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Overexpression of mouse prion 
protein in transgenic mice causes 
a non‑transmissible spongiform 
encephalopathy
Graham S. Jackson1*, Jacqueline Linehan1, Sebastian Brandner1,2, Emmanuel A. Asante1, 
Jonathan D. F. Wadsworth1 & John Collinge1

Transgenic mice over‑expressing human PRNP or murine Prnp transgenes on a mouse prion protein 
knockout background have made key contributions to the understanding of human prion diseases 
and have provided the basis for many of the fundamental advances in prion biology, including the first 
report of synthetic mammalian prions. In this regard, the prion paradigm is increasingly guiding the 
exploration of seeded protein misfolding in the pathogenesis of other neurodegenerative diseases. 
Here we report that a well‑established and widely used line of such mice (Tg20 or tga20), which 
overexpress wild‑type mouse prion protein, exhibit spontaneous aggregation and accumulation 
of misfolded prion protein in a strongly age‑dependent manner, which is accompanied by focal 
spongiosis and occasional neuronal loss. In some cases a clinical syndrome developed with phenotypic 
features that closely resemble those seen in prion disease. However, passage of brain homogenate 
from affected, aged mice failed to transmit this syndrome when inoculated intracerebrally into 
further recipient animals. We conclude that overexpression of the wild‑type mouse prion protein can 
cause an age‑dependent protein misfolding disorder or proteinopathy that is not associated with 
the production of an infectious agent but can produce a phenotype closely similar to authentic prion 
disease.

Prions are unique pathogens, devoid of coding nucleic acid, which self-propagate by means of seeded pro-
tein polymerisation to cause lethal neurodegenerative diseases in  mammals1,2. They are fibrillar assemblies of 
prion protein (PrP) composed of misfolded host-encoded cellular prion protein  (PrPC), some of which acquire 
protease-resistance and are classically designated as  PrPSc1–4. It is increasingly recognised that similar seeding 
processes may be involved in Alzheimer’s disease and other degenerative conditions and worldwide effort is now 
being made to establish the precise role of prion-like mechanisms in human  disease2,5–9.

Transgenic lines of mice over-expressing wild-type or mutant human PrP on a mouse PrP knockout back-
ground have made critical contributions to our understanding of sporadic and acquired human prion  diseases10–12 
and have enabled accurate modelling of inherited prion  diseases10,13–15. Numerous studies have reported sub-
stantial transmission barriers when investigating the zoonotic potential of prion strains. Inoculation of Chronic 
Wasting Disease (CWD) prions into humanised transgenic mice elicits no detectable clinical prion disease or 
abnormal pathology in mice up to 781 following  inoculation16. Similarly, typical and atypical sheep scrapie 
isolates fail to transmit to humanised transgenic mice with no detectable pathology in mice up to 673 days post 
 infection17. The study of mice over extended periods of time is common when investigating transmission barriers. 
A transmission barrier between sporadic CJD and wild-type mice was confirmed by a lack of any clinical prion 
disease or any detectable pathology in recipient mice after extended incubation  periods18 whereas the introduc-
tion of human PRNP into  PrP0/0 mice renders them susceptible to CJD prions. Modelling of inherited prion 
disease mutations has used humanised transgenic mice in long term natural history studies and established that 
for some mutations there is no detectable disease or pathology even in mice of up to 955 days  old13. Similarly, 
transgenic lines of mice over-expressing mouse PrP on a mouse PrP knockout background have provided the 
basis for many of the fundamental advances in understanding prions and are widely used for prion bioassay. The 
essential role of host PrP for prion propagation and pathogenesis is demonstrated by the fact that knockout mice 
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lacking PrP expression (Prnpo/o mice) are entirely resistant to prion  infection19,20 and that reintroduction of PrP 
transgenes restores susceptibility to infection in a species-specific manner that allows reverse genetics approaches 
to studying structure–function relationships in PrP (for reviews  see10,11,21–25). The effects of PrP ablation were 
studied by several groups in the hope of establishing a role for the prion protein in brain anatomy or development. 
Although no consistent or significant phenotypes were ascribed numerous studies established that aged  PrP0/0 
knock-out mice from the Zurich 1 line did not display any anatomical or histological  anbormalities19,26 even in 
excess of 720 days of  age27.Attempts to create synthetic prions from recombinant PrP has been a major focus for 
many research groups in recent years, and such a demonstration would be the final vindication of the protein-
only hypothesis of prion replication. Efforts have focused on the identification of conditions which modify the 
conformation of recombinant PrP and facilitate self-assembly into fibrillar states rich in beta-sheet structure. 
The bioassay host for such attempts is typically a transgenic mouse line selected for high levels of overexpression 
of  PrPC such as  Tg2028 or  Tg994929 as high levels of  PrPC shorten the incubation period for prion disease and 
hence render the host animals able to report low titres of prion infectivity within their lifespan. This approach 
resulted in the first report of synthetic mammalian prions being assayed and replicated in transgenic  mice29. 
Although there have been reports of prion synthesis resulting in the infection of wild-type  rodents30–32, the use 
of transgenic mice engineered to overexpress a suitable substrate PrP remains widespread. In this regard, the 
prion paradigm is increasingly guiding the exploration of seeded protein misfolding in the pathogenesis of other 
neurodegenerative  diseases2,5–7.

