From Category Theory to Functional Programming:
A Formal Representation of Intent

Davide Borsatti
CIRI - ICT
University of Bologna, Italy
davide.borsatti @unibo.it

Walter Cerroni
Dept. of Electrical, Electronic
and Information Engineering
University of Bologna, Italy

Stuart Clayman
Dept. of Electronic Engineering
University College London, London, UK
s.clayman@ucl.ac.uk

walter.cerroni @unibo.it

Abstract—The possibility of managing network infrastructures
through software-based programmable interfaces is becoming a
cornerstone in the evolution of communication networks. The
Intent-Based Networking (IBN) paradigm is a novel declarative
approach towards network management proposed by a few
Standards Developing Organizations. This paradigm offers a
high-level interface for network management that abstracts the
underlying network infrastructure and allows the specification of
network directives using natural language. Since the IBN concept
is based on a declarative approach to network management and
programmability, we argue that the use of declarative program-
ming to achieve IBN could uncover valuable insights for this
new network paradigm. This paper proposes a formalization of
this declarative paradigm obtained with concepts from category
theory. Taking this approach to Intent, an initial implementation
of this formalization is presented using Haskell, a well-known
functional programming language.

Index Terms—Intent-Based Networking, Functional Program-
ming, Haskell, Category Theory

I. INTRODUCTION

The so-called network softwarization process represents a
shift that has been taking place in the last decade towards
the unprecedented and dominant role of software in commu-
nication networks. Among the many advantages that such an
approach can bring to network and communication service
management, one of the most relevant features is network
programmability, i.e. the ability to view the network infras-
tructure, as well as the computing resources involved in service
delivery, as a general purpose entities that can receive instruc-
tions by means of Application Programming Interfaces (APIs).
Such APIs are typically offered by northbound interfaces of
existing network controllers and/or service orchestrators, and
as such the level of abstraction they provide depends on the
specific solution adopted by the underlying platforms.

Intent-Based Networking (IBN) is emerging as one of the
key technologies for abstracting network management and pro-
grammability operations. Through IBN, an automated network
management platform can deploy a desired (or intended) state
and enforce the required policies without having to detail
specific steps and operational procedures. Then, once a given
intent is enforced, an IBN system is supposed to continuously
monitor its state and verify its consistency with the initial
requirements, applying suitable corrective actions if needed.
Within the Internet Research Task Force (IRTF), the Network

Management Research Group (NMRG) defined an intent as
“a set of operational goals (that a network should meet) and
outcomes (that a network is supposed to deliver), defined
in a declarative manner without specifying how to achieve
or implement them” [1]. Therefore, intents are inherently a
flexible and declarative way to express and compose network
operations, and to program network infrastructures.

Declarative approaches to specifications and programming
have been studied in computer science for some considerable
time. Landin’s paper [2] from 1966 started a trend that is
still appropriate today. Declarative programs express what is
to be computed rather than how it is to be computed. Such
programs are made up of expressions rather than sequences of
commands as in imperative programming. With this paradigm,
repetitive executions are accomplished by recursion rather than
by sequences of operations. There are two main types of
declarative languages exist:

o Functional (or applicative) languages, in which the
underlying model of computation is the mathematical
concept of a function. During a computation, a func-
tion is applied to zero or more arguments to obtain a
single result. In other words, the result is deterministic
(or predictable) since a function will always return the
same value if called with the same arguments. The
most common purely functional programming language is
Haskell, with Erlang, Scheme, and Common Lisp having
a functional core.

e Relational (or logic) languages, in which the underlying
model of computation is the mathematical concept of
a relation (or a predicate). A computation is the (non-
deterministic) association of a group of values with back-
tracking to resolve additional values. The main example
of a logic programming language is Prolog.

