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High-fidelity, compact readout of spins in silicon quantum
dots

Abstract

Silicon has become one of the leading platforms for quantum computation, having
demonstrated qubits with long coherence times and high fidelity operations. More-
over, the similarities between silicon quantum dots and transistors give hope for mass
production of qubits easily integrable with control electronics. However, to fully
leverage their scalability potential, the footprint of the additional circuits for control
and readout needs to be minimised.

Here, we introduce a compact spin-readout method based on spin-dependent tun-
nelling combined with a dispersive charge sensor: the radio-frequency single-electron
box (SEB). Opposite to traditional charge sensors, the SEB only requires a single lead,
reducing its footprint. Using this sensing technique, we demonstrate spin readout of a
single electron spin in a CMOS device manufactured at the 300mm wafer-scale using
industrial processes, in which we measure long single spin relaxation times (up to 9 s).

Next, we focus on achieving a high readout fidelity, since it is essential to perform
error correction and ultimately sets the fidelity of qubit operations. The readout
fidelity is partly set by the ability of the sensor to detect rapid events with high
accuracy. We demonstrate that a low-loss high-impedance resonator highly coupled
to the SEB, together with a Josephson Parameter Amplifier, are central for optimal
performance. With these modifications, we obtain an integration time τm = 100 ns for
a signal to noise ratio equal to 1, which facilitates single-shot spin readout, reaching
a measurement fidelity FM = 99.54%, above the fault-tolerant threshold, in a readout
time ∆t = 250 µs.

We identify that the readout time is limited by the choice of the spin-to-charge
conversion mechanism. In the last part of the thesis, we work towards performing
Pauli spin blockade spin readout, which does not have such time limitation.
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Impact statement

Quantum computation proposes a change of paradigm in the way that algorithms are
envisioned and performed. This new computing approach will have major implications
in any field that relies on understanding many-body quantum systems such as material
science, chemistry or the discovery of new drugs. Moreover, quantum computation
could speed up certain tasks that classical computers struggle with, which could
unravel further technological advances.

This thesis pushes forwards toward the creation of a large-scale silicon-based quan-
tum processor. The results demonstrated in this thesis show that industrially man-
ufactured silicon transistors possess some of the properties that high-quality qubits
must have. At the same time, the work presented on scalable and high fidelity spin
readout places dispersive charge sensing at the forefront of readout methodologies for
scalable semiconductor spin-based quantum processors.

The fast and reliable charge and capacitance sensor presented in this thesis can
also have applications in other fields such as axionic dark matter detection, nano-
electromechanical systems or astronomy instrumentation. Moreover, the addition of
a Josephson Parametric Amplifier, typically used in superconducting qubits, bridges
the gap between both communities. The positive results in spin readout motivate
further cross-disciplinary work, in which techniques developed for other quantum
applications can be integrated with a silicon quantum processor.
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1
Introduction

1.1 Transistor miniaturisation

At the heart of the digital revolution is a single piece of technology – the silicon
transistor. The exponential speed-up of computers, enabled by transistor miniatur-
ization [1], has now reached a point where the electrical characteristics of transistors
start to be affected by unique quantum mechanical effects such as quantum tunnel-
ing [2]. Whilst this limits the exponential scaling up in classical computer power, it
opens up a new era of quantum computing. Quantum computers hold the promise of
a paradigm shift in computation with possible applications in machine learning [3],
database searches [4], cryptoanalysis [5] and molecular modelling [6], among others.

1.2 Quantum computation

In the same way that bits are the building blocks of classical computers, qubits are
the unit cell of quantum computers. A bit, or binary digit, has only two possible
states defined by a transistor through which electrical current can flow (1) and a
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closed transistor (0). On the other hand, a qubit is a 2-level system formed by a
ground state, |0⟩, and excited state, |1⟩. Although the measurement of a qubit has
only two possible outcomes (‘0’ for |0⟩ and ‘1’ for |1⟩), the reiterative measurement
of a qubit in a given state results in a probabilistic distribution. For example, if a
qubit is prepared in the state |ϕ⟩ = 1√

2
|0⟩ − 1√

2
|1⟩, the outcome will be ‘0’ half of

the times that it is measured. This way, a qubit state is most generally described as
a superposition of the ground state and the excited state as:

|ϕ⟩ = α |0⟩+ β |1⟩ , (1.1)

where |ϕ⟩ is the wave function that describes the qubit state and α and β, so-
called probability amplitudes, are complex numbers. The probability of measuring ‘0’
is given by |α|2 whereas the probability of measuring ‘1’ is |β|2 and, as probabilities,
they can be normalised so their sum is equal to one: |α|2 + |β|2 = 1.

α and β not only describe the probability of each outcome, but also the phase
difference between states. This phase is a consequence of the wave-particle duality
that allows quantum states to interfere constructively and destructively. An example
of an interference pattern with quantum particles would be the double-slit experiment
with electrons, where two electron beams are made to go through different paths,
acquiring a phase difference and are later combined as a single wave. Although the
position of each electron measured at the end of the experiment appears as a single
point, the final position of many electrons as a whole form an interference pattern,
like the one shown in Fig. 1.2.1.

Figure 1.2.1: Double-slit experiment. An electron beam throws electrons that
pass through a double-slit aperture. Although the position where they hit the final
screen is discrete, as a whole they form an interfere pattern.

Given that the global phase of a quantum state is undetectable, the description
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of a qubit state can be simplified as:

|ϕ⟩ = cos(θ/2) |0⟩+ sin(θ/2)eiϕ |1⟩ , (1.2)

where θ quantifies the probability of measuring ‘0’ or ‘1’ and ϕ is the phase differ-
ence between states. Due to its parallelism with the spherical coordinates, the state
of a qubit is commonly represented as a point in the Bloch sphere, in which the north
and south pole correspond to the |0⟩ and |1⟩ states, respectively (See Fig. 1.2.2).

Figure 1.2.2: Bloch sphere. A pure qubit state is represented as a point in
a sphere of radius one, where θ is the polar angle and ϕ is the azimuthal angle.
Retrieved from [7].

The phase between states is something purely quantum and the key of quantum
computing speed up. Most quantum algorithms are based on the possibility of having
“negative probabilities”, produced by a π phase. An example would be Grover’s
algorithm to search in a database [4]. Classically, to find the ‘winner’ element in a
list of N items, N/2 elements would need to be checked, on average. In the quantum
version, N qubits are placed in superposition so all the states are present at the
same time with equal probability 1/

√
N (see Fig. 1.2.3a). The quantum algorithm is

configured so when acting on the superposition, only the ‘winner’ state finishes with
its phase inverted. At this point, if the superposition is measured, the probability
of getting any entry is still 1/N (see Fig. 1.2.3b). Additional quantum operations
can produce a reflection of the phase about the average amplitude that amplifies
the probability of finding the correct entry (see Fig. 1.2.3c). Repeating this process
increases the probability of finding the correct answer. After repeating the process√
N times, the probability of finding the correct answer is very closed to one. This

9



10 1.2. Quantum computation

way, the number of cycles has been reduced from N/2 to
√
N by making use of the

quantum phase and the ability to act on all the states at the same time (quantum
parallelism). Quantum algorithms are an active line of research (see [8] for more
information). Another examples are the Shor’s algorithm for integer factorisation,
with major implications in cryptography [9], or the Harrow, Hassidim and Lloyd
algorithm to solve systems of linear equations [10].

Amplitude
1

𝑁 mean mean

entries1 2 3 4 5 6 7 8 9 10 entries entries

a) b) c)

Figure 1.2.3: Grover’s algorithm. a) Superposition of 10 quantum states with
the same amplitude. b) The phase of the correct entry is inverted by the search
algorithm. c) Inversion of all of the states amplitudes about their overall mean.
The steps described in b) and c) are repeated until the amplitude of the correct
entry is amplified. Figure inspired on [11]

However, quantum computers were initially postulated to simulate physical sys-
tems [12–14], a challenging task for conventional computers. As more qubits are put
together, the complexity to describe the system increases exponentially as 2n, where
n is the number of qubits. Moreover, qubits can be entangled, meaning that the state
of a qubit depends on the other. Under these conditions, qubits cannot be described
individually any longer, but as a group. These quantum specific effects are the root of
the complexity in simulating quantum systems by supercomputers, where the largest
system simulated has around 50 qubits [15]. Quantum computing would allow study-
ing large quantum many-body physical systems. This new tool would open a new
understanding of condensed matter, with direct applications in chemistry, material
design and medicine, among others.

Moreover, indirect quantum computing applications arise as the field works to-
wards building large quantum processors. For example, quantum computing requires
extensive research on cryogenics since qubits work at low temperatures. As a con-
sequence, quantum computing has pushed the boundaries for the detection of small
signals at low temperatures, applicable to other fields such as astrophysics instrumen-
tation, metrology, or electron spin resonance detection [16].

10



11 1.3. Qubit realisations

1.3 Qubit realisations

Although a qubit can be realised by any 2-level quantum system, not any 2-level
system is a good candidate for a qubit. To quantify what would be a suitable qubit
realisation, Divincenzo introduced five criteria that experimental qubits should sat-
isfy [17]: firstly, we need a scalable system with well-characterized qubits, where the
system can be described in the qubits Hilbert space with a well-known Hamiltonian.
This task becomes more and more complicated as the number of qubits increases.
Furthermore, the qubits of such a system need to be initialisated to a known state,
which should be isolated from the environment to have long coherence times, but
whose interaction with the environment can be switched on on-demand to perform
one or two-qubit gates. Finally, to perform any quantum algorithm, the qubit gates
should form a universal set of quantum gates [18], where the final state of those qubits
can be read-out fast and with a high fidelity. Additional requirements would be the
ability to transfer information between different stationary qubit modules using flying
qubits.

Figure 1.3.1: Qubits implementation figure of merit. Comparative figure of
merit for different qubit implementations. Data retrieved from [7, 19, 20]. These
numbers are a good assessment of the quality of the system for small qubit implemen-
tations. However, as systems scale up the comparative metric should include more
parameters such as cross-talk, connectivity, circuit depth, etc... To take into account
these factors some groups are introducing the concept of quantum volume [21].

11
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There are many qubit realisations: the spin of an electron, the polarization of a
photon, the orbital states in an ion, etc... One of the first demonstration was the
outer electron of ions trapped with electric fields in vacuum, called ion traps [22].
Currently, there are several quantum processors based on ion traps [23, 24] with
extraordinary high single and two-qubit gates fidelities [25, 26], as well as readout
fidelities [27]. Moreover, although the best performance is at 4K, they can operate
at room temperature. The main disadvantage of ion traps is their large size, which
would lead to a quantum computer of a size of a football pitch [28]. This scalability
issues motivated the use of solid materials as hosts, producing solid-state qubits.

Solid-state qubits come in different flavours depending on the material they are
made of and can be separated into superconductors, semiconductors or Majorana
fermion qubits. Superconducting qubits store information in the eigenvalues of cir-
cuits made of Josephson junctions [29]. One of their main advantages against ion traps
is that their fabrication is compatible with already developed methods such as circuit
printing [30]. As a disadvantage, superconductors display shorter coherence times.
However this disadvantage is overcome by their faster single and two-qubit gates, so
that superconducting gates still display high fidelities [31] with shorter computing
times. Superconducting qubits are one of the leading technologies, with examples of
working and accessible quantum processors like the IBM Quantum experience [32],
Intel [33], Riggeti [34] and the Google processor with which quantum supremacy was
demonstrated in 2019 [35].

Due to their smaller size, research in semiconductor qubits expanded as the
nanofabrication methods developed. In semiconductor qubits, the information is
saved in the charge distribution of confined electrons (charge qubits) [36], or in its spin
state (spin qubits) [37]. Semiconductor qubits have a smaller footprint in comparison
to other qubit realisations, which, in principle, has the potential to place millions of
qubits in a small chip. Moreover, their fabrication is based on gate electrodes, just
like field-effect transistors, so that they could be integrated with classical circuitry
for signal processing and distribution [38]. Electrons (or holes) can be trapped in
impurities placed in a semiconductor or in an artificial atom, so-called quantum dot
– a potential well that can be self-assembled or electrically defined with electrostatic
gates. The first demonstrations of semiconductor spin qubits were achieved in Al-
GaAs/GaAs heterostructures [39], where the interface between the different materials
forms a 2-dimensional electron gas and deposited electrostatic gates further confine
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13 1.4. Extensibility in quantum computing

the electron to a 0-dimensional quantum dot. The almost perfect lattice matching,
previous experience in mesoscopic devices [40], and its high mobility [41] made pos-
sible the fabrication of quantum dots in GaAs. However, Ga and As most common
isotopes have a nuclear spin of 3/2 that fluctuates randomly even at high magnetic
fields [42]. The nuclear spin of millions of atoms surrounding the qubit creates a fluc-
tuating field that couples with the electron spin leading to short decoherence times of
the order of T ∗

2 = 10 ns [43]. Moreover, its high spin-orbit coupling makes the electron
spin sensitive to electric noise, present in semiconductor structures. Although during
the last decade, advances in dynamical nuclear decoupling [44], notching filtering of
the nuclear environment [45] and decoherence pulses have led to demonstrations of
long relaxation times (T1=57 s at 100 mK and 0.6 Tesla) [46] and decoherences times
of hundreds of microseconds [47], the field has moved towards silicon structures.

Photons are another attractive technology for quantum computation, with the
advantage that they can use existing technology as optic fibres. In 2020, a photon
quantum processor proved quantum advantage in boson sampling [48]. However,
the chip was not reconfigurable, and therefore, can only execute that one algorithm.
On the other hand, the Canadian company Xanadu recently released an X8 qubit
reprogrammable chip [49]. Photons natural isolating properties delay the decoherence
process and make possible operation at room temperature, however, they pose a
challenge for the realisation of two-qubit gates [50]. For this reason, photons have
been proposed as a vehicle for coherent information, connecting entangled states
between long distances [51].

1.4 Extensibility in quantum computing

The main challenge that the quantum community faces is to scale up current quantum
processors, since not only putting together an enormous amount of uniform qubits
is an obstacle, but also scaling up the interconnections between qubits and digital
electronics represents a great challenge [52].

As the quantum processor size keeps increasing, the number of qubits becomes
as important as the number of operations that can be performed before an error
occurs [52]. This so-called circuit depth depends on other parameters like the gate
fidelity and the rate between gate latency and coherence time. Because of this,
researchers introduced the quantum volume, VQ, as a way to quantify a quantum
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14 1.4. Extensibility in quantum computing

processor quality. Fig. 1.4.1a show a colour plot of VQ calculated as VQ = min(N, d)2,
where N is the number of qubits and d is the circuit depth. The red area in Fig. 1.4.1a
includes quantum processors that can still be simulated by classical computers. As
the VQ increases, quantum processors become too complex to be simulated by clas-
sical computers [53] (yellow region in Fig. 1.4.1a). At the moment, there are specific
algorithms that are more easily solved by small quantum processors than super-
computers [54], demonstrating quantum supremacy in that instance [35]. Moreover,
there are already small noisy quantum processors with dozens of qubits that allow
proof-of-concept demonstrations of quantum algorithms [8]. These so-called Noisy
Intermediate-Scale Quantum (NISQ) processors have proven to be more useful than
initially thought. They can be used in combination with a classical computer so that
the quantum processor performs the challenging bit of the computation. An example
is the variational quantum eigensolvers (VQE), in which a conventional computer
finds an optimised guess for a problem and the quantum processor does a fine-tuning
searching between all nearby options [55]. VQE has proven successful to find molec-
ular ground states [56, 57] and to investigate some material magnetic properties [58].

Figure 1.4.1: Errors and scalability. a) Colour plot of quantum volume, VQ
as a function of the number of qubits and the qubit depth. Here, both axes are in
logarithm scale. b) Number of gates applicable to the logical qubits as a function
of the gate infidelity and the number of physical qubits. As the fidelity increases,
larger algorithms can be performed with the same amount of physical qubits. Figures
retrieved from [20, 52]

The green area in Fig. 1.4.1a encompasses functional quantum computers for
practical applications, which should include error correction algorithms. The non-
binary nature of the qubit leads to more complicated errors than a simple bit flip,
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15 1.5. Silicon as a scalable quantum platform

like, for example, an additional phase between states after a 1-qubit gate. This is
why the realisation of quantum computers was thought to be impossible until the
invention of quantum error correction (QEC) [59]. QEC working principle is based
on encoding the logical information across several physical qubits that are constantly
readout as a whole, so errors are corrected without losing information. QEC requires
high fidelities for qubit gates and readout, being the fault tolerance threshold 99%
for the surface code. However, maybe even higher fidelities are necessary so that the
physical qubits overhead can be reduced (see Fig. 1.4.1b).

1.5 Silicon as a scalable quantum platform

The development of spin qubits in silicon was delayed compared to GaAs dots because
silicon requires smaller dots to confine charges due to its larger electron effective mass,
imposing further restrains in their fabrication.

The appeal of silicon as a host for qubits grew as the semiconductor industry fabri-
cated even larger transistors [60]. The possibility of manufacturing qubits in the same
way as Field Effect Transistors (FETs) opens the door to using the existent foundry
industry capabilities with mass production experience and previous knowledge in the
material. At the same time, silicon offers some inherent physical advantages. Natural
silicon is composed mostly by three isotopes; 28Si, 29Si, and 30Si. Of the three of them,
only 29Si has a non-zero nuclear spin with an abundance of 5% that can be reduced
to 60 ppm [61]. The low abundance of nuclear spins together with silicon’s weak
spin-orbit coupling leads to large coherent times, demonstrating coherence times of
T ∗
2 = 120 µs (in a quantum dot) that can be extended up to 28 ms [62] and 560 ms

in donors [63]. Such long coherent times in comparison to the manipulation times
led to high-fidelity qubit manipulation [64, 65], and 2-qubit gates [66–69] with fideli-
ties above the quantum threshold error in silicon and silicon-germanium (Si\SiGe)
dots [70, 71] and nuclear spins of phosphorus atoms [72].

So far, there are working silicon quantum processors of 2, 4 and up 6 qubits with
devices fabricated in academic cleanrooms [68, 73]. However, the moderately low
levels of yield and reproducibility from these devices motivate manufacturing qubits
in well-controlled facilities operating with 300-mm fabrication techniques [74–76].

Besides the fabrication challenges, scaling up also encompasses the integration
of qubits with the classical circuitry that controls each qubit and handles the in-
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put/output signals between the qubits and room temperature instruments [77]. Al-
though using many terminals per qubit allows for high versatility, the extra wiring
becomes a bottleneck as the number of qubits increases [52]. This challenge is similar
to the one faced by the transistor industry in the 60s, which was resolved thanks to the
invention of integrated circuits. Using similar principles, different architectures envi-
sion how to structure silicon-based quantum processors [38, 78–82]. However, these
proposals include share control, readout, tuning and manipulation which demands a
high device uniformity.

The effort to produce scalable silicon processors has led to successful experimental
demonstrations of global control [83], long-distance readout [84, 85], readout multi-
plexing [86, 87] and device uniformity. There are also advances for moving towards a
modular architectures [79, 81] by using spin shuttling [88–91], photon mediators [92,
93] or QD couplers [94] for long distance 2-qubit gates or to move the information
between modules.

Moreover, recent demonstrations of 2-qubit processors at more than 1 K promise to
lift the very demanding heating restrictions, which would allow to produce a cheaper
quantum processor (potentially operable in a lower budget 4He system) integrable
with the hotter classical electronics layer [95, 96]. At the same time, the high magnetic
fields at which spin qubits normally work, B ∼1 T, could be relaxed to 150 mT [97].

1.6 This thesis

As stated above, to scale up, silicon qubits should be uniform and have high levels
of yield and reproducibility. Moreover, the footprint of the additional circuitry for
control and readout needs to be minimised. This thesis tries to tackle both challenges:
on one hand, we store long-lived electron spin states in quantum dots fabricated using
CMOS-compatible manufacturing processes performed at the scale of 300mm wafers
and, on the other hand, we measure the electron spin polarisation with high fidelity
using a compact readout method.

This thesis is divided as follows. Chapter 2 contains some background introduc-
ing the concepts necessary to understand the following chapters, whereas Chapter 3
describes the methodology and experimental setup.

Chapter 4 focuses on the single-electron box (SEB) as a sensor that can detect
small changes in their surrounding potential. To do so, a small oscillating radiofre-

16
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quency is continuously attempting to move an electron between the SEB and the
reservoir, so that any perturbation of the electrochemical potential would result in
the breakdown of the SEB\reservoir dynamic equilibrium. The chapter describes how
to improve the SEB signal to noise ratio by reducing the temperature noise with the
help of a Josephson Parameter Amplifier (JPA) and optimising both the resonator
and its coupling to the SEB . The main advantage of the SEB is that it only requires a
single lead, leading to a very compact readout method that can be operated without
dissipation under certain conditions. Moreover, in the nanowire configuration, the
additional footprint introduced by the SEB becomes almost negligible because SEB
and qubit dot are integrated into a single nanowire and share the same reservoir.

In Chapter 5, a SEB is used to measure the electron spin of a nearby quantum dot
using spin-dependent tunneling. High readout fidelities above the error threshold for
the surface error correction code are demonstrated thanks to the SEB performance
and the exceptionally long single spin relaxation times (up to 9 s). The results
presented in Chapters 4 and 5 are included within the publications [98, 99].

In addition to the fidelity, the readout time is also an important figure of merit
since QEC requires that qubits are routinely read. In the case of spin-dependent tun-
neling, the readout time is limited by the tunneling time between qubit and reservoir.
Chapter 6 follows the first steps towards using the SEB as a charge sensor for Pauli
spin blockade (PSB) readout, whose readout time does not have that limitation.

Finally, Chapter 7 summarises the key outcomes of this thesis and suggests future
research directions.
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2
Background

2.1 Quantum Confinement in Silicon

Electrons (or holes) can be confined in silicon either bound to impurities with an extra
(or missing) electron or in artificial 0-dimensional quantum wells called quantum dots.

2.1.1 Silicon Quantum Dots

To form a quantum dot in silicon, first, a 2-dimensional electron gas is formed in
the interface between two materials with different levels of conduction band min-
ima. Based on the materials used to create the 2D electron gas, silicon quantum
dots can be divided into SiMOS dots [62, 100, 101], where MOS stands for metal-
oxide-semiconductor, and Si/SiGe heterostructures [102, 103]. SiMOS use the same
technology concept as MOS field-effect transistors (FETs) in digital circuits, where a
Si substrate is covered by a SiO2 insulating layer and, on top of that, a metal gate
covers the oxide. Electrons or holes are trapped in the Si/SiO2 interface depending
on the voltage applied to the metal gate.
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Figure 2.1.1: Electron confinement. Three main ways to confine electrons in
silicon. Material layer structure and potential landscape in the vertical direction
for SiMOS (a) and Si/SiGe (b) quantum dots. The colors of the structure sketches
symbolise the materials, where light blue stands for SiO2, light red for the gate stack,
yellow for Silicon and dark blue for SiGe. Here, the blue balls mark the position
where the electron is confined. c) Same for donors.

On the other hand, Si/SiGe heterostructures trap electrons when silicon is confined
by SiGe in a SiGe/Si/SiGe structure [65, 67, 75, 99, 104]. Trapping holes requires
the opposite structure, with Ge placed in between SiGe as SiGe/Ge/SiGe [105, 106].
Fig. 2.1.1a and b show the material structure and the confinement potential for SiMOS
and Si/SiGe dots, respectively.

The main difference between Si/SiGe and SiMOS quantum dots is how far the 2-D
gas is formed with respect to the surface and the quality of the interface. In SiMOS
dots, the gas is formed closer to the surface, so that the lateral gates can shape the
potential more easily. However, at the same time, electrons are sitting just next to
the amorphous SiO2 structure that can contain charge traps and defects.

Quantum dots can be further differentiated by how charges are confined in the
other directions. In planar structures, additional electrostatic gates shape the poten-
tial to further confine the electrons laterally. Quantum dots can also be formed using
the material geometry: if the heterostructure is assembled in a nanowire shape, quan-
tum dots can form in the corners of the nanowire due to the corner effect when some
voltage is applied on an overarching gate [20, 74, 104, 107]. The nanowire geometry is
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20 2.1. Quantum Confinement in Silicon

especially relevant since modern CMOS foundries like Samsung, TSMC or Intel have
moved from planar MOS to patterned Si technology such as finFETs, nanowireFETs
or Gate-All-Around structures [108, 109]

Figure 2.1.2: Nanodevice structures. Micrographs of silicon nanodevice struc-
tures. a) STM image of phosphorus donors implanted by STM lithography and a
single electron transistor (SET) for readout. The top layer gates are outlined by
yellow dashed lines and the top right shows a zoom-in. The white area in the zoom-
in is the exposed region of the monolayer hydrogen resist where the donor is later
implanted. b) SEM image of a triple dot structure in a Si/SiGe heterostructures
with overlayed gates for confinement. c) SEM image of a MOS triple-dot structure.
d) CMOS technology double dot nanowire. Adapted from [110]

2.1.2 Dopants in silicon

Impurities implanted in silicon with an extra (donor) or a missing (acceptor) electron
can confine electrons or holes, respectively. One of the advantages is that the potential
landscape is completely reproducible since it is determined by the impurity atomic
species, although the potential gets deformed close to interfaces.

The most popular impurity is phosphorus [111, 112], which has have shown ex-
tremely long coherent times and whose nuclear spin can be used as a quantum mem-
ory [113]. Other atomic impurities are 209Bi [114], 123Sb [115] and 75As [116] as donors
and 11B as an acceptor [117].

The behaviour of donors is very similar to quantum dots, differing in the fact
that impurities hold electrons tighter, display different excited states (valley states)
physics and have fewer charge transitions, which, in the case of group V donors, are
no electron, D+, one electron, D0, or two electrons D− [118].
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To produce predictable interactions between qubits, phosphorus impurities need to
be positioned with atomic precision and, even at present, ion implantation techniques
are not developed enough to reach that level of precision. However, methods based on
hydrogen lithography with scanning tunneling microscopy (STM) allow phosphorus
atoms implanted within 6 atomic site accuracy [119, 120]. A detailed review of donors
can be found in [112].

2.1.3 Physics of Quantum dots

Semiconductor quantum dots are artificial structures with a size of around 100nm2.
Although these structures are formed by millions of atoms, most electrons are tightly
bound to the nuclei of the host material and there is only a small number of free
electrons [121]. The behaviour of the free electrons in quantum dots is very similar
to an electron bound to an atom: the confinement in every direction produces a 0-
dimensional discrete energy spectrum similar to atomic orbitals, and the Coulomb
repulsion between electrons creates a similar effect to ionisation in atoms.

Figure 2.1.3: Coulomb blockade. Current at room temperature (red) and
10mK (blue) through a silicon nanowire fabricated in a CMOS compatible manner
in a 300mm wafer.

We firstly describe the dot behaviour in a purely classical way, taking into ac-
count only the Coulomb repulsion between electrons. The dot can be considered as
an isolated conductive island, in which the total charge of the dot, Q, produces a
repulsion energy

Eel =
Q2

2C
=

N2e2

2C
. (2.1)
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Here, N is the number of electrons inside the island, e is the electron charge and
C is the island capacitance. Adding an extra electron requires providing a charging
energy EC = e2

2C
, which depends on the dot size. The smaller the dot is, the larger

the charging energy is. Only if the charging energy is larger than the thermal energy,
e2

2C
> kBT , the charge in the dot would be a discrete number of electrons.
The quantum properties of these devices can be tested by measuring the electronic

transport through the dot. To do so, the dot is connected via tunnel coupling to two
reservoirs, called source and drain, with which the dot can exchange electrons. The
tunneling barriers can be simulated as a resistance and capacitance in parallel – CS

and RS in the case of the source and CD and RD for the drain. To show signs of
charge quantisation in transport, the resistance of the tunneling barriers must be
large compared with the quantum resistance, so that electrons are localised either in
the dot or the reservoir. The dot is also capacitively coupled (with capacitance Cg)
to a gate electrode to tune its electrostatic potential (See Fig. 2.1.4a). This structure
is called a single electron transistor (SET) because of its equivalent behaviour to a
transistor: a tunable channel that connects two electronic reservoirs. Fig. 2.1.3 shows
the drain-source current in a silicon transistor as a function of the gate voltage at
room temperature and at 10 mK, at which, the current shows the so-called quantum
oscillations due to charge quantisation.

Neglecting second-order effects and assuming that the capacitances remain con-
stant, the dot electrostatic energy depends on the number of electrons, N , and the
voltage applied to each terminal as [122]:

Eel =
(|e|N − CSVS − CDVD − CgVg)

2

2C
, (2.2)

where |e| is the electronic charge and Vg, VS and VD are the voltages applied to
gate, source and drain, respectively. C, the dot capacitance, is the sum of capaci-
tances expressed as C = Cg +CD +CS. The voltage applied to the gates modifies Eel

in a continuous manner. However, due to the quantisation of electronic change, the
addition of a new electron produces a discrete jump in energy. Fig. 2.1.4b shows the
energy as a function of Vg, where each parabola corresponds to an electron occupation,
N . The gate voltages at which the parabolas cross are degenerate charge configura-
tions (Eel(N) = Eel(N−1)). At the degeneracy points, the number of electrons in the
dot can fluctuate between N−1 and N , allowing current between source and drain as
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Figure 2.1.4: Quantum dot schematics. (a) Quantum dot with N electrons
capacitively coupled to a plunger gate and tunneled coupled to two electronic reser-
voirs called source and drain. b) Electrostatic energy as a function of the gate
voltage. c) Electrical current between source and drain as a function of the gate
voltage. The pink dashed line corresponds to the situation shown in (d), whereas
the blue dashed line indicates the voltage for Coulomb blockade, corresponding with
the energy spectrum shown in (e). d) Transport is possible when the dot potential
lies in between the source and drain potential. The horizontal axis is the density of
states (DOS), which follows a Fermi distribution for the reservoirs and a set of Dirac
functions for the 0-D quantum dot. The width of the Fermi function is determined
by the electron temperature, Te. e) Transport is suppressed when there is not an
available dot state between source and drain (Coulomb blockade).
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consecutive electrons tunnel through the path source-dot-drain with no energy cost.
This behaviour leads to the so-called Coulomb oscillations, where transport is only
permitted at the degeneracy points (see Fig. 2.1.4c).

The figure of merit to describe transport is the electrochemical potential, µN,
defined as the energy necessary to add the N th electron when there are already N −1

electrons in the dot. Mathematically µ(N) reads as:

µ(N) = Eel(N)− Eel(N − 1) =
e2

C

(
N − 1

2

)
− |e|

C
(CSVS + CDVD + CgVg). (2.3)

The potential is very useful to represent the conditions for transport graphically
as shown in Fig 2.1.4d) and e). Tunneling through a barrier can happen when it is
energetically favourable. This situation is graphically represented by the condition
that the potential at the initial side of the barrier is above the potential on the final
side. This way, we can observe transport between source and drain when the potential
of the dot lies in between them, so electrons can continuously flow from source to dot
and finally to drain (see Fig. 2.1.4d). If there is not any dot level available between
the source and drain Fermi energy, transport is suppressed (see Fig. 2.1.4e).

Applying a bias voltage between source and drain increases the range of gate
voltage at which a dot state is available for transport. If the range is large enough,
even two states will be available (See right upper corner from Fig. 2.1.5). By sweeping
the gate voltage and the source-drain bias the current forms the so-called “Coulomb
diamonds” (see Fig.2.1.5). Inside the diamond, current is forbidden and its borders
correspond to an alignment in the electrochemical potential between the source/drain
reservoirs and the dot state. Coulomb diamonds enclose much information such as the
energy necessary to add a new electron, Eadd(N) = µ(N +1)−µ(N), or the dot lever
arm: the relation between the voltage applied to the gate and the dot electrochemical
potential (E = αgVg), calculated as αg = Cg

C
.

