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Attosecond dynamics in strong-field tunnel ionization are encoded in intricate holographic patterns in the
photoelectron momentum distributions. These patterns show the interference between two or more superposed
quantum electron trajectories, which are defined by their ionization times and subsequent evolution in the laser
field. We determine the ionization time separation between interfering pairs of electron orbits by performing
a differential Fourier analysis on the measured momentum spectrum. We identify electron holograms formed
by trajectory pairs whose ionization times are separated by less than a single quarter cycle, between a quarter
cycle and half cycle, between a half cycle and three fourths of a cycle, and a full cycle apart. We compare
our experimental results to the predictions of the Coulomb quantum orbit strong-field approximation (CQSFA)
with significant success. We also time-filter the CQSFA trajectory calculations to demonstrate the validity of the
technique on spectra with known time correlations. As a general analysis technique, the filter can be applied to
all energy- and angularly resolved data sets to recover time correlations between interfering electron pathways,
providing an important tool to analyze any strong-field ionization spectra. Moreover, it is independent of theory
and can be applied directly to experiments, without the need of a direct comparison with orbit-based theoretical

methods.
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I. INTRODUCTION

Laser-induced strong-field ionization (SFI) is a powerful
source of attosecond electron dynamics. Field-ionized elec-
trons can be driven by the laser into many different types of
orbits about the parent ion before escaping and being captured
by a detector. Angle-resolved SFI photoelectron momentum
distributions (PMDs) such as those captured by velocity map
imaging (VMI) display complex patterns that have prompted
significant study [1-10]. Many of these patterns are thought to
be due to quantum interference between pairs of electrons that
take different pathways but reach the same spot on the imag-
ing detector. These trajectories depend on the optical field
phase at the moment of ionization, as well as the temporal
shape of the ionizing field. The study of these interfering tra-
jectories, and the momentum patterns they produce, is called
electron holography and has gained significant attention in the
past decade [8,11-17].

As a field, electron holography is predominantly theory-
based rather than experimental. Trajectory-based calculations
are relatively easy to manipulate to study relevant pathways
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that give rise to specific interference features. In contrast,
holographic analysis of experiments is more challenging be-
cause the laser field phase at the moment of electron ionization
is generally not an experimental observable nor is it possi-
ble to eliminate specific trajectories in an experiment. In an
experimental setting, tailored fields are widely employed to
suppress or enhance specific processes by altering the elec-
tron dynamics, and thus can be used to control holographic
patterns [10,17-19]. Still, the results obtained are interpreted
using orbit-based models in which sets of orbits are switched
on and off at will.

Recently, some notable progress has been made using the
phase of the phase technique, in which the phase-shifted
second harmonic of the fundamental laser is used to shape
the ionizing field to emphasize field ionization at specific
ionization phases [20-22]. This has promise for extracting
ionization times for some parts of the spectra such as classical
cusps and regions of back-scattering [20,22] but cannot reveal
features composed of multiple contributing trajectories with
different ionization times [21], which create the features of
greatest interest in photoelectron holography.

Fourier analysis may be performed on any energy-resolved
coherent power spectrum to reveal temporal autocorrelations
of coherent interfering pathways independent of theory [23].
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Here we show that filtered time-correlation analysis can be ap-
plied to angle-resolved SFI electron momentum distributions
(PMDs) to reveal the time differences between the launch
times of interfering trajectory pairs, and thus may provide
quantitative empirical validation for the primary predictions
of electron holography theory. By extracting the features pro-
duced by specific trajectory time separations, we can directly
classify trajectory pairs composed of two rescattered orbits,
two direct orbits, or one of each. This has significant ap-
plications for understanding strong-field interactions, since
rescattered electron dynamics encode information about tran-
sient structure in the ionized target [2,24-28]. Identifying and
isolating features produced by these types of trajectories can,
therefore, be exploited for analyzing molecular movies in
energy- and angularly resolved pump-probe experiments [29].

The remainder of this paper is laid out in the following way.
Section II briefly presents the experimental setup for momen-
tum imaging and the basic data processing required for the
time-correlation filter. Section III introduces a computational
model for SFI. In Sec. IV, we show the model predictions,
which are in significant agreement with the analyzed time
correlations. Atomic units are used throughout, except where
otherwise indicated.

