
Travel Behaviour and Society 30 (2023) 118–134

Available online 18 September 2022
2214-367X/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Hong Kong Society for Transportation Studies. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A Random Effect Bayesian Neural Network (RE-BNN) for travel mode 
choice analysis across multiple regions 

Yutong Xia a,b, Huanfa Chen a,*, Roger Zimmermann b,c 

a Centre for Advanced Spatial Analysis (CASA), University College London, London, UK 
b Institute of Data Science, National University of Singapore, Singapore 
c School of Computing, National University of Singapore, Singapore   

A R T I C L E  I N F O   

Keywords: 
Bayesian neural network 
Travel mode choice modelling 
Regional behaviour comparison 
Random effect model 

A B S T R A C T   

Travel mode choice modelling plays a critical role in predicting passengers’ travel demand and planning local 
transportation systems. Researchers commonly adopt classical Random Utility Models to analyse individual 
decision-making based on the utility theory. Recently, with an increasing interest in applying Machine Learning 
techniques, a number of studies have used these methods for modelling travel mode preferences for their 
excellent predictive power. However, none of these studies proposes machine learning models that investigate 
the regional heterogeneity of travel behaviours. To address this gap, this study develops a Random Effect- 
Bayesian Neural Network (RE-BNN) framework to predict and explain travel mode choice across multiple re
gions by combining the Random Effect (RE) model and the Bayesian Neural Networks (BNN). The results show 
that this model outperforms the plain Deep Neural Network (DNN) regarding prediction accuracy and is more 
robust across different datasets. In addition, in terms of interpretation, the capability of RE-BNN to learn the 
travel behaviours across regions has been demonstrated by offset utilities, choice probability functions and local 
travel mode shares.   

1. Introduction 

Modelling travel mode choice plays a critical role in predicting 
passengers’ preferences and travel demand, providing references for 
policymakers to plan transportation systems and understand the un
derlying factors (de Dios Ortúzar and Willumsen, 2011). Traditionally, 
researchers commonly understand the passengers’ travel mode choice 
based on the theory of utility (Domencich and McFadden, 1975; 
McFadden, 1986). Utility-based models are predominantly Random 
Utility Models (RUMs), most notably the logit family. The Multinomial 
Logit (MNL) model, the simplest logit model, is widely adopted for 
analysing individual decision-making due to its high level of interpret
ability (McFadden, 1981). However, this model is based on an over
simplified assumption that the alternative’s utility is a linear 
specification, and it is hard to capture the potential regulations in a 
dataset. Another limitation of the MNL model is that it assumes that the 
probabilities of each choice are independent, leading to biased pre
dictions. Although other logit models, such as the mixed logit model, the 
Nested Logit (NL) model and the Cross-Nested Logit (CNL) model, have 
better capability to yield the probabilities for alternatives when the 

correlations among the choices exist (Hensher and Greene, 2003), the 
parameters in these models are much tricky to estimate. 

Recently, with a growing interest in applying Machine Learning (ML) 
technology in numerous research fields, including transportation (Ren 
et al., 2020; Li et al., 2018; Paredes et al., 2017), this data-oriented 
approach has also been considered an alternative to RUMs for model
ling travel mode preferences. By comparing many classifiers’ predictive 
performances, such as Deep Neural Networks (DNNs), Support Vector 
Machines (SVMs), Decision Trees (DTs), Random Forest (RF) and MNL 
model, researchers have verified that the predictive power of ML 
methods, especially DNNs and RF, is better than traditional Discrete 
Choice Models (DCMs) (Hagenauer and Helbich, 2017). Besides pre
dictive performance, the explanation power of models for deriving 
behavioural insights is equally vital in travel behaviour studies. Never
theless, these ML approaches have always been regarded as low inter
pretability (Lipton, 2018) since they compute the probability relying on 
the structure of the dataset rather than a theory of the underlying data 
structure. Zhao et al. (2020) pointed out that there is a tradeoff between 
prediction performance and interpretation power when selecting be
tween ML methods and conventional DCMs. Recently, Wang et al. 
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(2020) demonstrated that DNNs not only have high predictive accuracy 
but also provide economic knowledge as complete as conventional 
DCMs, which makes an outstanding contribution to the interpretation of 
DNNs for choice analysis. 

Nevertheless, none of the existing studies on travel mode choice 
using ML methods focuses on the heterogeneity of travel behaviour 
among different population groups, such as people from different re
gions. In the behaviour contexts, researchers have suggested that travel 
behaviour differs from area to area. Globally, people’s travel behaviours 
in different countries are diverse (Delbosc and Ralph, 2017). Locally, the 
various culture and public policies lead to passengers’ travel attitudes 
varying across cities. For example, the introduction of the Congestion 
Charge in London and the one-day-a-week driving restriction policy in 
Beijing greatly affect individuals’ decisions about driving in these cities 
(Ambühl et al., 2018; Wang et al., 2014). None of the studies using ML 
methods for travel mode choice modelling has considered these regional 
differences, which is crucial to understanding the impact of local socio- 
economic factors on residents’ travel behaviour. 

To fill the above-mentioned gap, this paper develops a Random 
Effect-Bayesian Neural Network (RE-BNN) framework to predict and 
explain travel mode choice across multiple regions. This paper first 
proposes a region-specific RUM by introducing the RE model into the 
traditional RUM and then discusses how it can be realised in a BNN 
framework. The paper then introduces the dataset used to test the 
capability of RE-BNN. After that, it empirically investigates the predic
tive power of RE-BNN in comparison with three other models. In addi
tion, in terms of interpretability, based on the behaviour insights derived 
from RE-BNN, the paper presents the travel behaviour analysis of pas
sengers from different regions from three aspects: offset utilities, choice 
probability functions and local travel mode shares. 

The contributions of this study are threefold as follows. (1) It pro
poses a new architecture of Neural Network (NN) called RE-BNN by 
combining the Random Effect (RE) model and Bayesian Neural Network 
(BNN) that achieves a single model to predict the travel mode choice in 
multiple regions. (2) The RE-BNN has better predictive performance and 
generalisation than DNN due to the introduction of Bayesian’s uncer
tainty, which is demonstrated by a case study of predicting mode choice 
across nine regions in the UK. (3) The experimental results reveal the 
interpretability of RE-BNN in travel behaviour across multiple regions 
and the remarkable predictive power of local travel mode market shares. 
Codes used in this study are available on Github: https://github.com/ 
yutong-xia/RE-BNN. 

The rest of the paper is organised as follows. Section 2 reviews the 
related studies on the determinants of travel mode choice, conventional 
logit models and ML for travel mode choice. Section 3 describes related 
theories and models used in this study. Section 4 introduces the dataset 
used for empirical study, the process of hyperparameter searching in NN 
models, and the specifications for utility functions in the MNL model. 
Section 5 describes the results of the experiment, including an explor
atory analysis of the travel mode choice in the UK, the predictive per
formances of five models and the behaviour insights derived from RE- 
BNN. Lastly, Section 6 summarises the findings and suggests future 
research directions. 

2. Literature review 

2.1. Determinants of travel mode choice 

The choice of travel mode are influenced by a range of factors. Based 
on previous studies, these factors can be divided into three groups: (1) 
demographic characteristics, (2) trip-related characteristics, and (3) 
environmental characteristics. 

First, demographic factors, such as gender, age, car ownership, ed
ucation, and income, are essential in determining travel modes. 
Adopting multinomial logistic regression, Ashalatha et al. (2013) 
investigated the mode choice behaviour of commuters in 

Thiruvananthapuram, and they found that with the increase in age, the 
preference for driving significantly increases, as it is less likely for senior 
citizens to ride on short trips than their younger counterparts (Johans
son et al., 2006). In addition, due to the higher demand for comfort and 
convenience, commuters with higher income prefer private vehicles to 
other travel approaches (Hensher and Rose, 2007). 

Second, the importance of trip-related characteristics in determining 
residents’ travel mode choices has been confirmed, including trip time, 
distance and purpose. Trip distance plays a crucial role in travel modes 
decisions and is a significant variable in predicting travel modes 
(Hagenauer and Helbich, 2017). In addition, as the trip distance, time or 
cost increases, commuters prefer to choose cars or bicycles instead of 
public transportation (Ashalatha et al., 2013). Passengers are usually 
more susceptible to the trip time in the morning and evening peak than 
other times of the day; therefore, in peak hours, people prefer public 
transportation to avoid traffic congestion (Habibian and Kermanshah, 
2013). In addition, the comfort, flexibility, convenience as well as safety 
of the travel mode can also impact people’s decisions of travel mode 
alternatives (Heinen et al., 2011). 