As stated above, quantum dots have a single particle level spectrum similar to
orbital states in atoms due to the small size of the dot in comparison with the Fermi
wavelength (λ = 35 nm for silicon). On top of that, silicon quantum dots have
an additional fine structure due to the electron spin degree of freedom and silicon
properties. Bulk silicon has an indirect bandgap and cubic symmetry, leading to a
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Figure 2.1.5: Coulomb diamonds. Current through the quantum dot as a
function of the gate voltage, Vg, and the source/drain voltage, VSD = VS − VD.
Transport is only allowed in the regions between diamonds, whereas inside each
diamond there is a constant number of electrons, N − 1, N or N + 1. As depicted
in the electronic level sketches, electrons flow from source to drain in the upper half
and from drain to source in the lower half. The diamond height determines Eadd(N)
since at this point the bias window is equal to the energy difference between two
levels (µS−µD = µ(N+1)−µ(N)). At an even larger bias voltage, the bias window
is larger than the level spacing and there is no Coulomb blockade, as depicted in
the upper right sketch. Adapted from [123].
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six-fold degenerate manifold in its band structure. In nanodevices, the degeneracy
is lifted using electric fields and strain [62], creating the so-called valley states. This
way, the energy spectrum of electrons confined in silicon includes orbital excited states
together with spin states and valley states.

The excited states are included in the energy as:

E(N) = Eel +
∑
N

En, (2.4)

where En is the single-particle spectrum. This way, the adding energy, Eadd,
depends on the number of electrons in the dot as

Eadd = E(N + 1)− E(N) = EC +∆E, (2.5)

where ∆E = EN+1 −EN is the energy difference between two consecutive excited
states. As electrons are added sequentially to the dot, the first orbital/valley fills
up until it is full. The extra energy necessary to start filling a new orbital/valley
produces an increment in Eadd. This effect leads to the electron filling sequence shown
in Fig. 2.1.6a. Excited states can also be observed in Coulomb diamonds since, if the
bias window exceeds ∆E, we can see an increment in current (See Fig. 2.1.6b).

Figure 2.1.6: Excited states in Coulomb diamonds. a) Adding energy as
a function of the number of electrons in a silicon quantum dot. Image retrieved
from [124]. b) Schematic of Coulomb diamonds with excited states. The current
increases when both the dot ground state and excited state potential lie in the bias
window.
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27 2.1. Quantum Confinement in Silicon

2.1.4 Double quantum dots

Now we analyse the behaviour of two quantum dots coupled electrostatically via
their mutual capacitance, Cm, where a small interdot tunnel coupling between the
dots allows transport between them. In this regime, the system can be described
within the Coulomb blockade frame.

The electrostatic potential of each dot called quantum dot 1 and quantum dot 2
can be controlled independently by the voltage applied to gate 1 and 2, respectively.
The dots can be placed in a series distribution, with each of them connected to one
lead (see Fig. 2.1.7a), or a parallel distribution, with both dots connected to both
leads (see Fig. 2.1.7b).

a) b)
c) d)

Figure 2.1.7: Double quantum dot. Schematic of a double quantum dot ar-
ranges in series (a) and in parallel (b). Stability diagram of an uncoupled (c) and
a coupled (d) double quantum dot. The occupation number in each dot is included
as (N1, N2). Images retrieved from [123, 125].

The number of electrons in the system can be described as (N1, N2), where N1(2) is
the number of electrons in dot 1(2). Like in single quantum dots, the voltage applied
to gate 1 and 2 (Vg1 and Vg2, respectively) varies each dot potential. Fig. 2.1.7c and
d shows the equilibrium electron number against Vg1 and Vg2. This representation is
called stability map and it is characterised by voltage regions where the equilibrium
electron number is constant.

When the dots are not coupled to each other, Cm = 0, the electrochemical poten-
tial in one dot is independent of the other and the borders of the constant occupation
regions are vertical and horizontal straight lines (see Fig. 2.1.7c). On the other hand,
for a finite coupling capacitance, Cm ̸= 0, the voltage applied to one of the gates

27



28 2.2. Spin qubits in silicon

will affect both dots, tilting the stability diagram lines. Moreover, the addition of a
new electron in one dot produces a shift in the electrochemical potential of the other
dot. This way, each cross point is split in two, separated by the coupling energy. A
point shared by three different electron occupations is called a triple point and is an
important feature for quantum dots in series since transport through a double-dot
system in series is only possible around these points.

For a more complete and in-depth description of quantum dots and, specifically,
silicon quantum dots we refer the reader to Refs. [121, 123, 125, 126].

2.2 Spin qubits in silicon

Spin qubits in silicon come in different flavours, the simplest two-level system is
formed by the spin polarisation of a single electron. However, a spin qubit can
also be formed by the combined spin state of two electrons each one confined in a
different dot (singlet-triplet qubits) [127], three electrons in three dots (exchange only
qubits) [128] and three electrons in two dots (quantum-dot hybrids) [129]. Here, the
discussion is focused on single electron spin qubits.

2.2.1 Single spin qubit manipulation

A single spin qubit is formed by the spin states |↑⟩ = |1⟩ and |↓⟩ = |0⟩ of a confined
electron in the presence of a static magnetic field, Bz. The states are separated by
the Zeeman energy, EZ = gµBBz. Here, g is the electron g factor and µB is the Bohr
magneton.

Electron spins can be manipulated using an AC magnetic field, Bac (applied per-
pendicularly to Bz) that oscillates at the Larmor frequency, ω0 = gµBBz/h̄.

The complete hamiltonian including static and rotating magnetic field is equal to:

H =
h̄ω0

2
σz + h̄ΩR cos(ωt+ δ)σx. (2.6)

The first part comes from the static magnetic field that separates ground (|↓⟩)
and excited (|↑⟩) states by the Zeeman energy, whereas the second part is related to
Bac. Here, ω is the oscillating frequency of Bac and δ is the initial phase of Bac. The
magnitude of Bac is included in the Rabi frequency, which quantifies how fast the
spin state rotates around the Bloch sphere, as ΩR = gµBBac

h̄
.
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29 2.2. Spin qubits in silicon

Qubit manipulation is normally described in the rotational frame of the rotating
magnetic field, Bac. In this frame, and applying the rotational wave approximation,
the total Hamiltonian simplifies to:

Hrot = (−ω0 + ω)σz/2− ΩR (cos(δ)σx/2− sin(δ)σy/2) , (2.7)

A mismatch between the Larmor and the microwave frequency would produce a
rotation along the Z-axis. On the other hand, the rotation speed is dictated by ΩR

and the specific axis along which the spin will rotate is controlled by δ.
In electron spin resonance (ESR) the Bac can be delivered through a transmission

line placed near the qubit, where the current through the antenna produces an AC
magnetic field. The heating produced by the alternating current limits the speed of
the qubit manipulation to a few MHz [62], reaching fidelities of up to 99.96% [130].
This method poses a challenge in terms of scalability since the number of antennas
generating heat would increase linearly with the number of qubits. Moreover, the
magnetic field created in an antenna can interact with multiple qubits at the same
time, leading to cross-talk. To avoid that issue, individual spins would need to have
their resonant frequency shifted relative to their neighbours. A more scalable option
for ESR is to put the qubits in a microwave cavity resonating at a given frequency [83].
In this approach Bac is applied globally and, to control a given qubit, its Larmor
frequency is switched on and off the cavity resonance.

Another approach for qubit control is electric dipole spin resonance (EDSR), where
an AC voltage applied to the gate induces the electron to oscillate back and forth.
If the electron is moving in a magnetic gradient produced naturally via spin-orbit
coupling [131] or artificially by placing micromagnets [64], the electron movement
is equivalent to applying an oscillating magnetic field. EDSR leads to faster spin
manipulations (30MHz), reaching a fidelity of 99.9% [64].

2.2.2 Two-qubit gates

Quantum computing requires to have a universal set of quantum gates, which include
qubit rotations, like the ones described in the previous section, and interactions be-
tween two qubits to generate entanglement. Two-qubit gates are normally realised
between two neighbour dots. To do so, voltage pulses can bring close the electronic
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a) b) c)

Figure 2.2.1: ESR and EDSR. a) Diagram of the spin manipulation of a single
electron confined in a quantum dot. The spin can manipulated via an AC magnetic
field delivered directly through a stripline placed near the dot (ESR) (b) or by
shaking the electron in a magnetic gradient produced naturally or artificially with
micromagnets (EDSR) (c). Images adapted from [132].

wavefunctions, increasing the strength of its exchange interaction. At the same time,
long-distance 2-qubit gates in which single spins can be coupled to a resonator via
circuit quantum electrodynamics cQED [133] have also been proposed.

In this section, we firstly introduce the physics of a double quantum dot occupied
by two electrons to later explain how to use them to create two-qubit gates.

Two electron spin states in a single quantum dot

Figure 2.2.2: Spin states in a single quantum dot. a) Wave function of a
doubly occupied single quantum dot eigenstates. b) Corresponding energy diagram.
The triplet states are separated by the Zeeman energy, EZ, when a magnetic field
is applied. EST is the energy difference between S(2, 0) and T0(2, 0) and it is equal
to EST = ∆Eorb(valley) − Ek, where ∆Eorb(valley) is the energy of the next available
orbital or valley state and Ek is the change in Coulomb repulsion produced by the
antisymmetric part of the orbital part of the wave function.

If both of the electrons are in the same dot (occupancy (2,0) or (0,2)), the situation
is equivalent to having a doubly occupied single quantum dot. The ground state
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is the singlet state, in which both electrons occupy the same orbital(valley) state
and the spin has an antiparallel configuration S(2, 0) = (|↑1↓1⟩ − |↓1↑1⟩)/

√
2, where

the sub-index designates the quantum dot number 1(2). The consequently excited
states correspond to the symmetric triplet states: T−, T0 and T+, with spin number
S=1. In the triplet configuration, the second electron must occupy the next orbital
because, due to the fermionic nature of the electron, its global wave function has to
be antisymmetric. Fig. 2.2.2 shows a graphic representation of these states.

Two electron spin states in a double quantum dot

In the case that the occupation is (1,1) and the inter-dot coupling is negligible, each
electron is in a different dot with eigenstates |↓1↓2⟩, |↑1↓2⟩, |↓1↑2⟩ and |↑1↑2⟩. As
the tunneling rate between dots, tc, becomes significant, the electrons are not fully
localised in either of the dots and orbital bonding and antibonding states are formed.
The spin ground state is the singlet S(1, 1), which is separated from the triplet states
by the exchange energy J = 4tc2

EC
.

Fig. 2.2.3a shows the stability diagram in the (1,1) to (2,0) region, where a com-
bination of gate voltages can move the system along the detuning axis ϵ. Near the
degeneracy point between the (1,1) and (2,0) configurations, the electrons are delo-
calised due to the tunneling coupling and both configurations hybridise, resulting in
an avoided crossing with an energy separation of 2

√
2tc

Since the transport is spin preserving, the singlet state S(1,1) hybridise only with
S(2,0) and the triplets T(1,1) with T(2,0). However, due to the different energy
splitting between singlet and triplet, we obtain an energy diagram like the one in
Fig. 2.2.3b. Here, transport between singlet S(1,1) and S(2,0) is allowed at a lower
detuning than between the triplets T(1,1) and T(2,0) due to Pauli spin blockade [134].
This property can be explored to determine the spin state using charge sensing (See
Sec. 2.2.3 for more information). As shown in Fig. 2.2.3c, applying a magnetic field
breaks the degeneracy between the triple states. If the magnetic field surpasses the
value B > EST/gµB, the hybridisation detuning between singlets is no longer lower
than the one for the triplets.

To describe the whole system, we use the computing base |↑↑⟩, |↓↑⟩, |↑↓⟩, |↓↓⟩
with one electron in each dot without mixing. Here, for simplicity, we consider that
the first term of the wavefunction corresponds to the spin state in dot 1 and the second
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32 2.2. Spin qubits in silicon

Figure 2.2.3: Two-electron spin states in a double quantum dot. a) Sta-
bility diagram in the (1,1), (2,0) region. ϵ is the axis of the detuning. b) Spectrum
of a double quantum dot near the (1,1) to (2,0) charge transition. c) Same as b)
when a magnetic field is applied.

to dot 2. The strong Coulomb interaction and the large valley splitting characteristic
in silicon dots [66] allows to consider only the five lowest energy states: {(1,1): |↑↑⟩,
|↓↑⟩, |↑↓⟩, |↓↓⟩ ; S(0,2): 1√

2
|0, ↑↓ − ↓↑⟩ }. The Hamiltonian acting on such a base

reads as [66]:

H =


Ēz 0 0 0 0

0 δEz/2 0 0 tc

0 0 −δEz/2 0 −tc

0 0 0 −Ēz 0

0 tc −tc 0 U − ϵ




|↑↑⟩
|↑↓⟩
|↓↑⟩
|↓↓⟩

1√
2
|0, ↑↓ − ↓↑⟩

 , (2.8)

where Ēz is the average Zeeman energy, δEZ is the Zeeman energy difference
between dots, U ∼ EC is the Coulomb repulsion for adding the second electron to a
dot and ϵ is the detuning, controlled by the gate voltages. Due to the spin conservation
nature of tunneling between dots, the singlet (0,2) state hybridise only with the states
|↓↑⟩ and |↑↓⟩.

Using the Schrieffer-Wolff transformation and assuming that U − ϵ >> tc the
Hamiltonian can be reduced to the four single dot occupied states [62, 135], leading
to the Heisenberg exchange interaction Hamiltonian (JŜ1Ŝ2):

H =


Ēz 0 0 0

0 δEz/2− J
4

J/2 0

0 J/2 −δEz/2− J
4

0

0 0 0 −Ēz



|↑↑⟩
|↑↓⟩
|↓↑⟩
|↓↓⟩

 , (2.9)
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where, in first-order approximation, the exchange, J is equal to J = 2tc2

U−ϵ−dEz
+

2tc2

U−ϵ+dEz
. The exchange is highly dependent on the detuning and the tunneling cou-

pling, which are controllable through gate pulsing. Modifying the tunneling coupling
is the preferred method to implement 2-qubit gates because it makes the gate less
sensitive to charge noise [67, 136].

a) b)

Figure 2.2.4: Hamiltonian eigenstates. a) Eigenstates of two spins in a double
quantum dot depending on the exchange interaction, J , and the Zeeman energy
difference, δEZ . (I) δEZ and J are equal to zero. (II) δEZ is non zero. (III)
δEZ and J are non-zero with δEZ >> J . The eigenstates are approximately the
same as in (II) but with different energy gaps. (IV) δEZ and J are non-zero with
δEZ << J . b) Energy levels depending on the detuning ϵ. The left part of the
graph corresponds to situation (IV), whereas the enlarged area leads to (III). Image
retrieved from [137].

The ratio between the exchange, J , and the difference in the Zeeman energy,
δEZ , determines the eigenstates of the Hamiltonian of Eq. 2.9. When J and EZ are
equal to zero, both dots have the same Zeeman energy and the single electron spin
states are not mixed. In this situation the states |↑↓⟩ and |↓↑⟩ are degenerate as it
is shown in Fig. 2.2.4(I). On the other hand, a non zero δEZ breaks the degeneracy
(See Fig. 2.2.4(II)). In the case both J and δEZ are non-zero and J >> δEZ , the
system eigenstates are a mixture of the dot defined spin states forming singlet and
triplet states (See Fig. 2.2.4(III)). In this condition, exchange 2-qubit gates can
be realised. Here, the double quantum dots are brought to the inter-charge dot
transition, where J is maximal. The off-diagonal terms from Eq.2.9 interchange the
spin states producing a

√
SWAP gate [43, 111, 138, 139].

On the other hand, when δEZ >> J the single dot occupied states can still be
considered eigenstates with small corrections due to spin-charge hybridisation. The
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Figure 2.2.5: CNOT gate. Bloch sphere sketches of a CNOT gate realised as a
combination of π/2 pulses and CPhase gate. a) The final position of the spin is the
same as the initial state. b) Qubit final state is the opposite of the initial one due
to the faster free rotation of the spin around the Z-axis in free evolution. The speed
is different depending on the control qubit (red) due to the effect of the exchange
interaction. Image retrieved from [66].

small J makes the energy between spin up and down in one dot dependent on the
qubit state in the other dot (See Fig. 2.2.4(IV)). This property can be used to create
a resonant gate since the frequency for a qubit rotation realised via ESR or EDSR
depends on the ancilla qubit state [67, 140] producing a CROT gate. Qubit rotations
using ESR are normally slow, limiting the maximum fidelity ( with an implementation
of a CROT in the order of the microsecond and a fidelity of 98% [140]). Alternatively,
EDSR can be used for a faster qubit rotation, reducing the gate latency to 103 ns
and demonstrating a fidelity of 99.5% [71].

In this same regime (δEZ >> J) CNOT gates are possible by combining single-
qubit rotation with a control phase gate (CPhase) [66, 68]. As shown in Fig. 2.2.5,
firstly one of the qubits is rotated π/2. In this position, the free evolution of the
spin produces a rotation around the Z-axis whose speed depends on the other spin
polarisation. After some wait time, the spin acquires a different phase depending on
the state of the other qubit (control qubit). Another π/2 rotation is necessary to
complete the CNOT gate. CPhase gates have been realised with a fidelity of 99.5%
in 100 ns [70].

In summary, traditionally CPhase gates and
√
SWAP gates are faster since they

do not rely on single-qubit rotations. However, the rapid control of the exchange
strength requires a complex engineering of high-frequency pulses. On the other hand,
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CROT gates are usually slower but do not require a complex pulse engineering.

2.2.3 Spin Readout and initialisation

The spin magnetic moment of a single electron is approximately two times the Bohr
magnetron, µB = 9.274×10−24 J/T, being too small to be resolved using spin magnetic
resonance [141] or microresonators [142, 143]. Although NV centres can directly
measure single spins [144], the preferred method to measure the spin polarisation is
to use spin to charge conversion- making a tunneling event dependent on the spin
polarisation.

Two factors characterise the quality of the readout: the readout time, ∆t and the
fidelity. The readout time is defined as the total time during which the measurement
is acquired. QEC requires short readout times so errors can be corrected faster than
the decoherence time. On the other hand, the fidelity determines the percentage of
readout traces that are classified correctly. Therefore, the desirable conditions are to
have the maximum amount of spin polarisation correctly identified in the minimum
readout time, ∆t. A benchmark of the readout demonstrations in silicon can be found
in Appendix. A.

Spin to charge conversion

Spin dependent tunneling: In a single-spin qubit, the 2-level system is formed by
the spin-up (|↑⟩) and down (|↓⟩) electron states, separated by the Zeeman energy.
To convert the spin polarisation to a tunneling event, the dot is tunnel coupled to
a reservoir, whose Fermi energy is placed in between the spin up and down electro-
chemical potential as shown in Fig. 2.2.6a. A |↑⟩ electron will tunnel out from the dot
to the reservoir and be subsequently replaced by a spin |↓⟩ electron, whereas a spin
|↓⟩ electron will remain in the dot [145, 146]. The changes in the dot occupation can
be registered with a charge sensor. This way, a readout trace from a spin |↓⟩ state is
a constant noisy background (the light blue trace in Fig. 2.2.6a). On the other hand,
a spin |↑⟩ readout trace, like the one displayed in dark blue in Fig. 2.2.6a, is char-
acterised by a ‘blip’ that starts when the spin |↑⟩ electron leaves the dot (t↑out), and
lasts until a spin |↓⟩ electron tunnels back into the dot (t↓in). The spin is initialised
in the |↓⟩ state after each readout.
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Figure 2.2.6: Readout schematic. a) Spin dependent tunneling. The reser-
voir Fermi energy is placed between the spin up and down states. The |↓⟩ state
remains in the dot, whereas a |↑⟩ state tunnels out with time t↑out, and consequently
a |↓⟩ electron tunnels in from the reservoir. A charge sensor capacitively couple
to the dot senses the dot occupancy so that the |↑⟩ state is detected as a blip in
the signal (dark blue). b) Parity measurement. When a double quantum dot
is set from the (1,1) to the (0,2) charge configuration, the Pauli exclusion principle
forbids the state T0(1, 1) to tunnel to the ground state S(2,0). On the other hand, a
singlet state S(1,1) can tunnel to the S(2,0). A charge sensor can sense the different
occupation so that a singlet S(1,1) leaves a measurement trace like the one in dark
blue trace. If the initial state is T0(1, 1) the system will stays in the (1,1) config-
uration until it decays to S(1, 1) and consequently tunnel to S(2,0), leading to the
measurement trace in light blue.
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Spin-dependent tunneling requires high magnetic fields since, to correctly deter-
mine the spin polarisation, the bath temperature has to be smaller than the Zeeman
splitting. Moreover, this method imposes a limit on the readout time, ∆t, which
needs to be necessarily larger than the t↑out to include the ‘blip’ in the measurement.

The fidelity of the readout is a combination of the charge sensor accuracy and the
duration of the blip. On one hand, the longer the blip is, the easier is to discern,
but on the other hand, a better sensor can differentiate between blip and background
faster, reducing the readout time while maintaining a high fidelity. Another factor
in the fidelity is the relaxation time, T1, defined as the time that a |↑⟩ electron takes
to decay to a |↓⟩ state. In single electron spins T1 increases as the applied magnetic
field, Bz, decreases. This creates a trade-off between applying a strong enough the
magnetic field to create a large energy separation, but not too strong so that the
relaxation time compromises the fidelity [147].

Spin dependent tunneling has a simple realisation since it does not require an
ancilla dot. However, it cannot be realised at high temperatures and the readout time
is limited by t↑out. For this reason, the demonstrations of spin dependent tunneling
have longer ∆t. For example, [68] reached a fidelity of FM = 99.8% in ∆t = 58 ms
using an SET in donors. One of the fastest implementations is [147] with FM = 97.8%
in ∆t = 1.5 µs and the one presented in this thesis FM = 99.54% in ∆t = 250 µs
using an SEB and low temperature amplification.

Pauli Spin blockade:
The spin state can also be measured in the singlet-triplet (S(1, 1)-T0(1, 1)) ba-

sis. To do so, a static magnetic field splits off T+(1, 1), and T−(1, 1), so they don’t
contribute to the readout. If starting in a T0(1, 1), the Pauli exclusion principle will
forbid the electron to tunnel from T0(1, 1) to S(2, 0). However, if the initial state is
S(1,1), the electron can tunnel to the other dot, as shown in Fig. 2.2.6b. The con-
ditional tunneling holds only for magnetic fields smaller than the (2,0) singlet-triplet
splitting, EST.

A charge sensor can measure whether the dots are in the (1,1) or the (2,0) occu-
pation. This way, a triplet measurement corresponds to a constant value, until the
triplet relaxes to a singlet, allowing tunneling. On the other hand, the trace of a
singlet will change when the electron tunnels to S(2,0). Tunneling time between dots
is normally very short (too small to be detected) compared to the relaxation time
(typically in the scale of hundreds of microseconds) [148–150].
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The readout time for Pauli spin readout is normally shorter than spin-dependent
tunneling due to the fast tunneling time between dots, allowing a fidelity of FM =

99.2% in 6 µs in a SiMOS nanowire [98]. The limiting factor in the fidelity is normally
the ability of the sensor to differentiate between spin states faster than the relaxation
time. For a higher fidelity, the relaxation time can be extended using Latching Pauli
Spin blockade as explained below.

Pauli spin readout does not require as large magnetic fields as spin-dependent
tunneling. Moreover, it does not use a reservoir, so the readout is not affected by the
reservoir electron temperature, and can potentially be realised at higher temperatures.

The state S(2,0) can be initialised by allowing the dot to exchange electrons with
the reservoir when the reservoir Fermi level is placed below the states T(2,0) and
above S(2,0) [43]. Then, the system is pulsed to the (1,1) configuration fast (non
adiabatically) compared to the nuclear mixing, but slow (adiabatically) compared to
the exchange interaction, finishing with a state S(1,1). If the system is ramped slowly
to even more negative detunings, where the exchange interaction is almost negligible,
the singlet state adiabatically becomes a |↑↓⟩ state. In the same manner, a triplet
T0(1, 1) can be transformed into a |↓↑⟩ state [43, 138]. On this basis, singlet qubit
operations can be applied to each individual spin [151].

Spin Pauli Blockade can also be used for parity readout, necessary in quantum
error correction codes. In this case, the mixing between T0(1,1) and S(1,1) is too
fast to be measured so that any combination of |↑↓⟩ and |↓↑⟩ is allowed to tunnel
to S(2, 0). On the other hand, the T−(1,1) and T+(1,1) cannot tunnel to the (2,0)
configuration. This way, we can differentiate between odd parity (|↑↓⟩, |↓↑⟩ ) and
even parity (|↑↑⟩, |↓↓⟩) [152].

Latching Pauli Spin blockade:
The fidelity of Pauli spin blockade measurements can be improved by adding a

reservoir to the readout that has a higher tunneling coupling to one of the dots.
This way, the transition to the state (1,2) is much faster from the state (0,2) than
from (1,1). To do a parity measurement with latching enhancement, the electronic
sequence is (1,1)-(0,2)-(1,2). If the system was initially in a S(1, 1) state, it will firstly
tunnel to the (0,2) state and shortly after to (2,1). However, a triplet T0(1,1) is not
allowed to transition to (0,2) so the tunneling to (2,1) will be much slower than for a
singlet [150, 153, 154].

Although this readout requires a more difficult fabrication [155] and the addition
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Resistive Reactive

DC SET (2)

QPC (2)

rf-reflectometry rf-SET (2) SEB (1)

rf-QPC (2) in-situ (0)

Table 2.3.1: Sensor classification. Sensors classification based on whether the
sensor registers changes in its resistance or capacitance and on whether that change is
detected by directly measuring current through the sensor (DC) or by connecting the
sensor to a resonator (rf-reflectometry). The numbers between brackets correspond
to the number of leads that each type of sensor requires.

of a reservoir might pose some problems in terms of scalability, it shows higher readout
fidelities. This is because, on one hand, the latching mechanism involves a change
in the system total charge, which is normally more easily detected and, on the other
hand, the blockade lifetimes are now determined by the different tunneling rates
to the reservoir, which are normally longer than the relaxation time from T0(1, 1)

to S(1, 1) [150, 155]. Spin latching mechanism holds the highest fidelities reaching
FM = 99% in 1.6 µs [156] using an rf-SET and FM = 99.9% in 6 µs [150, 157] with
an SET and amplification at millikelvin temperatures.

2.3 Charge sensors

In order to implement QEC protocols, the readout fidelity has to be larger than
99.9% and faster than the qubit decoherent time. In the previous section, we saw
how the readout method and tunneling times can affect the readout time and fidelity.
However, another crucial factor is the charge sensor, which must be highly sensitive
and with a bandwidth larger than the involved tunneling rates.

Charge sensors have a complex impedance that is very sensitive on their surround-
ing electrochemical potential. The different kinds of charge sensors can be divided
by what is measured (reactive changes or resistive changes) and how it is measured
(as a direct measurement or using rf-reflectometry). Another way to classify charge
sensors is by the number of leads that the sensor requires, which determines their
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suitability for scalability. Table 2.3.1 summarises the sensor classification.
This section presents a small review of the current state of charge sensors and

their working principles. At the moment, there is not a unify method to quantify
the sensor sensitivity (see Sec 4.1 for a detailed description). So that, for the sake of
simplicity, this section refers exclusively to charge sensitivity, defined as how much
difference in charge can be sensed in a second, measured in e/

√
Hz. For a deeper

description of charge sensors we direct the reader to the review recently published in
Ref. [158].

2.3.1 Quantum point contact and Single-electron transistor

The first demonstration of charge sensors were single-electron transistors (SETs) [159]
and quantum point contacts (QPCs) [160] as the ones shown in Fig. 2.3.1a and b.
Both of them have quantised conductances that are very sensitive on the electrostatic
environment (see Fig. 2.3.1c). This way, any changes in the charge occupation of a
nearby quantum dot can be measured as a drop in the current through a SET or
a QPC. Moreover, since the behaviour of a quantum dot is very similar to a SET,
quantum dots can also be used as charge sensors in a similar manner.

Direct measurement of the current through the sensor have a bandwidth limited
to few kHz, which makes measuring fast tunneling events in quantum dots challeng-
ing [161]. The low bandwidth is produced by the RC low-pass filter formed by the
sensor large resistance and the capacitance from the cables that join the cold stage
in a cryostat with the room-temperature electronics.

Moreover, although the theoretical limit for the SET sensitivity calculated for com-
mon experimental values is 1 µe/

√
Hz [162], the minimum charge sensitivity achieved

with an SET is 20 µe/
√
Hz at 4.4 kHz [163]. This is because the theoretical limit

is based on the shot noise produced by the current through the sensor, but it does
not take into account noises that dominate at low frequencies. An example of this is
charge noise, which originates from the collective behaviour of defects or charge traps
trapping and releasing electrons [164]. The density spectrum of charge noise depends
on the frequency as 1/f dominates at frequencies below 10kHz.

To increase the bandwidth and get rid of low frequency noise, the cable capacitance
can be reduced by placing an amplifier like a HEMT [165] or a SiGe Heterojunction-
Bipolar-Transistor [157] as current amplifiers in the mixing chamber (100 mK), close
to the charge sensor. However, in this demonstrations, the measurement bandwidth
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was only increased to up to hundreds of kiloHertzs achieving the rather modest sen-
sitivity of 300 µe/

√
Hz.
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Figure 2.3.1: Charge sensors. a) STM picture of a SET used for spin readout
in phosphorus donors. b) SEM picture of a QPC used for spin dependent tunneling
in a Si/SiGe quantum dot. c) Top: derivative of the current through a QPC with
respect to the dot gate voltage, the peaks correspond to a charge transition. Bottom:
Current through the quantum dot at the same gate voltage. Adapted from [118,
166, 167]

2.3.2 Radio-frequency reflectometry

Another approach to increase the bandwidth is to use an impedance matching network
on resonance that transforms the high resistance of the sensor into the fridge line
impedance (Z0 = 50). Changes in the sensor impedance are observed in the power
reflected by the resonator formed by the matching network and the sensor. This
method allows bandwidths of 100 MHz, more suitable to spin measurement [168].

The following describes how rf-reflectometry works, starting with a revision of
how waves propagate in transmission lines, what is a matching network and how to
use it to measure changes in the sensor impedance.

Waves in transmission lines

Transmission lines allow the propagation of microwave electromagnetic fields within
their boundaries. They are formed by two conductors (signal and ground) that con-
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Figure 2.3.2: Transmission line. Transmission line terminated in a ZL
impedance at z = 0 formed by the matching network and the sensor impedance,
ZD. Image adapted from [169].

fine the electromagnetic field within the dielectric material between them. Although
Fig. 2.3.2 sketches a transmission line as two parallel wires (representing the conduc-
tors), they come in different shapes, like parallel plates or coaxial cables.

The wave propagating can be described as a voltage difference between the con-
ductors that depends on time, t, and position, z. The specific waveform is obtained by
solving the telegraph equations that describe the physics in the transmission line [169].
This way, an incident voltage waveform generated at a source position z < 0 and trav-
elling through a transmission line has the form:

V in(z, t) = |V +
0 | cos(ωt− βz + ϕ+), (2.10)

where z is the position on the line as pictured in Fig. 2.3.2, β is the propagation
constant, ω is the frequency of the rf-signal, |V +

0 | is the voltage amplitude and ϕ+

is the phase angle of the complex voltage V +
0 . Here, we have assumed that the

transmission line is lossless.
For simplicity, we can drop the time dependency and express the wave using

phasors as
V in(z) = V +

0 e−jβz. (2.11)

Now, we shall see what happens when we terminate the transmission line with an
arbitrary load impedance, ZL(ω), at z = 0. The relation between current and voltage
in the line (z < 0) is given by the intrinsic impedance, Z0, that is normally designed
to be Z0 = 50 Ω. However, at z = 0, voltage and current have to satisfy the condition
V (z = 0)/I(z = 0) = ZL. To do so, a reflected wave is created, so that the voltage
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waveform in the line is a sum of the incident and reflected wave:

V (z) = V +
0 e−jβz + V −

0 ejβz, (2.12)

related to the current by the factor Z0:

I(z) =
V +
0

Z0

e−jβz − V −
0

Z0

ejβz. (2.13)

At the load position (z=0), the constant of proportionality between voltage and
current is ZL, leading to

V (z = 0)

I(z = 0)
= ZL =

V +
0 + V −

0

(V +
0 − V −

0 )
Z0. (2.14)

This way we can extract the relation between the input and output voltages as

Γ(ω) =
V −
0

V +
0

=
ZL − Z0

ZL + Z0

, (2.15)

where Γ the reflection coefficient.
When performing rf-reflectometry for charge sensing, ZL corresponds to the match-

ing network plus the device, as shown in Fig. 2.3.2. Small changes in the sen-
sor impedance are observable by extracting the reflection coefficient at different
wave frequencies, ω. This can be done using a vector network analyser (VNA)
that compares the incident and reflected power (normally measured in Decibels as
S11 = 20 log(V −

0 /V +
0 )) or with homodyne detection. The latter is specially related

to this thesis and a deeper explanation can be found in the experimental methods
chapter (Sec. 3.2.2).