Despite the general utility of transgenic mice over-expressing wild type PrP in prion research some lines of 
mice have been found to develop spontaneous neurological  dysfunction33–36. Studies of other neurodegenerative 
diseases must therefore recognise the fact that overexpression of a wild-type transgene may have deleterious 
effects and may result in the spontaneous formation of protein aggregates or proteinopathy in the absence of 
challenge with exogenous proteopathic seeds.

Here we describe the effects of high levels of overexpression of murine PrP in the commonly used Tg20 
mouse  line28, which express PrP at approximately eight-fold wild-type  levels37,38 Animals inoculated with sterile 
phosphate buffered saline as control groups for other long term observational experiments were occasionally 
found to develop a clinical syndrome at times approaching their natural lifespan. This clinical syndrome was 
phenotypically similar to prion disease and neuropathological examination showed focal spongiform changes 
with abnormal PrP deposition and occasional neuronal loss. However, no protease resistant PrP could be detected 
by western blotting and affected brain homogenate failed to transmit the syndrome after re-inoculation into 
further groups of mice. We conclude that overexpression of wild-type mouse PrP can lead to a proteinopathy 
and the development of a non-transmissible encephalopathy which can confound attempts to assay for syn-
thetic prions. This finding has wider relevance to studies of a range of other protein misfolding disorders where 
‘prion-like’ transmission experiments utilise transgenic mice overexpressing wild type substrate proteins and 
potential transmission is established by the deposition of aggregated protein, in the absence of overt clinical 
disease. Whilst such models can be valuable for the study of ‘seeding’ activity associated with proteinopathies it 
is crucial to characterise the time course of potential spontaneous protein aggregation and associated pathology 
to distinguish between specific, seeded events and those arising merely from the over-expression of substrate.

Results
Histological findings in ageing Tg20 mice. Animals inoculated with either sterile Dulbecco’s phos-
phate-buffered saline lacking  Ca2+ and  Mg2+ ions (D-PBS) or sterile buffer (see Methods) showed no sign of a 
clinical syndrome within the usual latency period for the onset of prion disease, which in Tg20 mice is around 
120 days for the transmission of RML at end-point dilution. However, continued long-term observation of ani-
mals to their natural lifespan resulted in a proportion of animals displaying clinical symptoms consistent with 
prion disease (n = 6/54, Table 1). In total the brains of 54 mice were examined, with ages ranging from 372 to 
960 days at death. Following histopathological examination 25 out of the 54 animals examined were found to 
have abnormal pathology suggestive of prion disease including all six mice that had clinical signs of prion dis-
ease.

