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Abstract  

Ketamine is a rapidly-acting antidepressant and has shown to be effective in depressed 

individuals who have previously failed to benefit from other available treatments. An important 

question is how ketamine works. Addressing this might help inform more targeted and efficient 

treatments in the future. The aim of this thesis was to examine the neural, cognitive, and 

computational mechanisms underpinning the antidepressant response to ketamine in 

treatment-resistant depression. The work has specifically focused on motivational processing, 

since ketamine is particularly effective in alleviating symptoms of anhedonia, which are thought 

to be related to impaired reward-related function. Following a general introduction (Chapter 1), 

the first experimental chapter (Chapter 2) focuses on identifying suitable reward and 

punishment tasks for repeated testing in a clinical trial. Test-retest properties of various tasks 

are explored in healthy individuals, assessed by both traditional measures of task performance 

(e.g., accuracy) and computational parameters. Chapter 3 outlines a pilot simultaneous EEG-

fMRI study in healthy individuals probing the neural dynamics of the motivation to exert 

cognitive effort, an important but understudied process in depression. The third study (Chapter 

4) uses resting-state fMRI to examine how ketamine modulates fronto-striatal circuitry, which is 

known to drive motivational behaviour, in depressed and healthy individuals. The final 

experimental chapter (Chapter 5) examines which cognitive and computational measures of 

motivational processing (using tasks identified in Chapter 2) change following a single dose of 

ketamine compared to placebo in depression, using a crossover design. Based on preliminary 

findings, it is tentatively proposed that ketamine might affect reward processing by enhancing 

fronto-striatal circuitry functional connectivity, as well as by increasing exploratory behaviours, 

and possibly punishment learning rates. The general discussion (Chapter 6) discusses these 

findings in relation to contemporary models of anhedonia and antidepressant action, 

considering both the limitations of the work presented and possible future directions. 
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Impact statement  

Depression is recognised as one of the most prevalent and debilitating conditions, affecting 

millions worldwide. Understanding how effective treatments of depression work, provides a 

direct translational link to making a future impact in psychiatry. In particular, the current thesis 

provides several important contributions related to our understanding of how ketamine works 

as an antidepressant, highlighting the value of cognitive, computational, and neural measures 

to psychiatry. 

 

In Chapter 2 I show that several cognitive tasks assessing reward and punishment processes 

demonstrate sufficient reliability. This is an important methodological aspect that, thus far, has 

received limited consideration in the field. However, if cognitive neuroscience is to have an 

impact on translational ambitions in psychiatry, establishing the reliability of cognitive 

measures will be a key element for such successful efforts. These results thus provide 

encouraging evidence for both translational frameworks and research aiming to better 

understand individual differences in motivational processing. 

 

Our understanding of cognitive effort is advanced in Chapter 3. Cognitive effort informs a 

variety of functions important in daily life, such as academic and work success. While this study 

did not directly examine real-life outcomes, it provides a cognitive and neural basis to examine 

this and how it might relate to depression, an underexplored area. Specifically, a more 

ecologically valid and more accessible task was developed (compared to previous paradigms), 

with results suggesting that motivation to exert cognitive effort is modulated by balancing 

rewards against the effort required to obtain them. Neuroimaging data suggested that effort 

sensitivity might be encoded in a network of prefrontal cortex regions and by a P3-like event-

related potential. Future studies should explore whether these brain correlates of motivation 

are impaired in depression.  

 

Chapters 4 and 5 attempt to clarify the motivational processes underlying ketamine’s beneficial 

effects in depression. In line with models of anhedonia, we identified that ketamine increases 
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functional connectivity within fronto-striatal circuitry, with some of these changes linked to 

acute and sustained improvements in anhedonia. If replicated, this might indicate one possible 

neural mechanism of ketamine’s beneficial effects. It was further observed that ketamine can 

increase exploratory behaviours, albeit this finding is preliminary due to the small sample size, 

and it is currently unclear whether this directly mediates ketamine’s beneficial effects. This 

needs to be clarified in future studies. These findings nevertheless shed light on possible 

mechanisms of action of ketamine and open up new avenues to explore in depression.  
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1 General Introduction  

1.1 Major depressive disorder  

Major depressive disorder (MDD) is one of the most common mental health conditions, 

affecting around 280 million people worldwide (Institute of Health Metrics and Evaluation, 

2022). The current conceptualisation and diagnosis of MDD is based on reaching several 

symptom criteria. These are listed in the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5), one of the most widely used manuals for psychiatric diagnoses (American Psychiatric 

Association, 2013). They include the presence of an episode lasting at least two weeks with at 

least one out of two cardinal depressive symptoms: dysphoria (‘low or depressed mood most of 

the day, nearly every day’) or anhedonia (‘markedly diminished interest or pleasure in all, or 

almost all, activities most of the day, nearly every day’). To meet a diagnosis of MDD, at least 

four (or three, if dysphoria and anhedonia are both present) of the following symptoms must 

additionally be present: weight change, sleep pattern change, psychomotor change, fatigue or 

loss of energy, feelings of worthlessness or guilt, indecisiveness or diminished ability to 

think/concentrate, and suicide-related thoughts/behaviours. All these symptoms, excluding 

weight change and suicidal ideation, should be present nearly every day. Thus, our current 

characterisation of MDD is based on a cluster of co-occurring symptoms, which must cause 

significant distress and functional impairment.  

 

MDD is thus associated with large impairments in daily functioning, contributing significantly to 

the overall global burden of disease as the leading cause of disability (Wittchen et al., 2011). 

The need to effectively treat and prevent MDD is further highlighted by the associated 

increased mortality risk, most notably from suicide, which is the fourth leading cause of death 

in young adults (World Health Organization, 2021). Despite the devastating impact of MDD, 

mechanistic insight into its aetiology is lacking, hampering progress in predicting and treating 

MDD (Insel et al., 2010). In contrast to many other medical conditions, there are currently no 

approved objective diagnostic tools, such as a laboratory test, to diagnose or inform treatment 

options for MDD. There is a consensus amongst researchers that MDD is a complex psychiatric 
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disorder, thought to stem from multiple interacting risk factors including, genetic, 

environmental, and psychosocial (Fried & Robinaugh, 2020).  

 

Indeed, research over the past several decades indicates that MDD is not a singular disorder but 

encompasses great heterogeneity between individuals. This is illustrated in part by the range 

and possible combinations of symptoms to obtain a diagnosis of MDD in the DSM-5. For 

example, in a study examining overlap among seven common depression scales, over 50 

distinct depressive symptoms were reported, demonstrating low overlap in scales purportedly 

all measuring the same construct (Fried, 2017). This complexity has motivated calls for a 

paradigm shift in psychiatry research toward better understanding of specific symptom 

dimensions, which may map onto discrete neurobiological mechanisms more closely than 

categorical diagnoses. One example of this shift is the Research Domain Criteria (RDoC) by the 

NIMH (Insel et al., 2010). The motivation here is that such an approach is more likely to allow 

for the identification of mechanistic pathways underlying specific symptoms, as it is unlikely 

that a common mechanism will explain two individuals with completely different 

symptomatology, even though they might both be diagnosed with MDD.  

 

1.2 Anhedonia  

Historically, the focus in MDD has been on understanding and treating low mood; however, as 

will be discussed in the following sections, current MDD treatments do not adequately address 

symptoms of anhedonia. Although a cardinal symptom of MDD, anhedonia is also present in 

many other psychiatric disorders, such as schizophrenia, substance use disorder, and 

Parkinson’s disease (American Psychiatric Association, 2013; Hatzigiakoumis et al., 2011; Loas 

et al., 2012). Aspects of anhedonia are also closely related to other symptoms, such as apathy, 

fatigue and avolition (Lambert et al., 2018; Pelizza & Ferrari, 2009) and it is thus considered a 

transdiagnostic construct (Husain & Roiser, 2018; Trøstheim et al., 2020). 

 

Anhedonia is extremely clinically significant; it is associated with greater depression severity, 

loss of functioning, and suicidality (Ballard et al., 2017; Calabrese et al., 2014; Hall et al., 1999; 
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Moos & Cronkite, 1999; Spijker et al., 2001; Vinckier et al., 2017; Wichers et al., 2010; Winer et 

al., 2016). For example, in a large sample of over 900 patients with affective disorders, 

anhedonia was shown to be associated with suicide within one year (Fawcett et al., 1990). 

Similarly, a meta-analysis demonstrated that anhedonia is associated with suicidal ideation, 

even when controlling for general depression, suggesting that anhedonia may represent a 

critical risk factor for suicidal behaviours (Ducasse et al., 2018). A recent analysis of almost 

4,000 MDD participants similarly identified that greater anhedonia was associated with greater 

persistent suicidal ideation (Bloomfield-Clagett et al., 2022). Interestingly, it has been suggested 

that self-reported loss of interest is more predictive of suicidal ideation than loss of pleasure 

(Winer et al., 2016), and similarly that loss of interest, on par with suicidal ideation, represents 

an acute suicide risk factor (Ballard et al., 2016). This indicates that symptoms of anhedonia 

might not be homogenous, as will be discussed in later sections, and that strong links exists 

between anhedonia and suicidal behaviours, highlighting the need to better understand this 

symptom.  

 

The main hypothesis tested in this thesis is that ketamine’s antidepressant effects, especially its 

anti-anhedonic properties, are driven by changes in neural, cognitive and computational 

processes relating to motivation. In the next section I will review common current treatments 

for MDD, namely psychotherapy such as cognitive behavioural therapy (CBT), and 

antidepressants such as selective serotonin reuptake inhibitors (SSRIs). I will argue that these 

treatments do not adequately address symptoms of anhedonia in MDD, highlighting the clinical 

importance of focusing on this symptom. I will then introduce the literature showing that 

ketamine can exert potent and rapid-acting antidepressant effects, even in those characterised 

as treatment-resistant depressed (TRD) patients. A particular focus will be to examine 

ketamine’s anti-anhedonic effects, which may act independently of ketamine’s general 

antidepressant effects. The two most common models of antidepressant mechanisms will then 

be reviewed. These aim to explain MDD and its treatment based on cellular mechanisms in the 

neuroplasticity model, while the cognitive neuropsychological model proposes explanations 

based on neural and cognitive mechanisms. It will be argued that, while these have been 
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informative for understanding treatment effects on mood, they are currently insufficient at 

providing explanations for anhedonia symptoms and lack sophisticated models for ketamine’s 

beneficial effects. Instead, it will be argued, in line with current conceptualisations of 

anhedonia, that a number of reward and punishment processes, subserved by fronto-striatal 

circuits in the brain, might be relevant for understanding anhedonia, and by extension, 

ketamine’s anti-anhedonic properties. I will synthesise the literature suggesting that 

impairments in reward learning, valuation and decision-making, and motivated effort are 

important in MDD and symptoms related to reward-processing. I will then review the literature 

examining ketamine’s effects on neural and cognitive motivational processing. It is highlighted 

that this line of research is still at an early stage and thus only a handful of studies have focused 

on this, with the majority in experimental animals. I will conclude this chapter by outlining the 

thesis hypotheses and predictions, and explain how these will be tested across four 

experimental chapters.  

 

1.3 Common MDD treatments are ineffective for anhedonia 

Psychotherapy is delivered through talking therapy, with the most common type of treatment 

being CBT. The core tenets underlying CBT are based on Beck’s cognitive theory of depression, 

which describes how individuals with depression have dysfunctional cognitive processing 

patterns in which they form negative views about themselves, the world, and the future (the 

‘cognitive triad’) (Beck et al., 1979). This follows from the notion that an individual’s cognition is 

based on attitudes and assumptions (‘schemas’), which are expectations (or ‘priors’ in a 

Bayesian framework) derived from previous experience. Thus, the emphasis is on how 

individuals perceive events. CBT aims to correct these cognitive biases by identifying, 

challenging, and correcting dysfunctional beliefs (Beck et al., 1979).  

 

CBT is an effective psychological intervention for MDD (Butler et al., 2006; Lepping et al., 2017), 

with about 60% of patients benefiting from it (Cuijpers et al., 2010; Rush et al., 2006). Despite 

this, CBT does not seem to adequately address symptoms of anhedonia (as measured with the 

Snaith-Hamilton Pleasure Scale: SHAPS) (Nord et al., 2019), while other symptoms such as low 
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mood and anxiety do improve. Although a recent study suggests that anhedonia can be 

improved with CBT, as measured with the anhedonic depression subscale of the Mood and 

Anxiety Symptom Questionnaire (Brown et al., 2021), this was not assessed in a randomised 

control study, and it is not clear how closely these two scales relate to each other.  

 

In contrast to CBT, behavioural activation (BA) therapy, another form of psychotherapy, 

emphasises actions over cognition to reduce depressive symptoms (Kanter et al., 2010; Manos 

et al., 2010). The goal of BA is to increase engagement in behaviours that might result in 

rewards, through activity monitoring and scheduling, which over time become reinforced and 

thereby boost mood. This approach thus emphasises a relationship between the activities in 

which we engage and mood; whereas CBT stresses that low mood is primarily driven by 

dysfunctional thoughts. As BA targets components relevant to anhedonia (increasing rewarding 

activities), this treatment might be more beneficial for improving this symptom dimension. 

