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Abstract
Human-induced environmental changes have a direct impact on species popula-
tions, with some species experiencing declines while others display population 
growth. Understanding why and how species populations respond differently to 
environmental changes is fundamental to mitigate and predict future biodiversity 
changes. Theoretically, species life-history strategies are key determinants shaping 
the response of populations to environmental impacts. Despite this, the association 
between species life histories and the response of populations to environmental 
changes has not been tested. In this study, we analysed the effects of recent land-
cover and temperature changes on rates of population change of 1,072 populations 
recorded in the Living Planet Database. We selected populations with at least 5 yearly 
consecutive records (after imputation of missing population estimates) between 1992 
and 2016, and for which we achieved high population imputation accuracy (in the 
cases where missing values had to be imputed). These populations were distributed 
across 553 different locations and included 461 terrestrial amniote vertebrate species 
(273 birds, 137 mammals, and 51 reptiles) with different life-history strategies. We 
showed that populations of fast-lived species inhabiting areas that have experienced 
recent expansion of cropland or bare soil present positive populations trends on aver-
age, whereas slow-lived species display negative population trends. Although these 
findings support previous hypotheses that fast-lived species are better adapted to 
recover their populations after an environmental perturbation, the sensitivity analy-
sis revealed that model outcomes are strongly influenced by the addition or exclu-
sion of populations with extreme rates of change. Therefore, the results should be 
interpreted with caution. With climate and land-use changes likely to increase in the 
future, establishing clear links between species characteristics and responses to these 
threats is fundamental for designing and conducting conservation actions. The results 
of this study can aid in evaluating population sensitivity, assessing the likely conser-
vation status of species with poor data coverage, and predicting future scenarios of 
biodiversity change.
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1  |  INTRODUC TION

Human-driven environmental changes are driving rapid changes in 
biodiversity globally. The latest Living Planet Report estimated that 
monitored populations of the world's vertebrates have declined on 
average by 68% since 1970 (WWF, 2020), and that further decreases 
are expected into the future. Land-use change has been identified 
as one of the main drivers of global biodiversity loss (Newbold 
et al., 2015; WWF, 2020), while the effects of climate change on bio-
diversity are likely to intensify in the next decades (Newbold, 2018). 
In this context, prioritization of especially sensitive biomes and spe-
cies is essential to allocate conservation efforts and reduce biodiver-
sity loss (Strassburg et al., 2020; Watson et al., 2020). However, to 
design long-term effective conservation strategies, we first need to 
understand the factors that determine how species and communi-
ties respond to environmental changes (Keith et al., 2015).

It is known that climate warming affects species and communi-
ties, causing species range shifts (Parmesan & Yohe, 2003), pheno-
logical changes and asynchrony of biological processes (Donnelly 
et al., 2011), and species extinctions (Román-Palacios & Wiens, 2020; 
Sinervo et al., 2010; Spooner et al., 2018). Similarly, land-use changes 
cause habitat destruction and fragmentation (Daye & Healey, 2015), 
homogenization of communities (Gossner et al., 2016), and loss of 
species richness (Murphy & Romanuk, 2014). Furthermore, the inter-
action between climate warming and land-use change can exacerbate 
these effects (Northrup et al., 2019). Predicting how species may re-
spond to climate and land-use changes is of paramount importance. 
Previous studies have shown that species with certain traits, such as 
large size or long generation length, are more sensitive than others 
(e.g. Laliberté et al., 2010; Pacifici et al., 2015, 2017). However, these 
patterns varied across taxonomic groups and traits, making extrap-
olations of species' responses to environmental changes challenging 
(Laliberté et al., 2010; Pacifici et al., 2015, 2017). It is necessary then 
to find a more generalized and taxon-independent approach to pre-
dict responses to environmental changes.

Species life-history strategies can serve as a proxy to evaluate 
species' extinction risk and sensitivity to environmental changes 
(Kosydar,  2014; Richards et al.,  2021). Life-history strategies are 
defined by the intrinsic trade-offs between species traits related to 
ageing (e.g. longevity, growth rates, or maturity) and fecundity (e.g. 
litter/clutch size or frequency of reproduction) (Dobson & Oli, 2007, 
2008). Depending on the values of these life-history traits, species 
can be positioned along a continuum from fast- to slow-lived spe-
cies (Read & Harvey, 1989; Stearns, 1983a). Species located towards 
the faster end of the continuum (fast species hereafter) have higher 
fecundity and shorter lifespans. In contrast, species closer to the 
slower end of the continuum (slow species hereafter) display longer 
lifespans and lower fecundity.

Theoretically, fast and slow species have different population-
regulation mechanisms (MacArthur & Wilson,  1967). According to 
r/K-selection theory, fast species, or r-selected species, show density 
independent or stochastic mortality events, with their populations 
unable to reach the environmental carrying capacity (MacArthur & 
Wilson, 1967; Pianka, 1970). Owing to their rapid fluctuations, pop-
ulations of fast species are, theoretically, adapted to recover their 
populations faster than slow species (Pianka,  1970). Conversely, 
slow species, or K-selected species, show density-dependent mor-
tality (MacArthur & Wilson, 1963; Pianka, 1970). K-selected species 
are adapted to maintain stable populations close to the carrying ca-
pacity of the environment, and take longer to reach this population 
level after a stochastic mortality event (Pianka, 1970). For this rea-
son, slow species are usually considered more sensitive to environ-
mental changes, and thus more likely to show population declines 
due to human impacts (e.g. Bird et al., 2020). Although these ideas 
are frequently used in ecology and conservation, the role of life-
history strategies in shaping the response of species' populations 
to environmental changes has not been empirically tested at a large 
scale (Stearns, 2000; Sutherland et al., 2013).