In the absence of a matching network, ZL is equal to the device resistance (usually
larger than the quantum resistance RQ = 26 kΩ). In this case, the measurable
reflection coefficient, Γ, would be almost one and we would not observe small changes
in ZL.

Resonator Impedance

The combination of matching network and sensor is created to act as a resonator
since, near the resonant frequency, small variations of the charge sensor impedance
produces large changes in the reflection coefficient.
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Any resonator can be transformed into an equivalent LCR circuit, like the one
shown in Fig. 2.3.3a, with an inductance L, a capacitance, C, and a resistance, R in
series. The equivalent impedance of that circuit is:

ZL = R + jωL+
1

jωC
, (2.16)

where ω is the frequency in radians (f = ω/2π) and j is the imaginary unit.

Figure 2.3.3: LCR resonator. a) Sketch of a transmission line terminated in
a LCR resonator. b) c) and d) simulation of Γ in phase (ϕ) and magnitude (|Γ|)
in an overcoupled, matched and undercoupled resonator, respectively. e) Reflection
coefficient from the resonators simulated in b), c) and d) in cartesian coordinates.

Assuming that the resistance, R, is invariant with respect to the frequency near
the resonance frequency, the real part of the resonator impedance stays constant over
frequency, whereas the imaginary part (admittance) pass along different values. Such
behaviour produces a reflection coefficient with a circular shape in the complex plane
when plotted as a function of the frequency. The whole circle, so-called resistance
circle, has its center on the real axis ℑ{Γ} = 0 and crosses it twice: firstly at the
resonant frequency, fres, corresponding to the circle closest point to the origin and a
second time when the frequency tends to infinity and zero: f → ∞ and f → 0, at
which Γ = 1 (see circles in Fig. 2.3.3b).

The reflection coefficient in resonators is usually presented in polar coordinates
(magnitude, |Γ| and phase, ∠(Γ) = ϕ), as shown in Fig. 2.3.3b,c and d). Here,
we can observe very clearly how the magnitude has a minimum at the resonant
frequency, fres, at which the imaginary part of the reflection coefficient is equal to
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zero (ℑ{ZL(ω = 2πfres)} = 0). From Eq. 2.16 we can extract that the resonant
frequency is:

fres =
1

2π
√
LC

. (2.17)

One of the factors that characterises the sensor is its bandwidth, which determines
how fast a change in the reflection coefficient appears in the reflected signal. This is
measured as the full width at half maximum (FWHM) of the lorentzian shape of the
resonator magnitude.

The resonator bandwidth is related to the energy lost, which is a combination
of the internal losses (within the resonator) and external losses (in the transmission
line). To quantify the losses we use the quality factor, Q, defined as the inverse of
energy lost in one radian of oscillation [158]. The quality internal and external quality
factors are:

Qint =
1

R

√
L

C
(2.18)

Qext =
1

Z0

√
L

C
. (2.19)

The load quality factor is a sum of both lossy channels an it is calculated as:

1

QL
=

1

Qint
+

1

Qext
. (2.20)

The load Q-factor is related to the resonator bandwidth, B, as:

QL =
fres

B
. (2.21)

Eq. 2.21 shows the trade-off between having a sharp resonance, very sensitive to
ZL (large QL), and the fast bandwidths require for spin measurement (lower QL).

The bandwidth can be limited by the external or internal losses. To compare their
contribution, we use the so-called coupling, defined as:

β =
Qint

Qext
=

Z0

R
. (2.22)
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Undercoupled Overcoupled

β < 1 β > 1

R > Z0 R < Z0

< 2π shift in ∠(Γ) 2π shift in ∠(Γ)
BW limited by resonator BW limited by transmission line

Table 2.3.2: Overcoupled and undercoupled resonators. Characteristics of
an overcoupled and undercoupled resonator.

Depending on the value of the coupling, β, the resonator is said to be over-
coupled or undercoupled. Fig. 2.3.3b,c and d) show the shape of an overcoupled
(R < Z0), matched (R = Z0) and undercoupled (R > Z0) resonator in polar coor-
dinates, whereas Fig. 2.3.3e shows the reflection coefficient of the same resonators
plotted in the complex plane. In the case of perfect matching, ℜ{ZL} = Z0, the circle
is centered at the position Γ = 0.5 and crosses the origin, leading to Γ = 0 at fres.
If the resonator is overcoupled (ℜ{ZL} < Z0 = 50), the center of the circle is nearer
the origin, making it is radius larger in order to pass through Γ = 1. In this case,
the magnitude of the reflection coefficient |Γ| does not tend to zero at the resonant
frequency, but it is phase, ∠Γ, completes a whole 2π rotation as the frequency is var-
ied across fres. The different characteristics of resonators depending on their coupling
are compactly summarised in Table. 2.3.2.

2.3.3 rf-SET and rf-QPC

To use a QPC or a SET together with rf-reflectometry, one of the leads is connected
to the matching network, while the other is grounded. This way, the sensor acts as a
resistive element with a setup like the one shown in Fig. 2.3.2.

Although the theoretical limit for charge sensitivity for rf-SETs is 1.4 times worse
than for SETs [170], rf-SETs and rf-QPCs are the most sensitive sensors with charge
sensitivities reaching 1 µe/

√
Hz and below [171] and measurement bandwidths in the

order of few megahertzs. This is because the high bandwidths allow to work at higher
frequencies, where 1/f noise does not play a role. However, rf-SETs and rf-QPCs are
still limited by the noise produced during the amplification stages (See Sec. 2.4.2 for
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more information about noise in amplifiers).
The main disadvantage of rf-SETs and rf-QPCs is that they require two reservoirs

located close to the qubit [104], impacting in dense qubit arrays. Moreover, in the
case of rf-SETs shot-noise dominates. The shot noise in a SET has the power density
SII = e⟨I⟩, where ⟨I⟩ is the average current [172]. Usual values for the average current
through a SET are around 1 nA, leading to a corresponding shot-noise temperature of
1.0 K [173]. Due to their sensitivity limitation and its footprint impact, the semicon-
ductor community is moving from SETs towards sensors based on capacitance shifts
(dispersive readout), where the readout requires one or no leads. Fig. 2.3.4 shows the
effect of capacitive and resistive changes on the resonator reflection coefficient.

Figure 2.3.4: Dispersive and dissipative charge sensors. a) Magnitude of
the reflection coefficient measured as S11 = |Γ|2 in dB for different values of the
QPC conductance. Image retrieved from [174]. b) Reflection coefficient in phase
and magnitude of a resonator connected to a SEB at the charge degeneracy (on)
and far from it. Retrieved from [175].

2.3.4 Single electron box (SEB)

The single electron box (SEB) is formed by a quantum dot tunnel coupled to a single
lead (see Fig. 2.3.5a) [85, 99, 107, 155, 176–178]. The SEB is operated close to the
degeneracy between two dot charge states, which for simplicity we considered them to
be the dot empty, E0, and the dot occupied with one electron, E1. Fig. 2.3.5b shows
the energy level as a function of the reduced gate voltage, ng = CgVg

e
, where Vg is the

voltage applied to the gate, Cg is the gate capacitance and e is the electron charge.
At ng < 0.5, E0 is the ground state, whereas at ng > 0.5, the ground state is E1.
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Both states are related by the tunneling rates between a three-dimensional (reservoir)
and a zero-dimensional (dot), which depend on ng and the electron temperature, Te,
following a Fermi-Dirac distribution as shown in Fig. 2.3.5c, where γ− is the tunneling
rate from dot to reservoir, whereas γ+ is the tunneling rate from reservoir to dot.

Variations in the SEB complex impedance arise when the dot potential is driven
cyclically around ng = 0.5 by an AC excitation with amplitude V RF

g sin(ωrft). The
origin of such variations depends on the relation between the excitation frequency,
ωrf, and the tunneling rate away from the degeneracy, γ0.

Fig. 2.3.5e describes the case for which γ0 ∼ ωrf . Starting in ng < 0.5 in the state
E0, the AC excitation drives the system rapidly to ng > 0.5 (I). When an electron
tunnels into the dot, the system dissipates energy ∆E = E1 − E0 (II). Then, the
system is driven back to ng < 0.5 (III), where an electron tunnels out from the dot
dissipating energy (IV). The average power dissipated during a cycle is related to a
resistance as Pdis = (V RF

g )2/2Rsis [176]. This resistance is called Sisyphus resistance
due to its similarity to the Greek myth.

At the same time, the tunneling of electrons produced by the AC excitation creates
an excess capacitance in the SEB called tunneling capacitance, Ct = αSEB

∂⟨ne⟩
∂V RF

g
,

where ⟨ne⟩ is the average charge in the island [179]. If the tunneling rates are small
compared with the thermal energy (h̄γ0 < kBTe), the tunneling capacitance and
Sisyphus resistance are given by [180]:

Ct =
e2α2

SEB
4kBTe

1

1 + ωrf2/γ02
cosh−2

(
ϵ

2kBTe

)
(2.23)

and

Rsis =
2kBTe

e2α2
SEB

1 + γ0
2/ω2

0

γ0
cosh−2

(
ϵ

2kBTe

)
, (2.24)

where αSEB is the SEB lever arm.
As described by these equations, if γ0 << ωrf, the tunneling capacitance tends

to zero, whereas the Sisyphus resistance tends to infinity. The system is driven so
fast that it is locked in one state, so that there is no tunneling and, therefore, no
dissipation (see Fig. 2.3.5f). In the opposite situation, where γ0 >> ωrf, the system
tunnels so fast that the energy dissipation is neglectable (Rsis → ∞). On the other
hand the tunneling capacitance tends to e2α2

SEB
4kBTe

.
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Figure 2.3.5: Working principles of the SEB. a) Sketch of a SEB, formed
by a quantum dot tunnel coupled to a reservoir with tunnel rates γ− and γ+. b)
Energy diagram of the dot zoomed in around the degeneracy point as a function of
the reduced gate voltage, ng. c) Tunneling rates from dot to reservoir, γ−, and from
reservoir to dot γ+ as a function of ng. d) Tunneling capacitance as a function of
the detuning, ϵ. e) When the system is driven at a frequency similar to its tunneling
rates, energy is dissipated as the electron tunnels inelastically from dot to reservoir
and vice-versa. f) System driven with a fast AC excitation (γ0 << ωrf). g) System
driven with a slow AC excitation (γ0 >> ωrf). Adapted from [179, 181]

If the tunneling rates are larger than the thermal energy (h̄γ0 > kBTe), the tunnel
capacitance follows the lorentzian:

Ct =
e2α2

SEB
π

h̄γ0
(h̄γ0)2 + ϵ2

, (2.25)

while the fast tunneling leads to no dissipation (Rsis = ∞).
The SEB can be used as a charge sensor, since any perturbation of the dynamic

equilibrium leads to a change in its complex impedance. To measure changes in the
SEB impedance, a resonator is connected either to the gate forming the quantum
dot or the reservoir. In this readout method, the rf-tone used to test the reflection
coefficient acts as well as the AC excitation that drives the system. Usually, the
main contribution to the signal is capacitive due to the fast tunneling rates with the
reservoir, although using the Sisyphus resistance variations can increase your signal
in some cases. However, the advantage of having no dissipation in the sensor is that
the noise produced by the system reduces significantly.

Charge sensing with a SEB has achieved similar charge sensitivities to rf-SETs and
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rf-QPCs [175, 179, 182, 183], being the minimum 0.25 µeHz−1/2 [183]. This readout
is not limited by shot noise but by the temperature of the amplifier which can be
reduced to 200-250 mK using a Josephson parametric amplifier (see Sec. 2.4).

2.3.5 In-situ readout

In-situ readout does not require an additional charge sensor because the dot charge
state is directly measured by connecting the resonator to the gate electrode that
controls it. The Sisyphus resistance and tunneling capacitance that arise at the
charge states degeneracy points can be used to map the dot occupancy.

In-situ readout is particularly useful for singlet-triplet readout in a quantum dot.
In the inter-dot transitions, the system in dynamic equilibrium presents not only the
extra contributions from the Sisyphus resistance and tunneling capacitance, but also
an additional quantum capacitance, CQ, that arises from the system being driven
through an energy band diagram with non-zero curvature [184, 185].

Singlet-triplet readout is possible because when the system is cyclically driven
from the (1,1) to the (2,0) state, tunneling between dots is possible in the singlet
state, S(1, 1), producing a change in impedance. However, the triplet state T0(1, 1)

is stuck in the (1,1) configuration, so that the impedance remains constant.
In-situ readout has demonstrations with charge sensitivities as low as 1.3µe/

√
Hz [175].

Moreover, it has the advantage that it does not require any additional reservoir.
Fig. 2.3.6 summarises the different charge sensors that work with rf-reflectometry,

where the blue rectangles represent the leads required by each sensor.

Figure 2.3.6: Charge sensor schematic. Scheme of the different charge sensors
used with rf-reflectometry. The blue rectangles represents the reservoirs, whereas
the light blue circles are the quantum dots whose charge state is being measured.
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2.4 Amplification

The delicate nature of quantum effects requires experiments to work with very weak
probe signals. Inevitably, the readout signal is, as well, very weak and needs to be
amplified. However, amplification comes with a toll: amplifiers not only amplify
the signal and its original noise but also add extra noise due to the amplification,
reducing the SNR. This section deals with the noise generated due to amplification
and its limits for the readout of quantum devices. We deepen into the study of linear
parametric amplifiers, like the one used for the experiments performed in this thesis.
These kinds of amplifiers are widely popular in the superconducting community [16,
186–190], and further information can be found in theses from the superconducting
qubit field [191–193]

2.4.1 Noise in amplifiers

In a linear amplifier, the power of the output signal is linearly proportional to the
input signal with a factor Gs (

√
Gs in amplitude). If a signal with power P in

s and
corresponding noise P in

n is fed to a linear amplifier, the associated output signal has
a power of P out

s = GsP
in
s and a noise of P out

n = Gs(P
in
n + P amp

n ) as is depicted in
Fig. 2.4.1.

Noise is characterised by the energy spectral density S(ω) ≡ |x(ω)|2, where x(ω)

is the Fourier transform of a noisy time trace (x(ω) = 1
2π

∫∞
−∞ x(t)e−iωtdt) [194].

Depending on the source of the noise, its corresponding S(ω) has a different frequency
spectrum. The most common noise in amplifiers is thermal noise, also called white
noise. This noise arises due to the thermal excitations of the charge carriers in a
conductor and it is constant at every frequency.

We can consider the amplifier as an impedance at temperature Tn that is connected
to a matched load, so that the power dissipated by the amplifier is [195]:

Pn = BkBTn, (2.26)

with a noise spectral density

S(ω) = kBTn. (2.27)
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Figure 2.4.1: Noise in an amplification process. A linear amplifier creates
a copy of the input signal with its amplitude increased by

√
GsAsignal. However,

not only the input signal and its corresponding noise are amplified, but also the
amplifier adds a noise characterise by Tn, so that the SNR of the amplified signal is
smaller than the original signal.

Here, B is the given bandwidth and kB is the Boltzman constant. This way, the noise
at the output of an amplifier is:

P out
n = GskB(Tsys + Tn)B, (2.28)

where Tsys is the noise temperature of the signal before being amplified.
In cryo-measurements, several amplifiers are put in series to achieve sufficient gain.

For two amplifiers in series, the noise power increases as,

P out
n = Gs,2(Gs,1kB(Tsys + Tn,1) + kBTn,2)B. (2.29)

This way, the effective noise of a large series of amplifiers with respective gain Gs,i

and noise temperature Tn,i is:

Tnoise =
P out

n
kBBGs,1Gs,2Gs,3...

= Tsys + Tn,1 +
Tn,2

Gs,1
+

Tn,3

Gs,1Gs,2
+ ... (2.30)

For large gains, Gs,i, the noise temperature depends mainly on the temperature
from the first amplifier, which shows the importance of using a first amplifier that
does not add much extra noise and can work at very low temperatures. For this pur-
pose, cryo-experiments commonly use commercial high-electron-mobility-transistors
amplifiers (HEMTs), which work at 4K, limiting the system noise temperature to a
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few Kelvin. Alternatively, superconductor parametric amplifiers can operate at lower
temperatures thanks to their dissipation-less transport [187, 190]. These kinds of
amplifiers, and specifically the Josephson parameter amplifier (JPA), are discussed
in the following sections.

Other amplifiers can also work at hundreds of milliKelvin by exploiting different
physical properties. Some examples are the quantum varying capacitance of semi-
conducting quantum dots [196], photon detectors [197], non-linear cavities [198], and
SETs [199, 200] and QPCs coupled to planar superconducting resonator [201].

2.4.2 Noise quantum limits

Eq. 2.27 seems to reflect that, as we reduce the amplifier temperature, the amplifica-
tion noise is also decreased. This holds up to a point, in which the amplification noise
is dominated not by the temperature, but by quantum effects. Such effects can be
modelled with the fluctuation and dissipation model [202], leading to a noise power
density [203]:

S(ω) =
h̄ω

2
coth

(
h̄ω

2kBT

)
(2.31)

with an equivalent noise temperature

Teff =
S(ω)

kB
=

h̄ω

2kB
coth

(
h̄ω

2kBT

)
(2.32)

For experiments at high temperatures, we find that Teff = T . However, in cryo-
experiments the noise effective temperature approaches to Teff =

h̄ω
2kB

as it is shown
in Fig. 2.4.2. When the amplification noise is equal to the effective temperature,
the amplifier reaches the quantum limit. Amplification below the quantum limit
is still possible under certain circumstances, as is exemplified in Sec. 2.4.4. In the
experiments performed in this thesis, the frequency is 600-800 MHz. Consequently,
the effective temperature is Teff ≈ 13 − 17mK, similar to the real temperature (T ≈
10mK). However, for higher frequency experiments, quantum effects dominate.

The quantum noise limit can be understood in terms of Heisenberg’s uncertainty
principle. Two non-commutating operators can only be measured up to a certain
level of accuracy given by Heisenberg’s inequality [204]. The most common example
is the position and momentum of a particle, whose uncertainties ∆x and ∆p follow
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Figure 2.4.2: Effective temperature. Effective temperature as a function of the
physical temperature in units of h̄ω

2kB
. For T < h̄ω

2kB
, the effective temperature tends

to h̄ω
2kB

. On the other hand for T > h̄ω
2kB

, Teff ∼ T

the inequation:

∆x∆p ≥ h̄

2
. (2.33)

In the quantum mechanical formulation of the electromagnetism, Î and Q̂ are
non-commuting operators [Î , Q̂] = i and, therefore, cannot be accurately known at
the same time. So, quantum fluctuations can be thought of as an area of uncertainty
in the I/Q-plane [205, 206]. The additional quantum noise added by the amplifier
can be understood as a process in which the amplifier measures both quadratures to
create an amplified copy.

In the case of phase-sensitive amplification, only one of the quadratures is ampli-
fied, reaching noise temperatures below the quantum limit (See 2.4.4). Phase-sensitive
amplification is useful when all the information can be projected in a single quadra-
ture.

2.4.3 Parametric amplification

In parametric amplification, one parameter is varied harmonically in a non-linear
medium to create some gain. The energy used to modulate the parameter is called
the pump. One easy example of a parametric amplifier is a child on a swing. The
legs of the child would act as the pump that varies its centre of gravity at twice the
resonant frequency of the swing. The pump energy is then transferred to both of
the degenerate normal modes of the swing (e±iωt), increasing the swing oscillation
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amplitude.
This way, a parametric amplifier works as a mixer, in which part of the pump

energy couples with two frequency modes (signal and idler) [207]. Depending on
the frequency relation between pump, signal and idler, parametric amplifiers are
classified as three-wave amplifiers and four-wave amplifiers. In three-wave amplifiers,
one photon from the pump is transferred to the signal and idler and their frequencies
follow the relationship:

ωpump = ωsignal + ωidler. (2.34)

On the other hand, in a four-wave amplifier, two photons from the pump are
transferred to the signal and idler, so

ωpump + ωpump = ωsignal + ωidler. (2.35)

Figure 2.4.3: Four-wave amplifier. a) Sketch of a parametric amplifier working
in a four-wave mode, where 2 photons of the pump mode are transferred to the weak
signal mode and an extra idler mode is created for energy conservation. b) Fourier
transform of the amplified output, with idler and signal placed symmetrically with
respect to ωpump.

In terms of quantum mechanics, the relation between the frequency modes is
equivalent to the conservation of energy, being E = h̄ω, where h̄ is the reduced
Planck’s constant.

In the following sections, we will focus on the four-wave amplifier, since most
resonant-JPAs work in this mode. In the case where ωsignal = ωidler, the amplifier is
called degenerate. Such amplifiers are phase sensitive meaning that only the part of
the signal that is in phase with the pump is amplified. This effect is called “squeez-
ing” and leads to amplification beyond the quantum limit. On the other hand, if
ωsignal ̸= ωidler the amplification is phase preserving, so the shape of the signal wave is
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conserved, but the amplification will generate necessarily some noise due to quantum
fluctuations.

2.4.4 Josephson parametric amplifier (JPA)

To create a parametric amplifier, we need a resonator that includes a non-linear
element. This is the case of the Lumped Josephson Parametric Amplifier (JPA),
which in its simplest model is formed by two Josephson junctions forming a SQUID in
parallel with a fixed capacitance as is shown in Fig. 2.4.4. The SQUID is modelled as a
single Josephson junction with critical current I0 whose inductance can be modulated
by the flux applied to the loop. The model includes the shunted capacitance, C, and
Z0 accounting for the impedance of the microwave environment.

Figure 2.4.4: Schematics of the LJPA. Model of a LJPA consisting on a
SQUID that is included in the equations as a single Josephson junction with tunable
frequency, a shunted capacitance C and an impedance Z0. To study its dynamics,
the LJPA is connected to a current source with output I(t).

The inductance from the Josephson junction goes as LJ = h/2e
2πI0cos(δ)

, where δ is
the phase difference across the Josephson junction. This way, when applying some
power at the pump frequency mode ωpump, the JPA inductance is varied at a rate
2ωpump (See Appendix B for the whole mathematical description). Changes in the
inductance modify the JPA resonant frequency since ωJPA = 1√

LJC
.

For low powers applied to the JPA, (PJPA ∝ Id
2 << I0

2) the resonant frequency
is constant and equal to ωJPA,0. As the pump power is increased, the ωJPA moves
to lower frequencies and the resonance becomes sharper (See Fig.2.4.5). This is the
regime in which parametric amplification can be performed, where the Josephson
junction inductance creates a non-linear dependency between the reflected phase and
the driving power.
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Figure 2.4.5: LJPA working principle. At low pump powers the JPA res-
onant frequency is constant as a function of the power. As the power increases,
the resonant frequency bends to lower frequencies due to the non-linearity of the
Josephson inductance. This is the power range at which parametric amplification
can be realised. Above Pc, the resonance becomes bistable.

Above a certain critical power, Pc, the system becomes bistable. This corresponds
to the conditions in which the equation that describes the JPA behaviour (Eq.B.5 in
Appendix B) has three real solutions. This is the working regime of the Josephson
Bifurcation Amplifier (JBA) [186].

JPA parametric amplifier regime

Amplifiers are normally characterised by their transfer function, in which a small
modulation of some input parameter leads to a large modulation of another. For
example, in the case of field-effect transistors, a small modulation of the gate voltage
can lead to a proportional large modulation in the source/drain current [208].

The JPA can work as an amplifier when connected to a transmission line in re-
flection (See Fig.2.4.9). Opposite to common resonators, in which the reflected phase
is constant as a function of the power applied, in a JPA, the non-linear Josephson
junction makes ωJPA dependent on the pump power. This dependency produces the
JPA transfer function, that correlates the input pump power with its reflected phase
(See Fig. 2.4.6).

If the pump power is set at the steepest point of the transfer function, any mod-
ulation of the pump power leads to a large response in its reflected phase. If the
variations of the pump power are small, the reflected phase response is proportional
to them (See Fig. 2.4.6a). However, for larger power variations, the JPA saturates,
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Figure 2.4.6: JPA transfer function. a) For small signal powers within the
dynamic range, the input power signal is amplified linearly. b) For powers larger
than the dynamic range, the JPA saturates cutting off the edges of the output
reflected phase.

leading to a reflected phase that is cut off at the edges of the transfer function (See
Fig. 2.4.6b). The range of power for which the response is linearly proportional to
the input modulation is called the dynamic range.

If the signal power is larger than the dynamic range, the gain defined asGs =
P out

signal
P in

signal

decreases, since there is not enough pump energy to be transferred from the pump to
the signal and idler. This effect can be observed in Fig. 4.4.3a). For this reason, the
dynamic range is also defined as the P in

signal at which the Gs decreases by 1dB.

Phase preserving and phase sensitive amplification

To explain the amplification process in terms of the I/Q-plane, we first explore the case
in which the JPA works as a doubly degenerate amplifier (ωpump = ωidler = ωsignal). If
the signal is in phase with the pump mode, changes in the signal amplitude will lead
to changes in the pump amplitude of the same magnitude (see Fig. 2.4.7a). On the
other hand, if the signal is in quadrature with the pump mode, their amplitudes need
to be added in quadrature, so that changes in the signal amplitude produce a smaller
variation in the pump (see Fig. 2.4.7c). Consequently, while the signal in phase with
the pump tone is amplified, the signal in quadrature is de-amplified. Any noise that
the signal has, will only be amplified in one of the quadratures so that the SNR will be
the same before and after amplification. Therefore, phase-sensitive amplification can
go below the quantum limit, being virtually possible to amplify without adding any
extra noise (noiseless amplification). The only issue with phase-sensitive amplification
is that it is only applicable in situations where the information encoded in the signal
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can be projected into one axis.

Figure 2.4.7: Phase sensitive amplification. a) Left: signal (purple) and pump
(black) in parallel. Right: pump vector modified by the signal. The changes in pump
power ∆P∥ due to the signal are of the same magnitude as the signal. b) Signal
amplification is achieved since the distance between vectors after the amplification
is much larger than before. c) Left: signal and pump in quadrature. d) Addition of
signal and pump. The variation of the pump power, ∆P⊥ is smaller, so there is no
amplification in the output shown in d).

In the case where ωpump ̸= ωsignal the amplification is phase preserving and ex-
tra noise will be added due to quantum fluctuations. If the pump and signal modes
are presented in the I/Q-plane using the pump tone rotating frame, the signal tone
will look like a vector that rotates counterclockwise with an angular velocity ∆ωt.
When ∆ω is small enough so the signal frequency is within the JPA amplification
bandwidth [192], the signal is added as a slow modulation of the pump tone and can
be amplified. At any moment, the signal can be separated into two quadratures in
parallel and perpendicular to the pump mode whose magnitude fluctuates in time as
cos(∆ωt) and sin(∆ωt). One could argue that the amplification can also be noise-
less since only the part of the signal parallel to the pump is amplified. However,
since ωpump ̸= ωsignal, there is also an idler mode that is amplified, which rotates at
−∆ωt (see Fig. 2.4.8). The output amplified signal includes the amplified vacuum
fluctuations at the idler and signal frequency, being, therefore, not noiseless. Phase
preserving mode cannot go below the quantum limit but the output signal retains
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Figure 2.4.8: Phase preserving amplification. I/Q-plane in the rotating frame
of the pump tone. The signal mode rotates at a rate ∆ωt. At any time, only the
part of the signal that is parallel to the pump is amplified. At the same time,
energy conservation requires the creation of an idler mode, since ωpump ̸= ωsignal.
Such a mode rotates at a rate −∆ωt and it is also amplified, creating noise in the
amplification process.

both its phase and amplitude information.

2.4.5 Superconducting parametric amplifiers for qubit readout

This is a quick review of the use of Josephson parametric amplifiers, their current chal-
lenges and possible applications for semiconducting spin qubits. For more complete
reviews on superconducting parametric amplifiers, we direct the reader to Refs. [16,
190] and the slightly older review [187]

Parametric amplification using Josephson junctions has been known since the
60-70s [209, 210], but it was not until the creation of the dispersive readout in su-
perconducting qubits [211] that it became popular [186, 212–214]. Such readout, and
its posterior application to semiconductor qubits, requires a microwave amplification
chain that adds the minimum extra noise to the signal.

As explained in the previous section, the first amplifier is the one that deter-
mines the noise added by the amplification chain. Therefore, the goal is to place it
at the lowest temperature stage. However, in the coldest part of a dilution fridge
(∼ 10 mK) the cooling power is very low (<< 1 mW), posing hard restrictions on
the electronics heating. The most common amplifier, with the advantage of being
completely straightforward to use, is the High- electron-mobility-transistor (HEMT).
Nevertheless, HEMTs dissipate heat, making their operation at such low temperatures
impossible. On the other hand, superconducting parametric amplifiers are perfect to
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tackle this challenge due to their dissipation-less transport.
Most Josephson parameter amplifiers are based on the reflection resonant-JPA

set-up laid out in [215], in which pump and signal are input and output through the
same port (See Fig. 2.4.9a). The Josephson junctions are normally placed in a SQUID
configuration so the JPA resonant frequency (ωJPA,0) can be tuned by the magnetic
flux through the SQUID [213]. Such amplifiers, are not only relatively easy and cheap
to design and fabricate, but also routinely achieve amplification near and below the
quantum limit [216]. Some of the active work in resonant-JPAs is trying to increase
the bandwidth for linear amplification, which at the moment, for a gain ofGs ∼ 20 dB,
has typical values of 10 MHz [190], although, using alternative Josephson junction
circuit topologies, bandwidths of up to 700 MHz have been demonstrated [217]. A
different option to increase the space in amplifiable frequency is to include different
resonances in the JPA [218], as depicted in Fig. 2.4.9b.

Another challenge in using resonant-JPAs for qubit readout is the signal power
that the JPA can handle before the gain starts decreasing (dynamic range). Usual
values are -120 dBm [190], but ongoing work is trying to increase such numbers [219–
222], reaching a maximum of -90 dBm [219].

Moreover, resonant-JPAs require isolation between the device under test and the
JPA input port. Therefore, cryo-circulators of non-neglectable physical size need to
be placed in the very demanded fridge space, which also increases the insertion losses
of the already weak input signal.

The narrow amplification bandwidth in resonant-JPAs due to the presence of a
cavity motivated the development of travelling wave parametric amplifiers (TWPAs).
TWPAs have the advantage of having higher bandwidths, not requiring a specific
circulator and having higher saturation powers. For example [223] demonstrated a
bandwidth of 4 GHz with a saturation power of -52dBm at a Gain of 10dB.

The main reason why TWPAs are not yet the standard superconducting amplifier
is because of their rather daunting design and fabrication. Their complexity makes
TWPAs noisier than their resonant-JPAs counterparts, being the minimum noise
reported two times the standard quantum limit [224]. There are two kinds of TWPAs
depending on whether the parametric amplification is based on the non-linearity of
high kinetic inductance in disordered superconducting materials (KTWPAs) [223], or
on Josephson junctions (JTWPAs) [225]. Fig. 2.4.9d shows the sketch of a JTWPA
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Figure 2.4.9: Josephson junction based amplifiers. a) Sketch of a basic
resonant-JPA with a flux tunable resonant frequency. b) Same with three resonant
frequencies (fa, fb and fc) for multiqubit readout. c) Scanning electron micrograph
of the device in b) showing the Nb wiring that forms the Josephson junctions and
inductors. Image retrieved from [218]. d) Sketch of a TWPA with Josephson junc-
tions in series. Signal and idler are amplified as they travel along the TWPA e).
Image retrieve from [190].

made as a chain of Josephson junctions.

Applications of superconducting parametric amplifiers in semiconduc-
tor qubits

The development of Josephson based amplifiers has been driven in academia as a
means to an end. For this reason, they are more difficult to use than HEMTs, which
can be added as a black-box to a given setup, requiring its own dedicated setup (for
an example of JPA tuning for amplification Sec. 4.4.1).

The main limitation when using a JPA in a dispersive readout for semiconductor
qubits is that the dynamic range of JPAs is lower than the signal powers commonly
used in previous reflectometry measurements (−90 to −80 dBm)[179]. Resonators
with higher Q-factor reduce the necessary power of the probe signal for readout,
making JPAs compatible with dispersive readout (See Sec. 4.2.3 for more informa-
tion).

JPAs in conjunction with a SEB have been used for charge sensing in semiconduc-
tors in [226] and [86], improving the SNR by a factor of x2000 and x10, respectively.

