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Abstract—Partial state consensus (PSC) is investigated for
chain interconnected systems with time-varying delays and para-
meter uncertainties. A novel design philosophy of PSC control
is proposed and a sequential calculation method is presented to
guarantee the robustness of the controller. A sufficient condition
based on linear matrix inequalities (LMIs) is derived and the
stability is proven by the Lyapunov method. The proposed
approach can ensure that the states which are subject to a
consensus constraint achieve consensus, while those without a
consensus constraint track their own set points. Finally, numer-
ical simulations and a solution proportioning experiment are
developed to validate the effectiveness of the proposed method.

Index Terms— Chain interconnected delay systems, distributed
robust control, partial state consensus (PSC).

I. INTRODUCTION

N MODERN industrial plants, a process network is com-

posed of many units arranged in a possibly complex and
particular structure. There have been many control publications
which seek to classify the network types according to their
structure, such as chain interconnected systems (sometimes
named cascade interconnected systems) [1], [2], [3] and par-
allel interconnected systems [4], [5]. Chain interconnected
systems are common and many process networks can be
modeled in this form, such as a fossil fuel power unit [6] and
a continuous annealing line [7]. A multistage flash distillation
process for desalination, which is also a typical example,
is shown in Fig. 1.

There are many common characteristics in chain intercon-
nected systems. According to Fig. 1, it is straightforward
to conclude that the product (freshwater) can be obtained
by evaporation and liquefaction of material (seawater) under
successively decreasing pressure. Each grade can be regarded
as a subsystem and it is only affected by the adjacent front
and rear grades. Due to material transfer and modeling error,
delays and uncertainties make control design difficult for chain
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Fig. 1. Multistage flash distillation method for desalination with three grades.

interconnected systems. There exist many results on identical
interconnected systems in [8] and [9], but these control design
methods are not suitable due to the heterogeneity and uncer-
tainties of chain interconnected systems. Although some meth-
ods have been developed for heterogeneous systems in [10]
and [11], there are many restrictions on the interconnection
terms or requirements on the availability of full information.
A more effective method is investigated in [2], but the case of
delays is not addressed.

Also in chain interconnected systems, there is a common
dynamic behavior named partial state consensus (PSC), which
means that only some of the states are subject to consensus
constraints. For example in Fig. 1, the pressure of each grade
has a fixed relationship with others and its control can be
considered as a consensus problem. There is no consensus
constraint for the other states, for example the temperatures,
which are required to maintain their own set-points. However,
most of the existing results on large-scale systems [8], [9],
[10], [11], [12], [13] can only achieve consensus, that is, PSC
has not been addressed. Further, the existing work on PSC in
[14] and [15] cannot guarantee the stability of the states which
do not have consensus constraints. Note that the methods in
[16], [14], and [15] cannot process the interconnections. The
effects of delays exist in the consideration of [17], but only
PSC for integrator systems is investigated. A static optimiza-
tion problem with a partial consensus constraint is investigated
in [18], but it is not suitable for solving the PSC problem.
In this work, a new distributed robust PSC control (DR-PSC)
has been proposed to address these outstanding issues. This
approach is more applicable to chain interconnected uncertain
systems than existing methods.

The main contributions are as follows.

1) A novel design approach is proposed to achieve PSC in a
distributed manner. By establishing augmented systems,
the original systems can be converted into auxiliary
systems, making PSC control design convenient and
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Fig. 2. Network of chain interconnected systems.

intuitive. For the case of tracking control, the proposed
distributed PSC control can make the states with and
without consensus constraints reach common and local
set points respectively.

2) A sufficient condition for DR-PSC control is derived for
chain interconnected systems with time-varying delay in
the interactions and uncertainty in the parameters. With
DR-PSC, the dynamic performance of the systems can
be effectively guaranteed.

The brief is structured as follows. In Section II, the dynam-
ics of chain interconnected systems are formulated and the
definition of PSC is given. The main result is presented in
Section III, including the PSC control design and a sufficient
condition for DR-PSC. Section IV shows the results of simu-
lations and an experiment. Section V summarizes the results
and provides conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a chained network composed of N continuous-
time linear uncertain subsystems as follows:

&) = Au&() + By (1) + D A&t — (1) (D)
jeP!

where i € V, &) € RPi,p; > 2 is the state vector,
u;(t) € RY% is the input vector. The state consists of two
parts, the “Nonconsensus” state x; € R™ and the “Consensus”
state z; € R". It can be formulated as & = col(x;, z;), where
pi = m; +n. t(t) is the time-varying delay and the parameter
matrices fori € V, j € P; are

A~ij:Aij+AAijERpiij, E,’:Bi-f-ABiERpini.