II. EXPERIMENTAL METHODS AND ANALYSIS
A. Description of experiment

Holography patterns are expected to occur in the SFI elec-
tron momentum distributions for all gases. Here we show a
well-studied example, the PMD of argon gas photoionized by
800 nm infrared laser pulses generated by a 1 kHz Ti:sapphire
laser (Fig. 1). This spectrum was obtained using 40 fs full
width at half maximum (FWHM) linearly polarized pulses
with peak intensity of 225 4 12.5 TW/cm?. The intensity
was determined by the ponderomotive cutoff visible in the
PMD spectrum, as well as by fits to the calculated location
of nodes along the spider-leg shaped interference features
[30]. A pulsed and skimmed beam of argon gas intersected
the interaction region in an ultrahigh vacuum. Electrons were
detected in a standard VMI apparatus and recorded on an
intensified phosphor viewed by a camera. For each laser shot,
on-the-fly peak finding was employed to record the pixel lo-
cations of each electron impact. These were summed to form
the final spectrum.

2.4 billion electron counts were recorded in the spectrum
presented in Fig. 1. The top half shows the raw summed
electron counts in the VMI, projecting the three-dimensional
Newton sphere of final electron momenta onto the detector.
Since SFI with linearly polarized light has cylindrical symme-
try about the laser polarization (||) axis, the cross section of the
Newton sphere containing the polarization axis and any per-
pendicular axis displays all the relevant dynamics. To extract
the momentum dependence in these cylindrical coordinates,
we apply a standard Abel inversion technique: polar onion
peeling [31]. Beginning at the outermost radius on the raw
image, we fit a Legendre decomposition to the photoelectron
angular distribution (PAD) at that radius,

16, pr) = Co(pr) Y Bu(pr)Pu(cos(6)), (1
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FIG. 1. Top: The raw PMD of the argon gas data set used
throughout this paper. Bottom: The same spectrum after Abel inver-
sion (see text).

where (0, p,) is the PAD fit for polar angle 6 and radius p,,
P,(cos(#)) are the Legendre polynomials of order n, C,(p,) is
the nth order Legendre coefficient of the fit, and §,(p,) are the
anisotropy parameters defined as 8,(p,) = %. We fit up to
42nd Legendre order, which is the order at which the vari-
ance between the residuals of additional orders is minimized.
Since the raw spectrum is a projection of the Newton sphere,
to extract the desired cross section we must subtract away
contributions from out of the plane. To do this, we use the
cylindrical symmetry of the system to generate the spherical
shell produced by rotating the outermost PAD fit about the
polarization axis. Then we project just this shell back into the
plane, and subtract this projection from the spectrum. This
effectively peels this shell of the Newton sphere off of the
spectrum. The subtracted spectrum is then used to generate the
PAD fit for the next outermost radius. Iterating for each radius
results in the fully inverted spectrum, shown in the bottom half
of Fig. 1.

B. The time-correlation filter

The cylindrically symmetric inverted momentum spectrum
1(0, p,) is fully described by the set of one-dimensional
anisotropy parameters fS,(p,). These parameters can be re-
expressed as an angle-resolved electron power spectrum by
converting their radial momentum dependence to kinetic en-
ergy. The Fourier transformation of these parameters then
yields a temporal autocorrelation of the electron trajectory
currents that produce the spectrum [23,32]:

1 o0 .
E/(; Bu(E)e™' dE =/yn(t —yu(ndr.  (2)

Here B, (E) are the anisotropy parameters defined at the elec-
tron kinetic energy E, y,(t) is the complex electron yield
produced by all trajectories ionized at time 7, and ¢ is the time
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difference between pairs of orbits. The integral on the right can
be interpreted as the complete set of all pairs of trajectories
with defined time difference ¢. Thus, the cosine transforms of
the anisotropy parameters directly reflect the time separation
between interfering orbits, with their amplitudes reflecting the
density of electron trajectories interfering with that separation.

In semiclassical trajectory-based interpretations of SFI, in-
terference fringes will form with close to constant separation
in energy based on the time difference between the launch
time of the interfering trajectories (see Sec. IVE) [13,33].
Recognizing this, we apply a low-pass filter to the transformed
B, (E) and then transform back into momentum space to elim-
inate the contributions from all interfering orbits separated
by more than the maximum allowed time separation. We can
select this maximum allowed time separation by setting the
low-pass filter’s roll-off point, which is defined as the point
midway in the transition window between the pass band and
the stop band of the filter. Filtering the data at a series of
roll-offs grants us a three-dimensional data set, with the time
separation as our third parameter. This has a significant impact
on the kinds of features we are able to resolve in SFI spectra.

For the data presented here, we use a Kaiser window, finite
impulse response low-pass digital filter. The Kaiser window is
used to ensure the response is maximally flat in the pass band
[34]. The attenuation in the stop band is set to 20 decibels
and the transition width is set to 0.1 cycles. For an excellent
review of digital filter construction useful for tailoring these
types of filters see Ref. [35]. Due to the numerical resolution
of our dataset, in the presented filtered data we are limited to
a lowest roll-off of 0.25 cycles.