Third, for later discussion about the research gap, this study classifies 
environmental characteristics into two sub-characteristics: the built and 
social environments. An increasing number of studies investigating the 
environmental impact on determining travel modes focus on built 
environment characteristics (Ding et al., 2017; Munshi, 2016). Ewing 
and Cervero (2010) defined built environment as 6Ds: Density (popu
lation and jobs per unit area), Diversity (land use mix and balance 
index), Design (neighbourhood design), access to Destination (accessi
bility to jobs by transportation), Distance to transit stops, and Demand 
management (measures to encourage the usage of public trans
portation). Density is regarded as a critical factor in travel mode choice 
decisions, especially in host-based travel behaviours (Chen et al., 2008). 
Moreover, density at the workplace plays a more significant role in tour- 
based travel behaviours than that at the residential location (Ding et al., 
2014). The intersection design, street network and distance to jobs are 
also essential factors in passengers’ travel choice decisions, especially in 
bicycle and walking modes (Ewing and Cervero, 2010). When living 
near their workplace or the street connectivity is good, the choice of 
walking and bicycle modes increases significantly. 

In addition to the built environment, the social environment factors 
also play a significant role in determining the travel mode. A person’s 
social environment is defined by his or her living and working envi
ronment as well as the characteristics of the community, which can be 
experienced on multiple scales, including family, neighbourhood, city 
and region (Casper, 2001). The social environment can impact passen
gers’ decisions by affecting their subjective norms1 and attitudes to 
different means of transportation. Willis et al. (2015) highlighted the 
importance of social environmental factors’ influences on decisions on 
bicycle commuting and believed that thinking beyond built environ
ment factors is necessary for understanding or predicting bicycle use. 
Based on a survey of 1991 inhabitants in three German cities, Hunecke 
et al. (2010) found that the attitude-based approach has better predic
tive performance than that based on demographic and geographic fac
tors. In addition to the impact on the moral norm, the differences in 
public policies related to transport can also influence the attitude of 
commuters to choose their travel modes, such as the one-day-a-week 
driving restriction policy in Beijing (Wang et al., 2014). However, 
although the importance of these social factors for determining travel 
mode has been demonstrated, few researchers have paid attention to this 
regional heterogeneity of travel behaviours when predicting travel 
mode choice. 

1 Subjective norm is ’the perceived social pressure to perform or not to 
perform a behaviour’ (Ajzen, 1991). 
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2.2. Logit models for modelling travel mode choice 

Previous researches typically adopt the utility theory to understand 
the passengers’ travel mode choice (Domencich and McFadden, 1975; 
McFadden, 1986). Utility-based models have been the predominant 
approach for modelling travel mode alternatives for several decades, 
most of which are Random Utility Models (RUMs), developed by 
McFadden (1981). The logit family is a class of RUMs based on random 
utility maximisation, including the MNL model, the Nested Logit (NL) 
model, the Cross-Nested Logit (CNL) model and the mixed logit model 
(Ben-Akiva and Lerman, 2018). These models gained popularity and are 
widely used in travel behaviour research for they have simple mathe
matical formula structures and can represent individual choice decisions 
realistically. 

In the MNL model, which is the simplest logit model, the probabili
ties for each travel choice are generated by a logistic function of the 
utilities. The simple mathematical structure in the MNL model mitigates 
the challenge of parameter estimation (Koppelman and Wen, 1998). 
However, the model’s basis on the assumption of independence of 
irrelevant alternatives (IIA) limits its practical application, especially 
when dealing with panel data2. If the IIA assumption is violated, 
parameter estimation and prediction results will be biased (McFadden, 
1986). 

Some flexible logit models were developed to relieve the limitations 
of the MNL model, including the mixed logit model. Compared with the 
MNL model, the mixed logit model is not based on the IIA assumption 
and can better deal with preference heterogeneity (Hensher and Greene, 
2003). Other extensions, such as the NL model and the CNL model, can 
also generate the probabilities for mode choice when the correlations 
among the choices exist (Ben-Akiva and Lerman, 2018). However, the 
estimation of parameters of these improved models is more complex and 
challenging than the MNL model. Moreover, although the mixed logit 
model has been substantially improved based on the MNL model to 
refine the assumption and enhance the interpretation of the model, its 
predictive accuracy becomes worse (Cherchi and Cirillo, 2010). 

2.3. Machine Learning for Modelling Travel Mode Choice 

Recently, there has been a tremendous interest in the application of 
Machine Learning (ML) methods in numerical transportation fields, such 
as traffic flow prediction (Ren et al., 2020), license plate recognition (Li 
et al., 2018), and car ownership prediction (Paredes et al., 2017). Since 
the modelling of travel mode alternatives can also be regarded as a 
general classification problem, the ML classification algorithm has 
become an alternative to the traditional logit models. A large body of 
literature has used these algorithmic non-parametric methods to model 
the decisions of travel mode. Hillel et al. (2019) systematically reviewed 
60 articles where ML methods were applied for modelling mode choice. 
The commonly used ML classifiers include Support Vector Machines 
(SVMs; Zhang and Xie, 2008), Classification Trees (CTs; Tang et al., 
2015), Random Forest (RF; Lhéritier et al., 2019) and Deep Neural 
Networks (DNNs; Wang et al., 2020). 

ML classifiers can automatically identify the relationships between 
the input features and the mode choice instead of predefining the utility 
functions in the logit models. The effectiveness of ML methods has been 
demonstrated in the field of behavioural research. For example, based 
on the San Francisco Travel Survey datasets, Xie et al. (1854) demon
strated that DT and NN offer better performances than the MNL model in 
terms of the modelling results. Zhang and Xie (2008) suggested that due 
to the SVM model’s promising performance and easy implementation, it 
can be used as an alternative procedure for travel mode choice model
ling. More recently, Hagenauer and Helbich (2017) compared the 

predictive accuracy of seven ML classifiers for travel mode choice 
modelling and found that RF outperforms other modelling approaches, 
including MNL, which is in line with the findings in the research of 
Lhéritier et al. (2019) and Zhao et al. (2020). Meanwhile, Neural Net
works have been demonstrated by Salas et al. (2022) to have 
outstanding performances in terms of accuracy and interpretation. 

Compared with the predetermined model structures in the tradi
tional logit models, ML can form more flexible modelling structures, 
contributing to their better predictive performance and high compati
bility with data (Xie et al., 1854). The other reason for the higher pre
dictive accuracy of ML is that the development of ML focuses on 
accurately predicting, while the extension of logit models focuses on 
modifying model assumptions and enhancing the interpretability ability 
for modelling individual travel behaviour (Brownstone and Train, 1998; 
Hensher and Greene, 2003). 

However, despite the remarkable predictive performance, a 
commonly acknowledged disadvantage of ML models is their weak 
interpretation power due to their complex structures, and they are often 
viewed as black boxes. In addition, the lack of capability to use previ
ously acquired knowledge is often associated with these methods. Re
searchers have been focusing on the interpretation of ML models in 
recent years (Doshi-Velez and Kim, 2017). For example, Hinton et al. 
(2015) distilled the knowledge by training a smaller model for inter
pretation from an ensemble or a large, highly regularised model. Based 
on variable importance, a commonly applied ML explanation tool, 
Cheng et al. (2019) assessed the importance of variables in the RF 
model. Zhao et al. (2020) conducted a comparative study between logit 
models and ML models. They interpreted RF based on variable impor
tance and partial dependence plots and explained Neural Network (NN) 
based on a sensitivity analysis. Wang et al. (2020) interpreted the DNN 
model and derived the economic information from DNN, including 
market shares, elasticities, and marginal rates of substitution. They 
demonstrated that the reliability of this extracted economic information 
could be improved by using a larger sample, ensemble model and 
hyperparameter searching. 

Nevertheless, in the study by Wang et al. (2020), they also pointed 
out that NN has a high propensity to overfit noise, leading to incorrect 
classification results (also see Guo et al., 2017). Several approaches have 
been proposed to avoid the over-fitting issue and improve the general
isation capability of NN models. One way is to add a weight-decay or a 
regularisation term in the process of parameters estimation (Liang and 
Wong, 2001). However, Marzban and Witt (2001) argued that this 
approach of improving NN models’ generalisation has a negative effect 
on their capability to approximate non-linear. On the other hand, they 
proposed that via adopting the Bayesian method to infer, it is possible to 
improve the generalisation capability of NN models and at the same time 
keep the strong non-linear approximating capability of NNs. Bayesian 
Neural Networks (BNNs), first developed by Mackay (1992), have 
proven to have the capability to effectively reduce the overfitting phe
nomenon by introducing uncertainty on the weights (Blundell et al., 
2015). Liang (2005) improved the BNN model via incorporating a prior 
on the connections between networks and the weights, which makes it 
more flexible for NNs to select their hidden neurons as well as the input 
features. Due to the above-mentioned advantages of BNN models over 
the other NN models, this method has been applied in many sub-fields of 
transportation, such as traffic crash prediction models (Xie et al., 2007). 
However, it has rarely been used for travel mode choice modelling. 

