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ABSTRACT 24 

Combined vision and hearing loss, also known as dual sensory impairment, can 25 

occur in several genetic conditions, including ciliopathies such as Usher and Bardet-26 

Biedl syndrome, mitochondrial DNA disorders and systemic diseases, such as 27 

CHARGE, Stickler, Waardenburg, Alport and Alstrom Syndrome. The retinal 28 

phenotype may point to the diagnosis of such disorders. Herein, we aim to provide a 29 

comprehensive review of the molecular genetics and clinical features of the most 30 

common non-chromosomal inherited disorders to cause dual sensory impairment.  31 

 32 
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INTRODUCTION 36 

Combined hearing and vision loss, also known as dual sensory impairment (DSI), 37 

can be caused by a highly heterogenous spectrum of conditions and is characterised 38 

by varying degrees of hearing and vision loss. DSI is common in older adults, with a 39 

prevalence as high as 11.3% in adults over 80 years of age in the US [1]. 40 

Regardless of the cause, affected individuals experience difficulty in communication, 41 

mobility and daily functioning [2], and perceived discrimination [3].  42 

 There are many causes of DSI, including genetic [4], infectious [5], and auto-43 

immune [6-8]. Genetic causes of DSI usually present as early as birth to early 44 

adulthood, associated with a greater disease burden and lifelong disability. 45 

Ciliopathies [9-13], CHARGE [14, 15], Waardenburg [16], Stickler [17, 18], Kearns-46 

Sayre [19], and albinism-deafness syndromes [20], are some of the commonest 47 

genetic causes of DSI that may present to an ophthalmologist. The differential 48 

diagnosis may be explored via a detailed ocular and medical history, family history, 49 

symptomatology, examination, retinal imaging and electrophysiological assessment, 50 

audiology and, ultimately, molecular genetic testing. Furthermore, recent advances 51 

in the gene therapy and cell replacement field offer a promising treatment option for 52 

the future, with many pre-clinical and human trials being developed or currently 53 

ongoing [21-23]. 54 

 The purpose of this review is to provide an overview of the most common 55 

genetic causes of combined hearing and vision loss, outlining the ocular 56 

manifestations, with a focus on the retinal findings. Description of syndromes 57 

secondary to chromosomal abnormalities is beyond the scope of this review. Table 1 58 

provides a summary of the molecular genetics of all conditions described herein.  59 
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1. CILIOPATHIES 60 

The primary cilia are rod-like, slender, ancient microscopic organelles that have an 61 

evolutionarily conserved intraflagellar transport (IFT) mechanism and exert a crucial 62 

role in signal transduction cascades [24] and vertebrate development [25]. Genetic 63 

disorders that cause disruption in the primary cilium, known as ciliopathies, display a 64 

constellation of phenotypic features, commonly involves sensory deficits and is a 65 

leading cause of visual disability in children [26]. Below we review the phenotype and 66 

genetics of the most common ciliopathies that exhibit retinal findings.  67 

 68 

Usher syndrome 69 

Usher syndrome (USH) refers to a genetically and clinically heterogenous group of 70 

recessively inherited disorders, characterised by DSI with or without vestibular 71 

dysfunction. It is the leading cause of inherited DSI, with a prevalence ranging from 72 

1-4 per 25,000 [9]. The disease is classified into four subtypes (USH1, USH2, USH3 73 

and USH4), with wide intra- and inter-familial phenotypic heterogeneity [27]. Some 74 

USH-related genes have also been associated with isolated retinitis pigmentosa 75 

(RP) and non-syndromic hearing loss. The visual prognosis varies with the subtype 76 

of USH, with USH1 individuals experiencing an earlier onset of nyctalopia and more 77 

rapid decline in visual function with age [28]. Figure 1 illustrates the retinal, optical 78 

coherence tomography (OCT) and fundus autofluorescence (FAF) findings in 79 

representative patients of USH1, USH2 and USH3. Imaging findings in USH4 are 80 

described in the relevant subsection below. Rod-cone dystrophy develops in all 81 

cases, although with varying age of onset depending on the subtype, while cystoid 82 

macular oedema and cataracts are a relatively common feature and may be present 83 

in more than 50% of all cases [29].  84 
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 85 

USH1  86 

USH1 is the most severe form of USH and accounts for 30-40% of all USH [30]. 87 

Patients with USH1 have profound - and typically congenital - sensorineural hearing 88 

loss, vestibular dysfunction and onset of RP within the first decade of life [11]. Unless 89 

fitted with cochlear implants, affected individuals do not typically develop speech 90 

[31]. Eight loci have been associated with USH1 (Table 1), with five genes identified 91 

to date [9, 32-34] - the most common being MYO7A (USH1B; OMIM #276903) [35-92 

37]. CIB2 (OMIM #605564) was previously associated with USH1 [38], but more 93 

recent evidence disqualified the gene as causative of the disease [39].  94 

 95 

USH2 96 

USH2 is the commonest form of USH, with moderate to severe early-onset 97 

sensorineural hearing loss, with intact to variable vestibular responses [40], and 98 

onset of RP within the second decade of life. In a study of 560 USH families, 59% 99 

had USH2 [41]. In one study, the mean age of onset of hearing loss in patients with 100 

USH2 was 11 years of age [28]. Three disease-causing genes have been identified 101 

[9]. In a UK study, USH2A (OMIM #608400) was the most commonly involved gene 102 

in USH2, found in 79% of cases. This gene is also the commonest cause of 103 

autosomal recessive (AR) non-syndromic RP [42]. The most prevalent USH2A 104 

variant is c.2299delG, with one study reporting frequencies as high as 77.5% in 105 

patients with USH2 [43] - and likely represents an ancestral mutation that spread 106 

worldwide as a result of migration [44].  107 

  108 
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USH3 109 

USH3 is the rarest subtype and exhibits later onset of progressive hearing and 110 

progressive vision losses. It is typically associated with vestibular hyporeflexia. [45]. 111 

