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Abstract— Partial state consensus (PSC) is investigated for1

chain interconnected systems with time-varying delays and para-2

meter uncertainties. A novel design philosophy of PSC control3

is proposed and a sequential calculation method is presented to4

guarantee the robustness of the controller. A sufficient condition5

based on linear matrix inequalities (LMIs) is derived and the6

stability is proven by the Lyapunov method. The proposed7

approach can ensure that the states which are subject to a8

consensus constraint achieve consensus, while those without a9

consensus constraint track their own set points. Finally, numer-10

ical simulations and a solution proportioning experiment are11

developed to validate the effectiveness of the proposed method.12

Index Terms— Chain interconnected delay systems, distributed13

robust control, partial state consensus (PSC).14

I. INTRODUCTION15

IN MODERN industrial plants, a process network is com-16

posed of many units arranged in a possibly complex and17

particular structure. There have been many control publications18

which seek to classify the network types according to their19

structure, such as chain interconnected systems (sometimes20

named cascade interconnected systems) [1], [2], [3] and par-21

allel interconnected systems [4], [5]. Chain interconnected22

systems are common and many process networks can be23

modeled in this form, such as a fossil fuel power unit [6] and24

a continuous annealing line [7]. A multistage flash distillation25

process for desalination, which is also a typical example,26

is shown in Fig. 1.27

There are many common characteristics in chain intercon-28

nected systems. According to Fig. 1, it is straightforward29

to conclude that the product (freshwater) can be obtained30

by evaporation and liquefaction of material (seawater) under31

successively decreasing pressure. Each grade can be regarded32

as a subsystem and it is only affected by the adjacent front33

and rear grades. Due to material transfer and modeling error,34

delays and uncertainties make control design difficult for chain35
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Fig. 1. Multistage flash distillation method for desalination with three grades.

interconnected systems. There exist many results on identical 36

interconnected systems in [8] and [9], but these control design 37

methods are not suitable due to the heterogeneity and uncer- 38

tainties of chain interconnected systems. Although some meth- 39

ods have been developed for heterogeneous systems in [10] 40

and [11], there are many restrictions on the interconnection 41

terms or requirements on the availability of full information. 42

A more effective method is investigated in [2], but the case of 43

delays is not addressed. 44

Also in chain interconnected systems, there is a common 45

dynamic behavior named partial state consensus (PSC), which 46

means that only some of the states are subject to consensus 47

constraints. For example in Fig. 1, the pressure of each grade 48

has a fixed relationship with others and its control can be 49

considered as a consensus problem. There is no consensus 50

constraint for the other states, for example the temperatures, 51

which are required to maintain their own set-points. However, 52

most of the existing results on large-scale systems [8], [9], 53

[10], [11], [12], [13] can only achieve consensus, that is, PSC 54

has not been addressed. Further, the existing work on PSC in 55

[14] and [15] cannot guarantee the stability of the states which 56

do not have consensus constraints. Note that the methods in 57

[16], [14], and [15] cannot process the interconnections. The 58

effects of delays exist in the consideration of [17], but only 59

PSC for integrator systems is investigated. A static optimiza- 60

tion problem with a partial consensus constraint is investigated 61

in [18], but it is not suitable for solving the PSC problem. 62

In this work, a new distributed robust PSC control (DR-PSC) 63

has been proposed to address these outstanding issues. This 64

approach is more applicable to chain interconnected uncertain 65

systems than existing methods. 66

The main contributions are as follows. 67

1) A novel design approach is proposed to achieve PSC in a 68

distributed manner. By establishing augmented systems, 69

the original systems can be converted into auxiliary 70

systems, making PSC control design convenient and 71
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Fig. 2. Network of chain interconnected systems.