Sections were stained with haematoxylin and eosin (H&E) as well as immunostaining for glial fibrillary acidic 
protein (GFAP) and PrP. The brain regions examined included cortex, hippocampus, striatum/basal ganglia, 

Table 1.  Incidence of clinical signs and neuropathological changes in Tg20 mice challenged with D-PBS or 
buffer. a Groups of mice were inoculated intracerebrally with either D-PBS as a standard inoculation control 
or with sterile buffer comprising 20 mM Tris + 20 mM sodium acetate + 200 mM NaCl pH 4.0. Mice were 
then observed daily over their lifespan and culled if showing signs of clinical prion disease, distress caused by 
inter-current illness, or senescence or at termination of the experiment. b Clinical disease was defined by the 
criteria described in Methods. c Survival times are reported for mice with clinical signs consistent with prion 
disease in days post inoculation; where n ≥ 3 the mean ± SEM is reported, otherwise individual survival times 
are given. d Brains from all 54 mice reported in the Table were examined and classified by neuropathological 
examination and immunohistochemistry. Positive neuropathology comprises spongiform change, either alone, 
or in combination with the presence of abnormal PrP deposition.

aInoculum bClinically affected/Inoculated cSurvival Time, mean ± SEM days dNeuropathology Positive/Inoculated

Sterile PBS 4/24 691 ± 14 9/24

Sterile buffer 2/30 666, 705 16/30
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thalamus, brain stem, cerebellum, and all white matter tracts. A total of 29 mice lacked any unusual or patho-
logical features, whilst the remaining cohort of 25/54 displayed spongiform degeneration, which in some mice 
was associated with deposition of abnormal PrP. An additional variable feature of cerebellar degeneration was 
also observed in a proportion of the animals.

The deposition of abnormal PrP was not consistent in all brains examined but was observed in two distinct 
locations. One group of mice (n = 8, Fig. 1, Pattern A) showed small subcortical deposits of abnormally aggregated 
PrP, which was partly of a synaptic pattern, but focally condensed to a granular pattern and very occasionally 
formed microplaques. These deposits were predominantly in the deep cortical layers adjacent to the corpus 
callosum. They extended in the anterior–posterior direction as well as medio-laterally. The basal ganglia and 
thalamus were also occasionally affected, but to a much lesser extent. In the deep cortical/subcortical areas the 

Figure 1.  Distribution of spontaneous abnormal PrP and spongiform change in the brain of aged Tg20 mice 
challenged with D-PBS or buffer: The left hand panels show the typical histology which is the predominant 
feature of each group. (A and B) PrP immunohistochemistry using anti-PrP monoclonal antibody ICSM35 
revealed abnormal PrP deposition including PrP-positive plaques. (C and D) Haematoxylin and eosin (H&E) 
stained sections showing spongiform neurodegeneration when present. Scale bar: 150 µm (A), 75 µm (B), and 
300 µm (C and D). The right hand panels show schematic representations of mouse brain and indicate the 
spatial distribution of the pathology typical for each group. Abnormal PrP deposition is indicated in red and 
spongiform degeneration in blue.
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PrP deposits were associated with spongiform degeneration of neurones, resulting in shrinkage of the deep 
cortical layers and the corpus callosum with an accompanying gliotic reaction compared to the group with no 
abnormal features or pathology. Spongiform degeneration and gliosis were typically more widespread than the 
corresponding PrP deposition (see Fig. 1).

The other major pattern of PrP deposition was a discrete small area restricted to the thalamus (n = 5, Fig. 1, 
Pattern B). Here the PrP deposits were synaptic and only rarely formed minute plaques. This was closely associ-
ated with a spongiform degeneration with some neuronal loss and considerable gliosis, which extended over a 
larger area in the thalamus. A variation of this second pattern was spongiform degeneration in the same thalamic 
area, with accompanying gliosis but a lack of PrP deposition (n = 12, Fig. 1, Pattern C). Although this pattern 
can be regarded as a separate group, it may reflect a less progressed disease stage in which abnormal PrP has not 
been deposited to a detectable level.