Affected individuals have normal speech and will gradually become profoundly deaf. 112 

The onset of RP is usually post pubertal, with subsequent constriction of visual fields 113 

and nyctalopia [46, 47]. Although prevalence is variable, it accounts for 1-6% of USH 114 

cases [45, 48], except in the Finnish and Ashkenazi Jewish population [49], where it 115 

is estimated that more than 40% of patients with USH have USH3 [50, 51]. USH3 is 116 

primarily caused by pathogenic variants in CLRN1 (OMIM #606397) [51], which 117 

encodes clarin-1, a vertebrate-specific protein containing four transmembrane 118 

domains and suggested to be involved in hair cell and photoreceptor cell synapses 119 

[52]. Variants in HARS1 (OMIM #142810) have been previously associated with 120 

USH3 [53], although a recent expert curation of genes related to hearing loss refuted 121 

and disqualified HARS1 as causative of USH3 [54]. 122 

  123 

USH4 124 

An atypical subtype of USH (USH4) has been associated with disease-causing 125 

variants in ARSG (OMIM #618144) [55]; with the genetic spectrum recently 126 

expanded to include CEP78 (OMIM #617110), CEP250 (OMIM #609689) and 127 

ABHD12 (OMIM #613599) [56]. This form is rare and atypical in that there is a later 128 

onset - usually around 40 years of age - of RP and sensorineural hearing loss 129 

without vestibular involvement [57]. In most reported cases, a sharply demarcated 130 

region(s) of pigmentary change in the fundus, with optic disc pallor, and parafoveal 131 

and mid-peripheral retinal pigment epithelium (RPE) atrophy are observed. FAF may 132 
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reveal a perimacular hyperautofluorescent ring or a pericentral pattern of 133 

hypoautofluorescence. Intraretinal cystoid spaces may be present on OCT [58, 59].  134 

 135 

Bardet-Biedl syndrome  136 

Bardet-Biedl syndrome (BBS) is a multi-systemic disease characterized by pan-137 

retinal rod-cone degeneration, renal dysfunction, obesity, hypogonadism, postaxial 138 

polydactyly and cognitive impairment [60, 61]. It is typically inherited in an AR 139 

fashion; although a tri-allelic mechanism of transmission has been reported [62]. 140 

Retinal abnormalities are seen in virtually all patients - in a large multi-ethnic cohort 141 

of 105 cases, signs of retinal dystrophy were seen in all patients older than 3 years 142 

of age [63]. The visual prognosis is often poor, with legal blindness occurring before 143 

the second decade of life [64, 65]. More commonly, patients may develop a 144 

conductive hearing loss, secondary to chronic otitis media, although sensorineural 145 

hearing loss can also occur [60].  146 

 The retina exhibits a wide spectrum of disease expression [66], varying from 147 

generalised rod-cone to cone-rod dysfunction, often with early macular involvement. 148 

Disease severity and retinal findings may vary among members of the same family 149 

[66, 67]. The fundus usually reveals pale optic discs, vessel attenuation and diffuse 150 

RPE mottling, while OCT shows atrophy of the ellipsoid zone and RPE [68] (Figure 151 

2). Studies have been contradictory regarding specific genotype-phenotype 152 

correlations in BBS [69-76]. 153 

 To date, twenty-two disease-causing genes have been identified (Table 1), of 154 

which eight are highly conserved genes that code for BBS proteins. These BBS 155 

proteins form a stable complex that has a role in membrane trafficking and as a key 156 

regulator of the composition of transmembrane proteins in the ciliary membrane, 157 
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known as the BBSome [77]. BBS1 and BBS10 account for about 50% of BBS cases, 158 

while variants in the BBsome-related genes (BBS1-BBS18) are responsible for 159 

approximately 70 to 80% of affected families [78], with several of these having a high 160 

prevalence in certain populations, demonstrating founder effects and the worldwide 161 

genetic heterogeneity of BBS [79]. Preclinical work is being undertaken to develop 162 

gene therapy approaches for several BBS genotypes, including BBS1 and BBS10. 163 

 164 

Alstrom syndrome 165 

Alstrom syndrome (ALMS) is a multi-systemic AR disorder characterized by retinal 166 

degeneration, hearing loss, childhood obesity, diabetes mellitus, urological 167 

dysfunction, dilated cardiomyopathy, systemic fibrosis, and renal, pulmonary and 168 

hepatic failure [80, 81]. The prevalence of ALMS in the general population is 169 

estimated to be less than 1:1,000,000 [82]. The cause of ALMS is pathogenic 170 

variants in ALMS1 (OMIM # 606844), a gene involved in centriole formation and 171 

stability, with a role in intracellular trafficking and ciliary function [83-86].  172 

A genotype-phenotype study (n=58) by Marshall et al., found possible associations 173 

between pathogenic variants in exon 16 and onset of retinal degeneration before 1 174 

year of age, as well as the occurrence of urological dysfunction, diabetes and dilated 175 

cardiomyopathy. A significant association was also found between variants in exon 8 176 

and lower incidence of renal disease [80]. Progressive bilateral sensorineural 177 

hearing loss is often found in the first decade of life and may be a feature in up to 178 

