1	Inherited Causes of Combined Vision and Hearing Loss: Clinical Features and
2	Molecular Genetics
3	
4	Thales A. C. de Guimaraes ^{1,2} , Elizabeth Arram ^{1,2} , Ahmed F Shakarchi, ³ Michalis
5	Georgiou, ^{1,2,3} Michel Michaelides ^{1,2}
6	
7	¹ UCL Institute of Ophthalmology, University College London, London, UK.
8	² Moorfields Eye Hospital, London, UK.
9 10	³ Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
11	
12	Corresponding author:
13	Michel Michaelides,
14	UCL Institute of Ophthalmology,
15	11-43 Bath St, EC1V 9EL,
16	London, United Kingdom,
17	michel.michaelides@ucl.ac.uk
18	
19	Disclaimer: The views expressed in the submitted article are our own and not an
20	official position of the institution.
21	
22	Word count: 4273 words
23	

24 ABSTRACT

- 25 Combined vision and hearing loss, also known as dual sensory impairment, can
- 26 occur in several genetic conditions, including ciliopathies such as Usher and Bardet-
- 27 Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as
- 28 CHARGE, Stickler, Waardenburg, Alport and Alstrom Syndrome. The retinal
- 29 phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a
- 30 comprehensive review of the molecular genetics and clinical features of the most
- 31 common non-chromosomal inherited disorders to cause dual sensory impairment.
- 32

33 Keywords:

- 34 Dual sensory impairment, hearing loss, retinitis pigmentosa, Usher syndrome,
- 35 Bardet-Biedl syndrome, retinal dystrophy

36 INTRODUCTION

Combined hearing and vision loss, also known as dual sensory impairment (DSI),
can be caused by a highly heterogenous spectrum of conditions and is characterised
by varying degrees of hearing and vision loss. DSI is common in older adults, with a
prevalence as high as 11.3% in adults over 80 years of age in the US [1].
Regardless of the cause, affected individuals experience difficulty in communication,
mobility and daily functioning [2], and perceived discrimination [3].

There are many causes of DSI, including genetic [4], infectious [5], and auto-43 44 immune [6-8]. Genetic causes of DSI usually present as early as birth to early 45 adulthood, associated with a greater disease burden and lifelong disability. Ciliopathies [9-13], CHARGE [14, 15], Waardenburg [16], Stickler [17, 18], Kearns-46 47 Sayre [19], and albinism-deafness syndromes [20], are some of the commonest 48 genetic causes of DSI that may present to an ophthalmologist. The differential diagnosis may be explored via a detailed ocular and medical history, family history, 49 50 symptomatology, examination, retinal imaging and electrophysiological assessment, 51 audiology and, ultimately, molecular genetic testing. Furthermore, recent advances 52 in the gene therapy and cell replacement field offer a promising treatment option for the future, with many pre-clinical and human trials being developed or currently 53 54 ongoing [21-23].

The purpose of this review is to provide an overview of the most common genetic causes of combined hearing and vision loss, outlining the ocular manifestations, with a focus on the retinal findings. Description of syndromes secondary to chromosomal abnormalities is beyond the scope of this review. **Table 1** provides a summary of the molecular genetics of all conditions described herein.

60 1. CILIOPATHIES

The primary cilia are rod-like, slender, ancient microscopic organelles that have an evolutionarily conserved intraflagellar transport (IFT) mechanism and exert a crucial role in signal transduction cascades [24] and vertebrate development [25]. Genetic disorders that cause disruption in the primary cilium, known as ciliopathies, display a constellation of phenotypic features, commonly involves sensory deficits and is a leading cause of visual disability in children [26]. Below we review the phenotype and genetics of the most common ciliopathies that exhibit retinal findings.

68

69 Usher syndrome

70 Usher syndrome (USH) refers to a genetically and clinically heterogenous group of recessively inherited disorders, characterised by DSI with or without vestibular 71 72 dysfunction. It is the leading cause of inherited DSI, with a prevalence ranging from 1-4 per 25,000 [9]. The disease is classified into four subtypes (USH1, USH2, USH3) 73 74 and USH4), with wide intra- and inter-familial phenotypic heterogeneity [27]. Some 75 USH-related genes have also been associated with isolated retinitis pigmentosa 76 (RP) and non-syndromic hearing loss. The visual prognosis varies with the subtype of USH, with USH1 individuals experiencing an earlier onset of nyctalopia and more 77 78 rapid decline in visual function with age [28]. Figure 1 illustrates the retinal, optical 79 coherence tomography (OCT) and fundus autofluorescence (FAF) findings in 80 representative patients of USH1, USH2 and USH3. Imaging findings in USH4 are described in the relevant subsection below. Rod-cone dystrophy develops in all 81 82 cases, although with varying age of onset depending on the subtype, while cystoid 83 macular oedema and cataracts are a relatively common feature and may be present 84 in more than 50% of all cases [29].

85

86 USH1

87 USH1 is the most severe form of USH and accounts for 30-40% of all USH [30]. Patients with USH1 have profound - and typically congenital - sensorineural hearing 88 89 loss, vestibular dysfunction and onset of RP within the first decade of life [11]. Unless 90 fitted with cochlear implants, affected individuals do not typically develop speech 91 [31]. Eight loci have been associated with USH1 (Table 1), with five genes identified to date [9, 32-34] - the most common being MYO7A (USH1B; OMIM #276903) [35-92 37]. CIB2 (OMIM #605564) was previously associated with USH1 [38], but more 93 94 recent evidence disqualified the gene as causative of the disease [39].

95

96 USH2

97 USH2 is the commonest form of USH, with moderate to severe early-onset 98 sensorineural hearing loss, with intact to variable vestibular responses [40], and 99 onset of RP within the second decade of life. In a study of 560 USH families, 59% 100 had USH2 [41]. In one study, the mean age of onset of hearing loss in patients with 101 USH2 was 11 years of age [28]. Three disease-causing genes have been identified [9]. In a UK study, USH2A (OMIM #608400) was the most commonly involved gene 102 in USH2, found in 79% of cases. This gene is also the commonest cause of 103 104 autosomal recessive (AR) non-syndromic RP [42]. The most prevalent USH2A 105 variant is c.2299delG, with one study reporting frequencies as high as 77.5% in 106 patients with USH2 [43] - and likely represents an ancestral mutation that spread 107 worldwide as a result of migration [44].

108

109 USH3

USH3 is the rarest subtype and exhibits later onset of progressive hearing and 110 111 progressive vision losses. It is typically associated with vestibular hyporeflexia. [45]. 112 Affected individuals have normal speech and will gradually become profoundly deaf. 113 The onset of RP is usually post pubertal, with subsequent constriction of visual fields 114 and nyctalopia [46, 47]. Although prevalence is variable, it accounts for 1-6% of USH 115 cases [45, 48], except in the Finnish and Ashkenazi Jewish population [49], where it is estimated that more than 40% of patients with USH have USH3 [50, 51]. USH3 is 116 117 primarily caused by pathogenic variants in CLRN1 (OMIM #606397) [51], which 118 encodes clarin-1, a vertebrate-specific protein containing four transmembrane 119 domains and suggested to be involved in hair cell and photoreceptor cell synapses 120 [52]. Variants in HARS1 (OMIM #142810) have been previously associated with 121 USH3 [53], although a recent expert curation of genes related to hearing loss refuted 122 and disgualified HARS1 as causative of USH3 [54].

123

124 USH4

An atypical subtype of USH (USH4) has been associated with disease-causing 125 variants in ARSG (OMIM #618144) [55]; with the genetic spectrum recently 126 127 expanded to include CEP78 (OMIM #617110), CEP250 (OMIM #609689) and 128 ABHD12 (OMIM #613599) [56]. This form is rare and atypical in that there is a later 129 onset - usually around 40 years of age - of RP and sensorineural hearing loss without vestibular involvement [57]. In most reported cases, a sharply demarcated 130 131 region(s) of pigmentary change in the fundus, with optic disc pallor, and parafoveal and mid-peripheral retinal pigment epithelium (RPE) atrophy are observed. FAF may 132

reveal a perimacular hyperautofluorescent ring or a pericentral pattern of
hypoautofluorescence. Intraretinal cystoid spaces may be present on OCT [58, 59].

136 Bardet-Biedl syndrome

137 Bardet-Biedl syndrome (BBS) is a multi-systemic disease characterized by pan-138 retinal rod-cone degeneration, renal dysfunction, obesity, hypogonadism, postaxial 139 polydactyly and cognitive impairment [60, 61]. It is typically inherited in an AR 140 fashion; although a tri-allelic mechanism of transmission has been reported [62]. 141 Retinal abnormalities are seen in virtually all patients - in a large multi-ethnic cohort of 105 cases, signs of retinal dystrophy were seen in all patients older than 3 years 142 143 of age [63]. The visual prognosis is often poor, with legal blindness occurring before the second decade of life [64, 65]. More commonly, patients may develop a 144 145 conductive hearing loss, secondary to chronic otitis media, although sensorineural hearing loss can also occur [60]. 146

The retina exhibits a wide spectrum of disease expression [66], varying from
generalised rod-cone to cone-rod dysfunction, often with early macular involvement.
Disease severity and retinal findings may vary among members of the same family
[66, 67]. The fundus usually reveals pale optic discs, vessel attenuation and diffuse
RPE mottling, while OCT shows atrophy of the ellipsoid zone and RPE [68] (Figure
Studies have been contradictory regarding specific genotype-phenotype
correlations in BBS [69-76].

To date, twenty-two disease-causing genes have been identified (**Table 1**), of which eight are highly conserved genes that code for BBS proteins. These BBS proteins form a stable complex that has a role in membrane trafficking and as a key regulator of the composition of transmembrane proteins in the ciliary membrane,

known as the BBSome [77]. *BBS1* and *BBS10* account for about 50% of BBS cases, while variants in the BBsome-related genes (*BBS1-BBS18*) are responsible for approximately 70 to 80% of affected families [78], with several of these having a high prevalence in certain populations, demonstrating founder effects and the worldwide genetic heterogeneity of BBS [79]. Preclinical work is being undertaken to develop gene therapy approaches for several BBS genotypes, including *BBS1* and *BBS10*.

165 Alstrom syndrome

Alstrom syndrome (ALMS) is a multi-systemic AR disorder characterized by retinal 166 degeneration, hearing loss, childhood obesity, diabetes mellitus, urological 167 dysfunction, dilated cardiomyopathy, systemic fibrosis, and renal, pulmonary and 168 hepatic failure [80, 81]. The prevalence of ALMS in the general population is 169 170 estimated to be less than 1:1,000,000 [82]. The cause of ALMS is pathogenic 171 variants in ALMS1 (OMIM # 606844), a gene involved in centriole formation and 172 stability, with a role in intracellular trafficking and ciliary function [83-86]. 173 A genotype-phenotype study (n=58) by Marshall et al., found possible associations 174 between pathogenic variants in exon 16 and onset of retinal degeneration before 1 year of age, as well as the occurrence of urological dysfunction, diabetes and dilated 175 176 cardiomyopathy. A significant association was also found between variants in exon 8 177 and lower incidence of renal disease [80]. Progressive bilateral sensorineural hearing loss is often found in the first decade of life and may be a feature in up to 178 179 90% of affected individuals. This can become moderate to severe in nature by the 180 second decade of life. Chronic and acute otitis media can also cause a conductive 181 component to the hearing loss [82, 87].