However, as of yet there is limited evidence to suggest this (Sandman & Craske, 2022). Network 

meta-analyses suggest that psychological treatments (including CBT and BA) are superior to 

waitlist controls, but there is little evidence for the effectiveness of one form over the other 

(Ciharova et al., 2021). Overall, however, very little research has examined different 

psychotherapy components and how they affect symptoms related to anhedonia; and although 

some recent efforts have been made to design psychotherapies specifically for anhedonia, 

these have not yet been examined in detail (Sandman & Craske, 2022; Winer et al., 2019). In 

addition, all psychological treatments require some degree of motivation and exertion of 

cognitive effort for effective treatment engagement, which might be particularly difficult for 

individuals struggling with motivation (Khazanov et al., 2021). 

 

Antidepressant medication is the other major class of MDD treatments and tends to be the first 

type offered for depression, especially in moderate-to-severe cases (Bauer et al., 2007; Cleare 

et al., 2015). The antidepressant drugs used today are based on older compounds which were 

discovered serendipitously in the 1950s and later found to target the monoaminergic system 

(Hillhouse & Porter, 2015). This discovery allowed for newer drugs, with fewer side effects, to 
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be developed. However, since their discovery, antidepressants have not changed substantially 

in terms of their effects on the brain and still largely act to enhance monoamine 

neurotransmission. In particular, SSRIs were introduced in the second generation of 

antidepressants, as well as those primarily targeting noradrenaline, or a combination of both 

(Riggs & Gould, 2021). The advent of antidepressants led to the development of the 

monoamine hypothesis, which suggests that a deficiency in, e.g., serotonin, underlies MDD 

(Coppen, 1967). Although there is evidence to suggest that the monoaminergic and 

noradrenergic systems are involved in affective processes, and thereby indirectly in mood 

(Cowen & Browning, 2015; Ruhé et al., 2007), the monoamine hypothesis of depression does 

not adequately address the cause of depression as there has been little convincing evidence to 

suggest that depression is associated with reduced monoamine levels per se (Cowen & 

Browning, 2015; Hirschfeld, 2000).  

 

Furthermore, almost 50% of patients do not benefit from current first-line antidepressant 

medications (Trivedi et al., 2006). Reward-related symptoms further seem particularly resistant 

to standard antidepressants. For example, across two large studies, the severity of an interest-

activity dimension at baseline predicted lower remission rates with standard antidepressants 

(Uher et al., 2012). A similar pattern has been observed in adolescents (McMakin et al., 2012). 

There is also evidence to suggest that SSRIs may blunt neural responses to rewarding stimuli 

(McCabe et al., 2010), consistent with the observation that they can cause emotional blunting 

(Goodwin et al., 2017; Opbroek et al., 2002). 

  

In summary, both psychological and pharmacological treatments inadequately address the core 

depressive symptom of anhedonia and instead might primarily target negative affect (Sandman 

& Craske, 2022). This is further evidenced by reward-related symptoms, such as anhedonia, 

being among the most prominent residual symptoms following both CBT and antidepressant 

treatment (Whiston et al., 2022). An additional important limitation of both treatment classes is 

that they take several weeks to impart clinical efficacy, and a sizable portion of patients 

respond only partially or not at all, exacerbating the global health burden of MDD. Despite the 
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prevalence and debilitating consequences of MDD, current treatments have not substantially 

changed in the past several decades, and these issues highlight the clear need for alternative 

and more effective treatment options. 

 

1.4 Ketamine – a novel rapid-acting antidepressant 

Over the past two decades, ketamine has emerged as a potentially potent antidepressant 

(Zarate & Machado-Vieira, 2017). In contrast to traditional pharmacotherapies, which primarily 

act through monoamine signalling, ketamine is a glutamatergic modulator, blocking N-methyl-

D-aspartate receptors (NMDA-R). Importantly, and distinctly from standard treatments, 

ketamine has rapid-acting antidepressant effects. A derivative of phencyclidine (more 

commonly known as PCP), ketamine was originally developed in the 1960s and has been in use 

since the 1970s as anaesthetic agent (Domino et al., 1965). Outside the laboratory, ketamine 

became known as a ‘club drug’ due to its dissociative effects, especially during the 1990s rave 

scene (Jansen, 2000). Indeed, it was observed that ketamine also produces transient 

psychotomimetic and dissociative effects (Krystal, 1994). These observations led to ketamine 

being widely used in research to model symptoms of psychosis in healthy individuals since the 

1990s. 

 

Over two decades ago, against the backdrop of limited rodent studies suggesting that NMDA-R 

may be important in MDD and antidepressant response (Layer et al., 1995; Skolnick et al., 

1996), a small proof-of-concept study in humans demonstrated that a single sub-anaesthetic 

dose (0.5mg/kg) of ketamine infused over 40 minutes can produce rapid-acting antidepressant 

effects (Berman et al., 2000). In seven patients with MDD, ketamine, but not placebo (saline 

solution), markedly improved mood, which lasted up to 2 weeks. Most notably, these effects 

persisted long past the acute pharmacological effects of ketamine, as the half-life of ketamine is 

relatively short, dissipating from the body within hours (Berman et al., 2000). This study was 

followed-up with a randomised, placebo-controlled, double-blind crossover trial of ketamine 

with 18 TRD patients (on average six previous failed antidepressant trials) (Zarate et al., 2006). 

As in the initial proof-of-concept study, TRD patients showed significant reductions in 
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depressive symptoms within two hours, lasting for one week, with the largest effect observed 

24 hours post-infusion.  

 

As mentioned, ketamine can produce several side effects. These mainly comprise transient 

dissociative and psychomimetic effects that resolve within the first hour or two (Acevedo-Diaz 

et al., 2020). Although some studies have reported that ketamine’s antidepressant effects are 

associated with the dissociative side effects, suggesting that the dissociative effects are 

important for ketamine’s antidepressant effects (Luckenbaugh et al., 2014; Niciu et al., 2018), 

others have only found a weak relationship (Ballard & Zarate, 2020; Mathai et al., 2020). Other 

studies, including pre-clinical work, have suggested that the antidepressant effect does not 

depend on the dissociative effects (Zanos et al., 2016). Although it is not yet clear what role 

ketamine’s dissociative effects play in its antidepressant effects, and these do make the 

blinding of studies very challenging, importantly, the antidepressant effects consistently persist 

much longer than the initial dissociative symptoms. 

 

Ketamine’s rapid antidepressant effects have been replicated in numerous studies with TRD 

patients, including in active placebo randomised controlled trials (which control better for side-

effects) (Murrough et al., 2013), bipolar patients without worsening mania symptoms 

(Diazgranados et al., 2010; Zarate et al., 2012) and in paediatric TRD (Dwyer et al., 2021). 

Indeed, several meta-analyses have shown the efficacy of ketamine in MDD (Coyle & Laws, 

2015; Fond et al., 2014; Kishimoto et al., 2016; McGirr et al., 2015; Wilkinson et al., 2018), with 

an aggregated effect size (standardised mean difference) of 0.89 in reducing depressive 

symptoms 24 hours post-infusion (Kryst et al., 2020). Although ketamine does not produce an 

antidepressant effect in all TRD individuals, around 50-75% of patients show some level of 

clinical response (Krystal et al., 2019). An important finding, especially from a public health 

perspective, has been that ketamine further demonstrates potent anti-suicidal effects (Witt et 

al., 2020). In light of these studies, in 2019 a derivative of ketamine, esketamine, was approved 

by the U.S. Food and Drug Administration for the treatment of TRD, followed by the European 

Medicines Agency. This represents a significant advancement in treatment for MDD, which has 
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only seen a handful of new treatments approved in the last couple of decades, where almost all 

others have been based on a monoaminergic mechanism of action (Fasipe, 2019). Efficacy and 

safety concerns have, however, hampered wide adoption (Turner, 2019). 

 

Intriguingly, recent studies show that ketamine also has rapid-acting anti-anhedonic effects. For 

example, in a randomised, placebo-controlled, double-blind crossover trial with 36 treatment-

resistant bipolar depressed patients, ketamine rapidly improved symptoms of anhedonia 

compared with placebo, as measured with the SHAPS (Lally et al., 2014). This was most 

prominent one day following infusion but lasted up to two weeks. Interestingly, this 

improvement in anhedonia occurred even when controlling for general depressive symptoms, 

suggesting a specific impact on anhedonia. Similarly, in an open-label study with TRD patients, 

ketamine rapidly ameliorated anhedonia (Lally et al., 2015). An exploratory factor analysis on 

symptom scales, pooling across placebo-controlled trials of ketamine, showed that ketamine 

had the greatest effect on an ‘amotivation’ factor, among others (Ballard et al., 2018). Other 

studies have similarly shown that repeated doses of ketamine and esketamine can relieve 

symptoms of anhedonia in TRD patients (Delfino et al., 2021; Rodrigues et al., 2020; Wilkowska 

et al., 2021; Zheng et al., 2022), with one study suggesting that ketamine’s anti-anhedonic 

effects partly mediated improvements in other symptoms, including low mood, suicidal 

ideation, and anxiety (Rodrigues et al., 2020). 

 

This prior work suggests that ketamine has potent anti-anhedonic effects, with preliminary 

studies raising the possibility that the broader antidepressant effects of ketamine may be 

mediated through improvements in anhedonia (Lally et al., 2014). However, the precise neural, 

cognitive, and computational mechanisms underlying these changes remain unknown. This step 

is crucial to better understand ketamine’s mechanisms of action and for the development of 

new therapeutic targets. Motivational processing provides a promising framework to examine 

the mechanisms underlying ketamine’s anti-anhedonic effects, which may identify markers of 

successful treatment, and potentially inform the development of novel interventions that can 

alleviate symptoms of anhedonia.  
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1.5 Current models of antidepressant mechanisms  

1.5.1 Neuroplasticity models 

A central proposal of neuroplasticity models of antidepressant action is that they reverse 

dysfunctional synaptic plasticity mechanisms in MDD (i.e., the changing and shaping of 

neuronal connections in the brain) caused by chronic stress. In particular, disrupted 

homeostatic control of neural regions important for mood and cognition is thought to underlie 

MDD (Duman & Aghajanian, 2012; Kavalali & Monteggia, 2020). Homeostatic synaptic signalling 

here refers to the tendency of neural activity to maintain and revert to a certain “set point” of 

function in the face of perturbations. Thus, if a homeostatic process is impaired, it will be less 

robust to various perturbations, such as environmental stress. For example, there is evidence 

from animal studies to suggest that chronic stress can cause changes in glutamate transmission, 

intracellular signalling, functional connectivity, and synaptic loss in cortico-limbic circuitry 

(Duman & Aghajanian, 2012; McEwen et al., 2015; McEwen & Morrison, 2013). In support of 

this, chronic, but not acute, administration of common antidepressants has shown to enhance 

synaptic plasticity and reverse stress-induced impairments in rodents, promoting adaptive 

behavioural changes (Duman et al., 2021). Ketamine is thought to act through similar 

mechanisms, for example through increasing brain-derived neurotropic factor signalling, which 

promotes activity-dependent regulation of synaptic plasticity (formation of new synaptic 

connections); albeit on a different timescale and different specific mechanism than typical 

antidepressants (Duman et al., 2021). Ketamine’s specific mechanism of action remains unclear 

however, with a number of possible cellular/molecular processes proposed to be implicated, 

including NMDAR-independent ones, disinhibition of glutamate release, and disinhibition of 

monoaminergic transmission (Riggs & Gould, 2021). The majority of studies examining 

ketamine’s mechanism of action have focused on cellular mechanisms in preclinical models. 

However, it is not yet clear how these cellular mechanisms contribute to cognitive changes and 

the antidepressant effects of ketamine as observed in MDD patients.  
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1.5.2 Cognitive neuropsychological model 

The cognitive neuropsychological model aims to provide a cognitive and neural mechanistic 

theory of the beneficial effects of common MDD treatments (Roiser et al., 2012; Warren et al., 

2015). A central tenant of this theory rests on the proposition that common MDD treatments 

act on negative affective biases (i.e., a bias towards processing negative emotional 

information), which are commonly observed in depression and those vulnerable to depression 

(Roiser & Sahakian, 2013). Specifically, it proposes a hierarchical framework, such that 

susceptibility to negative affective biases occurs due to disruptions in limbic neural systems 

driven by changes in the monoaminergic projections innervating them, for example the 

amygdala, striatum, and prefrontal cortex (PFC). This represents a revision and extension of the 

standard monoamine theory of depression, suggesting that antidepressant drugs alter mood 

only indirectly, through the cumulative impact of changes in “bottom-up” negative biases 

(equivalent to negative perceptions), thereby also explaining why antidepressants take several 

weeks to work. These bottom-up negative biases may either cause depressive symptoms 

directly or also feed into “top-down” biases such as dysfunctional negative expectations 

(negative schemas, equivalent to priors in a Bayesian formulation), which themselves maintain 

negative bottom-up affective biases in a mutually reinforcing manner (Roiser et al., 2012). It has 

further been suggested that impaired ‘cold cognition’ (e.g., cognitive control) facilitates the 

contribution of bottom-up negative affective biases to top-down negative expectations. 

