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a b s t r a c t 

Capturing individual differences in cognition is central to human neuroscience. Yet our ability to estimate cog- 
nitive abilities via brain MRI is still poor in both prediction and reliability. Our study tested if this inability 
can be improved by integrating MRI signals across the whole brain and across modalities, including task-based 
functional MRI (tfMRI) of different tasks along with other non-task MRI modalities, such as structural MRI, 
resting-state functional connectivity. Using the Human Connectome Project ( n = 873, 473 females, after quality 
control), we directly compared predictive models comprising different sets of MRI modalities (e.g., seven tasks 
vs. non-task modalities). We applied two approaches to integrate multimodal MRI, stacked vs. flat models, and 
implemented 16 combinations of machine-learning algorithms. The stacked model integrating all modalities via 
stacking Elastic Net provided the best prediction ( r = 0.57), relatively to other models tested, as well as ex- 
cellent test-retest reliability (ICC =∼.85) in capturing general cognitive abilities. Importantly, compared to the 
stacked model integrating across non-task modalities ( r = 0.27), the stacked model integrating tfMRI across tasks 
led to significantly higher prediction ( r = 0.56) while still providing excellent test-retest reliability (ICC =∼.83). 
The stacked model integrating tfMRI across tasks was driven by frontal and parietal areas and by tasks that 
are cognition-related (working-memory, relational processing, and language). This result is consistent with the 
parieto-frontal integration theory of intelligence. Accordingly, our results contradict the recently popular notion 
that tfMRI is not reliable enough to capture individual differences in cognition. Instead, our study suggests that 
tfMRI, when used appropriately (i.e., by drawing information across the whole brain and across tasks and by inte- 
grating with other modalities), provides predictive and reliable sources of information for individual differences 
in cognitive abilities, more so than non-task modalities. 
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. Introduction 

Relating individual differences in cognitive abilities to the brain has
een focal to human neuroscience ( Deary et al., 2010 ). Yet, we still can-
ot use brain data to capture individual differences in cognitive abilities
ith high prediction and reliability ( Marek et al., 2022 ; Pohl et al., 2019 ;
ui et al., 2020 ). Here, prediction refers to a capacity to estimate the cog-
itive abilities of unseen individuals (outside of the model-building pro-
ess, aka out-of-sample) ( Yarkoni and Westfall, 2017 ). Reliability refers
o the test-retest stability of measurements ( Noble et al., 2021 ). This
ailure has led to headlines, such as ‘Scanning the Brain to Predict be-
avior, a Daunting ‘Task’ for MRI’ ( APS, 2020 ) and ‘Can brain scans
eveal behaviour? Bombshell study says not yet: 

Most studies linking features in brain imaging to traits such as cog-
itive abilities are too small to be reliable, argues a controversial analy-
∗ Corresponding authors. 
E-mail addresses: a.stringaris@ucl.ac.uk (A. Stringaris), narun.pat@otago.ac.nz (N
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eceived 25 May 2022; Received in revised form 13 August 2022; Accepted 23 Augu
vailable online 31 August 2022. 
053-8119/© 2022 Published by Elsevier Inc. This is an open access article under th
is’ ( Callaway, 2022 ). Having highly predictive and reliable brain-based
iomarkers for cognitive abilities could aid in our studies of mental-
llness mechanisms ( Morris and Cuthbert, 2012 ). 

Predicting out-of-sample individual differences in cognitive abilities
rom neuroimaging has predominately been focused on non-task MRI
odalities. Earlier studies associating general cognitive abilities and

tructural MRI (sMRI; reflecting brain volume/morphology) showed a
eak association at r 0.1–0.3 ( McDaniel, 2005 ; Pietschnig et al., 2015 ).
ecause these associations were often done within-sample (not tested
n unseen individuals), these weak associations may have already been
iased upward (i.e., overfitting). More recent studies have shifted to-
ard predictive modelling, a machine-learning/multivariate approach

hat draws information across different brain areas to maximize out-
f-sample prediction. Yet, a recent predictive modelling competition
howed r as low as 0.03 for out-of-sample prediction of general cog-
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itive abilities via sMRI in children ( Mihalik et al., 2019 ), suggesting
he poor predictive performance of sMRI for cognitive abilities. Re-
ently, researchers have turned to resting-state functional connectivity
resting-state FC) for prediction. Resting-state FC reflects the functional-
onnectivity between different brain areas, intrinsically occurring while
esting. Applying predictive modelling on resting-state FC, researchers
ave found the moderate out-of-sample prediction of general cogni-
ive abilities at r 0.2–0.42 ( Dubois et al., 2018 ; Rasero et al., 2021 ;
ripada et al., 2020 , 2021 ). Still, there is a large room for improvement.

Here we examined two potential solutions: 1) using task-based func-
ional MRI (tfMRI) and 2) combining tfMRI across tasks and with other
odalities. First, tfMRI reflects the changes in BOLD induced by certain

vents while performing cognitive tasks. Sripada et al. (2020) applied
redictive modelling on tfMRI using the Human Connectome Project
HCP) ( Barch et al., 2013 ). They found that tfMRI from some tasks (e.g.,
apping working memory, relational skills and language) predicted cog-
itive abilities very well, at out-of-sample r > 0.4 with the best task, work-
ng memory, at r = 0.5, which is higher than predictive performance
ound using the resting-state FC in this dataset at r = 0.26. This suggests
hat task-based activation during certain cognitive processes is a bet-
er candidate for capturing individual differences in cognitive abilities,
ompared to more commonly used modalities, e.g., sMRI and resting-
tate FC. 

Nonetheless, tfMRI has recently come under intense scrutiny for its
ow test-retest reliability ( Elliott et al., 2020 ). Researchers often quantify
eliability using intraclass correlation (ICC) where low ICC reflects poor
eliability ( Cicchetti and Sparrow, 1981 ). Elliot and colleagues (2020)
xamined ICC of task-based activation at different regions and tasks us-
ng the HCP and showed poor ICC ( < 0.4) across the regions and tasks.
his is very different from sMRI‘s ICC, which was in the excellent range
ICC > 0.75). Accordingly, while potentially providing better prediction,
fMRI may not be stable across time. Nonetheless, this ICC examination
nly focused on ICC from single regions, as opposed to from multiple
egions drawn together by predictive modelling. Thus, this calls for re-
earch to examine the boosted reliability of tfMRI from the predictive
odelling ( Kragel et al., 2021 ). 

The second solution involves combining tfMRI across tasks and with
ther MRI modalities. Most studies rely on a single tfMRI task or a sin-
le MRI modality to predict cognitive abilities ( Sripada et al., 2020 ;
ui et al., 2020 ). Yet different tasks and MRI modalities might provide
ifferent sources of information for cognitive abilities, and thus comb-
ng them may help boost prediction and reliability ( Rasero et al., 2021 ).
here are different approaches for combining tfMRI across tasks and
ith other MRI modalities. The most straightforward approach is to in-

lude all MRI features from every task/modality in the same model.
e call this approach, the “flat model. ” Apart from the flat model, re-

ent MRI researchers have used a machine-learning technique called
stacking ” ( Wolpert, 1992 ) to combine different MRI modalities into the
stacked model ” ( Engemann et al., 2020 ; Rasero et al., 2021 ). To apply
tacking, researchers first build a model that predicts a target variable
e.g., cognitive abilities) from MRI features separately from each of the
odalities, resulting in one predicted model from each modality. Us-

ng these modality-specific models, the researchers then compute their
redicted values as surrogate features for each modality and build an-
ther model to combine these surrogate features across modalities. For
nstance, Rasero et al. (2021) used the HCP and combined many non-
ask MRI modalities (e.g., sMRI and resting-state FC) via stacking and
howed enhanced predictive performance, compared to single-modality
odels. However, potentially partly due to not including tfMRI into

heir stacked model, they only found relatively modest performance
rom stacking, R 

2 = 0.078, or roughly estimated r = 0 .28. Accordingly,
any questions arise. First, can integrating tfMRI across different tasks

nd/or with other modalities via stacking improve the prediction and re-
iability of the brain-based models for cognitive abilities? Second, which
f the two combining approaches, flat vs. stacked models, performs
etter? 
2 
Apart from these two questions, it is still unclear the extent to which
e should draw information across brain features and tasks/modalities.
o model the relationship between brain features and cognitive abil-

ties, many regression-based machine-learning algorithms are applica-
le. Common algorithms include those based on penalised regression
 Kuhn and Johnson 2013 ), tree-based regression (Breiman et al. 2017)
nd kernel-based regression ( Cortes and Vapnik 1995 ). Some algo-
ithms, such as Ridge regression ( Kuhn and Johnson 2013 ) and Elas-
ic Net ( Zou and Hastie 2005 ), are linear and additive while other al-
orithms, such as Random Forest ( Breiman 2001 ), XGBoost ( Chen and
uestrin 2016 ) and Support Vector Regression (SVR) with the Radial
asis Function (RBF) kernel ( Cortes and Vapnik 1995 ; Drucker et al.,
996 ), are non-linear and interactive. It is still untested if using non-
inear and interactive algorithms would allow for higher prediction and
eliability. For stacked models, as compared to flat and modality-specific
odels, this issue is more complicated since different algorithms can

e used for building modality-specific models vs. for stacking surrogate
easures across modalities. In fact, different stacking studies have used
ifferent algorithms without testing their performance against other
ombinations of algorithms. For instance, Engemann et al. (2020) used
idge regression for building their modality-specific models and Ran-
om Forest for stacking surrogate measures across modalities while
asero et al. (2021) used Elastic Net for both building modality-specific
odels and stacking models across modalities. Thus, our study also

imed to find the combinations of algorithms that could lead to better
erformance for stacked models. 