The additional pathological feature in all groups with spongiosis or spongiosis coupled with PrP deposition 
(i.e. all mice except group D) was a moderate atrophy of the cerebellar granule layer (n = 8/25). The monoclonal 
antibody ICSM35 that was used for PrP immunohistochemical staining has been widely used and does not 
cross-react with any non-specific targets in either wild-type and transgenic  mice17,39–41.

The majority of animals comprised a fourth group (n = 29, Fig. 1, Pattern D) in which no pathology was 
detectable.

The development of spontaneous pathology and disease was strongly age-dependent with no animals affected 
within the normal time frame for prion transmissions (approximately 120 days post-inoculation (dpi)) and up 
to 500 days of age. Beyond 500 days an increasing proportion of animals were affected (Figs. 2 & 3), with over 
80% displaying signs of spontaneous disease at ages approaching the natural lifespan of the animals. The mean 
age at death for animals unaffected was 614 days (SEM ± 20) compared to 741 days (SEM ± 18) for animals with 
pathology; a difference which is highly significant (p < 0.0001, two-tailed unpaired t test). This is a counter-
intuitive observation for which there is no obvious explanation which further highlights the potential problems 
of interpreting results from highly aged transgenic animals.

Second passage of brain homogenate from affected and unaffected mice. To establish if clinical 
signs and abnormal pathology were the result of a transmissible spongiform encephalopathy, brain homoge-
nates were prepared from affected and unaffected mice and used to inoculate further experimental animals. 
Brain was inoculated intracerebrally as 1% w/v homogenate in D-PBS into Tg20 and animals were again moni-
tored throughout their natural lifespan for signs of clinical prion disease. As in the cohort of Tg20 animals that 
received D-PBS or buffer inocula, a proportion of Tg20 recipients again developed a clinical syndrome (Table 2). 
However, the proportion of animals that were observed to be affected did not increase significantly from the 
frequency observed in the primary inoculation cohort challenged with either D-PBS (4/24 vs. 1/14 and 11/48; 
p = 0.63 and 0.76 respectively), or buffer (2/30 vs. 3/19 and 11/45; p = 0.36 and 0.063 respectively). Although we 
observed a slight reduction in the apparent incubation periods for the onset of clinical signs in these secondary 
transmissions (598 days and 552 days) (Table 2) compared to the primary inoculation cohort (691 and 686 days) 
(Table 1), this was modest and is not consistent with reductions of incubation period that would be associated 
with the transmission of authentic prions.

Neuropathological features were also observed in a proportion of the second passage animals receiving 
homogenised brain tissue. Again compared to the primary inoculation cohort there was no significant increase 
in the frequency of these features (D-PBS 9/24 vs. 5/12 and 24/38; p = 1.0 and 0.068 respectively or Buffer 16/30 
vs. 7/11 and 21/30; p = 0.73 and 0.29 respectively), indicating that their origin is due to a spontaneous event.

Western blot detection of protease resistant PrP in the brains of affected mice. None of the 
animals tested from either the original primary inoculation group or second passage groups contained any pro-
tease-resistant PrP that could be detected by western blotting, either directly, or after sodium phosphotungstic 
acid  precipitation42,43 of 0.25 ml 10% w/v brain homogenate.

Discussion
Enormous advances in our understanding of prion diseases are now providing a paradigm for other human 
diseases involving the accumulation of misfolded host proteins. Elucidating the mechanisms that govern the 
formation, transmissibility and toxicity of misfolded protein seeds in other neurodegenerative diseases is now 
a major focus of worldwide  research2,5–8. Key to the advances made in prion biology has been the development 
of highly specialised tools and animal models to explore transmissibility and pathogenesis. Animal models of 
prion disease have been extensively studied and authentically reproduce the pathology seen in human patients, 
whilst isolation of the infectious agent has yielded structural insights that differentiate prions from other forms 
of  amyloid3,4,44.