In Fig. 2, it is straightforward to see that there are
time-varying delays in the interconnections among the sub-
systems and the neighbors of each subsystem are the adjacent
front and rear elements. Then, the neighbor set P’ in (1) can be
written as P/ = {i — 1,i + 1}NV. There are two special cases
where the neighbor sets are P! = {2} and PY = {N — 1},
asi=1andi=N.

There are several assumptions given as follows.

Assumption 1: The pairs (A;;, Bij),i € V are controllable
and the following equality holds:

A B:
rank " ! i|) =2p;.
([ IPi 0Pi><61i

Assumption 2 [19]: The time-varying delay 7(¢) in inter-
connected terms satisfies 0 < 7(t) < 7 and [7(t)] < u < 1,
where 7, 4 > 0 are both known boundary values. The initial

states & (0) are known and & (¢) = &(0),t € [—7,0],i € V.
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Assumption 3: The uncertain terms in (1) satisfy
[AAii AA; ABi|=DiF;(0)[Evi Evij Exi

where i € V. The matrices D; € RP™>*"i| Ey;; € RV Ey;; €
R>*Pi | E,; € R**% are known and the unknown time-varying
one F;(t) € R" satisfies F," (t)Fi(t) < I.

The definition of PSC can now be presented.

Definition 1: For any initial condition & (0) and each sub-
system i € V), the PSC for (1) is achieved if and only
if all “Nonconsensus” state converge to their individual set
points x4, lim,oox;(f) = x4;, and all “Consensus” state
converge to the common set point (the consensus value) z4,
limteooZi(t) = Z2d>» limt%oozi(t) = Zj(t)v J€ V.

Remark 1: In the multistage flash distillation method for
desalination, the pressure and the temperature of each grade
can be modeled as “Nonconsensus” states and “Consensus”
states, respectively. Then, PSC controllers can be designed
using the method to be proposed in Section III.

According to the framework in Fig. 2, local set points
Xai,i € V are assigned to each subsystem and the com-
mon one z; is only assigned to subsystem 1, which can be
considered as a “leader.” To achieve PSC for (1) based on
a distributed method, subsystems have to exchange informa-
tion between neighbors through the one-way topology, whose
Laplacian matrix L can be formulated as

I, i=j
-1,
0, otherwise.

Lij= j=i—1

For convenience, “Nonconsensus” and “Consensus” track-
ing errors are defined as

€1 = z21(t) — za
e =2zi(t) —zi—1(t), i€ WV\{l}
evi =x;(t) —xqi, €V )

Remark 2: Different from the fully connected topology in
traditional process control, the topology shown in Fig. 2 is
one-way and fixed. It can not only reduce the communication
cost, but also facilitate scalability. When a new subsystem is
added to the network, there is only the link between it and the
last subsystem to be established; the others are not affected.

There are two goals:

1) To propose a PSC control design method for (1) which

will satisfy

tlglolo’ e (] = lim [|z; (£) — zall = 0
lim ez (@) = lim [1z:() — zia (Ol =0, i € V\{1}
lim [lexi (0] = lim |xi() = xa: =0. ieV.

2) To give a sufficient condition for DR-PSC control in the
presence of uncertainties and delays.

III. PARTIAL STATE CONSENSUS CONTROL DESIGN

In this section, a novel method for designing a DR-PSC
control is proposed for (1) and a constructive stability condi-
tion based on linear matrix inequalities (LMIs) is presented.
Several useful lemmas are first presented.
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Lemma 1 [19]: Suppose that U(t) € R? is a vector-valued
function with continuous first-order derivatives. For any matri-
ces M, My, € RP*P, and S = ST > 0, the following
inequality holds:

1
—/ U (s)SU (s)ds
t—z(t)
AT M+ M, * -
=U (I)[—Ml-i-MzT M — M, U@)

;
+T(I)UT(t)|:%;T:|Sl[M1 M, U(t)

where U (1) = col(U(t), U(t — 7(1))).

Lemma 2 (Cholesky Decomposition [20]): If V € R"" is
a symmetric positive definite matrix, then there exists a unique
lower triangular matrix W with positive diagonal entries such
that V. = WW'.