Life-history strategies have been shown to correlate with spe-
cies' responses to habitat heterogeneity and land-use disturbance. 
Previous studies looking at traits related with ageing and fecundity 
have found that, in general, fast-lived species were more likely to be 
present in more human-impacted land-use areas, whereas slow spe-
cies thrive in less impacted habitats (Newbold et al., 2013). Fast and 
slow species also respond differently to climate change. Generally, 
species with fast life-history traits tolerate and, in some cases bene-
fit, from climate warming (Lehmann et al., 2020; Pacifici et al., 2017). 
In contrast, species with slow life-history traits were more sensi-
tive to climate warming (Pacifici et al., 2017; Richards et al., 2021). 
However, the role of species life-history strategies in shaping popu-
lation trend responses to environmental changes is still unclear.

Large databases of population trends, such as the Living Planet 
Database (LPD) which holds the data underlying the Living Planet 
Index (LPI), allow us to explore changes in vertebrate populations 
over time. The LPI was developed to measure the changing state of 
the world's biodiversity (WWF, 2020), and relies on time-series data 
to calculate average rates of change in populations of terrestrial, 
freshwater, and marine vertebrate species. Although this index has 
been widely adopted to report on global (WWF, 2020) and local bio-
diversity changes (e.g. van Strien et al., 2016), the LPI is not free from 
bias or criticism. Studies analysing the robustness of the LPI have 
shown major changes in global populations trends depending on the 
inclusion or removal of a small fraction of populations with extreme 
trends (Leung et al., 2020; see also Loreau et al., 2022; Mehrabi & 
Naidoo, 2022, for an extended discussion). Similarly, random popu-
lation fluctuations can compromise the accuracy of the LPI even if, 

K E Y W O R D S
climate, land-use change, life-histories, living planet index, macroecology, population trends, 
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    |  3ALBALADEJO-­ROBLES et al.

on average, populations remain stable, especially when populations 
are small (Buschke et al., 2021). Furthermore, the underlying time-
series data disproportionately represent osseous fishes and birds. 
These two groups of vertebrates are represented by 1,408 and 
1,494 species, respectively, and account for more than 70% of the 
total populations in the LPD. Conversely, mammals and reptiles are 
represented for 636 and 227 species, forming 21% of populations in 
the LPD. Additionally, populations receiving conservation interven-
tions are also overrepresented in the LPD (Murali et al., 2022). Some 
of the taxonomic and geographical bias has been addressed recently 
through the development of a weighted LPI (McRae et al.,  2017). 
Most of these issues arise from a lack of population-monitoring data, 
a limitation not restricted to the LPI (Hochkirch et al., 2021).

Population-monitoring data for most species are still rare (e.g. 
Bland & Böhm, 2016), but their use in conservation is of paramount 
importance. For example, some criteria of the IUCN Red List of 
Threatened Species are based on population sizes (criteria C and D) 
and declines (criteria A and C) (IUCN, 2021). In this context of data 
deficiency and increasing need for biodiversity conservation, estab-
lishing clear links between species life-history strategies and popu-
lation trends under environmental changes can help us to (1) identify 
groups of species whose life-history strategies make then more 
likely to be sensitive to climate and land-use changes; (2) establish a 
more general or extrapolatable relationship between species traits 
and responses to environmental changes; and (3) better predict how 
poorly monitored species would respond to future climate and land-
use changes.

In this study, we explore how populations of terrestrial am-
niote vertebrate species with different life-history strategies re-
spond to recent climate and land-use changes. To do this, we use 

the population trends reported in the public LPD. We extracted 
mean annual rates of population change, land-cover and tempera-
ture change for 1,072 populations of 461 species (273 birds, 137 
mammals, and 51 reptile species), distributed across 553 locations 
globally (Figure 1). We hypothesized that species with different life-
history strategies will show distinct population trends depending on 
recent climate and land-use changes where they occur. Fast-lived 
species are expected to be better adapted to recover after environ-
mental perturbations. Therefore, on average, we expect fast spe-
cies to show less negative population trends than other species, and 
for a greater proportion of species to show positive trends, in more 
human-disturbed habitats, for example areas where croplands or 
urban areas are expanding. Conversely, we expect a greater propor-
tion of slow species, under the same conditions, to present declining 
populations, and for average population trends to be more negative. 
We expect a similar response to climate change, with fast-lived spe-
cies populations responding more positively to temperature warm-
ing compared to slow-lived species.