90% of affected individuals. This can become moderate to severe in nature by the 179 

second decade of life. Chronic and acute otitis media can also cause a conductive 180 

component to the hearing loss [82, 87].  181 
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 ALMS usually presents with severe cone-rod dystrophy, diffuse vessel 182 

attenuation, optic disc pallor and macular atrophy (Figure 3-A). Nystagmus and 183 

extreme photophobia, with or without nyctalopia, are characteristic, with an age of 184 

symptom onset at 6 to 9 months old, a combination of symptoms that may mislead to 185 

the diagnosis of Leber congenital amaurosis, achromatopsia or Bardet-Biedl 186 

syndrome [88]. The visual prognosis is very poor and complete blindness usually 187 

occurs in the second decade of life [89]. FAF may show hypoautofluorescent 188 

patches with a parafoveal hyperautofluorescent ring [88], while OCT reveals foveal 189 

and outer nuclear layer (ONL) thinning accompanied by loss of photoreceptors and 190 

RPE [90]. ERG reveals generalised retinal dysfunction within a few weeks of birth, 191 

with extinguished cone and rod-based responses by 2.5 years of age [82]. However, 192 

variability in retinal function, disease onset and rate of progression have been 193 

reported [88, 91]. Other eye findings that may be present are hypermetropia and 194 

subcapsular cataracts [88]. 195 

 196 

2. Auditory-pigmentary Syndromes   197 

 198 

Tietz albinism-deafness syndrome 199 

Tietz albinism-deafness syndrome (TS) is characterised by congenital sensorineural 200 

hearing loss and generalised loss of pigmentation. It was first described in a family in 201 

1963 [92], which was subsequently found to segregate variants in MITF (OMIM 202 

#156845) [20], a gene involved in differentiation, growth and survival of pigment cells 203 

[93, 94]. Disease-causing variants in MITF may more commonly cause AD 204 

Waardenburg syndrome type 2 (WS2) [95, 96] and, rarely, AR coloboma, 205 

osteopetrosis, microphthalmia, macrocephaly, albinism and deafness syndrome 206 
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(COMMAD) [97]. The WS2 phenotype highly overlaps with TS but is distinguishable 207 

given TS has a more severe phenotype; with patchy depigmentation, heterochromia 208 

irides and white forelocks [92, 98].  209 

 TS individuals are born "snow white", gradually gaining pigmentation, with 210 

adults having fair skin, blonde to white hair and white eyelashes and eyebrows. The 211 

hearing loss is bilateral, sensorineural, congenital and profound, with speech rarely 212 

developing [20, 99]. Individuals have blue eyes and a diffuse lack of retinal 213 

pigmentation, although, interestingly, there are no other ocular abnormalities such as 214 

nystagmus, photophobia or other visual problems as seen in other conditions 215 

characterised by blonde fundi [20, 92, 99, 100]. 216 

 217 

Waardenburg syndrome 218 

Waardenburg syndrome (WS) is a genetically heterogenous auditory-pigmentary 219 

syndrome that was first described in 1951, with an estimated prevalence of 1 per 220 

42,000 [101]. Nine loci have been identified so far and. WS is often inherited in an 221 

AD fashion, but AR inheritance has also been described. Interestingly, Wollnik et al 222 

reported a family in which parents were heterozygous for the substitution p.Y90H in 223 

the PAX3 gene (OMIM #606597) and had WS subtype 1 (WS1), while the offspring 224 

was homozygous for the variant and had subtype 3 (WS3), which highlights different 225 

inheritance patterns in the same gene and within family members [102]. Based on 226 

the phenotype, it can be classified in four main groups, the first two being the 227 

commonest [98]: (i) WS1 is characterised by pigmentary abnormalities of hair, which 228 

include a very characteristic white forelock, pigmentary changes of the iris, 229 

sensorineural hearing loss and dystopia canthorum; (ii) WS2 has a similar 230 

phenotype, but without dystopia canthorum; (iii) WS3 has the same features as 231 
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WS1, including dystopia canthorum, but also musculoskeletal abnormalities of upper 232 

limbs; and (iv) WS4 has pigmentary changes and Hirschsprung disease of the colon 233 

[98, 103].  234 

 The hearing loss is typically bilateral, although with variable intra- and 235 

interfamilial expression [104]. It occurs in about 25% of patients affected with WS1 236 

and in half of the patients with WS2 [105]. The pattern of iris pigmentation varies 237 

from brown iris, to sectoral patches of hypopigmentation to classical heterochromia 238 

irides [106]. The fundus often reveals pigmentary changes, varying from a blonde 239 

fundus, to blonde areas adjacent to patchy hyperpigmented areas [106]. FAF may 240 

reveal hypoautofluorescence in the region of choroidal hypopigmentation, while OCT 241 

may demonstrate a thickened choroid in the area of hypopigmentation, with an 242 

otherwise normal overlying retina [107, 108]. 243 

 244 

3. Mitochondrial Disorders 245 

 246 

Kearns-Sayre syndrome 247 

Kearns-Sayre syndrome (KSS) is a rare multi-system mitochondrial DNA (mtDNA) 248 

deletion syndrome [109, 110], characterised by chronic progressive external 249 

ophthalmoplegia, pigmentary retinopathy and heart block [110]. Several other 250 

features have been reported, such as sensorineural hearing loss, cerebellar ataxia, 251 

endocrine disorders, cognitive impairment, and increased levels of cerebrospinal 252 

fluid protein [19, 111-114]. A study by Kornblum et al. assessed the nature of the 253 

hearing loss in 17 affected individuals, 10 of whom were found to have hearing 254 

impairment. In patients with subjective or subclinical hearing deficits, it mainly 255 

affected high frequencies. The findings in this cohort suggested a cochlear origin of 256 

hearing loss [115]. The onset of the disease is usually before the age of 20 years.  257 
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 Among the ocular findings, chronic progressive external ophthalmoplegia is 258 

the commonest, usually in the form of ptosis, which may be present in up to 89% of 259 

cases. In the largest case series to date, pigmentary retinopathy was found in 71% 260 

of patients [116]. The retinopathy typically assumes a salt and pepper appearance 261 