intuitive. For the case of tracking control, the proposed72

distributed PSC control can make the states with and73

without consensus constraints reach common and local74

set points respectively.75

2) A sufficient condition for DR-PSC control is derived for76

chain interconnected systems with time-varying delay in77

the interactions and uncertainty in the parameters. With78

DR-PSC, the dynamic performance of the systems can79

be effectively guaranteed.80

The brief is structured as follows. In Section II, the dynam-81

ics of chain interconnected systems are formulated and the82

definition of PSC is given. The main result is presented in83

Section III, including the PSC control design and a sufficient84

condition for DR-PSC. Section IV shows the results of simu-85

lations and an experiment. Section V summarizes the results86

and provides conclusions.87

II. PRELIMINARIES AND PROBLEM FORMULATION88

Consider a chained network composed of N continuous-89

time linear uncertain subsystems as follows:90

ξ̇i (t) = Ãiiξi (t) + B̃i ui (t) +
�
j∈P i

Ãi jξ j (t − τ (t)) (1)91

where i ∈ V , ξi(t) ∈ R pi , pi ≥ 2 is the state vector,92

ui(t) ∈ Rqi is the input vector. The state consists of two93

parts, the “Nonconsensus” state xi ∈ Rmi and the “Consensus”94

state zi ∈ Rn . It can be formulated as ξi = col(xi , zi ), where95

pi = mi + n. τ (t) is the time-varying delay and the parameter96

matrices for i ∈ V, j ∈ Pi are97

Ãi j = Ai j + �Ai j ∈ R pi ×p j , B̃i = Bi + �Bi ∈ R pi ×qi .98

In Fig. 2, it is straightforward to see that there are99

time-varying delays in the interconnections among the sub-100

systems and the neighbors of each subsystem are the adjacent101

front and rear elements. Then, the neighbor set P i in (1) can be102

written as P i = {i − 1, i + 1}∩V . There are two special cases103

where the neighbor sets are P1 = {2} and PN = {N − 1},104

as i = 1 and i = N .105

There are several assumptions given as follows.106

Assumption 1: The pairs (Aii , Bii ), i ∈ V are controllable107

and the following equality holds:108

rank

��
Aii Bi

Ipi 0pi ×qi

��
= 2 pi .109

Assumption 2 [19]: The time-varying delay τ (t) in inter-110

connected terms satisfies 0 ≤ τ (t) ≤ τ̄ and |τ̇ (t)| ≤ μ ≤ 1,111

where τ̄ , μ > 0 are both known boundary values. The initial112

states ξi(0) are known and ξi (t) = ξi (0), t ∈ [−τ̄ , 0], i ∈ V .113

Assumption 3: The uncertain terms in (1) satisfy 114�
�Aii �Ai j �Bi

� = Di Fi (t)
�

E1,ii E1,i j E2,i
�

115

where i ∈ V . The matrices Di ∈ R pi ×ri , E1,ii ∈ Rsi ×pi , E1,i j ∈ 116

Rsi ×p j , E2,i ∈ Rsi ×qi are known and the unknown time-varying 117

one Fi (t) ∈ Rri ×si satisfies F�
i (t)Fi (t) ≤ I . 118

The definition of PSC can now be presented. 119

Definition 1: For any initial condition ξi (0) and each sub- 120

system i ∈ V , the PSC for (1) is achieved if and only 121

if all “Nonconsensus” state converge to their individual set 122

points xd,i , limt→∞xi(t) = xd,i , and all “Consensus” state 123

converge to the common set point (the consensus value) zd , 124

limt→∞zi(t) = zd , limt→∞zi (t) = z j (t), j ∈ V . 125

Remark 1: In the multistage flash distillation method for 126

desalination, the pressure and the temperature of each grade 127

can be modeled as “Nonconsensus” states and “Consensus” 128

states, respectively. Then, PSC controllers can be designed 129

using the method to be proposed in Section III. 130

According to the framework in Fig. 2, local set points 131

xd,i , i ∈ V are assigned to each subsystem and the com- 132

mon one zd is only assigned to subsystem 1, which can be 133

considered as a “leader.” To achieve PSC for (1) based on 134

a distributed method, subsystems have to exchange informa- 135

tion between neighbors through the one-way topology, whose 136

Laplacian matrix L can be formulated as 137

Li j =

⎧⎪⎨
⎪⎩

1, i = j

−1, j = i − 1

0, otherwise.

138

For convenience, “Nonconsensus” and “Consensus” track- 139

ing errors are defined as 140

ez,1 = z1(t) − zd

ez,i = zi (t) − zi−1(t), i ∈ V\{1} 141

ex,i = xi(t) − xd,i , i ∈ V . (2) 142

Remark 2: Different from the fully connected topology in 143

traditional process control, the topology shown in Fig. 2 is 144

one-way and fixed. It can not only reduce the communication 145

cost, but also facilitate scalability. When a new subsystem is 146

added to the network, there is only the link between it and the 147

last subsystem to be established; the others are not affected. 148

There are two goals: 149

1) To propose a PSC control design method for (1) which 150

will satisfy 151

lim
t→∞

��ez,1(t)
�� = lim

t→∞	z1(t) − zd	 = 0 152

lim
t→∞

��ez,i (t)
�� = lim

t→∞	zi (t) − zi−1(t)	 = 0, i ∈ V\{1} 153

lim
t→∞

��ex,i (t)
�� = lim

t→∞
��xi(t) − xd,i

�� = 0, i ∈ V . 154

2) To give a sufficient condition for DR-PSC control in the 155

presence of uncertainties and delays. 156

III. PARTIAL STATE CONSENSUS CONTROL DESIGN 157

In this section, a novel method for designing a DR-PSC 158

control is proposed for (1) and a constructive stability condi- 159

tion based on linear matrix inequalities (LMIs) is presented. 160

Several useful lemmas are first presented. 161
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Lemma 1 [19]: Suppose that U(t) ∈ R p is a vector-valued162

function with continuous first-order derivatives. For any matri-163

ces M1,M2 ∈ R p×p, and S = S� > 0, the following164

inequality holds:165

−
� t

t−τ(t)
U̇�(s)SU̇ (s)ds166

≤ Ū�(t)