Lemma 3 [21]: There is a symmetric block matrix

Vii V) 0
V= Vor Va2
: V-
0 Vn,N—1 Vn

where V; ; is a block matrix with appropriate dimension. The
inequality V > 0 holds if and only if

M; >0, i=1,2,...,N
V‘i) | = 1
My =1 " o 3)
‘/i’i_‘/i:i_lMi—l‘/i,i—l’ 1 :2,...,N.
Lemma 4 [22]: (Schur complement) The LMI
0(x) S(x)
[SWx) Ry ) <° @

where Q(x), R(x) are symmetric matrices and S(x) depends

affinely on x, is equivalent to
R(x) <0, Q@x)R'(x)ST(x) <o0. (5)

Lemma 5 [23]: Given matrices D, E with appropriately
dimensions, for any ¢ > 0 and F ' (t)F(t) < I, there is

1
DF(W)E+E'F'(t)D" <eDD" + -E"E. (6)
&

Inspired by the method in [24], the following novel aug-
mented systems are established as:

i=1:
[ &1(1) = A& (0) + Buun (1) + Ao (t — (1))
i‘x,l(t) = €x,1 :exlél(t)_xd,l @)
L i‘z,l(t) =é€;,1 = 92151(0 —
i=2,...,N:
&) = Au&i(t) + Biui (1) + Z A&t — (1)
JjeP! 8
Foi(t) = exs = 00 (1) — xa ®
L "‘z,i(t) =€ = ezifi(t) - ezi_lfifl(t)

where 0., = 1oW(Ly,, O, xn), 0z, = 10W(0y s, 1), 7xi € R™
is the variable associated with the error in the “Nonconsensus”

state and r;; € R" is the variable associated with the error in
the “Consensus” state.

For convenience, define the augmented variable as (;(r) :=
col(&i(t), ryi (1), r.i(¢)). The systems (7), (8) can then be
expressed as follows:

) = Gla) + Hun@) + D G —1(0) —m
jeP!
G0 = Gligi(t) + Hui (1) + G161 (r)

+ D G-ty —n, i=2,....N (9
jeP!
where
G = cihuc! + 01 + 05,
G;J = CiA~ijCiT, Gi’i_l = —(92,,‘,1
771 == COl(Opl ’ -xd,l» Zd); ’7i - COl(Opi > xd,i; 0’1,‘)
I:I,' :cigi,ci:[li Opixpl.]—r
K; =row(Ky;, K»;, K3;)
ex,i
elai = [OPiXPi 0Pi><ﬂi|:0nxp_:| OPiXPi:|
0Pi><Pi 0Pi><Pi
92,‘ = m; X p;
l gw_p OPiXPi
A distributed PSC control for (9) is proposed as
ui(t) = Ki&i = Kii&i + Kioryi + Kiar,,; (10

where i € V, K;; € RI>*Pi K;> € R%*™ and K;3 € R#>*"
are gain matrices for the subsystem i.

An infinite-horizon quadratic PSC performance index is
defined as follows:

oo
-
Ji =/ (xi(1) = xa,i) Qi (xi(t) — xq,i)dt
o .
[ @0 - 20) T Qo) = 25 0)ar
O jep,
o0
+ [ w@ Rastods
0
where i € V, Q,; € R">™ Q.; € R"*" and R; € R¥*%
are symmetric positive definite matrices.

The equilibrium point of (9) can be represented by
(Ci.0, i0), i € V. Define the following new auxiliary variables:

wi = —Eio

Vi = U; —ujo= Kiw,-.

(1)

(12)
Then the following auxiliary systems can be expressed by:
(1) = Glwi (1) + Hioy () + D Gylw(t — 1)
jeP!
wi(t) = GLwi(t) + Hivi (1) + G5 w1 (1)

+Z(~;ijj(t—r), i=2,...,N.
JjeP!

13)

The performance index (11) is then replaced by

Ji = /oo w;r(t)ini(t) +Z)I»T(t)R,'Z),'(t)d[
0
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= /OO w,T(t)(Q, + K/,‘RiKi)wi(l)dl‘ (14)
0

where Q; € R**?Pi is a symmetric positive definite
matrix.
Now a key Lemma is given and proved.

Lemma 6: The following three propositions are equivalent.

1) System (1) can achieve PSC asymptotically.
2) The equilibrium points of (9) are asymptotically stable.
3) The auxiliary systems (13) are asymptotically stable.

Proof: Necessity. If PSC for (1) is achieved, there
exists & (¢) such that lim,|0:&(t) — x4z, = 0, and
1imt—>oo|ez§i(t)_ez§j(t)| = 0, lim; |05 () —zal = O,
i €V,j € P, ie., the equilibrium points ;o of (9), or the
auxiliary systems (13), are asymptotically stable. Sufficiency.
If systems (13) are asymptotically stable, then the states
g;i,i € V converge to é:i,O = 0, and e, e;; are both equal
to 0. |

Remark 3: Guaranteed cost control is a typical robust con-
trol that is usually used to solve stabilization problems. The
states and inputs converge to 0 as ¢ approaches oo and the
quadratic performance index is bounded. Since ry;, r,; and
u;,i €V converge to nonzero vectors, the value of (11) is
unbounded. Therefore, the auxiliary systems (13) are estab-
lished to formulate the dynamics of reaching the equilibrium
points for (9). To guarantee performance, (14) is defined and
a corresponding robust control can be designed.