Although the development of seminal methods for prion research took decades to establish, rapid advances 
in other diseases involving proteopathic seeds can be envisaged using the research approaches and strategic 
framework that has been established in prion disease. Over the next few years it is likely many new transgenic 
models will be developed to study a wide range of neurodegenerative diseases using experience from the prion 
field for critical guidance.

While PrP is very well known to be capable of misfolding to produce infectious prions, our findings in aged 
Tg20 mice now show that PrP can also misfold and aggregate to produce a non-transmissible proteinopathy. 
The overt neuropathological features of Tg20 mice affected by this proteinopathy are closely similar to those that 
characterise prion disease; comprising accumulation of abnormal PrP, spongiform degeneration and neuronal 
loss. In some cases, although not all, pathology can be associated with a clinical syndrome that mirrors classical 
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Table 2.  Incidence of clinical signs and neuropathological changes following second passage into further Tg20 
mice. a Inocula comprised 1% w/v brain homogenate from Tg20 mice originally challenged intracerebrally 
with D-PBS or Buffer (Table 1). Unaffected mice showed no clinical signs consistent with prion disease and no 
neuropathological changes whereas affected mice were either positive for clinical signs consistent with prion 
disease (C) or positive for neuropathological changes (NP) or both (C, NP). Inoculated mice were observed 
daily over their lifespan and culled if showing signs of clinical prion disease, distress caused by inter-current 
illness, or senescence or at termination of the experiment. b Clinical disease was defined by the criteria 
described in Methods. c Survival times are reported for clinically affected mice in days post inoculation; where 
n ≥ 3 the mean ± SEM is reported otherwise individual incubation times are given. d Positive neuropathology 
comprises spongiform change, either alone, or in combination with the presence of abnormal PrP detected by 
immunohistochemistry.

aInoculum and classification bClinically Affected/Inoculated
cIncubation time, mean ± SEM 
(days)

dNeuropathology Positive/
Inoculated

PBS unaffected mouse 0/5 – 2/4

PBS unaffected mouse 0/5 – 1/4

PBS unaffected mouse 1/4 538 2/4

Total 1/14 538 5/12

PBS affected mouse (NP pattern 
A) 0/13 – 9/12

PBS affected mouse (NP pattern 
A) 2/10 600, 638 5/9

PBS affected mouse (C,NP pat-
tern B) 4/15 596 ± 33 6/11

PBS affected mouse (C,NP pat-
tern B) 5/10 600 ± 3.8 4/6

Total 11/48 598 ± 13 24/38

Buffer unaffected mouse 0/5 – 1/3

Buffer unaffected mouse 3/9 567 ± 14 4/5

Buffer unaffected mouse 0/5 – 2/3

Total 3/19 567 ± 14 7/11

Buffer affected mouse (NP pat-
tern A) 3/15 597 ± 17 10/13

Buffer affected mouse (C,NP 
pattern A) 4/15 531 ± 49 8/12

Buffer affected mouse (NP pat-
tern B) 0/5 – 2/3

Buffer affected mouse (NP pat-
tern A) 4/10 540 ± 59 1/2

Total 11/45 552 ± 27 21/30

Figure 2.  The occurrence of spontaneous neuropathology in ageing Tg20 mice challenged with D-PBS or 
buffer: The x-axis represents the latency in days from inoculation to death with each symbol representing an 
individual animal (see Table 1). Triangles represent mice with cerebellar atrophy and circles indicate no atrophy. 
Blue symbols represent pattern (A), yellow symbols pattern (B), green symbols pattern (C) and (D) with open 
circles representing unaffected animals with no signs of abnormal pathology (see Fig. 1).
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prion disease in these mice. Although it formally remains a possibility that the site of transgene insertion could 
be responsible for these effects, our results indicate that accumulation of abnormal PrP is likely to at least con-
tribute to the process responsible for the vacuolation and neuronal loss associated with prion infection that in 
turn may lead to a clinical disease when sufficiently advanced. Since we saw no evidence for the generation of 
transmissible prions in the brain of any clinically affected or unaffected mouse, our findings suggest specific 
processes are required to form infectious prions distinct from the propagation of PrP  amyloid9.