Based on the review of previous literature, it is found that nearly all 
of them are focusing on improving models’ predictive power or 
explanatory power applied to a single city or country. However, due to 
the different social environment characteristics (e.g., culture and public 
policy) in different cities or regions, passengers’ attitudes to trans
portation vary, leading to the regional heterogeneity of travel mode 
utility and preferences. In other words, when other features of a trip and 
the built environment are the same, one person in a different city may 
not make the same decision regarding travel mode. Therefore, this paper 

2 Panel data refers to the data containing multiple observations (i.e., travel 
records) for the same subjects (i.e., travellers). 
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introduces the RE model into travel mode alternatives modelling to 
model travel mode choice across multiple regions. In addition, consid
ering the over-fit issue of NNs and that BNNs can avoid over-fitting by 
introducing uncertainty and improving the predictive power, this paper 
incorporates Bayesian inference to neural networks. In general, to fill the 
research gap, this study combines the RE model and BNNs to develop a 
new model RE-BNNs for travel mode choice modelling across multiple 
regions in the context of behaviour analysis. 

Fig. 1. RE-BNN architecture.  

Table 1 
Hyperparameters space of RE-BNN and DNN.  

Hyperparameters Values 

Panel 1. Invariant Hyperparameters 
Activation functions Tanh and Softmax 
Loss ELBO (RE-BNN) and Cross Entropy (DNN)  

Panel 2. Varying Hyperparameters of RE-BNN and DNN 

Learning rate [0.1,0.01, 1e-3, 1e-4] 
Width n [5,10,15, 25, 50, 100] 
Standardisation [True,False]  

Panel 3. Varying Hyperparameters of DNN 

Batch Size [10,50,100]  

Fig. 2. Hyperparameter searching results for RE-BNN and DNN.  

Table 2 
Selected variables of the alternative-specific utility function of MNL and MXL 
models.  

Mode Selected variables 

Walk Household_car, Trip_distance, Household_licence, 
Trip_time 

Bicycle Household_bike, Trip_purpose(1), Trip_time 
Driving Household_car, Population_density, 

Household_licence, Trip_time, 
Individual_age, 

Household_settlement(1)  
Bus Household_car, Household_licence, 

Population_density, Trip_time 
Rail Population_density, Trip_time, Trip_distance, 

Trip_purpose_1, Individual_education(1)  

Table 3 
Trip frequency by travel mode choice.  

Mode Frequency Percentage 

Driving 131621 78.48% 
Walk 16649 9.93% 
Bus 8867 5.29% 
Rail 7415 4.42% 

Bicycle 3165 1.89%  
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3. Methodologies 

This section describes how the Random Effect (RE) model is com
bined with RUM and how to build the NN framework based on region- 
specific RUM. As mentioned in Section 2.3, in order to mitigate the 
sensitivity issue of NNs to parameters, Bayesian’s uncertainty is intro
duced to the construction of the NN model. Since the family of logit 
models have been widely adopted for exploring different kinds of 
behaviour choice in the field of travel behaviour analysis, we will fit 
some logit models as a benchmark for comparison in the latter experi
ment. Therefore, some basic formulas of the logit model are described in 
the last subsection. 

3.1. Region-specific random utility model 

RUM has been a predominant method for passenger mode choice 
modelling since the seminal paper by McFadden (1981). Based on the 
assumption that each alternative provides a certain level of utility to an 
individual, RUM relies on utility specifications for each alternative. In 
reality, it is impossible for researchers to observe all the utility of the 

individual. Therefore, for each alternative, the utility Uikof selecting 
choice k out of [1, 2,…,K] choices for individual i is the sum of the 
deterministic utility Vik and the random utility ∊ik, which represent the 
effects of observed variables and unobserved factors respectively (Ben- 
Akiva and Lerman, 2018): 

Uik = Vik +∊ik (1) 

The observed utility Vik is a function of xi, where xi is the ith obser
vations, including individual-related and trip-related attributes. i ∈
{1,2,…,N} and k ∈ {1,2,…,K}. K denotes the total number of travel 
mode alternatives, and N denotes the total number of trip records. The 
random utility ∊ikoften results from the specification of the deterministic 
utility Vik. 

The Random Effects (RE) model is a statistical method for analysing 
multilevel data, including longitudinal repeated-measures data 
(Gardiner et al., 2009). A well-specified RE model can provide more 
information than a Fixed Effects (FE) model (Bell et al., 2019; Shor et al., 
2007). Unlike FE models where all observations share a common effect 
size, RE models allow the effect size to vary (Borenstein et al., 2010). 
Thus they can describe different behaviour to different ’clusters’ of 

Fig. 3. Travel mode share by region.  

Fig. 4. Prediction accuracy of RE-BNNs, BNNs, DNNs, MNL and MXL models in different year data.  
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observations. 
In this study, as the preference for travel mode choice may differ 

from region to region, the RE model is used to describe the different 
travel behaviour of individuals from different regions. The RE model is 
combined with RUM by introducing a random effect factor zrk into Eq. 
(1), which allows us to accommodate preference heterogeneity from 
different regions and achieve a region-specific RUM: 

Uirk = Virk +∊irk (2) 

The observed utility Virk is a function of xi and zrk, where zrk is a 
region-varying independent variable. In the context of utility theory, it 
can be regarded as the offset utility of alternative k for people living in 
region r ∈ {1,2,…,R}, where R refers to the total number of regions. 
Note that this random effect parameter differs from the dummy variable, 
which is the fixed effect. A RE model treats random effects as random 
draws from a normal distribution, while dummy variables in a FE model 
are regarded as unconnected entities and estimated separately (Bell 
et al., 2019). 

Fig. 5. Prediction accuracy of RE-BNNs, BNNs, DNNs, MNL and MXL models trained by the 2016 year training set for different regions.  

Fig. 6. The offset utility of five alternatives for passengers living in different regions in 2016. The values of zrk parameter are standardised.  
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In utility maximisation behaviour, the passenger i tends to choose the 
alternative k that provides the largest utility out of K choices (Ben-Akiva 
and Lerman, 2018). The probability of choosing alternative k can be 
described as: 

Pirk = Prob(Virk +∊irk > Virj + ∊irj,∀j ∈ {1, 2,…,N}, j ∕= k) (3) 

Assuming that the random utility ∊irkis followed by Gumbel distri
bution, the probability of choosing alternative k can be obtained as 
follows (McFadden, 1986): 

Pirk =
exp(Virk)

∑K

j=1
exp(Virj)

(4)  

3.2. Neural network for region-specific choice modelling 

NNs are proven to be highly adaptable in identifying non-linear in
teractions and they can be adopted to analyse travel mode choice. When 
assuming that the random utility term ∊irkis obeying the Gumbel dis
tribution, the input variables into the Softmax activation function of NNs 
can be regarded as utilities, and the outputs from the Softmax activation 
function represent the probabilities of alternatives (Wang et al., 2020). 

Pirk = Softmax(Virk) =
exp(Virk)

∑K

j=1
exp(Virj)

(5) 

An NN for region-specific choice is as follows: 

Virk = (gk
L∘gL− 1…∘g1)(xi)+ zrk (6)  

where 

gl(x) = Tanh(ωlx+ bl), l ∈ {1, 2,…, L} (7) 

Each gl(x) consists of linear and non-linear unit (i.e., activation 
function) transformation, where ωlrefers to a parameter matrix con
taining random weights in the lth layer. gk

L transforms the last layer into 
the utility of choice k, L represents the total number of layers in a NN. zrk 

is an offset term of alternative k for people living in region r. This term 
has two contributions to the model. First, it represents the region term as 
a random effect in this NN model. Second, it contributes to the inter
pretability of NNs, for it represents the offset utility. The variation of this 
term can be used to analyse the differences in travel behaviours and 
preferences among regions. 

3.3. Random effect-bayesian neural network 

Due to the sensitivity to hyperparameters, the economic information 
extracted from DNN may be unreliable (Wang et al., 2020). To mitigate 
this problem, the Bayesian Neural Network (BNN) is chosen as the 
baseline of this study. In contrast to the other plain feedforward NNs, 
which are prone to over-fitting issues and make decisions only relying on 
point prediction (Guo et al., 2017; Pereyra et al., 2017), BNNs can avoid 
the over-fitting issue by introducing uncertainty on the weights and 
improve the quality of prediction (Blundell et al., 2015). 

Based on the theory of utility and the random effect model, a 
Random Effect-Bayesian Neural Network (RE-BNN) model was designed 
to predict and analyse the travel mode choice across regions. Fig. 1 il
lustrates this RE-BNN architecture. 