Importantly, CBT and common antidepressants are proposed to act at different levels within 

this hierarchy, such that CBT mainly affects top-down negative expectations (resolving these 

over time), while antidepressants act on bottom-up negative affective biases (potentially also 

facilitating the resolution of top-down biases) (Harmer, 2008; Roiser et al., 2012). Broadly 

consistent with this formulation, a recent meta-analysis synthesis found that CBT mainly 

affected prefrontal cortex (PFC) regions while antidepressants modified amygdala function 

(Nord et al., 2021).  

 

As alluded to above, an important aspect of these models has been to explain the clinical 

observation that antidepressants, while having direct pharmacological actions, do not directly 
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affect mood, as it takes several weeks to observe clinical efficacy while direct pharmacological 

effects (e.g., blockade of the serotonin transporter) are evident after just a few days. It is 

proposed that the SSRIs instead directly influence affective biases, such that they elicit early 

changes in the basic processing of emotional information (Harmer & Cowen, 2013; Harmer et 

al., 2009). Importantly, however, interactions with the environment (especially the social 

environment) are required to recalibrate emotional associations, such that accumulated 

experiences of more positive affective biases lead, over time, to improvements in emotional 

priors and thereby mood; this also explains the consistent observation that combined 

treatment with both antidepressants and CBT is superior to either in isolation (DeRubeis et al., 

2008). In support of this theory, several studies have shown that antidepressants can induce 

positive biases in MDD, both at the neural (e.g., reduced hyperactive amygdala response to 

negative stimuli) and behavioural level (e.g. boosting episodic memory for positive words), and 

interestingly that early changes in emotional processing are predictive of future antidepressant 

response (Browning et al., 2021; Browning et al., 2019; Ma, 2015).  

 

Limited suggestions have been put forward to provide a cognitive model of ketamine’s rapid-

acting beneficial effects. For example, it has been suggested that ketamine might abolish 

previously acquired negative memory-associations, but not encoding of new associations 

(Stuart et al., 2015). Speculatively, ketamine might thus directly affect higher-order entrenched 

negative schemas, which would not require interactions with the social environmental to 

recalibrate (Godlewska & Harmer, 2021; Harmer et al., 2017). One suggestion is that this occurs 

by making these beliefs temporarily more plastic and thus amenable to change (Roiser et al., 

2012). Overall, however, cognitive theories of ketamine’s beneficial effects remain at a nascent 

stage and are limited by the small number of studies examining ketamine’s cognitive effects in 

MDD.     

 

1.5.3 Summary of antidepressant models 

Neuroplasticity and cognitive models provide explanations of MDD and antidepressant action at 

different, complementary, levels of analysis, but as of yet their integration has been elusive 
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(Harmer et al., 2017). As a relatively new antidepressant, with a very different profile to existing 

agents, most studies on ketamine’s beneficial effects have focused on its molecular and cellular 

mechanisms, and thus there is currently no prevailing cognitive model of ketamine’s beneficial 

effects. Although the cellular level of analysis is important, it is noteworthy that drug 

development grounded in basic science has largely not succeeded in late-stage clinical trials 

(Riggs & Gould, 2021). This may occur, in part, because we do not have a good understanding of 

how the cognitive mechanisms underlying depression are linked to cellular changes. However, 

additionally an important limitation of the cognitive neuropsychological model is that it does 

not attempt to explain different mechanisms for different symptoms of MDD but instead 

primarily focuses on the low mood aspect of depression. Given the heterogeneity of MDD, and 

the importance of understanding anti-anhedonic effects as outlined above, a promising 

approach is to explore different processes related to reward and punishment processing to 

identify the precise neural, cognitive, and computational mechanisms of ketamine’s anti-

anhedonic effects (Cuthbert & Insel, 2013). This may in turn identify cognitive mechanisms 

driving treatment effects, allowing the development of markers of response, and potentially 

encourage the development of precision medicine in psychiatry.  

 

1.6 A cognitive neuroscience perspective on anhedonia  

In research settings, anhedonia is primarily measured with self-report questionnaires, such as 

the SHAPS, which was originally developed for assessment of clinical severity (Snaith et al., 

1995). Although symptom scales like the SHAPS provided initial evidence of ketamine’s 

anhedonic effects, it has increasingly been recognised that anhedonia is both cognitively and 

neurobiologically complex and cannot be mechanistically understood through symptom scales 

alone (Der-Avakian & Markou, 2012; Der-Avakian & Pizzagalli, 2018; Husain & Roiser, 2018; 

Treadway, 2016; Treadway & Zald, 2013). 

 

Anhedonia was classically conceptualised as reflecting a deficit in consummatory processes, i.e., 

hedonic capacity, since individuals behave and report as if rewards are less rewarding. In fact, 

the term ‘anhedonia’ directly translates to ‘without pleasure’ (D'Haenen, 1996). However, 
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experimental studies examining this aspect have not found much support for a deficit in 

pleasure capacity (Amsterdam et al., 1987; Arrondo et al., 2015; Berlin et al., 1998; Clepce et 

al., 2010; Dichter et al., 2010; Swiecicki et al., 2009). For example, MDD patients do not report 

enjoying primary rewards, such as e.g., chocolate or sucrose, any less than healthy individuals 

during in-the-moment experimental assessments (Amsterdam et al., 1987). Similarly, patients 

with MDD rate non-food rewards, such as cartoons, as comparably funny to healthy individuals 

(Sherdell et al., 2012).  

 

In contrast to these behavioural findings, the neuroimaging literature suggests that MDD 

patients show striatal hypoactivation to rewarding feedback, which has been interpreted as 

reflecting a deficit in consummatory processes by some (Borsini et al., 2020; Keren et al., 2018; 

Pizzagalli & Roberts, 2022). However, these studies have typically employed tasks in which the 

anticipation and delivery of rewards are difficult to dissociate. Usually, no behavioural 

differences between patients and healthy groups are observed in these studies either, 

complicating interpretations as decreased neural activity could signify impairment but also 

compensation or unrelated reward processing impairments (Kieslich et al., 2022). Moreover, 

the “reward” on these tasks is almost invariably in the form of secondary reinforcers, such as 

money. It is unclear whether ‘consumption’ of reward on these tasks, i.e., the receipt of money, 

can be equated to deriving pleasure from primary rewards, as it is not strictly possible to 

‘consume’ secondary reinforcers in the same way. These studies may instead be measuring 

other aspects involved in reward and punishment processes, such as reward anticipation, 

valuation or learning. Furthermore, despite the aims of symptom scales, such as the SHAPS, to 

measure consummatory anhedonia, it is likely that such questionnaires probe several different 

processes, as they ask participants to rate past or future imagined rewards. Importantly, the 

degree of in-the-moment pleasurable experience cannot be measured directly using such 

scales. 

 

The unidimensional view of anhedonia as reflecting purely diminished capacity to experience 

pleasure has therefore been challenged. Contemporary accounts additionally recognise 
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‘anticipatory’ and ‘decisional’ components (Gard et al., 2006; Klein, 1984; Treadway & Zald, 

2011). Although several models of anhedonia have been proposed, these all emphasise the 

involvement of multiple reward and punishment processes, that depend on partially separable 

cognitive and neural operations, centred on dopaminergically innervated cortico-striatal 

circuitry (Admon & Pizzagalli, 2015; Bekhbat et al., 2022; Bishop & Gagne, 2018; Borsini et al., 

2020; Cooper et al., 2018; Der-Avakian & Markou, 2012; Der-Avakian & Pizzagalli, 2018; Eshel & 

Roiser, 2010; Felger & Treadway, 2017; Husain & Roiser, 2018; Huys et al., 2021; Kieslich et al., 

2022; Lucido et al., 2021; Pizzagalli, 2014; Rizvi et al., 2016; Rømer Thomsen et al., 2015; 

Treadway, 2016; Treadway et al., 2019; Treadway & Pizzagalli, 2014; Treadway & Zald, 2011, 

2013; Wang et al., 2021; Zald & Treadway, 2017; Zhang et al., 2016). These roughly converge on 

relatively distinct cognitive processes such as learning, valuation and decision-making, and 

motivated effort. Related symptoms of MDD, such as lassitude and loss of energy, may also be 

related to reward and punishment processing. The following sections review these processes in 

MDD and anhedonia.  

 

1.6.1  Learning  

There has been a particular emphasis on understanding depressive symptoms as impairments 

in reinforcement learning (RL) processes. This lends itself to computational dissection and has 

thus been a core focus in computational psychiatry (Huys et al., 2021). Adaptive behaviour 

relies on learning which actions or stimuli maximise rewards and minimise punishments. This 

type of learning is thought to rely, at least in part, on phasic dopaminergic prediction errors 

(PEs) that signal the difference between expected and obtained outcomes (Schultz et al., 1997). 

Dopamine neurons in the ventral tegmental area (VTA) have been reported to correspond to 

such a signal, which is then transmitted to the striatum and the prefrontal cortex (PFC) to guide 

goal-directed behaviour (Frank & Claus, 2006; Pasupathy & Miller, 2005; Watabe-Uchida et al., 

2017).  

 

Both depression and anhedonia has been linked with lower striatal and behavioural reward PE 

signals (Admon et al., 2017; Chase et al., 2010; Chen et al., 2015; Gradin et al., 2011; Greenberg 
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et al., 2015; Halahakoon et al., 2020; Kumar et al., 2018; Kumar et al., 2008; Reinen et al., 2021; 

Robinson & Chase, 2017; Robinson et al., 2012; Vrieze et al., 2013). A common task in this 

context has been the probabilistic reward task (PRT), in which participants are presented with 

two perceptually similar stimuli (a long or short line) and asked to correctly identify them, with 

one stimulus being more frequently rewarded than the other (Pizzagalli et al., 2008; Pizzagalli et 

al., 2005). Healthy individuals develop a response bias toward the more frequently rewarded 

stimulus on this task (i.e., choosing this stimulus more often), while a lower reward response 

bias, regardless of perceptual accuracy, has been reported in several studies of anhedonia and 

depression (Huys et al., 2013; Pechtel et al., 2013; Pizzagalli et al., 2008; Pizzagalli et al., 2005; 

Vrieze et al., 2013). Individual differences on this task have further been associated with 

dopamine transporter availability in the ventral striatum, as well as fronto-striatal resting-state 

connectivity (Kaiser et al., 2018). Collectively, these studies suggest that anhedonia is 

associated with disrupted reward learning as a result of altered dopaminergic transmission.  

 

Impaired behaviour on this task could however result from both diminished reward learning 

and/or reward sensitivity, which renders the specificity of anhedonia-related differences 

unclear. Huys et al. (2013) therefore re-analysed these data using a computational model and 

found that aberrant reward sensitivity (i.e., valuation), but not learning, was specifically 

associated with anhedonia and depression. It is not yet clear whether this effect reflects choice 

variability (i.e., more random responding) or diminished valuation per se, as these were not 

possible to dissociate between in the model. Similarly, Rutledge et al. (2017) found that neither 

moderate depression nor anhedonia was associated with dysfunctional reward PE encoding in a 

non-learning task. They suggested that previous results stemmed from aberrant downstream 

effects of PEs on learning. In line with this, lower connectivity between the VTA and striatum 

has been observed in MDD individuals during a reward-learning task (Kumar et al., 2018). This 

suggests that PE encoding in the VTA is not properly transmitted to the striatum, resulting in 

impaired reward learning. Similarly, Greenberg et al. (2015) reported a less marked relationship 

between striatal PEs and striatal activity during cues signalling rewards (which they termed 

“reward expectancy”) in anhedonia, over and above other symptoms, but no blunting of striatal 
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activation corresponding to reward expectancy or PE per se. However, these neuroimaging 

studies used different tasks where no behavioural differences were observed and were not 

always analysed with computational models. Others have similarly found that learning signals 

are not lower overall in MDD, but specifically in medial orbitofrontal cortex (OFC), with lower 

ventral striatal PEs corresponding to greater anhedonia symptoms (Rothkirch et al., 2017).  

 

A clearer approach to answering this question can be provided by examining RL using tasks in 

which learning and outcome valuation can be dissociated computationally (Chen et al., 2015). 

One suitable task to address this is a restless (reward and punishment outcome probabilities 

change slowly over time) four-armed bandit (Daw et al., 2006). However, no previous studies 

have examined how anhedonia correlates with this task. On a different RL task, anhedonia has 

been associated with lower reward learning rates (slower updating of reward values) as well as 

greater outcome sensitivity (Brown et al., 2021). Recent accounts suggest that the impairment 

may be specific to downstream PE signalling, but whether this is specific to anhedonia remains 

to be determined, and it is unclear if subtypes of anhedonia may still exhibit deficits in reward 

learning, putatively reflecting abnormal PE encoding (Cooper et al., 2018). 

 

Beyond the examination of simple reward learning, other components of RL might be important 

in anhedonia. For example, many decisions in everyday life occur under uncertain conditions 

where values of different responses must be learned through exploration (Scholl & Klein-

Flugge, 2018; Sutton & Barto, 2018). Under these circumstances, people are faced with a 

dilemma: whether to exploit (choose an action with a known outcome) or explore (choose an 

unknown or less-well-characterised option in the hope for an even better outcome). Goal-

directed behaviours thus involve balancing exploitation of known outcomes with exploration of 

unknown, but possibly better options. Studies in this area emphasise that there are at least two 

types of exploration-based behaviours: random and directed (Wilson et al., 2014). Random 

exploration describes exploration by chance, resulting in behavioural variability, while directed 

exploration is a targeted information-seeking strategy to reduce the relative uncertainty of the 

expected value of action. Strategies to reduce the relative uncertainty of the expected value of 
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actions have been shown to drive goal-directed exploration (Badre et al., 2012; Frank et al., 

2009).  

