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Abstract 

Background:  Age is the strongest risk factor for dementia and there is considerable interest in identifying scalable, 
blood-based biomarkers in predicting dementia. We examined the role of midlife serum metabolites using a machine 
learning approach and determined whether the selected metabolites improved prediction accuracy beyond the 
effect of age.

Methods:  Five thousand three hundred seventy-four participants from the Whitehall II study, mean age 55.8 (stand‑
ard deviation (SD) 6.0) years in 1997–1999 when 233 metabolites were quantified using nuclear magnetic resonance 
metabolomics. Participants were followed for a median 21.0 (IQR 20.4, 21.7) years for clinically-diagnosed dementia 
(N=329). Elastic net penalized Cox regression with 100 repetitions of nested cross-validation was used to select mod‑
els that improved prediction accuracy for incident dementia compared to an age-only model. Risk scores reflecting 
the frequency with which predictors appeared in the selected models were constructed, and their predictive accu‑
racy was examined using Royston’s R2, Akaike’s information criterion, sensitivity, specificity, C-statistic and calibration.

Results:  Sixteen of the 100 models had a better c-statistic compared to an age-only model and 15 metabolites were 
selected at least once in all 16 models with glucose present in all models. Five risk scores, reflecting the frequency 
of selection of metabolites, and a 1-SD increment in all five risk scores was associated with higher dementia risk 
(HR between 3.13 and 3.26). Three of these, constituted of 4, 5 and 15 metabolites, had better prediction accuracy 
(c-statistic from 0.788 to 0.796) compared to an age-only model (c-statistic 0.780), all p<0.05.

Conclusions:  Although there was robust evidence for the role of glucose in dementia, metabolites measured in 
midlife made only a modest contribution to dementia prediction once age was taken into account.
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Background
Dementia is a complex disease and is the seventh lead-
ing cause of death worldwide [1]. Although the causes 
of dementia remain elusive, previous research suggests 
alterations in several pathways, suggesting that it is a 
multi-systemic disease [2–4]. Pathophysiological changes 
underlying dementia unfold over a long period, perhaps 
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as long as 15 to 20 years [5]. Along with failure of thera-
peutic trials in this domain, the long preclinical phase 
of dementia has increased interest in prevention. It is 
within this framework that there is emerging research on 
risk factors and biomarkers measured in mid-life, before 
the onset of pathophysiological processes underlying 
dementia.

Cerebrospinal fluid (CSF) and imaging biomark-
ers are widely used in the diagnosis of Alzheimer’s 
disease, a major subtype of dementia, and there is 
increasing interest in blood-based diagnostic biomark-
ers as they are less invasive, and can readily be used 
in healthcare and research settings [6]. Whether bio-
markers can be used for identifying prevention tar-
gets remains unclear. Metabolites are small molecules 
present in cells, tissues and biofluids, including blood. 
They reflect physiological and pathological processes 
and gene-environment interactions involving multiple 
body systems [7], making them potential biomarkers. 
However, much of the existing research typically assess 
metabolites late in life, not allowing the results to be 
meaningful for prevention [8, 9].

Studies that examined the associations between metab-
olite panels and the risk of dementia [10–12], have two 
important limitations. One, the identification of perti-
nent metabolites was based on correction for multiple 
testing. When the number of multiple comparisons is 
large this method leads to several false negatives, and 
only metabolites with a very large effect size are iden-
tified. Two, most studies included age in the predic-
tive model but did not consider whether the predictive 
accuracy was primarily due to age [10–15], which is the 
strongest albeit non-modifiable risk factor for dementia 
[16]. Inclusion of age as a predictor along with putative 
biomarkers in the predictive model is not optimal as this 
approach cannot distinguish the part of the prediction 
due to age and that due to the biomarkers being consid-
ered in the analyses, and the results could be driven by 
age rather than the biomarkers [17]. Our strategy that 
consists of comparing the predictive accuracy of a model 
composed of age and putative biomarkers and one com-
posed of age alone allows this limitation to be addressed.

Our aim was to identify metabolites associated with 
incident dementia independently of age over a 21-year 
follow-up, using machine-learning for survival analysis, 
namely elastic net penalized Cox regression. This method 
allows efficient selection of relevant predictors by simul-
taneously combining variable selection and shrinkage 
of coefficients; stability of the results was ensured using 
repeated resampling, and recalculation of effect estimates 
to select predictors with the most consistent associa-
tion with the outcome [18, 19]. Explicit consideration of 
age in our algorithm to identify putative biomarkers was 

ensured by selecting sets of metabolites that improved 
predictive accuracy compared to an age-only model. This 
was achieved by constructing risk scores, constituted first 
using age alone and subsequently using age along with 
selected metabolites in order to test whether metabolites 
improved dementia prediction over and above the effect 
of age.

