia et al. 2018 ). 
Overall, we can confirm the success of our method in recovering

his known bar-like signal from objects from photometrically esti- 
MNRAS 516, 5521–5537 (2022) 
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Figure 13. Plot of the velocity distribution on the x ( Vx ) and y ( Vy ) axes. The fitted velocity ellipsoids are shown, where the ellipsoids means are fitted to the 
sample mean velocity ( red ) and the origin of the plot ( green ). 
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ated distances and metallicities. We are also able to highlight the
tility of our approach to be applied to structures like the Milky Way’s
ar, where debates on the metallicity and kinematic distributions are
ngoing. 

.3 Limitations 

e note there is a limitation in our approach to selecting a bulge
ample for our two analyses. Our approach in both cases was to select
arget volumes using cuts in either on-sky Galactic coordinates or
alactocentric positions. These approaches predominantly selected
ulge objects within the chosen region of the bulge, and so forms
ur stellar population of interest. Ho we ver, we did not make any
ttempt to isolate any specific population or Galactic component. We
herefore note that these selections contain non-bulge populations
hich o v erlap the chosen spatial re gion, such as from the Milk y
ay’s disc or halo. In future work, we hope to include a more robust

election approach, which would account for additional parameters
ike stellar types or kinematics and allow us to target specific
opulations with specific analyses. 
Our distance cuts also must account for the potential bias between
etallicity and distance. This bias occurs due to low-metallicity

tars being brighter than higher metallicity stars of the same ef fecti ve
emperature (Ahumada et al. 2020 ; Chiti et al. 2021 ). Low-metallicity
tars are then o v erselected at greater distances, especially beyond
 kpc from the Sun (as noted by Chiti et al. 2021 ). Ho we ver, as
ur volume-based sample selections collect only a small range of
ossible distances, the near- and far-sides of out samples will have
ad approximately similar numbers of o v erselected low-metallicity
tars. We therefore expect this bias to have only had minor effects on
ur analyses. 
Furthermore, we also note a limitation in how we filtered our

amples by metallicity uncertainty. As we wished to focus on
ow metallicity correlates with object positions and kinematics,
e attempted to focus only on objects with ‘good’ metallicity
easurements. Ho we ver, as was noted in Section 4.3 , our metallicity

ncertainties vary with absolute metallicity. Therefore any filtering
y metallicity uncertainty introduces a bias in our sample, due
o removing very high- or low-metallicity objects. This bias was
nlikely to cause a major deviation in the trends we observed,
s 97.5 per cent of our output sample has metallicity uncertainties
NRAS 516, 5521–5537 (2022) 
maller than ±0.5 dex. Ho we ver, we note that the trends we observe
re most strongly applicable to objects with solar-like metallicity, and
ay not fully account for very high- or low-metallicity populations.

.  C O N C L U S I O N  &  DI SCUSSI ON  

ur method to determine metallicity information from photometric
nformation was built on a three-step process: We first built a NN
lgorithm which enhanced Gaia parallax values with photometric
nformation. This allowed us to determine distance estimations with
reater accuracy, which we could then bring forwards to predicting
etallicities. With accurate distances, we were then able to train

ur NN model to predict stellar metallicities from APOGEE and
AMOST spectra, allowing the NN to estimate metallicity from
hotometric colours and absolute magnitudes alone. From this, we
ould build a sample of objects with Gaia astrometry and metallicity
nformation, allowing for analysis of the positional, kinematic, and

etallicity trends in Milky Way populations. Finally, to test our
ethod, we compared against known trends in the Milky Way . Firstly ,
e measured a vertical metallicity gradient within the Galactic bulge

rom our data, and compared this to known values in the literature.
hen, we used a statistical model to estimate the v erte x deviation of
ifferent metallicity populations in the Galactic bar. 