We would like to emphasise that, using an ultra-low noise amplifier, such as JPA
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or a TWPA, would only increase the SNR if the main source of noise comes from
the first amplifier. If the noise is dominated by shot-noise in the device (as with
rf-SETs [147]), there will not be any observable change. On the other hand, SEBs
show Sisyphus noise, which vanishes when the tunneling between the SEB and the
reservoir occurs adiabatically (γ0 >> frf) [179]. In this case, the noise is dominated
by the first amplifier and the addition of the JPA has a real impact on the SNR.
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3
Experimental methods

This chapter introduces the experimental techniques applied in this work. It includes
a brief explanation of the silicon nanowire devices, followed by a description of the
setup, including the method employed for performing rf-measurements. The chapter
finishes describing the approach followed to generate fast pulses and reduce the setup
noise.

3.1 Device description

The devices used in this thesis are field-effect MOS transistors made of a fully depleted
silicon nanowire. The transistors were fabricated in an industrial cleanroom (CEA-
Leti) using 300-mm silicon on insulator (SOI) wafers with a 145-nm-thick buried
oxide [74, 155, 227, 228]. The active silicon is shaped into a nanowire using active
mesa patterning. To create the transistor gates, the active silicon is firstly thermally
oxidised to act as the gate dielectric (6 nm of thermal SiO2/Si). Then, the gates are
deposited with a stack consisting of 50 nm Poly-Si and 5 nm TiN. After this process,
a 7 nm thickness silicon nanowire remains below the gate.



65 3.1. Device description

To shape the gates, a hybrid Deep Ultra Violet/Electron Beam Lithography and
etching of the gate hard mask was performed before transferring the dense pattern
into the rest of the stack. The simplest gate pattern design is made of a single wrap-
around gate split in two (see Fig. 3.1.1a). This design can be extended by replicating
the split-gate shape along the nanowire, forming a 2D array of quantum dots as shown
in Fig. 3.1.1b.

Figure 3.1.1: Device. a) False-color transmission electron micrograph of a silicon
nanowire with a pair of split gates fabricated and designed in CEA-Leti. One of
the gates is larger than the other due to a systematical misalignment of 7± 3 nm in
the placement of the gates on the Si channel b) Artistic representation of a multiple
split-gate nanowire.

After gate-etching, the nanowire is covered by 34 nm-wide Si3N4 spacers. On
one hand, the spacer separates the reservoirs from the central part of the intrinsic
nanowire, protecting the intrinsic silicon from the posterior ion implantation, which
defines the reservoirs. And, on the other hand, it also covers the split between the
independent gates since the spacer length is larger than half of the inter-gate gap.
The reservoirs are then n-doped by Arsenic/Phosphorus implantation. The process
is completed after an activation spike anneal, salicidation (NiPtSi), contacts and
metallisation (see Fig. 3.1.2 for a summary of the device fabrication).

At low temperatures, quantum dots are formed on the upper corners of the
nanowire, whose electrochemical potential can be independently controlled by the
voltage applied to the gates above them. Although, in order to reach single electron
confinement, the gate pitch is required to be of the order of 50 nm. The transistors
characterised during this thesis were single and double split gate transistors with the
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66 3.1. Device description

Figure 3.1.2: Device fabrication. Simplified process flow for the device fab-
rication and images of the initial wafer (up), the patterned nanowire with a wrap
around gate without (middle) and with (down) spacers. Image adapted from [229]

dimensions summarised in table. 3.1.1.
For further control, the silicon substrate can be used as a back-gate and an over-

arching metal line as a top gate. These two gates modify the dot electron wave
function [107, 230] and, therefore, the tunnel rates between dots and dots to reser-
voir. Changes in the voltage applied to the metal line require stabilisation for a few
days, however, the new properties remain constant and stable for extended periods.

Finally, half of the nanowire along its longitudinal axis is lightly Bi doped with
a dose of 6 · 1010 at/cm2. This gives an average of approximately one Bi dopant per
window of 40 nm × 40 nm. However, the Bi donors were not used in the experiments
presented here.

3.1.1 Device advantages

One of the advantages of these devices is that they have moved from bespoke processes
in university cleanrooms to well-controlled facilities operating with 300-mm fabrica-
tion techniques, which could satisfy the demand to create uniform and reproducible
quantum dots.

Moreover, the nanowire geometry is especially relevant since modern CMOS foundries
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Single split gate devices

W (nm) Lg (nm) SV (nm)

80 40 50

70 40 40

80 60 50

70 50 40

Double split gate devices

W (nm) Lg (nm) SV (nm) SH (nm)

70 50 40 50

70 40 40 40

80 60 50 60

70 40 60 40

70 60 40 50

Table 3.1.1: Device dimensions. Dimensions of the devices characterised during
this thesis in which a quantum dot was formed under each gate. Each row corre-
sponds to a given device and W is the nanowire width, Lg is the gate length, SV is
the separation between the gates facing each other and SH is the separation between
parallel gates (see Fig. 3.1.1). The devices with their dimensions in bold are the
ones in which spin readout was performed.

67



68 3.1. Device description

like Samsung, TSMC or Intel, have moved from planar MOS to patterned Si technol-
ogy such as finFET, nanowireFET or Gate-All-Around structures [231–233]. Fur-
thermore, this design is highly scalable, being able to form quantum dots with a single
gate, (as opposed to combinations of depletion/accumulation gates required in planar
structures) and, as we shall see later, still gives electron spin relaxation times of the
same order of planar structures.

3.1.2 PCB

Figure 3.1.3: PCBs. a) PCB with three fast lines for pulsing and one fast line
for readout. The fast lines are combined to low frequency lines using bias tees. The
bias tee used in the readout line has a large capacitance (CG =100 nF with model
CC0603JRNPO9BN101) to provide a fast path to ground for the rf-probe frequency.
This PCB can provide DC voltages to up to 8 gates. All of the low-frequency lines
include extra low pass filters (∼1-10kHz) to protect the device from EST during
bonding and loading. b) Similar PCB without the extra low pass filters for source
and drain.

The silicon wafer in which the devices are located is conveniently cut into chips
with dimensions of the order of 10x10 mm2. The chip, with around 50 transistors,
is stuck on a printed circuit board (PCB) with silver paste. Since this glue is also
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conductive, DC voltages can be applied to the transistors back gate. To provide
electrical connections between the device gates and the fridge lines, the transistor
electrodes are connected to the PCB contacts via on-chip aluminium bond wires.

The PCB is made from 0.8 mm thick RO4003C for improved high-frequency per-
formance and the tracks have an immersion silver finish to facilitate bonding. The
design consists of multiple low-frequency lines connected to the fridge using simple
Molex pin connectors and high-frequency lines terminated in SMP connectors. The
high-frequency lines are coplanar waveguides matched to 50 Ω. The line used to carry
the radio-frequency readout signal has the shortest length to reduce the parasitic ca-
pacitance.

High-frequency and DC signals were combined using on-PCB bias tees formed
by multilayer ceramic capacitors of 100 nF (TDK CGA3E2C0G1H103J080AA) and
thin-film resistors of between 100 kΩ-1 MΩ for the device gates and 10 kΩ for source
and drain (Panasonic ERA3APB104V). All the low-frequency lines, included the ones
connected to source and drain, have this RC configuration that acts as an extra on-
PCB low pass filter (∼1-10kHz). This filter offers protection against electrostatic
discharges (EST), a common cause of device malfunction when bonding and connect-
ing the PCB to the chip.

The PCB also holds the elements that form the resonator such as the inductor
chip and the coupling capacitor, which is made of a surface-mount thin-film silicon
capacitor of 50 fF (Kyocera AVX 04021JR05Z4STR\500).

3.2 Measurement setup

Measurements were performed at base temperature (17 mK) in a Bluefors LD dilution
refrigerator. As shown in Fig. 3.2.1, the fridge has different cooling stages, each one
with a different cooling power. The device sits on the coldest stage of the cryostat
where the cooling power is < 1 mW.

The control signals generated at room temperature need to be carefully attenuated
and filtered in their way to the device to not perturb the quantum state. The DC
voltages and slow signals are delivered through twisted pairs forming a loom, which
is thermalised at different stages to reduce its noise temperature and filtered with RF
and RC Qfilters in the mixing chamber to remove high-frequency noise. These lines
can carry DC and low-frequency signals of up to 100 kHz.
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The radio-frequency signal for gate-based readout and the fast pulses are delivered
through semi-rigid coaxial lines. The fast pulses are sent through CuNi-CuNi coaxial
wiring with SMA connectors and can transport signals up to 18 GHz. On the other
hand, the rf-probe used for reflectometry travels through flexible grapho coaxial wires,
which work well up to a few GHz. All the fast lines are thermalised at different cooling
stages using attenuators mounted to the thermal plate (see Fig. 3.2.1). Moreover,
additional attenuators can be added at room temperature to reduce the noise from
the rf-source, which is usually larger than room temperature.

3.2.1 rf-reflectometry setup

Figure 3.2.1: Measurement setup. (Left) Fridge wiring for semiconductor spin
readout. Signals are sent through a cryogenic loom (DC signals) and fast coaxial
lines. It includes a typical setup for readout with reflectometry and an additional
fast line for pulsing. (Right) Picture of the different cooling stages in an LD Bluefors
dilution fridge.

Two fast lines are dedicated to rf-measurements. Firstly, the radio-frequency
signal is delivered through an attenuated and filtered coaxial line into the mixing
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chamber. There, a cryogenic directional coupler (Krytar 158020-810) combines the
incident and reflected waves. The reflected wave comes back through a different path
to avoid self-resonances and amplify the signal. On its way out of the fridge, the rf-
signal is first amplified by 26 dB at 4 K (LNF-LNC0.6_2A) and further amplified at
room temperature. Moreover, an isolator is added to prevent that the noise generated
in the amplifier arrives at the device.

Measurements performed with a JPA require an additional fast line, as explained
in Sec. 4.4.1.

3.2.2 Homodyne detection

The magnitude that has the information from changes in the sensor impedance is the
reflection coefficient, Γ. This section introduces wave notation to later explain how
to extract Γ from the reflected signal.

Phasors and wave quadratures

Figure 3.2.2: IQ phasor diagram. Wave representation as a point in a 2D plane,
where I and Q are the cartesians coordinates. The point can also be defined in a
phasor form using the polar coordinates: magnitude and phase.

Periodic signals with frequency f = 2πω, like the ones used in reflectometry, have
the shape:

V = A cos(ωt+ ϕ), (3.1)
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where A is the wave amplitude and ϕ is the phase delay. This way, if the frequency
is known, the only other parameters that characterise a wave are the magnitude and
phase delay. These two factors can be used as polar coordinates to represent the wave
as a point in a 2-dimensional plane. Due to its similarity with the complex plane, the
wave can be represented as a complex number called phasor as Aeiϕ (see Fig. 3.2.2).
Additionally, the cartesian coordinates of the wave point (X, Y) can also be used to
represent the waves. These terms are the quadrature terms I and Q, where

VI = A cos(ϕ) (3.2)
VQ = A sin(ϕ). (3.3)

The terms I and Q are also sometimes called X and Y or the ‘in-phase’ and ‘out
of phase’ quadratures. The wave can be rewritten in terms of its quadrature as

V = VI cos(ωt)− VQ cos(ωt). (3.4)

Reflected wave

As explained in Sec. 2.3.2, a wave travelling trough a lossless transmission line with
frequency ω has a shape:

V in(z, t) = |V +
0 | cos(ωt− βz + ϕ+), (3.5)

where z is the position on the line, β is the propagation constant, |V +
0 | is the

voltage amplitude and ϕ+ is the initial phase. In the phasor represenation the above
wave looks like:

V in(z) = V +
0 ej(−βz+ϕ+), (3.6)

which is related to the reflected wave coming from the PCB by the reflection
coefficient as

V out(z) = |Γ|V +
0 ej(−βz2+ϕ++∠Γ). (3.7)
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Figure 3.2.3: Room temperature reflectometry setup. The input and re-
flected wave are compared using homodyne detection to obtain the quadratures of
the reflected wave and, in turn, variances in the SEB impedance.

Demodulation

Obtaining the reflection coefficient directly from the reflected wave would be a difficult
task since it requires measuring changes in the phase and magnitude of a high fre-
quency wave. Instead, quadrature demodulation simplifies the measurement greatly
since it converts the wave into DC components carrying the wave quadratures. To
do so, demodulation makes use of a mixer to compare the input and reflected wave
and a low pass filter.

The input wave is divided into two paths. The first one goes inside the fridge to
excite the device, whereas the second one is fed into the LO port of an IQ demodulator
(Polyphase AD0540B) as seen in Fig. 3.2.3. On the other hand, the incoming reflected
wave is connected to the RF port of the IQ demodulator.

The IQ demodulator separates the RF signal into two DC components correspond-
ing to its quadrature (see [158] for the working principles of the IQ demodulator),
which are related to the reflection coefficient as

√
V 2

I + V 2
Q ∝ |Γ| and arctanVI/VQ ∝

∠Γ.
Finally, the I and Q components are further amplified and filtered before being

measured with a digitiser (Spectrum M4i.4451-x4).
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3.3 Setup optimisation

This section includes modifications in the setup to optimise the fast pulses used for
spin readout and reducing noise.

3.3.1 Fast pulse generation

The on−PCB bias tee that combines low and high-frequency signals acts as a high
pass filter on the fast pulses sent to the qubit dot. Ideally, pulses are composed of
different stages of constant voltage (see Fig. 3.3.1a), however, the high pass filter
deforms the wave shape as shown in Fig. 3.3.1b. Since the filter is simply an RC first
order filter, its transfer function is given by:

H(ω) =
RCjω

1 +RCjω
, (3.8)

where R and C are the values of the resistance and capacitance mounted to the
PCB.

Figure 3.3.1: Fast pulses. a) Desired line-shape of the voltage pulse. b) Voltage
arriving to the device without using compensation. c) Compensated pulse. d) The
pulse arriving to the device has the desire shape using compensation.

The high pass filter was compensated with the help of pulse engineering. We use
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the python package ScyPy to apply the inverse of the filter transfer function to the
desired wave shape. This way, after passing through the bias tee, the pulses acquired
the desired line shape again. Mathematically, this can be expressed as:

H(ω)︸ ︷︷ ︸
filter

(H−1(ω)V (ω)︸ ︷︷ ︸
pulse sent

) = V (ω), (3.9)

where V (ω) is the desired voltage line shape in the frequency domain.

3.3.2 Reducing setup interferences

Noise can have different sources such as dissipation in the device or the resonator,
the amplification chain and the room temperature setup. This section focus on the
latter. Here, we identified two kinds of noise produced by interferences in the room
temperature setup that were detrimental to the SNR.

The first one is 50-100-150 Hz noise in sync with the power supply. 50 Hz noise
is often present as a result of ground loops. Ground loops are the electrical situation
produced when there is more than one conductive path between two electrical nodes.
If one of these nodes is the zero-reference line, the voltage produced by the current
going through the loop is added to the measured signal, resulting in noise. More-
over, the loop can act as an antenna and couple with the magnetic flux produced
by the transformers. These interferences introduce noise at 50 Hz, 150 Hz and their
harmonics.

In order to avoid ground loops, the fridge should have one solely low-resistance
connection to the ground. To avert ground loops produced by the low-frequency
connections, we used a QDAC for the DC bias of the device gates. The QDAC has
their outputs galvanically isolated so that it provides a signal without any ground
connection. For the fridge fast lines, we used DC-blockers (ground and signal) to
isolate the ground connection between the rf-source, the fridge, the IQ mixer and the
pre-amplifiers. The only connection for which the ground could not be isolated was
between the AWG and the fridge fast line to send fast pulses. However, it did not
seem to have a big effect in terms of noise.

Ground loops can also be produced by hoses that connect the gas handling system
and the fridge. The Bluefors fridge design already includes isolation in the hoses
clamps that prevent these extra ground connections. However, if the hose is in contact
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Figure 3.3.2: Noise characterisation. a) Measurement trace over time acquire
with the digitiser. b) Corresponding noise power density. Besides low-frequency
noise, a spike at ∼ 4kHz is observed. This can correspond with the frequency of the
pulse tube cryocooler [234] that is picked up by a ground loop produced by ground
connections between the fridge fast lines, the rf-source and the IQ demodulator.
Moreover, there is an extra spike around 100kHz that is attributed to the demodu-
lator power supply. c) Same measurement taken after including DC blockers (signal
and ground) between the demodulator bridge, the rf-source and the fridge input
and output ports. At the same time, the IQ demodulator and the pre-amplifiers
power supply was modified. In a) they are powered with a commercial switching
mode power supply, whereas in c) the noise is eliminated by powering them with
an analogue bench power supply.
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with any conductive surface, it can produce unwelcome noise.
The second source of noise that was identified and removed was a spike with

a frequency around the ∼100 kHz. It was produced by the switched-mode power
supply that was feeding the IQ demodulator and room temperature amplifiers. The
noise disappeared when the power supply was changed by a constant voltage analogue
bench power supply (see Fig. 3.3.2).

To summarise, the way to reducing noise related with interferences is a proce-
dure consisting of characterising the noise after every change in the setup until most
interferences disappear.
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4
Optimisation of gate-based single electron

box

A fast and highly sensitive charge sensor is paramount to achieving high fidelity qubit
readout. This chapter summarises the advances in gate-based dispersive detection us-
ing a SEB. The optimisation of the resonator and the SEB, together with the addition
of a Josephson parametric amplifier, improved the signal to noise ratio leading to the
demonstration of a minimum integration time of τm = 0.1 µs. This result provides
the route to combine high-fidelity readout with a compact and scalable architecture.

4.1 SNR and minimum integration time

As stated in the previous chapter, a good charge sensor is capable of detecting charge
events fast and with a high fidelity. When using rf-reflectometry, the ultimate speed
to measure a charge event is given by the resonator bandwidth, however, if the sig-
nal is not large enough compared with the noise, changes in the sensor impedance
are not detectable. For this reason, optimising the signal to noise ratio (SNR) is a
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fundamental step towards having a fast readout with high fidelity.
To quantify the quality of a readout sensor, we use the minimum integration

time, τm, defined as the minimum integration time to obtain a signal to noise ratio
equal to one (SNR = 1). Another magnitude to characterise the sensor is the charge
sensitivity,

√
SN

QQ, which is related to τm as τm = SN
QQ/2e

2 [158].
For an analytic expression of the SNR, we need to compute separately the magni-

tude of the signal and the noise. The signal is measured as the difference in reflected
power produced by a charge event, calculated as [235]:

Signal = P0|∆Γ|2. (4.1)

Here, P0 is the applied power and ∆Γ is the change in reflection coefficient pro-
duced by a charge transient, which depends on the sensor and the matching network.
In the case of SEBs, and specifically for this thesis, charge events modify only the
SEB capacitance (the Sisyphus resistance is neglectable due to the high tunneling
rates between SEB and reservoir in comparison with the rf-probe frequency). If these
changes in the SEB capacitance are small1, ∆Γ can be calculated considering only
the first-order term as

∆Γ =
∂Γ

∂CD
∆CD, (4.2)

where ∆CD, the change in the SEB capacitance, is equal to the tunneling capaci-
tance, Ct

To compute the SNR, we also need to quantify the noise. The noise can have
different contributions, such as the power dissipated in the resonator, the power
dissipated in the SEB due to the Sisyphus resistance or the noise generated in the
amplification process. The combination of all noise sources can be expressed in terms
of an effective temperature, Tn, as

Pn =
kBTn

2τ
, (4.3)

where τ is the integration time defined as τ = 1/2B, and B is the measurement
bandwidth (this equation is equivalent to Eq. 2.26).

1Here, by small changes in the SEB capacitance we are referring to the small-signal regime
characterised by QL∆CD/Ctot << 1, where Ctot is the total capacitance of the matching network
and QL is the loaded quality factor.
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This way, the expression for the signal to noise ratio reads as:

SNR =
P0|∆Γ|2

Pn
. (4.4)

The following sections describe how to improve each of these factors. To do so, we
need to, on one hand, design the matching network and SEB to maximise the signal
power and, on the other hand, optimise the amplifier chain to minimise the noise.

4.2 Maximising the signal

This section goes through every aspect that can be optimised to maximise the signal.
The first subsection describes how the strength of the capacitive coupling between
SEB and the target dot affects the signal power. Then, the matching network is
analysed, including how to characterise it and how to improve its design. Lastly, the
text focus on the SEB properties that influences the SNR.

4.2.1 Strong and weak sensitive regime

Figure 4.2.1: Strong and weak sensitive regime. a) The change in capacitance
is maximum, ∆C, when the SEB is strongly sensitive to the target dot, so that
the change in potential is larger than the linewidth of tunneling capacitance. The
linewidth, given by Eqs. 2.23 and 2.25, has a different magnitude depending on the
relation between hγ and kBT , being ϵ1/2 = 2hγ if hγ > kBT and ϵ1/2 = 3.53kBT
if hγ < kBT . b) Change in SEB capacitance in the weakly sensitive regime. c)
Measurements of the rf-reflectometry signal when the target dot is empty (light
blue) and occupied (dark blue).
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Charge sensing with a SEB is based on the fact that a charge event in the target dot
produces a shift in the SEB potential, that modifies its capacitance. The magnitude
of the potential shift depends on the capacitive coupling between SEB and the target
dot. In the strong sensitive regime, the addition of one electron to the target dot
causes a large shift in the SEB potential compared to the capacitance linewidth (see
Fig. 4.2.1a). In this regime, the sensitivity on the target dot produces a maximal
signal contrast, ∆C = Ct, being Ct the tunneling capacitance. On the other hand, if
the SEB is weakly sensitive to the target dot, the SEB potential is weakly perturbed,
producing smaller changes in capacitance: δC < Ct (see Fig. 4.2.1b).

The factor η characterises the decrement in capacitance change due to a weak
coupling as

η =
δC

Ct
. (4.5)

The strong sensitive regime, for which η = 1, is desired since a weak coupling
affects the SNR quadratically as:

SNR = η2SNRstrong. (4.6)

Here, SNRstrong is the SNR that would have been obtained in the strong coupling
regime. All the experiments performed in this thesis fall in the strong sensitive regime,
as exemplified in Fig. 4.2.1c.

4.2.2 Circuit and simulations

This section discusses the configuration of the resonator (see Fig. 4.2.2) and its ben-
efits for gate-based SEB readout. The resonator consists of a coupling capacitance
Cc that connects the transmission line to a parallel configuration of an inductor, L,
a resistor, RD, representing the resonator and SEB losses, and a variable capacitance
C0 = Cp + CD, where CD is the SEB capacitance and Cp is the parasitic capacitance
of the circuit. The equivalent impedance of such resonator is given by [175]:

ZL = RD
jω∆ω0

ω2
0 − ω2 + jω∆ω0

+
1

jωCc

, (4.7)

where ∆ω0 =
1

RDC0
and ω0 = 2πf0 =

1√
LC0

are the width and resonant frequency
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Figure 4.2.2: Parallel resonator. Resonator model including a coupling ca-
pacitor (Cc), followed by a resistance (RD), inductor (L) and a capacitance (C0 =
Cp + CD) in parallel.

of the unloaded parallel LRDC0 circuit.
Following the calculations developed in [236], we can obtain the circuit parameters

that will help us to interpret |∆Γ|, such as the resonance frequency, the quality factors
and the coupling:

fres ≈
1

2π
√

L(Cc + C0)
, (4.8)

Qext =
Cc + C0

C2
cZ0

√
L(Cc + C0), (4.9)

Qint =

√
Cc + C0

L
RD, (4.10)

β =
Qint

Qext
= Z0

RDC
2
c

L(Cc + C0)
. (4.11)

Knowing that Γ = (ZL − Z0)/(ZL + Z0) and using Eq. 4.2, we can determine the
absolute differential change in the reflection coefficient |∆Γ| at the resonant frequency,
fres, arising from changes in the SEB capacitance [236]:

|∆Γ| =
∣∣∣∣ ∂Γ∂CD

∆CD

∣∣∣∣ = 2β

(1 + β)2
Qint

∆CD

Cc + C0

. (4.12)
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This equation summarises the first guidelines for the resonator optimisation2,
which include (i) a large internal Q-factor, Qint, (ii) a coupling to the line close to
β = 1 and (iii) large fractional changes in the capacitance. Moreover, Eqs. 4.9 and
4.10 highlight the advantages of the resonator parallel topology. In this configuration,
external and internal Q-factors can be varied independently by modifying the coupling
capacitance, Cc and L, so that a good matching can be obtained (Qint ≈ Qext) at the
same time as Qint is kept high. This tunability does not exist in the traditional LCR

series configuration, where Qint and Qext scale with L and C in the same manner (see
Eqs. 2.18 and 2.19). The rest of the parameters, Cp and RD, are not tunable and
account for the parasitic capacitance and losses from the PCB and the device.

4.2.3 Power to the device

According to Eq. 4.4, increasing the power applied to the network, P0, would indefi-
nitely improve the SNR. In reality, this is not true since applying larger powers over-
drives the SEB, making the SNR tend asymptotically to a maximum (see Sec. 4.2.4
for more details). To account for the SEB overdrive, the applied power, P0, needs
to be rewritten in terms of the voltage applied to the SEB gate connected to the
resonator, Vg.

The power, P0 is produced by the voltage, V0, applied to a transmission line with
characteristic impedance Z0:

P0 =
|V0|2

Z0

. (4.13)

Only a fraction of P0 gets delivered to the matching network. That input power,
Pin, is determined by the difference between the applied power, P0, and the reflected
power, Prefl:

Pin = P0 − Prefl =
|V0|2

Z0

(1− |Γ|2), (4.14)

In turn, Pin is the power produced by the voltage difference, Vg, across the resis-
tance RD:

Pin =
V 2

g

RD
. (4.15)

2Although, here, we are not taking into account the input power, P0, yet
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Putting together the three previous equations and knowing that

1− |Γ|2 = 4β/(1 + β)2, (4.16)

we obtain:

P0 =
V 2

g

RD

(1 + β)2

4β
. (4.17)

Vg, the power drop across the resistance RD, is equivalent to the voltage applied
to the SEB gate.

4.2.4 Device capacitance

The last term required to compute the signal power is the change in the SEB ca-
pacitance. Eq. 2.23 shows the importance of the SEB lever arm, α, the electron
temperature and the tunneling rates between SEB and reservoir. However, this ex-
pression does not include the effect of overdriving the SEB with too much power.
In [237], they study the effect of Vg on the tunneling capacitance using the adia-
batic approximation (γ0 > ωrf), in which inelastic relaxation processes and excitation
produced by the rf-probe are neglected. Assuming that the tunneling capacitance is
thermally broadening (h̄γ0 < kBTe) they arrived to the expression:

∆CD = η
2αe

πVg

1

1 + (ωrf/γ0)
2fc(x), (4.18)

where x = αeVg
kBTe

, and fc is a dimensionless function of the form

fc(x) = πfrf

∫ 1/frf

0

sin(2πfrft)dt

1 + exp [−x sin(2πfrft)]
, (4.19)

which increases monotonically as a function of Vg until it saturates to the value of 1.
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Figure 4.2.3: Signal dependency on the experimental parameters. a)
Normalised signal as a function of the coupling capacitance, Cc for different RD.
The black line shows the signal at matching (β = 1) for different values of Cc and
RD. b) Signal as a function of L and C0, where the white line are the values of L
and C0 for which β = 1. c) Signal as a function of α d) γ0 and f) P0. Here, we have
not included the effect of the JPA, for which the minimum integration time should
get eventually worse as the JPA overloads at high powers.
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4.2.5 Minimum integration time dependency on the experimental pa-
rameters

Substituting Eqs. 4.12, 4.17, 4.18 and 4.3 in Eq. 4.4, we find the analytic expression
for inverse of the minimum integration time:

τm
−1 = 32η2

β

(1 + β)2
(αe)2

kBTn
QintZrfres

2
[
1 + (2πfres/γ0)

2
]−2

f 2
c (x). (4.20)

Here, Zr =
√

L/(Cc + C0) is the resonator impedance and the system is tested
with a probe rf-frequency equal to the resonant frequency (2πfres = ωrf).

This formula allows a quantitative analysis of the effect from different experimental
parameters on τm. Fig. 4.2.3 provides a guideline to optimise τm using typical values
of L = 100nH, Cc = 25fF, RD = 1 MΩ, C0 = 400fF, α = 0.5, P0 = −90dBm,
γ0 =3GHz, η = 1 and Te = 130mK and a noise dominated by the amplifier with
Tn =2.5K. Fig. 4.2.3a shows that increasing RD leads to a better SNR, which can be
further improved by tuning the coupling capacitance Cc to achieve perfect matching
(black line). As shown in Fig. 4.2.3b, the best SNR is achieved with low parasitic
capacitance, C0, and inductor, L. They both have a similar effect: higher values of
any of them produce an undercoupled resonator with lower resonant frequency fres,
which affects negatively to the SNR. For this reason, the best results are achieved for
values of L and C0 below perfect matching, marked by the white line. In summary, an
optimise resonator would have a high RD, low L and C0, and a Cc tuned for perfect
matching.

Fig. 4.2.3c and d summarise the effect of the SEB characteristics on τm. The value
of the SEB gate lever arm is specially important, with a dependence of 1/τm ∝ α2.
Another parameter that affect τm is the SEB to reservoir tunneling rates, γ0, which
should be larger than the resonant frequency fres for an optimal readout. Lastly, the
SNR improves with the power applied, P0 although it saturates at high powers (see
Fig. 4.2.3e).

4.3 Setup and implementation

This section introduces the setup used during this thesis and describes how to extract
the experimental parameters introduced in the previous section. Fig. 4.3.1a and b
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show the top and bottom of a PCB with the components that form the lumped-
element resonator. The inductor is a planar spiral inductor fabricated by depositing
a NbN film on top of a Sapphire subtract using DC sputtering. The NbN film is later
patterned into a spiral shape using optical lithography and etching [175]. The number
of spiral turns sets the inductance value between 30 to 600nH (see Fig. 4.3.1c). The
low-loss Sapphire substrate produces an inductor with low losses and self-capacitance,
leading to a resonator with high RD and low C0.

The inductor is wirebonded to the PCB, which is designed to minimise the para-
sitic capacitance, C0. To do so, the metal of the bottom layer is removed around the
resonator area (See Fig. 4.3.1a) leading to a parasitic capacitance of C0 = 400−600 fF.
Lastly, the coupling capacitance, Cc, is a source mounted element whose value is se-
lected to achieve perfect matching or, failing that, a slightly overcoupled resonator.

With this setup, a resonant frequency of 600-800MHz is achieved. Although higher
resonant frequencies are beneficial for the SNR, the losses in the interconnections
between resonator and device increase at high rf-probe frequencies. Moreover, the
SNR deteriorates as fres gets closer to the tunneling rate, γ0, due to a reduction of
the tunneling capacitance.

In terms of the device, the SEB is implemented in a silicon nanowire transistor
fabricated in industrial cleanrooms at the scale of 300-mm wafers (see Sec. 3.1 for fab-
rication details and dimensions). Fig. 4.3.2 shows a transversal view of the nanowire
where, at low temperatures, electrons are trapped in its upper corners forming two
quantum dots, whose potential is controlled individually by the two gates wrapped
onto the nanowire, in a face-to-face arrangement [227]. The two quantum dots are
tunnel-coupled (in a parallel configuration) to self-aligned, heavily implanted, n-type
source and drain electron reservoirs, and capacitively coupled to each other. The
device is notionally symmetric; however, the gate of the dot that will act as a SEB is
connected to an LC resonator for gate-based reflectometry. The nanowire geometry
is specially beneficial for gate-based readout since the larger surface of wrap-around
gates and the thin gate oxide (6 nm of SiO2) increase the lever arm with respect to
planar structures, leading to an alpha-factor in the range of α = 0.25− 0.7.