�
M1

� + M1 ∗
−M1 + M2

� −M2
� − M2

�
Ū(t)167

+ τ (t)Ū�(t)

�
M1

�

M2
�

�
S−1

�
M1 M2

�
Ū(t)168

where Ū(t) = col(U(t), U(t − τ (t))).169

Lemma 2 (Cholesky Decomposition [20]): If V ∈ Rn×n is170

a symmetric positive definite matrix, then there exists a unique171

lower triangular matrix W with positive diagonal entries such172

that V = W W � .173

Lemma 3 [21]: There is a symmetric block matrix174

V =

⎡
⎢⎢⎢⎢⎣

V11 V �
21 0

V21 V22
. . .

. . .
. . . V �

N,N−1
0 VN,N−1 VN N

⎤
⎥⎥⎥⎥⎦175

where Vi, j is a block matrix with appropriate dimension. The176

inequality V > 0 holds if and only if177

Mi > 0, i = 1, 2, . . . , N178

Mi =



Vi,i , i = 1

Vi,i − Vi,i−1 M−1
i−1 V �

i,i−1, i = 2, . . . , N.
(3)179

Lemma 4 [22]: (Schur complement) The LMI180 �
Q(x) S(x)
S�(x) R(x)

�
< 0 (4)181

where Q(x), R(x) are symmetric matrices and S(x) depends182

affinely on x , is equivalent to183

R(x) < 0, Q(x)R−1(x)S�(x) < 0. (5)184

Lemma 5 [23]: Given matrices D, E with appropriately185

dimensions, for any ε > 0 and F�(t)F(t) ≤ I , there is186

DF(t)E + E�F�(t)D� ≤ εDD� + 1

ε
E� E . (6)187

Inspired by the method in [24], the following novel aug-188

mented systems are established as:189

i = 1:190 ⎧⎪⎨
⎪⎩

ξ̇1(t) = Ã11ξ1(t) + B̃1u1(t) + Ã12ξ2(t − τ (t))

ṙx,1(t) = ex,1 = θx1ξ1(t) − xd,1

ṙz,1(t) = ez,1 = θz1ξ1(t) − zd

(7)191

i = 2, . . . , N :192 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇i (t) = Ãiiξi(t) + B̃i ui(t) +
�
j∈P i

Ãi jξ j (t − τ (t))

ṙx,i (t) = ex,i = θxi ξi (t) − xd,i

ṙz,i (t) = ez,i = θzi ξi (t) − θzi−1ξi−1(t)

(8)193

where θxi = row(Imi , 0mi ×n), θzi = row(0n×mi , In), rx,i ∈ Rmi194

is the variable associated with the error in the “Nonconsensus”195

state and rz,i ∈ Rn is the variable associated with the error in 196

the “Consensus” state. 197

For convenience, define the augmented variable as ζi(t) := 198

col(ξi (t), rx,i (t), rz,i (t)). The systems (7), (8) can then be 199

expressed as follows: 200

ζ̇1(t) = G̃11
c ζ1(t) + H̃1u1(t) +

�
j∈P1

G̃1 j
d ζ j(t − τ (t)) − η1 201

ζ̇i(t) = G̃ii
c ζi(t) + H̃iui(t) + G̃i,i−1

c ζi−1(t) 202

+
�
j∈P i

G̃i j
d ζ j (t − τ (t)) − ηi , i = 2, . . . , N (9) 203

where 204

G̃ii
c = ci Ãii c

�
i + θ1,i + θ2,i 205

G̃i j
d = ci Ãi j c

�
i , G̃i,i−1

c = −θ2,i−1 206

η1 = col(0p1 , xd,1, zd), ηi = col(0pi , xd,i , 0ni ) 207

H̃i = ci B̃i , ci = �
Ipi 0pi ×pi

��
208

Ki = row
�
K1,i , K2,i , K3,i

�
209

θ1,i =
�

0pi ×pi 0pi ×pi

�
θx,i

0n×pi

�
0pi ×pi

�
210

θ2,i =
⎡
⎣ 0pi ×pi 0pi ×pi�

0mi ×pi

θzi

�
0pi ×pi

⎤
⎦. 211

A distributed PSC control for (9) is proposed as 212

ui (t) = Kiζi = Ki,1ξi + Ki,2rx,i + Ki,3rz,i (10) 213

where i ∈ V , Ki,1 ∈ Rqi ×pi , Ki,2 ∈ Rqi ×mi and Ki,3 ∈ Rqi ×n
214

are gain matrices for the subsystem i . 215

An infinite-horizon quadratic PSC performance index is 216

defined as follows: 217

Ji =
� ∞

0

�
xi(t) − xd,i

��
Qx,i

�
xi(t) − xd,i

�
dt 218

+
� ∞

0

�
j∈Pi

�
zi(t) − z j(t)