2  |  MATERIAL S AND METHODS

2.1  |  Species populations trends

We extracted population trends from the public LPD (LPI, 2016) 
(https://livin​gplan​etind​ex.org/home/index). This database contains 
time-series information for 15,349 populations worldwide, of 4,182 
different species of terrestrial, freshwater, and marine vertebrates. 
This dataset contains geographical information regarding the loca-
tions of monitored populations, but it does not include information 

F I G U R E  1  Distribution of the populations selected for the analysis (purple points), and the average rates of climate warming (annual 
mean temperature) for the period between 1992 and 2018 (base layer). Panel a shows the distribution of yearly rates of temperature change 
(see Climate and land-use data) for the populations included in the analysis. Panel b shows the latitudinal mean yearly rate of warming. 
Yearly rates of warming were calculated using the Climatic Research Unit gridded Time Series (CRUTS) Version 4.04 dataset (Harris 
et al., 2020). The outline world map was extracted from the Database of Global Administrative Areas (GADM) (https://gadm.org/). All the 
spatial information was projected using the WGS84 coordinate reference system (EPSG: 4326).
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4  |    ALBALADEJO-­ROBLES et al.

regarding the geographical extent over which species are monitored. 
The LPD encompasses more than six decades of species monitoring 
data, from 1950 to 2018 (Collen et al., 2009; McRae et al., 2017). 
Time series in the LPD were collected from scientific studies, on-
line databases, and the grey literature (Collen et al.,  2009), and 
must meet a series of criteria to be included in the LPD (see Loh 
et al., 2005 for a detailed list). Importantly, time series must have at 
least two time points, and the method used to calculate the species 
population size or abundance must be compatible/comparable (e.g. 
count, density, and abundance).

The choice to focus on amniote species was based on the re-
productive similarities between these groups. We considered mam-
mals, reptiles, and birds more feasible to group and compare than, 
for example, birds and amphibians. The public LPD contains data on 
8,112 populations of terrestrial amniotes (54% of the total LPD data) 
from 2,357 species (1,494 birds, 636 mammals, and 227 reptiles). To 
match the periods covered by our environmental data (see Climate 
and land-use data for more details), only populations with at least 
three data points between 1992 and 2018 and a known location (lat-
itude and longitude) were included in the analysis.

Overall, 2,327 populations in the LPD met our criteria. For this 
subset, we calculated rates of population change following the ap-
proach used for the LPI (Collen et al.,  2009). Population records 
were log10 transformed (Collen et al.,  2009). 11% of populations 
contained zeros, which were replaced by 1% of the mean of non-
zero abundances recorded across the population time series (Collen 
et al., 2009). To calculate the annual rate of population change, for 
each year and population, we required uninterrupted population 
estimates (i.e. for every consecutive year) (Spooner et al.,  2018). 
However, long-term and continuous population time series are still 
rare (Hochkirch et al., 2021), even in the LPD (http://stats.livin​gplan​
etind​ex.org/). Approximately 40% of the 2,327 populations con-
tained missing observations. Therefore, we implemented imputation 
methods to fill those gaps and obtain continuous time series. We fol-
lowed the imputation approach used for the LPI (Collen et al., 2009), 
adopting two methods to impute population observations depend-
ing on the number of real records available for each population time 
series: (1) a linear-regression interpolation was implemented when 
fewer than six real observations were available (Loh et al., 2005) or 
(2) for time series with six or more records, we implemented gen-
eralized additive models (GAMs). Linear regressions and GAMs 
were fitted for each time series using the population estimates as 
the response variable and year as the explanatory variable. In the 
case of the simple regression models, only linear relationships were 
considered due to the low number of observations. In the GAMs, 
year was fitted with a smooth parameter, in the form of a penalized 
regression spline, of dimension equal to the length of the population 
time-series divided by two (Collen et al., 2009; McRae et al., 2017). 
Fitted GAMs and linear models were later used to impute missing 
values of their corresponding time series. We did not impute values 
outside of the range (first to last year) of each time series. Model fit 
for both linear regression and GAMs was evaluated using R2 values. 
Since we wanted to include only populations with low imputation 

uncertainty in our analysis, we selected those populations with an 
R2 of at least 0.5 (following Spooner et al., 2018).

Another potential source of uncertainty arises from variability in 
time-series length. Short time-series are more likely to return false 
negative/positive trends, or to miss real and statistically significant 
population trends (Wauchope et al.,  2019). To reduce this uncer-
tainty, we discarded all populations with fewer than five observa-
tions (real or imputed) (Spooner et al., 2018) between the years 1992 
and 2018. We select this period to make the timespan covered by 
the LPD compatible with the land-cover data (see Climate and land-
use data for more details). Although there is no standardized way 
to select the optimal length of a population time-series (Wauchope 
et al., 2019), the approach we used here offers an adequate time-
series length while still having a large enough dataset for analysis.

We used the imputed and real values of the selected popula-
tion time-series (nt) to calculate the annual (log10) rate of population 
change (�T) for each year and population, as described in Equation (1). 
These values were then averaged to obtain the mean (log10) rate of 
population change for each population (�T ) (Equation 2):

 

where n represents real and imputed population measures, t rep-
resents the time/year at which the measure was taken/imputed, and 
T is the total number of years from the first to the last population 
estimates (Collen et al., 2009).

Our final dataset contained average population trend estimates 
for 1,072 populations. These populations were distributed in 553 
different locations across the world, and represented 461 differ-
ent species (273 birds, 137 mammals, and 51 reptiles) (Figure 1). On 
average, after imputation, our populations had a mean time-series 
length of 10 ± 4.2 (standard deviation) records. Linear-regression in-
terpolations were performed using the R package stats Version 4.0.2 
(R Core Team,  2021), and GAMs were fitted using the R package 
mgcv Version 1.8-31 (Dunn & Smyth, 2018).