[117]. Interestingly, bilateral retinoschisis, a macular vitelliform-like lesion and 262 

subretinal fluid have all been reported [118-120]. OCT may reveal areas of outer 263 

retinal layer atrophy and ellipsoid zone disruption [121], while FAF reveals areas of 264 

speckled hypo- and hyperautofluorescence [122]. Full-field ERG shows evidence of 265 

generalised cone and rod-system dysfunction [19]. Corneal endothelium involvement 266 

can lead to corneal decompensation and oedema [123-126].   267 

 268 

Maternally inherited diabetes and deafness (MIDD) 269 

MIDD is a mitochondrial disorder caused by disease-causing variants in MTTL1 270 

(OMIM #590050), most frequently at position 3243A>G [127]. The onset of 271 

sensorineural hearing loss and diabetes is in adulthood and additional features seen 272 

in other mitochondrial disorders may be present, such as retinopathy, 273 

cardiomyopathy, renal abnormalities and neuropsychiatric symptoms [128-131]. In a 274 

large multicentric study (n=54) in individuals with the mtDNA 3243G>A variant, 275 

sensorineural hearing loss was present in almost all patients, while 43% of patients 276 

had myopathy, 15% had cardiomyopathy and 18% had neuropsychiatric symptoms 277 

[129]. The age at the diagnosis of deafness was 34.6 ± 13.9 years (range= 2-61). 278 

Macular pattern dystrophy was common in this cohort, and present in 86% of 279 

patients.  280 

In 2013, a cross-sectional study (n=29) using a multimodal approach, 281 

identified retinal features in affected individuals [132]. The fundus appearance varied 282 
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from yellowish fleck-like deposits in early stages, which eventually advanced to 283 

circumferential areas of chorioretinal atrophy which coalesce over time, while FAF 284 

ranged from the presence of hyperfluorescent flecks, to a diffuse central 285 

hypoautofluorescent signal corresponding to areas of chorioretinal atrophy in more 286 

advanced stages (Figure 3-E, F). Additionally, the authors proposed a 4-grade 287 

classification system based on severity of the retinal findings, OCT, and FAF. More 288 

recently, a detailed observational retrospective cases series investigated structural 289 

features associated with the disease. The authors identified a sequence of OCT 290 

features – from ellipsoid zone loss to subretinal deposits, loss of external limiting 291 

membrane and RPE atrophy – that could be used as biomarkers for tracking disease 292 

progression. They also demonstrated that, RPE and outer retinal atrophy (RORA) 293 

was mostly present in a circular ring area centred on the fovea between 5 and 15 294 

degrees of eccentricity [133].  295 

 296 

4. OTHER INHERITED DISORDERS  297 

 298 

Stickler syndrome 299 

Stickler syndrome (STL), also known as hereditary arthro-ophthalmopathy is a 300 

heterogenous disorder characterised by skeletal, orofacial, ocular and auditory 301 

abnormalities [134, 135]. It is most commonly autosomal dominant (AD), although 302 

AR inheritance has also been reported. It is grouped into four subtypes (STL1, STL2, 303 

STL4 and STL5), the most common being the AD types STL1 and STL2, caused by 304 

pathogenic variants in COL2A1 (OMIM # 120140) and COL11A1 (OMIM #120280), 305 

respectively. Frequently present systemic findings include Pierre Robin sequence, 306 

flat midface with midline clefting, hearing loss, osteoarthritis and occasional cardiac 307 
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abnormalities [134, 136-138]. Hearing impairment is common and predominantly 308 

sensorineural, although a conductive mechanism can also be present, particularly in 309 

patients with palatal defects [17].  310 

 Ophthalmic features are seen in up to 95% of individuals [139], and include 311 

high myopia, cataracts - which have been described as wedge and fleck or 312 

quadrantic lamellar cortical lens opacities in more than 40% of cases [140] -, 313 

vitreoretinal degeneration and high risk of spontaneous retinal detachment (RD) 314 

[138]. The vitreous appearance has been described as a discerning feature between 315 

STL1 and STL2, with the former producing a congenital 'membranous' anomaly and 316 

the latter a 'beaded' vitreous phenotype [141], although extensive phenotypic 317 

heterogeneity has been described [142, 143]. RD can develop in over 70% of cases 318 

[139, 144, 145], and is usually the result of a giant retinal tear (Figure 3-D). 319 

Interestingly, in a recent multicentre analysis of affected patients from Korea, splicing 320 

variants were the most frequently associated factor with RD (71%) [146]. Although 321 

there is no evidence from randomised clinical trials, retrospective reports have 322 

suggested that prophylactic cryotherapy and circumferential laser treatment may 323 

substantially reduce the risk of RD in STL1 [144, 147, 148]. Re-detachments are 324 

common and often respond well to repeated surgery. In a long-term follow-up of a 325 

cohort of 29 eyes of STL patients who underwent RD surgery, success was achieved 326 

in 97% of eyes with an average of 2.3 surgeries [149]. Other ocular features include 327 

glaucoma in 10% of patients [145]. 328 

 329 

Norrie disease 330 

Norrie disease is an X-linked recessive condition associated with the gene NDP 331 

(OMIM #300658) [150, 151]. Variants in NDP have also been associated with familial 332 
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exudative vitreoretinopathy, persistent hyperplastic primary vitreous (PHPV, also 333 

known as persistent foetal vasculature, PFV), retinopathy of prematurity and Coats 334 

disease [152]. It is characterised by proliferative changes in the retina and early 335 

blindness, developmental delay in approximately half of patients, and hearing loss in 336 

about a third of patients [150, 153, 154]. Other features include seizures and 337 

peripheral vascular abnormalities [155, 156]. The hearing loss is sensorineural in 338 

nature, mild, asymmetric and high frequency in adolescence, progressing to severe 339 

loss around 35 years of age [155, 157, 158]. Significant phenotypic heterogeneity 340 

may be found, even in members of the same family [159]. 341 

 Affected patients typically have a transparent lens with congenital posterior 342 

synechiae at birth, although the synechiae may develop within a few months of life. 343 