A previous study explored the possibility that overexpression of Prnp in Tg20 mice might lead to spontane-
ous prion  formation45. Serial passages of brain homogenate obtained from Tg20 mice were carried out for three 
generations with each generation being observed for 250 days before sacrifice and histological examination. The 
authors did not observe any clinical disease or abnormal neuropathology in these mice which is consistent with 
our observations that the earliest occurrence of proteinopathy had a latency of over 500 days (Table 2, Figs. 2 
and 3). Cognisant of protein aggregation being a time-dependent process the authors also conducted long-term 
observations of six Tg20 mice inoculated with brain homogenate obtained from aged Tg20 animals. Of the six 
recipients, three developed a neurological syndrome with associated misfolded PrP accumulation in the brain 
with a mean incubation period of 422 days. The authors suggest this is consistent with low levels of prion infec-
tivity (~  1ID50/3 mg tissue) in the original brain used to prepare the  inoculum45. However they did not passage 
brain material from the affected mice to confirm the presence of transmissible prions and our results provide an 
alternative explanation for their findings.

The use of sub-passage is extremely useful for confirming the presence of prion infectivity. Hence, where we 
observed signs of disease, brain homogenates were passaged to further groups of mice. We recorded a similar 
pattern of phenotypes in recipients with no significant increase in the number of animals affected. Third passage 
can be useful in some circumstances and has been used to assay low concentrations of  prions46. However, we 
did not perform a third passage as there was no evidence of any prion transmissions or amplification of prions 
by second passage. Although we observed a slight reduction in apparent incubation period for onset of clinical 
signs in these secondary transmissions (Table 2) the extent of adaptation is not congruent with transmission of 
authentic prions. The observation of a clinical syndrome and neuropathology reminiscent of prion disease in 
aged Tg20 mice unexposed to exogenous prion inoculum is an important finding with respect to animal models 

Figure 3.  Age dependence of spontaneous neuropathology in Tg20 mice challenged with D-PBS or buffer. 
The proportion of Tg20 mice affected by neuropathological changes of all types (with patterns A, B and C) are 
shown as a percentage of the total number of mice examined in each of the age cohorts indicated on the x-axis. 
The numbers of mice affected were; < 500 days 0/3, 501–600 days 1/10, 601–700 days 7/18, 701–800 days 12/17 
and > 801 days 5/6.
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suitable for studies aimed at generating high titre synthetic prions from recombinant PrP where long-term 
observation is required.

As the prion paradigm is applied to an ever widening group of protein misfolding disorders efforts are increas-
ing to establish if other neurodegenerative diseases might be transmissible in  humans8,47. Our results highlight 
the importance of fully characterising experimental models overexpressing wild type amyloidogenic substrate 
proteins and the need for caution when interpreting the results of long term observations approaching the natural 
lifespan of transgenic animals in the absence of suitably studied age-matched controls.

Methods
Inoculation of transgenic mice. All procedures were conducted in microbiological containment level 3 
facilities with strict adherence to safety protocols. All experiments performed with animals were performed in 
accordance with licences approved and granted by the UK Home Office (Project Licences P7B5EB63F, 70/6454 
and 70/7274) and conformed to University College London institutional and ARRIVE guidelines. All experi-
mental protocols were approved by the Local Ethics Committee of UCL’s Institute of Neurology and National 
Hospital for Neurology and Neurosurgery. Inoculation of Tg20  mice28 was carried out according to strict 
biosafety protocols in a class I microbiological safety cabinet. All mice were inoculated with a total volume 
of 30  µl comprising either sterile Dulbecco’s phosphate-buffered saline lacking  Ca2+ and  Mg2+ ions (D-PBS) 
(Invitrogen), buffer (20 mM Tris 20 mM sodium acetate + 200 mM NaCl pH 4.0) or 1% w/v brain homogenate 
intra-cerebrally into the right parietal lobe following anaesthesia with halothane/O2.