2.2  |  Climate and land-use data

We extracted temperature values from the Climatic Research 
Unit gridded Time Series (CRUTS) Version 4.04 dataset (Harris 
et al., 2020). This dataset contains monthly measurements of land-
surface temperature at a grid resolution of 0.5° (≈55 km at the 
equator). To measure temperature warming, we used the monthly 
values of temperature to calculate the arithmetic mean annual 
temperature values for the years and locations of each popula-
tion time-series (Figure 1). Within each population time-series, we 
fitted linear regression models using yearly mean temperature as 
the response variable and year as the only explanatory variable. 

(1)�t = log10

(
nt

nt−1

)

(2)�T =
1

T

T∑

t=1

�t
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The slope of these models was extracted and used as the aver-
age annual rate of temperature warming (ΔT in Equation 3) for the 
time period and location of each of our populations. The strong 
inter-annual fluctuations in temperature make it necessary to use 
a linear regression to capture overall trends over time (Bowler 
et al., 2020; Spooner et al., 2018).

We gathered land-cover information from the European Space 
Agency Climate Change Initiative Land Cover Project (ESA CCI LCP, 
http://www.esa-landc​over-cci.org) Version 2.0.7 (ESA-LC hereafter). 
This dataset contains global time series of land-cover data at a grid 
resolution of 300 m from 1992 to 2018. The ESA-LC consists of a 
map, in which each pixel on the grid is classified into one of 36 dis-
crete land-cover types. To extract land-cover trends, we transformed 
the discrete categorization of land cover into the percent coverage 
of broader land-cover categories (Li et al., 2018). For this transfor-
mation, we used a cross-walking table between the ESA-LC classes 
and 14 simplified land-cover classes (Li et al., 2018): broadleaf ever-
green trees, broadleaf deciduous trees, needleleaf evergreen trees, 
needleleaf deciduous trees, broadleaf evergreen shrubs, broadleaf 
deciduous shrubs, needleleaf evergreen shrubs, needleleaf decid-
uous shrubs, natural grass, bare-soil, cropland, snow/ice, urban, 
and water (see Table  S6 for the cross-walking table). Following Li 
et al.  (2018), we grouped all the tree and shrub land-use classes 
into two final classes: forest trees and shrubs, resulting in 8 final 
land-cover classes for our analysis. We then extracted the annual 
percentage change in each land-cover type for each time period en-
compassing each population time series within a 1-km-radius buffer 
around each population's location. We used this buffer because the 
LPD does not provide information about the spatial range occupied 
by each species populations. Instead, population locations in the LPD 
are represented by discrete coordinates that can represent sample 
stations or the centroid of a grid or polygon of the surveyed area. 
Furthermore, this buffer covered the distances and areas usually 
covered during biodiversity monitoring (e.g. Nalwanga et al., 2012; 
Newson et al., 2008); thus, we were likely to include the habitats in 
which species were recorded. Finally, we calculated the mean annual 
rate of change of each of the land-cover classes for each popula-
tion time-series (Lu1T . … + LuNT, in Equation 3) (Li et al., 2018). We 
did not use a linear regression for land-use changes, as we did for 
temperature changes, because land use in any one location tends 
to change in a simple directional fashion, and does not show strong 
inter-annual fluctuations.

All the spatial information was processed in R Version 4.0.2 
(R Core Team,  2021) using the packages raster Version 3.3-13 
(Hijmans, 2020), maptools Version 1.0-2 (Bivand & Lewin-Koh, 2020) 
and rgdal Version 1.5-16 (Bivand & Keitt, 2020).

2.3  |  Species traits and life-history strategies

To describe general life-history strategies for the different species 
and taxa, we selected five traits for which information was widely 
available for all the classes included in the analysis: (i) maximum 

longevity, in years (longevity); (ii) age of sexual maturity, in years (ma-
turity); (iii) the yearly number of reproductive events (reproductive 
events); (vi) number of offspring per reproductive event (offspring); 
and (vi) body mass, in grams. We compiled this data from 24 open-
access datasets and published scientific papers (Table S1). This re-
sulted in a final dataset that included partial and complete trait data 
for more than 21,000 species of terrestrial vertebrates. As a result of 
this trait compilation, and since the studies used to retrieve the data 
encompass several decades, there was not a cohesive taxonomy 
across them. For this reason, a taxonomic and synonym resolution 
(see Taxonomic resolution and Supplementary Materials S1 for more 
details) was needed before all the trait data could be combined into 
a single dataset.