��
Qz,i

�
zi(t) − z j(t)

�
dt 219

+
� ∞

0
ui (t)

� Ri ui (t)dt (11) 220

where i ∈ V, Qx,i ∈ Rmi ×mi , Qz,i ∈ Rni ×ni and Ri ∈ Rqi ×qi 221

are symmetric positive definite matrices. 222

The equilibrium point of (9) can be represented by 223

(ζi,0, ui,0), i ∈ V . Define the following new auxiliary variables: 224

wi = ζi − ζi,0 225

vi = ui − ui,0 = Kiwi . (12) 226

Then the following auxiliary systems can be expressed by: 227

ẇ1(t) = G̃11
c w1(t) + H̃1v1(t) +

�
j∈P1

G̃1 j
d w j (t − τ ) 228

ẇi(t) = G̃ii
c wi(t) + H̃ivi (t) + G̃i,i−1

c wi−1(t) 229

+
�
j∈P i

G̃i j
d w j(t − τ), i = 2, . . . , N. (13) 230

The performance index (11) is then replaced by 231

Ji =
� ∞

0
w�

i (t)Qiwi(t) + v�
i (t)Rivi (t)dt 232

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on October 12,2022 at 18:40:51 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

=
� ∞

0
w�

i (t)
�
Qi + K �

i Ri Ki
�
wi (t)dt (14)233

where Qi ∈ R2pi ×2pi is a symmetric positive definite234

matrix.235

Now a key Lemma is given and proved.236

Lemma 6: The following three propositions are equivalent.237

1) System (1) can achieve PSC asymptotically.238

2) The equilibrium points of (9) are asymptotically stable.239

3) The auxiliary systems (13) are asymptotically stable.240

Proof: Necessity. If PSC for (1) is achieved, there241

exists ξi (t) such that limt→∞|θxξi (t) − xd,i | = 0, and242

limt→∞|θzξi (t) − θzξ j (t)| = 0, limt→∞|θzξi (t) − zd | = 0,243

i ∈ V, j ∈ Pi , i.e., the equilibrium points ζi,0 of (9), or the244

auxiliary systems (13), are asymptotically stable. Sufficiency.245

If systems (13) are asymptotically stable, then the states246

ζ̇i , i ∈ V converge to ζ̇i,0 = 0, and ex,i , ez,i are both equal247

to 0. �248

Remark 3: Guaranteed cost control is a typical robust con-249

trol that is usually used to solve stabilization problems. The250

states and inputs converge to 0 as t approaches ∞ and the251

quadratic performance index is bounded. Since rx,i , rz,i and252

ui , i ∈ V converge to nonzero vectors, the value of (11) is253

unbounded. Therefore, the auxiliary systems (13) are estab-254

lished to formulate the dynamics of reaching the equilibrium255

points for (9). To guarantee performance, (14) is defined and256

a corresponding robust control can be designed.257

Now the main result is ready to be presented.258

Theorem 1: Let Assumptions 1–3 hold. For positive scalars259

ε1,i , ε2,i , ε3,i and known constants τ̄ and μ, there exist sym-260

metric positive definite matrices X1,i , X2,i , X3,i and Wi that261

satisfy the following local LMIs for subsystem i :262

Find ε1,i , ε2,i , ε3,i , X1,i , X2,i , X3,i , Wi263

s.t. X1,i , X2,i , X3,i > 0, 	̃i < 0 (15)264

where265

	̃i =



	̃i,i , i = 1

	̃i,i − 	̃i,i−1	̃
−1
i−1	̃

�
i,i−1, i ∈ V\{i}266

	̃i,i is267

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣




	1,i ∗ ∗ ∗ ∗



	2,i



	6,i ∗ ∗ ∗



	3,i 0



	7,i ∗ ∗
0 X3,i 0 −τ̄−1 X3,i ∗

X1,i 0 0 0 −X2,i

X1,i 0 0 0 0
Wi 0 0 0 0



	4,i 0 0 0 0
0 0 0 0 0




	5,i 0 0 0 0

268

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−Q−1
i ∗ ∗ ∗ ∗

0 −R−1
i ∗ ∗ ∗

0 0 −ε1,i I ∗ ∗
0 0 0 −ε2,i I ∗
0 0 0 0 −ε3,i I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