.1 Method impro v ements 

espite our confidence in our results, we still acknowledge there are
ome outstanding limitations in our method. The primary of these
s the amount of data we had available to train the network. Due to
he limited depth of Gaia ’s (DR2) radial velocity data, there was a
ignificant decrease in the number of stars available at large distances.
his manifested quite clearly with our analysis in Section 5.2 , where

he limited object numbers in our bulge sample led to a lack of objects
t the edges of our metallicity range. Therefore, analysis of the bar’s
 erte x angle required us to choose large bins in our high- and low-
etallicity regimes to maintain higher object counts. Ho we ver, this

pproach increased the risk of contamination from o v erlap of the two
egimes, as we attempted to maximize the available sample sizes. 

Furthermore, our method can be applied to analyses that do
ot require kinematic information (such as gradients or trends in
tellar positions), lacking kinematic information severely reduces
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he trends and phenomena we can target in future. For example, 
ithout velocity information, our methodology would be unable to 

nvestigate the properties of bound groupings of stars (i.e. Milky Way 
tructures, accreted substructures) where metallicity and kinematics 
re essential to identification and analysis. 

With the Gaia DR3 release, the magnitude limit of the radial 
elocity is fainter (Gaia Collaboration 2021 ), and so we expect 
he number of objects we can return with full kinematic data will
ncrease drastically. This would allow our primary output sample 
o be significantly larger, and permit us to expand the range of
opulations we can determine metallicities for. Furthermore, the 
ddition of BP/RP spectra in the DR3 release will provide additional 
ata from which our method can estimate metallicities. 
We find another limitation in the lack of a good comparison 

ample for our metallicity estimations. While we are confident in 
ur abundance estimates thanks to comparisons with APOGEE and 
AMOST validation sets, the most robust comparison would be to 
se an independent surv e y sample. As we use these two spectroscopic 
amples as part of our training process, we cannot discern whether 
ur metallicity outputs incorporate the biases or errors from these 
pectroscopic surv e ys. Thus, a comparison with an independent 
urv e y would ensure these biases could be accounted for. 

In future work, we would be able to build a comparison sample
rom a selection of current and future surv e ys. In the immediate
uture, we could utilize the cross-match between our sample and 
he GALAH (Buder et al. 2019 ), RAVE (Steinmetz et al. 2020 ),
r SEGUE (Yanny et al. 2009 ) surveys – each of which is on the
cale of 10 4 –10 5 objects, and would have notable overlap with our
aia -based data. Furthermore, within the next couple of years, the 

arge-scale WEAVE (Dalton et al. 2012 ) and 4-MOST (de Jong et al.
019 ) surv e y releases would allow us to further compare our method
gainst a wide selection of objects with high-resolution spectroscopic 
ata. The Gaia DR3 release will also have the capability to estimate
etallicities directly from BP/RP spectra, which could provide us 
ith an additional sample of metallicities to compare our results 

gainst. 
Additionally, we further hope to resolve the metallicity imbalance 

e see in our spectroscopic training data. As the majority of our
raining sample has near-solar metallicities, this creates a bias in our 
N’s predictions. While we add heavy weighting to our method 

o mitigate this, we still find some biasing in our estimations. 
o more robustly resolve this issue, we can instead augment our 
xisting data with artificial objects, creating a more balanced data set
rom unbalanced samples. On one hand, this would require use of
enerative algorithms, such as variational autoencoders (Kingma & 

elling 2019 ) or synthetic o v ersampling methods (Cha wla et al.
002 ), which would allow us to generate additional data which would
e similar to our input samples. These algorithms could then be used
o build samples with significantly more objects with extremely high 
r low metallicities, and thus work to mitigate the near-solar bias we
ee currently. 