Given a dataset D =
{
xi, ri, yi

}N
i=1, containing N individual trip record 

(i.e., training input) xi ∈ RP, region of the record ri ∈ {1,2,…,R}, and 
label (i.e., corresponding output) yi ∈ {e1, e2,…, eK}, where ek is the one- 
hot encoded vector with the only kth element being ’1’ and the others 
being ’0’. P represents the dimension of the inputs (i.e., the number of 
independent variables in the model). Let ω denote the collection of all 

Fig. 7. The variation of the offset utility of five alternatives for passengers living in different regions from 2005 to 2016.  
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parameter matrices: ω = (ω1, ω2, …, ωL). Following the Bayesian 
approach, a prior distribution p(ω) is placed on the parameter vector ω, 
which represents the prior belief as to which parameters are likely to 
have yielded the data before the data points are observed. When some 

data points are observed, this distribution will be changed to capture 
different parameters. The distribution p(ω) can be described as follows 
by invoking Bayes’ theorem3. 

Fig. 8. Choice probability functions with trip time in RE-BNN models (trained by 2016 data) for different regions.  

3 Note that for notational convenience, the bias parameters b = (b1, b2,…, bL)
and the random effect parameters z = (z1, z2,…, zR) are not represented above. 
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p(ω|D) =
p(D|ω)p(ω)

p(D)
=

∏N
i=1 p(yi|xi,ω)p(ω)

p(D)
(8) 

With the distribution p(ω), we can do the inference process that an 
output y* can be predicted given a new input x* (Kwon et al., 2020): 

p(y*|x*,D) =

∫

p(y*|x*,ω)p(ω|D)dω (9) 

Nevertheless, it is analytically intractable to calculate the posterior 

distribution of weights p(ω|D) for the reason that it requires taking ex
ceptions p(ŷ|x̂) = Ep(ω|D), which means to adopt an ensemble of infinite 
NNs (Blundell et al., 2015). Variational inference (Hinton and Van 
Camp, 1993) is one of commonly used methods for training BNNs. This 
method approximates the posterior distribution by finding the param
eters θof a tractable variational distribution qθ(ω) that minimises the 
divergence with the true posterior distribution p(ω|D). Kullback-Leibler 
(KL) divergence (Kullback, 1959) is a widely adopted to measure the 

Fig. 9. Choice probability functions with trip time in BNN models (trained by 2016 data) for different regions.  

Y. Xia et al.                                                                                                                                                                                                                                      



Travel Behaviour and Society 30 (2023) 118–134

127

closeness of two distributions: 

KL{qθ(ω)||p(ω|D)} =

∫

qθ(ω)log
qθ(ω)

p(ω|D)
dω (10) 

Minimising this KL divergence is also intractable because it directly 
depends on the true posterior distribution p(ω|D). However, minimising 
the KL divergence is equivalent to maximising the Evidence Lower 
Bound (ELBO) with respect to the defined variational parameters qθ(ω), 

−

∫

qθ(ω)logp(y|x,ω)dω+KL{qθ(ω)||p(ω)}
(11) 

This procedure of variational inference is a standard approach in 
Bayesian modelling (Jordan et al., 1999). Variational inference casts 
posterior inference as an optimisation problem, where optimisation can 
be done by gradient-based methods. In this study, ELBO was adopted as 
the loss function to find the best distribution of parameter ω, b and z. 

3.4. Logit model 

In the field of travel behaviour analysis, logit models have been 
adopted for exploring different kinds of behaviour choices, such as de
parture time choice (Afandizadeh and Safari, 2020), since the seminal 
paper by McFadden (1986). 

In a logit model, the utilities for choosing a travel mode are gener
ated by a logistic function of the input variables. Taking the MNL model 
as an example, the utility of travel alternative k is defined as follows: 

Uk = βkXk +∊k (12)  

where βk is a parameter vector for alternative k. The unobserved utility 
∊k is always treated as a stochastic element. It is assumed by researchers 
to be independent and identically distributed extreme values in the logit 
model. The probability of choosing mode k for passenger i is defined as 
follows: 

Table 4 
Travel mode shares in different regions of the UK (testing set of 2016 data).  

Mode North East North West Yorkshire and the 
Humber 

East 
Midlands 

West 
Midlands 

East of 
England 

London South East South West 

Panel 1. True Travel Mode Share 
Walk 10.07% 10.09% 10.65% 10.85% 7.99% 9.08% 12.30% 8.96% 12.35% 

Bicycle 1.66% 1.47% 1.80% 1.76% 1.35% 2.97% 2.34% 1.64% 2.64% 
Driving 79.99% 80.89% 81.32% 81.25% 84.66% 80.71% 52.08% 83.05% 80.29% 

Bus 8.22% 5.63% 4.84% 4.87% 4.77% 2.76% 13.70% 2.51% 3.68% 
Rail 0.07% 1.92% 1.40% 1.27% 1.23% 4.48% 19.57% 3.83% 1.04%           

Panel 2. RE-BNN 
Walk 10.57% 

(0.93%) 
10.13% 
(0.92%) 

10.1%(0.84%) 10.58% 
(0.82%) 

7.97% 
(0.67%) 

9.37%(0.76%) 12.34% 
(1.32%) 

9.43% 
(0.71%) 

12.48% 
(0.91%) 

Bicycle 1.17% 
(0.23%) 

1.54% 
(0.29%) 

1.45%(0.26%) 1.85% 
(0.32%) 

1.17% 
(0.23%) 

2.74%(0.54%) 2.64% 
(0.47%) 

1.64% 
(0.32%) 

2.22%(0.4%) 

Driving 80.01% 
(0.94%) 

80.77% 
(1.02%) 

82.25%(0.93%) 82.62% 
(0.92%) 

84.82% 
(0.76%) 

80.79%(1.1%) 51.76% 
(1.81%) 

82.57% 
(1.03%) 

80.54% 
(0.9%) 

Bus 8.08% 
(0.74%) 

5.36% 
(0.53%) 

4.63%(0.48%) 4.01% 
(0.38%) 

4.62% 
(0.44%) 

2.71%(0.29%) 13.16% 
(1.05%) 

2.55% 
(0.25%) 

3.54% 
(0.36%) 

Rail 0.17% 
(0.03%) 

2.2%(0.3%) 1.56%(0.25%) 0.94% 
(0.15%) 

1.43% 
(0.21%) 

4.4%(0.61%) 20.1% 
(1.58%) 

3.81% 
(0.57%) 

1.21% 
(0.18%)           

Panel 3. BNN 
Walk 11.2% 

(0.76%) 
10.5%(0.8%) 10.03%(0.68%) 9.97% 

(0.64%) 
8.58% 

(0.63%) 
9.32%(0.68%) 12%(1.14%) 8.94% 

(0.63%) 
11.55% 
(0.76%) 

Bicycle 2.15% 
(0.27%) 

1.73%(0.2%) 1.82%(0.2%) 2.07% 
(0.25%) 

1.37% 
(0.18%) 

1.84%(0.23%) 2.61% 
(0.27%) 

1.37% 
(0.17%) 

1.81% 
(0.21%) 

Driving 79.49% 
(0.83%) 

80.09% 
(0.99%) 

81.54%(0.9%) 81.94% 
(0.83%) 

83.89% 
(0.82%) 

82.75% 
(0.87%) 

51.86% 
(2.21%) 

84%(0.88%) 80.91% 
(0.82%) 

Bus 5.78% 
(0.48%) 

5.55% 
(0.47%) 

4.66%(0.43%) 4.04% 
(0.35%) 

4.28% 
(0.35%) 

3.34%(0.3%) 13.8% 
(1.16%) 

2.81% 
(0.23%) 

3.83% 
(0.34%) 

Rail 1.39% 
(0.24%) 

2.14% 
(0.36%) 

1.95%(0.35%) 1.99% 
(0.35%) 

1.88% 
(0.34%) 

2.75%(0.47%) 19.73% 
(2.27%) 

2.88% 
(0.53%) 

1.9%(0.33%)           

Panel 4. DNN 
Walk 12.31% 

(0.2%) 
11.95% 
(0.2%) 

11.21%(0.17%) 11.54% 
(0.17%) 

9.78% 
(0.19%) 

10.59% 
(0.17%) 

10.46% 
(0.77%) 

9.98% 
(0.17%) 

12.74% 
(0.18%) 

Bicycle 2.26% 
(0.16%) 

1.86% 
(0.09%) 

1.88%(0.11%) 2.2%(0.12%) 1.72% 
(0.07%) 

1.91%(0.11%) 3.01% 
(0.29%) 

1.63% 
(0.08%) 

2.04% 
(0.09%) 

Driving 77.79% 
(0.3%) 

78.27% 
(0.3%) 

79.77%(0.3%) 79.54% 
(0.28%) 

81.81% 
(0.28%) 

80.78% 
(0.32%) 

51.05% 
(0.96%) 

82.15% 
(0.29%) 

78.81% 
(0.27%) 

Bus 5.89% 
(0.19%) 

5.43% 
(0.15%) 

4.76%(0.14%) 4.34% 
(0.14%) 

4.43% 
(0.12%) 

3.54%(0.11%) 13.87% 
(0.66%) 

2.93% 
(0.08%) 

4.09% 
(0.13%) 

Rail 1.74% 
(0.09%) 