In the retrolental space, there is typically a yellowish-white proliferating mass, which 344 

can be complicated by anterior synechiae, iris atrophy, cataracts, corneal opacities 345 

and RD (Figure 3-B) [154]. Microphthalmia may also be present. Phthisis bulbi often 346 

develops within the first decade of life [160]. Walsh et al retrospectively reported 14 347 

cases of Norrie disease, all of which underwent vitrectomy with or without 348 

lensectomy prior to 1 year of age. Seven maintained at least light perception in one 349 

eye, while only 8% of eyes became phthisical; early vitrectomy may thereby be 350 

worthy of consideration [161]. 351 

 352 

CHARGE syndrome 353 

CHARGE is a complex genetic syndrome first described in 1981, with an estimated 354 

incidence of 1 per 12,000 [162, 163]. It is caused by heterozygous variants in CHD7 355 

(OMIM #608892), a member of the chromodomain helicase DNA-binding protein 356 

family [164], which has a role as a transcription regulator of both nucleoplasmic and 357 
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nucleolar genes [165]. It has also been associated with heterozygous variants in 358 

SEMA3E (OMIM #608166) [166-168]. 359 

 It follows a recognisable pattern of congenital anomalies - coloboma, heart 360 

disease, choanal atresia, retarded growth and development, genital hypoplasia and 361 

ear abnormalities [169, 170]. Bilateral and asymmetric external ear malformations 362 

are virtually present in all affected individuals, as well as deafness, which is usually 363 

of mixed type [171]. Colobomas with or without microphthalmia may be seen in up to 364 

90% of patients (Figure 3-C) [163, 172]. Colobomas are generally bilateral and may 365 

affect the retina, choroid and optic disc and, more rarely, the iris [171, 173]. The 366 

usual cause for significant decrease in visual acuity is the involvement of the macula 367 

in the coloboma. Other contributing features to vision loss include microcornea, 368 

nystagmus, severe myopic astigmatism, anisometropia, cataracts and RD [173, 174]. 369 

 370 

Alport syndrome 371 

Alport syndrome (AS) is a genetically and clinically heterogenous disorder caused by 372 

pathogenic variants in COL4A5 (OMIM #303630), COL4A3 (OMIM #120070) and 373 

COL4A4 (OMIM #120131), and can be inherited in X-linked, AR (with digenic 374 

inheritance reported in COL4A3 and COL4A4) and rarely in AD fashion [175-178]. 375 

These genes encode alpha chains of type IV collagen, the most common protein 376 

found in basement membranes [179]. Affected patients typically develop 377 

glomerulonephropathy and subsequent renal failure, with varying degrees of 378 

sensorineural hearing loss and a plethora of ocular findings - which include corneal 379 

opacities, anterior lenticonus, earlier-onset cataracts and flecked retinopathy [175, 380 

180]. Due to the severity of the renal impairment, early recognition of the syndrome 381 

is essential as angiotensin-converting enzyme inhibitors and angiotensin receptor 382 
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blockers have been shown to be safe and efficient in reducing proteinuria, delaying 383 

renal failure and improving life expectancy [181-184]. 384 

 Other reported retinal findings include a dull macular reflex, bull's eye 385 

maculopathy, temporal macular thinning, foveal hypoplasia and the formation of 386 

macular holes [185-188]. FAF may reveal a pattern of splotchy AF in the mid-387 

periphery in the absence of peripheral retinopathy [186]. Recent reports of OCT and 388 

OCT-angiography in affected individuals showed a foveal phenotype that ranges 389 

from foveal hypoplasia and absence of foveal avascular zone, to an increase in the 390 

foveal avascular zone and a 'stair-case' foveal sign [176, 187, 189]. A cross-391 

sectional study investigating the characteristics of the choroid in 33 patients with AS, 392 

found that the choriocapillaris flow deficit was higher in individuals with a history of 393 

kidney transplant (p= 0.006), suggesting a more severe choriocapillaris impairment 394 

in patients with severe kidney disease that require transplantation [190]. Due to 395 

potential abnormalities in the vitreoretinal interface, macular hole repair surgery may 396 

be challenging, but can lead to successful closure and may benefit selected patients 397 

[186, 191, 192]. 398 

 399 

DISCUSSION AND FUTURE DIRECTION  400 

Several inherited disorders have been described that share impairment of both vision 401 

and hearing, a condition known as dual-sensory impairment or DSI. Individuals with 402 

impairment in one sensory organ tend to use the functioning organ to compensate in 403 

their daily functioning; however, having impairment of both sensory organs can have 404 

significant, and often synergistic, detrimental effects on patient’s quality of life and 405 

physical functioning [193]. This has been shown in older adults where sensory 406 

impairment is typically insidious, which may give patients time to adapt. Sensory 407 
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impairment in inherited disorders typically onsets shortly after birth and is usually 408 

profound in early life, as has been described for most disorders above. This can 409 

result in even further detrimental effect of DSI on functioning and quality of life in 410 

young patients; however, this has not been studied yet. Studies are needed to better 411 

understand the effect of DSI on functioning in inherited disorders. Another important 412 

consideration is the need for specialised multi-disciplinary care in most of the 413 

conditions mentioned in this manuscript. The diagnosis of these diseases may have 414 

important systemic consequences, for which critical further workup may be required. 415 