.2 Final thoughts 

verall, we can conclude that our NN-based methodology has 
uccessfully estimated stellar properties that had previously been 
ifficult to determine without spectroscopic data. Our approach 
etains high accuracy, with mean uncertainties (for −0.5 < [Fe/H] < 

.5) of ±0.15 dex. We return a catalogue (as described in Section 5 ) of

.7 million Gaia objects with NN-enhanced distances, 3D kinematic 
nformation, and accurate metallicity information. 
Future works will be able to leverage these results to draw
onclusions which require very large samples with stellar abundance 
nformation. F or e xample, the identification of substructure within 
he Milky Way would be an ideal target for our approach, as we
av e accurate distance, v elocity, and metallicity measurements for 
ur large sample. The detection of substructures such the ‘ Gaia -
nceladus Sausage’ (Belokurov et al. 2018 ) and ‘Sequoia’ (Myeong 
t al. 2019 ) merger remnants require the detection of a large number
f bound low-metallicity objects to accurately define the structure’s 
rigin. While our method does not have the accuracy of spectroscopic
pproaches, the greater depth and objects counts we return can allow
s to find deeper insights into these (and similar) substructures. 
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PPEN D IX  A :  N N  SET-UP  

ere we describe the specific inputs and architecture we use to design
ur NNs. 

1 Input features 

e select 24 features to use as input for our NN: 16 colours, and
ight absolute magnitudes. Constructed from Gaia G , G RP , and G BP ,
MASS J , H , and K s , and WISE W 1 & W 2 photometric bands, and
xtinction corrected following the RJCE method (Majewski et al. 
011 ), we select the following colours: 
( J - K s ), ( J - H ), ( H - K s ), ( W 1- W 2), ( G BP - J ), ( G BP - H ), ( G BP - K s ), ( G BP -
 1), ( G BP - W 2), ( G RP - K s ), ( G BP - G RP ), ( G BP - G G ), ( G G - G RP ), ( J - W 1),

 J - W 2), ( H - W 2). 
We also include the following absolute magnitudes when noted, 

alculated with distances from our NN-enhanced approach: 
BP , RP , G, W 1, W 2, J , H , and K s . 

2 Network ar chitectur e 

e build our network out of four main layers: an input layer, two
idden layers, and an output layer. 
Out input layer accepts the 24 input features, and assigns each of

hem to a node in the network. We have two hidden layers, both with
0 nodes, which are fully interconnected between each other, the 
nput layer, and the output layer. These hidden layers also have drop-
ut applied, with a weighting of 20 per cent for each pass (i.e. one
fth of each hidden layer is ‘dropped’ each run) of the network during

raining or prediction. Two layers of 80 hidden nodes were chosen 
igure B1. Plot of comparisons between our NN-estimated metallicities with those
anel). 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
s the result of manual tuning, where we found a large network with
rop-out gave the best recovery of initial data while maintaining the
etwork’s confidence in its predictions. 
Our output layer contains only two nodes: the output node, where

e return the ‘final’ output; and an uncertainty node which reco v ers
he network’s certainty in its prediction. This is explained fully in
ection 2 . 

PPENDI X  B:  PHOTOMETRI C  META LLICITY  

O M PA R I S O N S  

e compare the metallicities returned by our method to similar 
hotometric-based techniques from Huang et al. ( 2022 ) and Lin et al.
 2022 ), as shown in Fig. B1 . Both papers use SkyMapper u and v 
hotometry with Lin et al. ( 2022 ) comparing to theoretical isochrones
nd Huang et al. ( 2022 ) using a data-driven approach deriving
olynomial colour relations for the metallicities fitted to SDSS 

APOGEE DR14 and DR16) and LAMOST (DR7) data. We find 
 good correlation with these studies, especially at low metallicities 
[Fe/H] < −1.5). There is, ho we v er, a notable o v erestimation in our
etallicities visible in the Lin et al. ( 2022 ) comparison at −1.5 <

Fe/H] < −0.5, where our method appears to predict a large portion of
he sample with [Fe/H] ≈ −0.5. We note that the objects that make
p this bias do tend to be stars with low log g values, suggesting
his is may be a regime where the NN underperforms, possibly due
o lack of training data. Alternatively, this bias could be due to
iscrepancies in the isochrones utilized by Lin et al. ( 2022 ) for cool
tars. 
MNRAS 516, 5521–5537 (2022) 
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