 

This uncertainty-driven exploration has primary been associated with PFC function, with a 

specific focus on the rostrolateral PFC (rlPFC), and with genetic variants controlling 

dopaminergic function in the PFC (Badre et al., 2012; Frank et al., 2009; Zajkowski et al., 2017). 

Such goal-directed uncertainty-driven exploration can be examined in the clock task, in which 

participants are presented with a clock face and hand that rotates over five seconds (Moustafa 

et al., 2008). Stopping the hand at different times yields rewards of different amount and 

probability. Participants are asked to learn an optimal response time (fast or slow) to maximise 

rewards by sampling different time points. This task thus measures exploration based on 

response times, and has showed that lower uncertainty-driven exploration in schizophrenia is 

associated with anhedonia (Strauss et al., 2011) (although a recent study did not replicate the 

association with anhedonia in schizophrenia when using a different task) (Waltz et al., 2020). It 

has been highlighted that anhedonia might be associated with more stochastic responding 

across a number of studies, which would potentially correspond to random exploration 

(Robinson & Chase, 2017). However, this suggestion was based on studies quantifying 

exploration with a ‘temperature’ parameter, which can represent directed and random 

exploration, or low reward sensitivity (since reward sensitivity and temperature parameters 

trade off in RL algorithms), making it difficult to interpret (Robinson & Chase, 2017).  

 

Despite theoretical accounts emphasising a potentially important role of goal-directed 

exploration in psychiatric disorders (Addicott et al., 2017; Huys et al., 2015; Scholl & Klein-

Flugge, 2018), the general hypothesis that anhedonia is associated with reduced goal-directed 

behaviours has not been examined extensively in MDD. One previous study, using a different 

but conceptually similar task, suggested that depressed patients exhibited altered goal-directed 

exploration, such that they explored more when exploitation was the optimal strategy (Blanco 

et al., 2013). However, no study has yet examined whether uncertainty-driven exploration is 

lower in MDD or associated with greater anhedonia severity.  
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1.6.2 Valuation and decision-making  

In order to make choices, organisms must represent the values of potential outcomes. 

Substantial research has implicated the PFC (e.g., ventromedial PFC - vmPFC, OFC, anterior 

cingulate cortex - ACC), striatum, and the anterior insula in such processes (Bartra et al., 2013; 

Rushworth et al., 2011; Tom et al., 2007). As discussed in the previous section, anhedonia might 

be associated with disrupted reward valuation, potentially reducing the difference in subjective 

values between options, which would make decisions more difficult. Interestingly, first-degree 

relatives of MDD patients with sub-clinical depressive symptoms showed a blunted reward bias, 

as assessed with the PRT which had been redesigned to remove the learning component (Liu et 

al., 2016). This effect was further associated with the degree of anhedonia reported, over and 

above general depressive symptoms, suggesting that low reward valuation might be a risk 

factor for MDD. A large amount of literature supports the observation that MDD patients show 

a lower reward bias on the PRT, which was confirmed in a recent meta-analysis where this 

impairment showed the largest effect size among various reward processing components in 

MDD (Halahakoon et al., 2020). Interestingly, reward bias in this task has shown to be sensitive 

to a novel drug for anhedonia (a kappa-opioid-receptor antagonist, which increases dopamine 

release in the ventral striatum) in a recent ‘proof-of-mechanism’ study (Krystal et al., 2020). 

However, computational analysis revealed that this was driven by reward learning, rather than 

reward sensitivity (Pizzagalli et al., 2020). Although, the specificity of the reward response bias 

remains debated, this measure might represent a potential mechanistic predictor of anhedonia 

treatment response and might therefore be particularly interesting in the context of a ketamine 

trial.  

 

Valuation can also be examined through cost-benefit decision-making frameworks. A widely 

used paradigm is a gambling task examining subjective valuation of losses, gains and risks 

(Charpentier et al., 2017; Sokol-Hessner et al., 2009; Tversky & Kahneman, 1992). A common 

finding is that people tend to be both loss and risk averse, but few studies have investigated 

such processes specifically in anhedonia. However, aberrant loss and risk aversion have been 
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associated with suicidality and childhood trauma in depressed individuals, although the precise 

direction is mixed (Baek et al., 2017; Clark et al., 2011; Hadlaczky et al., 2018; Huh et al., 2016). 

While one recent study reported lower loss aversion with increasing negative symptoms in a 

non-clinical sample (Klaus et al., 2020), others have not found altered loss or risk valuation with 

depression (Chung et al., 2017; Zajkowski et al., 2017). Altered loss and risk aversion might 

therefore be more prominent with specific aspects of depression, such as suicidal behaviours. 

Although suicidality and anhedonia are closely linked, as discussed above, it is not yet clear 

whether loss and risk aversion are associated with anhedonia specifically as this has not been 

examined in detail previously.  

 

Decision-making involving social information may also constitute an important distinct 

valuation process (Meyer-Lindenberg & Tost, 2012). Indeed, depression is marked by social 

impairments and poor social functioning (Kupferberg et al., 2016). This reduced interaction in 

social contexts could potentially further worsen depressive symptoms, as social isolation is 

known to be a risk factor for depression (Santini et al., 2020). There is however currently a 

dearth of studies in this area, and it is unclear how it might relate to anhedonia specifically, 

although social anhedonia might be an important component of depression (Barkus & Badcock, 

2019). 

 

1.6.3 Motivated effort  

Obtaining rewards often requires willingness to exert effort. Animal and human studies suggest 

that effort processing recruits a network centred on the ACC, motor cortex and the striatum 

(Bonnelle et al., 2016; Chong et al., 2017; Croxson et al., 2009; Klein-Flügge et al., 2016; 

Kurniawan et al., 2013; Le Heron et al., 2018; Scholl & Klein-Flugge, 2018; Walton et al., 2006). 

Recent studies suggest that low motivation—observed in MDD, schizophrenia and several 

neurological disorders in particular Parkinson’s disease—might stem from aberrant effort-

based decision making mechanisms (Culbreth et al., 2018a; Husain & Roiser, 2018; Le Heron et 

al., 2018; Treadway & Zald, 2011, 2013; Zald & Treadway, 2017). It has been suggested that 
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dopamine might signal benefits over effort costs, while serotonin might specifically relate to 

sensitivity to effort costs (Pessiglione et al., 2018). 

 

These processes can be investigated using effort-related decision-making paradigms. Individuals 

are typically asked to squeeze a hand dynamometer or quickly make multiple key presses to 

obtain rewards. For example, a common task used to assess motivation to exert effort is the 

Effort Expenditure for Reward Task (EEfRT), which assesses decision-making between an easy, 

low reward choice, or a hard effort task with varying reward levels and probabilities (Treadway 

et al., 2009). Greater anhedonia has been associated with lower willingness to expend effort 

(here button presses) for greater reward (Treadway et al., 2009; Treadway & Zald, 2011). 

Similar impairments in effort-based decision making have been observed in individuals with 

subsyndromal depression (Yang et al., 2014), which was correlated with anticipatory 

anhedonia. Similarly, lower effort expenditure for rewards has been observed in schizophrenia, 

with the reduction in motivation to exert effort correlating with negative symptoms or 

amotivation (Barch et al., 2014; Chang et al., 2019; Fervaha et al., 2013; Gold et al., 2013; 

Treadway et al., 2015). It should be noted that not all studies demonstrate a specific 

relationship between anhedonia and lower motivation (Cléry-Melin et al., 2011; Zou et al., 

2020). Furthermore, across studies, the most consistent difference between patients and 

controls is lower willingness to exert effort for high reward and probability, rather than overall. 

This might result from impairments in constructing value representations or probability (Gold et 

al., 2013; Treadway et al., 2015). However, it is not yet clear whether the mechanisms 

underlying anhedonia in MDD and schizophrenia are similar (Culbreth et al., 2018a). Overall, 

these studies show a relatively consistent pattern of lower willingness to exert effort across 

psychiatric conditions associated with motivational symptoms.  

 

Importantly, many previous effort-based tasks do not parametrically vary effort demands 

independently from rewards, making it difficult to determine which components might drive 

motivational impairments. In a parallel line of research, focused on apathy in neurological 

disorders, Bonnelle et al. (2015) developed an effort-related decision-making task, the Apple 



 37 

Gathering Task, which aims to recreate ecologically relevant features of motivation. Decisions 

on this task are based on a single choice of either accepting or rejecting an offer, which may 

mimic real-life decisions more realistically for patients (Pessiglione et al., 2018). Importantly, in 

this task reward and effort levels are manipulated parametrically and independently. In healthy 

individuals, apathy positively correlates with effort sensitivity (rather than lower reward 

sensitivity) on this task (Bonnelle et al., 2016; Bonnelle et al., 2015; Chong, 2018). Interestingly, 

experimentally induced inflammation in healthy individuals causes increased effort sensitivity, 

but not reduced reward sensitivity (Draper et al., 2018), consistent with theories that propose 

that inflammation-based processes underlie anhedonia in MDD (Felger & Treadway, 2017).  

 

To date, most studies have exclusively considered physical effort when assessing motivation in 

patient populations. However, successful functioning in society also requires motivation to 

exert cognitive effort. This has predominantly been examined in schizophrenia, where low 

cognitive motivation has been positively associated with negative symptoms (Chang et al., 

2020; Culbreth et al., 2016; Culbreth et al., 2020). While studies using physical effort tasks 

suggest that impaired motivation might be due to impairments in reward components, 

cognitive effort tasks additionally suggest that individuals with schizophrenia show heightened 

sensitivity to cognitive effort costs. Few studies have examined cognitive effort in MDD. One 

previous study found that depressed individuals had lower willingness to exert cognitive effort 

compared with healthy controls (Hershenberg et al., 2016). Overall, however, it is unclear 

whether any motivational impairments in MDD are associated with diminished reward 

sensitivity or increased effort sensitivity or some combination of both. This will be important to 

delineate as the specific motivational impairment pattern could plausibly inform the specific 

treatment needed (e.g., impaired reward sensitivity may require a different treatment than 

excessive sensitivity to effort costs).  

 

1.6.4 Summary 

In summary, emerging research suggests that learning, valuation, and motivation are separate 

cognitive processes and rely on relatively distinct fronto-striatal neural mechanisms. Although 
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these processes have been separated into different categories, they all interact with each other 

to some degree. It is however unclear which aspects of processing are specifically related to 

anhedonia, with existing research suggesting that these processes are important in MDD and 

anhedonia, and that disruption in any could potentially drive symptoms (Husain & Roiser, 

2018). As such, cognitive tasks offer the possibility of understanding the mechanisms driving 

both symptoms and treatment effects, especially when examined computationally. Employing 

different reward/punishment tasks in the context of a clinical trial is therefore a promising 

strategy to identify the mechanisms driving the anti-anhedonic effects of ketamine.  

 

1.7 Ketamine and motivational processes 

Very few studies have specifically examined how ketamine affects cognitive, computational, 

and neural reward and punishment processes, particularly in clinical samples. Preliminary 

studies did not provide evidence that a subanaesthetic dose of ketamine modulates 

performance on the EEfRT or on a simple reinforcement learning task, as examined in a 

randomised, double-blind, placebo-controlled, crossover clinical trial, albeit in a small sample of 

TRD patients (Lally, 2015; Mkrtchian et al., 2019; Wusinich et al., 2021). Examining similar 

processes in rodents, ketamine has been shown to acutely impair motivation to exert effort for 

rewards on the EEfRT (Griesius et al., 2020). Reinforcement learning on a probabilistic reversal 

learning task in rodents further seemed impaired under ketamine (Wilkinson et al., 2020). 

However, it is difficult to compare across these rodent and human studies, not least because 

rodents and humans may use different strategies during task performance. The dosages in the 

rodent studies were also much larger than the antidepressant dose in TRD patients, the 

ketamine impairments in rodents were typically observed at the highest ketamine dosage, and 

these effects were examined one hour post-ketamine. This instead suggests that these 

impairments are related to ketamine’s sedative or dissociative effects, resulting in more general 

cognitive dysfunction, especially considering that ketamine also reduced food intake at the 

highest dose in the EEfRT (Griesius et al., 2020). Interestingly, a recent study in marmoset 

monkeys demonstrated a dose-related increase in reward response bias post-ketamine on an 

animal version of the PRT (Wooldridge et al., 2020).  



 39 

 

Ketamine has been shown to modulate key brain regions involved in motivational behaviour. 

For example, increased glucose metabolism in the ACC, striatum and OFC has been associated 

with greater ketamine-induced anti-anhedonic response in TRD patients (Lally et al., 2014; Lally 

et al., 2015). In an open-label study, ketamine also normalised subgenual (sg) ACC hyper-

activation to positive monetary incentives, which was associated with symptoms of anhedonia 

in MDD patients (Morris et al., 2020). In line with this, a study in marmoset monkeys showed 

that experimentally induced overactivation of sgACC led to blunted anticipatory arousal to 

rewarding cues, but not reward consumption. This neural and behavioural impairment was 

further ameliorated by a single sub-anaesthetic dose of ketamine, while an SSRI treatment did 

not have an effect (Alexander et al., 2019). As such, the ACC has been proposed to constitute a 

critical region in mediating the antidepressant effects of ketamine (Alexander et al., 2021). 