182 ALMS usually presents with severe cone-rod dystrophy, diffuse vessel 183 attenuation, optic disc pallor and macular atrophy (Figure 3-A). Nystagmus and 184 extreme photophobia, with or without nyctalopia, are characteristic, with an age of 185 symptom onset at 6 to 9 months old, a combination of symptoms that may mislead to 186 the diagnosis of Leber congenital amaurosis, achromatopsia or Bardet-Biedl 187 syndrome [88]. The visual prognosis is very poor and complete blindness usually 188 occurs in the second decade of life [89]. FAF may show hypoautofluorescent 189 patches with a parafoveal hyperautofluorescent ring [88], while OCT reveals foveal 190 and outer nuclear layer (ONL) thinning accompanied by loss of photoreceptors and 191 RPE [90]. ERG reveals generalised retinal dysfunction within a few weeks of birth, 192 with extinguished cone and rod-based responses by 2.5 years of age [82]. However, 193 variability in retinal function, disease onset and rate of progression have been 194 reported [88, 91]. Other eye findings that may be present are hypermetropia and 195 subcapsular cataracts [88].

196

197 **2.** Auditory-pigmentary Syndromes

198

199 Tietz albinism-deafness syndrome

200 Tietz albinism-deafness syndrome (TS) is characterised by congenital sensorineural

201 hearing loss and generalised loss of pigmentation. It was first described in a family in

- 202 1963 [92], which was subsequently found to segregate variants in *MITF* (OMIM
- 203 #156845) [20], a gene involved in differentiation, growth and survival of pigment cells
- 204 [93, 94]. Disease-causing variants in *MITF* may more commonly cause AD
- 205 Waardenburg syndrome type 2 (WS2) [95, 96] and, rarely, AR coloboma,
- 206 osteopetrosis, microphthalmia, macrocephaly, albinism and deafness syndrome

(COMMAD) [97]. The WS2 phenotype highly overlaps with TS but is distinguishable
given TS has a more severe phenotype; with patchy depigmentation, heterochromia
irides and white forelocks [92, 98].

TS individuals are born "snow white", gradually gaining pigmentation, with adults having fair skin, blonde to white hair and white eyelashes and eyebrows. The hearing loss is bilateral, sensorineural, congenital and profound, with speech rarely developing [20, 99]. Individuals have blue eyes and a diffuse lack of retinal pigmentation, although, interestingly, there are no other ocular abnormalities such as nystagmus, photophobia or other visual problems as seen in other conditions characterised by blonde fundi [20, 92, 99, 100].

217

218 Waardenburg syndrome

219 Waardenburg syndrome (WS) is a genetically heterogenous auditory-pigmentary 220 syndrome that was first described in 1951, with an estimated prevalence of 1 per 221 42,000 [101]. Nine loci have been identified so far and. WS is often inherited in an 222 AD fashion, but AR inheritance has also been described. Interestingly, Wollnik et al 223 reported a family in which parents were heterozygous for the substitution p.Y90H in the PAX3 gene (OMIM #606597) and had WS subtype 1 (WS1), while the offspring 224 225 was homozygous for the variant and had subtype 3 (WS3), which highlights different 226 inheritance patterns in the same gene and within family members [102]. Based on 227 the phenotype, it can be classified in four main groups, the first two being the 228 commonest [98]: (i) WS1 is characterised by pigmentary abnormalities of hair, which 229 include a very characteristic white forelock, pigmentary changes of the iris, 230 sensorineural hearing loss and dystopia canthorum; (ii) WS2 has a similar 231 phenotype, but without dystopia canthorum; (iii) WS3 has the same features as

WS1, including dystopia canthorum, but also musculoskeletal abnormalities of upper
limbs; and (iv) WS4 has pigmentary changes and Hirschsprung disease of the colon
[98, 103].

235 The hearing loss is typically bilateral, although with variable intra- and interfamilial expression [104]. It occurs in about 25% of patients affected with WS1 236 237 and in half of the patients with WS2 [105]. The pattern of iris pigmentation varies 238 from brown iris, to sectoral patches of hypopigmentation to classical heterochromia 239 irides [106]. The fundus often reveals pigmentary changes, varying from a blonde 240 fundus, to blonde areas adjacent to patchy hyperpigmented areas [106]. FAF may 241 reveal hypoautofluorescence in the region of choroidal hypopigmentation, while OCT may demonstrate a thickened choroid in the area of hypopigmentation, with an 242 243 otherwise normal overlying retina [107, 108].

244

245 **3. Mitochondrial Disorders**

246

247 Kearns-Sayre syndrome

248 Kearns-Sayre syndrome (KSS) is a rare multi-system mitochondrial DNA (mtDNA) 249 deletion syndrome [109, 110], characterised by chronic progressive external 250 ophthalmoplegia, pigmentary retinopathy and heart block [110]. Several other 251 features have been reported, such as sensorineural hearing loss, cerebellar ataxia, 252 endocrine disorders, cognitive impairment, and increased levels of cerebrospinal fluid protein [19, 111-114]. A study by Kornblum et al. assessed the nature of the 253 254 hearing loss in 17 affected individuals, 10 of whom were found to have hearing impairment. In patients with subjective or subclinical hearing deficits, it mainly 255 256 affected high frequencies. The findings in this cohort suggested a cochlear origin of hearing loss [115]. The onset of the disease is usually before the age of 20 years. 257

258 Among the ocular findings, chronic progressive external ophthalmoplegia is 259 the commonest, usually in the form of ptosis, which may be present in up to 89% of cases. In the largest case series to date, pigmentary retinopathy was found in 71% 260 261 of patients [116]. The retinopathy typically assumes a salt and pepper appearance [117]. Interestingly, bilateral retinoschisis, a macular vitelliform-like lesion and 262 subretinal fluid have all been reported [118-120]. OCT may reveal areas of outer 263 264 retinal layer atrophy and ellipsoid zone disruption [121], while FAF reveals areas of speckled hypo- and hyperautofluorescence [122]. Full-field ERG shows evidence of 265 266 generalised cone and rod-system dysfunction [19]. Corneal endothelium involvement 267 can lead to corneal decompensation and oedema [123-126].

268

269 Maternally inherited diabetes and deafness (MIDD)

270 MIDD is a mitochondrial disorder caused by disease-causing variants in MTTL1

271 (OMIM #590050), most frequently at position 3243A>G [127]. The onset of

sensorineural hearing loss and diabetes is in adulthood and additional features seen

in other mitochondrial disorders may be present, such as retinopathy,

274 cardiomyopathy, renal abnormalities and neuropsychiatric symptoms [128-131]. In a

large multicentric study (n=54) in individuals with the mtDNA 3243G>A variant,

sensorineural hearing loss was present in almost all patients, while 43% of patients

had myopathy, 15% had cardiomyopathy and 18% had neuropsychiatric symptoms

[129]. The age at the diagnosis of deafness was 34.6 ± 13.9 years (range= 2-61).

279 Macular pattern dystrophy was common in this cohort, and present in 86% of

280 patients.

In 2013, a cross-sectional study (n=29) using a multimodal approach,

identified retinal features in affected individuals [132]. The fundus appearance varied

283 from yellowish fleck-like deposits in early stages, which eventually advanced to 284 circumferential areas of chorioretinal atrophy which coalesce over time, while FAF ranged from the presence of hyperfluorescent flecks, to a diffuse central 285 286 hypoautofluorescent signal corresponding to areas of chorioretinal atrophy in more advanced stages (Figure 3-E, F). Additionally, the authors proposed a 4-grade 287 288 classification system based on severity of the retinal findings, OCT, and FAF. More 289 recently, a detailed observational retrospective cases series investigated structural 290 features associated with the disease. The authors identified a sequence of OCT 291 features - from ellipsoid zone loss to subretinal deposits, loss of external limiting 292 membrane and RPE atrophy – that could be used as biomarkers for tracking disease 293 progression. They also demonstrated that, RPE and outer retinal atrophy (RORA) 294 was mostly present in a circular ring area centred on the fovea between 5 and 15 295 degrees of eccentricity [133].

296

- 297 4. OTHER INHERITED DISORDERS
- 298

299 Stickler syndrome

300 Stickler syndrome (STL), also known as hereditary arthro-ophthalmopathy is a 301 heterogenous disorder characterised by skeletal, orofacial, ocular and auditory 302 abnormalities [134, 135]. It is most commonly autosomal dominant (AD), although AR inheritance has also been reported. It is grouped into four subtypes (STL1, STL2, 303 304 STL4 and STL5), the most common being the AD types STL1 and STL2, caused by 305 pathogenic variants in COL2A1 (OMIM # 120140) and COL11A1 (OMIM #120280), 306 respectively. Frequently present systemic findings include Pierre Robin sequence, 307 flat midface with midline clefting, hearing loss, osteoarthritis and occasional cardiac

abnormalities [134, 136-138]. Hearing impairment is common and predominantly
sensorineural, although a conductive mechanism can also be present, particularly in
patients with palatal defects [17].

311 Ophthalmic features are seen in up to 95% of individuals [139], and include 312 high myopia, cataracts - which have been described as wedge and fleck or 313 quadrantic lamellar cortical lens opacities in more than 40% of cases [140] -, 314 vitreoretinal degeneration and high risk of spontaneous retinal detachment (RD) 315 [138]. The vitreous appearance has been described as a discerning feature between 316 STL1 and STL2, with the former producing a congenital 'membranous' anomaly and 317 the latter a 'beaded' vitreous phenotype [141], although extensive phenotypic heterogeneity has been described [142, 143]. RD can develop in over 70% of cases 318 319 [139, 144, 145], and is usually the result of a giant retinal tear (Figure 3-D). 320 Interestingly, in a recent multicentre analysis of affected patients from Korea, splicing 321 variants were the most frequently associated factor with RD (71%) [146]. Although 322 there is no evidence from randomised clinical trials, retrospective reports have 323 suggested that prophylactic cryotherapy and circumferential laser treatment may 324 substantially reduce the risk of RD in STL1 [144, 147, 148]. Re-detachments are common and often respond well to repeated surgery. In a long-term follow-up of a 325 326 cohort of 29 eyes of STL patients who underwent RD surgery, success was achieved 327 in 97% of eyes with an average of 2.3 surgeries [149]. Other ocular features include 328 glaucoma in 10% of patients [145].

329

330 Norrie disease

Norrie disease is an X-linked recessive condition associated with the gene *NDP*(OMIM #300658) [150, 151]. Variants in *NDP* have also been associated with familial

333 exudative vitreoretinopathy, persistent hyperplastic primary vitreous (PHPV, also 334 known as persistent foetal vasculature, PFV), retinopathy of prematurity and Coats disease [152]. It is characterised by proliferative changes in the retina and early 335 336 blindness, developmental delay in approximately half of patients, and hearing loss in about a third of patients [150, 153, 154]. Other features include seizures and 337 338 peripheral vascular abnormalities [155, 156]. The hearing loss is sensorineural in 339 nature, mild, asymmetric and high frequency in adolescence, progressing to severe loss around 35 years of age [155, 157, 158]. Significant phenotypic heterogeneity 340 341 may be found, even in members of the same family [159].

342 Affected patients typically have a transparent lens with congenital posterior synechiae at birth, although the synechiae may develop within a few months of life. 343 344 In the retrolental space, there is typically a yellowish-white proliferating mass, which 345 can be complicated by anterior synechiae, iris atrophy, cataracts, corneal opacities 346 and RD (Figure 3-B) [154]. Microphthalmia may also be present. Phthisis bulbi often 347 develops within the first decade of life [160]. Walsh et al retrospectively reported 14 348 cases of Norrie disease, all of which underwent vitrectomy with or without 349 lensectomy prior to 1 year of age. Seven maintained at least light perception in one eye, while only 8% of eyes became phthisical; early vitrectomy may thereby be 350 351 worthy of consideration [161].

352

353 CHARGE syndrome

354 CHARGE is a complex genetic syndrome first described in 1981, with an estimated
355 incidence of 1 per 12,000 [162, 163]. It is caused by heterozygous variants in *CHD7*356 (OMIM #608892), a member of the chromodomain helicase DNA-binding protein
357 family [164], which has a role as a transcription regulator of both nucleoplasmic and

nucleolar genes [165]. It has also been associated with heterozygous variants in
 SEMA3E (OMIM #608166) [166-168].