Moreover, although hearing loss and retinal abnormalities are common findings 416 

amongst the diseases described herein, these are very distinct conditions. There is 417 

usually a constellation of other findings which, when combined, suggest a specific 418 

disorder. Hearing loss and pigmentary retinopathy with concomitant lack or 419 

decreased skin pigmentation and blonde fundi, for instance, would suggest an 420 

auditory-pigmentary syndrome; whereas, maternally inherited traits suggest 421 

mitochondrial disorders, and the presence of osteoarthritis, cardiac abnormalities 422 

and Pierre-Robin sequence may imply Stickler syndrome. Table 2 summarises the 423 

main defining characteristics of each syndrome, which may guide clinicians to help 424 

establish the diagnosis, and also perform and interpret molecular testing. In addition 425 

to differentiating the clinical phenotypes of the various genetic conditions included in 426 

this review, the clinician should be mindful of other non-genetic conditions that can 427 

mimic these presentations, such as congenital rubella syndrome, and rule these out 428 

before diagnosing a genetic cause of DSI. Despite the broad availability of genetic 429 

testing, patients with DSI should be referred to specialist tertiary centers, in 430 

conjunction with genetic counselling, for comprehensive clinical evaluation and 431 
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interpretation of genetics results, also given the possible systemic implications, 432 

which may even be life-threatening. 433 

 As our knowledge in genetic medicine increases, new diseases featuring DSI 434 

will be identified, and novel genes will be mapped, which will ultimately increase our 435 

understanding to better assist patients in which the molecular diagnosis currently 436 

remains unclear. An accurate diagnosis at the earliest opportunity and better 437 

understanding of disease natural history are key for providing informed advice on 438 

prognosis and genetic counselling, as well as for the development of novel 439 

therapeutics and improving the quality of life in affected individuals. 440 

  441 
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FIGURE LEGENDS 1038 

 1039 

Figure 1: Retinal imaging in Usher syndrome (USH)  1040 

(Rows A-C) Retinal imaging (pseudocolour fundus imaging, fundus autofluorescence 1041 

and optical coherence tomography) of three patients with USH in the same age 1042 

group. (A) Retinal imaging of a 25-year-old patient heterozygous for c.5260C>T; 1043 

p.(Gln1754*) and c.5101C>T; p.(Arg1701*) in MYO7A. There is diffuse RPE 1044 

mottling, a perimacular ring of hyperautofluorescence and outer retinal atrophy, with 1045 

a relatively preserved central retina. (B) A 26-year-old patient homozygous for the 1046 

c.2299delG; p.(Glu767Serfs*21) variant in USH2A. There is diffuse RPE mottling, 1047 

outer retinal atrophy with preserved central retinal lamination. Interestingly, the FAF 1048 

reveals a radial pattern of hypoautofluorescence in the nasal retina and following the 1049 

vascular arcades. (C) A 21-year-old patient heterozygous for c.118T>G; 1050 

p.(Cys40Gly) and c.149_152delinsTGTCCAAT; p.(Ser50Leufs*12) in CLRN1. There 1051 

are patchy areas of hypoautofluorescence surrounding the vascular arcades to the 1052 

mid-periphery and a perimacular ring of increased signal. OCT reveals outer retinal 1053 

atrophy, central preservation of the ellipsoid zone which is otherwise disrupted and 1054 

tiny intraretinal cystic spaces.  1055 

 1056 

Figure 2: Retinal imaging in Bardet-Biedl syndrome (BBS) 1057 

(Rows A-C) Pseudocolour fundus imaging, fundus autofluorescence (FAF) and 1058 

optical coherence tomography (OCT) of three patients, illustrating the range of retinal 1059 

features in BBS. (A) Retinal imaging of a 28-year-old patient homozygous for the 1060 

c.1169T>G; p.(Met390Arg) variant in BBS1. Fundus reveals diffuse RPE mottling 1061 

with involvement of the posterior pole and pigment deposition in the mid-periphery. 1062 
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FAF reveals a perimacular hyperautofluorescent ring circumscribed by regions of 1063 

hypoautofluorescence, and OCT shows disorganization of retinal architecture, with 1064 

diffuse ellipsoid zone disruption and RPE atrophy. (B) Imaging of a 36-year-old 1065 

patient heterozygous for the variants c.226C>T; p.(Leu76Phe) and c.271dup; 1066 

p.(Cys91Leufs*5) in BBS10. The retinal phenotype is milder and more restricted to 1067 

the central retina as shown on FAF and OCT. (C) A 20-year-old patient with a cone-1068 

rod dystrophy phenotype due to pathogenic variants in BBS12 - c.714dup and 1069 

c.1643dup; p.(Glu549Glyfs*9). There is relatively preserved retinal architecture, with 1070 

central ellipsoid zone disruption and a perimacular hyperautofluorescent ring, with 1071 

some hypoautofluorescent areas near the vascular arcades. 1072 

 1073 

Figure 3: Widefield imaging in patients with selected syndromes 1074 

(A) Pseudocolour imaging of an individual homozygous for c.2964_2965; 1075 

p.(Thr989Leufs*6) in ALMS1. Severe RPE mottling, vessel attenuation and optic disc 1076 

pallor can be seen. (B) Pseudocolour of a male patient with a pathogenic variant in 1077 

NDP, namely c.335G>A; p.(Gly112Glu). There are multiple laser marks due to 1078 

extensive sessions of cryotherapy and photocoagulation after bilateral exudative 1079 

retinal detachments. (C) Pseudocolour imaging in a patient with the heterozygous 1080 

CHD7 variant c.1339C>T; p.(Gln447*). A large inferonasal chorioretinal coloboma 1081 

involving the optic disc and the macula can be seen. This patient also had 1082 

malformed ears, nystagmus and left facial nerve palsy. (D) Large inferior retinal 1083 

detachment in an individual with Stickler syndrome due to a heterozygous intronic 1084 

variant in COL2A1, c.1996-9G>A. This variant is predicted to create a de novo 1085 

acceptor site which results in mis-splicing. This patient also had a cleft lip. (E, F) 1086 