269

where 270




	1,i = ��
ci Aii c

�
i + θ1,i + θ2,i

�
X1,i + ci Bi Wi

�
271

+ ��
ci Aii c

�
i + θ1,i + θ2,i

�
X1,i + ci Bi Wi

��
272

+ (μ − 1)X2,i + �
ε1,i + ε2,i

�
ci Di D�

i c�
i 273




	2,i = X1,i + (μ − 2)X2,i 274




	3,i = τ̄
��

ci Aii c
�
i + θ1,i + θ2,i

�
X1,i + ci Bi Wi

�
275




	4,i = E1,ii c
�
i X1,i + E2,ii W1,




	5,i = 


	4,i 276




	6,i = (μ − 3)X2,i ,



	7,i = −τ̄ X3,i + ε3,i τ̄
2ci Di D�

i c�
i 277

and 	̃i,i−1 is 278⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

	1,i
�

	4,i
�

	6,i 0 · · · 0
�

	9,i 0
�

	9,i
�

	2,i 0
�

	7,i 0 · · · · · · 0
�

	9,i
�

	9,i
�

	3,i
�

	5,i 0 · · · · · · 0
0 0
...

...
...

. . .
...

0
... 0

�

	8,i 0
...

. . .
...

0
�

	8,i
�

	8,i
�

	8,i 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

279

where 280

�

	1,i = X2,i
�
ci−1 Ai−1,i c

�
i−1

�� + ci Ai,i−1c�
i X2,i−1 281

− θ2,i−1 X1,i−1 282

�

	2,i = X2,i
�
ci−1 Ai−1,i c

�
i−1

��
283

�

	3,i = τ̄
�
ci Ai,i−1c�

i X2,i−1 − θ2,i−1 X1,i−1
�

284

�

	4,i = ci Ai,i−1c�
i X2,i−1,

�

	5,i = τ̄ci Ai,i−1c�
i X2,i−1 285

�

	6,i = �

	7,i = τ̄ X2,i
�
ci−1 Ai−1,i c

�
i−1

��
286

�

	8,i = E1,i,i−1c�
i X2,i−1,

�

	9,i = X2,i ci−1 E�
1,i−1,i . 287

Then the DR-PSC control for (1) with Ki = Wi X−1
1,i can 288

achieve PSC and guarantee the following performance index 289

is satisfied: 290

J <
�
i∈V

�
ζi(0) − ζ0,i

���
P1,i + τ̄ P2,i

��
ζi (0) − ζ0,i

�
. (16) 291

Proof: Denote w(t) := col(w1(t),w2(t), . . . , wN (t)). The 292

dynamics in (13) can be written as 293

ẇ(t) = �
G̃c + H̃ K

�
w(t) + G̃dw(t − τ (t)) (17) 294
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where G̃c = c Ãcc� + �, H̃ = cB̃, G̃d = c Ãdc�, Ãc =295

Ac+DF E1,c, B̃ = B+DF(t)Ed , Ãd = Ad +DF(t)E2,c, � =296

θx + L ◦ (1N ⊗ θz), θz = row(θz1 , θz2 , . . . , θzN ). Besides, θx ,297

c, Ac, B , D, F(t), E1,c, and E2,c are block diagonal matrices298

composed of heterogeneous matrices θx,i , ci , Ac, Bi , Di , Fi (t),299

E1,ii , and E2,i of each subsystem. Ad and E2,c can be written300

as301

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 A12 0 · · · 0

A21 0 A23
. . .

...

0 A32 0
. . . 0

...
. . .

. . .
. . . AN−1,N

0 · · · 0 AN,N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

302

E2,c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 E1,12 0 · · · 0

E1,21 0 E1,23
. . .

...

0 E1,32 0
. . . 0

...
. . .

. . .
. . . E1,N−1,N

0 · · · 0 E1,N,N−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.303

Consider a Lyapunov–Krasovskii function of (13) as304

V (t) = V1(t) + V2(t) + V3(t) (18)305

where306

V1(t) = w�(t)P1w(t)307

V2(t) =
� t

t−τ

w�(s)P2w(s)ds308

V3(t) =
� t

−τ̄

� t

t+θ

ẇ�(s)P3ẇ(s)dsdθ309

and P1, P2, P3 ∈ R2p×2p, p = �N
i=1 pi are symmetric positive310

definite block diagonal matrices composed of N dimensional311

heterogeneous matrices. There must be constants a, b, c > 0 to312

ensure the following inequality holds:313

a	w(t)	2 ≤ V (t)314

≤ b sup
s∈[−h,0]

	w(t + s)	2 + c sup
s∈[−h,0]

	ẇ(t + s)	2.315

Then according to Lemma 1, the derivative of V (t) is316

V̇ (t) ≤
�

w(t)
w(t − τ )