Beyond potentially enhancing prediction and reliability, integrating
fMRI across tasks via predictive modelling and stacking can also yield
ubstantive insights into the neural basis of cognitive abilities. Examin-
ng the feature importance of the predictive model for each tfMRI task
ould allow us to demonstrate which of the brain features contribute
ighly to the prediction of general cognitive abilities for this partic-
lar task. Similarly, examining the feature importance of the stacked
odel that combined tfMRI across tasks would allow us to demon-

trate which of the tasks contribute highly to the prediction. Altogether,
e can achieve a predictive model from tfMRI with high prediction
ithout losing sight of its feature importance. Accordingly, investi-
ating highly contributing brain areas from highly contributing tasks
ould identify brain networks associated with general cognitive abili-

ies across different cognitive domains (i.e., tfMRI tasks). In principle,
his stacking feature-importance approach is similar to meta-analyses of
fMRI ( Müller et al., 2018 ). When conducting a meta-analysis for cog-
itive abilities, researchers often examine the consistency in areas ac-
ivated in association with individual differences in cognitive abilities
cross different tfMRI tasks ( Basten et al., 2015 ; Jung and Haier, 2007 ;
antarnecchi et al., 2017 ). Santarnecchi et al. (2017) , for instance, meta-
nalysed multiple tfMRI studies that used different tasks to predict indi-
idual differences in cognitive abilities. They found the areas in fron-
oparietal and dorsal attention networks to be consistently activated
cross these studies, in line with the parieto-frontal integration theory of
ntelligence ( Jung and Haier, 2007 ). Accordingly, to compare the stack-
ng feature-importance approach and the meta-analyses of tfMRI, we
lso examined the similarity of the feature importance from our tfMRI
odels with the meta-analysis by Santarnecchi et al. (2017) . 

To improve the prediction and reliability of MRI in capturing cog-
itive abilities, we integrated MRI signals across the whole brain from
ifferent tasks, structural MRI and resting-state functional connectiv-
ty. We directly compared predictive models comprising different sets of
RI modalities (e.g., all MRI modalities vs. tfMRI from all tasks vs. tfMRI

rom a subset of tasks that performed well vs. non-task MRI modalities).
e expected to see high prediction and reliability from models that in-

luded tfMRI, especially when tfMRI was combined across tasks and
ith other modalities. We also tested different approaches for combin-

ng tfMRI information from different areas across tasks and with other
RI modalities: (1) using flat vs stacked models and (2) using different

ombinations of machine-learning algorithms. In addition to prediction
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nd reliability, we designed our machine-learning pipeline to be inter-
retable, such that we could examine the contribution from each brain
eature across different MRI modalities and compare our feature impor-
ance with those found in a recent meta-analysis of cognitive abilities
 Santarnecchi et al., 2017 ). 

. Materials and methods 

.1. Participants 

We used the Human Connectome Project’s (HCP) S1200 release
 Van Essen et al., 2013 ; WU-Minn Consortium Human Connectome
roject, 2018 ). This release included multimodal-MRI and cognitive-
erformance data from 1206 healthy participants (not diagnosed with
sychiatric and neurological disorders). We discarded participants
hose data were flagged as having quality control issues by the HCP
 n = 91): either having the “A ” (anatomical anomalies) or “B ” (segmen-
ation and surface) flag or having any known major issues ( Elam, 2021 ).

e also removed participants who had missing values in any of the
ultimodal-MRI ( n = 233) or cognitive-ability ( n = 9) variables. This

eft 873 participants (473 females, M = 28.7 ( SD = 3.7) years old). They
re from 414 families as many participants are from the same fam-
ly. We provided participants’ ID in our GitHub repository (see below).
articipants provided informed consent, including consent to share de-
dentified data. The Institutional Review Board at Washington Univer-
ity oversighted the HCP’s study procedure. 

To examine the test-retest reliability of our predictive models, we
lso used the HCP Retest Dataset. This dataset included 45 participants
ho completed the HCP protocol for the second time ( M = 139.029

SD = 67.31) days apart). We had 34 participants whose data were com-
lete across the two visits and were not flagged as having any quality
ontrol issues. 

.2. Features: multimodal MRI 

The HCP provided complete details of the scanning parameters and
reprocessing pipeline elsewhere ( Barch et al., 2013 ; Glasser et al.,
013 ; Van Essen et al., 2013 ). Here, we used MRI data with the MS-
All alignment ( Glasser et al., 2016 ; Robinson et al., 2018 ) and with

xtensive processing (e.g., for task-based functional MRI, we obtained
he general linear contrasts, see below). In total, the MRI data can be
rganized into 12 different modalities (i.e., sets of features): 

Modalities 1–7: Task-based functional MRI (tfMRI) from seven dif-
ferent tasks. 

The HCP collected tfMRI from seven tasks ( Barch et al., 2013 ), giving
ise to seven sets of features in our model. The study scanned partici-
ants during each of the tasks twice with different phase encodings:
ight-to-left (RL) and left-to-right (LR). The HCP described preprocess-
ng steps for tfMRI elsewhere ( Glasser et al., 2013 ). Briefly, they in-
luded B 0 distortion correction, motion correction, gradient unwrap,
oundary-based co-registration to T 1 -weighted image, non-linear reg-
stration to MNI152 space, grand-mean intensity normalization and
urface generation (see https://github.com/Washington-University/
CPpipelines ). Here we focused on general-linear model contrasts of

fMRI (cope1.dtseries.nii). We parcellated tfMRI into 379 regions of in-
erest (ROIs) using Glasser cortical atlas (360 ROIs) ( Glasser et al., 2016 )
nd Freesurfer subcortical segmentation (19 ROIs) ( Fischl et al., 2002 )
nd extracted the average value from each ROI. We treated general-
inear model contrasts between standard experimental vs. control con-
itions for each tfMRI task as different modalities: 

First, in the working memory task, we used the 2-back vs. 0-back con-
rast. Here, participants had to indicate whether the stimulus currently
hown was the same as the stimulus shown two trials prior [2-back] or
s the target stimulus shown in the beginning of that block [0-back].
econd, in the language task, we used the story vs. math contrast. Here,
3 
articipants responded to questions about Aesop’s fables [story] or math
roblems [math]. Third, in the relational processing task, we used the
elational vs. match contrast. Here participants reported if two pairs of
bjects differed in the same dimension [relational] or matched with a
iven dimension [match]. Forth, in the motor task, we used the averaged
ovement vs. cue contrast. Here participants were prompted [cue] to

ubsequently execute a movement [movement] with their fingers, toes,
nd tongue. Fifth, in the emotion processing task, we used the face vs.
hape contrast. Here participants decided which two of the bottom ob-
ects matched the top object, and all objects in each trial can either be
emotional) faces [face] or shapes [shape]. Sixth, in the social cognition
ask, we used the theory of mind vs. random contrast. Here participants
aw movie clips of objects interacting with each other either socially
theory of mind] or randomly [random]. Seventh, in the gambling task,
e used the reward vs. punishment contrast. Here, participants had to
uess if a number was higher or lower than 5, and the correct guess was
ssociated with winning (vs. losing) money. They mostly won in certain
locks [reward] and mostly lost in others [punishment]. 

Modalities 8: Resting-state functional connectivity (resting-state FC)

The HCP collected resting-state FC from four 15-min runs, resulting
n one-hour-long data ( Glasser et al., 2013 ; Smith et al., 2013 ). Half of
he runs were right-to-left phase encoding, and the other half were left-
o-right phase encoding. The HCP applied a preprocessing pipeline to
esting-state FC that is similar to the pipeline the study applied to tfMRI
 Glasser et al., 2013 ) (see https://github.com/Washington-University/
CPpipelines ). The HCP denoised resting-state FC data using ICA-FIX
 Glasser et al., 2016 ). We parcellated the denoised resting-state FC data
nto 379 ROIs using the same atlases as the tfMRI ( Fischl et al., 2002 ;
lasser et al., 2016 ). After the parcellation, we extracted each ROI’s

ime series from each of the four runs and concatenated them into one.
e then computed Pearson’s correlation between concatenated time se-

ies of each ROI pair, resulting in a table of 71,631 non-overlapping
esting-state FC indices. Thereafter, we applied r-to-z transformation to
he whole table. To reduce the number of features in the model, we ap-
lied a principal component analysis (PCA) of 75 components to this
able ( Rasero et al., 2021 ; Sripada et al., 2019 , 2020 ). More specifi-
ally, to prevent data leakage between training and test sets (see the pre-
ictive modelling pipeline below), we extracted principal components
PCs) from the resting-state FC table from each training set and applied
his PCA definition to the associated test set of the same cross-validation
old. 