Methods
Study population
The Whitehall II study is an ongoing cohort study 
established in 1985–1988 among 10,308 persons (6895 
men and 3413 women, aged 35–55 years) employed in 
London-based government departments [20]. Written 
informed consent from participants and research eth-
ics approvals were renewed at each contact; the most 
recent approval was from the University College London 
Hospital Committee on the Ethics of Human Research, 
reference number 85/0938. Since baseline, follow-up 
clinical examinations have taken place approximately 
every 4 to 5 years (1991–1993, 1997–1999, 2002–2004, 
2007–2009, 2012–2013, and 2015–2016). Data over the 
follow-up were also available using linkage to electronic 
health records of the UK National Health Service (NHS) 
for all but ten of the 10,308 participants recruited to the 
study. The NHS provides most of the health care in the 
country, and record linkage is undertaken using a unique 
NHS identifier held by all UK residents. Data from linked 
records were updated on an annual basis, until 31st of 
March 2019.

Measures
Serum sample collection and metabolite panel (1997–1999)
Fasting serum was collected at each clinical examination 
in the study and stored at −80°C. For the present study, 
samples were taken from 1997 to 1999, and 233 meta-
bolic biomarkers were analysed as part of the Consortium 
of Metabolomics Studies in 2014 using a high throughput 
Nuclear Magnetic Resonance (NMR) metabolomics plat-
form, the Nightingale platform (Helsinki, Finland) [21]. 
All metabolites were measured in a single experimen-
tal set-up that allows simultaneous quantification of (a) 
total lipid concentrations of lipoprotein subclasses (very 
low-density lipoproteins (VLDL), intermediate-density 
lipoproteins (IDL), low-density lipoproteins (LDL), and 
high-density lipoproteins (HDL)); (b) lipoprotein ratios; 
(c) cholesterol related metabolites; (d) lipid-related 
metabolites; (e) fatty acids related metabolites; (f ) apoli-
poproteins related metabolites; (g) glycolysis-related 
metabolites; (h) amino acids; (i) ketone bodies; (j) fluid 
balance metabolites; and (k) inflammation related metab-
olites. A full list of the 233 metabolites included in the 
study can be found in eTable  1. The platform processes 
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data automatically and executes quality procedures 
reporting degradation and contamination issues. The 
metabolite value was set at 0 when its concentration was 
above the limit of detection but below the limit of quanti-
fication due to biological reasons or external compounds 
interfering with quantification. Every metabolite that 
has been reported in the results file has passed this strict 
quality control procedure; outlier values in metabolite 
concentrations (≥±9 SD) were excluded. Please note that 
incomplete data on metabolites may be due to metabo-
lite concentrations under the limit of detection as well 
as non-participation in the clinical examination at the 
1997–1999 wave.

Dementia
Ascertainment of dementia was undertaken using link-
age to Hospital Episode Statistics (HES), the Mental 
Health Services Data Set (MHSDS), and the mortality 
register using ICD-10 codes F00-F03, F05.1, G30, and 
G31. HES contains clinical diagnoses from inpatient and 
outpatient clinical encounters in English acute gener-
als hospitals and has sensitivity and specificity of 78.0% 
and 92.0%, respectively [22]. MHSDS contains demen-
tia diagnoses from inpatient, outpatient and community 
mental health services, including memory clinics, and the 
British national mortality register collects information 
about cause-specific mortality. Record linkage was avail-
able until 31st of March 2019, and the date of dementia 
was set at the first record of dementia diagnosis in any of 
these three databases.

Sociodemographic variables
Sociodemographic variables included age, sex, ethnicity 
(white and non-white) and education, measured as the 
highest qualification on leaving full-time education and 
categorized as high (university or higher degree), inter-
mediate (higher secondary school), or low (lower second-
ary school or less).

Statistical analysis
Participants’ characteristics and metabolites concen-
trations in 1997–1999 were examined as a function of 
dementia status at the end of follow-up using χ2 test and 
Student’s t-test, as appropriate. All metabolite concentra-
tions were first log-transformed to obtain approximately 
normal distribution and then standardized to z-scores 
(mean=0, standard deviation (SD)=1). Two types of 
analyses were undertaken, the first using Cox regression 
with Bonferroni correction for multiple testing and the 
second using a machine learning approach.

The association between 1 SD increment in each 
metabolite, analysed individually, and incident 

dementia was examined using Cox regression. The 
start of follow-up was the date of the 1997–1999 clini-
cal examination, and participants were censored at date 
of dementia diagnosis, death, or 31st of March 2019, 
whichever came first. The analyses were adjusted for 
sociodemographic variables (age, sex, education and 
ethnicity); Bonferroni correction [23] implied use of a 
p-value of 0.0002 (0.05/233).