Ketamine also restored dysfunctional habenula function in rodents with depressive-like 

behaviours (Yang et al., 2018). This small region is known to modulate processes involved in 

punishment processing, particularly in conveying negative PEs (Matsumoto & Hikosaka, 2007), 

with disrupted habenula function shown in MDD patients and anhedonia (Lawson et al., 2017) 

and animal models of depression (Hu et al., 2020). The habenula has therefore been proposed 

as another important region for ketamine’s anti-anhedonic effects, potentially having 

downstream influences on monoamines, especially dopamine (Cui et al., 2019; Gold & Kadriu, 

2019; Pulcu et al., 2021). 

 

In line with these studies, a meta-analysis found that acute sub-anaesthetic but not anaesthetic 

levels of ketamine administration were associated with greater dopamine levels in the cortex 

and striatum in rodents (Kokkinou et al., 2018). As dopamine is associated with many reward 

and punishment processes, it is possible that some of ketamine’s anti-anhedonic effects stem 

from ketamine’s downstream effect on dopaminergic systems (Rincón-Cortés & Grace, 2020). 

Altered basal ganglia glutamate has also been linked to anhedonia (Haroon et al., 2018; Haroon 

et al., 2016). Taken together, these studies raise the possibility that some of the beneficial 
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effects of ketamine are driven by changes in reward and punishment related processes. 

However, this has not been examined in detail previously in patients.  

 

1.8 Thesis aims and Chapter summaries 

The overall aim of the current thesis is to examine the cognitive, neural and computational 

mechanisms underpinning the antidepressant response to ketamine in TRD. Since ketamine is 

particularly effective in alleviating symptoms of anhedonia, this work will focus on several 

candidate cognitive processes involved in motivational processing, spanning learning, 

valuation/decision-making, and motivated effort, as well as the fronto-striatal circuitry thought 

to subserve these processes. These questions are addressed across four experimental chapters.  

 

1.8.1 Chapter 2: Reliability of reward and punishment tasks  

Chapter 2 examines the psychometric properties of several tasks examining different reward 

and punishment processes in healthy volunteers. Examining test-retest reliability and practice 

effects is an important prerequisite for testing ketamine’s effects on motivational processes in a 

within-subjects design, such as a crossover clinical trial. Identifying tasks with acceptable 

psychometric properties allows for increasing the sensitivity of our subsequent ketamine trial 

(Chapter 5). Participants completed eight different tasks, twice across two weeks. These tasks 

included a modified version of the PRT, a restless four-armed bandit task, a clock task, a 

gambling task, a social decision-making task, a physical effort task, and two versions of a novel 

cognitive effort task. It was hypothesised that measures that have previously shown an 

association with symptoms, indicating sufficient variability is present, would show good 

reliability. It was further hypothesised that computational measures would show greater 

reliability than traditional model-agnostic ones.   

 

1.8.2 Chapter 3: The spatiotemporal dynamics of motivation to exert cognitive effort: a 

simultaneous EEG-fMRI study 

Impaired motivated physical effort has been consistently observed in anhedonia, yet the 

motivation to exert cognitive effort has not received similar attention and the neural 
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mechanisms underlying willingness to exert cognitive effort remain unclear. The aim of Chapter 

3 was therefore to conduct a pilot study to examine the spatiotemporal dynamics of the 

motivation to exert cognitive effort, to optimise for use in a ketamine trial. To this end, one of 

the cognitive effort tasks from Chapter 2 was modified to provide a more ecologically valid 

version that can also dissociate reward from effort in driving motivational impairments. This 

task was used during simultaneous electroencephalography (EEG)-fMRI recording in healthy 

individuals. It was predicted that: 1) motivation to exert effort would increase with reward 

incentives and decrease with effort costs; 2) effort computations during the decision to accept 

would be positively associated with the N2 event-related potential (ERP) and ACC activation, 

while reward would positively scale with the P3 ERP, striatal and vmPFC activation; and 3) the 

neural generators of the N2 would be the ACC, and the P3 would be associated activation in 

striatum and vmPFC.  

 

1.8.3 Chapter 4: The effect of ketamine on fronto-striatal circuitry in depressed and healthy 

individuals: A resting-state fMRI study 

The main aim of Chapter 4 was to clarify the role of the fronto-striatal circuitry, which is known 

to drive motivational behaviours, in ketamine’s effects in TRD. Ketamine has been shown to 

have opposite effects on motivational symptoms in MDD (improving reward-related symptoms) 

and healthy individuals (transiently causing mild symptoms of anhedonia). This was examined 

by re-analysing a previously conducted randomised, double-blind, placebo-controlled cross-

over trial with a sub-anaesthetic dose of ketamine in both TRD and healthy individuals. All 

participants underwent resting-state fMRI scans two-days post-infusion. It was predicted that 

ketamine would increase fronto-striatal functional connectivity in depressed individuals but 

decrease it in healthy individuals. In addition, samples of inflammatory markers were examined, 

as decreased fronto-striatal connectivity has been associated with increased peripheral 

inflammation, motivating the secondary prediction that ketamine-induced fronto-striatal shifts 

would be associated with changes in ketamine-induced peripheral inflammation. 
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1.8.4 Chapter 5: The effect of ketamine on reward and punishment processing 

Chapter 5 addresses the central hypothesis of the current thesis, that ketamine’s beneficial 

effects in TRD are driven by changes in reward and punishment processing. This was tested in a 

randomised, double-blind, placebo-controlled, crossover clinical trial of ketamine in TRD 

patients. Reward and punishment tasks identified as having acceptable reliability from Chapter 

2 were used, including the bandit, clock, physical effort and modified PRT tasks. Patients were 

tested at baseline and one day post-ketamine and placebo infusions. Additionally, healthy 

controls were tested at baseline. Three main predictions were tested: 1) that at baseline, 

compared with healthy individuals patients would show a lower reward response bias, as tested 

in the modified PRT, poorer reward learning and sensitivity in the bandit task, lower willingness 

to exert physical effort and overall lower exploratory behaviours as assessed in the clock task; 

2) that these reward processing measures would correlate with anhedonic symptom severity in 

patients; and 3) that a single sub-anaesthetic dose of ketamine would increase these reward 

processing measures in TRD patients.  
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2 Reliability of reward and punishment tasks  

 

2.1 Abstract 

Cognitive tasks need to be assessed in terms of their psychometric properties if these measures 

are to become useful clinically and in the context of within-subjects designs. However, for many 

reward and punishment tasks reliability is unknown. To examine which reward and punishment 

tasks may be suitable to assess the mechanisms underlying ketamine’s anti-anhedonic effects, 

test-retest reliability was evaluated in eight cognitive tasks that assess various aspects of 

reward and punishment processing. Tasks assessing learning and valuation included: a four-

armed bandit task, measuring reward and punishment learning/sensitivity; an investor-trustee 

task, measuring social decision-making; a gambling task, measuring loss/risk aversion; a clock 

task measuring go/no-go learning and uncertainty-driven exploration; and a 

reward/punishment bias task (a variant of the PRT) measuring response bias. Computational 

parameters were derived from the four-armed bandit and gambling tasks, and the fidelity with 

which the models for these tasks could predict future behaviour at an individual level was 

assessed. Three novel paradigms measuring motivation to exert effort were also included. 

These differed in terms of either physical or cognitive effort; and the cognitive effort tasks 

further differed in valence. Healthy individuals (N=50) completed the task battery two weeks 

apart. Considerable variability in the reliability of measures was observed across tasks. The 

four-armed bandit and gambling task show promise for assessing reinforcement learning and 

decision-making in the context of within-subject designs, as both model-agnostic and 

computational measures showed fair-to-excellent reliability, and models could predict future 

behaviour. Similarly, the physical effort task shows potential with good-to-excellent reliability 

across measures. In contrast, the clock task may only be suitable to assess exploratory 

behaviours (good reliability), as no other measures were reliable. The cognitive effort tasks all 

had at least one measure of poor reliability and suffered from substantial ceiling effects, thus 

requiring further task adjustments. No measures were reliable in the investor-trustee task, 

suggesting that this task is unsuitable for within-subjects designs. Unfortunately, no measures 

could be analysed from the reward/punishment bias task due to an error in the task code that 
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was only discovered following data collection. The results of this chapter show mixed results 

both between and within eight reward and punishment tasks, highlighting the complexities of 

translating tasks for use in clinical contexts. Importantly, several tasks and measures showed 

acceptable reliability and were thus deemed useful for assessing the cognitive mechanisms 

underlying ketamine’s antidepressant effects. 
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2.2 Introduction 

Emerging research suggests that various aspects of reward and punishment processing might 

be important in driving MDD, specifically in symptoms such as anhedonia. These include 

processes such as learning, valuation, and motivation as discussed in Chapter 1 (Eshel & Roiser, 

2010; Husain & Roiser, 2018). Disruption in any or all of these processes could presumably lead 

to symptoms of anhedonia and may therefore underpin some of ketamine’s beneficial effects. 

 

These cognitive processes can further be conceptualised in computational terms, which offer 

the advantage of examining behaviourally unobservable, but important, latent processes 

driving behaviour (Huys et al., 2016; Montague et al., 2004). The increasing adoption of 

computational approaches in cognitive neuroscience inspired the emerging discipline of 

computational psychiatry, which aims to better understand mental illness through 

computational methods, with the ultimate goal of transforming such knowledge into new 

personalised treatment strategies (Adams et al., 2016; Browning et al., 2020; Friston et al., 

2017; Huys, 2018; Huys et al., 2016; Huys et al., 2011; Maia & Frank, 2011; Montague et al., 

2012; Patzelt et al., 2018; Paulus et al., 2016; Paulus & Thompson, 2019; Teufel & Fletcher, 

2016; Wang & Krystal, 2014; Wiecki et al., 2015). For a cognitive and computational approach 

towards understanding treatment response to be fruitful however, it is crucial that these 

measures capture individual characteristics reliably (Browning et al., 2020; Paulus et al., 2016). 

 

Test-retest reliability is an essential prerequisite in both longitudinal (e.g., pre-post designs) and 

crossover study designs (e.g., when individuals receive both placebo and treatment) in which 

repeated testing occurs. The importance may be more vital in studies without the inclusion of a 

control arm, as any changes could simply arise due to repeated testing effects, such as learning 

or random effects, leading to false positives which would not be easily detected. Alternatively 

(or additionally), any treatment-induced improvements could potentially be obscured or 

attenuated by unreliable measurement, leading to false negatives. However, few prior studies 

have specifically investigated the test-retest properties of reward and punishment processing 

tasks. In terms of learning and valuation, reward response bias, using the PRT, has shown to 
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have adequate reliability (r=0.57) over a 40-day (mean) period, suggesting it may be 

appropriate for clinical use (Pizzagalli et al., 2005). However, two previous studies showed poor 

reliability of a simple RL task and an anticipatory reward task (Bland et al., 2016; Plichta et al., 

2012). In contrast, several effort paradigms have shown adequate reliability, including in 

patients with schizophrenia (Ohmann et al., 2022; Reddy et al., 2015).  

 

Computational analysis of behaviour has shown to improve reliability (Price et al., 2019). Few 

studies have however examined the reliability of parameters derived from computational 

models of reward and punishment tasks. In this context RL models have perhaps been the most 

influential in understanding how rewards and punishments influence behaviour. These 

parameters often include reward and punishment sensitivity (reflecting subjective valuation of 

the outcomes) and learning rates (reflecting how quickly individuals learn from better- or 

worse-than-expected outcomes), which have been associated with distinct symptomatology 

and neural signals (Daw & Doya, 2006; Huys et al., 2021; Niv, 2009). Parameters derived from a 

go/no-go RL task showed poor reliability in one study (Moutoussis et al., 2018), as did those 

from a two-step decision-making task assessing model-based versus model-free RL in another 

(Shahar et al., 2019). Interestingly, the reliability of parameters derived from the latter task was 

substantially improved through hierarchical estimation procedures (Brown et al., 2020) 

 

Another set of models, prospect theory models, allow dissecting the cognitive processes driving 

economic decision-making (Kahneman & Tversky, 1979; Ruggeri et al., 2020; Schonberg et al., 

2011; Sokol-Hessner & Rutledge, 2019; Tversky & Kahneman, 1992). These models propose that 

decisions under known risks can be driven by 1) risk aversion – the preference for certain over 

uncertain gains, and 2) loss aversion – weighting losses more heavily than gains. Risk and loss 

aversion vary across individuals, and these differences have been associated with psychiatric 

diagnoses and affective states (Baek et al., 2017; Charpentier et al., 2017; Charpentier, De 

Martino, et al., 2016; Charpentier, De Neve, et al., 2016; Chung et al., 2017; Hadlaczky et al., 

2018; Hartley & Phelps, 2012; Klaus et al., 2020). Importantly, computational modelling has 

allowed researchers to dissociate risk and loss aversion and their contribution to symptoms 
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(Charpentier et al., 2017), and in particular risk aversion parameters have been reported to be 

fairly stable in both healthy and depressed individuals (Chung et al., 2017). Similarly, in another 

study parameters from a prospect theory model showed significant correlations over time 

(Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015), although reliability was not assessed 

formally in these studies. 