360 It follows a recognisable pattern of congenital anomalies - coloboma, heart 361 disease, choanal atresia, retarded growth and development, genital hypoplasia and ear abnormalities [169, 170]. Bilateral and asymmetric external ear malformations 362 are virtually present in all affected individuals, as well as deafness, which is usually 363 364 of mixed type [171]. Colobomas with or without microphthalmia may be seen in up to 90% of patients (Figure 3-C) [163, 172]. Colobomas are generally bilateral and may 365 366 affect the retina, choroid and optic disc and, more rarely, the iris [171, 173]. The 367 usual cause for significant decrease in visual acuity is the involvement of the macula in the coloboma. Other contributing features to vision loss include microcornea, 368 369 nystagmus, severe myopic astigmatism, anisometropia, cataracts and RD [173, 174]. 370

371 Alport syndrome

372 Alport syndrome (AS) is a genetically and clinically heterogenous disorder caused by 373 pathogenic variants in COL4A5 (OMIM #303630), COL4A3 (OMIM #120070) and 374 COL4A4 (OMIM #120131), and can be inherited in X-linked, AR (with digenic inheritance reported in COL4A3 and COL4A4) and rarely in AD fashion [175-178]. 375 376 These genes encode alpha chains of type IV collagen, the most common protein 377 found in basement membranes [179]. Affected patients typically develop 378 glomerulonephropathy and subsequent renal failure, with varying degrees of sensorineural hearing loss and a plethora of ocular findings - which include corneal 379 380 opacities, anterior lenticonus, earlier-onset cataracts and flecked retinopathy [175, 381 180]. Due to the severity of the renal impairment, early recognition of the syndrome 382 is essential as angiotensin-converting enzyme inhibitors and angiotensin receptor

blockers have been shown to be safe and efficient in reducing proteinuria, delaying
renal failure and improving life expectancy [181-184].

Other reported retinal findings include a dull macular reflex, bull's eye 385 386 maculopathy, temporal macular thinning, foveal hypoplasia and the formation of macular holes [185-188]. FAF may reveal a pattern of splotchy AF in the mid-387 388 periphery in the absence of peripheral retinopathy [186]. Recent reports of OCT and 389 OCT-angiography in affected individuals showed a foveal phenotype that ranges 390 from foveal hypoplasia and absence of foveal avascular zone, to an increase in the 391 foveal avascular zone and a 'stair-case' foveal sign [176, 187, 189]. A cross-392 sectional study investigating the characteristics of the choroid in 33 patients with AS, 393 found that the choriocapillaris flow deficit was higher in individuals with a history of 394 kidney transplant (p= 0.006), suggesting a more severe choriocapillaris impairment 395 in patients with severe kidney disease that require transplantation [190]. Due to 396 potential abnormalities in the vitreoretinal interface, macular hole repair surgery may 397 be challenging, but can lead to successful closure and may benefit selected patients 398 [186, 191, 192].

399

400 DISCUSSION AND FUTURE DIRECTION

Several inherited disorders have been described that share impairment of both vision and hearing, a condition known as dual-sensory impairment or DSI. Individuals with impairment in one sensory organ tend to use the functioning organ to compensate in their daily functioning; however, having impairment of both sensory organs can have significant, and often synergistic, detrimental effects on patient's quality of life and physical functioning [193]. This has been shown in older adults where sensory impairment is typically insidious, which may give patients time to adapt. Sensory

408 impairment in inherited disorders typically onsets shortly after birth and is usually 409 profound in early life, as has been described for most disorders above. This can 410 result in even further detrimental effect of DSI on functioning and quality of life in 411 young patients; however, this has not been studied yet. Studies are needed to better 412 understand the effect of DSI on functioning in inherited disorders. Another important consideration is the need for specialised multi-disciplinary care in most of the 413 414 conditions mentioned in this manuscript. The diagnosis of these diseases may have important systemic consequences, for which critical further workup may be required. 415 416 Moreover, although hearing loss and retinal abnormalities are common findings 417 amongst the diseases described herein, these are very distinct conditions. There is 418 usually a constellation of other findings which, when combined, suggest a specific disorder. Hearing loss and pigmentary retinopathy with concomitant lack or 419 420 decreased skin pigmentation and blonde fundi, for instance, would suggest an auditory-pigmentary syndrome; whereas, maternally inherited traits suggest 421 422 mitochondrial disorders, and the presence of osteoarthritis, cardiac abnormalities 423 and Pierre-Robin sequence may imply Stickler syndrome. Table 2 summarises the 424 main defining characteristics of each syndrome, which may guide clinicians to help establish the diagnosis, and also perform and interpret molecular testing. In addition 425 426 to differentiating the clinical phenotypes of the various genetic conditions included in 427 this review, the clinician should be mindful of other non-genetic conditions that can 428 mimic these presentations, such as congenital rubella syndrome, and rule these out before diagnosing a genetic cause of DSI. Despite the broad availability of genetic 429 430 testing, patients with DSI should be referred to specialist tertiary centers, in 431 conjunction with genetic counselling, for comprehensive clinical evaluation and

432 interpretation of genetics results, also given the possible systemic implications,

433 which may even be life-threatening.

As our knowledge in genetic medicine increases, new diseases featuring DSI will be identified, and novel genes will be mapped, which will ultimately increase our understanding to better assist patients in which the molecular diagnosis currently remains unclear. An accurate diagnosis at the earliest opportunity and better understanding of disease natural history are key for providing informed advice on prognosis and genetic counselling, as well as for the development of novel therapeutics and improving the quality of life in affected individuals.

442	Financial Support: Supported by grants from The Wellcome Trust (099173/Z/12/Z).
443	
444	Declaration of interest: The authors alone are responsible for the content and
445	writing of this article.
446	
447	Contributors: TACG, EA, AFS, MG reviewed the literature, drafted the manuscript
448	and provided critical revision. MM conceived, supervised, and revised the manuscript.
449	

450

451 **REFERENCES**

- Swenor BK, Ramulu PY, Willis JR, Friedman D, Lin FR: The prevalence of
 concurrent hearing and vision impairment in the United States. JAMA Intern
 Med 2013, 173(4):312-313.
- 455 2. Jaiswal A, Aldersey H, Wittich W, Mirza M, Finlayson M: Participation experiences
 456 of people with deafblindness or dual sensory loss: A scoping review of global
 457 deafblind literature. *PLoS One* 2018, **13**(9):e0203772.
- 458 3. Shakarchi AF, Assi L, Ehrlich JR, Deal JA, Reed NS, Swenor BK: Dual Sensory
 459 Impairment and Perceived Everyday Discrimination in the United States. JAMA
 460 Ophthalmol 2020, 138(12):1227-1233.
- 461 4. Matsunaga T: Clinical genetics, practice, and research of deafblindness: From 462 uncollected experiences to the national registry in Japan. Auris Nasus Larynx 463 2021, 48(2):185-193.
- 464 5. Yazigi A, De Pecoulas AE, Vauloup-Fellous C, Grangeot-Keros L, Ayoubi JM, Picone
 465 O: Fetal and neonatal abnormalities due to congenital rubella syndrome: a
 466 review of literature. J Matern Fetal Neonatal Med 2017, 30(3):274-278.
- 467
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
- 469 7. Durtette C, Hachulla E, Resche-Rigon M, Papo T, Zénone T, Lioger B, Deligny C, 470 Lambert M, Landron C, Pouchot J *et al*: Cogan syndrome: Characteristics, 471 outcome and treatment in a French nationwide retrospective study and 472 literature review. *Autoimmun Rev* 2017, 16(12):1219-1223.
- 473 8. Egan RA: Diagnostic Criteria and Treatment Algorithm for Susac Syndrome. J
 474 Neuroophthalmol 2019, 39(1):60-67.
- 4759.Mathur P, Yang J: Usher syndrome: Hearing loss, retinal degeneration and476associated abnormalities. Biochim Biophys Acta 2015, 1852(3):406-420.
- Tsang SH, Aycinena ARP, Sharma T: Ciliopathy: Usher Syndrome. Adv Exp Med
 Biol 2018, 1085:167-170.
- Toms M, Pagarkar W, Moosajee M: Usher syndrome: clinical features, molecular
 genetics and advancing therapeutics. *Ther Adv Ophthalmol* 2020,
 12:2515841420952194.
- 482 12. Tsang SH, Aycinena ARP, Sharma T: Ciliopathy: Bardet-Biedl Syndrome. Adv
 483 Exp Med Biol 2018, 1085:171-174.
- 484 13. Forsythe E, Beales PL: **Bardet-Biedl syndrome**. *Eur J Hum Genet* 2013, **21**(1):8-13.
- 485
 485
 486
 486
 487
 45.
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
 487
- 488 syndrome: a review. J Paediatr Child Health 2014, **50**(7):504-511.
- Liu Y, Pan H, Wang J, Yao Q, Lin M, Ma B, Li J: Ophthalmological features and treatments in five cases of Waardenburg syndrome. *Exp Ther Med* 2020, 20(4):3072-3077.
- 492 17. Acke FR, Dhooge IJ, Malfait F, De Leenheer EM: Hearing impairment in Stickler
 493 syndrome: a systematic review. Orphanet J Rare Dis 2012, 7:84.
- 49418.Boothe M, Morris R, Robin N: Stickler Syndrome: A Review of Clinical495Manifestations and the Genetics Evaluation. J Pers Med 2020, 10(3).
- 496 19. Tsang SH, Aycinena ARP, Sharma T: Mitochondrial Disorder: Kearns-Sayre
 497 Syndrome. Adv Exp Med Biol 2018, 1085:161-162.
- 498 20. Smith SD, Kelley PM, Kenyon JB, Hoover D: Tietz syndrome
- 499 (hypopigmentation/deafness) caused by mutation of MITF. J Med Genet 2000,
 500 37(6):446-448.