After the taxonomic and synonym resolution, the dataset con-
tained more than 21,000 unique species. For 87% of those species, 
we found trait records in multiple datasets. In these cases, when 
multiple estimates of life-history traits for the same species were 
available within the same or across different datasets, values were 
log-transformed, and the arithmetic mean calculated. The mean esti-
mate was then back transformed and incorporated into the final trait 
dataset (for details, see Supplementary Materials S2). After the data 
aggregation, we found complete trait information for 82% of the 
species present in our subset of the LPD database. To get complete 
trait data for our target species, we ran a phylogenetic imputation 
analysis using a random-forest algorithm (Penone et al., 2014). For 
this analysis, we used the first 10 eigenvectors derived from a syn-
thetic phylogenetic tree built using the TimeTree interface (Hedges 
et al., 2015). Since we did not find phylogenetic information for all 
species, we also added taxonomic class, order, and family, as a proxy 
for kinship (see also Supplementary Materials S3). The combination 
of phylogeny and taxonomic information improved imputation accu-
racy (Figure S1). To further increase imputation accuracy, we used 
a sub-sample of the trait data, selecting all the species for which 
we had data for at least three of the five traits. By combining this 
subset of species with our target species, we increased the amount 
of information available to the random-forest algorithm and reduced 
imputation errors (Figure S1 and S2). As a result of this process, we 
obtained complete life-history trait information for 9,618 species of 
terrestrial amniotes (4,638 birds, 2,765 mammals, and 2,215 reptiles) 
(Figures S3 and S4).

To describe the life-history strategies of the different species, we 
classified them using the fast–slow continuum (Dobson & Oli, 2008; 
Healy et al., 2019; Stearns, 1983b). The fast–slow continuum rep-
resents the trade-offs between fecundity and aging. Before traits 
were used to define species life-histories, the influence of body mass 
and kinship was removed by regressing trait values against body 
mass using linear mixed-effects models (LMMs) (Supplementary 
Materials  S4). Each life-history trait was log-transformed and re-
gressed against log-transformed body mass, with higher taxonomic 
information, to the level of class, included as a nested random in-
tercept (i.e. family nested within order, nested within class) (for de-
tails, see Supplementary Materials  S4). Residuals of these models 
were used as log-transformed and adjusted life-history traits, and 
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6  |    ALBALADEJO-­ROBLES et al.

combined into a principal component analysis (PCA) to characterize 
species life-history strategies (Supplementary Materials S5).

The first three axes of this PCA are assumed to describe species' 
life-history strategies and explained more than 80% of the observed 
life-history trait variation (Table S3). The first axis (PC1) reflects the 
expected trade-offs between longevity and fecundity, and therefore 
was used to represent the fast-slow continuum (Table S3). Low score 
values of PC1 corresponded with species with delayed sexual ma-
turity, longer lifespans, and lower sexual productivity, that is, slow 
species. In contrast, species with high score values are characterized 
by shorter lifespans, earlier sexual maturity, and higher reproduc-
tive productivity, that is, fast species (details see Supplementary 
Materials S4).

Imputations were performed using the R package missForest 
Version 1.4 (Stekhoven et al., 2012) (for details, see Supplementary 
Materials S3). LMMs were fitted using the R package nlme Version 
3.1-157 (Pinheiro et al., 2021) and PCA was performed using the R 
package ade4 Version 1.7-15 (Bougeard & Dray, 2018) (for details, 
see Supplementary Materials S4).

2.4  |  Taxonomic resolution

Both the LPD and the life-history dataset are the result of data com-
pilation and aggregation of many underlying studies, spanning sev-
eral decades. A consequence of this is that species taxonomy differs 
across and within datasets. Since we rely on the species binomial 
names to match each species with its corresponding life-history 
strategy and population trend, we needed to ensure that taxonomy 
was as consistent as possible. To resolve possible taxonomic mis-
matches, we performed a taxonomic name and synonym resolution 
(Cooke et al., 2019; Etard et al., 2020). To update and correct the tax-
onomy as much as possible, we first checked species for typographi-
cal errors using the R package taxize Version 0.9.95 (Chamberlain 
et al.,  2020). Once original binomial names were corrected, these 
were passed through the online repositories of the International 
Union for Conservation of Nature Red List of Threatened Species 
(IUCN Red List, https://www.iucnr​edlist.org/ Version 2021-1) and 
the Integrated Taxonomic Information System (ITIS, https://www.
itis.gov/, as downloaded on 12th September 2021). If the species 
was present in these repositories, the matched scientific name was 
retrieved along with all its associated synonyms and higher-level 
taxonomic information. Wherever possible, we chose our matching 
binomial and taxonomic classification from the IUCN Red List. If a 
species binomial name was not recorded in the IUCN Red List, we 
used the binomial name and taxonomy retrieved from ITIS to match 
our datasets.

When all available taxonomic information was retrieved, a uni-
fied taxonomic table was created containing the species name as 
it appeared in the original datasets, the corrected binomial name, 
a unique matching binomial name for each species, a list of poten-
tial synonyms, and the higher taxonomic classification linked with 
the matching binomial name. We used this taxonomic table to unify 

binomial species names and higher taxonomy across the life-history 
database and the LPD. Once these fields were corrected, and all 
potential synonyms were resolved, the LPD and estimates of life-
history strategies were finally merged.