The second method was elastic net penalized Cox 
regression, a regularization technique that allows simul-
taneous selection of predictors and shrinkage of the 
effect size. The steps in the analyses are shown in Fig. 1. 
A total of 237 predictors (233 metabolites and 4 sociode-
mographic variables—age, sex, education, and ethnicity) 
were used and repeated nested cross-validation [18, 24, 
25] was used to separate parameter tuning and model 
selection and to address the problem of overfitting. A 
5-fold inner loop was used to identify the best-tuned 
hyperparameters (α and λ) and a 10-fold outer loop for 
identifying the best set of predictors (steps 1 and 2), 
using the lowest cross-validation error (partial likelihood 
deviance) to define both optimal selections. Folds were 
stratified so that dementia rates were similar in each fold, 
and age was forced in all models. The hyperparameters α 
and λ were used to choose the number of predictors and 
for the optimal shrinkage of the beta-coefficients of the 
predictors, respectively. The inner loop was used to select 
the best α and λ and was performed on the training folds 
of the outer loop (step 3). Then the tuned hyperparame-
ters from the previous step were used in the training data 
(outer loop; step 4) and the model performance was eval-
uated in the corresponding validation fold (step 5), select-
ing the best-performed model of the outer loop (step 6). 
Subsequently, predictors with non-zero coefficients were 
identified (step 7), and its C-statistic was compared to 
that from an age-only model in the same validation outer-
fold (steps 8 and 9). The entire procedure was repeated 
100 times to obtain stable results. Then, only the mod-
els that improved the c-statistic compared to an age-only 
model for predicting dementia (p-value for difference in 
c-statistic <0.05) were retained; the metabolites identi-
fied in these models were organized in five non-mutually 
exclusive groups: metabolites present in 100%, ≥90%, 
≥60%, ≥50%, or at least once in the selected models. 
Then these groups were used to construct five risk scores 
using sum of the weighted (by frequency of occurrence 
in selected models) coefficients from Cox regression. 
Age on its own was also considered a risk score. The con-
struction of risk scores with the metabolites allows the 
combination of several predictors into a single predictor 
so that when comparisons are made, in our case with age, 
there is a single predictor in each case, irrespective of the 
number of metabolites in the risk score.
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All six risk scores were standardized to z-scores 
(mean=0, SD=1) and associations between 1 SD incre-
ment in risk scores and incident dementia were exam-
ined using Cox regression. The predictive accuracy of the 
risk scores was assessed using (a) Royston’s modified R2 
to measure overall performance of the prediction model 
with confidence intervals calculated using 2000 boot-
strap replications, with higher values indicating greater 
explained variance [26]; (b) Akaike information criterion 
(AIC), a measure of the relative goodness of fit of a sta-
tistical model; lower values indicate better model fit and 
a difference of 10 or more considered meaningful; (c) 
sensitivity and specificity for survival models as meas-
ures of classification accuracy using optimal threshold 
established by maximizing the Youden index [27]; and 
(d) Harrell’s C-statistic for survival models to measure 
discrimination, with the age-alone risk score as the refer-
ence [28]. In addition, the Greenwood-Nam-D’Agostino 
(GND) test was used to test calibration [29] to evaluate 
the agreement between observed and predicted risk, p 
< 0.05 indicating lack of fit, and calibration-in-the-large 
shown in plots of observed and predicted dementia rate 

per 1000 person/years in deciles of the risk scores (first 
and second decile were collapsed due to a small number 
of events). The C-statistic of these risk scores was for-
mally compared using a nonparametric approach with 
the age-alone risk score as the reference [30].

We performed four sensitivity analyses. One, to exam-
ine the effect of excluding metabolite concentrations that 
were below the limit of quantification (value set a 0 for 
the Nightingale Health metabolomics platform) or outli-
ers (≥±9 SD), Cox regression analyses with Bonferroni 
correction were repeated without these exclusions. Two, 
to examine the individual contribution of metabolites 
and rank them by their importance we examined change 
in the predictive accuracy of the score excluding one 
metabolite at a time from the risk score with the largest 
number of metabolites. Three, the role of the Apolipo-
protein genotype was examined by adding ApoE e4 (yes/
no) status to the risk scores in participants with data on 
this measure and predictive accuracy was examined as 
in the main analyses. Four, we compared the predictive 
accuracy of the best-performance risk score in our analy-
ses with two sets of metabolites previously identified in 

Fig. 1  Scheme of the repeated nested cross-validation procedure. The following procedure was repeated 100 times to account for variation in 
results due to random partitioning of the cross-validation folds. The steps in the analyses are (1) Partition dataset into 10 outer folds with the same 
dementia rate in each fold. (2) Further partition each training outer fold (blue boxes) into 5 inner folds (same dementia rate) to build the inner loop. 
Grey boxes represent the validation folds (outer loop) which are not involved in the inner loop. 3) Use inner folds to tune the hyperparameters, 
select best combination of α and λ (model with the lowest partial likelihood deviance in the inner loop). (4) Apply selected hyperparameters to the 
corresponding training outer fold. (5) Evaluate model performance in the corresponding outer validation fold (red box). (6) Choose the best of 10 
outer models (lowest partial likelihood deviance). (7) Identify predictors (variables with non-zero beta-coefficients) in the training fold of the best 
model in the outer fold. (8) Apply the best outer model hyperparameters to the corresponding validation outer fold. (9) Compare the c-statistic of 
the prediction model to the c-statistic of an age-specific model in the same validation outer fold



Page 5 of 12Machado‑Fragua et al. BMC Medicine          (2022) 20:334 	

conventional rather than a machine learning approach 
in meta-analyses that included the Whitehall II cohort 
study [11, 12].