501 21. Georgiou M. Fujinami K. Michaelides M: Inherited retinal diseases: Therapeutics. 502 clinical trials and end points-A review. Clin Exp Ophthalmol 2021, 49(3):270-288. 503 Botto C, Rucli M, Tekinsoy MD, Pulman J, Sahel JA, Dalkara D: Early and late 22. 504 stage gene therapy interventions for inherited retinal degenerations. Prog Retin 505 Eye Res 2022, 86:100975. Nuzbrokh Y, Ragi SD, Tsang SH: Gene therapy for inherited retinal diseases. Ann 506 23. 507 *Transl Med* 2021, **9**(15):1278. 508 Christensen ST, Ott CM: Cell signaling. A ciliary signaling switch. Science 2007, 24. 509 **317**(5836):330-331. 510 Goetz SC, Anderson KV: The primary cilium: a signalling centre during 25. 511 vertebrate development. Nat Rev Genet 2010, 11(5):331-344. 512 26. Colombo L, Maltese PE, Castori M, El Shamieh S, Zeitz C, Audo I, Zulian A, Marinelli 513 C, Benedetti S, Costantini A et al: Molecular Epidemiology in 591 Italian 514 Probands With Nonsyndromic Retinitis Pigmentosa and Usher Syndrome. Invest Ophthalmol Vis Sci 2021, 62(2):13. 515 516 Malm E, Ponjavic V, Möller C, Kimberling WJ, Andréasson S: Phenotypes in 27. 517 defined genotypes including siblings with Usher syndrome. Ophthalmic Genet 518 2011, **32**(2):65-74. 519 28. Blanco-Kelly F, Jaijo T, Aller E, Avila-Fernandez A, López-Molina MI, Giménez A, 520 García-Sandoval B, Millán JM, Ayuso C: Clinical aspects of Usher syndrome and 521 the USH2A gene in a cohort of 433 patients. JAMA Ophthalmol 2015, 133(2):157-522 164. 523 29. Dad S, Rendtorff ND, Tranebjærg L, Grønskov K, Karstensen HG, Brox V, Nilssen Ø, 524 Roux AF, Rosenberg T, Jensen H et al: Usher syndrome in Denmark: mutation 525 spectrum and some clinical observations. Mol Genet Genomic Med 2016, 526 4(5):527-539. 527 30. Yan D, Liu XZ: Genetics and pathological mechanisms of Usher syndrome. J 528 Hum Genet 2010, 55(6):327-335. 529 Koenekoop RK, Arriaga MA, Trzupek KM, Lentz JJ: Usher Syndrome Type I. In: 31. 530 GeneReviews(®). edn. Edited by Adam MP, Ardinger HH, Pagon RA, Wallace SE, 531 Bean LJH, Mirzaa G, Amemiya A. Seattle (WA): University of Washington, Seattle 532 Copyright © 1993-2021, University of Washington, Seattle. GeneReviews is a registered 533 trademark of the University of Washington, Seattle. All rights reserved.; 1993. 534 Jaijo T, Aller E, Beneyto M, Najera C, Graziano C, Turchetti D, Seri M, Ayuso C, 32. 535 Baiget M, Moreno F et al: MYO7A mutation screening in Usher syndrome type I patients from diverse origins. J Med Genet 2007, 44(3):e71. 536 537 Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, 33. 538 Levilliers J, Weston MD et al: Defective myosin VIIA gene responsible for Usher 539 syndrome type 1B. Nature 1995, 374(6517):60-61. 540 Ahmed ZM, Riazuddin S, Riazuddin S, Wilcox ER: The molecular genetics of 34. 541 Usher syndrome. Clin Genet 2003, 63(6):431-444. 542 35. Jaijo T, Aller E, Oltra S, Benevto M, Nájera C, Avuso C, Baiget M, Carballo M, 543 Antiñolo G, Valverde D et al: Mutation profile of the MYO7A gene in Spanish 544 patients with Usher syndrome type I. Hum Mutat 2006, 27(3):290-291. 545 Roux AF, Faugère V, Le Guédard S, Pallares-Ruiz N, Vielle A, Chambert S, Marlin S, 36. 546 Hamel C, Gilbert B, Malcolm S et al: Survey of the frequency of USH1 gene 547 mutations in a cohort of Usher patients shows the importance of cadherin 23 548 and protocadherin 15 genes and establishes a detection rate of above 90%. J 549 Med Genet 2006, 43(9):763-768. 550 37. Ouvang XM, Yan D, Du LL, Heitmancik JF, Jacobson SG, Nance WE, Li AR, Angeli S, Kaiser M, Newton V et al: Characterization of Usher syndrome type I gene 551 552 mutations in an Usher syndrome patient population. Hum Genet 2005, 553 **116**(4):292-299. Riazuddin S, Belyantseva IA, Giese AP, Lee K, Indzhykulian AA, Nandamuri SP, 554 38. 555 Yousaf R, Sinha GP, Lee S, Terrell D et al: Alterations of the CIB2 calcium- and

556 557		integrin-binding protein cause Usher syndrome type 1J and nonsyndromic
559	20	Death KT, Kabrizi K, Bahanaiad M, Daghagh H, Badamai C, Arzhangi S
550	39.	Zerechdellehi D. Dumen D. El Amregui A. Tekin M et al Variante in CIP2 eque
559		DENDA9 and not USH4 L Clin Const 2019, 02(4):012,021
500 561	40	DENE48 and not USETJ. CIII Gener 2018, 93(4):812-821.
501	40.	Magilulo G, Tannella G, Gagilardi S, Tozzo N, Plateroli R, Manoluni A, Torncelli F:
562		Usher's Syndrome Type II: A Comparative Study of Genetic Mutations and
563		Vestibular System Evaluation. Otolaryngol Head Neck Surg 2017, 157(5):853-860.
564	41.	Eudy JD, Weston MD, Yao S, Hoover DM, Renm HL, Ma-Edmonds M, Yan D,
565		Ahmad I, Cheng JJ, Ayuso C et al: Mutation of a gene encoding a protein with
566		extracellular matrix motifs in Usher syndrome type IIa. Science 1998,
567		280 (5370):1753-1757.
568	42.	Le Quesne Stabej P, Saihan Z, Rangesh N, Steele-Stallard HB, Ambrose J, Coffey
569		A, Emmerson J, Haralambous E, Hughes Y, Steel KP et al: Comprehensive
570		sequence analysis of nine Usher syndrome genes in the UK National
571		Collaborative Usher Study. J Med Genet 2012, 49(1):27-36.
572	43.	Ouyang XM, Hejtmancik JF, Jacobson SG, Li AR, Du LL, Angeli S, Kaiser M,
573		Balkany T, Liu XZ: Mutational spectrum in Usher syndrome type II. Clin Genet
574		2004, 65 (4):288-293.
575	44.	Dreyer B, Tranebjaerg L, Brox V, Rosenberg T, Möller C, Beneyto M, Weston MD,
576		Kimberling WJ, Cremers CW, Liu XZ et al: A common ancestral origin of the
577		frequent and widespread 2299delG USH2A mutation. Am J Hum Genet 2001,
578		69 (1):228-234.
579	45.	Aller E, Jaijo T, Oltra S, Alió J, Galán F, Nájera C, Beneyto M, Millán JM: Mutation
580		screening of USH3 gene (clarin-1) in Spanish patients with Usher syndrome:
581		low prevalence and phenotypic variability. <i>Clin Genet</i> 2004, 66 (6):525-529.
582	46.	El-Amraoui A, Petit C: The retinal phenotype of Usher syndrome:
583		pathophysiological insights from animal models. C R Biol 2014, 337(3):167-177.
584	47.	Pakarinen L, Tuppurainen K, Laippala P, Mäntyjärvi M, Puhakka H: The
585		ophthalmological course of Usher syndrome type III. Int Ophthalmol 1995,
586		19 (5):307-311.
587	48.	Karjalainen S, Teräsvirta M, Kärjä J, Kääriäinen H: An unusual otological
588		manifestation of Usher's syndrome in four siblings. Clin Genet 1983, 24(4):273-
589	10	
590	49.	Ness SL, Ben-Yosef T, Bar-Lev A, Madeo AC, Brewer CC, Avraham KB, Kornreich
591		R, Desnick RJ, Willner JP, Friedman TB et al: Genetic homogeneity and
592		phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J
593	50	Med Genet 2003, 40 (10):767-772.
594 595	50.	Sankila EM, Pakarinen L, Kaariainen H, Aittomaki K, Karjalainen S, Sistonen P, de la
595		Chapelle A: Assignment of an Usher syndrome type III (USH3) gene to
596	- 4	chromosome 3q. Hum Mol Genet 1995, 4(1):93-98.
597	51.	Joensuu I, Hamalainen R, Yuan B, Johnson C, Tegelberg S, Gasparini P, Zelante L,
598		Pirvola U, Pakarinen L, Lehesjoki AE et al: Mutations in a novel gene with
599		transmembrane domains underlie Usher syndrome type 3. Am J Hum Genet
600		2001, 69 (4):673-684.
601	52.	Adato A, Vreugde S, Joensuu T, Avidan N, Hamalainen R, Belenkiy O, Olender T,
602		Bonne-Tamir B, Ben-Asher E, Espinos C et al: USH3A transcripts encode clarin-1,
603		a four-transmembrane-domain protein with a possible role in sensory
604	50	synapses. Eur J Hum Genet 2002, 10(6):339-350.
605	53.	Purrenberger EG, JINKS KIN, Sougnez C, Cibulskis K, Willert RA, Achilly NP, Cassidy
000 607		KP, Florentini CJ, Helken KF, Lawrence JJ <i>et al</i> . Genetic mapping and exome
0U/		sequencing identity variants associated with five novel diseases. PLoS One
000		

609	54.	DiStefano MT, Hemphill SE, Oza AM, Siegert RK, Grant AR, Hughes MY, Cushman
610		BJ, Azaiez H, Booth KT, Chapin A et al: ClinGen expert clinical validity curation
611		of 164 hearing loss gene-disease pairs. Genet Med 2019, 21(10):2239-2247.
612	55.	Peter VG, Quinodoz M, Sadio S, Held S, Rodrigues M, Soares M, Sousa AB,
613		Coutinho Santos L, Damme M, Rivolta C: New clinical and molecular evidence
614		linking mutations in ARSG to Usher syndrome type IV. Hum Mutat 2021,
615		42 (3):261-271.
616	56.	Igelman AD, Ku C, da Palma MM, Georgiou M, Schiff ER, Lam BL, Sankila EM, Ahn
617		J, Pyers L, Vincent A et al: Expanding the clinical phenotype in patients with
618		disease causing variants associated with atypical Usher syndrome. Ophthalmic
619		Genet 2021, 42 (6):664-673.
620	57.	Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, Obolensky A,
621		Ben-Yosef T, Gross M, Dierks T et al: A homozygous founder missense variant in
622		arylsulfatase G abolishes its enzymatic activity causing atypical Usher
623		syndrome in humans. Genet Med 2018, 20(9):1004-1012.
624	58.	Fowler NH, El-Rashedy MI, Chishti EA, Vander Kooi CW, Maldonado RS:
625		Multimodal imaging and genetic findings in a case of ARSG-related atypical
626		Usher syndrome. Ophthalmic Genet 2021, 42(3):338-343.
627	59.	Abad-Morales V. Navarro R. Burés-Jelstrup A. Pomares E: Identification of a novel
628		homozygous ARSG mutation as the second cause of Usher syndrome type 4.
629		Am J Ophthalmol Case Rep 2020. 19 :100736.
630	60.	Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA: New criteria for improved
631		diagnosis of Bardet-Biedl syndrome: results of a population survey <i>J Med</i>
632		Genet 1999 36 (6):437-446
633	61	Muller J. Stoetzel C. Vincent MC. Leitch CC. Laurier V. Danse JM. Hellé S. Marion V.
634	01.	Bennouna-Greene V. Vicaire S <i>et al</i> : Identification of 28 novel mutations in the
635		Bardet-Biedl syndrome genes: the burden of private mutations in an
636		extensively heterogeneous disease. Hum Genet 2010. 127(5):583-593
637	62	Katsanis N, Ansley SJ, Badano JL, Fichers FR, Lewis RA, Hoskins BF, Scambler PJ,
638	•=-	Davidson WS, Beales PL, Lupski JR: Triallelic inheritance in Bardet-Biedl
639		syndrome, a Mendelian recessive disorder. Science 2001 293(5538):2256-2259
640	63	Deveault C. Billingslev G. Duncan, II. Bin, J. Theal R. Vincent A. Fieggen K.I. Gerth
641	00.	C. Noordeh N. Traboulsi El <i>et al</i> : BBS genotype-phenotype assessment of a
642		multiethnic patient cohort calls for a revision of the disease definition Hum
643		Mutat 2011 32 (6):610-619
644	64	Levs M L Schreiner LA Hansen RM Mayer DL Fulton AB: Visual acuities and
645	04.	dark-adapted thresholds of children with Bardet-Biedl syndrome $\Delta m J$
646		Ophthalmol 1988 106 (5):561-569
647	65	Mockel A Perdomo Y Stutzmann F Letsch J Marion V Dollfus H: Retinal
648	00.	dystronby in Bardet-Biedl syndrome and related syndromic cilionathies <i>Prog</i>
649		Retin Eve Res 2011 30 (A):258-274
650	66	Azari AA Aleman TS Cidecivan AV Schwartz SB Windsor FA Sumaroka A
651	00.	Cheung AV Steinberg ID Roman AI Stone EM et al: Retinal disease expression
652		in Bardet-Biedl syndrome-1 (BBS1) is a spectrum from maculonathy to retina-
653		wide degeneration Invest Ophthalmol Vis Sci 2006 47 (11):5004-5010
65 <i>1</i>	67	Pijso P. Andrázsson S. Torngvist K: Full-field electrorotinograms in individuals
655	07.	with the Laurence-Mood-Bardet-Biedl syndrome. Acta Ophthalmol Scand 1006
656		
657	68	Tao T. Wang L. Chong W. Vang L. Li G. Characteristics of genetyne and
658	00.	nbanatype in Chinese nations with Bardet-Biedl syndrome. Int Onbthalmal
650		phenotype in onlinese patients with baldet-bled syndrome. In Ophinalmol $2020 \text{ A}(0) \cdot 2325 \cdot 2343$
660	60	Luzu, Tu(J).Luzu-Lutu. Hiartehai TD, Granekay K, Phila AP, Nichimura DV, Piica P, Shaffiald V/C
661	09.	Resenter T Brandum-Nielsen K. Bardet-Riedl sundrome in Denmark-report of
667		13 novel sequence variations in six genes. Hum Mutet 2010. 21(A):420.426
002		To novel sequence variations in six yenes. Thus mutat 2010, \mathbf{J} 1(4).423-430.