Since the IBN concept is based on a declarative approach
to network management and programmability, we argue that
the use of declarative programming to achieve IBN could
uncover valuable insights for this new network paradigm.
In particular, we consider functional programming for IBN
thanks to its mathematical foundation that enforces a rigorous
approach to the design and implementation of the program.
The notation used in functional languages is very close to that

used in formal methods [3], hence any system designed using
these methods can be implemented very rapidly as functional
languages are often considered as executable specification lan-
guages [4], particularly with its close link to category theory.
Category theory is a branch of mathematics that provides
a powerful methodology to describe and work on abstract
concepts, including math itself. For this reason, we believe
that category theory could represent a useful mathematical
tool and foundation to conceive an IBN system. In this work,
we present a formal description of the IBN problem using
tools from category theory. We then go on to show how this
formalization can be implemented in Haskell, a well-known
functional programming language.

The paper is organized as follows. Section II introduces
related work in the fields of Applied Category Theory and
IBN. Section III presents foundation concepts and definitions
of category theory, then Section IV defines a category theory
framework for expressing intents in an IBN system. Section
V presents the connection between the theoretical concepts
and their actuation by providing a preliminary implementation
written in Haskell. Conclusions and future works are summa-
rized in Section VI.

II. RELATED WORK

Functional programming has been used by many researchers
because of its theoretical basis and its mathematical aspects
[5], and because functional programs are amenable to auto-
matic machine-based reasoning. This area includes automatic
program transformation [6], automatic program proving [7],
and formal semantics [8]. Applied Category Theory is be-
coming a relevant field in research, by showing how category
theory can be applied to different fields outside of “pure
mathematics”. For example, in [9] Coecke, Sadrzadeh, and
Clark applied category theory to natural language processing,
defining a model that characterizes natural language expres-
sions and their meaning leveraging tools from category theory.
These concepts are also adopted in the area of modeling cyber-
physical systems [10] [11].

Recently, several research efforts investigated IBN and
surveyed its different aspects [12] [13]. In particular, Jacobs et
al. propose a process for intent refinement [14], which uses Al
to process intent requests expressed in natural language and
transforms them into an intermediate format called Nile, that
can be fed back to the operator/user to be validated before
its deployment. The same formalism is used and extended
in [15] to cover a broader set of use cases, specifically the
ones related to traffic rerouting and service traffic protection.
The functional programming formalism presented in this work
would still be valid to describe the data models proposed in
the aforementioned approaches.

III. CATEGORY THEORY AND FUNCTIONAL
PROGRAMMING

The strength of category theory lies in the capability of
reasoning with abstract concepts. In detail, it focuses on the
relationships existing between objects rather than what these

objects are. Furthermore, it can regulate how a “type” of object
can be mapped to another one. Following the definition given
by Fong and Spivak in [16], a category C is a collection of
objects Ob(C) such that:

i for each pair of objects ¢,d € Ob(C), a set C(c,d) is
specified including elements called morphisms from c to
d, or morphisms in C;

ii for each object ¢ € Ob(C), the identity morphism on c
is specified as id. € C(c,c);

iii for any three objects c¢,d,e € Ob(C) and for any
morphisms f € C(¢,d) and g € C(d, e), the composite
morphism of f and g is specified as f o g € C(c,e).

A morphism f € C(c,d) can be also denoted as f : ¢ — d.
Here, c is called the domain of f and d is called the codomain
of f. These constituents are required to satisfy two conditions:

a wunitality: for any morphism f : ¢ — d, the composite
morphism of f and any of the identity morphisms on ¢
or d returns f,i.e.: id.o f = f and foidy = f.

b associativity: for any three morphisms f : ¢ — cq,
g:c1 — co,and h:cg — cs, it holds: (fog)oh =
folgoh)=fogoh.

Another important element is the concept of functor. A functor
maps all objects of a category C to objects of a category D,
while preserving its structure (i.e., identities and composition).
More formally from [16], let C and D be categories. A functor
F from C to D, denoted as F : C — D, is such that:

i for every object ¢ € Ob(C), an object F'(c) € Ob(D)
can be specified;

ii for every morphism f : ¢; — c¢o in C, a morphism
F(f): F(c1) = F(cg) in D can be specified.

A functor must satisfy two properties:

a for each object ¢ € Ob(C), it holds F(id.) = idp(c);

b for any three objects c1,ce,c3 € Ob(C) and for any
morphisms f € Cf(cy,¢2) and g € C(c,c3), the
equation F'(f og) = F(f) o F(g) holds in D.