Modalities 9–12: Structural MRI (sMRI) 

The HCP provided the preprocessing pipeline for sMRI elsewhere
 Glasser et al., 2013 ). Please see the preprocessing scripts here https://
ithub.com/Washington-University/HCPpipelines . We separated sMRI
ata into four different modalities: cortical thickness, cortical surface
rea, subcortical volume and total brain volume. For cortical thickness
nd cortical surface area, we used Destrieux parcellation (148 ROIs)
rom FreeSurfer’s aparc.stats file ( Destrieux et al., 2010 ; Fischl, 2012 ).
s for subcortical volume, we used subcortical segmentation (19 grey
atter ROIs) from FreeSurfer’s aseg.stats file ( Fischl et al., 2002 ).
s for total brain volume, we included five features calculated by
reeSurfer: estimated intra-cranial volume (FS_IntraCranial_Vol), total
ortical grey matter volume (FS_TotCort_GM_Vol), total cortical white
atter volume (FS_Tot_WM_Vol), total subcortical grey matter volume

FS_SubCort_GM_Vol) and ratio of brain segmentation volume to esti-
ated total intracranial volume (FS_BrainSegVol_eTIV_Ratio). Note, we

eparately modelled subcortical volume and total brain volume even
hough both of them reflect the volume of the brain. This is due to the
onvention in FreeSurfer ( Fischl, 2012 ): FreeSurfer only includes calcu-
ations from subcortical areas in the subcortical volume indices but in-
ludes calculations from both cortical and subcortical areas in the total-
rain-volume indices. See Supplementary materials for the model that
ncluded both subcortical volume and total brain volume. Briefly, the

https://github.com/Washington-University/HCPpipelines
https://github.com/Washington-University/HCPpipelines
https://github.com/Washington-University/HCPpipelines
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Fig. 1. Predictive modelling pipeline. The diagram shows how we built stacked models and evaluated their predictive performance. CV = cross validation. 

p  

a  

t

2

 

fl  

T  

t  

F  

r  

a  

b

2

m

 

n  

d  

t  

C  

i  

e  

S  

t  

s
 

“  
redictive performance of the model that combined subcortical volume
nd total brain volume together was similar to that of the model with
he total brain volume by itself. 

.3. Target: general cognitive abilities 

We trained our models to predict general cognitive abilities, re-
ected by the average score of cognition assessments in the NIH
oolbox ( Weintraub et al., 2014 ), as provided by the HCP (CogTo-
alComp_Unadj). The assessments included picture sequence memory,
lanker, list sorting, dimensional change card sort, pattern comparison,
eading tests and picture vocabulary. Note we used the age-unadjusted
verage score since we controlled for age in the models themselves (see
elow). 
4 
.4. Predictive modelling pipeline: modality ‐specific, stacked and flat 

odels 

For our predictive modelling pipeline ( Fig. 1 ), we used eight-fold
ested cross-validation (CV) to build the models and evaluate their pre-
ictive performance. Since the HCP recruited many participants from
he same family ( Van Essen et al., 2013 ; WU-Minn Consortium Human
onnectome Project, 2018 ), we first controlled the influences of the fam-

ly structure by splitting the data into eight folds based on families. In
ach of the folds, there were members of ∼50 families ( M = 109.13,
D = 0.33 participants), prohibiting members of the same family to be in
he same folds. Note we used eight folds, as opposed to ten folds, here
o that there were over 100 observations in each fold. 

The nested CV involved two loops, nested with each other. In each CV
outer ” loop, one of the eight folds that included ∼50 families was held-
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ut and was treated as a test set. The rest was treated as a training set.
or stacked models, the training set was further split into 60% first- and
0% second- training layers. Within the CV “inner ” loops, we separately
t the first-layer data from each modality to predict general cognitive
bilities. Here we applied a five-fold CV to tune the hyperparameters of
he models. This stage allowed us to create 12 of the modality-specific
odels. Using the second-layer data, we then computed predicted values

or each of the 12 modalities based on the modality-specific models, and
t these predicted values across modalities to predict general cognitive
bilities, resulting in the stacked models. Same as the first-layer data, we
lso applied a five-fold CV to tune the hyperparameters of the models
ere. For the flat models, we did not split the training set into two layers.
nstead, we included features from different modalities directly in the
odel. Same with the stacked models, we applied a five-fold CV to tune

he hyperparameters of the flat models. 
For both stacked and flat models, we created four types of models

hat combined MRI of different modalities: 1) all-modality (i.e., a com-
ination of 12 modalities), 2) all-task (i.e., a combination of seven dif-
erent tfMRI tasks), 3) top-task (i.e., a combination of tfMRI tasks that
howed high predictive performance) and 4) non-task (i.e., a combina-
ion of resting-state FC and four sMRI modalities). 

.5. Confound correction and standardisation 

We first controlled for age ( Dosenbach et al., 2010 ; Geerligs et al.,
015 ) and sex ( Ruigrok et al., 2014 ; Trabzuni et al., 2013 ) in our models
y linearly residualising them from both MRI data and cognitive abili-
ies. We additionally residualised in-scanner movements from tfMRI and
esting-state FC, given their sensitivity to motion artifacts ( Power et al.,
012 ; Satterthwaite et al., 2013 ). More specifically, we defined in-
canner movements as the average of relative displacement (Move-
ent_RelativeRMS_mean) across all available runs for each modality

eparately. We also standardised MRI data. To prevent data leakage,
e separately applied residualisation and standardisation to the train-

ng and test sets. For the training sets, we implemented them separately
n the two layers for the stacked models and as a whole training set for
he flat models. 

In our main analysis, we did not control for race/ethnicity due to
he unbalanced number of participants from each race/ethnicity (see
upplementary Table 1). First, the HCP only included a few partici-
ants from certain races/ethnicities. For instance, only 2 people iden-
ified themselves as American Indian or Alaskan Native and not His-
anic Latino. In fact, there were 10 races/ethnicities (out of 14) that
ad fewer than 20 participants. Second, the majority ( n = 606) of par-
icipants who passed our exclusion criteria ( n = 873) were of the same
ace/ethnicity, “White and not Hispanic/Latino ”. Accordingly, control-
ing race/ethnicity using linear residualisation from both MRI data and
ognitive abilities can be problematic. 

Nonetheless, to ensure that our results were robust against variation
n race/ethnicity, we also conducted supplementary analysis by first ex-
luding participants who belonged to a group of race/ethnicity with
ewer than 20 participants. This left 834 participants but still resulted in
 relatively low number of participants from certain race/ethnicity: 54
articipants for Asians, Native Hawaiian other Other Pacific Islanders
nd not Hispanic/Latino and 57 for White and Hispanic/Latino ”. We
hen residualised race/ethnicity in addition to age, sex and motion (see
upplementary Materials). 

.6. Predictive modelling algorithms 

Here we employed four model-fitting algorithms via the scikit-learn
ackage ( Pedregosa et al., 2011 ): Elastic Net ( Zou and Hastie, 2005 ),
andom Forest ( Breiman, 2001 ), XGBoost ( Chen and Guestrin, 2016 )
nd Support Vector Regression (SVR) ( Cortes and Vapnik, 1995 ;
rucker et al., 1996 ). Given that the stacked models imposed two train-
5 
ng layers, we had 16 (i.e., four by four) combinations of algorithms for
ur stacked models. 

.6.1. Elastic net 

Elastic Net ( Zou and Hastie, 2005 ) is a linear and additive algorithm
hat was previously used for predicting cognitive abilities from resting-
tate FC ( Dubois et al., 2018 ). Elastic Net is a general form of penal-
zed regression, allowing us to simultaneously draw information across
ifferent brain indices to predict one target variable. Compared to the
lassical, ordinary least squares regression, Elastic Net allows us to have
ore parameters (e.g., number of brain indices) than the number of ob-

ervations (e.g., participants in each training set). Compared to other
ore complicated algorithms, Elastic Net has the benefit of being easier

o interpret ( Molnar, 2019 ). Researchers can directly interpret the mag-
itude of each coefficient as the importance of each feature (e.g., brain
ndices). 