663 70. Daniels AB, Sandberg MA, Chen J, Weigel-DiFranco C, Fielding Heitmancic J, 664 Berson EL: Genotype-phenotype correlations in Bardet-Biedl syndrome. Arch 665 Ophthalmol 2012, **130**(7):901-907. 666 71. Castro-Sánchez S, Álvarez-Satta M, Cortón M, Guillén E, Ayuso C, Valverde D: Exploring genotype-phenotype relationships in Bardet-Biedl syndrome 667 668 families. J Med Genet 2015, 52(8):503-513. 669 Forsythe E, Sparks K, Hoskins BE, Bagkeris E, McGowan BM, Carroll PV, Huda MS, 72. 670 Mujahid S, Peters C, Barrett T et al: Genetic predictors of cardiovascular 671 morbidity in Bardet-Biedl syndrome. Clin Genet 2015, 87(4):343-349. Héon E, Westall C, Carmi R, Elbedour K, Panton C, Mackeen L, Stone EM, Sheffield 672 73. VC: Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am 673 674 J Med Genet A 2005, 132a(3):283-287. Riise R, Tornqvist K, Wright AF, Mykytyn K, Sheffield VC: The phenotype in 675 74. 676 Norwegian patients with Bardet-Biedl syndrome with mutations in the BBS4 677 gene. Arch Ophthalmol 2002, **120**(10):1364-1367. 678 Imhoff O, Marion V, Stoetzel C, Durand M, Holder M, Sigaudy S, Sarda P, Hamel 75. CP. Brandt C. Dollfus H et al: Bardet-Biedl syndrome: a study of the renal and 679 cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol 2011, 680 681 **6**(1):22-29. 682 76. Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar 683 M, Lancelot ME, Antonio A, Lonjou C et al: Mutations in IFT172 cause isolated 684 retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet 2015, 685 **24**(1):230-242. Weihbrecht K, Goar WA, Pak T, Garrison JE, DeLuca AP, Stone EM, Scheetz TE, 686 77. 687 Sheffield VC: Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. Med Res Arch 688 689 2017, **5**(9). 690 78. M'Hamdi O, Ouertani I, Chaabouni-Bouhamed H: Update on the genetics of 691 bardet-biedl syndrome. Mol Syndromol 2014, 5(2):51-56. 692 Priya S, Nampoothiri S, Sen P, Sripriya S: Bardet-Biedl syndrome: Genetics, 79. 693 molecular pathophysiology, and disease management. Indian J Ophthalmol 694 2016, 64(9):620-627. 695 80. Marshall JD, Hinman EG, Collin GB, Beck S, Cerqueira R, Maffei P, Milan G, Zhang 696 W, Wilson DI, Hearn T et al: Spectrum of ALMS1 variants and evaluation of 697 genotype-phenotype correlations in Alström syndrome. Hum Mutat 2007, 698 **28**(11):1114-1123. 699 Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, 81. 700 Miller NA, Favaretto F, Maffei P et al: Alström Syndrome: Mutation Spectrum of 701 ALMS1. Hum Mutat 2015, 36(7):660-668. 702 Marshall JD, Maffei P, Collin GB, Naggert JK: Alström syndrome: genetics and 82. 703 clinical overview. Curr Genomics 2011, 12(3):225-235. 704 Knorz VJ, Spalluto C, Lessard M, Purvis TL, Adigun FF, Collin GB, Hanley NA, 83. 705 Wilson DI, Hearn T: Centriolar association of ALMS1 and likely centrosomal 706 functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol 707 Biol Cell 2010, 21(21):3617-3629. 708 Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eqgitt I, Maffei P, Beck S, Boerkoel 84. 709 CF, Sicolo N, Martin M et al: Mutations in ALMS1 cause obesity, type 2 diabetes 710 and neurosensory degeneration in Alström syndrome. Nat Genet 2002, 31(1):74-711 78. 712 85. Hearn T, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S, White C, Connolly V, Taylor JF, Russell-Eggitt I et al: Mutation of ALMS1, a large gene with 713 714 a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat 715 Genet 2002, **31**(1):79-83. Jagger D, Collin G, Kelly J, Towers E, Nevill G, Longo-Guess C, Benson J, Halsey K, 716 86. 717 Dolan D, Marshall J et al: Alström Syndrome protein ALMS1 localizes to basal

718		bodies of cochlear hair cells and regulates cilium-dependent planar cell
719		polarity. <i>Hum Mol Genet</i> 2011, 20 (3):466-481.
720	87.	Paisey RB, Steeds R, Barrett T, Williams D, Geberhiwot T, Gunay-Aygun M: Alström
721		Syndrome . In: <i>GeneReviews(®).</i> edn. Edited by Adam MP, Ardinger HH, Pagon RA,
722		Wallace SE, Bean LJH, Mirzaa G, Amemiya A. Seattle (WA): University of
723		Washington, Seattle
724	Copyri	ght © 1993-2021, University of Washington, Seattle. GeneReviews is a registered
725		trademark of the University of Washington, Seattle. All rights reserved.; 1993.
726	88.	Nasser F, Weisschuh N, Maffei P, Milan G, Heller C, Zrenner E, Kohl S, Kuehlewein
727		L: Ophthalmic features of cone-rod dystrophy caused by pathogenic variants in
728		the ALMS1 gene. Acta Ophthalmol 2018, 96(4):e445-e454.
729	89.	Russell-Eggitt IM, Clayton PT, Coffey R, Kriss A, Taylor DS, Taylor JF: Alström
730		syndrome. Report of 22 cases and literature review. Ophthalmology 1998,
731		105 (7):1274-1280.
732	90.	Dotan G, Khetan V, Marshall JD, Affel E, Armiger-George D, Naggert JK, Collin GB,
733		Levin AV: Spectral-domain optical coherence tomography findings in Alstrom
734	0.4	syndrome. Ophthalmic Genet 2017, 38(5):440-445.
/35	91.	Maim E, Ponjavic V, Nishina PM, Naggert JK, Hinman EG, Andreasson S, Marshall
/36		JD, Moller C: Full-field electroretinography and marked variability in clinical
131	00	phenotype of Alstrom Syndrome . Arch Ophthalmol 2008, 126 (1):51-57.
/38	92.	Hetz W: A syndrome of deat-mutism associated with albinism showing
739	02	Commant autosomai innentance. Am J Hum Genet 1963, 15(3).239-264.
740	93.	Fuse N, Fasumoto K, Takeda K, Amae S, Fosnizawa M, Odono T, Takanashi K,
741		nevel microphthalmia accession d transprintion factor is oform with a distinct
742 772		amino-torminus / <i>Biochom</i> 1000, 126 (6):10/12 1051
743	04	Tachibana M: MITE: a stream flowing for nigmont colls. <i>Diamont Coll Pos</i> 2000
744	34.	13 (<i>A</i>)·230-240
746	95	Tassabebii M. Newton VF. Read AP [.] Waardenburg syndrome type 2 caused by
747	00.	mutations in the human microphthalmia (MITE) gene Nat Genet 1994 8(3):251-
748		255.
749	96.	Tassabehii M. Newton VE. Liu XZ. Brady A. Donnai D. Kraiewska-Walasek M.
750		Murday V, Norman A, Obersztyn E, Reardon W et al: The mutational spectrum in
751		Waardenburg syndrome. Hum Mol Genet 1995, 4(11):2131-2137.
752	97.	George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM, Rice GM,
753		Scott Schwoerer JA, Rius M, Tetri L et al: Biallelic Mutations in MITF Cause
754		Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and
755		Deafness. Am J Hum Genet 2016, 99(6):1388-1394.
756	98.	Read AP, Newton VE: Waardenburg syndrome. J Med Genet 1997, 34(8):656-665.
757	99.	Izumi K, Kohta T, Kimura Y, Ishida S, Takahashi T, Ishiko A, Kosaki K: Tietz
758		syndrome: unique phenotype specific to mutations of MITF nuclear localization
759		signal. <i>Clin Genet</i> 2008, 74 (1):93-95.
760	100.	Amiel J, Watkin PM, Tassabehji M, Read AP, Winter RM: Mutation of the MITF
761		gene in albinism-deafness syndrome (Tietz syndrome). Clin Dysmorphol 1998,
762		7 (1):17-20.
763	101.	Waardenburg PJ: A new syndrome combining developmental anomalies of the
764		eyelids, eyebrows and nose root with pigmentary defects of the iris and head
765		hair and with congenital deafness. Am J Hum Genet 1951, 3(3):195-253.
766	102.	Wollnik B, Tukel T, Uyguner O, Ghanbari A, Kayserili H, Emiroglu M, Yuksel-Apak M:
767		Homozygous and heterozygous inheritance of PAX3 mutations causes
/68		different types of Waardenburg syndrome. Am J Med Genet A 2003, 122a (1):42-
/69	100	45. Dimenuity / Ente D. Deptet Le Maril E. Conserve M. Marilia O. Depter during d. N. D. J.
//0	103.	Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N: Review
111		and update of mutations causing waardenburg syndrome. Hum Mutat 2010,
112		31 (4).391-400.