The link between Haskell, or functional programming in gen-
eral, and category theory might not be easy to see. However,
it is possible to construct a category Hask [17] in which
Ob(Hask) contains all Haskell data types (e.g., Int, Bool,
etc.) and morphisms between these are function between types
(e.g., 1sEven :: Int — Bool). This construction can be
considered a category, up to some minor approximation. By
considering Hask as a category we can of course use all the
other constructions defined in category theory (e.g., functors,
monads, etc.). For example, a new type definition in Haskell
could be seen as an endofunctor on Hask (a functor from Hask
to Hask), since it maps types to a new type and preserves
morphisms (functions) between the starting types.

Therefore, given the wide variety of intents that could exist,
with very different scopes and requirements, we thought that
this kind of formalism would be beneficial to abstract these
details while focusing on the transformations they need to
undergo before being enforced in a network infrastructure (as
described in the Intent Lifecycle [1]).

IV. THE INTENT CATEGORY

The focus of this work is to formalize an approach for an
IBN system using categorical tools, to then be implemented
with a functional language, namely Haskell. First, a category
to represent intents is defined as Z. For this work, we will take
into account only natural language-based intents. Nonetheless,
the same considerations would still apply to other classes
of intents (e.g., machine to machine intents). The objects of
this category Ob(Z) can be seen as a subset of all possible
sentences in English (or even in other languages) that express
an intent. In other words, the objects are all possible well-
formed intent expressions related to network management that
can be constructed, e.g. using natural language. Morphisms
can be defined to describe the relationships between “similar”
intent requests. Specifically, an ordering relationship can be
introduced between elements of this set, represented by the
symbol <. As an example, intent I; can be “Deploy low-
latency Service X and I» can be “Deploy Service X: since
the deployment of a service X with a low-latency requirement
naturally implies the deployment of service, then I; < Is.

We can prove that this construction is actually a category:

o For each intent I; in the object set, we have I; < I,.
This is trivial since it is clear that an Intent implies itself
(identity morphism).

o For any three intents I1, I5, I3 in the object set such that
I; < I and I, < I3, we have I; < I3. In other words, if
I, implies I5 and I implies I3, then of course I; implies
I3 (composition rule).

Furthermore, this category is a partially ordered category. It
is ordered because, if a morphism exists between two objects,
then they are related as described, and that morphism is
unique. The ordering is partial since there might be objects
that cannot be related with others.

Inside the intent category, a product operator @ can be
defined acting between objects. This operator could be used
to link different intent expressions, resembling a logical and.
For example, let intent /; be “Deploy a web server” and I
“Deploy a firewall”, then I; ® I» would be “Deploy a web
server and deploy a firewall”. The product could be used to
build a structure inside the category in which complex intent
requests are linked to their constituent components through
this operator. By defining an identity object for this operator,
it is possible to prove that the intent category equipped with the
intent product is a “monoidal preorder” (i.e., a free category
obtained from a preorder set equipped with a monoidal prod-
uct, see Sections 3.2.3 and 4.4.4 in [16]). The identity object
for this operator should represent an intent request that, if
multiplied or logically linked to any other intent, the resulting
intent would not change. This identity object would be a form
like a Null Operation intent. To prove that ® is actually a
monoidal operator, the following properties must hold:

o Monotonicity: For all 1, z2,y1,y2 € Ob(Z), if x1 < 41
and o < yo, then 21 ® 22 < Y1 ® Yo.

« Unitality: Let ¢d; be the identity object for ®, then for
all z € Ob(Z) the left and right identities hold: id; ® z =
T ®idr = x.
o Associativity: For all z,y,2z € Ob(Z), (z @ y) ® z =
z® (Y® z).
Now consider an example of the first property, with x; =
“Deploy low-latency Service X, y; = “Deploy Service X”,
ro9 = “Activate a firewall between 8 am and 10 pm”, yo =
“Activate a firewall”. Following the definition, 1 ® x> and
y1 @ y2 would be “Deploy low-latency Service X and activate
a firewall between 8 am and 10 pm” and “Deploy Service
X and activate a firewall”, respectively. Since z; < y; and
r9 < Yo, it is easy to see that also 1 ® 2 < Y1 ® ys, thus
satisfying the monotonicity property. Similar demonstrations
can be given for unitality and associativity. An additional
property that is of interest is symmetry, meaning that given
z,y € Ob(Z) itholds z Ry =y ® x.