��
(
1 + 
2 + 
3)

�
w(t)

w(t − τ )

�
(19)317

where318


1 =
�

P1
�
G̃c + H̃ K

� + �
G̃c + H̃ K

��
P1 ∗

G̃�
d P1 0

�
319


2 =
�

P2 0
0 (μ − 1)P2

�
320


3 = τ̄

� �
G̃c + H̃ K

��

G̃�
d

�
P3

�
G̃c + H̃ K G̃d

�
321

+
�

M1
� + M1 ∗

−M1 + M2
� −M2

� − M2

�
322

+ τ̄

�
M1

�

M2
�

�
P−1

3

�
M1 M2

�
.323

To obtain the distributed robust control, the following 324

inequality must hold: 325


1 + 
2 + 
3 +
�

Q + K � RK 0
0 0

�
< 0. (20) 326

Then, let X1 = P−1
1 , X2 = P−1

2 , X3 = P−1
3 , W = K X1, 327

choose M1 = −P1, M2 = P2, and define a nonsingular matrix 328

T =
�

P1 0
−P1 P2

�
, T −1 =

�
P−1

1 0
P−1

2 P−1
2

�
. 329

According to Lemmas 4, Lemma 5 and by multiplying both 330

sides of (20) by diag(T −1, I, X3, I, I, I ), the following LMI 331

can be obtained: 332

	 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

	1,1 ∗ ∗ ∗ ∗
	2,1 	2,2 ∗ ∗ ∗
	3,1 	3,2 	3,3 ∗ ∗

0 X3 0 −τ̄−1 X3 ∗
X1 0 0 0 −X2

X1 0 0 0 0
W 0 0 0 0

	8,1 0 0 0 0
0 	9,2 0 0 0

	10,1 	10,2 0 0 0

333

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

−Q−1 ∗ ∗ ∗ ∗
0 −R−1 ∗ ∗ ∗
0 0 −ε1 I ∗ ∗
0 0 0 −ε2 I ∗
0 0 0 0 −ε3 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (21) 334

where 335

	1,1 = ��
cAcc� + �

�
X1 + cAdc�X2 + cBW

�
336

+ ��
cAcc� + �

�
X1 + cAdc�X2 + cBW

��
337

+ (μ − 1)X2 + (ε1 + ε2)cDD�c�
338

	2,1 = X2c� A�
d c + X1 + (μ − 2)X2, 	2,2 = (μ − 3)X2 339

	3,1 = τ̄
��

cAcc� + �
�
X1 + cBW

� + τ̄cAdc�X2 340

	3,2 = τ̄cAdc�X2, 	3,3 = −τ̄ X3 + ε3τ̄
2cDD�c�

341

	8,1 = E1,cc�X1 + Edc�X2 + E2,cW 342

	9,2 = Edc�X2, 	10,1 = 	8,1, 	10,2 = 	9,2. 343

Define a permutation matrix ϒ as follows: 344

ϒ = col(ϒ1, ϒ2, . . . , ϒN ) (22) 345

where ϒi = col(γ1,i , γ2,i , . . . , γ10,i ) and let I	 be an iden- 346

tity matrix with the same dimension as 	. Then γk,l = 347

I	(2 pl(k − 1) + l + 1 : 2 plk + l, :). Multiplying the right and 348

left sides of (21) by ϒ and ϒ� respectively, 349

	̃ = ϒ	ϒ�
350

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

	̃1,1 	̃�
2,1 0 · · · 0

	̃2,1 	̃2,2 	̃�
3,2

. . .
...

0 	̃3,2 	̃3,3
. . . 0

...
. . .

. . .
. . . 	̃�

N,N−1
0 · · · 0 	̃N,N−1 	̃N N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (23) 351
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where 	̃i,i , 	̃i,i−1 in (15) can be obtained. Then, according352