2.5  |  Statistical analysis

The spatial distribution of population locations can lead to variations 
in population trends among locations and species that is unrelated 
to climate and land-cover change. To consider these possible effects, 
we included site and species identity as random intercepts in LMMs. 
To build the initial statistical model (Equation 3), we used the mean 
rate of log10-transformed population change (�T ) as our response 
variable, with the rate of climate warming (ΔT), the mean rates of 
change for our land-cover types (LuNt), and species position along 
the fast–slow continuum (PC1) as fixed effects, along with all their 
two- and three-way interactions (Equation 3). We built this initial 
model to consider all the possible interactions between rates of land-
use change, temperature change, and species life-history strategies. 
We considered these terms to be important determinants of species 
populations rates. This initial model included a total of 28 different 
terms (we did not consider interactions between the cover of dif-
ferent land-use types). Final model selection was performed using 
a backward stepwise model selection based on Akaike information 
criterion corrected (AICc) for small samples, since our ratio of sample 
to model terms is lower than 40 values. In this approach, all model 
terms are initially included in the model. Terms that contribute to 
increase the overall AICc value of the model were discarded one 
at a time and the new model re-evaluated (Yamashita et al., 2007). 
This process was repeated until the model with the lowest AICc was 
found (Yamashita et al., 2007).

To evaluate the robustness of our results, we ran two different 
sensitivity analyses to investigate the effects of data quality and 
population selection on the results. To assess the effects of data 
quality, we resampled the LPD data using different R2 thresholds. 
Lower R2 values are associated with poor population size imputa-
tion performance and therefore less accurate estimations of pop-
ulation trends. Conversely, high imputation accuracy is associated 
with higher R2 values, and imputed values closer to real population 
values. Additionally, by changing the R2 threshold from 0.5 (as used 
for the main results) to 0.3, 0.7, and 0.9, we modified the number 
of populations included in the model (1,108 for a threshold of 0.3, 
996 for a threshold of 0.7, and 915 for a threshold of 0.9) as well as 
the quality/uncertainty of the data. To assess the effects of popula-
tion selection on our results, we ran a second analysis in which we 

(3)

�T
∼ΔT+PC1+Lu1T . …

+LuNT +ΔT :PC1+Lu1T :PC1+ …

+LuNT :PC1+Lu1T :ΔT+ …

+LuNT :ΔT+Lu1T :PC1:ΔT+ …

+LuNT :PC1:ΔT+(1|Location)+(1|Species)
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selectively removed populations with extreme values of �T  (similar 
to Leung et al., 2020 and Murali et al., 2022). In our case, we created 
three different datasets by (1) removing populations below the 2.5th 
percentile of �T ; (2) removing populations above the 97.5th percen-
tile of �T ; and (3) preserving only the populations between the 2.5th 
and 97.5th percentiles of �T .

It is also possible for inaccuracies to be introduced by the use 
of imputed life-history traits. However, due to the high accuracy 
of our imputation process (see Supplementary Materials  S3), we 
considered these inaccuracies to be low relative to other forms of 
uncertainty.

The mixed-effects models were fitted using restricted maximum 
likelihood, implemented in the R package lme4 Version 1.1-26 (Bates 
et al.,  2015) and backward stepwise model selection was imple-
mented using the step function of the R package stats Version 4.0.5 
(R Core Team, 2021). Model fit was evaluated using conditional and 
marginal pseudo-R2 values calculated using the R package MuMin 
Version 1.43.17 (Barton, 2020). Statistical significance of fixed ef-
fects from the final models was assessed using the Wald chi-squared 
test, implemented using the R package car Version 3.0-9 (Fox & 
Weisberg, 2019).

3  |  RESULTS

After model selection, our final model contained the following varia-
bles: rate of climate warming (ΔT); species position on the fast–slow 
continuum (PC1); mean annual rate of cropland change (CropT  ), and 
its interaction with species life-history position (CropT :PC1); mean 
annual rate of bare-soil change (Bare SoilT), and its interaction with 
species life-history position (Bare SoilT :PC1), and the interaction be-
tween mean annual rate of bare-soil change and climate warming 
(TΔ :Bare SoilT) (Equation 4).

Overall, populations of species inhabiting areas where cropland 
has expanded were decreasing, whereas populations inhabiting 
areas where cropland was contracting showed positive popula-
tions trends (Table 1; Figure 2a). Fast-lived species tended to have 
more positive population trends than slow-lived species (Table  1; 
Figure  2b). Population trends of fast and slow species also varied 
according to land-cover changes (Table 1). Fast-lived species inhabit-
ing areas that had experienced recent cropland and bare-soil expan-
sion had positive population trends (Figures 2c and 3a). In contrast, 
populations of slow species inhabiting these areas tended to have 
negative population trends (Figure 2c and 3a).

Climate warming alone had no significant effect on popula-
tion trends (Table 1), but the interactive effect of bare-soil expan-
sion and climate warming did. Species populations subjected to 
both bare-soil expansion and climate warming presented negative 

population trends, whereas species populations in areas of bare-
soil reduction and climate warming presented positive population 
trends (Figure  2b). In areas where bare-soil cover was decreasing 
and temperature declines were observed, populations showed nega-
tive trends. Where temperatures decreased and bare soil expanded, 
populations showed positive population trends (Figure 2b).