 

In general, reward/punishment tasks have not been extensively screened for reliability, using 

the gold-standard metric of intraclass correlation coefficients (ICCs), or practice effects. The aim 

of the current study was therefore to ascertain test-retest reliability and practice effects on 

several commonly used reward and punishment processing tasks. Eight different tasks were 

assessed twice in healthy individuals, two-weeks apart. Tasks included a four-armed bandit 

task, measuring reward and punishment learning; an investor-trustee task, measuring social 

decision-making; a gambling task, measuring loss/risk aversion; a clock task measuring go/no-

go learning and uncertainty-driven exploration; a reward/punishment bias task (a variant of the 

PRT) measuring response bias, and three effort tasks differing in either physical or cognitive 

effort and the cognitive effort further differing in valence. These were selected based on 

representing different components of learning, valuation, and motivation, that either 

empirically or theoretically are linked to symptoms of anhedonia (see Chapter 1).  

 

In addition to assessing reliability on model-agnostic measures derived from these tasks, RL and 

prospect theory model parameters were additionally computed for two of the tasks. The use of 

generative computational models provides the possibility of adopting a complementary 

perspective to understanding reliability, through the lens of prediction. Generative models offer 

a substantial advantage in that they can both explain and predict behaviour, unlike model-

agnostic measures. Specifically, if they are reliable, computational parameters fit to one dataset 

should be able to predict future behaviour in the same individual. In other words, 

computational models can additionally be assessed by their ability to forecast future behaviour, 

equivalent to out-of-sample validation. This type of validation assesses model generalisability 
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and is often referred to as predictive accuracy (Busemeyer & Wang, 2000; Glockner & Pachur, 

2012; Scheibehenne & Pachur, 2015), but it has rarely been used as a metric of reliability.  

 

Thus, in the current study, standard measures of stability and reliability (respectively, practice 

effects and ICCs) were assessed on all model-agnostic and computational measures, and 

computational models were additionally assessed in terms of their out-of-sample predictive 

accuracy. Since most tasks have shown correlations with various symptom dimensions, 

suggesting they are sensitive to individual differences, it was hypothesised that most measures 

would exhibit at least adequate test-retest reliability, and that measures without a learning 

component would show low practice effects. In addition, it was hypothesised that 

computational parameters would show greater reliability than model-agnostic variables derived 

from the same tasks. 
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2.3 Methods 

2.3.1 Participants 

Fifty-four healthy participants were recruited from the UCL Institute of Cognitive Neuroscience 

Subject Database. Four participants were excluded for failing to complete the second session 

(final N=50: 32 females [64%]; age range=19-38; mean age=25.16, SD±5.48 years; mean 

education=17.38, SD=±3.24 years). Participants reported no current or past psychiatric or 

neurological disorder, cannabis use in the past 31 days, alcohol consumption in the past 24 

hours, or any other recreational drug use in the week prior to participation. Participants 

provided written informed consent and were compensated at the end of their second session 

with a flat rate of £30 and a bonus of up to £20 based on task winnings. The study was 

approved by the UCL Psychology and Language Sciences Research Ethics Committee (Project ID 

Number: fMRI/2013/005). 

 

Sample size was determined by an a priori power analysis in G*Power (Faul et al., 2007). The 

power analysis was based on the smallest effect size of interest, r=0.4, since reliability below 

this threshold is conventionally considered poor (Fleiss, 2011). Detecting an effect size of this 

magnitude, at the one-tailed 0.05 alpha level with 90% power, requires 47 participants. 

 

2.3.2 Task battery and data analysis 

Participants completed a battery of cognitive tasks measuring various aspects of reward and 

punishment over two sessions (mean test-retest interval = 13.96 days, SD=0.20). All tasks were 

presented on a laptop using MATLAB (R2015b, The MathWorks, Inc., Natick, MA, United States) 

with either Psychtoolbox (http://psychtoolbox.org) or Cogent (Wellcome Trust Centre for 

Neuroimaging and Institute of Cognitive Neuroscience, UCL, London, U.K.). To avoid potential 

fatigue effects, the tasks were administered in a pseudorandomised order such that no effort 

task was administered consecutively in the sequence. At the end of each session the computer 

randomly picked 100 trials across all the tasks to calculate the bonus won based on 

performance.   
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2.3.2.1 Four-armed bandit task  

The restless four-armed bandit task assesses reward and punishment learning (Daw et al., 2006; 

Seymour et al., 2012). On each trial participants were asked to choose one out of four bandits 

(represented as boxes), which would display one out of four possible outcomes following a 

choice: reward (green token), punishment (red token), neither reward nor punishment (empty 

box) or both reward and punishment (red and green token; Figure 2.1). The probability of 

reward and punishment outcomes varied independently over time within each bandit (with a 

slow random walk), and independently between bandits. Participants were instructed on the 

non-stationary and independent nature of choice outcomes and were told that the goal was to 

maximize gains and minimize losses. The task lasted around 15 minutes with 200 trials in total. 

 

 
Figure 2.1 Example trial of the four-armed bandit task. On each trial, participants chose one out of four bandits 
and received one out of four possible outcomes: reward (green token), punishment (red token), neither reward 
nor punishment (empty box) or both reward and punishment (red and green token). 
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Model-agnostic measures were based on the probability of repeating a choice after win-only, 

loss-only and no outcomes (number of repeated choices/total choices in that category). A 

repeated-measures analysis of variance (ANOVA) was conducted with the within-subjects 

factors outcome (win, loss, neither) to assess whether the expected pattern of behaviour was 

observed. It was predicted that the probability of repeating a choice would increase after wins 

and decrease after losses (Daw et al., 2006). 

 

Model-agnostic outcome measures for reliability analysis: 

1. p(stay) after loss – p(stay) after neither 

2. p(stay) after win – p(stay) after neither 

 

2.3.2.2 Physical effort task 

The physical effort task was adapted based on a combination of two previous tasks (Bonnelle et 

al., 2015; Treadway et al., 2009). In order to reduce the time and improve ease of 

administration, the number of reward and effort levels was reduced to three each, and the rate 

of repeated key presses required (instead of a hand dynamometer) was used to manipulate 

physical effort. On each trial, participants were presented with an offer indicating how much 

physical effort (20%, 50%, or 80%) they had to exert for a set amount of reward (3, 6, or 9 

points; Figure 2.2). Participants were free to accept/reject offers based on their individual 

valuation of the effort-reward combination. Accepted offers were followed by the effort phase 

during which a bar was presented with a yellow horizontal line indicating the effort level (a 

higher line equated to a higher effort level). The effort phase involved participants pressing the 

spacebar with their non-dominant little finger at a rate fast enough to fill the bar above the 

yellow line, and maintain that speed for at least 10 consecutive seconds. A higher effort level 

thus involved pressing the space bar at a faster rate than a lower effort level. Each effort 

execution phase lasted for 15 seconds. To win rewards, the physical challenge had to be 

completed successfully. A failed or rejected trial resulted in 0 points. To avoid possible fatigue 

effects, 25% of accepted trials skipped the effort execution phase. No points were won on the 
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skipped trials and participants were informed that some accepted trials would be randomly 

skipped but this would not affect their final bonus.    

 

Effort levels were individually calibrated during a practice phase where participants were asked 

to press the space bar as fast as they could for 15 seconds on four trials. The last two trials were 

considered for the effort calibration, which was based on the trial that had the fastest average 

key press response during a consecutive 10-second period. The task lasted for approximately 

15-20 minutes and contained seven trials per effort x reward combination, resulting in 63 trials 

in total. Participants were instructed that the goal was to win as many points as possible.  

 

 
Figure 2.2 Example trial of the physical effort task. On each trial participants were free to accept or reject an 
offer based on the amount of reward available and the level of effort. The effort involved pressing the spacebar 
with their non-dominant little finger at a rate fast enough to fill the blue bar above the yellow line and maintain 
that speed for at least 10 consecutive seconds. 

 

The physical effort task was introduced at a later stage of testing and thus the analysis only 

included 34 participants. Task validity was assessed by the probability to accept an offer, with 

reward (3, 6, 9 points), and effort (20, 50, 80%) as within-subject factors in a repeated-

measures ANOVA. Linear contrasts of effort and reward were computed to assess the degree to 

which reward and effort influence behaviour. It was predicted that the probability to accept an 

offer would depend on both reward and effort level (Bonnelle et al., 2015). 

Offer: 

Points: 9 points
Difficulty level: 50%

Yes

+ 9 points

1sec

Self-paced

15sec

No
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Reliability outcome measures 

1. Overall probability to accept: number of accepted trials/ total number of trials 

2. Reward sensitivity: !∗#(%&&'#(	%(	*	#+,-(.)01∗#(%&&'#(	%(	2#)3!∗#(%&&'#(	%(	4	#)
+5'6%77	#(%&&'#()

 

3. Effort sensitivity: !∗#(%&&'#(	81%)01∗#(%&&'#(	:1%)3!∗#(%&&'#(	;1%)
+5'6%77	#(%&&'#()

 

 

2.3.2.3 Cognitive effort task (reward) 

This task measures the motivation to exert cognitive effort to win rewards. The task structure 

was equivalent to the physical effort task but used a cognitive effort challenge (Figure 2.3). The 

cognitive effort consisted of correctly categorising ten consecutive numbers as odd or even 

within a time limit. Effort demands were manipulated by varying the time available to complete 

the cognitive challenge. If participants accepted an offer, they were presented with a number 

ranging from 0 to 9 and used the left/right key to indicate if the number was odd/even (0 was 

instructed to be even). If a correct response was given, the number turned green and a second 

number appeared until all ten numbers were completed. If an incorrect response was made, 

the number turned red, and the challenge was terminated. Participants only won points if they 

correctly completed all ten numbers within the time limit. Skipped, rejected, and failed effort 

execution trials resulted in 0 points.  

 

The calibration involved completing 30 effort execution trials as fast and as accurately as 

possible. Effort levels (i.e., time to complete the effort challenge) were based on the fastest 

correctly executed trial, such that the 20%, 50%, and 80% effort levels corresponded to 180%, 

150%, and 120% of the fastest correct calibration trial.  

 

The task contained 72 trials in total (8 trials per effort/reward combination), resulting in a 20-

minute task administration time. The odd/even response keys (left/right) were randomised 

across participants and sessions. Task performance and outcome variables for the reliability 

analysis were identical to the physical effort task.  
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Figure 2.3 Example trial of the cognitive effort reward trial. On each trial participants were free to accept or 
reject an offer based on the amount of reward available and the level of effort. The effort involved categorising 
10 numbers consecutively as odd or even under time pressure. 

 

2.3.2.4 Cognitive effort task (punishment) 

This task was included to measure motivation to exert cognitive effort to avoid negative 

outcomes. It was administered as a separate paradigm, but the task structure and effort 

challenge were identical to the cognitive effort reward task. During the offer phase participants 

were presented with the level of cognitive effort (20, 50, 80%) they had to exert to avoid losing 

points (-3, -6, -9 points; Figure 2.4). Participants were endowed with 100 points at the start of 

the task and told that the goal was to avoid losing points.  

 

Due to the constraints of the task, rejection of an offer could not result in an outcome of zero 

points. In addition, the task structure had to be comparable to the cognitive effort to win 

rewards task to allow comparisons between the two tasks. For these reasons the task was 

designed such that rejected, skipped, or failed trials resulted in losing the points associated 

with that trial. The calibration procedure, number of trials, and task length were identical to the 

cognitive effort reward task.  

 

Offer: 

You can win: 6 points
Challenge difficulty: 20%

Yes 

1sec

Self-paced

No

Odd or even?

1 Odd or even?

1 7

+ 6 points

Odd or even?

1 7 8 2 4 9 5 0 3 6
Time remaining: 8 sec

Time remaining: 7 sec
Time remaining: 1 sec
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One participant failed to complete this task and 3 outliers substantially skewed the distribution 

towards misleadingly high ICC values, resulting in 46 subjects for analysis. Task performance 

and reliability measures were identical to the other effort tasks. 

 

 
Figure 2.4 Example trial of the cognitive effort punishment trial. On each trial participants were free to accept 
or reject an offer based on the amount of points they could lose and the level of effort. The effort involved 
categorising 10 numbers consecutively as odd or even under time pressure. 

 

2.3.2.5 Investor-trustee task  

The investor-trustee task measures interpersonal decision-making in a social economic 

exchange game (Berg et al., 1995; King-Casas et al., 2008). Participants were allocated the role 

of the investor and told that they would play against another player (the computer), who 

embodied the role of the trustee. During the task, the investor was given the opportunity to 

invest up to 20 points to the trustee (Figure 2.5). From this investment, the trustee made a 

profit (3x investment amount) and returned the initial investment plus some of the profit to the 

investor. Thus, by investing points, the investor had the opportunity to make more points. The 

investor had the choice of investing a safe small amount or taking a larger risk and investing a 

larger proportion for potential greater profit. After each investment, participants could see how 

much the trustee made and how much of the profit was shared with the investor. The trustee 

shared some of the profit on all rounds except on round 10, during which the trustee defaulted 

(sharing none of the profit). This allowed assessing how sensitive participants are to the 

Offer: 

You may lose: 6 points
Challenge difficulty: 20%

Yes 

1sec

Self-paced

No

Odd or even?

1 Odd or even?

1 7

+ 0 points

Odd or even?