Now the main result is ready to be presented.

Theorem 1: Let Assumptions 1-3 hold. For positive scalars
€1,i, €2,i,€3,; and known constants 7 and u, there exist sym-
metric positive definite matrices X;;, X2, X3, and W; that
satisfy the following local LMIs for subsystem i:

Find €1, €2, 3,1, X1,i» X2,i» X3,i, Wi

S.t. Xl,,', Xz,i, X3,,' > 0, Ei <0 (15)
where
- Ei,l, l = 1
' i — & EFJIEI,-_I, i e V\(i}

Ei’, 1S
éli * * * *
éZi 261 * * k
3351‘ 0 3751‘ * k
0 X3, 0 —f71X3,i *

X1 0 0 0 —Xo

X1 0 0 0 0
W; 0 0 0 0
2 0 0 0 0
0 0 0 0 0
| Es; 0 0 0 0
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* * * * *

* * * * *

* * * * *

* * * * *

* * * * *
—Q;l * * * *

0 —lel * * *

0 0 —ep,il * *

0 0 0 —8251‘1 *

0 0 0 0 —83,1']_

B = ((ciAiic]” +01; + 02;) X1 + ¢; B:W;)
+ ((ciAiic; +01; +623) X1, + CiBiVVi)T
4+ — )Xoy + (e1; +&20)ci DD} ¢
Eoi = X1+ (1 —2)Xa,
B3 = T((ciAjic] + 01+ 02;) X1 + c;B:W;)
é4,i = Eic; X1, + E2 i Wi,

[xp

o a— .
=50 — —4,i

= = . -2 T T
Eoi = (0 —3)X2, E7;,=-TX3;+e3,T°¢;DD; ¢

El,l 54,1 561 0 0 Eg,i 0 Eg,
i 0 Eyy 0 Eo; B
B3 Hs; O 0
0 0

0 0
Es.i 0

0 =g

| Z Zs 0 : 0
where
— T T T
Ey = Xz,i(Ci—lAi—l,iCi,l) +ciAii—ic; Xoioi
—02i—1X1,i-1

é2,i = Xz,i(Ci71Ai71,iCiT,1)T
é3,i = f(ciAi,i—lciTXZ,i—l —60i-1X1,-1)
é4,i = cjAii1¢] Xai1, éi,i = 7ciAiioic] Xa1
Be; = Z7; = sz,i(Ciinq,iCiT,l)T
és,i = El,i,i—lciTXZ,i—l, ~é9,i = X2,ici—lEIi_1,i~
Then the DR-PSC control for (1) with K; = W; X 1_,1 can

achieve PSC and guarantee the following performance index
is satisfied:

J < Z (G0 — Co,i)T(PLi +7P2i) (G (0) — Coi). (16)
ieV
Proof: Denote w(t) := col(w;(t), wa(t), ..., wy(t)). The
dynamics in (13) can be written as

w(t) = (G + HK)w(t) + Gaw(t — 1(1)) (17)

Authorized licensed use limited to: University College London. Downloaded on October 12,2022 at 18:40:51 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

where G, = cA.c" + 0O, H = ¢B, Gy = cAyc', A, =
AA+DFE, ., B=B+DF()E;, Ay = Aj+DF(t)Es., ® =
0.+ Lo(Iy®86,), 6. = row(d.,,0,,,...,0.,). Besides, 6,,
¢, Ae, B, D, F(t), Ei., and E,, are block diagonal matrices
composed of heterogeneous matrices 6, ;, ¢;, A¢, Bi, D;, F;(t),
E, i, and E,; of each subsystem. A; and E, . can be written
as

0 A 0 0
Ay 0 An
A=10 Ap 0 0
AN-1N
0 . 0 Awyya O |
0 Ei 0 0 ]
Ei 0 Eq 23
E2,c = 0 E1,32 0 0
: E\n_1,N
. 0 0  Einn-i 0

Consider a Lyapunov—Krasovskii function of (13) as
V() = Vi) + Va(t) + Va(t) (18)
where

Vi) = w' (1) Prw(t)
Va(t) =/ w' (s)Prw(s)ds

Vi(t) = [ t_ /; W' (s)P3tb(s)dsdO

and Py, P», P; € R?P*%7 p = le:l p; are symmetric positive
definite block diagonal matrices composed of N dimensional
heterogeneous matrices. There must be constants a, b, ¢ > 0 to
ensure the following inequality holds:

alw®|* < V()

b sup [lw(t + )1 +c sup [l + )l
se[—h,0] se[—h,0]