773 104. Newton V: Hearing loss and Waardenburg's syndrome: implications for genetic 774 counselling. J Laryngol Otol 1990, 104(2):97-103. 775 Hageman MJ, Delleman JW: Heterogeneity in Waardenburg syndrome. Am J 105. 776 Hum Genet 1977, 29(5):468-485. Goldberg MF: Waardenburg's syndrome with fundus and other anomalies. Arch 777 106. 778 *Ophthalmol* 1966, **76**(6):797-810. 779 Choudhry N, Rao RC: Multimodal Ultrawide-Field Imaging Features in 107. 780 Waardenburg Syndrome. Ophthalmic Surg Lasers Imaging Retina 2015, 46(6):670-781 673. 782 108. Rishi P, Multani P, Prasan VV, Rishi E, Attiku Y: Choroidal thickness in 783 Waardenburg syndrome. GMS Ophthalmol Cases 2019, 9:Doc22. 784 109. Kearns TP, Sayre GP: Retinitis pigmentosa, external ophthalmophegia, and 785 complete heart block: unusual syndrome with histologic study in one of two 786 cases. AMA Arch Ophthalmol 1958, 60(2):280-289. 787 110. Kearns TP: External Ophthalmoplegia, Pigmentary Degeneration of the Retina, 788 and Cardiomyopathy: A Newly Recognized Syndrome. Trans Am Ophthalmol 789 Soc 1965. 63:559-625. 790 111. Orsini M, Carolina A, Ferreira AF, de Assis ACD, Magalhães T, Teixeira S, Bastos 791 VH, Marinho V, Oliveira T, Fiorelli R et al: Cognitive impairment in neuromuscular 792 diseases: A systematic review. Neurol Int 2018, 10(2):7473. 793 112. Finsterer J: Cognitive dysfunction in mitochondrial disorders. Acta Neurol Scand 794 2012, 126(1):1-11. 795 113. Guo L. Wang X. Ji H: Clinical Phenotype and Genetic Features of a Pair of 796 Chinese Twins with Kearns-Sayre Syndrome. DNA Cell Biol 2020, 39(8):1449-797 1457. 798 114. Kokotas H, Petersen MB, Willems PJ: Mitochondrial deafness. Clin Genet 2007, 799 **71**(5):379-391. 800 115. Kornblum C, Broicher R, Walther E, Herberhold S, Klockgether T, Herberhold C, 801 Schröder R: Sensorineural hearing loss in patients with chronic progressive 802 external ophthalmoplegia or Kearns-Sayre syndrome. J Neurol 2005, 803 **252**(9):1101-1107. 804 Khambatta S, Nguyen DL, Beckman TJ, Wittich CM: Kearns-Sayre syndrome: a 116. 805 case series of 35 adults and children. Int J Gen Med 2014, 7:325-332. 806 Padhy SK, Kumar V, Mandal S: Pigmentary retinopathy in Kearns-Sayre 117. 807 syndrome. BMJ Case Rep 2018, 2018. Ascaso FJ, Lopez-Gallardo E, Del Prado E, Ruiz-Pesini E, Montova J: Macular 808 118. 809 lesion resembling adult-onset vitelliform macular dystrophy in Kearns-Sayre 810 syndrome with multiple mtDNA deletions. Clin Exp Ophthalmol 2010, 38(8):812-811 816. 812 Paulus YM, Wenick AS: DEVELOPMENT OF CHRONIC SUBRETINAL FLUID IN 119. 813 KEARNS-SAYRE SYNDROME. Retin Cases Brief Rep 2016, 10(3):236-238. 814 Chertkof J, Hufnagel RB, Blain D, Gropman AL, Brooks BP: Retinoschisis 120. 815 associated with Kearns-Sayre syndrome. Ophthalmic Genet 2020, 41(5):497-500. 816 121. Ortiz A, Arias J, Cárdenas P, Villamil J, Peralta M, Escaf LC, Ortiz J: Macular findings in Spectral Domain Optical Coherence Tomography and OCT 817 Angiography in a patient with Kearns-Sayre syndrome. Int J Retina Vitreous 818 819 2017, **3**:24. 820 de Las Rivas Ramírez N, Mañas Uxó C, Alba Linero C: Ocular involvement in 122. Kearns-Sayre syndrome. J Fr Ophtalmol 2021, 44(10):1633-1635. 821 822 123. Ohkoshi K, Ishida N, Yamaguchi T, Kanki K: Corneal endothelium in a case of 823 mitochondrial encephalomyopathy (Kearns-Sayre syndrome). Cornea 1989, 824 8(3):210-214. 825 124. Chang TS, Johns DR, Stark WJ, Drachman DB, Green WR: Corneal decompensation in mitochondrial ophthalmoplegia plus (Kearns-Sayre) 826 827 syndrome. A clinicopathologic case report. Cornea 1994, 13(3):269-273.

828 125. Kosmorsky GS, Meisler DM, Sheeler LR, Tomsak RL, Sweeney PJ, Mitsumoto H, 829 Macrae SM: Familial ophthalmoplegia-plus syndrome with corneal endothelial 830 disorder. Neuro-Ophthalmology 1989, 9(5):271-277. Colver MH, Bower KS, Ward TP, Hidavat AA, Subramanian PS: Mitochondrial 831 126. 832 myopathy presenting with segmental corneal oedema and retrocorneal 833 membrane. British Journal of Ophthalmology 2007, 91(5):696-697. 834 127. Reardon W, Ross RJ, Sweeney MG, Luxon LM, Pembrey ME, Harding AE, Trembath 835 RC: Diabetes mellitus associated with a pathogenic point mutation in 836 mitochondrial DNA. Lancet 1992, 340(8832):1376-1379. 837 128. Tsang SH, Aycinena ARP, Sharma T: Mitochondrial Disorder: Maternally 838 Inherited Diabetes and Deafness. Adv Exp Med Biol 2018, 1085:163-165. 839 129. Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H, Bertin E, Blickle JF, Bouhanick B, Cahen J et al: Maternally inherited diabetes and 840 841 deafness: a multicenter study. Ann Intern Med 2001, 134(9 Pt 1):721-728. 842 130. Michaelides M, Jenkins SA, Bamiou DE, Sweeney MG, Davis MB, Luxon L, Bird AC, 843 Rath PP: Macular dystrophy associated with the A3243G mitochondrial DNA mutation. Distinct retinal and associated features, disease variability, and 844 845 characterization of asymptomatic family members. Arch Ophthalmol 2008, 846 **126**(3):320-328. 847 131. Rath PP, Jenkins S, Michaelides M, Smith A, Sweeney MG, Davis MB, Fitzke FW, 848 Bird AC: Characterisation of the macular dystrophy in patients with the A3243G 849 mitochondrial DNA point mutation with fundus autofluorescence. Br J 850 Ophthalmol 2008, 92(5):623-629. 851 132. de Laat P, Smeitink JAM, Janssen MCH, Keunen JEE, Boon CJF: Mitochondrial 852 retinal dystrophy associated with the m.3243A>G mutation. Ophthalmology 853 2013, 120(12):2684-2696. 854 133. Müller PL, Maloca P, Webster A, Egan C, Tufail A: Structural Features Associated 855 With the Development and Progression of RORA Secondary to Maternally 856 Inherited Diabetes and Deafness. Am J Ophthalmol 2020, 218:136-147. 857 134. Baker S, Booth C, Fillman C, Shapiro M, Blair MP, Hyland JC, Ala-Kokko L: A loss 858 of function mutation in the COL9A2 gene causes autosomal recessive Stickler 859 syndrome. Am J Med Genet A 2011, 155a(7):1668-1672. 860 135. Stickler GB, Belau PG, Farrell FJ, Jones JD, Pugh DG, Steinberg AG, Ward LE: HEREDITARY PROGRESSIVE ARTHRO-OPHTHALMOPATHY. Mayo Clin Proc 861 862 1965, **40**:433-455. 863 136. Liberfarb RM, Goldblatt A: Prevalence of mitral-valve prolapse in the Stickler 864 syndrome. Am J Med Genet 1986, 24(3):387-392. 865 137. Ahmad N, Richards AJ, Murfett HC, Shapiro L, Scott JD, Yates JR, Norton J, Snead 866 MP: Prevalence of mitral valve prolapse in Stickler syndrome. Am J Med Genet 867 A 2003, 116a(3):234-237. 868 138. Snead MP, Yates JR: Clinical and Molecular genetics of Stickler syndrome. J Med Genet 1999, 36(5):353-359. 869 870 Stickler GB, Hughes W, Houchin P: Clinical features of hereditary progressive 139. 871 arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med 2001, 872 **3**(3):192-196. Seery CM, Pruett RC, Liberfarb RM, Cohen BZ: Distinctive cataract in the Stickler 873 140. 874 syndrome. Am J Ophthalmol 1990, 110(2):143-148. 875 Richards AJ, Baguley DM, Yates JR, Lane C, Nicol M, Harper PS, Scott JD, Snead 141. MP: Variation in the vitreous phenotype of Stickler syndrome can be caused by 876 877 different amino acid substitutions in the X position of the type II collagen Gly-878 X-Y triple helix. Am J Hum Genet 2000, 67(5):1083-1094. 879 142. McLeod D, Black GC, Bishop PN: Vitreous phenotype: genotype correlation in 880 Stickler syndrome. Graefes Arch Clin Exp Ophthalmol 2002, 240(1):63-65; author 881 reply 66.

882	143.	Parentin F, Sangalli A, Mottes M, Perissutti P: Stickler syndrome and vitreoretinal
883		degeneration: correlation between locus mutation and vitreous phenotype.
884		Apropos of a case. Graefes Arch Clin Exp Ophthalmol 2001, 239(4):316-319.
885	144	Ang A. Poulson AV. Goodburn SF. Richards AJ. Scott JD. Snead MP. Retinal
886		detachment and prophylaxis in type 1 Stickler syndrome. Ophthalmology 2008
887		115 (1)·164-168
888	1/5	Boyson KB La Cour M Kassel L: Ocular complications and prophylactic
880	145.	strategies in Stickler syndrome: a systematic literature review. On the literature
009 000		Const 2020 44(2):222 224
090 201	146	Choi SI Waa SI Oh PI Han I Lim HT Laa RI Jaa K Dark IV Jang IH Sa MK at
071	140.	chorosi, woo SJ, Oli BL, Hall J, Lilli III, Lee BJ, Joo K, Park JT, Jang JH, So Wik et
092 902		al. Genetic Characteristics and Frenotype of Rolean Fallents with Stickler Sundromet & Koroon Multicenter Analysis Benert No. 1. Conco (Popol) 2021
093 004		3 2/10)
894 805	117	IZ(10). Finaham CS, Daaga L, Carroll C, Mallingh AM, Daulagn AV, Diaharda A L, Saatt ID
893 806	147.	Fincham GS, Pasea L, Cartoli C, Michinch Alvi, Poulson AV, Richards AJ, Scoll JD,
890		Shead MP: Prevention of retinal detachment in Stickler Syndrome: the
897		Cambridge prophylactic cryotherapy protocol. Ophthalmology 2014,
898	4.40	121(8):1588-1597. Directed alli C. Dessi T. Dessi FD. Cessers M. Chima M. The Drephylavia of Follow.
899	148.	Ripandelli G, Rossi T, Pesci FR, Cecere M, Stirpe M: The Prophylaxis of Fellow-
900		Eye Retinal Detachment in Stickler Syndrome. A Retrospective Series. Retina
901		
902	149.	Lee AC, Greaves GH, Rosenblatt BJ, Deramo VA, Shakin EP, Fastenberg DM,
903		Ferrone PJ: Long-Term Follow-Up of Retinal Detachment Repair in Patients
904		With Stickler Syndrome. Ophthalmic Surg Lasers Imaging Retina 2020, 51(11):612-
905		616.
906	150.	Berger W, Meindl A, van de Pol TJ, Cremers FP, Ropers HH, Döerner C, Monaco A,
907		Bergen AA, Lebo R, Warburg M et al: Isolation of a candidate gene for Norrie
908		disease by positional cloning. Nat Genet 1992, 1(3):199-203.
909	151.	Wolff G, Mayerova A, Wienker TF, Atalianis P, Ioannou P, Warburg M: Clinical
910		reinvestigation and linkage analysis in the family with Episkopi blindness
911		(Norrie disease). J Med Genet 1992, 29 (11):816-819.
912	152.	De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC,
913		Moore AT, Michaelides M, Webster AR et al: The X-linked retinopathies:
914		Physiological insights, pathogenic mechanisms, phenotypic features and
915		novel therapies. Prog Retin Eye Res 2021, 82:100898.
916	153.	Andersen SR, Warburg M: Norrie's disease: congenital bilateral pseudotumor of
917		the retina with recessive X-chromosomal inheritance; preliminary report. Arch
918		<i>Ophthalmol</i> 1961, 66 :614-618.
919	154.	Warburg M: NORRIE'S DISEASE. Acta Ophthalmologica 1961, 39(5):757-772.
920	155.	Smith SE, Mullen TE, Graham D, Sims KB, Rehm HL: Norrie disease: extraocular
921		clinical manifestations in 56 patients. Am J Med Genet A 2012, 158a(8):1909-
922		1917.
923	156.	Michaelides M, Luthert PJ, Cooling R, Firth H, Moore AT: Norrie disease and
924		peripheral venous insufficiency. Br J Ophthalmol 2004, 88(11):1475.
925	157.	Halpin C, Owen G, Gutiérrez-Espeleta GA, Sims K, Rehm HL: Audiologic features
926		of Norrie disease. Ann Otol Rhinol Laryngol 2005, 114(7):533-538.
927	158.	Sowden JC, Kros CJ, Sirimanna T, Pagarkar W, Oluonye N, Henderson RH: Impact
928		of sight and hearing loss in patients with Norrie disease: advantages of Dual
929		Sensory clinics in patient care. BMJ Paediatr Open 2020, 4(1):e000781.
930	159.	Allen RC, Russell SR, Streb LM, Alsheikheh A, Stone EM: Phenotypic
931		heterogeneity associated with a novel mutation (Gly112Glu) in the Norrie
932		disease protein. Eye (Lond) 2006, 20(2):234-241.
933	160.	Warburg M: NORRIE'S DISEASE (ATROFIA BULBORUM HEREDITARIA). Acta
934		Ophthalmologica 1963, 41 (2):134-146.
935	161.	Walsh MK, Drenser KA, Capone A, Jr., Trese MT: Early vitrectomy effective for
936		Norrie disease. Arch Ophthalmol 2010, 128 (4):456-460.