By monitoring the phase of the reflected RF signal, while the SEB and the other
dot (so-called qubit dot) potentials are swept, it is possible to map out charge tran-
sitions for the two quantum dots (see Fig.4.3.3a for a full stability diagram and
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Figure 4.3.1: PCB and resonator. a) Bottom b) and top of the PCB with
components soldered. The purple and blue square show the position of the inductor
chip and QD chip, respectively, whereas the green rectangle encompass the part of
the PCB where the resonator is implemented. The PCB was designed by previous
PhD. student Simon Schaal. c) Inductor chip. The NbN films were provided by Dr.
N. Stelmashenko and Dr. J. A. W. Robbinson. On the other hand, Dr. D.J.Ibberson
and Dr. L. Ibberson manufactured the spiral NbN inductors. d) Wirebonded QD
chip. e) Close-up of the resonator section, where the rf-probe signal comes from a
SMP connector. The blue lines indicate the bondwires that connect the PCB with
the inductor and the SEB in a parallel configuration. The gate voltage is delivered
to the SEB gate through the inductor and combined with the rf-probe tone using a
bias tee.
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Figure 4.3.2: SEB transversal view. Sketch of a transversal view of the Silicon
nanowires with a split wrap-around gate.

Fig. 4.3.3b for detail). The number of electrons in the qubit dot, nq, can be mea-
sured using the inter-dot capacitive coupling with the SEB: each change in nq shifts
the SEB electrochemical potential (see Fig. 4.3.3b) allowing us to ensure complete
depletion in the qubit dot by reducing the voltage applied to the qubit dot gate, VQ,
until no further shifts are observed by the SEB (see Fig. 4.3.3a). On the other hand,
because the reflectometry signal is a function of the tunnelling rate between SEB and
reservoir, and this rate depends on the SEB occupancy, ns, it is not straightforward
to assign an electron occupation for the SEB. Nevertheless, ns is not central to the
charge sensing employed here.

4.3.1 SEB characterisation

This section shows how to extract the parameters from the SEB that affect the SNR,
such as the lever arm α, the tunneling rates, γ0, the electron temperature Te and the
power applied to the resonator, P0.

SEB lever arm

As mentioned before, the nanowire is notionally symmetric, however, selecting the
dot with the highest gate alpha factor is critical for the SNR since SNR ∝ α2. The
following paragraphs describe how to quantify the lever arms from the dot on the
right side and left side of the nanowire, finding that a systematical misalignment of
7± 3 nm in the placement of the gates on the Si channel produces an asymmetry in
the gates lever arm.
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Figure 4.3.3: Stability diagram. a) Stability map of the SEB and qubit dot
measured with gate-based reflectometry. A solid square indicates the readout area
corresponding to the first electronic transition of the qubit dot since no other shifts
are visible for a large range of smaller VQ. The dashed square indicates dot-donor
transitions. The donor is presumed to be bismuth since the sample was bismuth-
doped. The black dashed line helps the eye to follow one of the qubit dot electronic
transitions. The red horizontal line marks the dot to lead transition where Coulomb
diamonds are measured in Fig. 4.3.4a b) Close-up of the first electronic transition of
the qubit dot. The SEB potential shifts when the first electron is added to the dot,
changing the rf-response from a maximum to some minimum, background level.
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The gate lever arms map the voltage applied to each gate to the electrostatic
energy at the dot. In this system, where two quantum dots are placed in parallel, the
Coulomb diamonds of each dot can be measured independently. The right and left
dots lever arm (αRR, αLL) can be calculated with their Coulomb diamonds measured
in current or with reflectometry (See Fig. 4.3.4). At Vsd ̸= 0, the transition splits in
two. These two lines with slope m1 and m2, delimit the set of voltages at which the
dot level is in the bias window and the lever arm can be calculated as the inverse
of the slope difference: αRR(LL) = 1/|1/m1 − 1/m2| [123]. In addition, the voltage
applied to one of the dots can influence the other, such that, in general, there is a
lever arm matrix [126]: ∆µR

∆µL

 =

αRR αRL

αLR αLL


VR

VL

 (4.21)

where ∆µR and ∆µL are the electrochemical potentials of the right and left dot,
respectively. The effect of the cross terms is visible in the stability diagram, where
the slope of dot-to-lead transitions is given by the ratio between lever arms. This
way, the cross lever arms were found to be: αRL(LR) =

∆VR(L)

∆VL(R)
· αRR(LL).

Figure 4.3.4: Lever arm and device characterisation. a) Coulomb diamond of
the SEB from the SEB dot-to-lead transition indicated in red in Fig. 4.3.3 measured
in reflectometry. The slopes used for calculating αRR(LL) are marked with dashed
black lines. b) Coulomb diamonds measured in current.

The lever arms values for three different devices called device A, B and C are
summarised in Table 4.3.1. They reflect that the left dot has systematically larger

92



93 4.3. Setup and implementation

XX αXX σαXX

Device A RL 0.070 0.006

LL 0.58 0.03

Device B RR 0.239 0.004

LR 0.078 0.004

RL 0.121 0.002

LL 0.478 0.008

Device C RR 0.23 0.02

LL 0.35 0.06

Table 4.3.1: Lever arms. XX refers to the subindex of the alpha factor which
can take the values RR, RL, LL or RL. σαXX refers to the standard error in the
extracted values. Device A and B are single split nanowires. Device A has a gate
length of Lg = 50 nm and a width of W = 80 nm, whereas device B has Lg = 40 nm
and W = 70 nm. The splitting between gates is Sv = 50 nm for device A and
Sv = 40 nm for device B. On the other hand, device C is a double split nanowire (4
dots) with a width of W=80 nm and a gate length of LG = 50 nm. The separation
between parallel gates is SH = 50 nm, whereas between the gates facing each other
is SV = 40 nm.

α factors than the right dot, which coincides with similar asymmetries reported for
nominally identical devices [238, 239]. This means that the SNR can be increased by
a factor of 4 simply by swapping the assignment of SEB and qubit dot.

Effect of power, temperature and tunneling rates

The broadening of the SEB to reservoir transition has three different sources: 1) the
reservoir electron temperature, 2) the perturbations in its potential produced by the
rf-carrier via cross capacitance to the sensor dot gate and 3) the dot state broadening
due to tunneling. When power broadening is dominant (See Fig. 4.3.5), the linewidth
increases as

ϵ 1
2
= ϵ 1

2
0

√
1 +

P

Pi
, (4.22)
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Figure 4.3.5: Power broadening. a) SEB to reservoir dot transition measured in
reflectometry as a function of the voltage applied to the SEB gate, VS. b) Linewidth
broadening as the power applied, P0, increases.

where ϵ 1
2
0 is the natural width due to electron temperature or tunnelling rates and

Pi is the power at which the power starts dominating the transition width.
As shown in Fig. 4.2.3e, increasing the power, at first instance, improves the SNR.

However, if the power broadening is larger than the difference in voltage produced by
a charge transition in the qubit dot, the SNR would decrease due to a reduction of η.
Fortunately, as shown in Fig. 4.3.3b, the potential shift is so large compared with the
linewidth that this will not be the case. Nevertheless, the power broadening can also
affect the potential of the qubit dot in the same way a higher temperature would do,
which can affect the spin readout fidelity.

For small rf-powers, the linewidth of the transition is set by the electronic temper-
ature as long as the thermal energy, kBTe, is larger than the QD level broadening, h̄γ0,
where γ0 is the tunneling rate. In this case, the tunneling capacitance is proportional
to ∆Cd ∝ 1

cosh2(ϵ/2kBTe)
, where ϵ is the quantum dot level detuning with the reservoir

(see Eq. 2.23). On the other hand, if kBTe ≪ hγ, the width is set by γ0 and the
parametric capacitance follows a Lorentzian shape: ∆Cd ∝ h̄γ0

(h̄γ0)2+ϵ2
(see Eq. 2.25).

These shapes are very similar and difficult to distinguish, however, they can give a
upper limit for γ0. With this method, tunneling rates raging from γ0 = 5 − 74 GHz
were obtained.

The relation between the broadening and the temperature can be very useful to
accurately calculate the lever arm since, at higher temperatures, where the electron
temperature is similar to the measurable mixing chamber temperature, the linewidth
in voltage scales proportionally with respect to the temperature and the factor that
relates both magnitudes is the lever arm, α.
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4.3.2 Resonator characterisation

Experimentally, the reflection coefficient is extracted by measuring S21 between the
lines driving the input power, P in

rf , and output power, P out
rf , with a network analyzer

as Γ =
√
S21 =

√
P out

rf
P in

rf
(see Fig. 4.4.1). Fig. 4.3.6a shows a measurement of Γ,

which differs from the expected constant resistance circle due to the effect of the
environment and instead follows the equation [240]:

S21 = aejαe−2πjfτ

(
1− QL/|Qext|ejϕ

1 + 2iQL (f/fres − 1)

)
. (4.23)

Here, the constant a takes into account that the amplitude of the outcoming wave
has been modified by the attenuators and amplifiers present in the system. Moreover,
due to the cable length, the wave has an electrical length characterised by ejα and it
acquires a delay, τ , that makes the phase proportionally dependent on the frequency
as e−j2πfτ [240].

Fig. 4.3.6c shows in grey a resonator at B=0T once the effect of the environment
has been removed. The additional phase offset, ϕ, is what produces an asymmetry
in the absolute value of the reflection coefficient (See Fig.4.3.6d). Only when the
resistance circle is rotated to it is right position, the resonant frequency coincides
with the minimum in the absolute value of the reflection coefficient (see purple circle
in Fig. 4.3.6d). The term ejϕ comes from asymmetries of the resonator’s transmis-
sion signal due to different input and output impedances at the two ports of the
resonator [241] or from standing waves in the transmission line connected to the
resonator [242].

The rotated circle (purple in Fig. 4.3.6c) corresponds to a constant resistance
circle, which has the equation [169, 243]:

Γ = oc +

(
1− 2

1 + j2QL(
f

fres
− 1)

)
rc. (4.24)

Here, oc = rL
1+rL

is the center of the circle, rc = 1
1+rL

is the radius, rL = 1
β
is the

real part of the normalised resonator impedance
(

ZL
Z0

= rL + jyL

)
, fres is the resonant

frequency and QL is the loaded quality factor defined as the ratio of the total energy
stored in the resonator to the average energy dissipated per cycle multiplied by 2π.
The data was fitted to a circle using the tools python library found in [244].
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Figure 4.3.6: Resonator characterisation. a) Γ raw data acquired from a
√
S21

measurement between the ports P in
rf and P out

rf shown in b for B=0 T. b) Resonator
model including a coupling capacitor (Cc), followed by a resistance (RD), inductor
(L) and a capacitance (C0 = Cp +CD) in parallel. c) Measured reflection coefficient
and fit before (grey) and after (purple/black) removing the offset angle ϕ. The point
of resonant frequency is marked as fres, whereas the off-resonant point corresponding
to f → ∞ is marked as P ′. d) Absolute value of the reflection coefficient against
the frequency, showing that the minimum of the raw data, does not correspond to
the resonant frequency. e) Absolute value of the reflection coefficient variation when
the SEB is at a charge instability at different frequencies. The maximum variation
and, therefore SNR, occurs at fres. f) Phase of the reflection coefficient with respect
to the frequency. g), h) Absolute value and phase of the reflection coefficient on
top of an SEB charge transition (top) and out of it (bg) and its respective resonant
frequencies shown as vertical lines in their corresponding color. |Γ| remains mostly
the same, whereas the resonant frequency changes by 70kHz, revelling that the SEB
impedance shift at a charge instability is mostly capacitive.
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If the circle centre is then transported to the origin, the change in phase is related
to the frequency as

ϕ(ω) = θ0 + 2 arctan
[
2QL

(
1− f

fres

)]
, (4.25)

where θ0 is an offset angle. This is considered one of the most accurate ways to
obtain the Q-factor and resonant frequency of a resonator [243].

Fig. 4.3.6g and h show the magnitude and phase of the reflection coefficient with
respect to the frequency at the top of an SEB charge instability (black) and out of
it (purple). We found that the resonant frequency is f top

res = 686.099 ± 0.017 MHz
at the charge transition degeneracy point and fbg

res = 686.168 ± 0.016 MHz away
from it. The change in resonant frequency is linked to an increment in the SEB
capacitance to ground as fres = 1

2π
√

L(Cc+Cp+CD)
, being the change in capacitance

∆CD = 0.09± 0.03 fF.
We observed that the system is overcoupled as the phase completes a 2π rotation

but the circle does not cross the origin. The matching, calculated as β = Z0

R
> 1, is

barely changed by the SEB, being βtop = 2.064, βbg = 2.061 at and away from the
charge degeneracy point, respectively, and, neither is the loaded Q-factor: QL

top =

125.3 ± 0.5 and QL
bg = 125.7 ± 0.5. This means that the charge instability in the

SEB produces a capacitive change.
Because we are measuring a small change in the SEB capacitance, the maximum

change in |∆Γ| and, therefore SNR, occurs at the resonant frequency [175], where the
slope in phase is maximum (See Fig. 4.3.6e).

4.4 Reducing noise

Noise temperature

The noise power(conveniently characterised by the equivalent noise temperature Tn)
contains contributions from the system itself Tsys (SEB and resonator) as well as
the amplification chain (see Fig. 4.4.1a). In rf measurements of semiconductor QDs,
high-mobility electron transistors (HEMTs) are typically used as the first amplifier,
limiting the noise temperature to a few Kelvin. Here, the addition of an amplifier
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98 4.4. Reducing noise

with lower noise temperature, a JPA, with gain GJPA, reduces Tn accordingly:

Tn = Tsys + TJPA +
THEMT

GJPA
. (4.26)

where THEMT(JPA) is the noise temperature of the HEMT(JPA). The use of a JPA is
only advantageous if the noise is dominated by the HEMT instead of the system. This
is not the case for rf-SETs where shot noise may be comparable or in excess of that
of the HEMT [147]. For SEBs, if the tunneling rate γ0 between SEB and reservoir is
greater than frf, electrons tunnel adiabatically, and the Sisyphus noise vanishes [179]
leaving predominantly the noise contribution of the HEMT .

Figure 4.4.1: Device and measurement setup. False-colour scanning electron
micrograph of a silicon nanowire transistor with two pairs of split gates (red). The
green dots indicate the location of the QDs under each gate. The blue regions are
electron reservoirs. The SEB is connected to a lumped-element resonator that is
excited with P in

rf . The reflected signal is amplified as it travels through the middle
line, and then the difference in phase and magnitude between the input and output
wave is measured using homodyne detection. The third line is used to apply the
pump power attenuated at different temperatures.
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99 4.4. Reducing noise

In the devices measured during this thesis, the tunneling rate γ0 between SEB
and reservoir is in the range γ0 = 5 − 74 GHz (see Sec.4.3.1), well in excess of
frf ∼ 0.6− 0.8 GHz, such that we are in the regime of negligible Sisyphus dissipation
in the SEB. This is confirmed by noise temperature measurements yielding Tn =

2.5+1.4
−0.9 K [183] with the JPA off, reducing to Tn = 0.25+0.14

−0.09 K with the JPA . The
fact that the latter falls below typical shot noise levels [147] demonstrates one of the
major advantages of SEBs over SETs.

4.4.1 JPA setup

To produce amplification, the JPA needs to be pumped applying some power P JPA

at frequency ωpump close to the JPA resonant frequency. This requires the addition
of an extra fast line in the setup that delivers the pump tone to the JPA. This way,
the setup includes three fast lines. The first one delivers the attenuated rf-tone into
the device. Then a directional coupler is used so the reflected wave travels through a
different line that includes the amplification chain. Finally, an extra line delivers the
pump tone to the JPA. To avoid disturbing the device with the pump tone, an extra
circulator is included between the JPA and the resonator (see Fig. 4.4.1).

The JPA used in this thesis was designed and fabricated by Dr A. Hasheem and
Dr I. Siddiqi. It consists of a SQUID loop array shunted by a fixed capacitance,
CJPA [186] (See Fig. 4.4.2a). This configuration creates a low-quality factor (QJPA <

100) superconducting resonator, whose resonant frequency, ωJPA, can be tuned from
550-750MHz (See black line in Fig. 4.4.2b) by passing a current, Ibias, through a
nearby coil that modifies the flux through the SQUIDs.

4.4.2 JPA tuning

Fig. 4.4.2c shows the variation of ωJPA as a function of the power applied to the JPA,
PJPA. As PJPA increases, ωJPA is firstly constant, but then it shifts to lower frequen-
cies. Parametric amplification can be achieved in the power range in which ωJPA

varies as a function of PJPA. The JPA amplification transfer function is exemplified
in Fig. 4.4.2d, where small variations of the power arriving at the JPA due to the
signal tone, frf, are translated into large changes in the reflected phase. When the
JPA is tuned at even higher pump powers, it becomes bistable [186].
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100 4.4. Reducing noise

Figure 4.4.2: JPA tuning. a) Sketch of the JPA as a SQUID loop array in
parallel with a shunted capacitance connected in reflection to the setup by a coupling
capacitance. b) Reflected phase as a function of the pump frequency and Ibias. The
resonant frequency, ωJPA, is fitted to a function proportional to cosh2(Ibias) shown as
a black line. c) Reflected phase as a function of the pump frequency and the power
applied to the JPA. d) Amplification transfer function at 3 different frequencies
(663 MHz in blue, 668 MHz in orange and 673 MHz in green). A small variation
in the power arriving at the JPA leads to a large variation of the reflected phase,
producing a gain.

.
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101 4.4. Reducing noise

There is a trade-off between the width of powers for which the amplification is
linear (dynamic range) and the gain, given by the steepness of the transfer function.
As observed in Fig. 4.4.2d, higher PJPAs lead to a higher gain but a smaller dynamic
range.

4.4.3 JPA and LC resonator

fres

fpump

b)

c)

d)

rf

JPA on

JPA offa)

rf

Figure 4.4.3: JPA and LC resonator. a) Gain as a function of the rf-probe
power arriving to the JPA.The back vertical line at -116 dBm denotes the rf-power
for a 1dB compression in gain. b) Inverse of the minimum integration time 1/τm as
a function of frf without and with the JPA (red and blue respectively). The blue
dashed line indicates the natural frequency of the resonator, fres, which optimises
sensitivity without the JPA. c) The reflection coefficient (magnitude |Γ| (red) and
phase Φ (grey)) at B = 2 T, shows a minimum at the frequency which optimises
sensitivity with the JPA. d) The JPA gain decreases as frf moves away from the JPA
pumping frequency, ωpump, solid grey line, as determined by the JPA bandwidth of
19.2 MHz.

When implementing together rf measurements with a JPA the main factors to
take into account are the JPA bandwidth, resonant frequency and dynamic range.
The JPA is used in a phase preserving mode, for which the signal frequency, frf, is
very similar but not equal to the pump frequency, ωpump = 2πfpump. To produce
amplification the rf-tone, frf ∼ fres, needs to fall within the JPAs bandwidth, BJPA,
so that ∆f = fpump − frf < BJPA. At the same time, this difference in frequency,
∆f , can limit the measurement bandwidth, since noise at ∆f appears in homodyne
detection and needs to be filtered out with a low pass filter.
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102 4.4. Reducing noise

In terms of the dynamic range, Fig. 4.4.3a shows how increasing the power of
the signal tone arriving at the JPA, P rf

JPA = P0|Γ|2, leads to a gain reduction, since
there is not enough pump energy to be transferred from the pump to the signal and
idler. The power at which the gain is compressed by 1dBm is the JPA dynamic range
(-116 dBm).

The importance of the small dynamic range is exemplified in Fig. 4.4.3b and c.
When measuring at frf = 668 MHz, where the reflection coefficient of the resonant
circuit is at a minimum, we find τm = 1 µs and τm = 100 ns, for JPA off and on,
respectively. Operating at this frf, where the reflected power, P0|Γ|2, is minimum
becomes necessary to avoid driving the JPA beyond its 1 dB compression point,
P1dB = −116 dBm. However, as can be seen in Fig. 4.4.1c, τm with the JPA off can
be decreased by approximately a factor of two by adjusting the drive frequency frf

to match fres, which differs from the point of minimum reflected power in the total
circuit (see Sec. 4.3.2). The overall achievable reduction in τm achieved using the
JPA is, therefore, a factor of 4.5. These results emphasise the importance of a well-
matched and high-Q resonator to minimise the reflected power to avoid saturating
the JPA [183].

As explained above, the limit in measurement bandwidth is set by the difference
∆f between the JPA pump frequency (fpump = 665.2 MHz) and frf, while the JPA
gain falls as this difference increases (see Fig. 4.4.1d). For this specific experiment, a
∆f = 2.9 MHz was selected, for which GJPA = 17 dB.

JPA back-action

In this subsection, we examined whether the effective electron temperature is
increased when a JPA is included in our system. The JPA relies on a rf-frequency
source that is used as a pump to amplify the signal (P in

pump in Fig. 4.4.1). The
power from the rf-pump could potentially arrive at the SEB gate and act as a driving
excitation. Such perturbation in its potential could affect the qubit dot due to the
capacitive coupling between the SEB and the qubit dot.

Fig. 4.4.4 shows that the JPA does not have any effect on the SEB by looking at
the width of the rf-response of a SEB electronic transition.
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Figure 4.4.4: JPA back-action. Normalised rf response from a SEB as a function
of the voltage applied to its gate obtained using a low rf-tone power, P0 = −91 dBm.
The width of the transition is related to the SEB-to-reservoir tunneling rate, leading
to an upper limit of γ ≤ 74±12 GHz. The same result is obtained with and without
a JPA.

4.5 Effect of the external magnetic fields

Figure 4.5.1: Resonator dependency on external field. a) QL-factor and
resonant frequency of the resonator at different magnetic fields applied in the [1̄, 1, 0]
crystallographic direction of the QD (see Sec. 5.1.1 for more information). The error
bars are smaller than the scatter dots. b) QL-factor and inductance when 1 Tesla
was applied in different directions. θ is the angle of the magnetic field with respect
to [1̄, 1, 0] in the plane of the device.

Measurements of the electronic spin require static magnetic fields applied to the
device. This magnetic field could potentially affect the behaviour of both the inductor
used in the resonator and the JPA since both are made of superconducting materials.
The inductor is glued to the PCB, close to the QD, where the magnetic field is
maximum. Generally, as the magnetic field increases so does the inductance, L,
affecting the matching and decreasing the loading factor (see Fig. 4.5.1a). However,
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charge measurements with rf-reflectometry were still performed at Bz = 6 T. The
direction of the magnetic field (if applied parallel to the spiral inductor) does not
modify the resonator drastically as shown in Fig. 4.5.1b.

The JPA is placed at 40cm from the centre of the magnetic field. In that location,
the magnetic field reaches a maximum of 500G when a magnetic field of Bz = 6 T is
applied to the QD. To protect the JPA and circulators from this magnetic field, they
are enclosed on cryoperm shields that can repel fields of up to 1500 G.

4.6 SNR improvements

Figure 4.6.1: Resonator comparison. a) Reflection coefficient (magnitude |Γ|
(red) and phase ϕ (grey)) of the resonator used in [99](2020). b) Same for the
resonator used in [98](2022).

This section compares the minimum integration time obtained in two different
papers ([99] and [98]) measured during this thesis. Improvements in the signal-to-
noise ratio (SNR) of the gate-based reflectometry were achieved by further optimising
the resonator design to detect capacitance changes [239] and by lowering the noise
floor through the use of a quantum-limited amplifier [183].

Fig.4.6.1 shows the resonators used in each experiment, whose extracted param-
eters are summarised in Table. 4.6.1. The results can be analysed in terms of the
analytic expression for the minimum integration time (Eq. 4.20). The reduction of
the parasitic capacitance due to a new PCB design and having a slightly overcoupled
resonator improves the τm by a factor of 4 (See Table 4.6.1). Moreover, a careful
assignment of the SEB and qubit dot based on the results from Table. 4.3.1 increased
the SEB lever-arm from αSEB = 0.24 to αSEB = 0.35, improving τm by another x2
factor. The total theoretical improvement of τm is of a factor x7 due to a slight
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Type Parameter Ciriano2020
[99]

Oakes&Ciriano2022 [98]

JPA off JPA on

Resonator

β 0.7 2.5 2.5

Ctot(fF) 574 461 461

Cc(fF) 50 50 50

QintZr = RD(MΩ) 0.25 1.15 1.15

fr =
1

2π
√
LCtot

(MHz) 742 668 668

SEB

α 0.24 0.35 0.35

η 1 1 1

γ (GHz) 5 74 74

Te(mK) 230 137 137

Noise Tn(K) 2.5 2.5 0.25(0.56*)

Sensor τm(µs) 9 0.45 0.1

Table 4.6.1: Summary of parameters relevant for SEB charge sensing. *Although
the noise temperature with the JPA is 0.25K, the optimal SNR requires to work at
a rf-frequency for which the SEB capacitance change is smaller, so that the effective
temperature noise is 0.56K instead.

difference in the resonant frequencies.
However, the measured reduction of τm was larger, going from τm = 9 µs to

an optimised τm = 0.45 µs. This is because, not only the resonator and lever-arm
were optimised, but also the noise generated by the readout setup was systematically
studied and reduced (see Sec. 3.3.2 for more information).

Finally, the addition of a JPA in the setup improved τm by an extra x4.5 factor by
reducing the temperature noise, achieving a τm = 100 ns, with a measurement band-
width of B=0.49MHz. This optimised and compact charge sensing method allowed
to achieve high-fidelity single-shot measurements of an electron spin in the qubit dot.
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4.7 SNR and τm extraction

To evaluate the readout performance, we send a 2-level pulse that varies the I-Q
response between the top of the SEB to reservoir transition and the background
(marked with red dots in Fig. 4.7.1a). A histogram of the pulse rf-response in the
quadrature plane shows two separated circular distributions, each one corresponding
to the top and background of the transition (See Fig. 4.7.1b).

rf-responsea) b)

Δrf
𝜎Δrf
𝑏𝑔

bg

top

(0,N+1)

V1

(ms)1 2

(1,N+1)(1,N)

(0,N)

c) d)

Figure 4.7.1: SNR extraction. a) Normalised rf-response showing the stability
diagram of the SEB versus the qubit dot where the occupation of the SEB and
the qubit dot is displayed as (qubit dot, SEB). Due to their cross capacitance, the
rf-response has a shift in voltage when an electron is added to the qubit dot. The
inset shows the pulses sent to dot to jump on and off the dot-to-reservoir transition,
which corresponds to the red points. b) I-Q histogram from 1,000 data traces
collected by pulsing between the red points marked in a). The histogram shows 2
distinct distributions corresponding to the background and the top of the SEB charge
instability for data taken without a JPA. The signal is collapsed into 1D using the
axis between the centre of the so-called Fresnel lollipops. c) Normalised rf response
in the 1D-projection for JPA on, off and optimised JPA off for a measurement
bandwidth feff,BW = 12 kHz. d) SNR as a function of the integration time.

Since the noise is Gaussian and equal in every direction, most of the information
is in the axis that joins the centres of the so-called Fresnel lollipops, whereas its
perpendicular axis carries just noise. Therefore, we project our data on the optimal
axis and use the SNR definition SNR = ∆rf2

(σ2
0+σ2

1)/2
, where ∆rf is the distance between

the lollipop centers and and σ0(1) is the 1-dimensional standard deviation of the
background(peak).

Figure 4.7.1d shows SNR as a function of integration time with the JPA off tuned
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at its optimal point (red), JPA on (blue) and JPA off with the same settings used
for the JPA on (grey). Using an extrapolation (black straight lines) we infer the
integration time to have an SNR=1. These times are τm

off tuned = 451.1 ± 0.1 ns,
τm

off = 1.015 ± 0.001µs, τm
on = 100.4 ± 0.8 ns. This way, the noise temperature is

reduced by a factor of x10 when switching the JPA on. However, the frequency at
which this is achieved is not the optimal frequency, i.e. the natural frequency of the
oscillator. The SNR when the JPA is off can be improved by a factor of x4.5 by
choosing the optimal frf as it is showed in Fig.4.4.3b. This is a consequence of the
higher reflected power at fres that saturates the JPA reducing its gain.

4.7.1 Experimental bandwidth

The minimum integration time, τm, can be calculated as τm = τint/SNR. The previous
section explained how to obtain the SNR, whereas this section describes how to
determine the bandwidth, and in turn the integration time, of a given measurement.
To do so, the results and setup from [98] are used as an example.

Although the bandwidth of an rf experiment is ultimately limited by the resonator
bandwidth ( fr

QL
= 6.18 ± 0.04 MHz), a low-pass filter can be introduced to reduce

high-frequency noise, improving the SNR at the cost of reducing the measurement
bandwidth.

To characterise the measurement bandwidth, we can obtain the effective noise
bandwidth as

ωeff,BW =

∫ ∞

0

∣∣∣∣H(jω)

Hmax

∣∣∣∣2 dω, (4.27)

which corresponds to the bandwidth of a brick-wall filter that produces the same
integrated noise power. Here, H(jω) is the filter transfer function, and Hmax is its
maximum.

In this experiment, a (minicircuits BLP-1.9+) low pass filter was used, whose
transfer function was obtained from its insertion loss provided by the manufacture as

Insertion loss (dB) = 10 log10
∣∣∣∣Vi

Vf

∣∣∣∣2 = −20 log10 |HMC(jω)|, (4.28)

where Vi and Vf are the filter input and output voltage, respectively.
After that filter, a digital boxcar filter that averages every ten points (N=10) is
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applied, followed by a decimation process, to reduce the sample rate from 10 MHz to
1 MHz. This way, the total transfer function is equal to |Htotal(jω)| = |HMC(jω)HBC(jω)|,
where HBC is the transfer function of the boxcar filter. The combination leads to the
filter depicted in Fig. 4.7.2, with an effective noise bandwidth of feff,BW =

ωeff,BW
2π

=

0.49 MHz.

b) c)a)

Figure 4.7.2: a) Bode diagram of the magnitude of the 8th-order minicircuits
BLP-1.9+ filter utilised in our measurements. b) Same for the boxcar filter used
to downsample the sample rate from 10 MHz to 1 MHz. c) Combination of the
effects from both filters and equivalent brickwall filter with the same integrated
noise power, showing an effective noise bandwidth of feff,BW = 0.49 MHz.

Moving average filter

The SNR can be increased in post-processing by adding an additional low-pass filter,
which removes high-frequency noise. From the many digital filters available, we used
the rolling average filter which takes the average over N points recursively. The first
point of the filtered signal corresponds to the mean of the first N points from the
original signal and the subsequent points are obtained by shifting forwards by one
time step the subset of N points that are averaged. This additional filter modifies the
total transfer function as |Htotal(jω)| = |HMC(jω)HBC(jω)HRF(jω)|, where HRF(jω)

is the rolling average transfer function.
Although the rolling average has a complicated frequency dependence (See Fig. 4.7.2b),

it is ideal for this application since it has one of the lowest computation times and is
optimal for reducing random noise while retaining a sharp step response [245].
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4.8 Conclusions

The culminating result of this chapter demonstrates a gate-based SEB with a τm =

100 ns and a measurement bandwidth of B=0.49 MHz, providing a route to com-
bine high-fidelity charge sensing of semiconductor-based qubits with the demands of
a compact and scalable architecture. To maximise the SNR, two strategies were fol-
lowed: minimising the noise power and maximising the signal power. The parameters
that have the highest impact on the signal power, with a quadratic dependence, are
the charge sensing regime (quantified by η, the fractional change in ∆C due to a
charge sensing event), the gate lever arm of the SEB, α, and the operation frequency,
frf ∼ fres (although frf cannot be increased indefinitely, otherwise electron tunneling
to and from the SEB may not occur). Moreover, low-loss, high-impedance resonators
close to critical coupling are desired for a large signal power.

Resonators with large resonant frequencies and high impedance can be achieved
by reducing the parasitic capacitances and parasitic losses. To do so, this implemen-
tation included a superconducting spiral inductor together with an optimised PCB.
However, to further minimise Cp, the resonator topology can be swapped for a res-
onator with inductive coupling [239]. Moreover, the surface mount resonator can be
replaced by an on-chip microwave resonator, in which the smaller size of the compo-
nents and wire bonds creates a lower Cp. Furthermore, in the case of superconducting
on-chip resonators, the losses are dominated by the device semiconductor substrates,
producing resonators with larger Q-factors of around QL ∼ 2000 [226, 246]. How-
ever, despite the aforementioned advantages, on-chip resonators add complexity to
the fabrication and implementation.