Another definition of intent product could be also obtained
through universal construction. It’s an approach used in cat-
egory theory to derive the properties of an object by looking
at its relationships with other ones. For any Intent I; having
two projections towards I; and I, meaning I; implies both Iy
and 5, it exists an object /1 ® I» such that there is a unique
morphism from I; to I3 ® I> that makes the two “triangles” in
Fig. 1 to commute (see Definition 3.71 in [16]). To simplify,
I; ® I could be seen as the “best object” having projections
towards I; and I5.

i ——— I

BN

I I ® 1

Fig. 1. Commuting diagram for categorical product. The arrows in the figure
represent implications between Intents.

This can be interpreted as if objects I; are all the possible
intent specifications requiring a service composed by the ones
requested by I; and I, being I ® I3 the way of describing
the composite service in which its components are “easier” to
identify. An example may help clarify this: let I; be “Deploy a
web server” and I “Deploy a firewall”, then I3 ® I3 would be
“Deploy a web server and a firewall”. In this example the “I;s”
would be expressions like “Deploy a secured HTTP server”
or “Deploy an HTTP server and secure it”.

Having defined the category 7 representing the intent re-
quests, the next step is to define a category S representing
the specific services an intent requires. The intent category
could then be linked to this new category S through a functor,
which would map all objects from Z to objects in S, while
preserving the structure of the starting category. This means
that, if F': Z — S is the functor between the two categories
and I;,Io € Ob(Z) are such that 3 f : Iy — I, then
3 F(f): F(I1) — F(I2). The objects of this category repre-
sent all the services that can be requested by an intent, while

morphisms between these objects could embed composition
rules between services. Examples of these composition rules
will be given in Section V.

A similar approach could be followed to define another
category R representing the service requirements. This cate-
gory will embed all the modifiers that a particular intent could
request, for instance specific Quality of Service (QoS) values
to satisfy (e.g., minimum bandwidth, maximum latency, etc.)
or given time periods in which the intent must be enforced
(e.g., “every day”, “all Mondays”, “only between 8 am and
10 am)”. Also in this case a functor from Z to R can be
defined, with the same properties as above.

A key aspect that is worth highlighting is that no details
were given on the internal structure of categories S and R, but
only on the intent one. By leveraging the abstraction granted
by category theory’s tools, it is possible to reason and define
a structure at the “natural language level” (i.e., at the intent
level). This structure is preserved in the linked categories
(i.e., at the service and requirement levels) through categorical
relationships (e.g., functors), without the need of “looking
inside” them. In other words, we could say that the services
and requirements categories can be seen as intermediate steps
between an intent reception and its actuation on the system, i.e.
the Translation/Intent-Based System (IBS) Space in the intent
lifecycle [1]. However, we do not need to define precise data
models for these intermediate steps to derive their properties,
since they are inherited from the structure of intents expressed
in natural language.

In this view, the functors going from the intent category Z to
categories S and R can be seen as “meaning extracting” func-
tions, i.e. extracting requested services and their requirements
from natural language intent expressions.

V. IMPLEMENTATION OF CATEGORIES IN HASKELL

Having defined the categories previously, and seen how they
relate to each other, the next step is to consider each one of
them and to define a syntax to start building the bridge between
the theoretical construct and a first implementation in Haskell.

The objects in Z could be described with a type defined as:

data Intent = Intent String
| NullOperation

This example could also be used to explain how types
can be defined in Haskell. The first Intent keyword here
is a type constructor which identifies the type name. The
other two keywords on the right side of the equality sign,
Intent and NullOperation, are the data constructors,
which specify how data of type Intent can be constructed.
For this example, a value of type Intent can be con-
structed using either NullOperation without any parame-
ter or Intent followed by a String. Here are two exam-
ples: intentl = Intent "Deploy a firewall" or
nullOpIntent = NullOperation. In other words, an
object of the category Z is either a string (i.e., an actual intent
request expressed in natural language) or a null operation (i.e.,
the identity object defined for the internal monoidal product).