2.49%(0.1%) 2.37%(0.11%) 2.38% 
(0.12%) 

2.26% 
(0.09%) 

3.18%(0.14%) 21.6%(0.7%) 3.31% 
(0.16%) 

2.32% 
(0.11%)           

Panel 5. MNL 
Walk 7.90% 8.34% 9.45% 9.81% 8.35% 9.80% 11.21% 8.65% 9.93% 

Bicycle 7.94% 8.37% 9.55% 10.03% 8.48% 10.00% 10.94% 8.83% 10.06% 
Driving 68.02% 65.63% 60.99% 59.65% 65.70% 59.68% 33.96% 64.06% 59.41% 

Bus 8.06% 8.39% 9.48% 9.74% 8.23% 9.60% 15.82% 8.43% 9.80% 
Rail 8.08% 9.26% 10.52% 10.77% 9.25% 10.93% 28.08% 10.03% 10.80%  
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Pik =
exp(βkXik)

∑K

j=1
exp(βjXik)

(13)  

where K denotes the total number of alternatives. Given the parameter β, 
the likelihood function of the MNL model can be formulated as follows: 

L(β) =
∏N

i=1

∏K

k=1

⎛

⎜
⎜
⎜
⎝

exp(βkXik)

∑K

j=1
exp(βjXik)

⎞

⎟
⎟
⎟
⎠

(14) 

The Maximum Likelihood Estimation approach can be used to search 
for the best parameter β̂ = argmaxβL(β). 

4. Setup of experiments 

This section briefly introduces the dataset used to test the models in 
this study. Since five models will be compared, including three NN 
models and one conventional logit model, the process of tuning hyper
parameters for NN models and the specification of the utility functions 
for the logit model are presented in this section. 

4.1. Datasets 

The experiments rely on the National Travel Survey (NTS) dataset of 
Great Britain from 2005 to 2016, which is publicly provided by 
Department for Transport (2020). The study area is divided into nine 
regions according to the household address of the respondents: North 
East, North West, Yorkshire and the Humber, East Midlands, West 

Midlands, East of England, London, South East, and South West. From 
2005 to 2016, there are 121765 respondents from 69208 households 
being annually interviewed. After simple data cleaning, the database 
contains a total of 2100492 observations on the details of all their travel 
activities, including mode, purpose, original, destination, travel time 
and travel distance. The database also provides information about re
spondents’ households and themselves, including gender, education, 
income, car-ownership, and employment, et al. 

The original database consists of several interconnected sub-tables 
containing data on the individual, household, attitudes, trip, vehicle, 
stage and day level. Based on the determinants of travel mode choice, 
which has been discussed in Section 2.1, fifteen variables are selected 
from the individual, household, and trip tables for this study. The data 
on population density in these regions is provided by Greater London 
Authority (2018). 

Data pre-processing minimises the noise of the data while retaining 
the key information, leading to an effective classification performance 
(Bishop et al., 1995). Encoding the categorical variables to numerical 
values plays an essential role in modelling the data and simplifies the 
learning process, which is commonly used in ML algorithms (Potdar 
et al., 2017). The dataset used in this study contains both numerical and 
categorical variables. Some categorical variables are ordinal, such as age 
and income, which can be transformed into continuous variables by 
assigning them the interval mid-point values to increase comparability. 
Other categorical variables are transformed into dummy variables by the 
one-hot encoding technique. In the dataset, the output yi denotes the 
mode alternative. In order to maintain choice’s regional consistency, 
several alternatives have been merged, such as ’bus in London’ and 
’other local bus’. After merged, there are five travel mode alternatives: 

Table 5 
Absolute value of errors between the predicted market shares and the true travel mode shares.  

Panel 1. RE-BNN 

Mode North 
East 

North 
West 

Yorkshire and the 
Humber 

East 
Midlands 

West 
Midlands 

East of 
England 

London South 
East 

South 
West 

AVE 

Walk 0.50% 0.04% 0.55% 0.26% 0.02% 0.29% 0.04% 0.47% 0.13% 0.26% 
Bicycle 0.49% 0.07% 0.35% 0.09% 0.18% 0.24% 0.30% 0.00% 0.42% 0.23% 
Driving 0.03% 0.11% 0.94% 1.37% 0.15% 0.07% 0.31% 0.48% 0.25% 0.41% 

Bus 0.14% 0.27% 0.21% 0.86% 0.15% 0.05% 0.55% 0.03% 0.14% 0.27% 
Rail 0.10% 0.28% 0.17% 0.34% 0.20% 0.08% 0.52% 0.03% 0.17% 0.21% 
SUM 1.25% 0.77% 2.20% 2.92% 0.69% 0.72% 1.72% 1.02% 1.11% 1.38% 

(0.72%)            

Panel 2. BNN  
Walk 1.13% 0.41% 0.62% 0.88% 0.59% 0.24% 0.30% 0.02% 0.81% 0.56% 

Bicycle 0.49% 0.26% 0.02% 0.30% 0.02% 1.13% 0.27% 0.27% 0.83% 0.40% 
Driving 0.50% 0.80% 0.23% 0.69% 0.78% 2.03% 0.22% 0.94% 0.62% 0.76% 

Bus 2.44% 0.08% 0.19% 0.83% 0.49% 0.58% 0.10% 0.30% 0.16% 0.57% 
Rail 1.32% 0.21% 0.55% 0.72% 0.65% 1.73% 0.15% 0.95% 0.86% 0.79% 
SUM 5.88% 1.76% 1.61% 3.42% 2.53% 5.72% 1.04% 2.48% 3.26% 3.08% 

(1.62%)            

Panel 3. DNN 
Walk 2.24% 1.87% 0.57% 0.70% 1.79% 1.51% 1.84% 1.02% 0.39% 1.32% 

Bicycle 0.61% 0.38% 0.08% 0.44% 0.37% 1.06% 0.66% 0.01% 0.60% 0.47% 
Driving 2.19% 2.61% 1.54% 1.71% 2.85% 0.07% 1.02% 0.90% 1.49% 1.60% 

Bus 2.33% 0.20% 0.08% 0.53% 0.34% 0.78% 0.17% 0.42% 0.42% 0.59% 
Rail 1.67% 0.57% 0.97% 1.11% 1.03% 1.30% 2.03% 0.52% 1.28% 1.16% 
SUM 9.04% 5.64% 3.25% 4.49% 6.39% 4.72% 5.73% 2.87% 4.17% 5.14% 

(1.75%)            

Panel 4. MNL 
Walk 2.18% 1.75% 1.19% 1.03% 0.36% 0.72% 1.09% 0.31% 2.42% 1.23% 

Bicycle 6.29% 6.90% 7.75% 8.26% 7.13% 7.03% 8.59% 7.19% 7.42% 7.40% 
Driving 11.96% 15.25% 20.33% 21.60% 18.97% 21.04% 18.12% 18.99% 20.88% 18.57% 

Bus 0.16% 2.76% 4.64% 4.87% 3.46% 6.84% 2.12% 5.92% 6.12% 4.10% 
Rail 8.01% 7.34% 9.13% 9.50% 8.02% 6.45% 8.50% 6.20% 9.76% 8.10% 
SUM 28.60% 34.00% 43.04% 45.27% 37.94% 42.07% 38.42% 38.60% 46.61% 39.39% 

(5.34%)  
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walk, bicycle, driving, bus, and rail (including London Underground). 
The input xi is the attributes of each trip (i.e., variables in Table C.9 
excluding the region), and ri represents the household region of each 
trip’s respondent. The descriptions and summary statistics of the dataset 
used in this paper can be seen in A. 

4.2. Hyperparameter searching for ML models 

For comparison purposes, in addition to our RE-BNN model, this 
study also trained BNNs and DNNs using the same datasets as RE-BNN, 
except for the regional feature.4 Since NNs are sensitive to the selection 
of hyperparameters, one of the challenges in the architecture of NN- 
based models is hyperparameters searching, on which the predictive 
performance of NN largely depends (Wang et al., 2020). Table 1 shows 
the crucial hyperparameters in the architecture of RE-BNN and DNN and 
the range of their values. Width n denotes the number of neurons in each 
layer of RE-BNN or DNN. Since the data contain various sets of variables 
with different scales and ranges, standardising them before training the 
model can speed up the learning process for some ML algorithms using 
the gradient descent method as an optimisation algorithm (Raschka, 
2014). In order to select the best hyperparameters for the ML models, we 
use the grid search method to find the best hyperparameter combina
tion. To be specific, this study randomly samples 100,000 observations 
from the original dataset as a sub-dataset. Then the dataset is dividing it 
into training and testing sets at a ratio of 4:1 to evaluate the model under 
different combinations of hyperparameters. Fig. 2 shows the prediction 
accuracies of the RE-BNN and DNN models with different hyper
parameters. According to the results, when learning rate = 0.1 and 
Width n=15, the prediction accuracy of RE-BNN performs best. The 
same hyperparameters were applied to the architecture of BNN. For 
DNN, this study used learning rate = 0.01, Width n=10 and Batch size =
100. 