At the device level, the key parameter is the lever arm, which can be increased
by reducing the gap between the gate and the quantum dot using a small gate oxide
thickness (like the 6 nm of SiO2 from the devices used in this thesis) or using thin
high-k dielectrics, although charge traps in the interface between the gate and the
high-k dielectric might affect negatively to the device reproducibility. Another route
for improvement is to use thin silicon on insulator (SOI), like in these devices, in
which the active region is a thin layer of material so that the dot is created in close
proximity to the gate. An additional increment in α can be achieved with a device
geometry that makes the gate surface near the SEB maximal. An example of an
optimal geometry is the nanowire geometry used here, where the gates are wrapped

109



110 4.8. Conclusions

around the SEB.
The second strategy to optimise the SNR is to reduce the noise power created

during amplification with the help of quantum-limited amplifiers. In this front, SEBs
demonstrate a major advantage over SETs since the noise can be reduced below
the typical values of the shot noise levels that limit SETs [147]. Concerning the
results presented in this chapter, the noise performance could be further enhanced
by using the JPA in phase-sensitive mode, reaching the quantum limit. Moreover,
incorporating a TWPA would eliminate the JPA power restrictions due to its smaller
dynamic range, allowing it to operate at the frf for higher sensitivity, leading to an
x2 SNR improvement.

In terms of scalability, SEBs, consisting of just two terminals (charge island and
a single reservoir), have gained considerable traction [107, 155, 177, 178] as a more
scalable alternative to the standard three-terminal charge sensors (QPCs and SETs).
However, the size of the resonator, which must be placed close to the device, will pose
a challenge as the number of sensors increases [77]. Currently, the resonator footprint
has a lower limit of 100x100µm2 given by the inductor size [246], although it could
potentially be reduced to sub µm using high-inductance-density materials [247, 248].
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5
Readout of a single spin using a SEB

Qubit readout can become the bottleneck in quantum computation since the fidelity
of any qubit operation is limited by the quantum state readout. Moreover, QEC
requires the constant readout of qubits with high fidelity. This chapter shows a
demonstration of spin readout of a single electron in a quantum dot through spin-
dependent tunnelling, detected using an adjacent SEB as a charge sensor.

The experiments were performed in three different devices that we call devices A, B
and C and which dimensions are summarised in Table 3.1.1 and 4.3.1. Devices A and
B were fully characterised in [99]. To do so, we performed excited state spectroscopy
of the quantum dot and measured the spin relaxation time (T1) as a function of the
magnetic field magnitude and orientation. We measured T1 up to 9 ± 3 seconds —
to our knowledge the longest measured so far for silicon quantum dots (at the time of
publication). The experiments performed in device C are published in [98] and focus
on single-shot spin readout. In this latter experiment, single-shot was possible due to
the improvements in the charge sensor SNR explained in Chapter 4.
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5.1 Spin readout

The quantum dots are formed on opposite corners of a silicon split-gate NW-FET,
fabricated using CMOS-compatible processes in CEA-Leti. One of them acts as a SEB
that is used to read the electron spin in the other dot, so-called ‘qubit’ dot. As shown
in Fig. 5.1.1, the two quantum dots are tunnel-coupled (in a parallel configuration)
to self-aligned, heavily implanted, n-type source and drain electron reservoirs, and
capacitively coupled to each other. The number of electrons in the qubit dot is
defined as nq and the one in the SEB as ns.

Figure 5.1.1: Device and measurement setup. False-colour transmission elec-
tron micrograph of a silicon nanowire with a pair of split gates. Quantum dots are
formed under each gate, referred to as SEB and ‘qubit’ dot, and controlled respec-
tively by VS and VQ. To lift the spin degeneracy, a magnetic field is applied in the
[1̄10] crystallographic direction, perpendicular to the nanowire. The magnetic field
orientation can be rotated in the plane of the device, making an angle θ to [1̄10].

Once the qubit dot is depleted to its last electron (see Sec. 4.3 for more infor-
mation), the spin degeneracy is lifted by applying a magnetic field in the plane of
the device and perpendicular to the nanowire, in the [1̄10] crystallographic direction.
To measure the spin orientation, we apply a 3-level voltage pulse to the qubit dot
gate (see Fig. 5.1.2a). First, the qubit dot is emptied so an electron with a random
spin polarisation can be loaded from the reservoir. Then, at the readout stage, the
reservoir Fermi energy, EF, lies in between the spin |↑⟩ and |↓⟩ states, so a spin |↑⟩
electron can tunnel out from the dot to the reservoir and be subsequently replaced by
a spin |↓⟩ electron, whereas a spin |↓⟩ electron remains in the qubit dot [145]. This
spin-dependent tunnelling is detected using the SEB when tuned to a point in the
stability diagram where the reflectometry signal depends on the qubit dot electron
occupation.

Useable ‘read’ points are those where the SEB rf-response is strongly dependent on
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the qubit dot electronic occupation. Two such points can be identified in Fig. 5.1.2d
labelled ‘AR’ and ‘BR’. At ‘BR’, a reflectometry signal is visible only when the qubit
dot is empty. In this case, the signature of a spin |↑⟩ electron on the qubit dot is the
brief emergence of a reflectometry signal at the read point, as the electron tunnels
out of the dot (and a new spin |↓⟩ tunnels in). Conversely, at ‘AR’, a reflectometry
signal is visible only when the qubit dot is occupied, in which case the signature of
spin |↑⟩ is a transient reduction in the signal. Experiments on devices B and C used
point ‘BR’ for readout, while those on device A used the point ‘AR’. Fig. 5.1.2c shows
the ideal one-shot traces and the measured spin readout traces averaged over 1024
‘ELR’ cycles at both ‘AR’ and ‘BR’ (see sec. 5.5 for device C single shot traces).

Detecting the spin-dependent transient signals requires that the tunneling rate
Γ0 between the qubit dot and reservoir falls within the resonator bandwidth. The
resonator Q-factor in these experiments was magnetic field-dependent leading to a
detection bandwidth in the range of 1.4–5.0 MHz. Dot-to-reservoir tunnelling rates
in these devices can be tuned by applying a voltage to a global metal top-gate (not
shown in Fig. 5.1.1a) or to the substrate [107, 230]. We applied 0 V and −10 V
to the metal top gate for Devices A and B respectively, with the substrate at 0V,
to achieve suitably low tunnelling rates: Γ0,gA = 0.62(1) MHz for device A and
Γ0,gB = 0.97(1) MHz for device B. On the other hand, Device C had tunneling rates
of around Γ0,gC = 0.005(1) MHz with a top gate voltage of 7 V. The slower tunneling
rates in device C and the improvement in the SNR made single-shot possible.

5.1.1 Readout offset tuning

Observing spin-dependent tunnelling requires careful tuning of the qubit gate offset
voltage, VQ. Figs. 5.1.3a and 5.1.3e show the time-dependent normalised demodulated
phase at the ‘read’ stage of the 3-level sequence, for different VQ, each averaged 1024
times. For low offsets, the electron tunnels out of the qubit dot regardless of the
spin state (Fig. 5.1.3d), whereas for higher offset voltages it always remains in the
dot (Fig. 5.1.3 b). At intermediates offsets, only electrons with spin-up can tunnel
out, producing the observed spin-dependent feature. Due to the choice of different
readout points in the stability diagram, the rf signal for device A is maximal when
an electron is present in the qubit dot, while for device B the rf signal is maximal for
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Figure 5.1.2: Spin readout. a) 3-level pulse sequence applied to the qubit dot
gate: first emptying the dot (E), then loading an electron with a random spin
orientation into the dot (L) and finally reading the spin state (R). b) For spin
readout, the qubit dot potential is tuned so its spin-up and spin-down states straddle
the reservoir Fermi energy. A spin-down electron remains in the qubit dot, whereas
a spin-up electron tunnels out (1) followed by a spin-down electron entering the
dot (2). c) Single shot schematics and time-averaged measured phase response
(1024 averages) for device A (red), and B (blue), where the spin up signature is
respectively a dip or a peak in the phase response. d) Charge stability diagram of
the double quantum dot near the (nq, ns) = (1, N) ↔ (0, N + 1) charge transition
for device B (device A measurements used a nominally identical charge transition).
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Figure 5.1.3: Readout offset tuning. a) Left: Normalised phase response of
the resonator over time in the readout stage at different VQ offsets for device A. The
pulse sequence is depicted in the inset. Right: Simulation for an applied magnetic
field of 1.4 T. The simulation takes into account the mismatch between the bias tee
cutoff frequency and the compensated pulse. b) Same for device B at B=3T. b),c)
and d) diagrams of the qubit dot electrochemical potential as a function of the lead
Fermi energy at three different offsets. At offset b) The electron remains in the dot.
In c) only spin up electrons can tunnel out from the dot and, shortly afterwards, an
electron with spin down comes back to the dot. In d) the electron always tunnels
out. f) Dot occupation number along line 1 comparing measurement (dotted) with
simulation (line) for device A. g) Dot occupation number as a function of time at low
offsets along line 2. The phase rise time due to the resonator bandwidth corresponds
to the first microsecond of the graph. Panels e), h) and i) show corresponding data
and simulation for device B.
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the empty qubit dot.

Spin-Readout Simulations

We now simulate the qubit dot tunneling events to try to obtain the same behaviour
as the one pictured in Fig. 5.1.3a and e. The averaged demodulated signal during
the readout stage is proportional to the expected number of electrons in the qubit
dot [249]. We model the qubit dot occupancy using a rate equation that considers
three possible states: spin up (in the qubit dot), spin down (in the qubit dot), or
no electron in the qubit dot. The ratio at which the levels are populated/emptied is
given by their respective tunnel rates. The tunnelling rates depend on VQ, the electron
temperature and the natural tunnel rate Γ0 which we take to be spin-independent.
Assuming elastic tunnelling and that the reservoir has a continuous energy spectrum,
the dot to reservoir tunnelling rate follows a Fermi-Dirac distribution [250]:

Γin(out) =
Γ0

1 + exp [+(−)∆E/kBT ]
. (5.1)

Here, kB is Boltzmann’s constant and ∆E is the energy difference between the
relevant dot state and the lead Fermi energy. ∆E = |e|αQQ(V↓ − VQ) for the spin
down state and ∆E = |e|αQQ(V↓ + Ez − VQ) for the spin up state, where V↓ is the
voltage at which the |↓⟩ state and reservoir potentials align, e is the electron charge,
αQQ is the lever arm of the qubit gate on the qubit dot, and Ez is the Zeeman energy.
Therefore, four different tunneling rates can be defined: Γin

↓ ,Γout
↓ ,Γin

↑ and Γout
↑ , i.e. two

per dot state.
During the read stage, the sum of the probabilities of finding the electron in the

dot with a spin up, N↑, with a spin down, N↓, or out of the dot, Nout, remains
constant (and equal to one) such that the time dependent derivative of the total
electronic number is equal to zero: dNtotal

dt
= dNout

dt
+

dN↑
dt

+
dN↓
dt

= 0.
The rate equation can be summarised by the following system of differential equa-

117



118 5.1. Spin readout

tions:

dN↑

dt
= −Γout

↑ N↑ + Γin
↑ Nout

dN↓

dt
= −Γout

↓ N↓ + Γin
↓ Nout

dNout

dt
= Γout

↑ N↑ + Γout
↓ N↓ − (Γin

↓ + Γin
↑ )Nout

(5.2)

When the system of differential equations is rewritten as a matrix, its solution
has the general form: 

N↑

N↓

Nout

 = xev1tv⃗1 + yev2tv⃗2 + zev3tv⃗3, (5.3)

where v⃗1, v⃗2 and v⃗3 are the matrix eigenvectors and v1, v2 and v3 their correspon-
dent eigenvalues given by:

v1 = 0

v2 =
1

2
(−4Γ0 −

√
(4Γ0)2 − 4(Γin

↑ Γ
out
↓ + Γout

↑ (Γout
↓ + Γin

↓ )))

v3 =
1

2
(−4Γ0 +

√
(4Γ0)2 − 4(Γin

↑ Γ
out
↓ + Γout

↑ (Γout
↓ + Γin

↓ ))).

(5.4)

x, y and z are the constants determined by the initial conditions. Here, it is
assumed that the qubit dot is always emptied during the empty stage and populated
after the load stage such that the readout initial conditions include an electron in the
dot with a random spin polarisation:

N↑(t = 0) = 1/2

N↓(t = 0) = 1/2

Nout(t = 0) = 0.

(5.5)

These assumptions are based on the fact that the measured tunnelling times are
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much shorter than the duration of the pulses. The averaged demodulated phase is
proportional to the expected dot occupation number, 1 − Nout, for device A and to
Nout for device B.

Properties of the system can be obtained by examining the behaviour in particular
regimes where the dynamics can be simply understood. First, at low offsets the dot
state is well above the lead Fermi energy (see line-cut 2 in Fig. 5.1.3a). In this
regime, Γin

↓ and Γin
↑ tend to zero, whereas Γout

↓ and Γout
↑ reach their maximum value,

Γ0, which can thus be obtained by fitting the demodulated phase over time to an
exponential decay (See Figs. 5.1.3g and 5.1.3i). In this way, we obtain tunneling
rates Γ0,A = 0.624±0.011 MHz for device A and Γ0,B = 0.970±0.012 MHz for device
B.

Second, by observing the demodulated phase as a function of VQ after some time
has passed (line-cut 1 in Fig. 5.1.3a), the effective temperature in the qubit dot can
be inferred. The dynamics are initially described by the complete model described in
Eq. 5.3, however, the effect of the negative eigenvalues fades away over time and the
term N⃗ = xv⃗1 dominates the dot occupation. For the given initial conditions, this
steady-state term reads:

Nout(t = ∞) =
Γout
↑ Γout

↓

Γin
↑ Γ

out
↓ + Γout

↑ (Γout
↓ + Γin

↓ )
, (5.6)

which for the condition Ez

kBT
>> 1 simplifies to Nout(t = ∞) =

Γout
↓
Γ0

. Therefore,
the demodulated phase with respect to VQ was fitted to 1 − Γout

↓ /Γ0 for device A
and Γout

↓ /Γ0 for device B (See Figs. 5.1.3f and 5.1.3h). From these fits we found an
effective temperature of 0.157± 0.012 K for device A and 0.275± 0.022 K for device
B (see Sec.5.1.2 for full discussion of the origin of this effective temperature and noise
sources).

The Zeeman splitting, Ez, was calculated from the width in voltage of the spin-
dependent ‘tail’ seen in Figs. 5.1.3. The Zeeman splitting is plotted for different
magnetic fields in Fig. 5.1.5.

To improve the fit to the data, the simulations of device A (Figs. 5.1.3b and 5.1.4)
include a voltage drift over time due to a cutoff frequency miscalculation of the bias
tee high pass filter (nominally taken to be 16 kHz, but fitted to be 15.915 kHz). This
small frequency mismatch does not affect measurements of the spin relaxation time.
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Readout tests

Here, we perform several tests to ensure that we were measuring the electron spin
and it was not a different effect.

Pouta)

EZ

A
B=3.0TB=1.4T

B1-Pout e)

L R

b)

c)

d)

1.0 1.0 0.7 1.00.3

Figure 5.1.4: Two-level pulse sequence Two-level pulse sequence based on
‘load’ and ‘read’. a) Demodulated phase over time in the readout stage normalised
at each VQ offset for device A (left) and its simulation (right) for an applied magnetic
field of 1.4T. The pulse sequence is depicted in the inset. It can be observed how
the 2-level pulse does not generate a spin tail. b), c) and d) show diagrams of the
qubit dot electrochemical potential with respect to the lead Fermi energy at three
different pulse offsets, VQ. e) Same as for panel (a), but for device B at B = 3 T.

Two-level pulse sequence (load-read only). First, we sent a modified ver-
sion of the pulse sequence with which the spin signature should disappear. In this
version, the ‘empty’ stage is removed from the pulse sequence to leave just the ‘load’
and ‘read’ steps. This way, the dot remains occupied unless the electron tunnels out
during the read stage. In this two-level pulse sequence, the electron in the dot even-
tually decays to the spin-down ground state, so that no spin up signature is observed
(see Fig. 5.1.4 for measurements and simulations). This way the initial conditions

N↑(t = 0) =
Γout
↓

2Γ0

N↓(t = 0) = 1−N↑(t = 0)

Nout(t = 0) = 0,

(5.7)

used input in the system of equations from Eq. 5.2 to obtain the simulations

120



121 5.1. Spin readout

presented in Fig. 5.1.4.

Magnetic field dependence. To further test the spin readout measurements,
we measure the Zeeman splitting as a function of the magnetic field. The Zeeman
splitting is related to the width in voltage of the spin-dependent ‘tail’ from Figs. 5.1.3a
and 5.1.3e as EZ = gµBB = eαQQ∆VQ, where g is the g-factor, µB is the Bohr
magnetron, B is the magnetic field, αQQ is the qubit alpha factor and ∆VQ is the
spin tail length in voltage.

Figure 5.1.5: Qubit dot lever arm from temperature measurements. a)
Homodyne I/Q voltage as a function of ∆VQ, at fridge temperatures of 200 and
800 mK for device B. b) Width of the Fermi-Dirac distribution measured in a)
as a function of the fridge temperature and fit. c) Zeeman energy obtained as
∆Ez = eαQQVQ from Fig. 5.1.3a, where QQ is the lever arm calculated in b).
Dashed line shows the Zeeman energy for g = 2.

We observed that, as expected, ∆VQ is proportional to the magnetic field applied.
Moreover, to obtain the g-factor (which should be similar to g ∼ 2) we first calculate
the qubit dot lever arm, αQQ. The qubit dot lever arm is determined with a temper-
ature study in which the qubit dot occupation number is fitted as a function of VQ to
a Fermi distribution at different fridge temperatures, as in Figs. 5.1.5a. At low tem-
peratures, the broadening is constant and, as the temperature in the fridge is raised,
it increases linearly as a function of the fridge temperature (see Fig. 5.1.5b). In this
way, the temperature can be related to the transition broadening as kBTe = eαQQVQ

and can be fitted to Te =
√

T 2
0 + T 2

fridge [251]. We obtained a base electron effective
temperature T0 = 230± 9 mK and a αQQ = 0.478± 0.008.

The relation between Zeeman energy and magnetic field is shown in Fig. 5.1.5,
leading to a g-factor g = 1.92± 0.11.
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5.1.2 Effect of the rf-carrier on spin readout

To differentiate between spin states and achieve spin readout, the Zeeman splitting,
Ez = gµBB must be greater than the broadening of the 0 → 1 charge transition in
the qubit dot depicted in Fig. 5.1.5a. The same as with a SEB, the broadening of the
transition has at least two different sources: 1) the reservoir electron temperature and
2) the perturbations in its potential produced by the rf-carrier via cross capacitance
to the SEB gate. These noise sources limit the minimum magnetic field at which the
spin state can be accurately determined.

Here, we study how the power from the rf-carrier sent to the SEB gate affects the
‘qubit’ dot potential. The RF readout tone applied to the SEB can be transferred
to the qubit dot due to the cross capacitance between dots or a direct capacitance
between the sensor gate and the qubit dot: µQ =

αQS

αSS
∆µS. In Fig. 5.1.6 we compare

i) the broadening measured on the SEB that has been converted to an expected
qubit dot broadening, with ii) a direct measurement of the qubit dot broadening
as in Fig. 5.1.5a. We observe that increasing the RF readout power, increases the
perturbation for both methods, however, they lead to a different natural width. This
suggests that the predominant broadening at lower power does not come from the
electron temperature, since it should be the same under both measurements, but from
the tunneling rates which are higher in the SEB (5 GHz for the SEB versus ∼ 0.5MHz
for the qubit dot). At higher powers, such as the one used for spin readout (P0 =

−83 dBm), we can deduce that the major contribution to line broadening (and thus
effective temperature) comes from the RF tone used for readout. The contribution
from the RF tone can be reduced by optimising the resonator so less power is needed
to show a measurable phase shift [175] and/or using cryogenic amplifiers with lower
noise temperature such as a Josephson parametric amplifier [183] allowing operation
at lower RF power due to a decreased noise level. Moreover, although the coupling
capacitance between dots is necessary for this readout, the cross capacitance between
the sensor gate and the quantum dot should be as small as possible.

The reflectometry signal was optimised by selecting the power that gave the high-
est visibility of the spin-up fraction. Fig. 5.1.6b shows a comparison of the spin-up
fraction for two RF powers. The spin-up signature is more visible at higher powers
up to a point where the power broadening counteracts the increment in the signal.
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a) b)

Figure 5.1.6: Effect of the rf-carrier power on spin readout. Perturbation of
the qubit dot electrochemical potential, given in Tesla, due to the rf-carrier power,
P0. a) Blue: Electronic transition half width maximum, ϵ 1

2
of the SEB, converted

to a qubit dot potential using the cross lever arm αQS. Error bars are smaller than
the dot size. Green: A direct measurement of broadening obtained by sweeping the
qubit dot voltage (see Fig. 5.1.5a). b) Spin-up fraction for different powers at 1 T.

5.2 Spin relaxation

We next consider the effect of spin relaxation by varying the duration of the ‘load’
period in the 3-level pulse sequence. The spin of the loaded electron relaxes from
its initial randomised state into the spin |↓⟩ ground state with a time constant T1.
Once an electron is loaded to the dot, the probability of finding a spin-up state de-
creases exponentially with respect to the time waited before reading its state following
P↑(twait)
P↑(0)

= e−(twait/T1). Figs. 5.2.1a and 5.2.1b show the exponential fitting for several
magnetic fields in device A and device B. We also test whether the rf-carrier affects
the relaxation during the ‘wait’ period. Fig. 5.2.1c shows a comparison of the relax-
ation times measured in device B when the RF readout tone remains on throughout
the 3-level pulse (purple) versus switching off the rf-carrier during the waiting time
(red). The similar values can be explained because the RF voltage only introduces
an effective level broadening corresponding with a voltage drive at the frequency of
the rf-carrier (742 MHz). Although this broadening is measured as an effective tem-
perature, it is unrelated to the bath electron temperature and unlikely to affect the
spin of the electron, with a Zeeman splitting larger than 28 GHz (B=1 T).
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Device A Device Ba) b) c)

Figure 5.2.1: Spin relaxation. a) and b) respectively show the normalised spin
up fraction with respect to the waiting time for devices A and B, fitted to an ex-
ponential decay for different magnetic fields. c) Comparison between the relaxation
time measured with the rf-readout tone continuously on, or switched off during the
waiting time.

5.2.1 T1 dependence on the magnetic field

We now study T1 as a function of the magnetic field strength and orientation (see
Fig. 5.2.2). In both devices, we observe an increament in T1 as the magnetic field
decreased up to a maximum of T1 = 0.28(3) s (device A) and T1 = 9(3) s (device B)
at B = 1 T.

Dependence of T1 on magnetic field strength

The magnetic field dependence of T1 varies according to the relaxation mechanism
and the direction of the field with respect to crystal axes. For the measurements
presented in Fig. 5.2.2a the magnetic field was parallel to [1̄10]. Spin relaxation may
arise from magnetic noise at the spin Zeeman frequency or, more commonly and
given some spin-orbit coupling (SOC) that mixes the spin degree of freedom with
orbital or valley states, from phonon-induced electric field noise or Johnson noise.
At this field orientation, and far from any anti-crossing with higher-lying excited
states [101], the primary contributions from phonons to the relaxation rate T1

−1 are
proportional toB7 [253, 254], while those from Johnson Nyquist noise are proportional
to B3 [253]. We therefore fit the data in Fig. 5.2.2a to a combination of such processes:
T1

−1 = cphB
7+cJB

3, obtaining the coefficients summarised in Table. 5.2.1. The large
uncertainties are due to the high correlation between the two terms.
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Figure 5.2.2: Spin relaxation rates and their magnetic field dependence.
a) Relaxation rate measured with the magnetic field applied perpendicular to the
nanowire, in the plane of the device, in the [1̄10] crystallographic direction. Curves
are fit to a general model described in the text, and EV marks the field at which the
Zeeman splitting matches the measured valley splitting in device B. b) Dependence
of T1

−1 on magnetic field orientation at 1 T for device B, where θ is the angle
between the magnetic field and the [1̄10] crystallographic direction for device B in
the nanowire plane. The angular dependence expected from spin-valley mixing in
an ideal corner dot (dashed grey curve) is insufficient to explain the observed trend.
Spin-lattice relaxation mechanisms can, however, give rise to higher-order angular
modulations [252] in quantum dots with high symmetry.

Device A cjh 4.1± 0.5 Hz/T 3

cph 0.171± 0.018 Hz/T 7

Device B cjh 0.089± 0.012 Hz/T 3

cph (10± 4) 10−5 Hz/T 7

Table 5.2.1: Fitting parameters for the relaxation rate magnetic field dependence.
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126 5.3. Excited states spectroscopy (qubit dot)

Dependence of T1 on magnetic field orientation

We studied the angular dependence of the spin relaxation rate in device B, rotating a
1 T field in the plane of the device. A minimum in the relaxation rate is expected as
the magnetic field is parallel to the direction of the nanowire, aligned along the [110]
crystallographic direction since there is no spin-valley mixing (a typically dominant
spin-orbit mixing mechanism) when the magnetic field is perpendicular to a mirror
symmetry plane of the device [254, 255]. Although we see a downward trend towards
[110], we find that the usual models for spin-orbit driven relaxation [252–254, 256]
(see dashed lines in Fig. 5.2.2b) are not able to account for all features in the angular
dependence.

In general, though, spin-lattice relaxation can produce higher-order harmonics in
the dependence on magnetic field orientation, especially in quantum dots with high
in-plane symmetry (see Appendix C). Such a high symmetry in device B would also
suggest a weak spin-valley which would lead to a weak or absent hot spot in the
relaxation rate when the Zeeman splitting approaches the valley splitting.

5.3 Excited states spectroscopy (qubit dot)

To gain further insights into the spin relaxation mechanism for this device, we move
on to study the excited states of the quantum dot by sweeping the voltage of the ‘load’
stage, VQ,L. The rate at which an electron loads from the reservoir into some dot state
|i⟩ depends on the difference in electrochemical potential, ∆Ei, between |i⟩ and the
reservoir Fermi energy. Here, we consider four dot states, i ∈ {g↓, g↑, e↓, e↑}, where
g and e are respectively the ground and excited z-valley states, each with spin-up
and spin-down states. Assuming elastic tunnelling and a constant reservoir density of
states, the loading rate follows a Fermi-Dirac distribution centred at ∆Ei = 0, when
dot and lead potentials are aligned [250, 257]:

Γload
i =

Γ0,i

1 + e∆Ei/kBT
, (5.8)

where Γ0,i is the natural tunnel rate for each state |i⟩, kB is the Boltzmann constant
and T the effective temperature. We assume here that the natural tunnel rates are
spin-independent (i.e. for the ground states g↓ and g↑ they are equal to Γ0,g, and
similarly for the excited state natural tunnel rate Γ0,e), as well as independent of
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VQ,L over the small (∼ 1 mV) range of voltages studied here. The energy separation
∆Ei can be tuned with VQ,L as ∆Ei = |e|αQQ(Vi − VQ,L), where Vi is the voltage at
which the dot state |i⟩ and reservoir potential align and αQQ is the gate lever arm
of the ‘qubit gate’ to the qubit dot. From Eq. 5.8, tunnelling rates tend to zero for
load voltages smaller than Vi, and towards the natural tunnelling rate, Γ0,i, for higher
voltages. As a result, varying the ‘load’ voltage VQ,L changes the tunnelling rates into
the various dot states, and thus the probability of loading a spin-up, which we detect
using the spin-readout described above.

Figure 5.3.1: Excited state spectroscopy. a) Measured spin-up fraction for
different load levels obtained using energy-selective loading in a 4-level pulse scheme
as shown in the inset and fit. b) Illustration of different loading level regimes. (I)
When the load level is too low, no electrons are loaded, and an electron with random
spin tunnels in during the plunge stage. (II) If the reservoir EF is placed between
the spin-up and down state, only spin-down electrons tunnel in. (III) At higher load
levels, an electron with a random spin polarisation tunnels in during the load stage.
(IV) When EF lies between the spin-up and down levels of the excited state, an
electron can occupy any spin state of the ground state and the spin-down excited
state. Assuming fast spin-conserving relaxation from the excited to the ground
state, most electrons are found with spin-down. (V) For even higher load levels, the
electron tunnels into any possible state. c) Zeeman splitting EZ and excited-state
energy EV obtained by fitting a) to Eq. 5.10 at different magnetic fields for devices
A and B.

To perform excited state spectroscopy on the qubit dot we use a 4-level pulse-
sequence (‘empty’-‘load’-‘plunge’-‘read’) applied to the qubit dot gate [146], where
the additional ‘plunge’ stage ensures that an electron is always loaded for any cycle,
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while the loading voltage is swept between the ‘empty’ and ‘plunge’ levels (see inset
in Fig. 5.3.1a). We define a spin-up fraction P↑ based on the integrated spin-up
signal, baseline-corrected, and normalised to obtain P↑ = 0.5 in the limit of zero load
time (to neglect relaxation) and random loading using only the ‘plunge’ phase. The
dependence of P↑ on the ‘load’ voltage (converted to energy) is shown in Fig. 5.3.1a,
and can be understood by considering the schematics in Fig. 5.3.1b. In the limit
(I) of low VQ,L, no electron tunnels into the qubit dot during the ‘load’ phase and
an electron of random spin is loaded during ‘plunge’. When the Fermi energy, EF,
of the reservoir lies between the spin-up and spin-down states (II), only spin-down
electrons tunnel into the dot, and P↑ drops to zero. Assuming the duration of the
‘load’ period in the pulse sequence is long compared to the natural tunnelling rates
Γ0,i, the transition between regions I and II is characterised by the spin-down ground
state loading rate, Γload,g↓:

P↑ =
1

2

(
1−

Γload
g↓

Γ0,g

)
, (5.9)

used to generate dashed curve in Fig. 5.1.2a.
As the ‘load’ voltage is further increased (III), both spin states can be loaded

and the measured spin-up fraction increases. Excited states can also be measured
in this way provided their decay rates to the ground state are sufficiently high [253,
258]. Once the spin-down excited state becomes available during the load process
(IV), the measured spin-up fraction again reduces, since the excited state rapidly
decays in a spin-conserving manner [251]. Finally, in region (V), an electron of either
spin orientation can be loaded into the excited state. In regions II–V, the measured
spin-up fraction can be modelled by combining all relevant rates [251]:

P↑(VQ,L) =
Γload,g↑ + Γload,e↑

Γload,g↑ + Γload,e↑ + Γload,g↓ + Γload,e↓
, (5.10)

By fitting the data to Eq. 5.10 (see solid line in Fig.5.3.1a) we can extract several
parameters: i) The Zeeman splitting EZ between the spin-up and spin-down states
(fixed to be the same for the ground and excited valley states), related to the width
of regions II and IV; ii) The valley splitting EV, related to the separation of regions
II and IV; iii) The ratio between ground and excited state natural tunnelling rates,
A1 = Γe

0/Γ
g
0, related to the amplitude in region IV; and iv) the effective temperature
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129 5.3. Excited states spectroscopy (qubit dot)

Device A EV 681± 23 µeV

Tg 370± 200 mK

Te 510± 160 mK

A1 2.0± 0.3

Device B EV 571± 27 µeV

Tg 300± 30 mK

Te 710± 200 mK

A1 7.7± 0.9

Table 5.3.1: Fitting parameters extracted from excited state spectroscopy.

T , related to the sharpness of transitions between various regions, which can be seen
to be different for the ground states (Tg) and the excited state (Te). The effective
temperature of the excited states, Te, was left as a fitting parameter to include effects
arising from the finite excited state lifetime. In contrast, any lifetime broadening of
|g↑⟩ is neglected based on the long measured T1 times (> 1 ms).

5.3.1 The spin-valley mixing impact on the relaxation time

Extracted values for EZ and EV for both devices are shown in Fig. 5.3.1c as a function
of the magnetic field. As expected, EZ shows a linear dependence with respect to
the field with a g-factor of 1.91(10), while EV is field-independent and measured to
be 0.68(2) meV (device A) and 0.57(3) meV (device B). These values are broadly
similar (within a factor of two) to those measured in similar nanowire devices [155]
— furthermore, a large valley splitting is beneficial for spin qubits to remain within
the computational basis states and maximise spin relaxation times [259]. The valley
splitting in device B is shown as an equivalent magnetic field in Fig. 5.2.2. When
EZ ∼ EV, there is a finite inter-valley spin-orbit matrix element leading to spin-valley
mixing that should produce a ‘hot-spot’ in the relaxation rate. The absence of such
‘hot-spot’ within our measurement resolution (250 mT) sets an upper limit for the
‘hot-spot’ linewidth, and, in turn, for the spin-valley mixing strength [260]. Several
previous studies have reported wider linewidths, corresponding to stronger spin-valley
mixing [101, 261, 262], however, similar [263], and narrower [259] linewidths have
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130 5.3. Excited states spectroscopy (qubit dot)

been observed: this places our measurements amongst the lowest in terms of spin-
valley mixing strength.