Elastic net regression and GND test were performed 
using R software (version 4.1.0); all other analyses were 
undertaken using Stata (version 16). Two-sided p<0.05 
was considered to be statistically significant.

Results
Of the 10,308 participants at study inception in 1985–
1988, 7870 (76.4%) participated in the 1997–1999 wave 
of data collection, the baseline of our analyses. Of these, 
we excluded 1333 (16.9%) participants who did not par-
ticipate in the clinical examination at the 1997–1999 
wave, 1093 (13,9%) participants with metabolite values 
under the limit of detection, and 70 (0.9%) participants 
with outlier values on metabolites, leading to analyses on 
5374 (68.3%) participants (Additional file 1: Fig. S1). The 
mean (SD) age of participants at baseline was 55.8 (6.0) 
years, and 27.7% were women. Over a median follow-up 
21.0 (IQR 20.4, 21.7) years, 329 (6.1%) participants were 
diagnosed with dementia and 953 (17.8%) died. Partici-
pants diagnosed with dementia were older, more likely 
to be women, and non-white and had lower education 
(Table  1). The mean (SD) of metabolite concentrations 
overall and as a function of dementia status at the end of 
follow-up are shown in Additional file 1: Table S1.

Associations between metabolites and dementia using 
Bonferroni correction
The hazard ratio (HR) and associated 95% confidence 
interval (CI) for 1-SD increment in metabolite concen-
trations and incident dementia, adjusted for sociodemo-
graphic variables are shown in Additional file 1: Table S2. 
At p<0.05, five metabolites were associated with risk of 
dementia (total cholesterol to total lipids ratio in chy-
lomicrons and extremely large VLDL, HR (95% CI): 0.84 
(0.73, 0.96); free cholesterol to total lipids ratio in chy-
lomicrons and extremely large VLDL, HR (95% CI): 0.86 
(0.74, 0.99); triglycerides to total lipids ratio in chylomi-
crons and extremely large VLDL, HR (95% CI): 1.17 (1.04, 
1.33); phospholipids to total lipids ratio in medium HDL, 
HR (95% CI): 1.15 (1.03, 1.29); and glucose (mmol/l), 
HR (95% CI): 1.24 (1.13, 1.36)). However, glucose 
(p=0.00001) was the only metabolite associated with 
dementia using Bonferroni correction for multiple test-
ing at p<0.0002. Further analyses excluding 229 (4.3%) 
participants with metabolite concentrations below the 
limit of quantification (Additional file  1: Table  S3) and 
including 70 participants with outlier values (≥±9 SD; 
Additional file 1: Table S4) yielded results similar to those 
in the main analyses, glucose being the only metabolite 
associated with dementia after Bonferroni correction.

Elastic net penalized Cox regression
Results of the 100 repetitions are shown in Additional 
file 1: Table S5; sixteen of these models had significantly 
better c-statistic than an age-only model, ranging from 
0.703 to 0.779, Table 2. These models identified between 
2 (repetition number 22) and 12 (repetition number 
96) predictors. A total of 15 metabolites were identified 
at least once across the sixteen models; their frequency 
of selection is shown in Table  3. Glucose was the only 
metabolite identified in all 16 models. Besides age, which 
was forced in all models, no other sociodemographic var-
iable (sex, ethnicity, or education) was selected by these 
models.

The beta-coefficients associated with each predic-
tor used in the calculation of risk scores are shown in 
Additional file  1: Table  S6, organized as risk score 1 to 
5 to reflect metabolites selected in 100%, ≥90%, ≥60%, 
≥50%, or at least once in elastic net regression. Note 
that risk score 1, which included age and glucose (identi-
fied in 100% of the selected models) reflected the results 
obtained in the Cox regression with Bonferroni correc-
tion. The prediction statistics of the age-only model and 
the 5 risk scores are shown in Table 4. A 1-SD increment 
in all risk scores was associated with a higher risk of 
dementia (HR between 3.04 and 3.26). Three risk scores 
(3, 4, and 5) had a better c-statistic (p- <0.05) compared 
to the age-only model, with sensitivity from 72.4 to 77.0% 

Table 1  Sample characteristics in 1997–1999 as a function of 
dementia status at the end of follow-up (31st March 2019)

Data are n (%), unless otherwise specified
* Data on dementia subtype was as follows: Alzheimer’s disease (N=137), 
vascular dementia (N=47), Parkinson’s dementia (N=17), mixed Alzheimer’s 
and vascular dementia (N=21), mixed vascular and Parkinson’s dementia (N=1), 
mixed Alzheimer’s and Parkinson’s dementia (N=5), other/missing subtype 
(N=101)
† p-value for difference in χ2 test (categorical data) or Student’s t test (continuous 
data)

Dementia*

No Yes p-value†

N 5045 (93.9) 329 (6.1)