Elastic Net fits a plane that minimises the squared distance between
tself and the data points ( James et al., 2021 ; Kuhn and Johnson, 2013 ).

hen strongly correlated features are present, the classical, ordinary
east squares regression tends to give very unstable estimates of coeffi-
ients and extremely high estimates of model uncertainty ( Alin, 2010 ;
raham, 2003 ; Monti, 2011 ; P. Vatcheva and Lee, 2016 ). To address

his, Elastic Net simultaneously minimises the weighted sum of the fea-
ures’ slopes. For example, if the features are tfMRI from different re-
ions, Elastic Net will shrink the contribution of some regions closer
owards zero. The degree of penalty to the sum of the feature’s slopes
s determined by a shrinkage hyperparameter ‘ 𝛼’: the greater the 𝛼, the
ore the slopes shrunk, and the more regularised the model becomes.
lastic Net also includes another hyperparameter, ‘ 𝓁 1 ratio’, which de-
ermines the degree to which the sum of either the squared (known as
Ridge’; 𝓁 1 ratio = 0) or absolute (known as ‘Lasso’; 𝓁 1 ratio = 1) slopes is
enalised ( Zou and Hastie, 2005 ). The objective function of Elastic Net
s implemented by sklearn is defined as: 

 𝑟𝑔𝑚𝑖𝑛 β

( ||𝑦 − 𝑋β||2 2 
2 × 𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

+ α × 𝓁 1 _ 𝑟𝑎𝑡𝑖𝑜 × ||β||1 + 0 . 5 × α ×
(
1 − 𝓁 1 _ 𝑟𝑎𝑡𝑖𝑜 

)
× ||𝑤 β||2 2 

) 

, 

(1) 

here X is the features, y is the target, and 𝛽 is the coefficient. 
To find the appropriate hyperparameters for each training layer, we

pplied a grid-search, 5-fold cross-validation ( Efron and Gong, 1983 ;
awkins et al., 2003 ; Koul et al., 2018 ) separately on each layer. In our
rid, we searched for 𝛼 using 500 numbers in log space, ranging from
0 − 6 and 10 4 , whereas for the 𝓁 1 ratio we used 100 numbers in linear
pace, ranging from 0 to 1. 

.6.2. Random forest 

Random Forest ( Breiman, 2001 ) is a tree-based algorithm. Unlike
lastic Net, Random Forest allows for a non-linear relationship between
ach feature and the target and for interactions amongst features. Ran-
om Forest bootstraps observations and incorporates a random subset of
eatures at each split of tree building, resulting in several, bootstrapped
rees. A prediction then is based on an aggregation of predicted val-
es across bootstrapped trees. Here we used 5000 trees (i.e., setting

n_estimators’ = 5000 in sklearn). We also tuned two hyperparameters:
he maximum depth of each tree, i.e., ‘max_depth’, and the number of
eatures that are randomly sampled at each split, i.e., ‘max_feature’. In
ur grid, we used the integers between 1 and 11 for ‘max_depth’. For

max_feature’, we included the number of features itself, the square root
f the number of features and log-based 2 of the number of features. 

.6.3. XGBoost 

XGBoost ( Chen and Guestrin, 2016 ) is another tree-based algorithm.
ike Random Forest, XGBoost allows for non-linearity and interaction.
nlike bootstrapped trees in Random Forest, XGBoost generates sequen-

ial trees where a current tree adapts from the gradients of previous
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rees. XGBoost has many parameters, most of which we used the default
alues, set by sklearn. We used ‘gbtree’ as a booster and tuned 3 hy-
erparameters: ‘max_depth’, ‘eta’ and ‘subsample’. Same with Random
orest, ‘max_depth’ is the maximum depth of each tree. Here, we sam-
led ‘max_depth’ from the integers between 1 and 5. ‘eta’ is a learning
ate that controls the speed of tree adaptation. We tuned ‘eta’ using the
alues: 0.03, 0.06 and 0.1. Lastly, ‘subsample’ is the ratio of the training
nstance. We tuned ‘subsample’ using the values: 0.6, 0.8 and 1. 

.6.4. Support vector regression 

Support Vector Regression (SVR) ( Cortes and Vapnik, 1995 ;
rucker et al., 1996 ) is a kernel-based algorithm, which also allows for
on-linearity and interaction. The objective function of SVR is defined
s: 

𝑖𝑛 

{ 

1 
2 
‖𝛽‖2 + 𝐶 

𝑛 ∑
𝑖 =1 

(
𝜉𝑖 + 𝜉∗ 

𝑖 

)} 

, (2)

ith constraints: 

 𝑖 − 𝑥 𝑇 
𝑖 
𝛽 − 𝛽0 ≤ 𝜀 + 𝜉𝑖 

 

𝑇 
𝑖 
𝛽 + 𝛽0 − 𝑦 𝑖 ≤ 𝜀 + 𝜉∗ 

𝑖 

𝑖 , 𝜉
∗ 
𝑖 
≥ 0 

here x is the feature, y is the target, 𝛽 is the coefficient, 𝜀 is the margin
f tolerance where no penalty is given to errors, 𝜉 are non-zero slack
ariables that are allowed to be above ( 𝜉𝑖 ) and below ( 𝜉∗ 

𝑖 
) the margin of

olerance, and C or ‘complexity’ is a regularisation hyperparameter. A
igher C indicates a stronger penalty for high complexity (i.e., less tol-
rant to wrong-side errors). Accordingly, regularisation is achieved by
isfavouring high-complexity models that have fewer errors on train-
ng data but may pick up much larger errors from test data. Here we
ampled C from following set: {1,6,9,10,12,15,20 and 50}. To allow for
on-linearity and interaction, we applied a kernel trick with the Radial
asis Function (RBF) to transform the data into a higher-dimensional
pace, defined as 

𝑥𝑝 
(
− 𝛾|||𝑥 − 𝑥 ′|||2 ), (3)

here 𝛾 is the kernel coefficient. We sampled the kernel coefficient from
ne divided by the multiplication of the number of features and its vari-
nce, one divided by the number of features as well as the following val-
es: 10 − 8 , 3 × 10 − 8 , 6 × 10 − 8 , 10 − 7 , 3 × 10 − 7 , 6 × 10 − 7 , 10 − 6 , 3 × 10 − 6 ,
 × 10 − 6 , 10 − 5 , 3 × 10 − 5 , 6 × 10 − 5 , 10 − 4 , 3 × 10 − 4 , 6 × 10 − 4 , 10 − 3 ,
 × 10 − 3 and 6 × 10 − 3 . 

.7. Modelling performance: prediction 

To evaluate the models’ prediction, we used the eight held-out folds.
e first computed predicted values from each model. We then tested

ow similar these predicted values were to the real, observed values, in-
icated by four predictive performance metrics: Pearson’s r , coefficient
f determination (R 

2 ), mean square error (MSE) and mean absolute er-
or (MAE) (See Supplementary materials for the exact definitions). Us-
ng multiple metrics of predictive performance is highly recommended,
s each metric can reveal different aspects of the models’ performance
 Poldrack et al., 2020 ). 

To statistically compare measures of predictive performance across
odels, we first combined predicted and observed values across the

ight held-out folds. We then created bootstrap distributions ( Efron and
ibshirani, 1993 ) of the differences in the four measures of predictive
erformance between each pair of models. If these distributions of the
ifferences did not include zero inside their 95% confidence interval, we
oncluded that the two models were significantly different from each
ther. 
6 
.8. Modelling performance: test ‐retest reliability 

To evaluate test-retest reliability, we applied a similar pipeline as
one recently ( Taxali et al., 2021 ). Here, as opposed to using the eight-
old nested CV, we implemented a train-test split. We treated the data
rom participants who were scanned twice as a test set (as opposed to
sing 50 held-out families) and the rest as a training set. Same as before,
e further split the training set into 60% first- and 40% second- training

ayers. We used the first-training layer for building modality-specific
odels via a five-fold CV and the second-training layer for combining

he predicted values from the first-training layer into stacked models via
nother five-fold CV. We then applied the final, tuned models to the test
et. Given that each testing participant had data from two time points,
e obtained two predicted values of cognitive abilities for each testing
articipant. This allowed us to test the extent to which the predicted
alues from different models were stable across the two time points,
sing the intraclass correlation (ICC) ( Shrout and Fleiss, 1979 ). 

ICC is generally defined as 

𝜎2 
𝑝 

𝜎2 
𝑡 

, (4) 

here 𝜎2 
𝑝 

is the between-participant variance, and 𝜎2 
𝑡 

is the within-
articipant variant. There are two commonly used types of ICC for test-
etest reliability in MRI ( Noble et al., 2021 ). 

First, ICC(2,1) reflects an absolute agreement with random sources
f error. ICC(2,1) is defined as 

𝑀 𝑆 𝑝 − 𝑀 𝑆 𝑒 

𝑀 𝑆 𝑝 + ( 𝑘 − 1 ) 𝑀 𝑆 𝑒 + 

𝑘 

𝑛 

(
𝑀 𝑆 𝑡 − 𝑀 𝑆 𝑒 

) , (5) 

here MS p is mean square for participants, MS e is mean square for error,
S t is mean square for time points (i.e., measurements), n is the number

f participants, k is the number of time points. 
Second, ICC (3,1) reflects a consistency with fixed sources of error.