A possible explanation for the weak spin-valley mixing is that the corner dot has
greater symmetry than expected, with two orthogonal quasi-symmetry planes [255]
— this would be consistent with the complex magnetic field-orientation dependence
of T1 discussed above. Another possible explanation is phase cancellations between
the valley coupling and spin-orbit coupling matrix elements strongly suppressing spin-
valley mixing [264, 265]. In both cases, this interesting regime warrants investigation
of further devices to ascertain the relationship between these conditions and the device
geometry, growth conditions, and electrostatic environment.

In the case of device A, we could not confirm the strength of the spin-valley mixing
since the excited state lies above our magnet range (6 T). However, a larger spin-valley
mixing would explain the shorter relaxation times measured. Given that both devices
were measured with the same setup, we suspect that the different relaxation times
could arise from the fact that device B was measured with a higher voltage applied to
the sensor gate, pulling the qubit dot wavefunction outwards from the edge making
it more symmetrical. Also consistent with a more symmetric wavefunction dot is
that device B is shorter than device A (Lg=40 nm against Lg=50 nm). Moreover,
we cannot discard that the source of the extra symmetry in device B is due to some
fabrication inhomogeneity.

5.3.2 Excited state nature

So far, we have assumed that the excited state probed in the devices is a valley
excitation, however, now we explore the possibility that such excited state is instead
an orbital excitation. If so, the valley excitation must lie at low energy (≲ 110 µeV
in device A and ≲ 280 µeV in device B), below the lowest magnetic field explored
in the experiments since no signs of such a valley state were found in measurements
like the one shown in Fig. 5.3.1a. Although very small valley splittings have indeed
been measured in specific devices [255], larger valley splittings, closer to the excited
state energies we measure, would be more consistent with recent measurements in
the few electrons regime [155]. Furthermore, according to effective mass calculations,
orbital excitations would rather be expected in the few meV range [266], larger than
the values we measure. Therefore, an orbital excitation cannot be ruled out but
is definitely not the most likely assumption. Nonetheless, the main conclusions of
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this work and discussion would be little affected in principle. The experiments indeed
probe the spin degree of freedom as long as the Fermi level of the contacts lies between
the pair of spin up and the pair of spin-down valley states at readout; also, as valley
relaxation is presumably much faster than spin relaxation, and little dependent on
the magnetic field orientation, the angular dependence of the relaxation time shall be
globally the same as discussed below.

5.4 Reservoir excited states

Figure 5.4.1: Reservoir 1-D nature. a,b and c) show diagrams of qubit dot
electrochemical potential with respect to the lead Fermi energy at different voltages
applied to the qubit dot gate, VQ. d) Time-averaged and normalised rf response
over time at different VQ in Device C. At the voltages described by the situation
in c), any loaded electron tunnels out during the readout stage. This corresponds
with a low value of the rf response that rises on time as the electron leaves the qubit
dot. The superposed green line is the calculated tunneling times from a quasi-1D
reservoir to a 0D dot. At higher VQ, we encounter the situation pictured in b),
where the reservoir Fermi energy is in between the dot spin |↑⟩ and |↓⟩. This regime
is shown with more detail in e), where we can observe how the quasi 1D density of
states from the lead shape the dependency of 1/Γout

↑ = t↑out and 1/Γin
↓ = t↓in with

respect to VQ. f) rf response after the transient as a function of VQ, following a
Fermi-Dirac distribution.

As we have discussed before, the tunneling rates in device C were much slower than
in devices A and B. This fact made it possible to observe the characteristic features of
a quasi-one-dimensional reservoir. The tunneling rate between a 0-dimensional (qubit
dot) and a 1-dimensional system (reservoir) depends on the energy as Γout ∝ 1√

E−En
,

being En the position in energy of the reservoir 1D subbands. Such behaviour is
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embodied in Fig. 5.4.1d, which shows a 2D-map similar to the one in Fig. 5.1.3e, where
a simulation of the tunneling rates based on the 1√

E−En
dependency is superposed as

a green line.
Around the Fermi level, the reservoir density of states follows a Fermi-Dirac dis-

tribution, so that the tunneling rate is a combination of the 1-D subbands and the
Fermi-Dirac distribution:

Γout(E) =
2π

h̄
|Γ0|

(∑
n

1√
E − En

)
(1− f(E − E↓)). (5.11)

Here, E = −|e|αQQVQ, and 1 − f(E − E↓) is the distribution of empty states in
the qubit dot. The electronic temperature, Te = 137± 18 mK, is extracted by fitting
the rf response as a function of VQ to the Fermi-Dirac distribution (See Fig. 5.4.1f).

5.5 Single shot spin readout fidelity

Fault-tolerant quantum computing requires high-fidelity readout performed in the
minimum readout time, ∆t. Qubits need to be measured fast in comparison to the
decoherence time and with a high fidelity in order to implement error correction codes.
Therefore, the desirable conditions are to have the maximum amount of spin polari-
sation correctly identified in the minimum readout time, ∆t. This section describes
how we performed single-shot spin readout, including the steps followed to quantify
the fidelity and what parameters are limiting it. First, we include how to calculate
the electrical fidelity, FE, given by the ability of the sensor to correctly identifying a
given spin trace. We then combine it with the spin to charge fidelity, FSTC, defined as
the probability that a spin electron polarisation generates its corresponding readout
trace. Combining FSTC and FE, we reach a maximum measurement fidelity of 99.54%
in ∆t = 250µs. We finally discuss a different method to identify whether a measure-
ment trace corresponds to a spin-up or spin-down electron and its repercussions on
the fidelity.

5.5.1 Single-shot spin-dependent tunneling readout traces

The readout is based on spin-dependent tunneling using a SEB as described in Sec. 5.1.
Depending on the spin polarisation, we obtain two different readout traces. A readout
trace from a spin |↓⟩ state is a constant noisy background (the grey and black traces
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in Fig. 5.5.1). On the other hand, a spin |↑⟩ readout trace is characterised by a top
hat shape that starts when the spin |↑⟩ electron leaves the dot (t↑out), and lasts until
a spin |↓⟩ electron tunnels back into the dot (t↓in). Spin |↑⟩ single-shot traces taken
without the JPA are displayed in red in Fig. 5.5.1, whereas the ones using a JPA in
blue, show a noticeable ×4.5 SNR improvement. In both cases, the traces are taken
with a sample rate of Γs = 1 MHz and a measurement bandwidth of feff,BW = 25 kHz

Figure 5.5.1: Single-shot readout traces. Top: spin |↑⟩ (red) and |↓⟩ (grey)
traces taken without the JPA. The rf-response is normalised so it is 0 when the dot
is occupied and 1 when it is empty. The bottom panel shows spin |↑⟩ (blue) and
spin |↓⟩ (black) traces taken with a JPA. .

5.5.2 Trace identification and electrical fidelity

We identify the spin polarisation of a given trace by setting a threshold in the rf-
response that is compared against the trace maximum. If the threshold is exceeded,
the trace is labeled as a spin |↑⟩ and if not, as |↓⟩. The trace maxima follow a bimodal
probability distribution, as shown in Fig. 5.5.2a and b, with one peak corresponding
to spin |↑⟩ traces and the other to |↓⟩ traces. To determine the readout fidelity,
we model the histograms as Ntot(Vrf) = Ntot[n↑(Vrf) + n↓(Vrf)]Vbin, where n↑(↓) is the
probability density of the maxima of spin |↑⟩ (|↓⟩) traces, Vrf is the normalised rf-
response, Ntot is the total number of traces and Vbin is the width of the rf-response
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bins [267]. The fidelity of correctly labelling an individual readout trace, FE
↑(↓), is

called the electrical fidelity and can be calculated as:

FE
↓ = 1−

∫ ∞

VT

n↓(Vrf) dVrf FE
↑ = 1−

∫ VT

−∞
n↑(Vrf) dVrf, (5.12)

where the integral of n↓(↑) from VT(−∞) to ∞(VT) is the cumulative probability of
having labeled spin |↓⟩ (|↑⟩) trace wrongly [267].

Figure 5.5.2: Electrical fidelity. a) Histogram of the maximum values of the
normalised rf-response from 10,000 single-shot measured data traces taken without a
JPA. The red line is the simulated histogram created using the parameters A = 0.50,
Γs = 1 MHz, t↑out = 53 µs, t↓in = 440 µs and Gaussian noise with standard deviation
σhigh = 1.09 for the top of the blip and and σlow = 1.03 for the background. Both the
measurement bandwidth and readout time used to create this histogram corresponds
with the optimal ∆t = 434 µs and measurement bandwidth feff,BW = 25 kHz. b)
Same as a) for measurement taken with a JPA. In this case, the parameters used for
the simulation are AJPA = 0.46, Γs,JPA = 1 MHz, t↑out,JPA = 31 µs, t↓in,JPA = 186 µs
and Gaussian noise with standard deviation σhigh,JPA = 0.38 for the top of the blip
and σlow,JPA = 0.36 for the background. The post-processing parameters are chosen
to be the ones that maximises the visibility (∆t = 268 µs and fJPA

eff,BW = 122 kHz). c)
Electrical visibility, VE, as a function of the threshold voltage used to discriminate
between spin down and up. d) Same for traces obtained using a JPA.

The experimental data results in the bimodal distribution as a whole. However, to
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obtain n↑ and n↓ separately, we numerically generate 100,000 readout traces, where
each trace is assigned a spin polarisation with probability A of being spin |↓⟩ and 1−A

of being spin |↑⟩. Readout traces are completely determined by a few experimental
parameters that can be extracted from the data traces: the sample rate Γs, the
measurement bandwidth, feff,BW, the sensor SNR, the tunneling times t↑out, and t↓in,
and the duration of the readout trace, called readout time, ∆t (See Sec. 5.5.2 for a
description of the parameter extraction).

We fit the simulated histogram to 10,000 experimental shots using least squares
regression, see Fig. 5.5.2a and b. In Fig. 5.5.2b, n↑ (solid black curve) and n↓ (solid
blue curve) are comparatively narrower due to the reduced noise enabled by the JPA.
As shown in Fig. 5.5.2c and d, the electrical visibility, VE = 1− FE

↑ − FE
↓, depends

on the selected threshold voltage, VT. We obtain a maximum V E = 97.7% without a
JPA and of V E

JPA = 98.9% using a JPA.

Parameter extraction for readout trace simulations

As explained in the previous section, the electrical fidelity for spin-dependent mea-
surements is calculated by simulating single-shot histograms like the ones shown in
Fig. 2b and c. To create them, we need to reproduce single-shot traces equivalent to
the ones measured. An example of a spin |↑⟩ trace is depicted in Fig. 5.5.3a with a
blip starting at t↑out, lasting for t↓in. The background and blip have values E(low) and
E(high), with its respective noise, σlow and σhigh. This example can be labelled as a
spin |↑⟩ trace since it surpasses the threshold voltage, VT.

The experimental parameters that ultimately determine those traces can be sep-
arated into the ones that depend on the SEB and the ones that depend on the qubit
dot. The SEB parameters are independent of the readout method and are the rf
response at the background, E(low), and at the blip, E(high), and their respective
noise level.

In order to extract these parameters, 10,000 single-shot spin readout traces like
the one displayed in Fig. 5.5.3a were registered. The average of the rf response
at the blip and the background are equal to the expectation values E(high) and
E(low), respectively. To characterise the noise level of the background, we obtain
the noise spectral density, SV(f) of the rf response (see Fig. 5.5.4a and b). For
lower frequencies, the background noise spectral density is obtained using the last
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EF
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Figure 5.5.3: Trace parameter extraction. a) Normalised rf response of a spin
|↑⟩ data trace taken with a JPA using a sample rate of Γs=1 MHz and a measurement
bandwidth of feff,BW = 0.49 MHz. The blip starts when the spin |↑⟩ electron leaves
the dot at t↑out and lasts until a spin |↓⟩ electron replaces it (t↓in). When the qubit dot
is occupied the rf response has an estimated value E(low) with a standard deviation
σlow, whereas when it is empty the estimated value and standard deviation are
E(high) and σhigh, respectively. We have also indicated the Vthreshold above which
the trace is labeled as a spin |↑⟩. b) Histogram of the starting point of the pulse
and exponential fit. c) Histogram of the pulse duration and fit.

data point of all the consecutive readout traces (see Fig. 5.5.4a), whereas for higher
frequencies we calculate SV of a single spin |↓⟩ trace (see Fig. 5.5.4b). Comparing the
noise spectrum with the one generated by a Gaussian random number generator, we
concluded that the noise of the background has a Gaussian profile with variance σ2

low

for the whole set of measurements.
The noise at E(high) can include additional sources of noise such as charge noise,

where the noise spectral density typically depends on the frequency as 1/f . This
noise originates from the collective behaviour of defects or charge traps that act as
charge fluctuators as they trap and release electrons [164]. The charge fluctuations
slightly modify the potential around the sensor modifying its bias point, so that their
effect is more noticeable at the slope of a SEB electronic transition than at the top.
Figure 5.5.5a shows the SEB dot-to-reservoir transition as a function of the voltage
applied to the qubit dot, where the signal at each point has been averaged over 2 ms.
Figure 5.5.5b displays their corresponding standard deviations. It is very clear how
the standard deviation is higher on the slope than on the offset and top of the peak.
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137 5.5. Single shot spin readout fidelity

Figure 5.5.4: Noise spectral density. Noise spectral density of the rf response
at E(low) at low frequencies (a) and high frequencies (b) for the acquired data
(pink) and the simulations created with Gaussian noise (black).

Figure 5.5.5: Noise as a function of SEB potential. a) Average of the nor-
malised rf response for a SEB electronic transition with respect to the voltage applied
to the qubit dot gate, VQ. The vertical line indicates the voltage for spin readout.
b) Standard deviation over 2 ms of rf response at E(high) at different voltages. c)
SV at the blip.
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We observe that the readout position – marked as a black vertical line in Fig. 5.5.5
– is at the maximum of the rf response. This has two benefits, on one hand, the
contrast between qubit dot empty and occupied is maximum (E(low) and E(high))
and, on the other hand, the charge noise is minimised. Fig. 5.5.5c shows that the
noise spectral density at the top of the rf response is also constant over the range of
frequencies with a variance σ2

high very similar to σ2
low.

The rest of parameters (t↑out, t↓in and A) are set by the qubit dot. t↑out is the time
constant for a spin |↑⟩ electron to leave the dot. Such time corresponds with the start
time of the blip and can be determined as the time at which the rf response reaches
a certain threshold voltage, VT. Registering the number of times that the rf response
exceeds such threshold voltage at a given readout time follows an exponential trend
whose time constant is t↑out. t↓in is obtained following a similar analysis, where the blip
duration probability is fitted to an exponential function (See Fig. 5.5.3 b and c).

The simulated traces for a spin |↓⟩ were created as a set of points with a sample
rate of Γs =1 MHz (as the one of the experiment) and constant value E(low) to which
it is added a Gaussian noise characterised by σlow. Spin |↑⟩ traces are generated as a
constant value E(low) with Gaussian noise σlow and a blip with a constant value of
E(high) and a standard deviation of σhigh. The blip starting time and duration follow
exponential distributions with time constant t↑out and t↓in, respectively.

5.5.3 Measurement fidelity, FM

Depending on the readout time, ∆t, spin mapping errors can diminish the readout
fidelity. If ∆t is of the order or smaller than t↑out, spin |↑⟩ electrons will not leave
the qubit dot during the readout time, leading to a false spin |↓⟩ measurement (See
Fig. 5.5.6a). On the other hand, if ∆t is increased, a spin |↑⟩ may relax to the ground
state before leaving the qubit dot, resulting in a false spin |↓⟩ (See Fig. 5.5.6b), or
a spin |↓⟩ could be thermally excited out of the qubit dot, leading to a false spin
|↑⟩ (See Fig. 5.5.6c). The spin readout fidelity, FM, is the product of the electrical
fidelity, FE, which determines the probability of label correctly a given readout trace
(as discussed earlier) and the spin-to-charge fidelity, FSTC, setting the probability that
a spin state generates the trace that it is expected to. In our case, FE also includes
the false negatives derived from a slow t↑out, since the simulated traces have a finite
length, ∆t (See Sec. 5.5.3 for a full description).
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Figure 5.5.6: Measurement fidelity. Spin mapping errors due to a short readout
time with respect to t↑out (a), relaxation processes (b) or thermal excitations (c). d)
Measurement infidelity (1 − FM) taken with (blue) and without (red) a JPA as
a function of the integration time, which is equal to 1/2feff,BW. e) Measurement
infidelity versus measurement time, ∆t. The stars mark the optimal integration
times and measurement times.
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Quantification of the measurement fidelity

The probability of correctly recognising a spin |↑⟩ electron, FM
↑, is given by the sum

of the probability that such electron truthfully generates a spin |↑⟩, FSTC
↑, and that

the sensor detects the corresponding blip, FE
↑, plus the probability of generating a

false spin |↓⟩ trace, 1 − FSTC
↑, that is misidentified as a spin |↑⟩ electron, 1 − FE

↓.
This way,

FM
↑ = FSTC

↑FE
↑ + (1− FSTC

↑)(1− FE
↓). (5.13)

Equivalently, the probability of correctly recognise a spin |↓⟩ electron is:

FM
↓ = FSTC

↓FE
↓ + (1− FSTC

↓)(1− FE
↑). (5.14)

Both independent fidelities can be combined as

FM =
FM

↓ + FM
↑

2
(5.15)

to calculate the overall measurement fidelity. The electrical fidelity is calculated
via Monte-Carlo simulations as described in Sec. 5.5.2, whereas the FSTC fidelity uses
an analytic expression to take into account the errors coming from relaxation and
thermal processes. The probability of not having a thermal excitation, so a spin |↓⟩
does not produce a false spin |↑⟩ trace, is given by:

FSTC
↓ = e−t/t↓out . (5.16)

The other infidelity source is the relaxation process of a spin |↑⟩ electron that has
not tunneled out of the dot. That can be calculated as the conditional probability
P (A|B), being P (A) = 1− e−t/T1 the probability that a spin |↑⟩ has decayed at time
t, and P (B) = e−t/t↑out , the probability that an electron with spin |↑⟩ has not left the
dot at time, t. Since both events are independent the probability of having a false
spin |↓⟩ trace due to a relaxation process is:

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A) = 1− e−t/T1 , (5.17)

Therefore, the probability of not having a relaxation process is e−t/T1 . To calculate
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the fidelity, we have to add the probability that an spin |↑⟩ relaxes and, subsequently
the spin |↓⟩ electron tunnels down the dot:

FSTC
↑ = e−t/T1 + (1− e−t/T1)(1− e−t/t↓out) (5.18)

Here, the relaxation time T1 depends on the magnetic field applied [268], which
in this experiment was 5.1 ± 0.4 s, at B=2 T. On the other hand, t↓out depends on
the temperature and the difference in energy between the spin |↓⟩ and the reservoir
Fermi Energy at the readout stage.

5.5.4 FM dependence on ∆t and the measurement bandwidth

Having taken spin mapping errors into consideration, we investigate the dependence
of FM on ∆t, and feff,BW. Figure 5.5.7a and b show how decreasing feff,BW leads to
an improved fidelity as the noise is reduced, up to a point in which the additional
filtering deforms the spin |↑⟩ top hat, smoothing the edges and reducing its maximum
value. The optimal measurement bandwidth is different for measurements taken with
and without the JPA not only because of the SNR improvement but also because of
the different tunneling rates in each data set, caused by a shift of the readout point
and the 1-dimensional nature of the reservoir (See Sec. 5.4).

Figure 5.5.7: Fidelity as a function of measurement parameters. a). De-
pendence of the measurement infidelity 1 − FM, with respect to the measurement
bandwidth and the readout time. The dashed white lines pass through the maximum
fidelity point. b) Same for measurements taken using JPA.

FM also increases with ∆t, since more blips can be captured as the readout time
duration is longer. However, beyond an optimal value, the fidelity worsens because
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of the additional opportunities for the background noise to surpass the threshold.
For this reason, the optimal readout time with a JPA is shorter, having faster tun-
neling times t↑out,JPA and t↓in,JPA. Spin mapping errors due to thermal excitation and
relaxation are negligible due to their large time constant, being the relaxation time
T1 = 5.2 s and the time constant for a thermal excitation t↓out = 309 s and 70 s without
and with the JPA, respectively. The white dashed lines in Fig. 5.5.7 pass through
the maximum in FM and correspond with the 1D-plots presented in Fig. 5.5.6d and
e.

We obtain a maximum spin readout fidelity FM = 98.85% without the JPA at
∆t = 434 µs and feff,BW = 25 kHz and FM,JPA = 99.45% for measurements obtained
with a JPA using ∆tJPA = 268 µs and fJPA

eff,BW = 122 kHz. We note FM,JPA = 99%
is already achieved at ∆tJPA = 131 µs. We further explore machine learning-based
approaches to improve readout fidelity [269, 270]. Here, by using Neural Networks,
we report an increased fidelity of FM = 99.1% in ∆t = 500 µs, and FM,JPA = 99.54%
in ∆t = 250 µs without and with a JPA respectively (See Sec. 5.5.5 for more infor-
mation).

5.5.5 Machine learning spin labelling approach

The previous sections describe how to obtain the electrical fidelity using the proba-
bility density function of the rf response peak values (Eq. 5.12). However, when using
other spin identification methods, the fidelity can be calculated with an equivalent
method that relies on the number of simulated traces wrongly identified, being:

FE
↑ = 1− n0

↑/Ntot FE
↓ = 1− n1

↓/Ntot. (5.19)

Here, n0
↑ is the number of spin |↑⟩ traces misidentified as |↓⟩ traces, and the

opposite holds for n1
↓. We use this method to calculate the measurement fidelity

when using a neural network method to label the readout traces.
The neural network method summarised in Fig. 5.5.8a was developed and pro-

grammed by David F. Wise. It uses the deep learning architecture known as Incep-
tionTime, a state of the art approach to time series classification. The InceptionTime
network involves a series of convolutional layers which apply learned filters to the
time series to extract its features [271]. The features extracted from Fig. 5.5.8b spin
traces are shown in Fig. 5.5.8c. These features are fed into a fully connected or dense
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Figure 5.5.8: Machine learning fidelity extraction. a) Working protocol of
the machine learning spin-classification approach. b) Simulated spin |↑⟩ and |↓⟩
trace using the parameters for JPA on. c) Output of the InceptionTime convolution
layers with the blip edges enhanced to facilitate trace classification. d) Measurement
fidelity without a JPA using the threshold method approach (light red) and the
machine learning approach (dark red). d) Same for measurements using a JPA,
with threshold (light blue) and machine learning (dark blue) labelling methods.
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layer which assigns one of two classes to the input time series (spin up or down).
The network was trained using the same body of data that the thresholding method
described in the main text, with it divided into training, validation, and test sets.
The training set is used to train the model via gradient descent and the validation set
is monitored during training to avoid overfitting. If the network learns to recognise
the training set too well, then that can compromise its performance on unseen data.
The network that produces the best validation accuracy is selected and is applied
to the test set, which gives the final accuracy data reported here. The approach
used here uses the TSAI package for instantiating the networks and records training
metrics using the Weights and Biases library, which is also used for hyperparameter
optimisation [272, 273].

Figure 5.5.8d and e show an improvement of the fidelity for measurements taken
with and without a JPA. Here, the spin to charge errors is also included as described
in Sec. 5.5.3. We find a maximum fidelity FM = 99.1% for ∆t = 500 µs without
using a JPA and F JPA

M = 99.54% with a JPA for ∆tJPA = 250 µs. We observed that,
when using the machine learning classification method, the measurement fidelity stays
almost constant as the readout time, ∆t, increases. This is because the optimised
filters enhance the blip edges features, mitigating the errors that appeared in the
threshold method when the background noise surpasses the threshold.

5.6 Conclusions

In this chapter, we have demonstrated spin-dependent tunneling readout using a SEB.
The results indicate that CMOS-compatible fabrication methods and the nanowire
geometry with its corner quantum dots hold considerable promise for high-quality
qubits compatible with scalable manufacture. On one hand, although the spin co-
herence time, T2, ultimately limits qubit lifetime, the long spin relaxation times we
measure (up to 9 s) are particularly encouraging for these devices. Moreover, the large
valley splittings guarantee that the spin qubits will remain on their computational
basis.

We also performed single-shot spin readout achieving a measurement fidelity
FM =99.54% in ∆t = 250µs. The results presented here are one of the few demon-
strations of spin-dependent tunneling readout with a fidelity above the fault-tolerant
threshold for the surface code (99%), having the additional advantage of using a
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compact charge sensor (SEB). As a downside, the readout time is relatively long
compared to silicon spin coherent times (T2 ∼ 120µs [62]).

The long readout time is a consequence of the spin-dependent tunneling readout.
In this method, spin |↑⟩ and |↓⟩ cannot be differentiated until the spin |↑⟩ leaves the
dot, characterised by the tunneling time t↑out, which in our experiments was t↑out >

31µs. A long t↑out adds an idle time to ∆t and, therefore, slows down the readout.
This is not the case for Pauli Spin Blockade, in which the idle time, given by the spin
tunneling time between dots, is usually minimal. For this reason, the next chapter is
focused on PSB readout.

In terms of scalability, the reduced footprint of the SEB compared to standard
dissipative charge sensors, like the SET, will facilitate the development of highly-
connected quantum dot-based quantum processors. As an example, these split-gate
nanowire devices can be naturally scaled to produce 2xn arrays of corner quantum
dots [178, 229] — such devices could represent a 1D spin qubit array along one edge
of the nanowire, where end qubits have charge sensors used for readout based on the
approach presented here. 1D qubit arrays are well-suited for certain quantum simu-
lation problems, such as a variational quantum eigensolver approach to the Hubbard
model [274, 275]. Spin shuttling [276] or qubit SWAPping [88] could transport qubits
to the ends of the array, however, for some algorithms readout of an end-qubit ancilla
is sufficient [277].
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6
Towards singlet-triplet readout using a

SEB

This chapter summarises the efforts towards singlet-triplet readout using a SEB as a
charge sensor. We first compare Pauli spin blockade and spin-dependent tunneling
as spin-to charge conversion methods. Then, we describe how to use the SEB as a
charge sensor for multiple target dots and show some evidence of Pauli spin blockade.

6.1 Motivation for Pauli Spin blockade readout

In the previous chapter, we concluded that the readout time, ∆t, was limited by
the spin-to-charge conversion method. Spin-dependent tunneling has an idle time in
which the spin states are indistinguishable, given by the time that a spin |↑⟩ electron
takes to leave the dot, t↑out. This sets the ideal parameters for a fast and high fidelity
readout: a short t↑out that minimises the idle time and a long t↓in to better distinguish
between spin states. However, t↓in and t↑out are usually of the same order and cannot
be tuned independently.
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Singlet-triplet readout offers an alternative that minimises the delay without influ-
encing the period in which the spin configurations are distinguishable. As explained
in Sec. 2.2.3, singlet-triplet readout is based on Pauli spin blockade. If the system is
in the singlet state S(1, 1), it can tunnel to S(2, 0), whereas if the system is in one
of the triplet states T (1, 1), it will stay in the (1,1) configuration, until it relaxes to
S(1, 1) in a time given by T1. Changes in the charge configuration produced by an
electron tunneling are registered using a charge detector.

We can make a parallelism between the traces generated using spin-dependent
tunneling and Pauli spin blockade (PSB). In both cases, there is a delay time, tdelay,
in which the spin traces are indistinguishable. In the case of spin-dependent tunneling
this is given by t↑out, whereas for Pauli spin blockade, this time is characterised by the
inter-dot tunneling rate Γt. Both methods also share a time in which the spin states
are distinguishable, tdetect. For spin-dependent tunneling this time corresponds to t↓in,
whereas for Pauli spin blockade this time is given by the relaxation time, T1. Γt is
normally much faster than T1 (sometimes even faster than the sensor bandwidth),
making PSB a more advantageous spin to charge conversion method since tdelay <<

tdetect (See Fig. 6.1.1).
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Figure 6.1.1: Charge sensor simulated readout traces. From the point of
view of a charge sensor a spin readout trace is characterised by two times: a delay
time in which the two spin states are indistinguishable and a detect time which
is used for spin detection. For Pauli spin blockade the delay time is the inter-dot
tunneling and T1 is the sum of the delay and detect time (left). For spin dependent
tunneling the delay time is t↑out and the detect time is t↓in (right).
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6.1.1 Measurement fidelity for asymmetric tunneling rates

ET

S

a) b)

Figure 6.1.2: Simulated PSB readout traces. a) Spin |↑⟩ and |↓⟩ traces sim-
ulated using the experimental parameters of measurements taken with a JPA, with
the exception of t↑out and t↓in that are modified to emulate triplets and singlets. The
spin |↑⟩ is equivalent to a triple trace and, in the same way, the spin |↓⟩ is equivalent
to a singlet trace. The traces shown have a readout bandwidth of feff,BW = 122 kHz.
b) 1− FE as a function of the readout time.

Here, we investigate the measurement fidelity for asymmetric tunneling rates –
a fast tdelay whereas tdetect remains long – to reduce the readout time necessary to
achieve a fidelity above 99%. These kinds of traces are shown in Fig. 6.1.2a and are
very similar to the ones from singlet and triplet traces.

To obtain the fidelity, we simulate traces like in Sec. 5.5.2 using the experimen-
tal values from measurements taken with a JPA (E(high), E(low), σhigh, σlow, Γs

and proportion of spin |↓⟩). The tunneling rates are modified in order to emulate
triplet/singlet traces. We chose t↑out = 0.01 µs and t↓in = 228 µs, so that t↓in is equal
to the triplet relaxation time T1 from the Pauli Spin blockade experiment described
in [98].

The average of the trace during ∆t is compared against a threshold, which is
varied to obtain the maximum fidelity. Figure 6.1.2b has the fidelity at different
readout times, ∆t. We obtain a maximum FE = 99.3% for a readout time ∆t = 4 µs.
This result shows that the SEB could assign a spin label in much shorter timescales
with equivalent fidelity if a spin-to-charge conversion mechanism with these tunneling
characteristics could be used.

148



CHAPTER 6. TOWARDS SINGLET-TRIPLET READOUT USING A SEB 149

6.2 SEB as a DQD charge sensor

The following sections describe our attempt to measure Pauli spin blockade between
two dots, so-called dot 1 and dot 2, placed in the same nanowire. We use a device like
the one sketched in Fig. 6.2.1a that can hold up to four quantum dots, one under
each gate. We select the dots facing each other for PSB to ensure a higher inter-dot
tunneling rate, since the distance between them (SV = 40 nm) is smaller than the
distance between consecutive dots (SH = 50 nm). From the remaining dots, one is
coupled to a resonator to act as a SEB, whereas the other is not used during this
experiment. The dummy dot is completely depleted by applying a negative voltage
on the gate above it (V3 = −300 mV).

SEB

12

a) b) c)

Figure 6.2.1: DQD charge sensor. a) Sketch of the four qubit nanowire. b)
Stability diagram between the SEB and dot 1. c) rf-response along the compensated
gate V1,c that follows the dashed blacked line from b).

The potential in dot 1, dot 2 and the SEB can be tuned independently by the
voltage applied on the gates above them (V1 , V2 and VSEB, respectively). However,
as shown in Fig. 6.2.1b, the voltage applied to the target dots also weakly affects the
SEB due to their capacitive coupling. To use the SEB as a charge sensor, VSEB is
linearly compensated as [107]:

VSEB,c = VSEB − αSEB,1∆V1 − αSEB,2∆V2, (6.1)

where ∆V1 and ∆V2 are the increment on the gates voltage and αSEB,1 and αSEB,2

are the cross lever arms as described in Sec. 4.3.1. Fig. 6.2.1c shows how using linear
compensation rf-response is maintained constant as V1,c is swept until a new electron
is added to the target dot. With this method, we can characterise the absolute
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electron number in dot 1 and dot 2 and uncover voltage sections with a constant charge
configuration, as observed in Fig. 6.2.2.

For PSB we are interested in charge fluctuations between dot 1 and dot 2. We
observed that, although the SEB is weakly sensitive to dot 2, due to the long distance
between them, it is strongly sensitive to charge transitions in dot 1 and between dot 1

and dot 2 (see Fig. 6.2.2). For this reason, to maximise the rf-response, the sensor is
tuned to be at the top of the SEB electronic transition. The SEB transition is also
power broadened so that small errors in the cross lever arm have a minimal effect on
the measurement.