Age at baseline, M (SD) 55.4 (5.9) 61.2 (4.7) <0.001

Sex

  Men 3662 (72.6) 220 (66.9) 0.03

  Women 1383 (27.4) 109 (33.1)

Education

  Low 2198 (43.6) 181 (55.0)

  Medium 1335 (26.4) 66 (20.1) <0.001

  High 1512 (30.0) 82 (24.9)

Ethnicity

  White 4656 (92.3) 288 (87.5) 0.002

  Non-white 389 (7.7) 41 (12.5)
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and specificity from 69.1 to 72.7%. Risk score 5, which 
included age and 15 metabolites identified at least once in 
the elastic net models, had the highest HR (95% CI) 3.26 

(2.87, 3.71), the best model fit (AIC 5147.7), the high-
est R2 at 0.582 (0.511, 0.649), and the highest c-statistic 
(0.796 (0.774, 0.819). Risk score 5 also had a better c-sta-
tistic when compared to all other risk scores (all p<0.05).

Calibration-in-the-large for the age-only risk score and 
risk scores 3, 4, and 5 (risk scores that performed better 
than age) is shown in Fig. 2. These results show the agree-
ment between observed and predicted dementia rates to 
be similar for the four scores. The GND test suggested 
good calibration (all p > 0.05) for all scores but a poorer 
agreement between observed and predicted demen-
tia rates was found in the 10th decile, suggesting poor 
prediction.

Additional analyses
Further analyses to evaluate the role of each metabolite 
in risk score 5 (the risk score with the best performance) 
suggested glucose and phospholipids to total lipids ratio 
in medium HDL (metabolites selected in the 100% and 
≥90% in the selected models, respectively) to be impor-
tant for the predictive accuracy of risk score 5 (Addi-
tional file 1: Table S7) as their exclusion had the greatest 
impact on all tests of predictive accuracy.

Adding ApoE e4 did not modify the pattern of results 
seen in the main analyses; risk scores 3, 4 and 5 had 

Table 2  Elastic net penalized Cox regression with repeated nested cross-validation: models (out of 100 repetitions) that improved 
prediction accuracy for incident dementia compared to an age-only model

* These are hyperparameters, allowing selection of the model with the lowest partial likelihood deviance in the inner loop; α ranges from 0 to 1 and when it is 0 all 
predictors are retained in the model, λ controls the coefficient shrinkage
† c-statistic, in the validation fold of the outer loop, of the best model (lowest partial likelihood deviance in the training folds of the outer loop)
‡ c-statistic of the age-only model in the validation fold of the best outer loop model
§ p-value for difference in C-statistic between the best model and the age-only model
¶ Age was forced to be selected in all models.

Repetition 
number

α* λ* c-statistic of the best 
model†

c-statistic age-only 
model‡

p-value§ Number of predictors 
in the selected model¶

2 0.9 0.00617437 0.760 0.749 0.01 4

4 1 0.00617437 0.724 0.715 0.007 4

10 1 0.00677636 0.747 0.741 0.04 4

16 1 0.00512607 0.775 0.765 0.02 7

18 0.7 0.01299645 0.742 0.738 0.007 3

22 1 0.00816215 0.703 0.696 0.02 2

23 1 0.00425575 0.779 0.763 0.001 8

30 1 0.00617437 0.746 0.736 0.009 5

38 1 0.00617437 0.718 0.711 0.04 4

50 1 0.00562585 0.745 0.734 0.01 5

57 1 0.00467068 0.747 0.731 0.0006 9

67 0.5 0.00983134 0.755 0.743 0.004 6

74 0.8 0.00816215 0.735 0.726 0.02 3

91 1 0.00677636 0.724 0.714 0.008 3

94 0.7 0.00677636 0.762 0.751 0.03 9

96 0.5 0.00743705 0.735 0.722 0.04 12

Table 3  Frequency of metabolites identified by elastic net 
penalized Cox regression in the sixteen selected models

VLDL very low-density lipoproteins, HDL high-density lipoprotein

Name of metabolite N (%)

Glucose (mmol/l) 16/16 (100)

Phospholipids to total lipids ratio in medium HDL (%) 15/16 (93.8)

Creatinine (mmol/l) 10/16 (62.5)

Triglycerides to total lipids ratio in very large VLDL (%) 8/16 (50.0)

Phospholipids to total lipids ratio in medium VLDL (%) 5/16 (31.3)

Alanine (mmol/l) 5/16 (31.3)

β-hydroxybutyrate (mmol/l) 3/16 (18.8)

Free cholesterol to total lipids ratio in small HDL (%) 2/16 (12.5)

Citrate (mmol/l) 2/16 (12.5)

Free cholesterol to total lipids ratio in very large VLDL (%) 1/16 (6.3)

Free cholesterol to total lipids ratio in large HDL (%) 1/16 (6.3)

Triglycerides to total lipids ratio in medium HDL (%) 1/16 (6.3)

Phospholipids to total lipids ratio in small HDL (%) 1/16 (6.3)

Sphingomyelins (mmol/l) 1/16 (6.3)

Albumin (signal area) 1/16 (6.3)



Page 7 of 12Machado‑Fragua et al. BMC Medicine          (2022) 20:334 	

better c-statistic than the age and APOE only risk score 
(Additional file 1: Table S8); note that the c-statistic was 
higher when APOE was added to the risk score.