Widefield fundus photo and corresponding FAF of an individual with Maternally 1087 
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Inherited Diabetes and Deafness (MIDD), with the common variant m.3243A>G 1088 

(10% heteroplasmy). The fundus reveals central RPE atrophy surrounded by 1089 

yellowish pattern-like flecks, which are more clearly visible in the FAF as 1090 

hyperautofluorescent speckles. 1091 

  1092 
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Table 1: Table summarising the phenotype, the approved HUGO Gene Nomenclature 1093 
Committee (HGNC), chromosomal (Chr) location and gene-specific function/classification. 1094 
N/A: not applicable; mtDNA: mitochondrial DNA. 1095 

Phenotype HGNC Chr location Function/Classification 

Bardet-Biedl syndrome 
   

BBS1 BBS1 11q13.2 BBSome 

BBS2 BBS2 16q13 BBSome 

BBS3 ARL6 3q11.2 BBSome-associated GTPase 
that participates in its assembly 

BBS4 BBS4 15q24.1 BBSome 

BBS5 BBS5 2q31.1 BBSome 

BBS6 MKKS 20p12.2 Chaperonin/BBSome 

BBS7 BBS7 4q27 BBSome 

BBS8 TTC8 14q31.3 BBSome 

BBS9 PTHB1 7p14.3 BBSome 

BBS10 BBS10 12q21.2 Chaperonin 

BBS11 TRIM32 9q33.1 E3 ubiquitin ligase 

BBS12 BBS12 4q27 Chaperonin 

BBS13 MKS1 17q22 B9 domain-containing protein 
that associates with basal 
bodies and primary cilia 

BBS14 CEP290 12q21.32 Centrosomal protein involved in 
ciliary assembly/trafficking 

BBS15 WDPCP 2p15 Localizes to the base of cilia 
and controls planar cell polarity, 
ciliogenesis and cell migration 

BBS16 SDCCAG8 1q43-q44 Centrosomal protein involved in 
ciliogenesis regulation 

BBS17 LZTFL1 3q21.31 BBsome-associated protein 
involved in signalling of SHH 

BBS18 BBIP1 10q25.2 BBSome 

BBS19 IFT27 22q12.3 G protein involved in 
intraflagellar transport and cell 
division 

BBS20 IFT172 2p23.3 Protein involved in intraflagellar 
transport 

BBS21 CFAP418 8q22.1 Localised to the base of the 
photoreceptor connecting cilium 
and likely involved in primary 
cilia function 
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BBS22 IFT74 9p21.2 Component of IFT complex B, 
which is required for 
ciliogenesis 

Usher syndrome 
   

USH1B MYO7A 11q13.5 Unconventional myosin that 
enables cargo transportation 

USH1C USH1C 11p15.1 Harmonin involved in 
anchoring/scaffolding 

USH1D CDH23 10q22.1 Cadherin involved in 
maintenance/organisation of 
cilia 

USH1E Unknown 21q21 Unknown 

USH1F PCDH15 10q21.1 Calcium-dependent cell-
adhesion cadherin 

USH1G USH1G 17q25.1 Anchoring/scaffolding protein 

USH1H Unknown 15q22-q23 Unknown 

USH1K Unknown 10p11.21-
q21.1 

Unknown 

USH2A USH2A 1q41 Involved in maintenance of 
periciliary membrane 
complex/regulation of 
intracellular protein transport 

USH2C ADGRV1 5q14.3 G-protein coupled receptor 
required for maintenance of the 
periciliary membrane complex 

USH2D WHRN 9q32 Required for periciliary 
membrane complex 
maintenance/involved in 
formation of scaffolding protein 
complexes  

USH3A CLRN1 3q25.1 Presumable role in analogous 
synapses within the retina 

USH4 ARSG 17q24.2 Lysosomal enzyme active in the 
degradation of heparan sulfate 

Stickler syndrome 
   

STL1 COL2A1 12q13.11 Type II collagen  

STL2 COL11A1 1p21.1 Role in fibrillogenesis 

STL4 COL9A1 6q13 Structural component of the 
vitreous and hyaline cartilage 

STL5 COL9A2 1p34.2 Structural component of the 
vitreous and hyaline cartilage 

Alstrom disease ALMS1 2p13.1 Involved in centriole structure 
and function 
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Tietz albinism-
deafness syndrome  

MITF 3p13 Transcription factor  

Waardenburg 
syndrome 

   

WS1 PAX3 2q36.1 Transcription factor 

WS2A MITF 3p13 Transcription factor 

WS2D SNAI2 8q11.21 Transcriptional repressor that 
modulates basal transcription 

WS2E SOX10 22q13.1 Transcription factor 

WS3 PAX3 2q36.1 Transcription factor 

WS4A EDNRB 13q22.3 Nonselective endothelin 
receptor type B 

WS4B EDN3 20q13.32 Endothelin 3 

WS4C SOX10 22q13.1 Transcription factor 

Norrie disease NDP Xp11.3 Plays a central role in retinal 
vascularisation 

CHARGE syndrome CHD7 8q12.2 Transcription regulator 

Alport syndrome    

ATS1 COL4A5 Xq22.3 Component of glomerular 
basement membranes 

ATS2 COL4A3 
and 
COL4A4 

2q36.3 Component of glomerular 
basement membranes 

ATS3 COL4A4 2q36.3 Component of glomerular 
basement membranes 

Mitochondrial 
disorders 

   

Kearns-sayre syndrome Various 
mtDNA 
deletions 

mtDNA Mitochondrial DNA has a role in 
regulation of cellular 
metabolism, apoptosis and 
oxidative stress control 