3.1  |  Sensitivity analyses

The magnitude of the observed effects, as well as the 95% confi-
dence intervals of the predicted estimates, remained mostly consist-
ent and statistically significant across the datasets with different 
accuracies of population-size imputation (Table  S4). Conditional 
pseudo-R2 values (all variables) across these models ranged from 
0.18 to 0.25, while marginal pseudo-R2 values (only fixed terms) 
ranged from 0.069 to 0.074. Models with datasets compiled using 
a higher R2 threshold for data imputation had higher marginal but 
lower conditional pseudo-R2 values (Table S4). When extreme val-
ues of �T  were removed, models varied in terms of the direction and 
significance of environmental effects. When 2.5% of the popula-
tions with the most negative values of �T  were removed, model ef-
fects showed the same direction but only the interactions between 
bare-soil, temperature warming, and the fast–slow continuum re-
mained statistically significant (see Table S2 for further details). We 
observed a similar trend when populations with both extremely pos-
itive and extremely negative values of �T  were discarded (5% of the 
data) (Table S5). However, in this case, only the interaction between 
bare-soil and temperature warming remained statistically significant 
(Table S5). When the 2.5% of the populations with the most positive 

(4)
�T%ΔT+PC1+CropT +Bare SoilT

+CropT :PC1+Bare SoilT :PC1+ΔT :Bare SoilT

+(1|Location)+(1|Species)

TA B L E  1  Estimates, standard errors, and results of an ANOVA 
type III Wald chi-square test for the model of population trends

Term Estimate
Std. 
error χ2 p

(Intercept) 0.0025 0.00281 0.871 .3506

ΔT 0.0246 0.0024 0.0045 .9462

PC1 0.0052 0.0023 5.0484 .0246

CropT −1.4974 0.6943 4.6512 .031

Bare SoilT
5.1349 1.7809 0.6104 .088

PC1: CropT 1.896 0.6017 9.9275 .0016

PC1: Bare SoilT 2.7376 0.8676 9.9561 .0016

ΔT: Bare SoilT -718.4483 1.7971 7.0390 .0079

Note: Statistically significant terms (p < .05) are marked in bold. For all 
terms, the degrees of freedom for the Wald χ2 test equals 1. Conditional 
(all variables) and marginal (only fixed terms) pseudo-R2 values are 
shown at the bottom of the table. Term names correspond to those in 
Equation 3: ΔT, rate of temperature change; CropT, rate of change for 
cropland land cover; Bare soilT, rate of change for bare-soil cover; and 
PC1, the life-history axis representing the fast–slow continuum.
Conditional pseudo-R2 = 0.25.
Marginal pseudo-R2 = 0.067.
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values of �T  were removed from the analysis, the fast–slow contin-
uum, rate of cropland change and its interaction with the fast–slow 
continuum were statistically significant (Table S5). Overall, we de-
tected changes in the sensitivity of the models fitted with different 
datasets and changes in the direction of the effect of temperature 
warming, although this term was not statistically significant in the 
original model.

4  |  DISCUSSION

In this study, we showed that terrestrial vertebrate population 
trends vary according to interactions between land-cover and tem-
perature changes, as well as with species life histories. Specifically, 

we found that populations in areas that have experienced recent 
cropland and bare-soil expansions are more likely to present nega-
tive trends, and that species' population trends are negative in areas 
that experienced both recent climate warming and bare-soil expan-
sion. Species with different life-history strategies showed a dis-
tinct response to cropland and bare-soil expansion, with fast-lived 
species tending to show positive population trends, and slow-lived 
species tending to display negative trends. Although these findings 
support the hypothesis that fast-lived species are better adapted 
to cope with environmental changes (MacArthur & Wilson, 1967; 
Pianka,  1970), the main results of our study must be interpreted 
cautiously. As our sensitivity analysis showed, patterns of popula-
tion response to climate and land-use changes are strongly sensi-
tive to the parameters used for the selection of population-trend 

F I G U R E  2  Responses of average population trends to: (a) rate of cropland change; (b) fast-slow continuum; and (c) effects of the rate 
of cropland change for fast (red line/shaded area) and slow (blue dotted line/shaded area) species separately. Predicted responses in c 
are shown for the fastest and slowest-lived species sampled in the LPD localities used in the analysis. Shaded areas represent the 95% 
confidence intervals around the fitted relationships. Model estimates, standard errors, and statistical significance of fixed effects are 
presented in Table 1.
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data, including the inclusion/exclusion of populations with extreme 
rates of change.

The effects of human land-use intensification on biodiversity 
are well documented and range from habitat fragmentation (e.g. 
de Oliveira et al., 2017) to community homogenization (e.g. Vellend 
et al.,  2007) and the introduction of invasive species (e.g. Soares 
et al., 2020). Thus, we expected to observe an effect of land-cover 
change on species population trends. We found that land-cover 
changes, more precisely those related with changes in the coverage 
of cropland and bare-soil, are important determinants of species' 
population trends, and that species respond differently to these 
changes according to their position along the fast–slow continuum 
of life histories. These observations match some of the theoretical 
predictions from MacArthur and Wilson  (1967) and Pianka  (1970). 
Fast-lived species are better adapted to rapidly increase their 

populations after environmental perturbations, whereas slow-lived 
species are displaced or experience population declines (MacArthur 
& Wilson, 1967; Pianka, 1970). Our main results can help to explain 
previous findings that showed that animal communities under land-
use conditions indicative of human disturbance were predominantly 
occupied by fast-lived species (e.g. De Palma et al., 2015; Newbold 
et al., 2013).