4.3. Specification for logit models 

Considering that the MNL model are frequently used in travel mode 
choice modelling and the MiXed Logit (MXL) model can take the random 
nature of parameters into account (Ben-Akiva and Lerman, 2018), this 
study has also fitted MNL and MXL models as the benchmark for com
parison. The same training dataset is used to calibrate the MNL model. 

Unlike ML models that consider a RUM as a supervised probabilistic 
classifier, classical logit models rely on alternative-specific functions of 
utilities. The specification of MNL and MXL models is based on the 
correlation coefficients between alternatives and attributes (see Ap
pendix C.8), and variables selected for specifying the alternative-specific 
utility functions are listed in Table 2. The number in the parenthesis is 
the value of the categorical variable before being transformed into 
dummy variables. Descriptions of these variables are shown in Appendix 
C.9. Note that it is ensured that all alternative-specific functions contain 
the same parameter (trip time) for the drawing of choice probability 
functions in Section 5.3.2. 

5. Experiment results 

This section first presents a brief exploratory analysis of the travel 
mode choice in the UK in 2016. Then it shows the predictive perfor
mance of the RE-BNN model in comparison with four models (i.e. BNN, 
DNN, MNL and MXL). After that, it describes the interpretation of the 
RE-BNN model regarding offset utility, choice probability function, and 
local travel mode shares. 

5.1. Exploratory analysis of travel mode choice in the UK 

Table 3 describes the frequency and percentage of trips by travel 
mode choice in the UK in 2016. Driving has the largest proportion of 
78.48%, followed by walking (9.93%) and taking a bus (5.29%). Rail 
and bicycle are less popular than the others, which occupied 4.42% and 
1.89% of the total trips, respectively. Travel mode shares of different 
regions are presented in Fig. 3. According to the figure, London greatly 
differs from the other regions with a significantly lower share of driving 
(about 50%) and a higher share of rail. 

5.2. Prediction accuracy 

Each NN-based model is trained and evaluated 50 times for each one- 
year data. Each one-year dataset is divided into training and testing sets 
in the ratio of 4:1. Fig. 4 shows the prediction accuracy of RE-BNN, BNN, 
DNN, MNL and MXL for each year. For three NN-based models, curves 
with relatively light colours represent the predictive accuracy of each 
single training result, and dark curves are the average accuracy of all 
training results. A table containing the specific prediction accuracy in
formation of models is attached in Appendix B.7. The result reveals that 
ML models (i.e., RE-BNN, BNN and DNN) on average outperform the 
MNL model and the MXL model by around 10 % and 2 % predictive 
accuracy, respectively, which is in line with the previous researches by 
Hagenauer and Helbich (2017); Lhéritier et al. (2019) and Zhao et al. 
(2020). The average prediction performances of RE-BNNs and BNNs are 
similar, outperforming DNNs by around 1 to 2 percentage points. This 
result reveals that the improvement of the predictive power of RE-BNN 
is mainly attributed to the introduction of Bayesian’s uncertainty into 
NNs. In addition to the high predictive accuracy, compared with DNN, 
the curve of RE-BNN is more stable across different year datasets, indi
cating that it is more robust and can fit better to different datasets. 

Since the main objective of introducing the random effect parameter 
into our model is to enhance the ability of the model to copy with the 
regional heterogeneity, this study then investigates the local-level pre
dictive accuracy of RE-BNN and the other three models. Fig. 5 illustrates 
the predictive accuracy of these five models trained by the 2016 dataset 
in different regions. Note that the accuracy for three ML models is rep
resented by the average value of 50 training results. The figure shows 
that, compared with other regions, the accuracy for London’s travel 
mode choice are relatively low for all these five models, including the 
RE-BNN model. This result indicates that the RE-BNN model does not 
have obvious advantages in predicting individual-level travel mode 
choice in different regions. Nevertheless, for all regions, the prediction 
accuracy of RE-BNN and BNN is higher than that of DNN, proving the 
advantage of introducing Bayesian’s uncertainty in the process of 
prediction. 

5.3. Interpretation of RE-BNN 

In this section, we interpreted the RE-BNN model via the behaviour 
information extracted from the model. Specifically, we analysed the 
regional heterogeneity of choice preferences, the choice probability 
functions of five different modes and the market shares across regions. 

5.3.1. Offset utility of travel mode across regions 
Based on the theory of utility and Eq. (6), the region-specific random 

effect parameter zrk can be regarded as the offset utility of mode k for 
region r in the context of behaviour analysis. Therefore, by comparing 
the values of this parameter, it is possible for us to analyse the various 
utility of the same travel mode and the heterogeneity in passengers’ 
travel preferences across different regions. Fig. 6 shows the variation of 
the region-specific random effect parameter zrk in 50 RE-BNN models 
trained by the 2016 dataset. Because in RE-BNNs, it is the distribution of 
parameters that are estimated, including the random effect parameter 
zrk, the mean values of these distributions are extracted for behaviour 

4 To avoid errors caused by ignoring regional factors when comparing the 
training results, for models other than RE-BNN, a population density attribute 
was added to distinguish different regions. 

Y. Xia et al.                                                                                                                                                                                                                                      



Travel Behaviour and Society 30 (2023) 118–134

130

analysis. The length of each box in Fig. 6 represents the variation degree 
of the random effect parameter obtained from 50 RE-BNN training re
sults, and the position of each box represents the average level of the 
offset utility of choosing a travel mode for people living in different 
regions. 

Among these five alternatives, the regional difference in the behav
ioural preferences of choosing rail as a mode of transportation is the 
most significant. When other variables are the same, rail brings signif
icantly more utility to people living in London than those living in other 
regions, which is consistent with the fact that the Underground as a 
popular and convenient means of transportation only serves London and 
some parts of the adjacent counties (Office of Rail and Road, 2014). The 
utility of choosing rail living in North East is the least among all regions. 

In contrast to the highest utility brought by rail in London, the utility 
of choosing driving as the travel mode is the lowest for London residents, 
compared to people living in other regions. The potential reason for this 
phenomenon is that London’s social policy environment is not friendly 
to drive. The London Congestion Charge was introduced in 2003 as a 
measurement to alleviate traffic congestion in downtown London. Under 
this policy, cars entering the central area of about 16 km2 are charged 
(£5 in 2003, rising to £11.50 in 2016) (Ambühl et al., 2018), which 
reduces the utility of driving for London residents. 

In East of London and South West, passengers prefer to select riding 
as their travel mode, while people in North East obtain more utility 
when travelling by bus. Regarding the preference for walking, there is no 
significant regional difference. 

It is also possible for us to investigate the temporal variation of the 
utility of travel modes for people living in different regions. The average 
values of the random effect parameter in each year are used to represent 
the overall level of offset utilities. Fig. 7 shows this parameter of 
different regions and alternatives varies during the period from 2005 to 
2016. The length of each box represents the degree of the variation in 
the offset utility of five travel modes in this period. The position of each 
box represents the overall level of the offset utility for residents from 
different regions during this period, which is similar to the boxes’ po
sitions in 2016. This similarity indicates that the regional differences in 
the behavioural preferences of travel mode choice in 2016 are similar to 
the average level during the past twelve years. The short length of boxes 
in Figs. 7a, 7c, 7d, and 7e indicates that the variations of the utilities of 
choosing walking, driving, bus and rail in these regions are not very 
significant. In contrast, the utility of riding as a mode of travel have more 
considerable changes in the same period. 

5.3.2. Choice probability functions across regions 
Under the utility maximisation theory, the regional differences in 

utility brought by various alternatives directly lead to regional hetero
geneity in choice probabilities for travel mode choices. The choice 
probability functions for each alternative can be visualised via numer
ical simulation (Wang et al., 2020). Fig. 8 and 9 visualise how the choice 
probability functions in 50 RE-BNN and 50 BNN models (trained by the 
2016 training set) in different regions vary as the trip time increases 
when remaining all other features’ values are consistent with their 
average values. The grey curves represent each training result in each 
sub-figure, and the colourful curves are the mean value of all the 
training results. Note that the significant variation of the grey curves in 
Fig. 8a, 8c and 8d indicates that although trained by the same dataset 
and showing similar predictive powers, the choice probability functions 
of these alternatives in the RE-BNN models are quite different. Never
theless, it is worth noting that these irregular behavioural patterns are 
not necessarily negative since they may exist in other literature and can 
be regarded as successfully identifying flexible behavioural patterns 
(Wang et al., 2020). 