In previous works, we primarily used the time-correlation
filter to filter at one laser cycle of time separation. This
effectively unlocked the subcycle electron momentum dis-
tribution by eliminating the pervasive ringlike interference
structure caused by above-threshold ionization (ATI) [32].
Simply removing this interference pattern allowed for sig-
nificant quantitative comparisons with calculations that had
previously been completely obscured. However, the time-
correlation filter can also be used to isolate and examine
specific holographic interference patterns, and experimentally
verify the predictions of calculations as to the class of trajec-
tories that form them.

By observing the residuals of spectra with filter roll-
offs lower than one cycle, we can directly observe the time
separation leading to various holographic patterns. This is
very significant. Knowing the time separation allows us to
demonstrate experimentally whether interfering trajectories
are launched within the same quarter cycle, on adjacent rising
and falling edges of the laser field, on opposing half cycles,
or separated by a full cycle. These characterizations are ex-
tremely useful for identifying the class of trajectories being
observed.

In Fig. 2, we present the results of time-correlation filtering
at different filter roll-offs. Each panel, indicated by (a)—(d),
displays four spectra for comparison, one in each quadrant.
It should be noted that these PMDs are symmetric in each
quadrant, so there is no difference in the negative or positive
components of each momentum axis. Each panel is divided
in the same way, with experimental data presented on the left
half compared to a calculation using the Coulomb quantum

orbit strong-field approximation (CQSFA) on the right. The
calculations will receive further context in the following sec-
tion. The top halves of each panel show the filtered PMDs at
the indicated roll-off in units of laser field cycles.

Looking at these filtered PMDs alone, it can be difficult
to isolate the holographic features that have been removed at
each step. To specifically extract these features, we employ
the normalized residual defined as

Yi(py, pL) = Y;(py, p1)
Yi(py. p) +Yi(py. p1)’

where Y (py, p1) is the PMD and i and j indicate the two
PMDs being compared. The bottom halves of each panel
show the normalized residuals between the previous less fil-
tered step and the indicated step. In Fig. 2(a), the normalized
residual is taken with respect to the unfiltered PMD. The
structures visible in each residual panel are extracted quantum
interference patterns whose trajectory pairs have launch-time
separations within the residual window. As a clarifying ex-
ample, the normalized residual in Fig. 2(c) uses the PMD in
the top half of Fig. 2(b) as ¥; and the PMD in the top half of
Fig. 2(c) as Y}, and so displays an ionization window of 0.5
cycles to 0.75 cycles. In general, we call these residuals “filter
windows” [36].

3Y; j(py, pL) = 3)

III. THEORETICAL METHODS

We employ the CQSFA for our theoretical model, which
has been described extensively in previous works [30,37-39],
so only a brief overview of the bulk of the method is presented.
The CQSFA model fully accounts for the Coulomb potential
in both the phase and dynamics of the employed quantum
orbits. The ability to separate these quantum orbits makes it
ideal for studying photoelectron holography. The technique of
unit-cell averaging (first introduced in Ref. [30]) is expanded
to allow for in-depth studies of the time separations between
interfering trajectories, and so will receive more detailed ex-
planation.

The starting point for the CQSFA is the transition am-
plitude M(p) = (Yp|U(t,10)) |Wo(to), where the initial one-
electron wave function |Wy(#y)) is propagated from an initial
time #y to a final time ¢ and projected on to a continuum
state [p) with a final asymptotic momentum p. Following the
approach in Refs. [37,40], we apply Feynman’s path integral
formalism [41] and the saddle point approximation to the
exact transition amplitude given in Ref. [42]. This yields

M(py) oc —i lim ) " det (1) 552)‘?"5(1’»“»“”*) 4)
P e S o |

for the transition amplitude, where

2mi
Ct,) = \/825(ps,rs,t,ts)/8t3 P+ AG@)IH; (1) Vo). ()

Here, the interaction Hamiltonian is H;(¢) = # - E(¢) and the
semiclassical action is given by

Sp,r,t,t') =1t — / [p(r) -r(r)+ H(r(r), p(r), 7)ldr.
(6)
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FIG. 2. The product of the time-correlation filter applied at successive filter roll-offs indicated by the annotation at top center. The left half
of each panel displays the experimental data, whereas the right half shows the full CQSFA calculation with all orbits (see Sec. III). The top
half of each panel is the filtered spectrum with the selected roll-off indicated by the annotation at top. The bottom half of each panel shows
the normalized residual [filter window, see Eq. (3) and accompanying text] between the less filtered spectrum shown in the upper half of the
previous panel and the filtered spectrum in the upper half of the current panel. The filter window in the bottom left of panel (a) is taken with
respect to the unfiltered spectrum shown in the bottom half of Fig. 1, and the filter window in the bottom right is taken with respect to the full
unfiltered CQSFA calculation. Panel (e) is a reference schematic for the previous panels. The color bar for the top half of each panel is at the

top, while the color bar for the bottom half of each panel is at the bottom.