Further analyses to compare the predictive accuracy 
of our best-performing risk score (risk score 5) with set 
of metabolites identified in previous studies (Additional 
file  1: Table  S9) showed risk score 5 to perform better, 
with or without age in the model (all p-values for differ-
ence in c-statistic using risk score 5 as reference <0.01).

Discussion
We examined longitudinal associations between midlife 
serum metabolites and incident dementia over a follow-
up of over 20 years in a large cohort of adults. The pri-
mary finding highlights the role of age; there was only a 
modest increase in predictive accuracy when metabo-
lites selected using a machine learning approach were 
added to the prediction model containing age. Of the 233 
metabolites examined, only glucose was associated with 
dementia after Bonferroni correction and in all models 
selected using the machine-learning approach. A further 
14 metabolites were also identified by machine learning 
models. The contribution of these metabolites to demen-
tia prediction was small, but it is worth noting that our 
approach required metabolites to improve predictive 
accuracy of a model containing age.

Pathophysiological hallmarks of Alzheimer’s disease 
are evident 15–20 years before the onset of clinical symp-
toms [31], making it important for studies on prevention 

to target risk factors in midlife. Accordingly, scalable bio-
markers that allow early identification of persons at risk 
of dementia may allow therapeutic or lifestyle interven-
tions to reduce future risk. They might also suggest the 
multiple mechanisms that underlie dementia. Our study 
on middle-aged adults (mean age at metabolite assess-
ment of 55.8 years), followed for 21 years cannot address 
issues of causality but provides meaningful information 
on putative risk factors for dementia. Blood-based bio-
markers have received considerable attention in recent 
years due to their minimally invasive nature. Previous 
studies have showed the usefulness of blood biomarkers 
such as tau phosphorylated at threonine 181 (p-tau181), 
neurofilament light (NfL) and glial fibrillary acidic pro-
tein (GFAP), in the diagnosis and prognosis of dementia, 
with comparable or even better performance than posi-
tron emission tomography (PET) and CSF biomarkers 
[32–34]. However, much of this research is on diagnos-
tic rather than predictive biomarkers and does not use 
explicit criteria to select putative biomarkers.

The present study adds to current knowledge on pre-
dictors of dementia [17, 35] due to two novel features. 
One, we show the importance of explicit consideration of 
age in examination the predictive accuracy of risk scores 
for dementia. Age is both non-modifiable and an impor-
tant risk factor for dementia, making it important for pre-
diction risk scores of dementia to take age into account 
explicitly. A recent study based on 37 Alzheimer’s disease 
participants adopted the alternative approach by first 

Table 4  Predictive performance of risk scores for incident dementia (N=5374)

R2 Royston’s R2, AIC Akaike information criterion, c-statistic Harrell’s C-index, VLDL very low-density lipoproteins, HDL high-density lipoprotein
* p-value for difference in c-statistic using age-only model as reference
† Risk score 1 includes age and glucose
‡ Risk score 2 includes age, glucose and phospholipids to total lipids ratio in medium HDL (%)
§ Risk score 3 includes age, glucose, phospholipids to total lipids ratio in medium HDL (%) and creatinine (mmol/l)
¶ Risk score 4 includes age, glucose, phospholipids to total lipids ratio in medium HDL (%), creatinine (mmol/l) and triglycerides to total lipids ratio in very large VLDL 
(%)
# Risk score 5 includes age, glucose, phospholipids to total lipids ratio in medium HDL (%), creatinine (mmol/l), triglycerides to total lipids ratio in very large VLDL (%), 
phospholipids to total lipids ratio in medium VLDL (%), alanine (mmol/l), 3-hydroxybutyrate (mmol/l), free cholesterol to total lipids ratio in small HDL (%), citrate 
(mmol/l), free cholesterol to total lipids ratio in very large VLDL (%), free cholesterol to total lipids ratio in large HDL (%), triglycerides to total lipids ratio in medium 
HDL (%), phospholipids to total lipids ratio in small HDL (%), sphingomyelins (mmol/l) and albumin (signal area)

Youden index cutoff points for the calculation of the sensitivity and specificity are as follows: 0.541 for the age-only model; 0.310 for risk score 1; 0.296 for risk score 2; 
0.468 for risk score 3; 0.604 for risk score 4; and 0.564 for risk score 5

Risk scores HR (95% 
confidence 
interval)

R2 (95% confidence interval) AIC Δ AIC Sensitivity % Specificity % c-statistic (95% 
confidence 
interval)

p-value*

Age-only model 3.04 (2.66, 3.47) 0.525 (0.450, 0.593) 5198.2 Ref. 75.5 70.3 0.780 (0.757, 0.802) Ref.