CC (3,1) is defined as 

𝑀 𝑆 𝑝 − 𝑀 𝑆 𝑒 

𝑀 𝑆 𝑝 + ( 𝑘 − 1 ) 𝑀 𝑆 𝑒 

, (6) 

We computed both types of ICC using the Pingouin pack-
ge ( https://pingouin-stats.org/ ). Based on an established criterion
 Cicchetti and Sparrow, 1981 ), we considered ICC < 0.4 as poor, ICC
 0.4 and < 0.6 as fair, ICC ≥ 0.6 and < 0.75 as good and ICC ≥ 0.75 as
xcellent. 

.9. Feature importance: elastic net coefficients 

To understand which brain features contributed stronger to the pre-
iction of cognitive abilities, we used Elastic Net Coefficients. We chose
o interpret Elastic Net as opposed to other algorithms due to a) its in-
erpretability and b) its high predictive performance compared to other
lgorithms (see Results). Given that Elastic Net makes a prediction based
n a weighted sum of features, its coefficients are readily interpretable:
tronger magnitude of the coefficient means a higher contribution to the
rediction. 

We used the Elastic Net coefficients to locate 1) which of the
odalities contributed highly to the prediction of the stacked models

nd 2) which of the brain features contributed highly to the prediction
f the modality-specific models. More specifically, once we showed
hich of the 12 modalities contributed highly to the prediction of the
ll-modality stacked model, we would then investigate the brain indices
f the top-performing modality-specific models that contributed highly
o the prediction. In addition to plotting the coefficients on the brain
mages, we also provided a list of top-20 brain indices for each top-
erforming modality-specific model. We evaluated the contribution of
ach brain index based on the magnitude of their Elastic Net coefficient.
n this list, we identified brain networks associated with each brain re-
ion using the Cole-Anticevic Brain Network Atlas ( Glasser et al., 2016 ;

https://pingouin-stats.org/
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Fig. 2. Predictive performance of modality-specific models based on the 8-fold CV across the four algorithms. Each dot represents predictive performance from each 
of the eight held-out folds. R 2 = coefficient of determination; eNet = Elastic Net; RF = Random Forest; XGB = XGBoost; SVR = Support Vector Regression. 
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i et al., 2019 ). We also provided MNI coordinates for each re-
ion, obtained by transforming voxel coordinates (based on https://
euroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html ) 
o the MNI space via nilearn.image.coord_transform() using the
tandard FSL template, MNI152_T1_1 mm, as a reference. 

To represent contributing areas across tfMRI tasks, we combined
he magnitude of Elastic Net coefficients from all tasks at each brain
rea, weighted by the overall magnitude of Elastic Net coefficients of
he task stacked model. We also visualised how these contributing ar-
as were overlapped with those found in a recent meta-analysis of
ognitive abilities ( Santarnecchi et al., 2017 ). Here we downloaded
he Activation Likelihood Estimate (ALE) map of significant foci that
howed associations with various cognitive abilities (Gf_net.nii from
ttp://www.tmslab.org/netconlab-fluid.php ) in MNI, volumetric space.
e then converted this ALE map to the surface space and overlaid the
LE map on top of the magnitude of Elastic Net coefficients from all

asks using Connectome Workbench ( Marcus et al., 2011 ). 

.10. Code accessibility 

The shell and Python scripts used in the analyses are made available
ere: 

https://github.com/HAM- lab- Otago- University/HCP 

. Results 

.1. Prediction for modality ‐specific models 

Fig. 2 shows the predictive performance of modality-specific mod-
ls based on the 8-fold CV. amongst the 12 modality-specific models,
7 
orking-memory tfMRI, language tfMRI, and relational tfMRI had the
ighest prediction, in descending order. Given their high predictive per-
ormance, we included tfMRI from these three tasks in the top-task
tacked and flat models. On the contrary, the modality-specific mod-
ls based on subcortical volume, cortical thickness and gambling tfMRI
ad a relatively poorer prediction. As for algorithms, Elastic Net and
VR demonstrated numerically better prediction than Random Forest
nd XGBoost. 

.2. Prediction for stacked models 

Fig. 3 shows the predictive performance of stacked models based
n the 8-fold CV. amongst the four stacked models, the all-modality
tacked model had the numerically highest prediction, compared to
ther stacked models. Regarding algorithms, using Elastic Net on both
raining layers, denoted by eNet + eNet, for the all-modality stacked
odel provided numerically highest prediction. 

Fig. 4 shows scatter plots of the four stacked models that were
rained on Elastic Net across the two training layers (eNet + eNet). Note
hat when race/ethnicity was added as another confounding variable,
n addition to age, sex and in-scanner movements from tfMRI and
esting-state FC, we found some reduction in predictive performance
see Supplementary Materials). This can be seen across eNet + eNet
tacked model, including all-modality (before correction: Pearson’s
 = 0.571 and R 

2 = 0.32 and after correction: Pearson’s r = 0.522
nd R 

2 = 0.259), all-task (before correction: Pearson’s r = 0.559 and
 

2 = 0.302 and after correction: Pearson’s r = 0.515 and R 

2 = 0.248),
op-task (before correction: Pearson’s r = 0.555 and R 

2 = 0.294 and after

https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html
http://www.tmslab.org/netconlab-fluid.php
https://github.com/HAM-lab-Otago-University/HCP
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Fig. 3. Predictive performance of stacked models based on the 8-fold CV across the four-by-four algorithms. Each dot represents predictive performance from each 
of the eight held-out folds. R 2 = coefficient of determination; eNet = Elastic Net; RF = Random Forest; XGB = XGBoost; SVR = Support Vector Regression. 

Fig. 4. Scatter plots depicting the relationships between predicted and observed values of general cognitive abilities across the eight held-out folds of the stacked 
models trained on Elastic Net across both training layers. Note that Pearson’s r and R 2 values are based on the average of the performance across 8-fold CVs. 
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orrection: Pearson’s r = 0.512 and R 

2 = 0.243) and non-task (before
orrection: Pearson’s r = 0.267 and R 

2 = 0.065 and after correction:
earson’s r = 0.138 and R 

2 = 0.014). 
Using bootstrapping, we compared the predictive performance of

he eNet + eNet all-task stacked model with other eNet + eNet stacked
odels ( Fig. 5 ). Here, with the eNet + eNet algorithm, the all-modality

tacked model predicted general cognitive abilities better than the all-
8 
ask stacked model. And the all-task stacked model did not perform sig-
ificantly better than the top-task stacked model but performed better
han the non-task stacked model. 

To investigate the predictive performance of stacking in comparison
o using a single modality, we implemented bootstrapping to compare
he performance of the eNet + eNet all-modality stacked model against
2 modality-specific models trained on the same algorithm, Elastic Net
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Fig. 5. Bootstrap distribution of the differ- 
ences in prediction between the all-task stacked 
model and other stacked models trained on 
Elastic Net across both training layers. For R 2 

and Pearson’s r, values lower than zero indicate 
better performance than the all-task stacked 
model. For mean square error (MSE) and mean 
absolute error (MAE), values lower than zero 
indicate worse performance than the all-task 
stacked model. 

Fig. 6. Bootstrap distribution of the differences in prediction between the all-modality stacked model trained on Elastic Net across both training layers andmodality- 
specific modelstrained on Elastic Net. For R 2 and Pearson’s r, values lower than zero indicate better performance than the all-modality stacked model. For mean 
square error (MSE) and mean absolute error (MAE), values lower than zero indicate worse performance than the all-modality stacked model. 

9 
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Fig. 7. Bootstrap distribution of the differ- 
ences in prediction between the all-modality 
stacked model trained on Elastic Net across 
both training layers and the all-modality 
stacked model trained on other combinations 
of algorithms. For Pearson’s r and R 2 , val- 
ues lower than zero indicate better perfor- 
mance than the all-modality stacked model 
with eNet + eNet. For mean square error (MSE) 
and mean absolute error (MAE), values lower 
than zero indicate worse performance than the 
all-modality stacked model with eNet + eNet. 
The algorithm on the left of the plus symbol 
denotes the algorithm used for the first train- 
ing layer, and the algorithm on the right of 
the plus symbol denotes the algorithm used 
for the second training layer. eNet = Elastic 
Net; RF = Random Forest; XGB = XGBoost; 
SVR = Support Vector Regression. 
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 Fig. 6 ). The all-modality stacked model performed better than any of
he modality-specific models. 

Similarly, to investigate the predictive performance based on differ-
nt algorithms, we implemented bootstrapping to compare the predic-
ive performance of the eNet + eNet all-modality stacked model against
he all-modality stacked model trained on other combinations of algo-
ithms ( Fig. 7 ). Implementing Elastic Net across the two training layers
ed to significantly better predictive performance than any of other com-
inations of algorithms, apart from two: using SVR on the first training
ayer and Elastic Net on the second training layer and using SVR across
he two training layers. 

.3. Comparison between stacked and flat models in prediction 

To compare the stacked models with the flat models, we created
ootstrap distribution of their predictive performance across algorithms
nd combinations of modalities ( Fig. 8 ). Overall, the performance of the
tacked and flat models was similar to each other across algorithms and
ombinations of modalities. 