Here, I, is the ionization potential and the full Hamiltonian
H(r(z), p(r), 7) = (1/2)[p(r) + A(0)]* + V(r(r)). V(r) is
the atomic potential of the argon target, for which we use an
effective potential provided by Refs. [43,44].

The index s in Eq. (4) sums over quantum orbits that
solve the saddle point equations or stationary action. These
are given by Newton’s equations of motion for continuum
propagation and the ionization time equation:

(Pty) + A(ty))* + 21, = 0. (7)

One of the key features of this paper is that the laser field,
given by E(t) = —0A(r)/0t, is taken to be monochromatic,
and thus the vector potential is defined to be

A(t) = 2,/U, cos(ot + ¢), ®)

where w is the angular frequency of the laser, Uj, is the pon-
deromotive energy, and ¢ defines a boundary condition when
considering a finite window (or unit cell) from which ioniza-
tion is allowed to occur. Employing a monochromatic field
gives unique control over intercycle interferences, which often
obscure the intracycle holographic interferences of interest.
Here, inter- (intra)cycle interference refers to the combination
of two orbits with an ionization times separated by more
(less) than a field cycle [45]. In the CQSFA, the intercycle
interference can be switched off by restricting ionization to
a single-laser cycle, which we refer to as a unit cell. The

dynamics and phases of the quantum orbits across unit cells
will be periodic. However, the parameter ¢ controls the start-
ing position of the laser field in the unit cell.

Solving the saddle point equations lead to four classes
of quantum orbits [46], whose continuum trajectories are
plotted in Fig. 3(a). The trajectories have varying degrees of
interaction with the atomic potential: orbit 1 is direct and is
only slightly decelerated; orbit 2 is also direct [47] but is
forward deflected as it passes the core; orbit 3 undergoes laser
driven forwards rescattering; and orbit 4 is backscattered. The
transverse momentum of orbit 3 and 4 changes sign due to
interaction with the Coulomb potential, while for orbits 1 and
2 the sign does not change. The difference between orbits 2
and 3 is that an electron along orbit 2 is freed with a greater
transverse momentum and the effect of the Coulomb potential
is to pull it back into a lesser transverse momentum, while
retaining its initial direction. However, an electron following
orbit 3 has a transverse momentum initially in the opposite
direction as its final transverse momentum, and the Coulomb
potential causes the transverse momentum to change sign.
This necessarily means that orbit 3 passes closer to the parent
ion on its return, and is more affected by the rescattering
process. While these two classes of trajectories can have
nearly the same starting time, their different initial transverse
momenta leads them to pass on opposite sides of the parent ion
with different rescattering processes. Pairwise combinations
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FIG. 3. (a) Schematic example of the four classifications of or-
bits identified by CQSFA. The arrows on each trajectory denote the
direction of travel, and each arrowhead is separated by 0.2 laser
cycles. The position of the parent ion is located at the origin. The
coordinate z denotes the position of the electron along the laser
polarization axis with respect to the parent ion, while x denotes the
position transverse to the polarization axis. Each of the shown trajec-
tories has the same final momentum p = (—1.0, 0.13), and electrons
following them would end up at the same position on the detector.
(b) A histogram of the launch times of the orbits identified by the
CQSFA. The simulated laser field is overlaid as the black dashed
line. These launch times correspond only to the trajectories whose
final momenta have a negative parallel component. The launch times
for positive momenta are identical with a half-cycle shift.

of these trajectories make many of the well-studied interfer-
ence patterns in photoelectron holography. This includes the
fanlike interference pattern [48-51], with radial fringes that
form due to the combination of orbits 1 and 2; the spiderlike
interference pattern [11,12], with fringes nearly parallel to the
polarization axis and form from orbits 2 and 3; and the spiral
interference pattern [33,43] that forms from orbits 3 and 4
and has been associated with so-called carpetlike fringes [52]
that form for large momenta perpendicular to the laser field
polarization.

In a previous work [30], we introduced the technique of
unit-cell averaging, which corrected asymmetries generated
by selecting an arbitrary value for ¢ in a single cycle cal-
culation. Briefly reiterating, when observing the interference
between two trajectories within a single cycle, there is an
issue with the time ordering of these trajectories. Since each
trajectory is periodic, there exists single cycle unit cells such
that one trajectory occurs before the other, and other unit cells
where it occurs after, having its ionization phase advanced by
27. When the trajectory advances in this way, it acquires a

phase AS, given by
2 1
AS = (1, + U, + =p? ), 9
o ( b +Up+ 2pj) )

where %pfc is the final energy of the electron. Thus, to cor-
rectly account for the arbitrariness of the unit-cell boundaries,
we average the interference over all possible single cycle unit
cells. This is achieved by integrating over ¢,

2
Iy = / de expliAH;($)AS], (10)
0

where
AH;j(¢) = H(¢ — ot) — H($ — wrt}).