Risk score 1† 3.13 (2.75, 3.57) 0.545 (0.468, 0.636) 5181.2 − 17.0 80.9 64.7 0.786 (0.763, 0.808) 0.05

Risk score 2‡ 3.16 (2.77, 3.60) 0.551 (0.475, 0.620) 5176.1 − 22.1 81.5 64.2 0.787 (0.764, 0.809) 0.05

Risk score 3§ 3.17 (2.78, 3.61) 0.557 (0.482, 0.630) 5170.8 − 27.4 77.0 69.1 0.788 (0.766, 0.811) 0.03

Risk score 4¶ 3.19 (2.80, 3.63) 0.565 (0.492, 0.636) 5163.6 − 34.6 72.4 72.7 0.790 (0.767, 0.813) 0.02

Risk score 5# 3.26 (2.87, 3.71) 0.582 (0.511, 0.649) 5147.7 − 50.5 74.0 72.0 0.796 (0.774, 0.819) <0.001



Page 8 of 12Machado‑Fragua et al. BMC Medicine          (2022) 20:334 

entering metabolites in the prediction (area under the 
curve (AUC) 0.77) and then adding age (AUC improved 
to 0.81) [36]. Two, use of a machine learning approach, 
in our case elastic net regression, to identify relevant 
metabolites. The advantage of this method in comparison 
with correction for multiple testing lies in the efficient 
selection of highly correlated variables by regulariza-
tion of both the number of selected metabolites and the 
effect size associated with the metabolites, [18] reducing 
the likelihood of overfitting [25]. In addition, the use of 
a repeated nested cross-validation procedure conferred a 
noteworthy element of stability to our results.

The lack of a widely accepted method for identifying 
metabolites relevant for dementia prediction, or for the 
construction of risk scores has led to inconsistent results 
in replication studies [37]. When cross-validation is used 
some authors have highlighted issues arising from the 
random partitioning of the dataset as results are incon-
sistent across the random samples [19, 38, 39]. Previous 
studies on metabolites have not considered this source of 
inconsistency [13, 40, 41]. We adopted an approach that 
allows circumvention of this limitation by repeating the 
cross-validation 100 times. Other studies using similar 
approaches, but are characterized by small sample sizes, 
cross-sectional design, or short follow-up—the AUC in 

Fig. 2  Observed and predicted rate of dementia per 1000 person-years (calibration-in-the-large) as a function of deciles of predictors (age, 
risk score 3, risk score 4 and risk score 5). VLDL, very low-density lipoproteins; HDL, high-density lipoprotein. The first and second decile were 
collapsed due to a small number of events in these deciles. Risk score 3 includes age, glucose, phospholipids to total lipids ratio in medium HDL 
(%) and creatinine (mmol/l). Risk score 4 includes age, glucose, phospholipids to total lipids ratio in medium HDL (%), creatinine (mmol/l), and 
triglycerides to total lipids ratio in very large VLDL (%). Risk score 5 includes age, glucose, phospholipids to total lipids ratio in medium HDL (%), 
creatinine (mmol/l), triglycerides to total lipids ratio in very large VLDL (%), phospholipids to total lipids ratio in medium VLDL (%), alanine (mmol/l), 
3-hydroxybutyrate (mmol/l), free cholesterol to total lipids ratio in small HDL (%), citrate (mmol/l), free cholesterol to total lipids ratio in very large 
VLDL (%), free cholesterol to total lipids ratio in large HDL (%), triglycerides to total lipids ratio in medium HDL (%), phospholipids to total lipids ratio 
in small HDL (%), sphingomyelins (mmol/l) and albumin (signal area)
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these studies, without explicit consideration of age, was 
from 0.77 to 0.88 [36, 42].

A recent study on 38 metabolites in 1440 Chinese par-
ticipants, mean age 70.7 years at baseline, used LASSO 
regression to identify 5 metabolites that predicted 
dementia (AUC 0.72) over a 5-year follow-up [13]. The 
authors used a cross-validation procedure for the estima-
tion of AUC but the variation arising out of partitioning 
of the dataset was not considered. This was also the case 
for another study that found 10 plasma metabolites to 
predict a combined outcome of amnestic mild cognitive 
impairment or Alzheimer’s disease with an AUC of 0.827 
in the discovery sample and 0.77 in the validation sample 
[41]. However, these findings were not replicated in three 
subsequent studies which reported AUC between 0.395 
and 0.642 [14, 15, 38]. These inconsistencies highlight 
the need to address the variation due to partitioning the 
dataset in cross-validated machine learning models.

Two previous meta-analyses, also including data from 
the Whitehall study, identified several metabolites to be 
associated with dementia after correction for multiple 
testing [11, 12], although the metabolites were not com-
bined to examine their predictive performance nor was 
the role of age examined. The machine learning approach 
allowed us to identify 15 metabolites with higher predic-
tive accuracy for incident dementia than that obtained 
using metabolites identified in the aforementioned stud-
ies (eTable  9). It is worth noting that although glucose 
was the only metabolite associated with dementia and 
selected in all the final models of our study, it was not 
identified in either of the previous studies.