=
=

Then according to Lemma 1, the derivative of V (¢) is

. w(t) ! w(t)
V(t)§|:u)(t—‘[):| (H1+H2+H%)|:w(l—‘[):| (19)

where

I, = [Pl(GC+HK)~+ (G.+ HK)' P, *}
G, P 0
P 0
m=[ 5 o v
- NT
Hg_-[(GCJFGfK) }P[GC+I-1K Gal
d
M T+ M, *
+|:—M1+M2T —MzT—M2i|
M,
+T[M2T}P3 (M My ]

To obtain the distributed robust control, the following
inequality must hold:

KTRK 0
I + I + 113 + Q+0 0:|<O. (20)
Then, let X, = P!, X, = P;', X5 = P!, W = KX|,
choose M| = —P;, M, = P,, and define a nonsingular matrix

[P o0 IR IV A |
[ tl (A
According to Lemmas 4, Lemma 5 and by multiplying both

sides of (20) by diag(T !, I, X3, 1, 1, I), the following LMI
can be obtained:

E11 * * * *
52,1 52,2 * * *k
B3 E3p  Hsgj * *
0 X3 0 —‘L'_lX3 *
_ | x 0o o 0 -X
- X4 0 0 0 0
w 0 0 0 0
Z, 0 0 0 0
0 Zo» 0 0 0
| Elo1 Ep2 O 0 0
* * * * %]
* * * * *
* * * * *
* * * * *
TR R P
0 —R™! * * *
0 0 —e1l * *
0 0 0 —éeal *
0 0 0 0 —e3l

where
B = ((CACCT + @)X1 +cAyc Xy + cBW)
+((cAccT + @)X +cAgc Xa +cBW)'
+(u— D)X, + (61 + &2)cDD "¢’
Eoi = Xac Aje+ X1+ (= 2)Xa, Ean=(u—3)X,
Es1 = 7((cAcc” +©) X1 + cBW) + TcAuc' Xs
H3p = TcAgc' Xy, B33 =—7X3+e3ticDD ¢’
Eg1 = E1cc' Xy + Egc" Xy + E2 W
Zo2 = Eqc' X2, Eio1 = g1, E102 = Zo..
Define a permutation matrix Y as follows:
T =col(Yy, Va,..., Yn)

where Y; = col(yi.i, 2. ..., y10,;) and let Iz be an iden-
tity matrix with the same dimension as =. Then y;; =
I=Q2pitk — 1)+ 1+ 1:2pk +1,:). Multiplying the right and

left sides of (21) by Y and YT respectively,

(22)

E=7_TEY"

iy i _
=1,1 .:251 0 R 0
= = =T
—=2,1 =22 =32

= £, & < 2
0 S5, I35 0 0 (23
=T
5 =NN-1
L 0 0 ENN-1 Evy
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where Ei,i, —1 in (15) can be obtained. Then, according
to Lemmas 2 and 3, the feasible LMI problem in (15) can be
obtained. From (20), the following inequality holds:

Vi) + V() + V3(1) < —0" (1)(Q + K RK)w(®).

Because of the positive definiteness of Q and R, the
derivative of V (¢) is less than 0. According to the Lyapunov
Theorem and Lemma 6, (13) is asymptotically stable and PSC
for (1) under (10) can be achieved. In addition, according
to the initial states in Assumption 1 and integrating both
sides of (24), bounded performance in (16) can be obtained.
Theorem 1 is proven. |

Based on Theorem 1, Algorithm 1 is shown to describe how
to calculate the DR-PSC control for (1).

(24)

Algorithm 1 DR-PSC for Chain Interconnected Systems

Input: N, AT, T,&;(0), %44, 24

Qutput: K; and the responses of &;

Initialization.Let 7 = 2.

Obtain K7 by solving (15) for subsystem 1.

while : < N do

Receive éi_l, fli_u, E;_1,; from subsystem 7 — 1.
Obtain K; by solving (15) and set ¢ — ¢ + 1.

end

The calculation of gain matrices is ended. Let ¢ = 0.

while ¢t < T do

State information communication.

Locally calculate 7, ;, 7, ;, ¢« € V by integrators.
Calculate and implement u;(¢) in (10).

Set t — t + AT.

end

Remark 4: In Algorithm 1, the LMI feasibility problems
can be solved locally and sequentially to obtain the control
gain matrices K; and PSC control u;,i € V. This method is
fully distributed because global information on the network
is not needed during the calculations. In contrast to the
centralized form, high-dimensional matrix calculations and
the concept of the central node are avoided to reduce the
computational burden and improve the operability of the
algorithm in practice.