Then a similar type definition could be given for the objects
of the S category:

(Phase,BasicService)
[Action]
[Action]

data Action = Service
| TemporalCompose
| LogicalCompose
| NoAction

This is a recursive data type, a common type definition
in functional programming. The new type Action can be
a single Service, specified through a pair of new data types
(Phase and BasicService) that will be described later, or
by a composition of a list of Action. Specifically, two dif-
ferent kinds of composition are defined, temporal and logical.
The former represents a list of actions that need to be executed
in a specific temporal order, e.g., deploy a firewall and after
configure it. The latter describes an action that depends on
a series of other logical components without a given order,
e.g., the deployment of a 5G core depends on the deployment
of a set of other functions such as AMF, SMF, PCF, etc.
Lastly, the type constructor NoAct ion represents an “empty”
Action object, i.e., an action that does nothing on the system,
similar to empty list constructor Ni1l in classic recursive list
definitions [3]. The BasicService type is used to represent
basic services or actions. The idea here is that this new
type definition should contain all possible “building blocks”
that can be composed (temporally or logically) together to
construct a complex service required by an intent. A basic
definition of this new type is:

data BasicService = VnfId String
| RouterConfig (String,

String)

(String,

String)

| PathCreate

Of course, this type could be extended with other basic
services that users may require (i.e., adding a new data
constructor), or by using more complex structures as input
to them. Finally, the Phase type simply defines the phase
of the lifecycle in which that action will take place. A basic
definition of this new type is:

data Phase = Add
| Update
| Restart
| Remove

Having defined objects in S, the next step would be to define
the structure of this category, in other words, its morphisms.
Morphisms can describe how services may be composed by
other ones. For example, let z,y € Ob(S) with z = “Deploy
a 5G Core Network and y = “Deploy an SMF function”,
then exists a morphism f : x — y that specifies that y is a
component of x. To clarify, the definition of x and y used
in the example is not completely correct, since they do not
follow the formal definition given above. However, a functor
from Z to S has been defined, therefore each object in the
former category is mapped to an object of the latter. For this

Intent Services

Deploy a Mission
Critical Network ~
Slice

Deploy MC _ _ \ -

Server and 5G
Core

’/ Deploy a MC |
Deploy a 5G Server

Deploy a SMF
function

Fig. 2. Graphical representation of the functor between the two categories of
intents Z and services S.

reason, x and y can be seen as the objects that are mapped by
intents “Deploy a 5G Core Network” and “Deploy an SMF
function”, respectively.

Figure 2 is presented to better understand what the functor
does between two categories Z and S. The dashed lines
connect intents to the objects in S, or in other words to the
services they are requesting. The same color has been used to
highlight how the functor maps morphisms between the two
categories. From Fig. 2 it is possible to gain an insight into
what is necessary to satisfy an intent request by taking into
account the sub-tree having as root the mapped service. In
other words, by knowing how to deploy the leaves of these
trees and how to compose them, it should be possible to deploy
the required service. For instance, the leaves in Fig. 2, using
the type definition introduced above, can be defined as follows:

smf = Service (Add, VnfId "smfId")

meaning variable smf of type Action is defined using its
data constructor Service since we can consider it as a
single VNF, thus not requiring any composition. This data
constructor takes as an argument a pair of objects. One
of type BasicService, which was constructed using its
data constructor VnfId followed by a string representing
the identifier given to that specific function, "smfId" in
the example. The other of type Phase built with its data
constructor Add since the intent in the example is requiring
the deployment of a function. The same procedure can also
be applied to the other leaves represented in the figure, of
course with the correct VNF identifiers. Then these leaves
can be composed together to construct, for example, the object
representing a 5G core deployment:

5gCore = LogicalCompose [
(Service (Add, VnfId "smfId")),
(Service (Add, VvnfId "pcfIid")),

.1

Here, the data constructor LogicalCompose is used to
identify the list of VNFs that are part of the 5G core service
(e.g., SMF, PCF, etc.). The logical composition is simply
grouping them together without a particular order in which the
VNFs need to be deployed (i.e., in NFV-MANO terminology,

a network service composed of several VNFs without any
specific Virtual Network Forwarding Graphs).