Here H(r) is the Heaviside function and 7% and 7} are
the ionization phases for the trajectories indexed by i and
Jj, respectively. The Heaviside functions act to either add or
subtract the additional phase AS, depending on whether the
unit cell beginning at ¢ has eclipsed the ionization time of the
trajectories indexed by i and j, respectively. Then we apply
this integral to the sum of the contributions of the orbits:

1 < —
Prob(py) = - > Mi(p)M;(p)ly. (In

ij=1

where Prob(py) is the probability of an electron arriving at
momentum p; which is equivalent to the amplitude at that
coordinate in the PMD, M(py) is the ATI transition element
as before, the overline indicates the complex conjugate, and
the two sums are each taken over the four orbits identified in
CQSFA.

In this paper, we introduce a revision to the unit cell aver-
aging which allows us to examine analytically how the time
separation affects CQSFA holographic predictions. We are in-
terested in a modification to Eq. (11) such that contributions to
Prob(p) are coherently summed when the ionization phases
of the pair of orbits indexed by i and j are below a given time
separation, and incoherently summed when they are above.
This must be included within the unit-cell integral in Eq. (10)
and correctly incorporate the unit-cell boundary ¢. Thus, we
arrive at

2
@)= [ dpexplint@)as)
0
x H(o — |wAt;; + 2w AH;j(9)]), (12)

where At;; = tR¢ — R and we have introduced the parameter
o as the threshold time separation between any two orbits.
By selecting any specific value for o and then calculating
Prob(p), we can examine the set of all CQSFA orbits with
launch time separations within the window of zero to o cycles
apart. We denote this improvement “windowing” the CQSFA.
Choosing a series of values for o and making a movie of
the resulting momentum distributions lets us observe how
the interference patterns we observe form. While not further
discussed in this paper, a time-separation resolved movie of
all the pairwise CQSFA calculations as well as the full four-
trajectory computation is shown in the Supplemental Material
for clarity.
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TABLE I. A selection of holographic structures and the trajectories which form them.

Time separation

Structure Trajectory combination (rad/2m) Qualitative description

ATl rings Any two of the same separated 1 Ringlike fringes centered on the
by one cycle origin with photon energy

spacing
Spider legs 243 ~0 Horizontal fringes offset from
the polarization axis
Carpet 3+4 ~0.5-0.6 Checkerboardlike interference
pattern near the perpendicular
axis
Adjacent rising and falling edge 14+2,143,2+4,34+4 0.25-0.5 Pattern of nodes arranged

interference combinations

circularly with radial spokes

IV. RESULTS AND DISCUSSION

In Table I, we outline a few predicted holographic struc-
tures based on the results of trajectory-based calculations.
The pair of trajectories leading to the interference structure
are labeled in column 2. In accordance with Fig. 3(b), we
label the launch time separation between active trajectories
in column 3, which is the parameter of interest for us in
this paper. Importantly, while these holographic structures
have commonly been demonstrated in experiments and the
ionization phases of each type of contributing trajectory can
be easily calculated, the ionization phases are not, in general,
an accessible observable in these experiments. Thus, these
predicted phases have not been empirically verified for these
holographic structures. We will demonstrate that the time-
correlation filter outlined above can reasonably verify the
predicted time separations outlined here.

Based on this table, we can set predictions for how the
time-correlation filter should affect the experimental spectrum
if it is successfully filtering on the time separations. First,
the null condition: the spider-leg structure. As the spider-leg
structure is formed from two electron trajectories passing on
either side of the parent ion with nearly overlapping launch
times [10], the time separation between this interfering tra-
jectory pair is close to zero. Thus, the time-correlation filter
should not affect this structure, and observing Fig. 2, we see
that this is the case for even the most filtered spectrum. The
ATTI ring structure is also very easy to check. These rings
are formed from similar electron trajectories ionized one full
cycle apart from each other, and thus the filter should remove
them when filtering below one cycle. A previous work was
dedicated to selectively removing these rings and uncovering
the subcycle spectrum beneath them [32], and it is also clear
from the bottom left of Fig. 2(b) that the ATI rings have been
removed for roll-offs below one cycle.