1 7 8 2 4 9 5 0 3 6
Time remaining: 8 sec

Time remaining: 7 sec
Time remaining: 1 sec
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experience of loss (i.e., how they invest on trial 11). There were 20 trials in total and the task 

was self-paced, lasting around 10 minutes.   

 

The main outcome measure was the sensitivity to betrayal of trust (the difference between 

proportion invested in round 11 and mean proportion invested). The within-subjects factor of 

betrayal condition (mean proportion investment excluding trial 11, proportion invested in 

round 11) was used to assess this. It was predicted that the proportion invested on trial 11 

would be lower compared to the mean investment.  

 

Reliability outcome measures 

1. Betrayal sensitivity: the difference between proportion invested in round 11 and mean 

proportion invested (excluding trial 11). 

 

 

 
Figure 2.5 Example trial of the investor-trustee task. On each trial participants had the opportunity to invest up 
to 20 points to a trustee (computer) who made a profit and shared some of the profit with the investor.  

 

2.3.2.6 Gambling task 

The gambling task measures loss and risk aversion (Charpentier et al., 2017). On each trial, 

participants chose between a 50-50 gamble and a sure (guaranteed amount of points) option 

(Figure 2.6). The task was composed of two types of trials to disambiguate risk aversion from 

loss aversion. Loss aversion was measured using mixed-gamble trials, where the 50-50 gamble 

Make your investment

0 pts 20 pts

You invested

15 pts

You kept

5 pts Trustee made 50 points from 
your investment 

25 pts 25 pts

Returns to you They kept

30 pts
Total each

25 pts

Investor (YOU) Trustee (OTHER)
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contained a gain and a loss, and the sure option 0 points. Risk aversion was assessed with gain-

only trials, such that the 50-50 gamble resulted in either a gain or nothing and the sure option 

was a guaranteed gain. Participants had 5000ms to make a choice and the chosen option was 

highlighted for 750ms. No outcomes were presented throughout the task. 

 

An initial training phase was used to create individually-calibrated offers in a second phase. The 

training phase used a staircase procedure to calibrate individual indifference points of loss/risk 

aversion (50 loss and 40 risk aversion trials). The second block contained 120 trials (64 loss and 

56 risk aversion) centred on the individualized risk/loss aversion indifference points, which 

were presented in random order. Participants were instructed that there were two blocks of 

the task but not that the first block was a calibration phase. The task lasted 15 minutes. 

 

Calibration failed for one participant, resulting in data from 49 participants for this task. Model-

agnostic measures were based on the probability to gamble on mixed and gain-only trials. It 

was predicted that gambling would be higher on mixed trials, which was assessed using a 

repeated-measures ANOVA with within-subjects factors gamble (mixed, gain-only). 

 

Model-agnostic outcome measures for reliability analysis: 

1. P(gamble) on mixed trials: number of gamble choices/total number of mixed trials 

2. P(gamble) on gain-only trials: number of gamble choices/total number of gain-only trials 
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Figure 2.6 Example trials of the gambling task. On each trial, participants chose between a 50-50 gamble and a 
sure (guaranteed amount of points) option. Trials were either mixed gambles (50-50 chance of winning or losing 
points or sure option of 0 points) or gain-only trials (50-50 chance of winning or receiving nothing or sure gain). 
Mixed and gain-only trials were presented in an interleaved sequence. 

 

2.3.2.7 Clock task 

The clock task measures uncertainty-driven exploration and go/no-go learning (Frank et al., 

2009). On each trial, a clock was presented with a rotating arm and participants were asked to 

stop it within a 5-second period (Figure 2.7). Depending on when they chose to stop it, 

participants could win different numbers of points. The task consisted of four conditions with 

different expected values (EV): 1) increasing expected value (IEV), promoting slower response 

times (RTs) to maximise reward; 2) decreasing expected value (DEV), promoting faster RTs to 

maximise reward; 3) constant expected value (CEV), reward probability decreased over time 

while reward magnitude increased over time (baseline condition); and 4) constant expected 

value-reversed (CEVR), the opposite of the CEV condition. There were four blocks in total, each 

corresponding to one of the task conditions. At the beginning of each block participants were 

told that they would interact with a new clock, for which they had to learn the optimal style of 

responding (e.g., fast or slow) to maximize rewards. There were 160 trials in total (40 

trials/condition) with the task lasting approximately 17 minutes.  

 

Performance was assessed by calculating go learning (mean RT difference between DEV and 

CEV) and no-go learning (mean RT difference between CEV and IEV). It was predicted that RTs 

50
-25

0

Mixed gambles

50
-25

0
50
0

30

Gain-only gambles

50
0

30
5,000ms

750ms
5,000ms

750ms
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would be slower in the no-go compared with the go learning condition. A within-subjects 

ANOVA with factors learning (go, no-go) and session (1,2) was used. In the lack of a 

computational model to assess uncertainty-driven exploration (manifested behaviourally as RT 

swings), trial-to-trial variance was measured as an index of overall RT swings (Strauss et al., 

2011):  

!"(𝑅𝑇(𝑖) −𝑅𝑇(𝑖 + 1));/(𝑛 − 1)),	 

where 𝑖 is trial number and 𝑛 is the total number of trials. These trial-by-trial shifts in RT are 

thought to be related to changes in RPEs and that exploration occurs as a function of reward 

uncertainty (Frank et al., 2009).  

 

Reliability outcome measures 

1. Go learning: mean RT difference between DEV and CEV 

2. No-go learning: mean RT difference between IEV and CEV 

3. Overall RT swing  

 

 

Figure 2.7 Example trial of the clock task. On each trial, participants were presented with a clock face on which 
the clock arm would rotate for five seconds, and participants had to learn the optimal style of responding (e.g., 
stop the arm early or late) to maximize rewards. The task consisted of four conditions with different expected 
values to promote different types of responding. 

 

Max 5sec
0.75sec

Feedback
Decision

You win 
60 points
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2.3.2.8 Reward/punishment bias task 

This task was adapted from the PRT to measure reward and punishment response bias using a 

difficult visual discrimination paradigm (Pizzagalli et al., 2005). During the task participants were 

asked to indicate whether a presented line was short or long. Asymmetric reward and 

punishment reinforcement schedules were used to induce response biases for the more 

frequently rewarded/punished stimulus. Unfortunately, during analysis it was discovered that 

the response bias task had an error in the code, resulting in incorrect task conditions and thus 

no analyses were performed on this task. 

 

2.3.2.9 General data analysis  

Data were processed in Matlab (R2019b) and analysed in SPSS (v25, IBM Corp, Armonk, NY). 

Performance on all tasks was analysed with either repeated-measures ANOVAs or paired t-

tests, with session (session 1, session 2) as an additional within-subjects factor to assess 

practice effects. For all analyses, p<0.05 (two-tailed) was considered statistically significant, and 

Huynh-Feldt corrected values were reported if sphericity assumptions were violated. Cohen’s dz 

effect sizes (within-subjects, using the standard deviation of the change score as the 

denominator) are reported for practice effects (Lakens, 2013). 

 

2.3.2.10 Reliability analysis  

Test-retest reliability was assessed with ICCs (ratios of intra-individual to inter-individual 

variability (Koo & Li, 2016; McGraw & Wong, 1996). ICC values vary between 0-1, where higher 

values indicate higher reliability and although negative values are theoretically possible, they 

are interpreted as a reliability of zero. A two-way mixed effects model ICC was used, as the 

time-interval between sessions was fixed. The ICC can be based on either single or average 

measures and the selection depends on how the task measures will be used in practice. For the 

purpose of the current study, we are not interested in the average value of an outcome 

measure across testing sessions, and therefore the ICC was based on single measures. Finally, 

an ICC can report absolute or relative reliability. Relative reliability, or “consistency”, refers to 

the stability of the relative ranking of participants across multiple testing sessions. Thus, a high 
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consistency metric will occur if the relative ranking of participants’ scores stays the same over 

time. By contrast, absolute reliability (“absolute agreement”) additionally considers changes in 

individual mean scores between sessions and is therefore a more stringent criterion. Here we 

report consistency ICC measures as these can account for potential practice effects. The two-

way mixed model for single measures and consistency agreement ICC is computed as (Koo & Li, 

2016): 

𝐼𝐶𝐶 =
𝑀𝑆< −𝑀𝑆=

𝑀𝑆< + (𝑘 − 1)𝑀𝑆=
, (1)	 

where 𝑀𝑆<= mean square of between-subject variance, 𝑀𝑆==mean square of the error 

variance, 𝑀𝑆>=mean square of the within-subject variance, k=number of testing sessions, n= 

number of subjects. 

 

An ICC value below 0.40 was interpreted as poor, 0.4-0.6 as fair, 0.6-0.75 as good, and above 

0.75 as excellent reliability, according to prior convention (Fleiss, 2011). Since outliers 

substantially influence ICC measures, scatter plots were drawn for all measures to detect 

possible outliers.  

 

2.3.2.11 Computational modelling analyses 

Computational models were fit to the four-armed bandit and gambling task. Modelling was 

performed with the hBayesDM package for R (v. 3.6.0; https://github.com/CCS-Lab/hBayesDM) 

(Ahn et al., 2017), which uses hierarchical Bayesian modelling in Stan (v.2.21.2). Hierarchical 

Bayesian modelling was achieved using Monte Carlo Markov chain (MCMC) sampling to 

estimate the posterior distribution of model parameter values. Hierarchical model-fitting uses 

group-level information to inform individual parameter estimates and has shown to provide 

more accurate parameter estimates than other model-fitting procedures (Ahn et al., 2011; 

Brown et al., 2020; Daw, 2011; Valton et al., 2020). Each model was fit using 4 chains with 1,000 

burn-in samples and 4,000 samples per chain.  

 

Several visual and objective diagnostics of the MCMC performance were conducted to examine 

convergence of the model-fitting procedure (Ahn et al., 2017; Kruschke, 2015). Each model was 
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inspected for divergences – none were found for any of the models. All subject- and group-level 

parameters were checked for a Gelman-Rubin statistic (𝑅5) (Gelman & Rubin, 1992) value of less 

than 1.1 and an effective sample size (ESS) in the thousands. Trace plots of all subject- and 

group-level parameters were examined to ensure that the MCMC samples were well-mixed. If 

there were any issues with a model’s MCMC performance, it was excluded as it would indicate 

that the model had not converged.   

 

The models were fit for each session separately, using separate hierarchical priors (group-level 

parameters), as this has shown to provide more accurate fits (Valton et al., 2020), and we 

wished to avoid artificially inflating reliability estimates. We also estimated the winning model 

fits under a single hierarchical prior (session 1 and session 2 data together) as a sensitivity 

analysis. This estimation procedure was also used for sensitivity analyses of practice effects, as 

this approach is more conservative. Model comparison was performed with leave-one-out 

information criterion (LOOIC) where the winning model was the one with the lowest LOOIC. 

Several model validation checks were completed for the winning models (Daw, 2011; Kruschke, 

2015; Wilson & Collins, 2019). To ensure that the winning model had identifiable parameters, 

we examined pair plots of the posterior distributions of the group-level parameters to 

determine that no major trade-off was occurring between parameters. We also examined if the 

winning model had recoverable parameters by generating simulated data for each participant 

based on their parameter estimates. 

 

2.3.2.12 Posterior predictive performance  

To assess to what extent an individual’s future behaviour can be predicted using a generative 

model fit to their own task performance two weeks earlier, we calculated the probability of 

participants’ choices on each trial (i.e., the softmax output – see below), given their session 2 

data and model parameter estimates from session 1. Probabilities were averaged across trials 

for each individual. Since hierarchical parameter estimation produces ‘shrinkage’, effectively 

pulling parameter estimates from different individuals closer to each other (which improves 

estimation accuracy), it is possible that future performance may also be predicted above-
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chance using other participants’ parameter estimates from session 1 (e.g., participant A’s 

parameter estimates from session 1 predicting participant B’s session 2 choices). We therefore 

assessed whether using an individual’s model parameter estimates from session 1 predicted 

the same individual’s choices on session 2 better than using all other subjects’ model parameter 

estimates. To construct the latter measure, for each subject, we predicted trial-by-trial choices 

on session 2 based on parameter estimates from every other participant’s session 1 model, and 

averaged the probabilities across all participants.  

 

2.3.2.13 Four-armed bandit task: Computational modelling 

The bandit task data were fit with seven different models from the hBayesDM package, 

following the exact specifications from Aylward et al. (2019) (Table 2.1). The parameters from 

the winning model were used for reliability assessment. 

 

The main family of models of interest were the reinforcement learning models (bandit4arm). 

The Bandit4arm_4par model was calculated by the following equations (Aylward et al., 2019):  

 

𝑉𝑎𝑙𝑢𝑒((,)6'? = 𝑉𝑎𝑙𝑢𝑒((,)6'? + 	𝑅𝑒𝑤𝑎𝑟𝑑	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)6'? 	(2) 

 

𝑉𝑎𝑙𝑢𝑒((,)
#@- = 𝑉𝑎𝑙𝑢𝑒((,)

#@- + 	𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)
#@-	(3)  

 

‘Rew’ and ‘pun’ refers to the reward (1,0) and punishment (0,-1) values on each trial (t) for a 

given bandit (i). 