937	162.	Pagon RA, Graham JM, Jr., Zonana J, Yong SL: Coloboma, congenital heart
938		disease, and choanal atresia with multiple anomalies: CHARGE association. J
939		<i>Pediatr</i> 1981, 99 (2):223-227.
940	163.	Onesimo R, Ricci D, Agazzi C, Leone S, Petrianni M, Orazi L, Amore F, Salerni A,
941		Leoni C, Chieffo D et al: Visual Function and Ophthalmological Findings in
942		CHARGE Syndrome: Revision of Literature, Definition of a New Clinical
943		Spectrum and Genotype Phenotype Correlation. Genes (Basel) 2021, 12(7).
944	164.	Janssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra
945		RM, van Ravenswaaij-Arts CM, Hoefsloot LH: Mutation update on the CHD7 gene
946		involved in CHARGE syndrome. Hum Mutat 2012, 33(8):1149-1160.
947	165.	Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, Wei C, Tesar PJ,
948		Hatzoglou M, Martin DM et al: CHD7 functions in the nucleolus as a positive
949		regulator of ribosomal RNA biogenesis. Hum Mol Genet 2010, 19(18):3491-3501.
950	166.	Martin DM, Sheldon S, Gorski JL: CHARGE association with choanal atresia and
951		inner ear hypoplasia in a child with a de novo chromosome translocation
952		t(2;7)(p14;g21.11). Am J Med Genet 2001, 99(2):115-119.
953	167.	Song X, Wang X, Ding L, He D, Sun J, Xi N, Yin Y, Peng H, Sun L: Identification of
954		a novel heterozygous missense mutation of SEMA3E (c.1327G>A; p.
955		Ala443Thr) in a labor induced fetus with CHARGE syndrome. Mol Genet
956		Genomic Med 2020. 8(1):e1034.
957	168.	Lalani SR. Safiullah AM. Molinari LM. Fernbach SD. Martin DM. Belmont JW:
958		SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 2004.
959		41 (7):e94.
960	169.	Källén K. Robert E. Mastrojacovo P. Castilla EE. Källén B: CHARGE Association in
961		newborns: a registry-based study. Teratology 1999. 60(6):334-343
962	170.	Davenport SL. Hefner MA. Mitchell JA: The spectrum of clinical features in
963		CHARGE syndrome <i>Clin Genet</i> 1986 29 (4):298-310
964	171	Tellier AL, Cormier-Daire V, Abadie V, Amiel J, Sigaudy S, Bonnet D, de Lonlav-
965		Debenev P. Morrisseau-Durand MP. Hubert P. Michel JI. et al: CHARGE syndrome:
966		report of 47 cases and review Am. I Med Genet 1998 76(5):402-409
967	172	Nishina S. Kosaki R. Yaqihashi T. Azuma N. Okamoto N. Hatsukawa Y. Kurosawa K.
968		Yamane T. Mizuno S. Tsuzuki K et al: Onbthalmic features of CHARGE syndrome
969		with CHD7 mutations Am. I Med Genet A 2012 158a(3):514-518
970	173	Russell-Equitt IM Blake KD Taylor DS Wyse RK: The eve in the CHARGE
971	170.	association Br. I Ophthalmol 1990 74(7):421-426
972	174	McMain K Blake K Smith L Johnson J Wood F Tremblay F Robitaille J: Ocular
973	.,	features of CHARGE syndrome Jaapos 2008 12(5):460-465
974	175	Savige J. Sheth S. Levs A. Nicholson A. Mack HG. Colville D. Ocular features in
975	170.	Alport syndrome: nathogenesis and clinical significance. Clin J Am Soc Nenbrol
976		2015 $10(4)$ ·703-709
977	176	Hess K Pfau M Wintergerst MWM Loeffler KIL Holz FG Herrmann P. Phenotynic
978	170.	Spectrum of the Foyeal Configuration and Foyeal Avascular Zone in Patients
979		With Alport Syndrome Invest Onbthalmol Vis Sci 2020 61(2):5
980	177	van der Loop FT Heidet L. Timmer FD, van den Bosch B L Leinonen A. Antignac C.
081	177.	lefferson IA Maxwell AP Monnens IA Schröder CH et al: Autosomal dominant
087		Alport syndrome caused by a COL 4A3 splice site mutation. Kidney Int 2000
083		Set Syndrome caused by a COLHAS Splice Site indiation . Maney m 2000, 58 (5):1870-1875
987	178	Mencarelli MA Heidet I. Storev H. van Geel M. Knebelmann B. Fallerini C. Miglietti
085	170.	N Antonucci ME Cotta E Savor IA <i>at al</i> : Evidence of digenic inheritance in
905		Alport syndrome / Mod Const 2015 52(3):163-174
987	170	Parkin ID San Antonio ID Padebanko V Hudeon R. Joneon ST. Sovido J. Manning
201 088	179.	structural landmarks, ligand hinding sites, and missonse mutations to the
200 080		collagen IV beterotrimers predicts major functional domains, novel
207 000		interactions, and variation in phonotypes in inherited disasses affecting
77U 001		hasement membranes. Hum Mutet 2011 22(2):127 142
フプエ		μ ascincting includes. Thus in Willian 2011, $32(2).127-143$.

992 993	180.	Gubler M, Levy M, Broyer M, Naizot C, Gonzales G, Perrin D, Habib R: Alport's syndrome. A report of 58 cases and a review of the literature. <i>Am J Med</i> 1981,
994		70 (3):493-505.
995	181.	Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tönshoff B, Höcker B, Wygoda S,
996		Ehrich JH, Pape L et al: Early angiotensin-converting enzyme inhibition in Alport
997		syndrome delays renal failure and improves life expectancy. Kidney Int 2012,
998		81 (5):494-501.
999	182.	Zhang Y, Wang F, Ding J, Zhang H, Liu X, Wang S, Xiao H, Yao Y, Liu J, Zhong X et
1000		al: Long-term treatment by ACE inhibitors and angiotensin receptor blockers in
1001		children with Alport syndrome. Pediatr Nephrol 2016, 31(1):67-72.
1002	183.	Mastrangelo A, Brambilla M, Romano G, Serafinelli J, Puccio G, Giani M, Montini G:
1003		Single, Double and Triple Blockade of RAAS in Alport Syndrome: Different
1004		Tools to Freeze the Evolution of the Disease. J Clin Med 2021, 10(21).
1005	184.	Stock J, Kuenanz J, Glonke N, Sonntag J, Frese J, Tönshoff B, Höcker B, Hoppe B,
1006		Feldkötter M, Pape L et al: Prospective study on the potential of RAAS blockade
1007		to halt renal disease in Alport syndrome patients with heterozygous mutations.
1008		Pediatr Nephrol 2017, 32 (1):131-137.
1009	185.	Ahmed F, Kamae KK, Jones DJ, Deangelis MM, Hageman GS, Gregory MC,
1010		Bernstein PS: Temporal macular thinning associated with X-linked Alport
1011		syndrome. JAMA Ophthalmol 2013, 131(6):777-782.
1012	186.	Randhawa S, Fu AD, Lujan BJ, McDonald HR, Jumper JM: Autofluorescence and
1013		spectral domain OCT findings in Alport syndrome. Retin Cases Brief Rep 2013,
1014		7 (4):376-379.
1015	187.	Trancoso FG, Gallon L, Bomfim MLA, Silva A, Cade F, Zanetti FR: Optical
1016		coherence tomography angiography findings in patients with Alport syndrome.
1017		Arq Bras Oftalmol 2020, 83(6):473-477.
1018	188.	Savige J, Wang Y, Crawford A, Smith J, Symons A, Mack H, Nicholls K, Wilson D,
1019		Colville D: Bull's eye and pigment maculopathy are further retinal
1020		manifestations of an abnormal Bruch's membrane in Alport syndrome.
1021		Ophthalmic Genet 2017, 38 (3):238-244.
1022	189.	Stanojcic N, Raja MS, Burton BJ: Choroidal thinning and "stair-case" foveal sign
1023		in a patient with Alport syndrome. Retin Cases Brief Rep 2014, 8(1):52-55.
1024	190.	Cicinelli MV, Ritter M, Tausif H, Ghossein C, Aschauer C, Laccone F, Nagel M,
1025		Jampol LM, Gill MK: Characterization of Choriocapillaris and Choroidal
1026		Abnormalities in Alport Syndrome. Transl Vis Sci Technol 2022, 11(3):23.
1027	191.	Miller JJ, Rodriguez FJ, Smiddy WE, Rodriguez A: Macular hole surgery in alport
1028		syndrome. Retin Cases Brief Rep 2007, 1(3):153-155.
1029	192.	Chaudhry SG, Liew G, Fung AT: Missing Internal Limiting Membrane during
1030		Macular Hole Repair in Alport Syndrome. Case Rep Ophthalmol 2021, 12(2):320-
1031		323.
1032	193.	Shakarchi AF, Assi L, Gami A, Kohn C, Ehrlich JR, Swenor BK, Reed NS: The
1033		Association of Vision, Hearing, and Dual-Sensory Loss with Walking Speed
1034		and Incident Slow Walking: Longitudinal and Time to Event Analyses in the
1035		Health and Retirement Study. Semin Hear 2021, 42(1):75-84.
1036		

1038 **FIGURE LEGENDS**

1039

1040 Figure 1: Retinal imaging in Usher syndrome (USH)

- 1041 (Rows A-C) Retinal imaging (pseudocolour fundus imaging, fundus autofluorescence
- and optical coherence tomography) of three patients with USH in the same age
- 1043 group. (A) Retinal imaging of a 25-year-old patient heterozygous for c.5260C>T;
- 1044 p.(Gln1754*) and c.5101C>T; p.(Arg1701*) in MYO7A. There is diffuse RPE
- 1045 mottling, a perimacular ring of hyperautofluorescence and outer retinal atrophy, with
- a relatively preserved central retina. (B) A 26-year-old patient homozygous for the
- 1047 c.2299delG; p.(Glu767Serfs*21) variant in USH2A. There is diffuse RPE mottling,
- 1048 outer retinal atrophy with preserved central retinal lamination. Interestingly, the FAF
- 1049 reveals a radial pattern of hypoautofluorescence in the nasal retina and following the
- 1050 vascular arcades. (C) A 21-year-old patient heterozygous for c.118T>G;
- 1051 p.(Cys40Gly) and c.149_152delinsTGTCCAAT; p.(Ser50Leufs*12) in CLRN1. There
- are patchy areas of hypoautofluorescence surrounding the vascular arcades to the
 mid-periphery and a perimacular ring of increased signal. OCT reveals outer retinal
 atrophy, central preservation of the ellipsoid zone which is otherwise disrupted and
 tiny intraretinal cystic spaces.

1056

1057 Figure 2: Retinal imaging in Bardet-Biedl syndrome (BBS)

(Rows A-C) Pseudocolour fundus imaging, fundus autofluorescence (FAF) and
optical coherence tomography (OCT) of three patients, illustrating the range of retinal
features in BBS. (A) Retinal imaging of a 28-year-old patient homozygous for the
c.1169T>G; p.(Met390Arg) variant in *BBS1*. Fundus reveals diffuse RPE mottling
with involvement of the posterior pole and pigment deposition in the mid-periphery.