Maternally inherited 
diabetes and deafness 
(MIDD) 

mtDNA 
mutation 
(commonly 
m.3243G>A) 

mtDNA Mitochondrial DNA has a role in 
regulation of cellular 
metabolism, apoptosis and 
oxidative stress control 

 1096 

 1097 
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Table 2: Table summarising the main ocular findings, hearing loss characteristics and other defining systemic features that differentiate the 1098 
diseases. EZ: ellipsoid zone; RPE: retinal pigmented epithelium HL: hearing loss 1099 

CONDITION OCULAR FINDINGS HEARING LOSS OTHER SYSTEMIC FEATURES 

USHER SYNDROME Typical rod-cone dystrophy Sensorineural HL with varying age of 
onset according to the subtype 

Balance problems in USH1 due to 
vestibular dysfunction 

BARDET-BIEDL 
SYNDROME 

Phenotypic heterogeneity varying from 
generalised rod-cone to cone-rod 
dysfunction, often with early macular 
involvement 

Usually conductive HL secondary to 
otitis, but sensorineural HL can be 
associated 

Renal dysfunction, obesity, 
hypogonadism, postaxial polydactyly and 
cognitive impairment 

ALSTROM SYNDROME Severe pan-retinal degeneration; 
nystagmus and photophobia, with or 
without nyctalopia, with an age of onset of 
6 to 9 months old; visual prognosis is poor 

Progressive sensorineural HL often 
in the 1st decade of life; conductive 
component can be present due to 
chronic and acute otitis media 

Child obesity, diabetes mellitus, 
urological dysfunction, dilated 
cardiomyopathy, systemic fibrosis, and 
renal, pulmonary and hepatic failure 

TIETZ ALBINISM 
DEAFNESS SYNDROME 

Affected individuals have blue eyes and a 
diffuse lack of retinal pigmentation; there 
are no other ocular abnormalities such as 
nystagmus, photophobia or other findings 
as seen in conditions with blonde fundi 

HL is bilateral, sensorineural, 
congenital and profound, with 
speech rarely developing 

Individuals are born "snow white", and 
gradually gain pigmentation; adults have 
fair skin, blonde to white hair and white 
eyelashes/eyebrows 

WAARDENBURG 
SYNDROME 

Iris pigmentation varies from brown, to 
sectoral hypopigmentation, to the classical 
heterochromia irides; fundus often reveals 
pigmentary changes ranging from a 
blonde fundus, to blonde areas adjacent to 
patchy hyperpigmented areas; dystopia 
canthorum is frequent 

Bilateral HF, with variable intra- and 
interfamilial expression; occurs in 
about 25% of patients with WS1 and 
50% of WS2 individuals  
 

Variable systemic features, but 
pigmentary abnormalities of the hair, 
such the characteristic white forelock, 
are common features; some subtypes 
display musculoskeletal abnormalities of 
upper limbs and Hirschsprung disease of 
the colon (WS3 and WS4, respectively) 

KEARNS-SAYRE 
SYNDROME 

Chronic progressive external 
ophthalmoplegia, particularly in the form of 
ptosis, is frequent; retinopathy usually has 
a salt and pepper appearance; 
retinoschisis and a macular vitelliform-like 
lesion have been reported; corneal 
involvement can lead to decompensation  

Bilateral sensorineural HL with 
possible cochlear origin; individuals 
with subjective/subclinical HL are 
mainly affected in high frequencies 

Other features include heart block, 
cerebellar ataxia, endocrine disorders, 
cognitive impairment, and increased 
levels of cerebrospinal fluid 
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MATERNALLY 
INHERITED DIABETES 
AND DEAFNESS 

Characteristic pattern-like dystrophy that 
ranges from early yellowish flecked 
deposits to chorioretinal atrophy in later 
stages  

Sensorineural HL present in virtually 
all patients 

Other features include cardiomyopathy, 
renal abnormalities and neuropsychiatric 
symptoms 

STICKLER SYNDROME Membranous or beaded vitreous 
phenotype; cataracts and vitreoretinal 
degeneration can develop, whereas retinal 
detachments are common 

HL is common and predominantly 
sensorineural, although a conductive 
or mixed mechanism can be present, 
in patients with palatal defects 

Pierre-Robin sequence, flat midface with 
midline clefting, cardiac and 
musculoskeletal abnormalities 

NORRIE DISEASE Transparent lens with congenital posterior 
synechiae at birth or within a few months 
of life; yellowish-white proliferating 
retrolental mass, which can complicate 
with anterior synechiae, cataracts, corneal 
opacities and retinal detachment; 
microphthalmia may be present, and 
phthisis bulbi often develops within the 1st 

decade of life 

HL is sensorineural, mild, 
asymmetric and high frequency in 
adolescence, progressing to severe 
loss around the 3rd decade of life  
 

Seizures, developmental delay, and 
peripheral vascular abnormalities 

CHARGE SYNDROME Bilateral colobomas with or without 
microphthalmia are very frequent; 
colobomas may affect retina, choroid, 
optic disc and iris, with a poor visual 
prognosis if involvement of macula; 
microcornea, nystagmus, cataracts and 
retinal detachments can be present 

Bilateral and asymmetric external ear 
malformations are present in virtually 
all patients; HL is of mixed type  

Choanal atresia, retarded 
growth/development, heart disease, 
genital hypoplasia and ear abnormalities 

ALPORT SYNDROME Flecked retinopathy, corneal opacities, 
anterior lenticonus and earlier-onset 
cataracts may be present; other reported 
features include foveal hypoplasia, bull’s 
eye maculopathy and formation of macular 
holes 

Varying degrees of sensorineural HL Severe glomerulonephropathy that 
typically evolves to renal failure 
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