.4. Feature importance of stacked models 

Examining the all-modality stacked model’s Elastic Net coefficients
 Fig. 9 ) reveals the working memory tfMRI to be the main contribut-
ng modality, followed by language tfMRI, relational tfMRI, emotional
fMRI, surface area, resting-state FC, motor tfMRI and total brain vol-
me, respectively. Cortical thickness, subcortical volume, social tfMRI
nd gambling tfMRI had relatively weaker contributions. We also saw a
imilar order of contributions from different modalities of other stacked
odels. 

.5. Test ‐retest reliability: the intraclass correlation (ICC) 

Fig. 10 shows the ICC of the stacked and single-modality models
cross the two definitions ICC(2,1) and ICC(3,1). Here we plotted ICC
10 
ith algorithms that demonstrated relatively good predictive perfor-
ance: eNet + eNet, SVR + eNet and SVR + SVR for stacked models and
lastic Net and SVR for the modality-specific models. Modality-specific
odels with sMRI-based modalities (total brain volume, surface area,

ubcortical volume and cortical thickness) had the highest ICC ( > 0.88).
imilarly, the all-modality, all-task and top-task stacked models with
Net + eNet had high test-retest reliability, reflected by the excellent level
f ICC ( > 0.75). The non-task stacked model across algorithms had a
ood level of ICC. Modality-specific tfMRI models with Elastic Net had
CC varied from unable-to-compute due to the models resulting in the
ame predicted value (i.e., mean) for every participant (gambling), poor
motor), fair (social, emotional and relational) to good (working mem-
ry and language). Modality-specific tfMRI models with SVR had a simi-
ar, somewhat poorer, level of ICC. The resting-state FC with Elastic Net
nd SVR had a fair and poor level of ICC, respectively. Fig. 11 shows
he predicted values of different models at the two sessions for each
articipant. Here models with high ICC showed consistency in predic-
ive values across the two sessions, compared to models with lower ICC

.6. Feature importance for modality ‐specific and all ‐task stacked models 

Fig. 12 shows the feature importance of each modality-specific
odel, as reflected by Elastic Net coefficients, averaged across the eight

ross-validation folds. Supplementary Tables 3 to 5 list 20 features
brain regions/connectivity pair) with the highest Elastic Net magnitude
or each of the top-three modalities. We provided a full list of feature
mportance for all modalities in our GitHub repository. 

For working-memory tfMRI ( Fig. 12 , Supplementary Table 3), we
ound highly contributing areas from the frontoparietal, default-mode,
isual 2 and cingulo-opercular networks. These included areas such
s the anterior cingulate, medial prefrontal, superior parietal, inferior
rontal, and dorsolateral prefrontal cortices. 

For language tfMRI ( Fig. 12 , Supplementary Table 4), we found
ighly contributing areas from frontoparietal and default-mode net-
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Fig. 8. Bootstrap distribution ofthe predictive performance of stacked and flat models across algorithms and combinations of modalities. For the stacked models, we 
only plotted bootstrap distributions of models with the same machine-learning algorithms across the two training layers. eNet = Elastic Net; RF = Random Forest; 
XGB = XGBoost; SVR = Support Vector Regression. 
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orks. These included areas such as anterior cingulate, medial pre-
rontal, insular, orbital and polar frontal, inferior frontal, lateral tem-
oral and dorsolateral prefrontal cortices. 

For relational tfMRI ( Fig. 12 , Supplementary Table 5), we found
ighly contributing areas from many networks, e.g., default-mode, vi-
ual 2, language, subcortical, frontoparietal and dorsal attention. These
ncluded areas such as orbital and polar frontal, posterior cingulate, vi-
ual, inferior frontal, superior parietal and dorsolateral prefrontal cor-
ices. 

Fig. 13 and Table 1 show contributing brain regions across tfMRI
asks, reflected by the magnitude of Elastic Net coefficients from all
asks at each brain area, weighted by the magnitude of Elastic Net coef-
cients of the all-task stacked model with eNet + eNet. This figure shows
he contribution of the areas in the default, frontoparietal and cingulo-
percular networks to the prediction of general cognitive abilities across
fMRI tasks. Additionally, overlaying the ALE map from a previous meta-
nalysis of cognitive abilities ( Santarnecchi et al., 2017 ) on top of the
ontributing brain regions across tasks shows the overlapping regions
n the frontoparietal network, in areas such as the left inferior frontal,
eft anterior cingulate and medial prefrontal and left superior parietal
ortices. 
11 
. Discussion 

Integrating tfMRI across tasks and with other MRI modalities via
redictive modelling, we aim to boost prediction and reliability for
rain MRI to capture general cognitive abilities. We found that com-
ining tfMRI across tasks along with other MRI modalities into the all-
odality stacked model gave us the best level of prediction, relative to

ther models, while providing an excellent test-retest reliability. Impor-
antly, this prediction of the all-modality stacked model was primarily
riven by the main three tfMRI tasks: working-memory, relational pro-
essing, and language. Combining tfMRI across tasks, especially from
he three top tasks, gave us the predictive performance that was closer
o the all-modality stacked model and still provided excellent test-retest
eliability. This shows the importance of tfMRI from certain tasks as
n information source for general cognitive abilities. Conversely, the
on-task stacked model that combined sMRI and resting-state FC pro-
ided much poorer prediction. We also examined different approaches
or tfMRI to be combined across tasks and with other modalities. We
ound 1) stacked and flat models to be comparable, and 2) a linear, non-
nteractive algorithm, Elastic Net, to perform well for both modality-
pecific and stacked models. Additionally, our use of an interpretable
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Fig. 9. Feature importance of each stacked model, as reflected by Elastic Net 
coefficients. 
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achine-learning algorithm, via Elastic Net, enabled us to demonstrate
he crucial role of frontoparietal regions across different tfMRI tasks in
redicting general cognitive abilities, in line with the parieto-frontal in-
egration theory of intelligence ( Jung and Haier, 2007 ). 

.1. Prediction of the stacked models 

The all-modality stacked model had the highest prediction, com-
ared to other modality-specific and stacked models, across the four
easures (having the highest r and R 

2 and lowest MSE and MAE)
nd across machine-learning algorithms. This level of prediction is
igher relative to those shown in other studies to date ( Dubois et al.,
018 ; McDaniel, 2005 ; Mihalik et al., 2019 ; Pietschnig et al., 2015 ;
12 
asero et al., 2021 ; Sripada et al., 2020 ). Indeed, the level of predic-
ion from the eNet + eNet algorithm (average across 8 CVs at r = 0.57,
 

2 = 0.32) is much higher than the performance based on polygenic risk
cores from genome-wide association (R 

2 = 0.10) ( Allegrini et al., 2019 ).
his suggests the potential use of multimodal MRI as a robust biomarker
or general cognitive abilities. Accordingly, future researchers who need
 relatively high predictive and reliable brain-based biomarker for gen-
ral cognitive abilities could employ our method that takes advantage
f all MRI modalities available. 

We found high predictive performance from the all-task and top-
ask stacked models that combined tfMRI from seven different and the
op three tasks, respectively. This confirms the superior predictive per-
ormance of tfMRI shown in a recent study that separately investi-
ated each tfMRI task ( Sripada et al., 2020 ). Moreover, our results ex-
ended this task-specific work ( Sripada et al., 2020 ), such that combin-
ng tfMRI across tasks further boosted the prediction. We also showed
hat, when every modality was combined into the all-modality stacked
odel, tfMRI from several tasks drove the prediction. This confirms that

fMRI from certain tasks provided unique and important sources of infor-
ation relevant to general cognitive abilities. Next, not all tfMRI tasks
rove the prediction. The top-task stacked models that included working
emory, language and relational tasks already have predictive perfor-
ance close to the all-task and the all-modality models. The strong per-

ormance of the working memory task, in particular, is consistent with
ecent studies ( Pat et al., n.d. ; Sripada et al., 2020 ). The task stacked
odel was also superior to the non-task stacked model even though non-

ask modalities (resting-state FC and sMRI) are much more commonly
mplemented in the literature on individual differences and cognition
 Sui et al., 2020 ). Altogether, despite its superior performance, tfMRI
as been ignored and downplayed in its importance for individual dif-
erences over non-task modalities, partly causing the unpopularity of
sing tfMRI as a predictive tool for cognition. 

Given the popularity of resting-state FC, it might be surprising to
ee its poor performance for predicting general cognitive abilities here.
he best performing algorithm, Elastic Net, only provided R 

2 = 0.023 and
earson’s r = 0.149. And this level of predictive performance is in line
ith other recent studies that applied nested cross-validation to pre-
ict general cognitive abilities using the Human Connectome Project
HCP) data, e.g., R 

2 = 0.016 ( Rasero et al., 2021 ) and R 

2 = 0.078 and Pear-
on’s r = 0.26 ( Sripada et al., 2020 ). Note though that it is possible that
he HCP sample size is too small for resting-state FC to be modelled
ffectively. Sripada et al. (2021) , for instance, applied a similar mod-
lling technique they used on the HCP ( Sripada et al., 2020 ) to a much
arger study, the Adolescent Brain Cognitive Development (ABCD) Study
 Casey et al., 2018 ) in children aged 9–10 years old ( n = 5937). With
he ABCD, they found much better predictive performance from resting-
tate FC at Pearson’s r = 0.42. Still given the differences in age ranges
etween the HCP and the ABCD, it is unclear if the better performance
ound is due to age. For instance, the predictive models for general cog-
itive abilities in the ABCD might capture individual differences in the
rain/cognitive development that should not play a large role amongst
oung adults in the HCP. Future studies with a larger sample of young
dults are needed to test this proposition. 