1063 FAF reveals a perimacular hyperautofluorescent ring circumscribed by regions of 1064 hypoautofluorescence, and OCT shows disorganization of retinal architecture, with diffuse ellipsoid zone disruption and RPE atrophy. (B) Imaging of a 36-year-old 1065 1066 patient heterozygous for the variants c.226C>T; p.(Leu76Phe) and c.271dup; 1067 p.(Cys91Leufs*5) in BBS10. The retinal phenotype is milder and more restricted to 1068 the central retina as shown on FAF and OCT. (C) A 20-year-old patient with a cone-1069 rod dystrophy phenotype due to pathogenic variants in BBS12 - c.714dup and c.1643dup; p.(Glu549Glyfs*9). There is relatively preserved retinal architecture, with 1070 1071 central ellipsoid zone disruption and a perimacular hyperautofluorescent ring, with some hypoautofluorescent areas near the vascular arcades. 1072

1073

Figure 3: Widefield imaging in patients with selected syndromes

1075 (A) Pseudocolour imaging of an individual homozygous for c.2964_2965;

1076 p.(Thr989Leufs*6) in ALMS1. Severe RPE mottling, vessel attenuation and optic disc 1077 pallor can be seen. (B) Pseudocolour of a male patient with a pathogenic variant in 1078 NDP, namely c.335G>A; p.(Gly112Glu). There are multiple laser marks due to 1079 extensive sessions of cryotherapy and photocoagulation after bilateral exudative 1080 retinal detachments. (C) Pseudocolour imaging in a patient with the heterozygous 1081 CHD7 variant c.1339C>T; p.(Gln447*). A large inferonasal chorioretinal coloboma 1082 involving the optic disc and the macula can be seen. This patient also had 1083 malformed ears, nystagmus and left facial nerve palsy. (D) Large inferior retinal 1084 detachment in an individual with Stickler syndrome due to a heterozygous intronic 1085 variant in COL2A1, c.1996-9G>A. This variant is predicted to create a de novo 1086 acceptor site which results in mis-splicing. This patient also had a cleft lip. (E, F) 1087 Widefield fundus photo and corresponding FAF of an individual with Maternally

- 1088 Inherited Diabetes and Deafness (MIDD), with the common variant m.3243A>G
- 1089 (10% heteroplasmy). The fundus reveals central RPE atrophy surrounded by
- 1090 yellowish pattern-like flecks, which are more clearly visible in the FAF as
- 1091 hyperautofluorescent speckles.
- 1092

1094

Table 1: Table summarising the phenotype, the approved HUGO Gene NomenclatureCommittee (HGNC), chromosomal (Chr) location and gene-specific function/classification.N/A: not applicable; mtDNA: mitochondrial DNA.

Phenotype	HGNC Chr location		Function/Classification	
Bardet-Biedl syndrome				
BBS1	BBS1	11q13.2	BBSome	
BBS2	BBS2	16q13	BBSome	
BBS3	ARL6	3q11.2	BBSome-associated GTPase that participates in its assembly	
BBS4	BBS4	15q24.1	BBSome	
BBS5	BBS5	2q31.1	BBSome	
BBS6	MKKS	20p12.2	Chaperonin/BBSome	
BBS7	BBS7	4q27	BBSome	
BBS8	TTC8	14q31.3	BBSome	
BBS9	PTHB1	7p14.3	BBSome	
BBS10	BBS10	12q21.2	Chaperonin	
BBS11	TRIM32	9q33.1	E3 ubiquitin ligase	
BBS12	BBS12	4q27	Chaperonin	
BBS13	MKS1	17q22	B9 domain-containing protein that associates with basal bodies and primary cilia	
BBS14	CEP290	12q21.32	Centrosomal protein involved in ciliary assembly/trafficking	
BBS15	WDPCP	2p15	Localizes to the base of cilia and controls planar cell polarity, ciliogenesis and cell migration	
BBS16	SDCCAG8	1q43-q44	Centrosomal protein involved in ciliogenesis regulation	
BBS17	LZTFL1	3q21.31	BBsome-associated protein involved in signalling of SHH	
BBS18	BBIP1	10q25.2	BBSome	
BBS19	IFT27	22q12.3	G protein involved in intraflagellar transport and cell division	
BBS20	IFT172	2p23.3	Protein involved in intraflagellar transport	
BBS21	CFAP418	8q22.1	Localised to the base of the photoreceptor connecting cilium and likely involved in primary cilia function	

BBS22	IFT74	9p21.2	Component of IFT complex B, which is required for ciliogenesis
Usher syndrome			
USH1B	MYO7A	11q13.5	Unconventional myosin that enables cargo transportation
USH1C	USH1C	11p15.1	Harmonin involved in anchoring/scaffolding
USH1D	CDH23	10q22.1	Cadherin involved in maintenance/organisation of cilia
USH1E	Unknown	21q21	Unknown
USH1F	PCDH15	10q21.1	Calcium-dependent cell- adhesion cadherin
USH1G	USH1G	17q25.1	Anchoring/scaffolding protein
USH1H	Unknown	15q22-q23	Unknown
USH1K	Unknown	10p11.21- q21.1	Unknown
USH2A	USH2A	1q41	Involved in maintenance of periciliary membrane complex/regulation of intracellular protein transport
USH2C	ADGRV1	5q14.3	G-protein coupled receptor required for maintenance of the periciliary membrane complex
USH2D	WHRN	9q32	Required for periciliary membrane complex maintenance/involved in formation of scaffolding protein complexes
USH3A	CLRN1	3q25.1	Presumable role in analogous synapses within the retina
USH4	ARSG	17q24.2	Lysosomal enzyme active in the degradation of heparan sulfate
Stickler syndrome			
STL1	COL2A1	12q13.11	Type II collagen
STL2	COL11A1	1p21.1	Role in fibrillogenesis
STL4	COL9A1	6q13	Structural component of the vitreous and hyaline cartilage
STL5	COL9A2	1p34.2	Structural component of the vitreous and hyaline cartilage
Alstrom disease	ALMS1	2p13.1	Involved in centriole structure and function

Tietz albinism- deafness syndrome	MITF	3p13	Transcription factor
Waardenburg syndrome			
WS1	PAX3	2q36.1	Transcription factor
WS2A	MITF	3p13	Transcription factor
WS2D	SNAI2	8q11.21	Transcriptional repressor that modulates basal transcription
WS2E	SOX10	22q13.1	Transcription factor
WS3	PAX3	2q36.1	Transcription factor
WS4A	EDNRB	13q22.3	Nonselective endothelin receptor type B
WS4B	EDN3	20q13.32	Endothelin 3
WS4C	SOX10	22q13.1	Transcription factor
Norrie disease	NDP	Хр11.3	Plays a central role in retinal vascularisation
CHARGE syndrome	CHD7	8q12.2	Transcription regulator
Alport syndrome			
ATS1	COL4A5	Xq22.3	Component of glomerular basement membranes
ATS2	COL4A3 and COL4A4	2q36.3	Component of glomerular basement membranes
ATS3	COL4A4	2q36.3	Component of glomerular basement membranes
Mitochondrial disorders			
Kearns-sayre syndrome	Various mtDNA deletions	mtDNA	Mitochondrial DNA has a role in regulation of cellular metabolism, apoptosis and oxidative stress control
Maternally inherited diabetes and deafness (MIDD)	mtDNA mutation (commonly m.3243G>A)	mtDNA	Mitochondrial DNA has a role in regulation of cellular metabolism, apoptosis and oxidative stress control

Table 2: Table summarising the main ocular findings, hearing loss characteristics and other defining systemic features that differentiate the diseases. EZ: ellipsoid zone; RPE: retinal pigmented epithelium HL: hearing loss

CONDITION	OCULAR FINDINGS	HEARING LOSS	OTHER SYSTEMIC FEATURES
USHER SYNDROME	Typical rod-cone dystrophy	Sensorineural HL with varying age of onset according to the subtype	Balance problems in USH1 due to vestibular dysfunction
BARDET-BIEDL SYNDROME	Phenotypic heterogeneity varying from generalised rod-cone to cone-rod dysfunction, often with early macular involvement	Usually conductive HL secondary to otitis, but sensorineural HL can be associated	Renal dysfunction, obesity, hypogonadism, postaxial polydactyly and cognitive impairment
ALSTROM SYNDROME	Severe pan-retinal degeneration; nystagmus and photophobia, with or without nyctalopia, with an age of onset of 6 to 9 months old; visual prognosis is poor	Progressive sensorineural HL often in the 1 st decade of life; conductive component can be present due to chronic and acute otitis media	Child obesity, diabetes mellitus, urological dysfunction, dilated cardiomyopathy, systemic fibrosis, and renal, pulmonary and hepatic failure
TIETZ ALBINISM DEAFNESS SYNDROME	Affected individuals have blue eyes and a diffuse lack of retinal pigmentation; there are no other ocular abnormalities such as nystagmus, photophobia or other findings as seen in conditions with blonde fundi	HL is bilateral, sensorineural, congenital and profound, with speech rarely developing	Individuals are born "snow white", and gradually gain pigmentation; adults have fair skin, blonde to white hair and white eyelashes/eyebrows
WAARDENBURG SYNDROME	Iris pigmentation varies from brown, to sectoral hypopigmentation, to the classical heterochromia irides; fundus often reveals pigmentary changes ranging from a blonde fundus, to blonde areas adjacent to patchy hyperpigmented areas; dystopia canthorum is frequent	Bilateral HF, with variable intra- and interfamilial expression; occurs in about 25% of patients with WS1 and 50% of WS2 individuals	Variable systemic features, but pigmentary abnormalities of the hair, such the characteristic white forelock, are common features; some subtypes display musculoskeletal abnormalities of upper limbs and Hirschsprung disease of the colon (WS3 and WS4, respectively)
KEARNS-SAYRE SYNDROME	Chronic progressive external ophthalmoplegia, particularly in the form of ptosis, is frequent; retinopathy usually has a salt and pepper appearance; retinoschisis and a macular vitelliform-like lesion have been reported; corneal involvement can lead to decompensation	Bilateral sensorineural HL with possible cochlear origin; individuals with subjective/subclinical HL are mainly affected in high frequencies	Other features include heart block, cerebellar ataxia, endocrine disorders, cognitive impairment, and increased levels of cerebrospinal fluid

MATERNALLY INHERITED DIABETES AND DEAFNESS	Characteristic pattern-like dystrophy that ranges from early yellowish flecked deposits to chorioretinal atrophy in later stages	Sensorineural HL present in virtually all patients	Other features include cardiomyopathy, renal abnormalities and neuropsychiatric symptoms
STICKLER SYNDROME	Membranous or beaded vitreous phenotype; cataracts and vitreoretinal degeneration can develop, whereas retinal detachments are common	HL is common and predominantly sensorineural, although a conductive or mixed mechanism can be present, in patients with palatal defects	Pierre-Robin sequence, flat midface with midline clefting, cardiac and musculoskeletal abnormalities
NORRIE DISEASE	Transparent lens with congenital posterior synechiae at birth or within a few months of life; yellowish-white proliferating retrolental mass, which can complicate with anterior synechiae, cataracts, corneal opacities and retinal detachment; microphthalmia may be present, and phthisis bulbi often develops within the 1 st decade of life	HL is sensorineural, mild, asymmetric and high frequency in adolescence, progressing to severe loss around the 3 rd decade of life	Seizures, developmental delay, and peripheral vascular abnormalities
CHARGE SYNDROME	Bilateral colobomas with or without microphthalmia are very frequent; colobomas may affect retina, choroid, optic disc and iris, with a poor visual prognosis if involvement of macula; microcornea, nystagmus, cataracts and retinal detachments can be present	Bilateral and asymmetric external ear malformations are present in virtually all patients; HL is of mixed type	Choanal atresia, retarded growth/development, heart disease, genital hypoplasia and ear abnormalities
ALPORT SYNDROME	Flecked retinopathy, corneal opacities, anterior lenticonus and earlier-onset cataracts may be present; other reported features include foveal hypoplasia, bull's eye maculopathy and formation of macular holes	Varying degrees of sensorineural HL	Severe glomerulonephropathy that typically evolves to renal failure