Remark 5: Due to the heterogeneity of subsystems and
the special structure of networks, it is infeasible to adopt
general decoupling methods to design controllers for chain
interconnected systems without restricting the interconnection
terms. Here, the method based on Cholesky decomposition
in Lemma 2 includes no requirements on the interconnected
parameters A;;. During operation, limited neighbor informa-
tion is required for local calculations and the method does not
introduce too great a burden on the communication network.

IV. SIMULATION AND EXPERIMENTAL VALIDATION
A. Numerical Simulation
Consider a chained network composed of three subsystems,
whose parameters are shown as
A =1[1,05;1,1], B;=[1,0.5;0,3]
Ay =1[1.5,1;0.5,0.5], B, =1[1.5,0.5;0,2]
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Fig. 3. Responses of “Nonconsensus” states.

Ag; =[1.7,1,0.5;1,0.3,0; 0.6,0,0.5]
1.7,0.5,0;0,0,1.7; 0, 1.5, 0]

0,0;0.4,0], Ax»=10,0,0.5;0.6,0,0]
0.7,0;0,0], Az =1[1.3,0;0,0;0,—-0.3].

[
=
A12 =
=

The parameter uncertainties are assumed to satisfy D; =
D, = D3 =0.1% L. E/,, Eu’ E? are matrices with random
elements and the unknown parameter F;(¢) is a time-varying
random scalar whose range is [—10, 10]. The delay is set

as 7(t) = 0.2sin(¢), and 7 = 0.2, ©# = 0.2. The matrices
in (14) are chosen as Q; = 10 % diag(/p,,0.05 * I,,),
R; = 0.5x1,,. For “Nonconsensus” states x;(¢), the set-points

are set as x4,1 = —3,X42 = —2, %43 = [5; 3]. The common
set point of z;(r) is set as z4g = 1.

To demonstrate the superiority, effectiveness, and robustness
of the proposed PSC algorithm, the following simulation
results are compared.

1) Simple PSC Control (Sim-PSC): There is no consider-
ation of the delays. The solution is only based on the
Lyapunov inequality P(G. + G4+ HK)+ (G.+ G4+
HK)"P <0.

2) Centralized Robust PSC Control (CR-PSC): The algo-
rithm is the centralized form of the one proposed in
Algorithm 1.

3) DR-PSC: The algorithm is proposed in Algorithm 1.

The performance with CR-PSC is not significantly different
from that with DR-PSC. Thus, there are only responses of the
states with Sim-PSC and DR-PSC shown in Figs. 3 and 4. It is
straightforward to see that all subsystems can achieve PSC and
converge to the desired setpoints. The dynamic performance
of DR-PSC is much better than that of Sim-PSC. Further,
disturbances (amplitude: 2, duration: 20-21 s) are added to
verify the robustness of the algorithm. In the detailed view of
Figs. 3 and 4, it is not difficult to see that the systems with
DR-PSC are less affected by disturbances. The DR-PSC has
better robustness than Sim-PSC.

In Table I, the simulation results of the three algorithms are
shown. DR-PSC has slightly worse performance than CR-PSC,
but it requires much lower computational effort. Although
sim-PSC also has a very small amount of computation, its
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TABLE I
CONVERGENCE TIME AND PERFORMANCE INDEX OF THREE ALGORITHMS

Sim-PSC  CR-PSC  DR-PSC
Convergence time 0.0477s 1.9111s 0.8711s
Performance Index  1132.64 441.12 449.09

Fig. 5. Distributed cooperative optimization control experimental platform.

performance is very poor, and even the algorithm is invalid.
The effectiveness, robustness, and superiority of the proposed
method are demonstrated.

B. Experiment

In this section, a solution proportioning experiment is car-
ried out to validate the effectiveness of the proposed PSC
control. There is a distributed cooperative optimization control
experimental platform developed by the research team at the
China University of Petroleum (East China), which is shown
in Fig. 5. There are two tanks R101 and R102 which are
used as reaction vessels. V111 and V112 are material tanks
containing water and NaOH, respectively. The tank V113
contains hot water to store the heat needed for the experiment.
The materials and hot water are transported to the main tanks
and jackets by pumps.

In this experiment, the two-tank process is configured as
shown in Fig. 6. The tanks are chain interconnected with R101
and R102 being connected by a pipeline. The partial product
of the former is sent to the latter as material. This flow and the
water flow of R101 are uncontrollable and they remain 75 £
10 L/h and 50+ 10 L/h, which are regarded as the uncertainties
in R101 and R102. Since the medium needs to pass through a

V-113

3
iz

e Be—CD
rovoe
™

TIc103-0ut

Fig. 6. Scheme of the two-tank process.

pipe from R101 to R102, there is an uncertain lag phenomenon
between them. Moreover, there is a coupling between the two
tanks in the supply of material. The coupling mentioned above
can be modeled as interconnections with delay in the state
equation.