to Lemmas 2 and 3, the feasible LMI problem in (15) can be353

obtained. From (20), the following inequality holds:354

V̇1(t) + V̇2(t) + V̇3(t) < −w�(t)
�
Q + K � RK

�
w(t). (24)355

Because of the positive definiteness of Q and R, the356

derivative of V (t) is less than 0. According to the Lyapunov357

Theorem and Lemma 6, (13) is asymptotically stable and PSC358

for (1) under (10) can be achieved. In addition, according359

to the initial states in Assumption 1 and integrating both360

sides of (24), bounded performance in (16) can be obtained.361

Theorem 1 is proven. �362

Based on Theorem 1, Algorithm 1 is shown to describe how363

to calculate the DR-PSC control for (1).364

Algorithm 1 DR-PSC for Chain Interconnected Systems

Remark 4: In Algorithm 1, the LMI feasibility problems365

can be solved locally and sequentially to obtain the control366

gain matrices Ki and PSC control ui , i ∈ V . This method is367

fully distributed because global information on the network368

is not needed during the calculations. In contrast to the369

centralized form, high-dimensional matrix calculations and370

the concept of the central node are avoided to reduce the371

computational burden and improve the operability of the372

algorithm in practice.373

Remark 5: Due to the heterogeneity of subsystems and374

the special structure of networks, it is infeasible to adopt375

general decoupling methods to design controllers for chain376

interconnected systems without restricting the interconnection377

terms. Here, the method based on Cholesky decomposition378

in Lemma 2 includes no requirements on the interconnected379

parameters Ai j . During operation, limited neighbor informa-380

tion is required for local calculations and the method does not381

introduce too great a burden on the communication network.382

IV. SIMULATION AND EXPERIMENTAL VALIDATION383

A. Numerical Simulation384

Consider a chained network composed of three subsystems,385

whose parameters are shown as386

A11 = [1, 0.5; 1, 1], B1 = [1, 0.5; 0, 3]387

A22 = [1.5, 1; 0.5, 0.5], B2 = [1.5, 0.5; 0, 2]388

Fig. 3. Responses of “Nonconsensus” states.

A33 = [1.7, 1, 0.5; 1, 0.3, 0; 0.6, 0, 0.5] 389

B3 = [1.7, 0.5, 0; 0, 0, 1.7; 0, 1.5, 0] 390

A12 = [0, 0; 0.4, 0], A23 = [0, 0, 0.5; 0.6, 0, 0] 391

A21 = [0.7, 0; 0, 0], A32 = [1.3, 0; 0, 0; 0,−0.3]. 392

The parameter uncertainties are assumed to satisfy D1 = 393

D2 = D3 = 0.1 ∗ I2. E1
ii , E1

i j , E2
i are matrices with random 394

elements and the unknown parameter Fi (t) is a time-varying 395

random scalar whose range is [−10, 10]. The delay is set 396

as τ (t) = 0.2 sin(t), and τ̄ = 0.2, μ = 0.2. The matrices 397

in (14) are chosen as Qi = 10 ∗ diag(Ipi , 0.05 ∗ Ipi ), 398

Ri = 0.5 ∗ Iqi . For “Nonconsensus” states xi(t), the set-points 399

are set as xd,1 = −3, xd,2 = −2, xd,3 = [5; 3]. The common 400

set point of zi (t) is set as zd = 1. 401

To demonstrate the superiority, effectiveness, and robustness 402

of the proposed PSC algorithm, the following simulation 403

results are compared. 404

1) Simple PSC Control (Sim-PSC): There is no consider- 405

ation of the delays. The solution is only based on the 406

Lyapunov inequality P(G̃c + G̃d + H̃ K ) + (G̃c + G̃d + 407

H̃ K )� P < 0. 408

2) Centralized Robust PSC Control (CR-PSC): The algo- 409

rithm is the centralized form of the one proposed in 410

Algorithm 1. 411

3) DR-PSC: The algorithm is proposed in Algorithm 1. 412

The performance with CR-PSC is not significantly different 413

from that with DR-PSC. Thus, there are only responses of the 414

states with Sim-PSC and DR-PSC shown in Figs. 3 and 4. It is 415

straightforward to see that all subsystems can achieve PSC and 416

converge to the desired setpoints. The dynamic performance 417

of DR-PSC is much better than that of Sim-PSC. Further, 418

disturbances (amplitude: 2, duration: 20-21 s) are added to 419

verify the robustness of the algorithm. In the detailed view of 420

Figs. 3 and 4, it is not difficult to see that the systems with 421

DR-PSC are less affected by disturbances. The DR-PSC has 422

better robustness than Sim-PSC. 423

In Table I, the simulation results of the three algorithms are 424

shown. DR-PSC has slightly worse performance than CR-PSC, 425

but it requires much lower computational effort. Although 426

sim-PSC also has a very small amount of computation, its 427
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Fig. 4. Responses of “Consensus” states. (a) Nor-PSC. (b) DR-PSC.