We now turn our attention to identifying and characteriz-
ing the holographic structures corresponding to trajectories
launched on opposing half cycles of the laser field (0.5 cycles
to 0.75 cycles apart), and on neighboring rising and falling
edges (0.25 cycles to 0.5 cycles apart).

A. Confirming the origin of the carpet structure

In the time-separation range of 0.5 cycles to 0.75 cycles,
one pair of trajectories leads to a very prevalent holographic

structure, the carpet. The carpet is a pattern that occurs at
scattering angles strictly perpendicular to the driving-field
polarization in which the interference peaks are separated
by 2w. Within the CQSFA framework, the carpet is formed
from the interference of electrons following orbits 3 (for-
ward rescattered) and 4 (backward rescattered). In calculation,
these trajectories can be isolated and their interference can be
computed unambiguously. As the carpet is predicted to form
between 0.5 and 0.6 cycles, we expect to observe it in the
normalized residuals in Fig. 2(c). In Fig. 4, we show this.
In Fig 4(a) on the left is the filtered experimental window
reproduced from the bottom left of Fig. 2(c) plotted alongside
the CQSFA calculation for the carpet in Fig. 4(b) on the right.
The highlighted box along the vertical axis between the two
plots shows the carpet interference. It is clear that the feature
revealed in the window exactly matches the predicted shape of
this interference. The launch times of the trajectories leading
to the carpet structure are presented in Fig. 4(c), in which
only trajectories with final momenta within the white box are
considered. From Fig. 4(c), we see that the carpet structure
forms from the interference of orbit 4 launched before orbit 3,
such that the time separation is between 0.5 and 0.6 cycles.
This confirmation of the origin of the carpet structure set-
tles a controversy within the holography community. There
has been much debate over the origin of this type of inter-
ference, with the trajectory pair depiction being just one of
several. The presence of interference carpets was first high-
lighted in Ref. [52] and has been attributed to the quantum
interference of the SFA orbits 1 and 2. However, it was
shown in our previous publication [33] that the interference
carpet observed in experiment is due to the interference of
the CQSFA orbits 3 and 4, and the former explanation was
incomplete. Symmetry arguments dictate that, for any lin-
early polarized field long enough to be approximated by a
monochromatic wave, there are interference carpets along the
momentum axis perpendicular to the driving-field polariza-
tion. This holds for direct ATI orbits, rescattered ATI orbits
in the Coulomb free SFA, and for the orbits described by
the CQSFA [33]. Thus, SFA orbits 1 and 2, and the CQSFA
orbits 1 and 2 may both lead to carpetlike interferences, which
reproduces the 2w spacing in the ATI peaks. However, these
interferences do not match the observed carpet’s energy range,
intensity, and angular behavior in the vicinity of the scattering
angle 6 = 90°. All these features differ considerably from
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FIG. 4. Comparison of experimentally extracted carpet interfer-
ence to CQSFA predictions. The box emphasizes the location of the
carpet interference. (a) The normalized residual of the experimental
spectrum reproduced from Fig. 2(c) displaying the time-separation
window of 0.5 to 0.75 cycles. (b) The CQSFA calculation including
only the two trajectories forming the carpet structure, 3 and 4. (c) A
histogram as in Fig. 3(b) except further restricted to just orbits 3 and
4 and the momentum range within the box in the above panel. Once
again, only the launch times corresponding to a negative component
of parallel momenta are shown.

those observed in experiments and TDSE computations [33].
Neither do they match the time ranges encountered by the
filters in the present paper. In fact, a carpet resulting from
orbits 1 and 2 would occur in a time-separation window of
0.25 to 0.5 cycles apart, and at much lower energy.

B. Identifying combinations of holograms

The carpet is an excellent two-trajectory feature to identify
using the time-correlation filter because the primary structure
occurs outside the region of the spectrum where direct elec-
trons contribute, and no other holographic structure occurs
in that region at the time separation of 0.5 to 0.75 cycles. In
general, however, many two-trajectory interference structures
do contain direct electrons, and at the time separation of 0.25
to 0.5 cycles, there are many such structures all occurring
in the region within 2U,. This is because this time separa-
tion corresponds to trajectories launched from adjacent rising
and falling edges of the field, which predominantly include
a direct trajectory and a rescattering one, as can be seen
in Fig. 3(b). Rather than focus on identifying a single two-
trajectory holographic pattern that meets our predictions, we
instead must identify a pattern composed of many interference
structures forming at this time separation.
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FIG. 5. Comparison of the filter window of 0.25-0.5 cycles to
the windowed CQSFA calculation of the subset of all interference
structures formed in the window of 0.25-0.5 cycles. The outermost
direct electrons for experiment and theory are traced in (a) and
(b) respectively. Each panel is in polar coordinates, with the shared
horizontal axis showing the angle 6 measured from the parallel axis.
(a) A section of the experimental window from the bottom left of
Fig. 2(d). (b) The same section of the windowed CQSFA calculation
of the structure described in the fourth row of Table I. (c) Plot
showing the amplitudes of the structures outlined by the black dashed
and red dotted lines. The black dashed line uses the y axis on the left
and shows the experimental window amplitude, while the red dotted
line uses the y axis on the right and shows the windowed CQSFA
calculation amplitude.