The solution proportioning experiment is designed as fol-
lows. There is ample hot water at 55 °C in V113. Water
in V111 is at room temperature (about 20 °C) and the
10.0 kmol/m® NaOH solution in V112 is at about 30 °C.
To ensure the progress of the experiment, R101 and R102
are preheated to about 30 °C. Then, the jackets are heated
by the hot water from V113 and the NaOH solution is
injected into R101 and R102. At the same time, PSC control
is implemented. PSC1 and PSC2 control the NaOH feed
valves FCV101, FCV102 and the jacket feed valves FCV111,
FCV112 to achieve the set-point tracking control of concen-
tration cy, ¢, and temperature tq, t,.

The experimental objective is to configure 4.0 kmol/m?
NaOH solution at 38 °C, 43 °C in RI101 and R102,
respectively. In Fig. 6, the local set-points (38 °C, 43 °C)
are assigned to PSCI, PSC2, and the common set-point
(4.0 kmol/m?, converted to conductivity) is only assigned
to PSCI1. ¢y, co are modeled as “Nonconsensus” states and
1, as “Consensus” states. Then, PSC control can be cal-
culated by the distributed method in Theorem 1. The model
parameters are shown as

A1 = [0.56825,0.00541; —0.00001, 0.63425]
Ajp = [0.00022, —0.00922; —0.00003, 0.00022]
Ay = [—0.00045, 0.00081; —0.00002, —0.00018]
Az = [0.60400, —0.00309; —0.00001, 0.59800]
B; =[0.43165,0.00131; —0.00001, 0.36512]

B, =[0.39561, —0.00026; —0.00002, 0.40123]
E{; = [0.00010, 0.00001; 0, —0.00021]

E» = [0.00009, 0.00011; 0, 0.00012]

Ey, = [0,0.00001; 0, 0]

E>; = [-0.00001, 0.00001; 0, 0]
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Fig. 7. Temperature and concentration of two tanks.
E; = [0.00021, 0.00001; 0, 0]
E, = [-0.00020, 0; 0, 0.00008]

and D; = D, = I, F;(t) are time-varying random scalars.
The sampling period is selected as 7y = 1 second and the

sampling length as 7 = 10000. The time-varying delay is
modeled as 7(r) = 7sin(ut) where 7 = 1, u = 0.01. Set

Q1 = 0, =10% 1, and R; = R, = I. The gain matrices
obtained by the proposed method are shown as
K. — —45.010 0.073 —21.572 0.033
P71 —0.075 —49914 —0.044 -—22.618
K> — —55.173 0.017 —24.284 0.005
2= 0.051 —56.726 0.025 —28.735 |

The experimental results are shown below.

Temperature and concentration trends are given in Fig. 7.
With the PSC control, #1,%, approach 38 °C and 43 °C,
respectively, and cy, ¢; achieve consensus. Since the process
of temperature variation is slow, stabilization of |, f, takes a
long time. The effectiveness and robustness of the proposed
algorithm are validated.

V. CONCLUSION

A PSC problem for chain interconnected delay systems
with parameter uncertainty has been investigated. Augmented
systems and auxiliary systems have been established to design
the distributed PSC control. This control is fully distributed
and can take into account the optimization and robustness
of the systems. A sufficient condition is given in LMI form
and the gain matrices can be obtained by solving feasible
problems locally. The results of numerical simulations and a
solution proportioning experiment are shown to validate the
effectiveness of the proposed method. Future work will extend
this to nonlinear systems.

REFERENCES

[1] H. Feng, H. Xu, S. Xu, and W. Chen, “Model reference tracking control
for spatially interconnected discrete-time systems with interconnected
chains,” Appl. Math. Comput., vol. 340, pp. 50-62, Jan. 2019.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

E. Agarwal, S. Sivaranjani, V. Gupta, and P. Antsaklis, “Sequential
synthesis of distributed controllers for cascade interconnected systems,”
in Proc. Amer. Control Conf. (ACC), Jul. 2019, pp. 5816-5821.

G. Wang, H. Xu, G. Zhang, and J. Yao, “Hg filtering for spatially
interconnected time-delay systems with interconnected chains in finite
frequency domains,” Asian J. Control, vol. 22, no. 1, pp. 511-520, 2020.
S. Zhang, D. Zhao, and S. K. Spurgeon, “Robust distributed model pre-
dictive control for systems of parallel structure within process networks,”
J. Process Control, vol. 82, pp. 70-90, Oct. 2019.