Animal husbandry and criteria for determining clinical disease. Animal husbandry was carried 
out as previously  described12. Briefly, all mice were examined daily for early indicators of clinical prion dis-
ease including piloerection, sustained erect ears, intermittent generalised tremor, unsustained hunched posture, 
rigid tail, mild loss of coordination, and clasping hind legs when lifted by the tail. Definite diagnosis of clinical 
prion disease (triggering experimental end point) was reached if mice exhibited any two early indicator signs 
in addition to one confirmatory sign, or any two confirmatory signs. The confirmatory signs included ataxia, 
impairment of righting reflex, dragging of hind limbs, sustained hunched posture, or significant abnormal 
 breathing12,40,41. Mice were killed (by  CO2 asphyxiation) if they exhibited any signs of distress or once a diagnosis 
of prion disease was established. At post-mortem brains from inoculated mice were removed, divided sagittally 
with half frozen and half fixed in 10% buffered formol saline. Subsequent immunohistochemical or biochemical 
investigations were performed blind to sample provenance.

Preparation of brain homogenates and western blot detection of PrP. Frozen brain, right hemi-
spheres, were prepared as a 10% w/v homogenates in D-PBS using tissue grinders (Anachem) and dispensed 
into aliquots and stored at − 80 °C. For preparation of inocula aliquots of 10% w/v homogenates were thawed and 
diluted to 1% w/v in D-PBS and serially passaged through syringe needles of decreasing diameter. For analysis 
by immunoblotting 10% w/v homogenate was clarified by removing gross cellular debris by centrifugation at 
1000 rpm (80 × g) for 1 min in a microfuge (Eppendorf). Detection of proteinase K-resistant PrP in the super-
natant was performed with and without enrichment by sodium phosphotungstic acid precipitation as described 
 previously43,48 using anti-PrP monoclonal antibody ICSM35 (D-Gen Ltd, London).

Neuropathology and PrP immunohistochemistry. Left brain hemispheres fixed in 10% buffered 
formol saline were assessed for presence of abnormal PrP by staining with the anti-PrP monoclonal antibody 
ICSM35 (D-Gen, London) using a Ventana automated immunohistochemical staining machine (Ventana Medi-
cal Systems, Tuscon, AZ, USA) as described  previously48.Tissue was fixed in 10% v/v buffered formol saline 
followed by incubation in 98% v/v formic acid for 1 h. Following further washing for 24 h in 10% v/v buffered 
formol saline tissue samples were processed and embedded in paraffin wax. Sections were cut at a nominal 
thickness of 4 µm, treated with 98% v/v formic acid for 5 min and the slides were placed on the automated 
staining machine. De-paraffinisation was performed with xylene followed by heating to 95 °C in a low ionic 
strength buffer (2.1 mM Tris, 1.3 mM EDTA, 1.1 mM sodium citrate, pH7.8) for 30 min, before 16 min protease 
treatment. Abnormal PrP accumulation was detected using anti-PrP monoclonal antibody  ICSM3549 in con-
junction with a biotinylated-anti-mouse IgG secondary antibody (iView SA-HRP, Ventana Medical Systems) 
before development with 3′3 diaminobenzidine tetrachloride as the chromogen (iView DAB, Ventana Medical 
Systems). Immunostaining for glial fibrillary acidic protein (GFAP) and haematoxylin and eosin (H&E) staining 
of serial sections was done according to published  methods48.

Ethics approval. Work with animals was performed in accordance with licences approved and granted by 
the UK Home Office (Project Licences PPL: P7B5EB63F, 70/6454 and 70/7274) and conformed to institutional 
and ARRIVE guidelines.

Data availability
The datasets used and analysed for this study are available from the corresponding author on reasonable request.
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