TABLE I

CONVERGENCE TIME AND PERFORMANCE INDEX OF THREE ALGORITHMS

Fig. 5. Distributed cooperative optimization control experimental platform.

performance is very poor, and even the algorithm is invalid.428

The effectiveness, robustness, and superiority of the proposed429

method are demonstrated.430

B. Experiment431

In this section, a solution proportioning experiment is car-432

ried out to validate the effectiveness of the proposed PSC433

control. There is a distributed cooperative optimization control434

experimental platform developed by the research team at the435

China University of Petroleum (East China), which is shown436

in Fig. 5. There are two tanks R101 and R102 which are437

used as reaction vessels. V111 and V112 are material tanks438

containing water and NaOH, respectively. The tank V113439

contains hot water to store the heat needed for the experiment.440

The materials and hot water are transported to the main tanks441

and jackets by pumps.442

In this experiment, the two-tank process is configured as443

shown in Fig. 6. The tanks are chain interconnected with R101444

and R102 being connected by a pipeline. The partial product445

of the former is sent to the latter as material. This flow and the446

water flow of R101 are uncontrollable and they remain 75 ±447

10 L/h and 50±10 L/h, which are regarded as the uncertainties448

in R101 and R102. Since the medium needs to pass through a449

Fig. 6. Scheme of the two-tank process.

pipe from R101 to R102, there is an uncertain lag phenomenon 450

between them. Moreover, there is a coupling between the two 451

tanks in the supply of material. The coupling mentioned above 452

can be modeled as interconnections with delay in the state 453

equation. 454

The solution proportioning experiment is designed as fol- 455

lows. There is ample hot water at 55 ◦C in V113. Water 456

in V111 is at room temperature (about 20 ◦C) and the 457

10.0 kmol/m3 NaOH solution in V112 is at about 30 ◦C. 458

To ensure the progress of the experiment, R101 and R102 459

are preheated to about 30 ◦C. Then, the jackets are heated 460

by the hot water from V113 and the NaOH solution is 461

injected into R101 and R102. At the same time, PSC control 462

is implemented. PSC1 and PSC2 control the NaOH feed 463

valves FCV101, FCV102 and the jacket feed valves FCV111, 464

FCV112 to achieve the set-point tracking control of concen- 465

tration c1, c2, and temperature t1, t2. 466

The experimental objective is to configure 4.0 kmol/m3
467

NaOH solution at 38 ◦C, 43 ◦C in R101 and R102, 468

respectively. In Fig. 6, the local set-points (38 ◦C, 43 ◦C) 469

are assigned to PSC1, PSC2, and the common set-point 470

(4.0 kmol/m3, converted to conductivity) is only assigned 471

to PSC1. c1, c2 are modeled as “Nonconsensus” states and 472

t1, t2 as “Consensus” states. Then, PSC control can be cal- 473

culated by the distributed method in Theorem 1. The model 474

parameters are shown as 475

A11 = [0.56825, 0.00541; −0.00001, 0.63425] 476

A12 = [0.00022,−0.00922; −0.00003, 0.00022] 477

A21 = [−0.00045, 0.00081; −0.00002,−0.00018] 478

A22 = [0.60400,−0.00309; −0.00001, 0.59800] 479

B1 = [0.43165, 0.00131; −0.00001, 0.36512] 480

B2 = [0.39561,−0.00026; −0.00002, 0.40123] 481

E11 = [0.00010, 0.00001; 0,−0.00021] 482

E22 = [0.00009, 0.00011; 0, 0.00012] 483

E12 = [0, 0.00001; 0, 0] 484

E21 = [−0.00001, 0.00001; 0, 0] 485
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Fig. 7. Temperature and concentration of two tanks.

E1 = [0.00021, 0.00001; 0, 0]486

E2 = [−0.00020, 0; 0, 0.00008]487

and D1 = D2 = I2, Fi (t) are time-varying random scalars.488

The sampling period is selected as Ts = 1 second and the489

sampling length as T = 10 000. The time-varying delay is490

modeled as τ (t) = τ̄ sin(μt) where τ̄ = 1, μ = 0.01. Set491

Q1 = Q2 = 10 ∗ I2 and R1 = R2 = I2. The gain matrices492

obtained by the proposed method are shown as493

K1 =
� −45.010 0.073 −21.572 0.033

−0.075 −49.914 −0.044 −22.618

�
494

K2 =
� −55.173 0.017 −24.284 0.005

0.051 −56.726 0.025 −28.735

�
.495

The experimental results are shown below.496

Temperature and concentration trends are given in Fig. 7.497

With the PSC control, t1, t2 approach 38 ◦C and 43 ◦C,498

respectively, and c1, c2 achieve consensus. Since the process499

of temperature variation is slow, stabilization of t1, t2 takes a500

long time. The effectiveness and robustness of the proposed501

algorithm are validated.502

V. CONCLUSION503

A PSC problem for chain interconnected delay systems504

with parameter uncertainty has been investigated. Augmented505

systems and auxiliary systems have been established to design506

the distributed PSC control. This control is fully distributed507

and can take into account the optimization and robustness508

of the systems. A sufficient condition is given in LMI form509

and the gain matrices can be obtained by solving feasible510

problems locally. The results of numerical simulations and a511

solution proportioning experiment are shown to validate the512

effectiveness of the proposed method. Future work will extend513

this to nonlinear systems.514
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