To do this, we examine the predictions of CQSFA to
identify the combinations of orbits that will generate their
interference structures in this time range. The fourth row of
Table I lists the combination of CQSFA orbits whose inter-
ference leads to structures forming within the range of 0.25
cycles to 0.5 cycles. These trajectories correspond to every
combination of orbits omitting the pairs 1 + 4 and 2 + 3
which by observation with Fig. 3(b) are nearly overlapping
in launch times. Importantly, within this range we are con-
sidering the shortest time separation between each of the
included trajectory pairs, as every pair has two possible time
separations depending on the launch-time ordering of the two
trajectories. Using the windowed CQSFA, we calculate the
PMD using only these contributing trajectories at the short
time separation.

In the experimental filter window between 0.25 cycles and
0.5 cycles [bottom left of Fig. 2(d)] the most clearly defined
structure can be observed along the 2U, boundary. In the ex-
periment, this boundary falls along the outermost extent of the
direct electrons, which can be seen by observation in Fig. 1. In
Fig. 5(a), the angular distribution of this feature is plotted. The
black dashed line traces the centers of the antinodes within
the structure and is along the outermost extent of the direct
electrons. In Fig. 5(b), we present the angular distribution of
the CQSFA calculation of the trajectory combination outlined
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FIG. 6. Comparing the time-correlation filter on the CQSFA for orbits 3 and 4 (the carpet) to the analytic time separations of windowed
unit cell averaging. Here, the time-correlation filter has been applied to the CQSFA calculation on the left side of each panel, with the top left
showing the filtered calculation and the bottom left showing the filter window between the previous filtered calculation and the one indicated
by the annotation at top center. The top right shows the windowed unit cell averaging results, with o equal to the value at top center, and the
bottom right shows the normalized residual between the previous and current windowed unit cell averaged results.

above. Here too the red dashed line traces the outermost di-
rect electrons; however, compared to the experiment there is
a known mismatch with the CQSFA because the calculated
maximum direct electron energy decreases at higher angle
[37]. While there is this discrepancy between the angular
behavior of these outermost direct electrons in theory and
experiment, a comparison at this boundary is still desired.
In Fig. 5(c), we plot the amplitudes of the spectra along
the dashed lines against their angle from the parallel axis.
The spacing of the fringes in the compared features closely
match, supporting the conclusion that we are observing this
predicted combination of interferences in the experimental
window.

C. Comparing the time-correlation filter to windowed
calculations

At this point, it would be prudent to examine the
time-correlation filter and assess how well it extracts time
separations on calculations with known times. For this, we
compare filtering the CQSFA calculation of only the trajec-
tories forming the carpet to the windowed unit cell averaged
calculation at specific time separations. This comparison is
shown in Fig. 6. On the left halves of each of the three large
plots is the filtered CQSFA calculation of orbits 3 and 4. The
top left corners are the filtered CQSFA carpet with a filter roll-
off indicated by the annotation at top center, while the bottom
left corners are the normalized residuals of the previous less
filtered step and the current roll-off as in Fig. 2. The right
halves present the windowed CQSFA orbits 3 and 4 computed
by inserting the annotated values for o in Eq. (12). The top
right corners are the results of this calculation, whereas the
bottom right corners are the normalized residuals with the
previous windowed step. The residuals in Figs. 6(g) and 6(h)
are each taken with respect to the unfiltered calculation.

Comparing the calculations on the right and left in each of
the three larger plots, we see very good agreement between
the filtering method and the windowed calculation. At 0.7
cycles, the carpet interference has fully formed, so we expect
the residual from the full calculation to be uniformly zero.
Figure 6(g) shows some structure, but overall this window is

more suppressed than the other two filtered windows, and the
filtered calculation in Fig. 6(a) is qualitatively a very good
match for the calculation in Fig. 6(b). At 0.5 cycles, we see
that some of the interference has been removed. Consulting
Fig. 3(b), this interference corresponds to the interference of
orbit 4 ionizing before orbit 3. Here we see truly excellent
agreement in the shape of the removed interference between
Figs. 6(i) and 6(j), particularly along the vertical axis, indicat-
ing that the filter has correctly extracted the same structure
that the windowed calculation has. Lastly, at 0.3 cycles of
separation, none of the carpet interference has formed, and so
the time-resolved calculation Fig. 6(f) displays no structure.
While the filtering has not quite removed all the structure from
Fig. 6(e), it’s clear that the majority of the structure has been
suppressed, and once more the residuals Figs. 6(k) and 6(1) are
in excellent agreement.