Eleveated glucose is associated with increased risk of 
dementia, even among persons without diabetes [43]. The 
precise mechanisms underlying this association remain 
unclear but glucose neurotoxicity, hyperglycemia, insu-
lin resistance and vascular injury are likely to be involved 
[44–46]. Higher creatinine signals poor kidney function, 
a risk factor for dementia [47, 48]. However, in our analy-
ses and in those by Tynkkynen et al. [11] creatinine had 
an inverse association with dementia. The explanation for 
this unexpected association remains unclear. The results 
for albumin, an antioxidant, was similar to that in previ-
ous studies [49, 50] with higher serum albumin associated 
with lower dementia risk. As expected, [51, 52] higher 
concentrations of the amino acid alanine were associated 
with a lower risk of dementia, possibly due to antioxidant 
and anti-inflammatory pathways.

The results for lipids in our study varied depending 
on their fractions and combinations. VLDL is thought 
to increase dementia risk and HDL are associated with 
lower risk [53, 54]. We found ratios of triglycerides, 
phospholipids, and free cholesterol to total lipids in 
HDL and VLDL to be associated with dementia. While 

associations for free cholesterol and triglycerides ratios 
were in the expected direction, the unexpected find-
ing was for phospholipids ratios where increments in 
HDL and VLDL were associated with higher and lower 
dementia risk, respectively. Phospholipids are main 
constituents of neuronal membrane structures and are 
the dominant HDL lipid component [54, 55], previous 
studies have also documented alterations in brain phos-
pholipid concentrations of dementia patients [56, 57]. 
It is also thought that differing HDLs composition may 
exert distinct functions, possibly due to pathological and 
physiological processes [37, 54].

Our data show higher serum sphingomyelins to be 
associated with a lower risk of dementia. Previous stud-
ies have documented altered sphingomyelin metabolism 
in Alzheimer’s disease, with lower blood sphingomyelin 
levels in AD patients [36, 58]. Evidence for the remain-
ing two metabolites, beta-hydroxybutyrate and citrate, is 
lacking and could not be compared to other studies.

The main strengths of the present study were the lon-
gitudinal design with a follow-up spanning a median 21 
years, allowing a long separation between metabolite 
measurement and diagnosis of dementia to allow reverse 
causation bias to be minimized, the large sample size 
compared to previous studies and the use of a broadly 
validated platform for metabolite quantification. Our 
study also has several limitations. Lack of validation in 
an external cohort is an important limitation of machine 
learning studies. However, the methodological design 
of the present study made it possible to reduce overfit-
ting due to use of repeated cross-validation. Absence of 
repeated measurement of metabolites did not allow us to 
examine how change in metabolites are associated with 
the risk of dementia. Cognitive status other than demen-
tia diagnosis was not considered in the analyses as the 
focus of our analyses was dementia. It is possible that 
some participants had a level of cognitive impairment at 
baseline but this is unlikely to play a central role in our 
results on dementia. Sample storage might modify the 
lipoprotein composition, but these changes are minor 
compared to interindividual differences, and previous 
studies observed consistent results with differing dura-
tion of sample storage [59]. Although plasma was stored 
at −80 °C sample degradation is possible, but a recent 
publication suggests that even serum samples stored at 
−20 °C can be used in biomarker studies [60]. Although 
233 metabolites were included in our study, the capture 
by NMR is still sparse compared to the entire serum 
metabolome, not allowing the identification of several 
metabolite subspecies (for example, subspecies of sphin-
gomyelins) [21]. Ascertainment of dementia via linkage 
to electronic health records rather than clinical evalua-
tion is likely to miss milder cases of dementia. However, 
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this approach has the advantage of being able to include 
all participants in the analyses rather than only those 
who are seen during in-person in the ascertainment of 
dementia. The disadvantage is the lack of accurate data 
or missing data on dementia subtypes, not allowing us 
to examine whether the results are valid specifically for 
major types of dementia such as Alzheimer’s disease 
or vascular dementia. Furthermore, although there is 
emerging consensus on the biomarker-based definition 
of Alzheimer’s disease [5], biomarkers for other dementia 
subtypes remain to be identified. Given the uncertainty in 
the classification of dementia subtypes and the presence 
of vascular and metabolic dysfunctions in Alzheimer’s 
disease [3], our preference was to use all-cause dementia 
as the outcome.

Conclusions
Given the increasing global burden of dementia and lack 
of effective treatment, it is important to identify indi-
viduals at higher risk of developing dementia to allow 
early interventions to prevent or delay its onset. Given 
the role of age for dementia, it is important that research 
on the identification of risk factors and biomarkers in 
the construction of risk scores explicitly consider age in 
the analyses. The evidence for glucose is robust in our 
results; further replication studies would allow conclu-
sions to be drawn on other metabolites identified in our 
analyses. The improvement in predictive accuracy when 
metabolites were added to an age-only model was mod-
est, making it urgent to identify other biomarkers for bet-
ter prediction.
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