According to Fig. 8, overall, the average lines (represented by red 
colour in the figure) represent the overall trend of the change in the 
probabilities. When the value of trip time is very close to zero, the 
probability of driving is relatively high, in contrast to the low 

probabilities of choosing the other four alternatives. As the trip time 
increases, the driving probability has a decreasing trend; the probabil
ities for taking the bus and walking increase and then level off; yet the 
probabilities for riding and rail still maintain low values. Similar trends 
can be found in the probabilities function learned by BNNs (Fig. 9), 
except less flexible. Most curves are intuitive and reasonable, notably 
driving and taking the bus. People may prefer to drive by themselves on 
a short trip, but when trips may cost too much time, they may be more 
likely to take public transportation, such as the bus. Concurrently, the 
choice probabilities of rail and bicycle are less sensitive to the trip time. 
However, the walking probability function may suffer the interpret
ability problem, especially for that learned by BNNs. This issue may 
attribute to the trip time variable is not alternative-specific, subjected to 
the data provided by the dataset used in this study. 

In terms of the regional differences, the colourful curves describe the 
choice probability functions for passengers in different regions, 
demonstrating the power of RE-BNNs to automatically learn the choice 
probability functions across different regions. For the same travel mode, 
the more scattered the curves, the more significant the regional differ
ences in the travel mode behaviour. A curve above the regional average 
curve (represented by the red curve in each sub-figure) indicates that 
choosing this travel mode can bring more utility to people in this region 
than those from other regions and vice versa. In Fig. 8e, the orange curve 
(representing the choice probability for passengers in London) is higher 
than all the other curves by around 10% to 20%. This value means that 
when other variables are the same (such as age, income, trip distance, 
etc.), it is possible that among 100 passengers, 10 to 20 more people in 
London would choose rail than in other regions. The opposite situation 
can be observed in the behaviours of choosing walking and driving as 
the travel mode (shown in Fig. 8a and 8c). While the difference in riding 
behaviours is not significant across regions the colourful curves in 
Fig. 8b are very concentrated. In comparison to the choice probability 
functions’ learning ability of RE-BNNs, BNNs are not able to capture the 
probability functions in different regions. 

5.3.3. Travel mode shares prediction across regions 
This subsection shows the results of predicting local market shares 

for each travel mode. Note that if the predictive capability investigated 
in Section 5.2 is at the individual level, this predictive power of travel 
mode shares can be regarded as the aggregate-level predictive power. 

Table 4 describes the prediction results of travel mode’s market 
shares predicated by the RE-BNN models and the other three models in 
the 2016 dataset in different regions. Each value refers to the mean value 
of the travel mode shares predicted by 50 models. The value in the 
parenthesis refers to the standard deviation. According to the table, the 
values of RE-BNN’s predictive results are very close to the real travel 
mode shares, demonstrating its considerable capability in predicting 
travel modes’ market shares in different regions. The standard de
viations in the RE-BNN mode and the BNN model are on average higher 
than that in the DNN model by about 0.4%, indicating that the predic
tive power of the local travel mode share of DNN is stable than that of 
RE-BNN and BNN. 

Then the errors between the prediction results and the true values are 
calculated to quantify the sum of differences, shown in Table 5. The bold 
values and numbers in the parenthesis in Table 5 represent the mean 
values and the standard deviation of the predicted aggregated market 
shares across regions, respectively, which reveals models’ prediction 
power of market shares. The sum of five modes’ average errors across 
regions of the RE-BNN models (1.38%) is the least among the four 
models, showing that the prediction result of aggregated market shares 
of RE-BNN is the most accurate, outperforming the other models. The 
standard deviation of the RE-BNN models (0.72%) is also less than the 
other three models, revealing its stable prediction power of aggregated 
market shares across regions. 
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6. Conclusions 

While many studies have used ML methods for predicting travel 
mode choice, none of them reveal the regional heterogeneity of travel 
mode choice. To fill this research gap, this study develops a Random 
Effect Bayesian Neural Network (RE-BNN) to predict mode choice across 
regions and reveal the regional heterogeneity. Compared with the DNN 
model, the RE-BNN model has two improvements in the structure: first, 
it includes a random effect term representing regional-specific offset 
utilities; second, the Bayesian’s uncertainty is introduced to enhance the 
stability of the model’s predictive accuracy. The merits of the RE-BNN 
model are demonstrated in a case study that predicts the UK’s na
tional travel mode alternatives from 2005 to 2016. Most importantly, 
the RE-BNN model is demonstrated to have the capability to automati
cally learn and reveal the regional heterogeneity of mode preferences, 
which is impossible for other four models. For instance, from the offset 
utility terms and the choice probability functions derived from the RE- 
BNN model, it is revealed that compared with other regions, residents 
in London have a higher preference for rail and a lower preference for 
driving. In addition to its outstanding interpretability power of regional 
travel preferences, the RE-BNN model also achieves better predictive 
performances than DNN and MNL models in terms of individual-level (i. 
e., individual trips) and aggregated-level (i.e., local travel mode shares) 
perspectives. Moreover, the RE-BNN model is more robust for datasets of 
different years, outperforming DNN and MNL models. 

This study sheds light on future research directions. First, the RE- 
BNN model has the potential of exploring travel preferences across 

other social groups, including age groups. The travel behaviour of 
different generations, especially millennials, has gained increasing 
attention from researchers (Rive et al., 2015; Hjorthol, 2016). Second, 
adding more regional-specific variables related to human travel 
behaviour, such as regional investment in cycling infrastructure or 
public transport, is another direction for the improvement of the RE- 
BNN model in better predictive performance across multiple regions. 
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Appendix A. Summary statistics of the dataset 

Table A.6. 

Table A.6 
Summary Statistics of selected variables.  

Panel 1. Numerical Variables 

Variables mean std min 25% 50% 75% max 

Trip_distance (miles) 8.92 20.03 0.1 1.9 3.6 8 613 
Trip_time (minutes) 24.22 27.88 0 10 15 30 1155 
Household_children 0.64 0.97 0 0 0 1 8 
Household_bike 1.40 1.36 0 0 1 2 8 
Household_car 1.40 0.85 0 1 1 2 8 
Household_licence 1.79 0.83 0 1 2 2 7 
Population_density (Pop per km2) 1015.70 1700.75 231 307 446 510 5590  

Panel 2. Categorical Variables 

Variables Variable values Count 

Trip_purpose 1 Commuting 425122 
2 Business 102443 
3 Education / escort education 131691 
4 Shopping 417029 
5 Personal business 208363 
6 Leisure 569549 
7 Other 246295  

Household_employeed 1 None 646871 
2 1 part time or full time 395729 
3 2 part time or full time 814977 
4 3 or more part time or full time 242915  

Individual_age 1 0 - 16 years 19301 
2 17 - 20 years 103996 
3 21 - 29 years 258607 
4 30 - 39 years 408984 
5 40 - 49 years 469555 
6 50 - 59 years 371614 
7 60 years + 468435  

Individual_education 1 Degree level or above 626540 
2 Other type of qualification 1473952  

(continued on next page) 

Y. Xia et al.                                                                                                                                                                                                                                      



Travel Behaviour and Society 30 (2023) 118–134

132

Appendix B. Prediction accuracy 

Table B.7. 

Appendix C. Correlation between alternatives and attributes 

Tables C.8 and C.9. 

Table B.7 
Prediction accuracy of RE-BNNs, BNNs, DNNs, MNL and MXL models trained by different year data.   

2005 2006 2007 2008 2009 2010 

RE-BNN(Average) 0.872 0.867 0.866 0.865 0.862 0.864 
BNN(Average) 0.871 0.868 0.867 0.864 0.861 0.863 
DNN(Average) 0.866 0.862 0.86 0.857 0.854 0.858 

MNL 0.743 0.742 0.738 0.735 0.731 0.742 
MXL 0.841 0.837 0.836 0.830 0.830 0.832         

2011 2012 2013 2014 2015 2016 

RE-BNN(Average) 0.865 0.865 0.864 0.861 0.861 0.863 
BNN(Average) 0.866 0.865 0.865 0.861 0.861 0.863 
DNN(Average) 0.857 0.858 0.858 0.849 0.851 0.855 

MNL 0.733 0.732 0.73 0.728 0.732 0.741 
MXL 0.830 0.834 0.833 0.827 0.829 0.833  

Table A.6 (continued ) 

Panel 1. Numerical Variables 

Variables mean std min 25% 50% 75% max 

Individual_income 1 Less than £25,000 1458396 
2 £25,000 to £49,999 487843 
3 £50,000 and over 154253  

Individual_gender 1 Male 996838 
2 Female 1103654  

Household_settlement 1 Urban 1663277 
2 Rural 437215  

Household_region 1 North East 110344 
2 North West 290214 
3 Yorkshire and the Humber 204610 
4 East Midlands 187078 
5 West Midlands 216772 
6 East of England 246156 
7 London 252901 
8 South East 362747 
9 South West 229670  

Table C.8 
Correlation coefficients between alternatives and attributes.   