(0,2)

(0,1) (1,1)

(1,2)

Figure 6.2.2: Compensated DQD stability diagram. Charge stability dia-
gram of the double quantum dot. The electron number is shown as (N1, N2), where
N1 is the number of electrons in dot 1 and N2 is the number of electrons in dot 2
and

6.3 Evidence of Pauli Spin blockade

Using the SEB as a charge sensor for dot 1 and dot 2, we identify the (1,1)-(0,2)
transition. If PSB is observable, the inter dot charge transition (ICT) should look
different depending on whether is obtained sweeping from the (2,0) to the (1,1) region
(see Fig. 6.3.1a) or from the (1,1) to the (2,0) configuration (see Fig. 6.3.1b).

Sweeping V2,c slowly from the (2,0) to the (1,1) region, an electron should tunnel
between the dots independently of the spin configuration. We observed that the
system remains in the (2,0) configuration after passing the ICT, and uses the reservoirs
to do a (0,2)-(0,1)-(1,1) transition. We identify that this is produced due to a slow
inter-dot tunneling rate with respect to the voltage sweep (20 Hz). We measure the
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same behaviour when sweeping from (1,1) to (2,0). In this case, the singlet state
S(1, 1) can tunnel directly to S(0, 2), whereas, the triplet states remain in the T (1, 1)
configuration until they relax to a singlet state or until the triplets T (0, 2) become
available. Since the inter-dot tunneling rate is so slow, triplets and singlets both
remain in the (1,1) configuration until they can tunnel to the (0,2) region using the
reservoir as (1,1)-(1,2)-(0,2). Having slow inter-dot tunneling rates is a disadvantage
for PSB readout because it increases the tdelay in which singlet and triplet states are
indistinguishable.

(1,2)

(1,1)
(0,1)

(0,2)

From (3,1) to (4,0)From (0,2)  to (1,1) From (1,1) to (0,2)
a) b) c)

(0,2)
(1,2)

(1,1)
(0,1)

rf
-r

es
p
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se

Figure 6.3.1: Interdot charge transition. a) Interdot charge transition (ICT)
in which V2,c is swept downwards from (0,2) to (1,1). b) Same ICT from (1,1) to
(2,0). The brown line indicates where the inter dot transition should be. Tunneling
only occurs once the system has passed the reservoir transition due to the slow inter
dot tunneling rates. c) ICT measured from (3,1) to (2,0) in which PSB observed.
Image courtesy of Giovanni Oakes [98].

As a comparison, Fig. 6.3.1c shows a successful implementation of PSB in a similar
device performed by Giovanni Oakes. In that demonstration, the inter-dot tunneling
rates are Γt > 1MHz. So that singlet states can rapidly tunnel between dots. The
size of the trapezoidal region, in which PSB occurs, is dictated by the value of the
excited valley state.

To measure Γt, we send a 2-level pulse that switches the system between the
positions marked as orange circles in Fig. 6.3.2a. First, the system rapidly tunnels to
(2,0) using the reservoirs and goes slowly to (1,1) through the inter dot transition.
By fitting an average of the second part of the pulse to an exponential we obtain
1/Γt = 720± 190 ms (see Fig. 6.3.2b for the equivalent (4,0)-(3,1) transition).

Now, we want to test whether we see any kind of asymmetry when pulsing in the
opposite direction. In this case, the system tunnels quickly to (1,1) using the reservoirs
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(2,1)

(1,1)
(1,0)

(2,0)

(2,0)

(2,1)

(1,1)
(1,0)

(2,0)

From (2,0) to (1,1) From (1,1) to (2,0)

(4,0)    (3,1)

1/Γc=90ms tdelay=210ms

a) c)

d)b)

(3,1)    (4,0)

Figure 6.3.2: Asymmetries in the inter dot tunneling rates. a) Sketch of
the inter dot charge transition (ICT). The dot to reservoir transitions have been
extended with dashed lines to indicate the area in which the electrons cannot use
the reservoirs to tunnel to the other dot. The orange circles marked the position
of the two-level pulse used to measure the inter dot tunneling rate. b) Histogram
and exponential fit of the time that the system takes to pass from the (4,0) to the
(3,1) configuration using the protocol pictured in a). c) The orange circles show the
position of the two-level pulsed used to measure the tunneling time from (3,1) to
(4,0). d) Histogram and exponential fit of the time that the system takes to tunnel
from (3,1) to (4,0).
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and through the inter dot transition to (2,0) (see Fig. 6.3.2c). If the relaxation time
between the triplet and singlet is larger than 1/Γt, we should observe that the system
decays from (1,1) to (2,0) slower than what we measured before. The exponential
decay will be a combination of Γt and T1 related to the initial proportion of singlet
and triplets, which is unknown. For comparison, we just fit the decay to a single
exponential obtaining a decay constant tDecay = 1.735 ± 0.056 s. The difference in
decay times indicates that the device shows signs of Pauli spin blockade when a
magnetic field of B = 1 T is applied. However, the readout time to distinguish
between triplets and singlets should be at least longer than 1/Γt, hindering fast single-
shot readout.

We tried two different approaches to increase the coupling between dots and, in
turn, Γt. The first one was to try the same experiment in the (3,1)-(4,0) transition.
Dots with more electrons have a larger size so that the distance between dots de-
creases. We obtained a 1/Γt = 90 ± 4 ms, which is faster than before, but still too
slow for fast high-fidelity single-shot readout. The second approach was to increase
the top gate from Vtop = 5V to Vtop = 10V. A higher voltage in the top gate should
pull the dots together, increasing Γt. However, the top gate increased the device
charge noise to the point that it made PSB readout problematic.

6.4 Conclusions

S D

2

3

4

SEB

Figure 6.4.1: Wrap-around gate nanowire with four dots. False coloured
scanning electron micrograph of a silicon nanowire transistor with wrap around
gates, under which QDs form. One of the dots was used as a SEB, whereas PSB
was measured between the dots formed under the gates 2 and 3. Image courtesy of
Giovanni Oakes [98].
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In this chapter we have demonstrated some signature consistent with Pauli spin
blockade: there is an asymmetry in the measured tunneling rates from the (2,0) to the
(1,1) configuration and vice versa. However, the slow inter dot tunneling rates prevent
differentiation between triplet and singlet states. The devices could benefit from a
barrier gate running along the nanowire that allows fine control of the tunneling rates
between facing dots.

Although single-shot readout of singlet-triplet states could not be realised during
the duration of this thesis, the project was taken over by another student from the
same group that was able to achieve PSB with a fidelity of FM = 99.2% in ∆t = 6µs
(Giovanni Oakes). The device used for that experiment had four wrap-around gates
(not split in the middle) as shown in Fig. 6.4.1. We suspect that, in that device, dots
were formed in the middle of the nanowire instead of in the corners, which increased
the tunneling coupling between neighbour dots.
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7
Conclusions and outlook

The results presented in this thesis provide substantial encouragement for silicon
quantum computing because they demonstrate that industrial manufacturing pro-
cesses can provide an appropriate platform for long-lived electron spins. Moreover,
the optimisation of a compact charge sensing method led to the successful demonstra-
tion of a fast and high-fidelity readout. This chapter summarises the main achieve-
ments of this thesis and identifies future research directions and questions that arise
from the results obtained.

7.1 Achievements

7.1.1 CMOS foundry-based quantum devices

Quantum dot fabrication is moving from bespoke processes in university clean-rooms
to industrial semiconductor foundries. This transition holds the promise of creating
homogeneous and reproducible dots that are required for large-scale quantum archi-
tectures. The devices presented in this thesis were fabricated in CEA-Leti and have a
design adapted for quantum applications that can still be fabricated in an industrial
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clean-room at the scale of 300mm wafer (see Sec. 3.1). The transistors are stable over
time and have high rates of yield and reproducibility, forming single, double and four
quantum dots in a nanowire (Chapters 3, 4 and 5). There is the possibility of forming
even more dots in the same nanowire, however, those devices were not measured in
the work presented here.

Their low complexity, with a low number of gates, generate dots well suited for
large scale implementation, in which the single-electron regime is easily achievable.
However, their simplicity is granted at the expense of a low tunability, which is slightly
compensated by the overarching top metal gate for the global control of the tunneling
rates.

One of the achievements in this thesis is the measurement of exceptionally long
relaxation times in Chapter 5, which together with the high lying valley splitting, put
the nanowire corner dots in an advantageous position, with the promise of a fruitful
future.

7.1.2 Highly sensitive compact charge sensing

This thesis presents the single electron box (SEB) as a scalable alternative to tradi-
tional charge sensors such as single electron transistors (SETs) and quantum point
contacts (QPCs). SETs and QPCs are three-terminal charge sensors that require
two charge reservoirs near the qubit. On the other hand, SEBs consists of just two
terminals and requires only one single reservoir.

For charge sensing, radio-frequency gate-based measurements are used to monitor
the SEB complex impedance. Chapter 4 offers a complete study of the SEB and radio-
frequency working principles. From that analysis, we extract that the performance is
optimised using a SEB with a large lever arm that is strongly sensitive to the target
dot (η = 1). In terms of the resonator, the signal power improves quadratically as
the operating frequency increases. Moreover, the signal can be further optimised
using a well-matched, low-loss and high impedance resonator. Additionally, the noise
generated in the amplification chain can be reduced by a factor of x10 by using a
Josephson parameter amplifier as the first amplifier instead of a HEMT. This noise
reduction only translates into an improvement in the sensor signal to noise ratio
(SNR) if the main source of the noise comes from the amplification chain, as is the
case for SEBs, and not from the sensor.

The experimental application of the aforementioned steps led to the demonstra-
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tion of a SEB with a minimum integration time of τm = 100 ns and a maximum
measurement bandwidth of B = 0.49 MHz. These results place the SEB as a lead-
ing candidate for charge sensing due to its competitive signal to noise ratio and low
footprint.

7.1.3 Single-shot readout

High-fidelity single-shot spin readout is a prerequisite for large-scale semiconductor
spin-based quantum computers. Retrieving the qubit state with high fidelity and
faster than the coherence time is paramount for error correction. In Chapter 5, the
highly optimised SEB is put to use as a charge sensor to measure the spin state in
a neighbour dot. In this implementation, the SEB and the target dot are integrated
with the same technology, being the quantum dots formed in the opposite corners of
the same nanowire.

Chapter 5 shows a demonstration of spin readout using spin-dependent tunneling
with a measurement fidelity above the fault-tolerant threshold for the surface error
correction code, FM = 99.54%. The duration of the measurement trace, ∆t, needs to
be ∆t = 250µs to achieve that fidelity. The length of ∆t is set by the waiting time
inherit from spin-dependent tunneling. We explore Pauli spin blockade as a different
method for spin-to-charge conversion and predict that, with the same sensor, we could
achieve a spin readout with a fidelity FM = 99.3% in ∆t = 4µs. Chapter 6 shows the
work towards realising Pauli spin blockade using a SEB as a charge sensor. Although
such demonstration was not completed during this thesis, the high and fast readout
prediction is confirmed by the results presented in [98], in which Giovanni Oakes
(a member from the same research group) achieved Pauli spin readout with a SEB
achieving a fidelity FM = 99.2% in ∆t = 6µs.

7.2 Next steps

7.2.1 CMOS devices

Nanowire architecture

The nanowires presented here can be extended to produce a 2xn array of qubits. For
the readout, a SEB can be placed at each end of the nanowire (see Fig. 7.2.1a). In
this implementation, the qubits would have to be read sequentially like in a serial
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shift register, which would require the implementation of SWAP gates, increasing the
computation time. Alternatively, the dots on one column could store qubits, whereas
the dots on the other column could be used as sensors for Pauli spin blockade readout
using in-situ readout(see Fig. 7.2.1b).

Figure 7.2.1: Nanowire architecture. a) Double column of dot arrays termi-
nated in a SEB that is used as a sensor. Here, the blue gates with empty circles
represent the qubits and the red gates with fill circles the charge sensors. b) In
this implementation each qubit has a nearby sensor that reads the qubit state using
in-situ readout.

One-qubit operations can be performed by applying a global ac magnetic field, in
which qubits would be tuned in and out of the resonance by electrically controlling
their Stark shift. For two-qubit gates, nearest neighbours can interact via exchange
coupling.

Figure 7.2.2: 2d architecture. Artistic representation of a two-dimensional spin
qubit architecture formed by nanowires arranged in a grid. The hardware junctions
can couple up to four qubits. Image retrieved from [82].

To create a 2-dimensional qubit processor, the nanowires can be set forming a grid.
At the points where the nanowires cross, a new junction structure can be included to
couple up to four qubits via SWAP operations and spin shuttling. This architecture
is depicted in Fig. 7.2.2.
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Relaxation time

The intriguing results concerning the relaxation time warrant further investigations
to ascertain how the device geometry, surface defects and growth conditions affect the
dot shape, which in turn, determines the spin-valley coupling and relaxation time. At
the same time, the utilisation of 28Si as opposed to natural silicon would enhance the
quality of any spin qubit produced with these devices, as it has been already included
in industrially fabricated device [75]

Inter-dot tunneling rate

Based on the results presented in Chapter 6, Pauli spin readout was prevented by the
slow tunneling rates between dots, which could not be sufficiently increased by the
overarching gate. Including a barrier gate between dots could increase the control
over the inter-dot tunneling. Moreover, if such a gate was compatible with fast pulses,
it would allow a rapid control of the exchange interaction to perform exchange gates
with a symmetric operation.

7.2.2 Sensor improvements

The SNR of the sensor presented here is limited by the JPA dynamic range. To
avoid the overloading of the JPA, the reflectometry measurements had to be taken at
the frequency corresponding with the minimum |Γ| of the resonator. This prevented
operating at the optimal frequency with a corresponding detriment of a factor of x2
in the SNR. Using a TWPA, whose dynamic range is superior to the JPAs, could
avoid this issue. Moreover, if the JPA/TWPA was operated in the phase sensitive
mode, the noise included by amplification could be reduced below the quantum limit.

Another factor that negatively affects the SNR is the parasitic capacitance, which
sets an upper limit for the resonant frequency and reduces the percentage of the
tunneling capacitance from the total capacitance. To reduce it, the resonator could
be inductively coupled rather than capacitively coupled. In this scenario, perfect
matching could be achieved by using an array of SQUIDs as tunable inductances.
Additionally, the parasitic capacitance can also be reduced by utilising on-chip mi-
crowave resonators with smaller components.

In terms of the SEB, further improvements in the SNR can be achieved by creating
devices with smaller equivalent oxide thickness, and hence larger lever arms (α).
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Finally, another line of research could be to explore the suitability at cryogenic
temperatures of other methods to measure capacitance that could eliminate the effect
of the parasitic capacitance [278].

7.2.3 Scalability

There are two parallel paths to face the increasing number of sensors. The first one,
followed in this thesis, consists of reducing the footprint and terminals that the sensor
requires. The second one is based on reducing the number of sensors. This can be done
by extending the range one sensor can cover. Both routes are not mutually exclusive
and their combination could be the solution to stop an exponential increment in the
processor complexity.

As the number of qubits increases, so does the number of sensors and resonators.
On one hand, the number of resonators can be reduced by using time-division multiple
access (TDMA), in which the qubits are readout sequentially using a single resonator.
In addition, several qubits could be read simultaneously, reducing the number of
required fast lines per sensor. This is possible thanks to frequency-domain multiple
access (FDMA), in which a resonator chip has many resonant frequencies since it
includes several inductors.

Additionally, one of the main issues for reflectometry measurements is the large
size of the resonator, which is normally not integrable together with the quantum
layer. The resonator dimensions are limited to 100x100 µm2 due to the inductor size.
Further research on high-inductance-density materials is indispensable to reduce the
inductance size.
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Readout method Paper spin qubit sensor FM ∆t T1

SDT Morello2010 [146] Donor P SET 96 100 µs 100 ms

Watson2015 [166] Donor P SET 99.6 55 µs 7 s

Veldhorst2014 [62] MOS SET 92 2 ms 1 ms

Watson2018 [68] Si/SiGe SET 73 65 µs 3.7 ms

Keith2019 [147] Donor P RF-SET 97.8 1.5 µs 20 s

Oakes&Ciriano2022 [98] MOS NW SEB 99.54 250 µs 5 s

Hogg2022 [279] Donor P SEB 95 66 µs 9 s

PSB Broome2017 [280] Donor P SET 98.4 20 ms 500 ms

Fogarty2018 [154] MOS SET 70 200 µs

Zhao2018 [149] MOS SET 99.3 120 µs 22 ms

Harvey-Collard2018 [150] MOS SET 99.3 150 µs 15 ms

Connors2019 [156] Si/SiGe RF-SET 82.9 2.1 µs 11 µs

Borjans2021 [281] Si/SiGe SEB 99.2 100 µs 1.17 ms

Oakes&Ciriano2022 [98] MOS NW SEB 99.2 6 µs 230 µs

Pakkiam2018 [282] Donor P in-situ 82.9 300 µs 620 µs

West2019 [283] MOS in-situ 73 2.6 ms 4.5 ms

Zheng2019 [246] Si/SiGe in-situ 98 6 µs 160 µs

LPSB Fogarty2018 [154] MOS SET 99 200 µs 2.8 ms

Harvey-Collard2018 [150] MOS SET 99.8 65 µs 40 ms

Curry2019 [157] MOS SET 99.9 6 µs

Connors2019 [156] Si/SiGe RF-SET 99 1.6 µs 52 µs

Urdampilleta2019 [155] MOS NW in-situ 98 500 µs 900 µs

Table A.0.1: Spin readout with charge sensors in silicon Measurement fi-
delity, FM achieved during a readout time, ∆t with a blockade time T1. The read-
out can be realised either via spin dependent tunneling (SDT), Pauli spin blockade
(PSB) or latched Pauli spin blockade (LPSB). On the other hand, the charge sensors
are divided in single electron box (SEB), in-situ readout with a resonator, quantum
point contacts (QPC) and single electron transistor (SET) in its DC or RF versions
(RF-QPC and RF-SET). The final results of this thesis are included in bold format.
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B
LJPA mathematical description

The simplest model of a Lumped Josephson Parameter Amplifier (LJPA) is formed
by two Josephson junctions forming a SQUID in parallel with a fixed capacitance
as it’s shown in Fig. B.0.1. The SQUID is modelled as a single Josephson junction
with critical current I0 whose inductance can be modulated by the flux applied to
the loop. The model includes the shunted capacitance, C, and Z0 accounting for the
impedance of the microwave environment.

To simulate the behaviour of the JPA, we apply a current I(t) as an external
source. Using Kirchhoff’s current law, we know that the current apply by the source

Figure B.0.1: Schematics of the LJPA. Model of a LJPA consisting on a
SQUID that is included in the equations as a single Josephson junction with tunable
frequency, a shunted capacitance C and an impedance Z0. To study its dynamics,
the LJPA is connected to a current source with output I(t).
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is equal to the sum of the current’s through the JPA’s equivalent circuit as:

I(t) = C
dV

dt
+

V

Z0

+ IJ, (B.1)

where IJ = I0 sin(δt) is the current though the Josephson junction. The voltage
across the Josephson junction relates to the gauge-invariant phase different δ as V =
Φ0

2π
dδ
dt and Φ0 = 2π h̄

2e
is the magnetic flux quantum. This way, by Kirchoff’s voltage

law, Eq. B.1 can be converted to:

C
Φ0

2π

d2δ(t)

dt2
+

1

Z0

Φ0

2π

dδ(t)

dt
+ I0 sin(δ(t)) = I(t), (B.2)

For the current source, we use a small pump tone of frequency ωpump that varies
sinusoidally so that I(t) = Id cos(ωpumpt), where Id < I0. Moreover, by substituting
sin(δ(t)) by its Taylor expression we obtain [284]:

d2δ(t)

dt2
+ 2Γd

dδ(t)

dt
+ ωJPA

2
,0

(
δ(t) +

δ(t)3

6

)
=

2π

Φ0C
Id cos(ωpumpt). (B.3)

This equation corresponds to a soft damped non-linear resonator that can be mod-
eled as a Duffling oscillator [191] with a resonant frequency ωJPA,0 =

√
2πI0/Φ0C =

1/
√
LJ0C and damping rate Γd = 1/2Z0C.
Eq. B.3 can be solved using the ansatz δ(t) = δ0 cos(ωpumpt − θ). The solution

leads to a general situation in which three possible values of δ0 and θ can solve the
differential equation [192]. For small Id only one real-valued solution exists but, as Id
is increased, there are some values of ωpump for which three different real solutions exist
(See Fig. 2.4.5). This is called the bistable regime, where the Josephson bifurcation
amplifier operates [186]. However, for parametric amplification we restrict ourselves
to the regime where the solutions are single valued.

To observe the amplification effect, we can add a weak signal slightly detuned from
the pump frequency Is(t) = Is cos((ωpump+∆ω)t), where Is << Id and∆ω << ωpump.
We can predict that the signal will affect the solution with a small perturbation so:

δ(t) = δ0 cos(ωpumpt− θ) + ϵ(t) (B.4)

Inputting the new ansatz into Eq. B.3 leads to:

d2ϵ(t)

dt2
+ 2Γd

dϵ(t)

dt
+ ϵ(t)ωJPA

2
,0

(
1− δ20

4
− δ20

4
cos(2ωpumpt− 2θ)

)
=

2π

Φ0C
Is cos(ωpumpt+∆ωt),

(B.5)
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where we have used that δ0 cos(ωpumpt − θ) is a solution of the equation and we
have neglected all the terms with higher dependencies on ϵ(t).

Eq. B.5 is a parametrically driven harmonic oscillator whose resonant frequency
is being modified at 2ωpump. The modulation of ωJPA happens at 2ωpump even though
the pump frequency is ωpump. This is due to the fact that the Josephson inductance
is an even function of δ [192]. This way, the LJPA works as a four-wave amplifier, in
which the energy of two pump photons is transferred to a signal photon with frequency
ωsignal = ωpump +∆ω and an idler mode is created symmetrically with respect to the
pump frequency ωidler = ωpump −∆ω as it’s graphically portrayed in Fig. 2.4.3b.
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C
Dependence of Spin relaxation (T1) on

magnetic field

This appendix includes the theory developed by Yann Michel Niquet and Jing Li
published as part of the supplementary information in [99]. The theory focuses on
explaining the relaxation dependence on the magnetic field, with a special emphasis
on the high harmonics that we observed in the angular dependency and the weak
hot-spot.

Here, we discuss the angular dependence of the spin relaxation rate in the Z valleys
of silicon. We consider a silicon quantum dot under a finite magnetic field B⃗. We note
|n, σ⟩ and En,σ = En ± 1

2
g0µbBσ the eigenstates and eigenenergies of the dot in the

absence of spin-orbit coupling, with σ = ±1 the spin quantized along the magnetic
field axis, g0 the bare gyromagnetic factor of the electron and µb Bohr’s magneton.
In these assumptions, the orbitals φn(r⃗) = ⟨r⃗|n⟩ can be chosen real at B⃗ = 0⃗.

In the Fermi Golden rule approximation, the relaxation rate between states |0⟩ ≡
|0,−1⟩ and |1⟩ ≡ |0,+1⟩ is typically proportional to the squared matrix element(s)
| ⟨1|O |0⟩ |2 of one or more observable(s) O [253, 254, 260]. We assume that O is
invariant under time-reversal symmetry, and does not couple spins directly [O is, e.g.,
a local potential V (r⃗) (Johnson-Nyquist noise), an electric dipole operator x, y, or z
(phonons), etc...]. There must, therefore, be a mechanism such as spin-orbit coupling
(SOC) mixing spins in |0⟩ and |1⟩ in order to achieve non-zero ⟨1|O |0⟩’s.

Since SOC is weak in the conduction band of silicon, we can deal with it to first
order in perturbation. Let Hso be the SOC Hamiltonian. The first-order |0⟩ and |1⟩
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states read:

|0̃⟩ = |0⟩+
∑
n̸=0

⟨n,−1|Hso |0,−1⟩
E0 − En

|n,−1⟩

+
∑
n

⟨n,+1|Hso |0,−1⟩
E0 − En − g0µbB

|n,+1⟩
(C.1a)

|1̃⟩ = |1⟩+
∑
n̸=0

⟨n,+1|Hso |0,+1⟩
E0 − En

|n,+1⟩

+
∑
n

⟨n,−1|Hso |0,+1⟩
E0 − En + g0µbB

|n,−1⟩ .
(C.1b)

Hence, since O only couples same spins,

⟨1̃|O |0̃⟩ =
∑
n

⟨0,+1|O |n,+1⟩ ⟨n,+1|Hso |0,−1⟩
E0 − En − g0µbB

+
∑
n

⟨0,+1|Hso |n,−1⟩ ⟨n,−1|O |0,−1⟩
E0 − En + g0µbB

. (C.2)

We will further develop this expression to first order in B⃗, assuming g0µbB ≪ E1−E0.
Neglecting the action of the vector potential on the orbital motion of the electrons in a
first place, the only B-dependent terms are the Zeeman energies on the denominators:

1

E0 − En ± g0µbB
=

1

E0 − En

∓ g0µbB

(E0 − En)2
(C.3)

Then, making use of the time-reversal symmetry relations:

⟨0,+1|O |n,+1⟩ = ⟨0,−1|O |n,−1⟩∗ = ⟨n,−1|O |0,−1⟩ (C.4a)
⟨n,+1|Hso |0,−1⟩ = −⟨n,−1|Hso |0,+1⟩∗

= −⟨0,+1|Hso |n,−1⟩
(C.4b)

we get:

⟨1̃|O |0̃⟩ = 2g0µbB
∑
n

⟨0,+1|O |n,+1⟩ ⟨n,+1|Hso |0,−1⟩
(En − E0)2

. (C.5)

With a SOC operator of the form Hso =
∑

k Pkσk, where Pk are real-space operators
(e.g., velocity operators) and σk are the Pauli matrices (for a spin quantized along
the reference axis z),
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⟨1̃|O |0̃⟩ = iB(αx ⟨+1|σx |−1⟩+ αy ⟨+1|σy |−1⟩ (C.6)
+ αz ⟨+1|σz |−1⟩) , (C.7)

where the αi’s depend on the orbital motion of the electrons. As expected, the
matrix elements ⟨1̃|O |0̃⟩ are proportional to B, since time-reversal symmetry must
be broken by the magnetic field for O to couple opposite spin states.

The orbitals φn(r⃗) being real, the matrix elements of the Pk’s must be imaginary
and those of O must be real according to the time-reversal symmetry relations, Eqs.
(C.4) (this is obvious if the Pk’s are linear combinations of velocity operators and O
is one of the examples given above). Therefore, αx, αy and αz are real, and:

⟨1̃|O |0̃⟩ = iB ⟨+1| α⃗ · σ⃗ |−1⟩ = iB|α⃗| ⟨+1| σ⃗⃗̂α |−1⟩ , (C.8)

where σ⃗⃗̂α is the spin along axis α⃗ = (αx, αy, αz). Since |−1⟩ and |+1⟩ are defined with
respect to the magnetic field axis, | ⟨+1| σ⃗⃗̂α |−1⟩ | = | sin θα|, where θα is the angle
between the magnetic field and the vector α⃗. Hence,

| ⟨1̃|O |0̃⟩ |2 ∝ sin2 θα . (C.9)

This gives rise to the simple uniaxial dependence measured for example in Ref. [137].
In that reference, the effects of SOC are dominated by “spin-valley” mixing, that is
by the n = 1 term in Eq. (C.5) (same orbital in the other valley). In an ideal corner
dot with a (110) mirror symmetry plane, θα shall be the angle with the [110] axis.

The above considerations may not, however, apply when the action of the vector
potential is taken into account. Indeed, in the presence of a vector potential, time-
reversal symmetry transforms φn(B⃗, r⃗) into φ∗

n(−⃗B, r⃗), breaking Eqs. (C.4) and
the resulting cancellations. This is not expected to make much difference for spin-
valley mixing as the ground-states of both valleys effectively behave as zero (or, more
generally, identical) angular momentum states and are, therefore, weakly coupled by
the vector potential. Yet the effects of the vector potential may become relevant when
spin-valley mixing is not dominant.

In order to go further, we can write Eq. (C.2) under the form:

⟨1̃|O |0̃⟩ = ⟨+1|Hc |−1⟩ , (C.10)

where the effective Hamiltonian Hc is:

Hc =
∑
n,k

(
⟨0|O |n⟩ ⟨n|Pk |0⟩
E0 − En − g0µbB

+
⟨0|Pk |n⟩ ⟨n|O |0⟩
E0 − En + g0µbB

)
σk , (C.11)

then expand Hc to first order in B⃗ (being understood that En, |n⟩ and possibly the
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Pk operators depend on B⃗):

Hc = iBα⃗ · σ⃗ +
∑
i,j

λijBiσj , (C.12)

where λij are real scalars. Symmetry considerations may put constraints on the
λij’s.

Assuming B⃗ = B(cos θ, sin θ, 0), we may then sort out the angular dependence of
the matrix element ⟨+1|Hc |−1⟩. The |+1⟩ and |−1⟩ spin states are the eigenstates
of the Zeeman Hamiltonian:

Hz =
1

2
g0µbB(cos θσx + sin θσy) =

1

2
g0µbB

 0 e−iθ

eiθ 0

 (C.13)

Hence,

|−1⟩ = eiπ/4√
2

(
e−iθ/2 |↑⟩ − eiθ/2 |↓⟩

)
|+1⟩ = e−iπ/4

√
2

(
e−iθ/2 |↑⟩+ eiθ/2 |↓⟩

)
. (C.14)

The above phase factors have been chosen for convenience. Then,

⟨+1|σx |−1⟩ = + sin θ
⟨+1|σy |−1⟩ = − cos θ
⟨+1|σz |−1⟩ = i . (C.15)

Therefore, after substitution in Eq. (C.10) and trigonometric manipulations,

⟨+1|Hc |−1⟩ = B(a0 + ic1 cos θ + is1 sin θ (C.16)
+ c2 cos 2θ + s2 sin 2θ) , (C.17)

where a0, c1, s1, c2 and s2 are real. This matrix element does, therefore, feature sinnθ
and cosnθ harmonics up to n = 2 – Hence the relaxation rate, which is∝ | ⟨1|Hc |0⟩ |2,
features n = 0, n = 2, and n = 4 harmonics. We may thus write, in general,

Γ = γ0 + γ2 cos[2(θ − θ02)] + γ4 cos[4(θ − θ04)] . (C.18)

Note that the relaxation rate is invariant under the transformation θ → θ + π (B⃗ →
−B⃗), as expected. Competing relaxation mechanisms may yield different γ’s and θ0’s;
yet trigonometric relations easily show that the sum over mechanisms can always be
refactored under that form.

Higher-order harmonics may result from the breakdown of one of the above as-
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sumptions [first-order developments in B and Hso, validity of Fermi Golden Rule
(multi-phonon/photon processes)...], or from extrinsic contributions. Also, the pref-
actors of the relaxation rates scale as a power of the Larmor frequency, ω (ω3 to ω5

for phonons, ω for Johnson Nyquist noise), which may introduce extra angular depen-
dences through the anisotropy of the g-factors. However, the contribution of g-factors
to the angular dependence of the relaxation rates is presumably very weak in silicon,
as they remain usually very close to 2 whatever the orientation of the magnetic field.

Examples of pure cos[4(θ − θ04)] dependences have for example been given in
Ref. [252] (relaxation owing to phonon-induced shear strains in a highly symmet-
ric dot). The enumeration of possible symmetry invariants in Eq. (C.12) suggests
that the relative weight of n = 4 harmonics shall actually increase when the dot gets
more symmetric [going, e.g., from a single mirror symmetry plane (Cs group) to a
double mirror symmetry plane (C2v group)].

In the present experiments, the angular dependence of the relaxation rate is indeed
dominated by n = 2 and n = 4 harmonics, although significant n = 6 and n = 8
contributions may also be needed to reproduce the behavior around θ = 0. Without
further knowledge about the shape of that particular dot, it remains, however, difficult
to make detailed predictions. Still, the presence of strong n = 4 harmonics suggests,
as discussed above, that the relaxation is not dominated by spin-valley mixing at
B = 1 T (nor at any field given the absence of measurable hot spot at the crossing
between the ground valley spin up state and the excited valley spin down state). Both
the weakness of spin-valley mixing effects and the presence of sizable n > 2 harmonics
are consistent with a dot showing high in-plane symmetry [255].
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