Of course, similar type definitions could be given for the
R category as well. In this case, objects can be seen as a
composition of basic “intent modifiers”, such as: Scope, to
whom the intent is targeted (e.g., network-wide, single user);
Time, when the intent should be active (e.g. “everyday from
2pm to 5pm”, “always”); Latency constraints, Throughput
constraints. Using Haskell notation:

data SrvRequirement = Requirement BasicReqg
| ComposeReq
[SrvRequirement]
| NoReqg

data BasicReq = Latency _
| Bandwidth _
| Scope _
| Uptime _}

As for the other data types, also BasigReqg could be
expanded to cover a larger set of requirements. After the
definition of these new types, the ordering has to be defined.
This ordering will map the relationship between two variables
of the same type, embedding the concept of morphism between
objects in the categories from which the types derive. Since the
categories were partially ordered, using the class Ord defined
in Haskell’s type system would not be the correct choice, as it
is for total orderings. Therefore a new class has to be defined
for them. Since in a partial order two objects may be related
(e.g., less than, equal to, greater than) or not, a possible way
to program this in Haskell is using a construct like Maybe
Ord.Ordering. In other words, if the relationship exists
the comparison of the two variables returns Just Ord (e.g.,
LT, EQ, GT), otherwise Nothing. An object of these new
types would be less than another one if it is a component of
the latter.

Having defined the types describing the three categories
considered, the next step is the definition of the functors
connecting them. In Haskell, this means defining functions
taking as input objects of type Intent and returning Act ion
or SrvRequirement. These functions should take natural
language expressions and construct the tree representing the
network operations they are asking for and their requirements.
Finally, new functions are needed to enforce the requirements
expressed in these new types on the underlying infrastructure.

A. Evaluation

To start testing these operations, we implemented a pre-
liminary version of one actuation function, specifically, the
one able to construct the Open Source Mano (OSM) Network
Service Descriptor (NSD) required by a specific action. In
detail, if the function is called with as input an action like
Service (Add, VnfId "vndfid"), the Vnf identifier is
added to the required fields of an OSM NSD data model,
namely in the vnfd-id and vnf-profile lists. Alterna-
tively, if the input of the function is a logical composition of a

set of VNFs, then using a fold function (foldr) the behavior
just described is applied recursively to all the elements in the
list, accumulating all the results in the same network service
descriptor. In a Haskell-like syntax:

-> Nsd —-> Nsd
(Add, VnfId wvnfid))

generateNsd Action

generateNsd (Service
nsd = [...]

generateNsd (LogicalCompose actions)
foldr generateNsd nsd actions

nsd =

For example, assuming an input action like:

LogicalCompose |
(Service (Add, VnfId "smfId"))

(Service (Add, VnfId "pcfId"))]

the function constructs a valid OSM NSD containing the
required VNFs. The relevant components of the descriptor
generated from the previous example are:

nsd:
nsd:
df:
- id: default-df
vnf-profile:
- id: pcfid
virtual-link-connectivity:
- constituent-cpd-id:
- constituent-base-element-id:
pcfid
constituent-cpd-id: mgmt-ext
virtual-link-profile—-id: mgmtnet
vnfd-id: pcfid
- id: smfid
virtual-link-connectivity:
- constituent-cpd-id:
— constituent-base-element-id:
smfid
constituent-cpd-id: mgmt-ext
virtual-link-profile-id: mgmtnet
vnfd-id: smfid
vnf-id:
- pcfid
- smfid

[...]

The NSD descriptor created with this function can then be
onboarded on the OSM platform, and its deployment can be
initialized. Furthermore, thanks to the type checking features
of Haskell, the NSD format is automatically validated during
every parsing and rendering of the YAML file, thus increasing
the robustness of the code.