Walk Bicycle Car or van Bus Rail 

Trip_distance − 0.1197 − 0.0396 0.0467 − 0.0411 0.1631 
Trip_time 0.0202 − 0.0106 − 0.1686 0.0788 0.2381 
Household_employeed − 0.0494 0.0138 0.0487 − 0.0567 0.0331 
Household_children − 0.006 − 0.0008 0.0355 − 0.0362 − 0.0207 
Household_bike − 0.0324 0.0779 0.0726 − 0.0991 − 0.0358 
Household_car − 0.1281 − 0.0598 0.2842 − 0.2291 − 0.0822 
Household_licence − 0.1046 − 0.0287 0.2227 − 0.2158 − 0.0252 
Individual_age − 0.0416 − 0.0294 0.1207 − 0.0748 − 0.08 
Individual_income − 0.0487 0.0093 0.038 − 0.09 0.0997 
Population_density 0.0153 0.0208 − 0.2319 0.1538 0.2651 
Trip_purpose_1 − 0.073 0.0697 − 0.0596 0.0369 0.1446 
Trip_purpose_2 − 0.0546 − 0.0089 0.0385 − 0.0296 0.0449 
Trip_purpose_3 0.044 − 0.0046 − 0.0613 0.0604 − 0.0088 
Trip_purpose_4 − 0.0104 − 0.0273 0.0252 0.0382 − 0.0666 
Trip_purpose_5 − 0.0157 − 0.0156 0.0267 0.0069 − 0.0309 
Trip_purpose_6 − 0.0607 0.0112 0.066 − 0.0308 − 0.0173 
Household_settlement_1 0.0438 0.0203 − 0.1147 0.0826 0.0604 
Individual_education_1 − 0.0063 0.0236 − 0.0277 − 0.0448 0.1085 
Individual_gender_1 − 0.0178 0.0638 − 0.0049 − 0.0342 0.0359  
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Lhéritier, A., Bocamazo, M., Delahaye, T., Acuna-Agost, R., 2019. Airline itinerary choice 
modeling using machine learning. J. Choice Modell. 31, 198–209. 

Li, H., Wang, P., Shen, C., 2018. Toward end-to-end car license plate detection and 
recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. 20 (3), 
1126–1136. 

Liang, F., 2005. Bayesian neural networks for nonlinear time series forecasting. Stat. 
Comput. 15 (1), 13–29. 

Liang, F., Wong, W.H., 2001. Real-parameter evolutionary monte carlo with applications 
to bayesian mixture models. J. Am. Stat. Assoc. 96 (454), 653–666. 

Lipton, Z.C., 2018. The mythos of model interpretability: In machine learning, the 
concept of interpretability is both important and slippery. Queue 16 (3), 31–57. 

Mackay, D.J.C., 1992. Bayesian methods for adaptive models, PhD thesis, California 
Institute of Technology. 

Marzban, C., Witt, A., 2001. A bayesian neural network for severe-hail size prediction. 
Weather Forecasting 16 (5), 600–610. 

McFadden, D., 1981. Econometric models of probabilistic choice. Structural analysis of 
discrete data with econometric applications 198272. 

McFadden, D., 1986. The choice theory approach to market research. Market. Sci. 5 (4), 
275–297. 

Munshi, T., 2016. Built environment and mode choice relationship for commute travel in 
the city of rajkot, india. Transp. Res. Part D: Transp. Environ. 44, 239–253. 

Office of Rail and Road, 2014. An overview of the british rail industry.https://www.orr. 
gov.uk/media/12376. 

Paredes, M., Hemberg, E., O’Reilly, U.-M., Zegras, C., 2017. Machine learning or discrete 
choice models for car ownership demand estimation and prediction?. In: 2017 5th 
IEEE International Conference on Models and Technologies for Intelligent 
Transportation Systems (MT-ITS), IEEE, pp. 780–785. 

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G., 2017. Regularizing neural 
networks by penalizing confident output distributions arXiv preprint arXiv: 
1701.06548.  

Potdar, K., Pardawala, T.S., Pai, C.D., 2017. A comparative study of categorical variable 
encoding techniques for neural network classifiers. Int. J. Comput. Appl. 175 (4), 
7–9. 

Raschka, S., 2014. About feature scaling and normalization. Disques, nd Web. Dec, 
Sebastian Racha.  

Ren, Y., Chen, H., Han, Y., Cheng, T., Zhang, Y., Chen, G., 2020. A hybrid integrated deep 
learning model for the prediction of citywide spatio-temporal flow volumes. Int. J. 
Geograph. Inform. Sci. 34 (4), 802–823. 

Rive, G., Thomas, J., Frith, B., Chang, J., 2015. Public transport and the next generation, 
number 569. 

Salas, P., De la Fuente, R., Astroza, S., Carrasco, J.A., 2022. A systematic comparative 
evaluation of machine learning classifiers and discrete choice models for travel mode 
choice in the presence of response heterogeneity. Exp. Syst. Appl., p. 116253. 

Shor, B., Bafumi, J., Keele, L., Park, D., 2007. A bayesian multilevel modeling approach 
to time-series cross-sectional data. Political Anal. 15 (2), 165–181. 

Tang, L., Xiong, C., Zhang, L., 2015. Decision tree method for modeling travel mode 
switching in a dynamic behavioral process. Transp. Plann. Technol. 38 (8), 833–850. 

Wang, S., Wang, Q., Zhao, J., 2020. Deep neural networks for choice analysis: Extracting 
complete economic information for interpretation. Transp. Res. Part C: Emerging 
Technol. 118, 102701. 

Willis, D.P., Manaugh, K., El-Geneidy, A., 2015. Cycling under influence: Summarizing 
the influence of perceptions, attitudes, habits, and social environments on cycling for 
transportation. Int. J. Sustain. Transp. 9 (8), 565–579. 

Xie, C., Lu, J., Parkany, E., 2003. Work travel mode choice modeling with data mining: 
decision trees and neural networks. Transp. Res. Rec. 1854 (1), 50–61. 

Xie, Y., Lord, D., Zhang, Y., 2007. Predicting motor vehicle collisions using bayesian 
neural network models: An empirical analysis. Acc. Anal. Prevent. 39 (5), 922–933. 

Zhang, Y., Xie, Y., 2008. Travel mode choice modeling with support vector machines. 
Transp. Res. Rec. 2076 (1), 141–150. 

Zhao, X., Yan, X., Yu, A., Van Hentenryck, P., 2020. Prediction and behavioral analysis of 
travel mode choice: A comparison of machine learning and logit models. Travel 
Behav. Soc. 20, 22–35. 

Wang, L., Xu, J., Qin, P., 2014. Will a driving restriction policy reduce car trips?-The case 
study of Beijing, China. Transp. Res. Part A: Policy Practice 67, 279–290. 

Y. Xia et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S2214-367X(22)00098-9/h0110
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0110
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0115
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0115
https://data.london.gov.uk/dataset/land-area-and-population-density-ward-and-borough
https://data.london.gov.uk/dataset/land-area-and-population-density-ward-and-borough
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0125
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0125
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0125
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0125
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0130
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0130
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0130
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0135
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0135
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0140
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0140
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0140
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0145
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0145
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0160
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0160
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0160
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0170
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0170
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0170
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0175
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0175
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0175
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0180
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0180
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0185
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0185
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0190
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0190
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0195
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0200
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0200
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0200
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0205
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0205
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0210
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0210
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0210
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0215
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0215
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0220
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0220
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0225
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0225
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0235
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0235
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0245
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0245
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0250
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0250
https://www.orr.gov.uk/media/12376
https://www.orr.gov.uk/media/12376
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0260
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0260
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0260
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0260
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0265
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0265
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0265
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0270
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0270
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0270
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0275
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0275
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0280
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0280
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0280
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0295
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0295
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0300
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0300
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0305
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0305
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0305
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0310
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0310
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0310
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0315
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0315
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0320
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0320
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0325
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0325
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0330
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0330
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0330
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0335
http://refhub.elsevier.com/S2214-367X(22)00098-9/h0335

	A Random Effect Bayesian Neural Network (RE-BNN) for travel mode choice analysis across multiple regions
	1 Introduction
	2 Literature review
	2.1 Determinants of travel mode choice
	2.2 Logit models for modelling travel mode choice
	2.3 Machine Learning for Modelling Travel Mode Choice

	3 Methodologies
	3.1 Region-specific random utility model
	3.2 Neural network for region-specific choice modelling
	3.3 Random effect-bayesian neural network
	3.4 Logit model

	4 Setup of experiments
	4.1 Datasets
	4.2 Hyperparameter searching for ML models
	4.3 Specification for logit models

	5 Experiment results
	5.1 Exploratory analysis of travel mode choice in the UK
	5.2 Prediction accuracy
	5.3 Interpretation of RE-BNN
	5.3.1 Offset utility of travel mode across regions
	5.3.2 Choice probability functions across regions
	5.3.3 Travel mode shares prediction across regions


	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Summary statistics of the dataset
	Appendix B Prediction accuracy
	Appendix C Correlation between alternatives and attributes
	References