It is well established that climate change has affected biodi-
versity (e.g. Chen et al.,  2011; Donnelly et al.,  2011; Parmesan & 
Yohe, 2003), and that its effects are going to become more evident 
in the future (IPCC,  2021; Newbold,  2018). Previous studies have 
found a strong association between population declines/extirpa-
tions and climate warming in bird, mammal, and reptile populations 
(Sinervo et al., 2010; Spooner et al., 2018). We did not observe sig-
nificant effects of climate warming on species population trends, 
probably because our time window was much shorter than those 
used in previous studies, which can influence the detectability of 
climate warming and its effects on species. Unlike land-use/cover 
change, which acts as a rapid and easy-to-detect driver of environ-
mental change, the effects of climate change are still challenging 
to detect (e.g. Wu et al., 2015). Furthermore, the fact that climate 
warming effects are likely to act with a lag further complicates their 
detectability (e.g. Thompson & Ollason, 2001). Despite this, climate 
warming had a significant effect when interacting with land-cover 
changes. Our main results indicate that these interactions can lead 
to positive and negative changes in population trends depending on 
whether both factors follow the same trend (negative), or opposite 
(positive). This experiment shows that relationships between land-
cover change, climate warming, and population trends are complex, 
and likely to vary across species.

From a theoretical point of view, we would expect both fast and 
slow species to maintain average stable populations (MacArthur & 
Wilson, 1967). However, our main results showed that, on average, 
fast-lived species showed positive population trends, while slow 
species were more likely to present negative population trends 
(Figure  3b). This can, in part, be explained by the focus of our 
study. Biodiversity threats, such as habitat destruction, pollution, 
or the introduction of invasive species, do not act in isolation but 
in complex clusters, in which multiple drivers can act at the same 
time and at different scales/intensities (Bowler et al., 2020; Wraith 
& Pickering, 2018). By focusing only on climate warming and land-
cover changes, we are likely missing other important drivers of bio-
diversity change that have an impact on species population trends 
and can be observed in the different average population trends of 
fast and slow species.

The sensitivity analysis showed that our results were data 
sensitive. When different R2 thresholds (imputation accuracy of 
population-size estimates) were used to include or discard pop-
ulations from the analysis, larger datasets (lower R2 thresholds) 
tended to return models with more statistically significant effects 
than models with more restricted data (higher R2 thresholds). 
In addition, and independently of R2, the imputation methods 
used to obtain uninterrupted population time-series could add 

F I G U R E  3  Responses of average population trends to: (a) rate 
of bare-soil change for fast (red line/shaded area) and slow (blue 
dotted line/shaded area) species; and (b) rate of bare-soil change for 
populations experiencing climate warming (gold line/shaded area) 
and climatic cooling (purple dotted line/shaded area). Predicted 
responses in (a) are shown for species with the highest and lowest 
values of the fast–slow continuum sampled in the LPD localities 
used in the analysis. Predicted responses in (b) are shown for the 
absolute maximum and minimum rates of temperature warming 
recorded within the sampled localities. Shaded areas represent the 
95% confidence intervals around the fitted relationships. Model 
estimates, standard errors, and statistical significance of fixed 
effects are presented in Table 1.
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additional noise, and potentially bias, to the analysis. When pop-
ulations were discarded based on their rate of population change, 
the significance, and in one case direction, of the effects varied 
greatly depending on which populations were discarded from the 
analysis. We can conclude, therefore, that our results were mostly 
driven by the effect of a small proportion of populations (2.5%–
5% of the total data) with extreme rates of change. These findings 
suggest that species' sensitivity to environmental change is not 
uniformly distributed across gradients of environmental change 
and life-history strategies but clustered, with some populations 
and species being particularly sensitive (Leung et al., 2020). These 
patterns of response were detected only through a sensitivity 
analysis of our main model, highlighting the sensitivity of time-
series studies to extreme values, and the necessity of including 
this type of approach in future research.

Overall, the results of our main model showed that popula-
tions of species with different life histories respond differently 
to environmental changes, with populations of fast-lived species 
being positively affected by human-driven land-cover changes, and 
populations of slow-lived species negatively affected. Addtionally, 
the interactions between climate and land-cover changes create 
asymmetric responses on species population rates. Although we 
observed a clear relationship between life-history strategies and 
species response to environmental changes, sensitivity analysis re-
vealed that our results were dependent on the data-selection pro-
cess. The addition or exclusion of a small proportion of populations 
with strong rates of population change can have a large impact on 
model outcomes. Furthermore, other errors in the data, such as im-
putation inaccuracies, will add noise and could potentially bias the 
results. From this, we can conclude that additional and more precise 
information is needed to fully understand the characteristics that 
make species sensitive to environmental changes. With land-use 
and climate change expected to further increase in the near future 
(IPCC, 2021; Tilman et al., 2017), it is likely that this asymmetry in 
the response of fast and slow species to these drivers results in a 
turnover of community composition. Fast life histories are usually 
associated with invasive and generalist species (Allen et al., 2017; 
Cooke et al., 2019), whereas slow life histories are usually associ-
ated with specialist species (Cooke et al.,  2019). The creation of 
conditions that favour fast-lived species, and the decline of slow-
lived species, can lead to a further homogenization of communities, 
and the loss of important ecosystem services (Clavel et al., 2011). 
Establishing clear relationships between species traits and sensitiv-
ity to environmental change is fundamental to establish effective 
conservation strategies and halt biodiversity degradation. Here, we 
have shown that life-history traits are a useful tool to study species' 
population responses to climate and land-cover changes.
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