The very good agreement between the time-correlation fil-
ter results and the windowed calculation strongly supports the
assertion that the time-correlation filter is successfully acting
on the previously inaccessible observable of time separation.

D. Further study

In an actual experiment, there are more visible fea-
tures than can be simply described by approximate theory
techniques, no matter how sophisticated. Filtering the raw ex-
perimental data reveals concentric interference fringes which
move inwards as the filter roll-off is increased. These are
not replicated by the windowed CQSFA calculation. How-
ever, these transient fringes are the strongest feature that we
observe in the low-momentum region, to the extent where
they obscure some of the holographic features we expected to
observe within the time window of 0.25 cycles to 0.5 cycles.

In Fig. 7, we examine the behavior of these transient
fringes by plotting the integrated electron yield along suc-
cessive rings of radius p, against the filter roll-off. This is a
useful representation to demonstrate the ATI ring structure,
which forms horizontal lines beginning at a filter roll-off of
one cycle. The transient fringes are the curved features below
pr = 1 a.u. It is not immediately apparent what the source of
these fringes might be; however, this pattern is very dominant
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FIG. 7. Examining the effect of the transient interference fringes
with time-correlation filter roll-off. The experimental PMD from
Fig. 1 has been angularly integrated at each radius p, to capture the
behavior of rings about the origin, and then filtered at fine roll-off
steps up to a maximal roll-off of three cycles.

and highly structured within this region of the spectrum, and
thus likely has some simple explanation.

It is important to note here that the filtering technique is
essentially just a different way of viewing the same data to un-
cover features already present in the spectrum. The emergence
of transient patterns that elude explanation when viewing the
data in this way is an intriguing conundrum and merits further
study.

E. Limitations of the time-correlation filter

Many of the above determinations implicitly relied on the
fact that holographic interference features have fringe spac-
ings which are dominated by a term proportional to E(¢; — t2),
i.e., linear in the ionization time difference. When this is the
dominant term, the time-correlation filter is very accurate,
and is able to reproduce holographic features within a narrow
time window. This is expected for any pair of interfering
trajectories around the perpendicular axis (6 ~ 7 /2) and is
particularly clear with the carpet structure, which displays this
behavior in this region. Away from this region, the CQSFA
(and even the SFA) predict the inclusion of interference
terms which are not linear in the ionization time difference.
This means the temporal information yielded by the cosine
transform does not exactly correspond to the ionization time
difference predicted by the CQSFA. Calculating this mis-
match in the worst case at & = 0 yields a maximum error of
0.25 cycles, which is within the bounds of error required for
the conclusions drawn in this paper.

V. CONCLUSION

We have developed a powerful analysis technique for ob-
serving electron trajectory interference in SFI. By analyzing
the cosine transforms of the anisotropy parameters of a VMI

spectrum, we identify trajectory pair time correlations. Filter-
ing these quantities at successive roll-offs uncovers trajectory
pair interferences and provides an experimental determination
of the launch time separations of some of the more fre-
quently discussed holographic features. We compare directly
to CQSFA calculations of the full spectrum, as well as to
specific combinations of electron trajectories and see dramatic
agreement. In particular, the carpet interference structure
which is normally difficult to observe in ordinary VMI spectra
can both be extracted clearly by the time-correlation filter in
the predicted range of 0.5 to 0.75 cycles and matched exactly
to the CQSFA prediction of the electron trajectories forming
the carpet. This experimentally confirms the prediction that
the carpet interference forms from the interference of forward
and backward rescattered trajectory pairs, which up until only
recently had been debated within the holography community.

To test that the time-correlation filter effectively extracts
the launch-time separations of interfering electron trajectory
pairs, we developed an advancement to the CQSFA technique
of unit-cell averaging to calculate the spectrum for selected
time separations. Comparing filtered CQSFA calculations to
these windowed spectra shows excellent agreement and con-
firms that the correct interference structures are extracted at
the proper times.

The power of the technique lies in its applicability. As an
analysis technique, time-correlation filtering can be applied to
all energy- and angularly resolved spectra, and can be applied
retroactively to analyze previously collected data. Using the
filter to uncover time correlations complements other experi-
mental designs seeking to explore ionization times in strong
fields, such as phase of the phase. This filter is a powerful
and versatile tool which can provide additional insight for
many types of strong-field experiments, without requiring any
changes in experimental design or technique.
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