Feature importance of the all-modality stacked model ( Fig. 9 ) also
upports the important roles of certain tfMRI tasks (e.g., working-
emory, relational processing, language, followed by emotion). Given
lastic Net coefficients reflect unique contributions from each feature
 Zou and Hastie, 2005 ), these tfMRI tasks appeared to provide non-
verlapping variance amongst themselves and with other MRI modal-
ties in predicting the general cognitive abilities. This again reiterates
he importance of including tfMRI of different tasks in the predictive
odel of cognitive abilities. Within the tfMRI stacked model ( Fig. 9 ),

ertain tasks contributed highly to the model while other tasks did not
rovide strong contributions (e.g., the gambling task and, to a lesser
xtent, the social and motor tasks). The three highly contributing tasks
working-memory, relational processing, and language) were tasks that
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Fig. 10. Test-retest reliability of stacked and modality-specific models. We computed test-retest reliability using two definitions of interclass correlation: ICC(2,1) 
and ICC(3,1). We only plotted ICC with algorithms that demonstrated relatively good predictive performance: eNet + eNet, SVR + eNet and SVR + SVR for stacked 
models and Elastic Net and SVR for the modality-specific models. Note the ICC of the modality-specific Gambling Task for Elastic Net cannot be computed. We also 
computed the predictive performance (R 2 ) of the test-retest participants associated with each of the stacked and modality-specific models, separately for each time 
point. 
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re related to general cognitive abilities as measured by the cognitive
ests ( Salthouse, 2004 ) while other tasks (gambling, social and motor)
ere not. Accordingly, both the performance of the top-task stacked
odel and the feature importance of the all-task stacked model seems

o suggest domain specificity from each task (i.e., not just any tasks, but
asks related to the target of the model). 

.2. Test ‐Retest reliability of the stacked models 

One of the main criticisms of tfMRI is its low test-retest reliability,
ompared to non-task modalities, such as sMRI ( Elliott et al., 2020 ). El-
iot and colleagues (2020) employed the same dataset (HCP) as ours and
nalysed test-retest reliability of tfMRI via ICC using a traditional uni-
ariate approach, i.e., separately at each prespecified region and task
 Noble et al., 2021 ). They found poor ICC ( < 0.4) of tfMRI signals across
egions and tasks. Conversely, our predictive models drew tfMRI infor-
ation across regions from the whole brain for each task. And, for the

ask stacked model, we further drew tfMRI information across different
asks. With this, we found ICC for certain tfMRI tasks, including lan-
uage and working memory, in the good level (between 0.6 and 0.74),
nd more importantly, ICC for the all-task ( ∼.83) and top-task ( ∼.78)
tacked models with enet + enet in the excellent level ( Cicchetti and Spar-
ow, 1981 ). It is also noteworthy that drawing information across MRI
ndices using predictive modelling may improve the reliability of MRI
cross different modalities, not just tfMRI. Taxali et al. (2021) , for in-
tance, applied predictive modelling to predict cognitive abilities from
esting-state FC and found ICC in the good level at around 0.65. These
ndings indicate marked improvement of test-retest reliability from
redictive modelling over the classical univariate approach. Elliot and
olleagues (2020) mentioned, “Without substantially higher reliability,
ask-fMRI measures will fail to provide biomarkers that are meaningful
n an individual level. ” (p. 803). Here we may have found a solution.
ombining tfMRI across regions, across tasks and with MRI of other
13 
odalities gave us the best of both worlds: relatively high prediction
nd excellent reliability (e.g., ICC =∼.85 for the All-Modality, enet + enet
tacked model). 

.3. Approaches for tfMRI to be combined across tasks and with other 

odalities 

Our study also investigated different approaches for tfMRI to be com-
ined across tasks and with other modalities. First, we compared the
tacked vs. flat models. We found similar predictive performance be-
ween the two across different machine-learning algorithms and com-
inations of modalities. This similarity in performance was found even
hough the stacked models used far fewer features in the second layers
here each modality contributed to only one ‘surrogate’ feature, leav-

ng the number of features equal to the number of modalities included
n the stacked models. Accordingly, future researchers may wish to use
hichever strategy, either building flat or stacked models, that may be
ost suitable for them. For us, we prefer the stacked models due to

heir strengths. First, the stacked models allowed us to demonstrate the
elative contribution of each modality in predicting cognitive abilities.
or instance, here we demonstrated the feature importance of the all-
odality model, showing the relatively higher contribution from cer-

ain tasks. With this information, we can then focus on the modalities
hat account for the most variance in the target variable. This infor-
ation is harder and more complicated to obtain from the flat models
ith much more features. Second, the stacked models enabled us to

est different algorithms on their abilities to combine information from
ifferent modalities. With the flat models, an algorithm that combines
eatures within each modality has to be the same as an algorithm that
ombines features across modalities. For instance, here we tested four
lgorithms for the second layer of our stacked models. Third, we could
lso take advantage of some properties of the second layer algorithms.
or instance, Engemann et al. (2020) used Ridge regression in their first
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Fig. 11. Predicted values of stacked and modality-specific models across two time points (i.e., session), ranked by ICC. Each line represents each participant. We 
only plotted predicted values of algorithms that demonstrated relatively good predictive performance: eNet + eNet, SVR + eNet and SVR + SVR for stacked models and 
Elastic Net and SVR for the single-modality models. 
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raining layer, but Random Forest in their second training layer. As seen
n our study, Random Forest sometimes does not result in prediction
s high as other algorithms, but Engemann et al. (2020) and Pat and
olleagues (n.d.) used Random Forest to deal with missing values from
ifferent modalities in the second training layer, allowing them to avoid
ropping participants whose data from some modalities were missing. 
14 
Next, we examined different machine learning algorithms in their
bility to draw information across brain features and across tfMRI tasks
nd MRI modalities. Over 16 combinations of algorithms, using Elastic
et both for building modality-specific models and for stacking surro-
ate measures across modalities (known as eNet + eNet) led to numeri-
ally highest prediction for the all-modality stacked model. In fact, de-



A. Tetereva, J. Li, J.D. Deng et al. NeuroImage 263 (2022) 119588 

Fig. 12. Feature importance of each modality-specific model, reflected by Elastic Net coefficients average across the eight cross-validation folds. a, b and c show 

Elastic Net coefficients for tfMRI, resting-state FC and sMRI, respectively. For resting-state FC, we plotted PCA loading for each pair of regions, weighted by Elastic 
Net magnitude, summed across the eight folds. 

15 



A. Tetereva, J. Li, J.D. Deng et al. NeuroImage 263 (2022) 119588 

Fig. 13. Feature importance of task-based functional MRI 
(tfMRI) across seven tasks. Here we combined the magnitude 
of Elastic Net coefficients from all seven tfMRI tasks at each 
brain area, weighted by the magnitude of Elastic Net coeffi- 
cients of the all-task stacked model with eNet + eNet. A higher 
value indicates a stronger contribution to the prediction of gen- 
eral cognitive abilities, regardless of the directionality. 13A 

shows the magnitude at cortical regions while 13B shows the 
magnitude at subcortical regions. 13C overlays the Activation 
Likelihood Estimate (ALE) map of the mass-univariate associ- 
ations with cognitive abilities from a previous meta-analysis 
( Santarnecchi et al., 2017 ) on top of the magnitude at the cor- 
tical regions. 

Table 1 

Top-20 contributing brain areas across all tfMR tasks. Here we combined the magnitude of Elastic Net coefficients 
from all seven tfMRI tasks, weighted by the magnitude of Elastic Net coefficients of the all-task stacked model with 
eNet + eNet. 