VI. CONCLUSION AND FUTURE WORKS

This work has directly applied category theory concepts
to IBN in order to build a formal representation of the
intent specifications. This representation aims to help with the
reasoning about this new paradigm, while keeping a close
relationship with functional programming and the possible

implementations. In this paper we have shown a preliminary
implementation of the categories for intent using Haskell. This
implementation is able to take a definition of a service and
constructs a valid OSM NSD containing the required VNFs.
The relevant components of the descriptor are generated.
Further works can be made in both directions. For example,
lenses in category theory [18] are used to describe in mathe-
matical terms the concepts of agent and environment, thus they
could serve as a valid tool to model the interaction between the
Intent System and the network infrastructure it is managing.
They are also widely used in Haskell, being one of the most
powerful tools to access and modify data structures.

REFERENCES

[11 A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based
Networking - Concepts and Definitions,” IETF, Internet-Draft draft-
irtf-nmrg-ibn-concepts-definitions-06, 12 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-irtf-nmrg-ibn-concepts-definitions

[2] P.J. Landin, “The Next 700 Programming Languages,” Communications
of the ACM, vol. 9, no. 3, p. 157-166, Mar 1966. [Online]. Available:
https://doi.org/10.1145/365230.365257

[3] J. Hughes, “Why Functional Programming Matters,” Computer Journal,
vol. 32, no. 2, pp. 98-107, 1989.

[4] D. Turner, “Functional Programs as Executable Specifications,” Mathe-
matical Logic and Programming Languages, ed. P. Sheperdson, Prentice
Hall, 1984.

[5] J. A. Stoy, “Some Mathematical Aspects of Functional Programming,”
Functional Programming and its Applicationsm ed D.A. Turner, Cam-
bridge University Press, 1980.

[6] J. Darlington, P. G. Harrison, H. Khoshnevisan, L. McLoughlin,
N. Perry, H. Pull, M. Reeve, K. Sephton, R. L. While, and S. Wright, “A
functional programming environment supporting execution, partial exe-
cution and transformation,” in Proceedings of the Parallel Architectures
and Languages Europe, Volume I: Parallel Architectures, ser. PARLE
’89. Berlin, Heidelberg: Springer-Verlag, 1989, p. 286-305.

[7]1 D. Turner, “Functional programming and proofs of program correctness,”
Tools and Notions for Program Construction, ed. D. Neel, Cambridge
University Press, 1982.

[8] D. Schmidt, “Denotational Semantics - A Methodology for Language
Development,” 1986.

[9] B. Coecke, M. Sadrzadeh, and S. Clark, “Mathematical foundations for
a compositional distributional model of meaning,” 2010.

[10] A. Speranzon, D. I. Spivak, and S. Varadarajan, “Abstraction, com-
position and contracts: A sheaf theoretic approach,” CoRR, vol.
abs/1802.03080, 2018.

[11] G. Bakirtzis, C. Vasilakopoulou, and C. H. Fleming, “Compositional
cyber-physical systems modeling,” Electronic Proceedings in
Theoretical Computer Science, vol. 333, p. 125-138, Feb 2021.
[Online]. Available: http://dx.doi.org/10.4204/EPTCS.333.9

[12] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani, “A survey on
intent-driven networks,” IEEE Access, vol. 8, pp. 22 862-22 873, 2020.

[13] E.Zeydan and Y. Turk, “Recent advances in intent-based networking: A
survey,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), 2020.

[14] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” in Proceedings of
the Afternoon Workshop on Self-Driving Networks, ser. Self DN 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
15-21. [Online]. Available: https://doi.org/10.1145/3229584.3229590

[15] M. Bezahaf, E. Davies, C. Rotsos, and N. Race, “To all intents
and purposes: Towards flexible intent expression,” in 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft), 2021, pp.
31-37.

[16] B. Fong and D. I. Spivak, “Seven sketches in compositionality: An
invitation to applied category theory,” 2018.

[17] Category hask. [Online]. Available: https://wiki.haskell.org/Hask

[18] D. Spivak. Lenses: applications and generalizations. [Online]. Available:
http://math.ucr.edu/home/baez/ ACTUCR2019/ACTUCR2019_spivak.pdf