S. Zhang, D. Zhao, and S. K. Spurgeon, “Output feedback robust
distributed model predictive control for parallel systems in process
networks with competitive characteristics,” Control Eng. Pract., vol. 113,
Aug. 2021, Art. no. 104842.

H. Liu, S. Li, and T. Chai, “Intelligent decoupling control of power plant
main steam pressure and power output,” Int. J. Elect. Power Energy Syst.,
vol. 25, no. 10, pp. 809-819, 2003.

N. Yoshitani, “Modelling and parameter estimation for strip temperature
control in continuous annealing processes,” in Proc. 19th Annu. Conf.
IEEE Ind. Electron. (IECON), vol. 1, Nov. 1993, pp. 469—474.

F. Borrelli and T. Keviczky, “Distributed LQR design for identical
dynamically decoupled systems,” IEEE Trans. Autom. Control, vol. 53,
no. 8, pp. 1901-1912, Sep. 2008.

R. Ghadami and B. Shafai, “Decomposition-based distributed control
for continuous-time multi-agent systems,” IEEE Trans. Autom. Control,
vol. 58, no. 1, pp. 258-264, Jan. 2013.

Y. Zheng, S. Li, and H. Qiu, “Networked coordination-based distributed
model predictive control for large-scale system,” IEEE Trans. Control
Syst. Technol., vol. 21, no. 3, pp. 991-998, May 2013.

Y. Cheng and V. Ugrinovskii, “Leader—follower tracking control with
guaranteed consensus performance for interconnected systems with
linear dynamic uncertain coupling,” Int. J. Control, vol. 88, no. 8,
pp. 1663-1677, 2015.

J. C. Zegers, E. Semsar-Kazerooni, J. Ploeg, N. Van De Wouw, and
H. Nijmeijer, “Consensus control for vehicular platooning with veloc-
ity constraints,” IEEE Trans. Control Syst. Technol., vol. 26, no. 5,
pp. 1592-1605, Jul. 2018.

A. Wang, B. Mu, and Y. Shi, “Event-triggered consensus control
for multiagent systems with time-varying communication and event-
detecting delays,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2,
pp. 507-515, Mar. 2019.

B. Wu, Z. Ma, and Y. Wang, “Partial component consensus of leader-
following multi-agent systems,” Acta Phys. Sinica, vol. 66, no. 6, 2017,
Art. no. 06021.

Z.Zhang, Z. Ma, and Y. Wang, “Partial component consensus of leader-
following multi-agent systems via intermittent pinning control,” Phys.
A, Stat. Mech. Appl., vol. 536, Dec. 2019, Art. no. 122569.

Y.-H. Lim and H.-S. Ahn, “Partial consensus of identical feedforward
dynamic systems with input saturations,” Int. J. Robust Nonlinear
Control, vol. 26, no. 11, pp. 2494-2510, Jul. 2016.

F. Xiao, L. Wang, and J. Chen, “Partial state consensus for networks
of second-order dynamic agents,” Syst. Control Lett., vol. 59, no. 12,
pp.- 775-781, Dec. 2010.

7Z. Xia, Y. Liu, J. Qiu, Q. Ruan, and J. Cao, “An RNN-based
algorithm for decentralized-partial-consensus constrained optimization,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Aug. 31, 2021,
doi: 10.1109/TNNLS.2021.3098668.

X.-M. Zhang, M. Wu, J.-H. She, and Y. He, “Delay-dependent stabi-
lization of linear systems with time-varying state and input delays,”
Automatica, vol. 41, no. 8, pp. 1405-1412, Aug. 2005.

G. H. Golub and C. F. V. Loan, Matrix Computations. Bal-
timore, MD, USA: Johns Hopkins Univ. Press, 2012, ch. 4,
pp. 153-219.

E. Agarwal, S. Sivaranjani, V. Gupta, and P. J. Antsaklis, “Distributed
synthesis of local controllers for networked systems with arbitrary
interconnection topologies,” IEEE Trans. Autom. Control, vol. 66, no. 2,
pp- 683-698, Feb. 2021.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, of Studies in Applied Math-
ematics, vol. 15. Philadelphia, PA, USA: SIAM, Jun. 1994.

L. Xie, “Output feedback H. control of systems with parameter
uncertainty,” Int. J. Control, vol. 63, no. 4, pp. 741-750, 1996.

M.-L. Ni and Y. Chen, “Decentralized stabilization and output track-
ing of large-scale uncertain systems,” Automatica, vol. 32, no. 7,
pp- 1077-1080, Jul. 1996.

Authorized licensed use limited to: University College London. Downloaded on October 12,2022 at 18:40:51 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TNNLS.2021.3098668


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