Glasser’s Label Brain Region Network x y z Magnitude 

R_8BL Dorsolateral Prefrontal Default 11 43 48 0.08 
R_STSda Auditory Association Default 51 − 1 − 17 0.06 
L_9m Anterior Cingulate and Medial Prefrontal Default − 7 54 22 0.06 
R_47m Orbital and Polar Frontal Default 32 31 − 18 0.05 
R_p32 Anterior Cingulate and Medial Prefrontal Default 8 49 − 3 0.05 
L_8BM Anterior Cingulate and Medial Prefrontal Frontoparietal − 6 33 44 0.06 
L_IFSa Inferior Frontal Frontoparietal − 47 33 9 0.06 
R_p10p Orbital and Polar Frontal Frontoparietal 23 61 1 0.05 
R_IFJp Inferior Frontal Frontoparietal 36 7 28 0.05 
R_PSL Temporo-Parieto-Occipital Junction Cingulo-Opercular 64 − 37 27 0.08 
R_PFop Inferior Parietal Cingulo-Opercular 62 − 20 23 0.06 
R_p24 Anterior Cingulate and Medial Prefrontal Cingulo-Opercular 4 35 17 0.05 
L_PFop Inferior Parietal Cingulo-Opercular − 65 − 23 24 0.05 
R_PCV Posterior Cingulate Posterior Multimodal 5 − 52 50 0.07 
L_PCV Posterior Cingulate Posterior Multimodal − 6 − 50 48 0.06 
R_STV Temporo-Parieto-Occipital Junction Posterior Multimodal 59 − 44 20 0.05 
L_PHA3 Medial Temporal Dorsal Attention − 34 − 35 − 21 0.06 
L_PEF Premotor Dorsal Attention − 47 0 41 0.05 
R_VIP Superior Parietal Visual2 21 − 63 64 0.05 
R_6v Premotor Somatomotor 58 7 31 0.09 
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pite being the only linear and additive algorithm, eNet + eNet performed
ignificantly better than 13 out of the 16 algorithms that were non-linear
nd interactive. This performance of Elastic Net is in line with previous
ndings in resting-state FC in which a penalised regression, such as Elas-
ic Net, usually performs on par with, if not better than, non-linear and
nteractive algorithms ( Dadi et al., 2019 ). The added benefit of Elastic
et beyond predictive performance is its interpretability. Using Elas-

ic Net coefficients as feature importance allowed us to examine which
rain features, tasks and modalities contributed to the prediction of gen-
ral cognitive abilities. 

.4. Feature importance of tfMRI for predicting general cognitive abilities 

Based on the feature importance of tfMRI, brain activity of each
f the three highly contributing tasks appeared to involve similar net-
orks, dominated by the frontoparietal and default-mode networks, and

o a lesser extent, accounted for by the dorsal attention and cingulo-
percular, networks. Combining the contribution of each region across
ll tasks led to a distributed network of frontal and parietal brain re-
ions that drove the prediction of general cognitive abilities. These areas
16 
nclude frontal regions, such as the anterior cingulate and medial pre-
rontal lobe, the inferior frontal lobe and the orbital and polar frontal
obe, the dorsolateral prefrontal lobe as well as parietal regions, such
s the temporo-parieto-occipital junction and the inferior parietal lobe.
n fact, our findings showed overlapping areas with those found in a
eta-analysis of association studies ( Santarnecchi et al., 2017 ) mainly

t the frontoparietal network. This fits nicely with the parieto-frontal
ntegration theory of the intelligence ( Jung and Haier, 2007 ), suggest-
ng the important role of these frontal and parietal brain regions across
ognitive contexts (i.e., tfMRI tasks). 

Despite the overlapping areas found between our stacking feature-
mportance approach and the meta-analysis ( Santarnecchi et al., 2017 ),
here are some differences in many areas, e.g., the anterior cingulate
nd medial prefrontal areas found in ours. Accordingly, it is important
o distinguish between the two approaches. First, meta-analyses usually
ocus on the consistency in mass-univariate associations (e.g., between
ach brain region and general cognitive abilities) ( Müller et al., 2018 ),
hile ours focus on relative weights in the multivariate associations

e.g., between information across brain regions and general cognitive
bilities). Accordingly, our approach captures the feature importance
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f each brain region in the presence of other regions in the model, as
pposed to ignoring the presence of other regions in the mass-univariate
ssociations. Second, meta-analyses examine consistency in location
cross tfMRI tasks that predict cognitive abilities ( Basten et al., 2015 ;
ung and Haier, 2007 ; Santarnecchi et al., 2017 ), meaning that each
fMRI task weights the same regardless of whether this task predicts
ognitive abilities well. By contrast, our approach weights the impor-
ance of each task using the magnitude of Elastic Net coefficients of
he task stacked model. Accordingly, our stacking feature-importance
pproach may contribute to the biological insights of cognitive abilities,
ver and above what we may have learnt from meta-analyses. 

.5. Implications for brain ‐cognition biomarkers 

Beyond providing a predictive, reliable and interpretable method for
apturing brain-cognition relationship, our work paves the way for de-
eloping a robust biomarker for cognitive abilities. According to the
ational Institute of Mental Health’s Research Domain Criteria (RDoC),
ognitive abilities are considered one of the six major transdiagnostic
pectrums that cut across neuropsychiatric illnesses ( Morris and Cuth-
ert, 2012 ). Following the RDoC, to understand neuropsychiatric ill-
esses, scientists need tools to examine the transdiagnostic spectrums
such as cognitive abilities) at different units of analysis (such as gene,
rain to behaviours). Recent genome-wide association studies have
rought out polygenic scores that quantify cognitive abilities at the
enetic level ( Allegrini et al., 2019 ). Having a cognitive brain-based
iomarker as developed in this study can serve as a link between genetics
e.g., polygenic scores) and phenotypes (e.g., cognitive abilities). Exam-
ning this link can uncover the pathway between having genetic risks to
eveloping neuropsychiatric symptoms ( Gottesman and Gould, 2003 ).
ext, neuroscientists can also apply the brain-based biomarker to ex-
mine interventions/behaviours that may alter cognitive abilities. For
nstance, neuroscientists can implement the brain-based biomarker to
nvestigate whether sleep ( Taveras et al., 2017 ), exercise ( Hötting and
öder, 2013 ) or extracurricular activities ( Kirlic et al., 2021 ) improve
rain processing involved in cognitive abilities, thereby deriving pro-
ective factors against many neuropsychiatric disorders. Accordingly,
ur biomarkers for cognitive abilities can play a vital role in the RDoC
ramework. 

.6. Limitations 

Our study is not without limitations. First, to demonstrate the ben-
fits of the task over non-task modalities, we focused on the GLM con-
rasts of tfMRI that reflected changes in BOLD between experimental
s. control conditions for each task. While the GLM contrasts allowed
s to focus on condition-specific variance of tfMRI, we may have missed
ondition-non-specific variance during the tfMRI scans that may also be
elated to general cognitive abilities. Recent studies ( Elliott et al., 2019 ;
reene et al., 2018 ) have captured condition-non-specific variance us-

ng function-connectivity during tasks and found boosted prediction and
eliability over those of resting-state FC. Accordingly, future studies may
urther blur the line between task vs non-task modalities by including
ondition-non-specific function-connectivity during both tasks and rest
n the stacked models and examine their performance. 

Second, while the HCP ( Van Essen et al., 2013 ) has several strengths,
uch as providing a large number of tfMRI tasks and high-quality, long
esting-state data, the study simply does not contain sufficient num-
ers of participants per race/ethnicity group to be analysed. This is-
ue is especially apparent when we compare the HCP with larger,
ore recent studies, such as the Adolescent Brain Cognitive Develop-
ent (ABCD) Study ( Casey et al., 2018 ) and UKBiobank ( Sudlow et al.,
015 ). In Supplementary Materials, we listed the number of partici-
ants in each race/ethnicity group. 10 out of 14 race/ethnicity groups
nly included 15 participants or fewer. And two out of the four larger
ace/ethnicity groups only included 57 and 54 participants. This made
17 
t complicated for us to statistically control for the potential influences
f race/ethnicity in the HPC. Some test folds, for instance, may have
ery few, if any, participants from a certain race/ethnicity group. In
act, studies using the HCP to build predictive models for cognitive
bilities usually do not control for race/ethnicity (e.g., Dubois et al.,
018 ; Finn et al., 2015 ; Rasero et al., 2021 ; Sripada et al., 2020 ). We
eported our attempt to do so in the Supplementary and found similar,
ut somewhat lower, performance after correcting for race/ethnicity.
orrections for races/ethnicities essentially assume the link between
aces/ethnicities, cognitive abilities and the brain. Given the insufficient
umbers of participants per race/ethnicity group, the results of the cor-
ection can be biased. To avoid any over-interpretation of the link be-
ween races/ethnicities, cognitive abilities and the brain based on the
CP data, as seen in similar cases elsewhere ( Fraser, 1995 ), we urge

eaders to interpret the race/ethnicity-corrected results with caution. 

.7. Conclusions 

In conclusion, over the last decade, investigations of individual dif-
erences in the brain-cognition relationship have been dominated by
on-task modalities ( Sui et al., 2020 ). Here we show clearly that tfMRI,
hen used appropriately by 1) drawing information across regions from

he whole brain and by 2) combining tfMRI across tasks and with other
RI modalities, can provide unique and important sources of informa-

ion about individual differences in cognitive abilities. This has led to
n interpretable predictive model with high prediction and excellent
eliability. Our research, thus, encourages the use of tfMRI in captur-
ng individual differences in the brain-cognition relationship for general
ognitive abilities and beyond. Accordingly, future large-scale consor-
iums that focus on neuroimaging and individual differences should not
gnore tfMRI and indeed should include tfMRI from a multitude of tasks,
s pioneered by the HCP ( Barch et al., 2013 ). 
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