Model Parameters 
bandit4arm_lapse_decay Rew sensitivity Pun sensitivity Rew LR Pun LR Lapse Decay 
Bandit4arm_lapse Rew sensitivity Pun sensitivity Rew LR Pun LR Lapse  
Bandit4arm_4par Rew sensitivity Pun sensitivity Rew LR Pun LR   
Bandit4arm_2par_lapse   Rew LR Pun LR Lapse  
Bandit4arm_singleA_lapse Rew sensitivity Pun sensitivity LR  Lapse  
Igt_pvl_decay Decay rate Shape Consistency Loss aversion   
Igt_pvl_delta Learning rate Shape Consistency Loss aversion   
Table 2.1 Computational models fitted to the four-armed bandit task. Models and nomenclature are from the 
hBayesDM package. Rew: Reward; Pun: Punishment; LR: Learning Rate. 
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𝑖𝑓	𝑖 = 𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)
6'? = 𝑅𝑒𝑤𝑎𝑟𝑑	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑅𝑒𝑤𝑎𝑟𝑑	𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑡) −

𝑉𝑎𝑙𝑢𝑒(3!(,)
6'? 	(4)  

 

𝑖𝑓	𝑖 = 𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)
6'? = −𝑉𝑎𝑙𝑢𝑒(3!(,)

6'?   

 

𝑖𝑓	𝑖 = 𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)
#@-

= 𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑡) − 𝑉𝑎𝑙𝑢𝑒(3!(,)
#@- 	(5) 

 

𝑖𝑓	𝑖 = 𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟((,)
#@- = −𝑉𝑎𝑙𝑢𝑒(3!(,)

#@- 	 

 

The subjective reward and punishment values were passed through a softmax function to 

estimate the probability of choosing a given bandit on each trial (j represents all bandits): 

 

𝐶ℎ𝑜𝑖𝑐𝑒	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
exp	(𝑉𝑎𝑙𝑢𝑒((,)

6'? +	𝑉𝑎𝑙𝑢𝑒((,)
#@-)

∑ exp	(𝑉𝑎𝑙𝑢𝑒((,)
6'? +	𝑉𝑎𝑙𝑢𝑒((,)

#@-)A
	(6)	 

 

The Bandit4arm_2par_lapse model excluded the sensitivity parameters in Eq. 4 and 5, and the 

Bandit4arm_singleA_lapse model had a single learning rate that did not vary separately for 

rewards and punishments Eq. 2 and 3). The choice probability (Eq. 6) additionally included 

terms with a lapse parameter (irreducible noise) in the bandit4arm_lapse and 

bandit4arm_lapse_decay model:  

 

𝐶ℎ𝑜𝑖𝑐𝑒	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
exp	(𝑉𝑎𝑙𝑢𝑒((,)

6'? +	𝑉𝑎𝑙𝑢𝑒((,)
#@-)

∑ exp	(𝑉𝑎𝑙𝑢𝑒((,)
6'? +	𝑉𝑎𝑙𝑢𝑒((,)

#@-)A
	× 	(1	 − 𝐿𝑎𝑝𝑠𝑒) +	

𝐿𝑎𝑝𝑠𝑒
4 	(7)	 

 

The bandit4arm_lapse_decay model also included a decay parameter (information about 

bandits not recently chosen were gradually forgotten about):  
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𝑖𝑓	𝑖 = 𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛:	𝑉𝑎𝑙𝑢𝑒(𝑖) = (1 − 𝐷𝑒𝑐𝑎𝑦) 	× 𝑉𝑎𝑙𝑢𝑒(3!(,)	(8)	 

 

The Igt_pvl_decay and Igt_pvl_delta models are described in Aylward et al. (2019) and are 

prospect valence learning models including parts of prospect theory and reinforcement 

learning.  

 

2.3.2.14 Gambling task: Computational modelling 

Three prospect theory models were fit to the gambling task (Ahn et al., 2017; Charpentier et al., 

2017; Kahneman & Tversky, 1979; Sokol-Hessner et al., 2009) (Table 2.2). Modelling was 

conducted on the second phase of the gambling task (i.e., on individually calibrated trials). 

Parameters from the best fitting model were used for the reliability assessment. 

 

The full prospect theory model, ra_prospect, was estimated with the following equations: 

 

𝐸𝑉(𝑔𝑎𝑚𝑏𝑙𝑒) = 0.5	 ×	𝑔𝑎𝑖𝑛(𝑡)B,.C	%5'6.,+-

+ 0.5	 × 	𝐿𝑜𝑠𝑠	𝑎𝑣𝑒𝑟𝑠𝑖𝑜𝑛	 ×	−𝑙𝑜𝑠𝑠(𝑡)B,.C	%5'6.,+-	(9) 

 

𝐸𝑉(𝑠𝑢𝑟𝑒) = 𝑠𝑢𝑟𝑒(𝑡)B,.C	%5'6.,+-	(10) 

 

On each trial (t) the subjective expected value (EV) of the gamble and sure option was 

calculated. These subjective expected values were passed through a softmax function to 

calculate the estimated probability of choosing the gamble option:  

 

𝑝(𝑔𝑎𝑚𝑏𝑙𝑒) = 	
1

1 + exp	(−𝐼𝑛𝑣𝑒𝑟𝑠𝑒	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	 ×	[𝐸𝑉(𝑔𝑎𝑚𝑏𝑙𝑒) − 𝐸𝑉(𝑠𝑢𝑟𝑒)])	(11) 

Model Parameters 
Ra_prospect Risk aversion Loss aversion Inverse temperature 
Ra_noLA  Risk aversion  Inverse temperature 
Ra_noRA  Loss aversion Inverse temperature 
Table 2.2 Computational models fitted to gambling task. Models and nomenclature are from the hBayesDM 
package.  
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For the RA_noLA model, the loss aversion parameter was omitted and the risk aversion 

parameter was omitted from the Ra_noRA model.  

 

2.3.2.15 Exploratory analyses 

Demographic correlations. Pearson’s correlations were used to explore associations between 

age, years of education, and task performance for all tasks in the first session. Independent t-

tests were used to explore associations between gender and task-performance (model-agnostic 

and computational parameter measures). All p-values were Bonferroni-adjusted for the number 

of tests conducted (25 task variables * 3 demographic variables=75 tests, Bonferroni-adjusted 

alpha-level: 0.05/75=0.0007). To contextualise any non-significant effects here, a sensitivity 

power analysis suggests that with a sample size of 50 participants, we would have 80% power 

to detect significant correlations of at least 0.37 at an uncorrected alpha level (0.05) and 80% to 

detect correlations of 0.54 at a Bonferroni-corrected alpha level (0.0007).  

 

Effort tasks. The effort tasks were substantially modified from previous studies to adapt for 

clinical use. Effort success rates were therefore analysed as a manipulation check, using a 

repeated-measures ANOVA with effort levels (20, 50, 80%) and session (1,2) as within-subjects 

factors. As these tasks have similar designs, we also explored how they related to each other on 

all common outcome measures across session.    
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2.4 Results 

2.4.1 Four-armed bandit task 

2.4.1.1 Model-agnostic results 

As expected, there was a main effect of outcome type on behaviour (F(2,98)=117.39, p<0.001, 

𝜂#;=0.71; Figure 2.8a). The probability to repeat a choice was significantly greater after wins 

compared with both losses and outcomes on which neither wins nor losses occurred, and 

greater after neither compared with losses (all p<0.001). There was no significant main effect of 

testing session (F(1, 49)=0.01, p=0.91, 𝜂#;<0.001), but there was a significant outcome-by-session 

interaction (F(2,98)=3.12, p=0.049, 𝜂#;=0.06), reflecting slightly increased repeated choices after 

wins and decreased repeated choices after losses on session 2. However, the difference in the 

tendency to repeat a choice between session 1 and session 2 did not reach significance 

following any of the outcome types (loss: t(49)=1.45, p=0.15, dz=0.21; win: t(49)=0.87, p=0.39, 

dz=0.12; neither: t(49)=0.54, p=0.59, dz=0.08), and therefore we do not interpret this result 

further. The model-agnostic outcome measures of the bandit task exhibited good reliability 

(Figure 2.8b).  

 

 
Figure 2.8 Basic behaviour, practice effects, and test-retest reliability of model-agnostic measures on the four-
armed bandit task. Boxplots of the four-armed bandit task showing probability to stay after a certain outcome 
in session 1 and 2 (a). The probability to stay was significantly different after each outcome type 
(Loss<Neither<Win) but no clear practice effect was evident. Scatter plots and reliability of the four-armed 
bandit task model-agnostic measures comparing behaviour on two testing sessions approximately 2 weeks apart 
(b). Consistency (assesses relative ranking over time) intraclass correlation coefficients (ICC) are presented. S1: 
Session 1; S2: Session 2; M: Mean. Numbers in brackets represent standard error of the mean. *p<0.001  

 

* *
*

a b
ICC=0.60* 95% CI: 0.39-0.75 ICC=0.62* 95% CI: 0.41-0.76

Line of best-fit
Reference line (ICC=1)

S1 M=-0.18 (0.03)
S2 M=-0.24 (0.04)

S1 M=0.28 (0.03)
S2 M=0.30 (0.03)
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2.4.1.2 Computational model  

Model comparison indicated that the winning (most parsimonious) model was the five-

parameter Bandit4arm_lapse model (Table 2.3), consistent with previous reports (Aylward et 

al., 2019). Although the bandit4arm_lapse_decay model has previously shown to best fit the 

four-armed bandit task (Aylward et al., 2019), this model exhibited a number of Gelman−Rubin 

statistics 𝑅5 values greater than 1.1 and ESS <100. The ESS remained <100 for a number of 

parameters and trace plots showed poor mixing even when the sample size per chain was 

increased to 10,000 and default argument settings changed to: adapt_delta=0.99, stepsize=0.5, 

max_treedepth=20 (suggested parameter settings by hBayesDM defaults if model does not 

converge) (Ahn et al., 2017). This indicates signs of poor convergence, and the 

bandit4arm_lapse_decay model was therefore discarded.  

 

Three individuals were excluded due to difficulties in obtaining mean parameter estimates, as 

multiple peaks were evident in the posterior distribution of at least one parameter. The 

Bandit4arm_lapse model was therefore re-fit without these participants. Excluding these 

participants did not affect test-retest reliability inference. All parameters other than the lapse 

parameter showed high recoverability (Figure 2.9a), and synthetic data from the winning model 

accurately recapitulated real data (Figure 2.9b).  

 

Model S1: LOOIC S2: LOOIC  
Bandit4arm_lapse 21419.77 20469.63 
Bandit4arm_4par 21426.74 20513.87 
Bandit4arm_singleA_lapse 21663.92 20667.74 
Igt_pvl_decay 21834.23 21060.78 
Igt_pvl_delta 22392.60 21294.36 
Bandit4arm_2par_lapse 25523.77 25421.07 
bandit4arm_lapse_decay* - - 
Table 2.3 Model fits for the four-armed bandit task from the hBayesDM package. The winning model has the 
lowest Leave-One-Out Information Criterion (LOOIC) and noted in bold here. S1: session 1; S2: session2. *This 
model exhibited poor convergence and was excluded. 
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Figure 2.9 Model checks of the winning model from the four-armed bandit task. Plots show parameter 
recovery (a) and simulated against real participant data (b). Intraclass correlations (ICCs) represent two-way 
mixed model for single measures and absolute agreement. P(stay): probability to stay; M: mean; SEM: standard 
error of the mean; r: Pearson’s correlations.  

 

Examining practice effects on model parameters, there was a significant increase in the reward 

sensitivity (t(46)=3.00, p=0.004, dz=0.44) and lapse parameters (t(46)=8.88, p<0.001, dz=1.29) on 

session 2, but not on any of the other parameters (reward learning rate: t(46)=1.28, p=0.21, 

dz=0.19; punishment learning rate: t(46)=1.74, p=0.09, dz=0.25; punishment sensitivity: t(46)=1.28, 

p=0.21, dz=0.19; Figure 2.10a). However, there were no significant practice effects when the 

data were fit under a single hierarchical prior, which is more conservative (all p>0.06; reward 

learning rate dz=0.14, punishment learning rate: dz=0.20; reward sensitivity dz=0.27; 

punishment sensitivity: dz=0.08; lapse: dz=0.04). All estimated Bandit4arm_lapse model 

parameters, except the lapse parameter, demonstrated fair-to-good reliability (Figure 2.10b), 

which did not substantially change when parameters were estimated under a single hierarchical 

prior (any ICCs that changed decreased by maximum 0.01).  

 

 

Session 1 ICC=0.93
Session 2 ICC=0.96

Session 1 ICC=0.88
Session 2 ICC=0.87

Session 1 ICC=0.97
Session 2 ICC=0.95
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Figure 2.10. Practice effects and test-retest reliability of the winning reinforcement learning model 
parameters derived from the four-armed bandit task. Boxplots show point estimates of the Bandit4arm_lapse 
model parameters in session 1 and 2, fit under separate priors (a). Scatter plots and reliability of the 
Bandit4arm_lapse model parameters over session 1 and 2 are presented (b). Consistency (assesses relative 
ranking score over time) intraclass correlation coefficients (ICC) are presented. SEM: standard error of the 
mean; CI: confidence interval; S1: Session 1; S2: Session 2; M: Mean. Numbers in brackets represent standard 
error of the mean. *p<0.05. 

 

Examining the future posterior predictive performance of the winning model revealed that 

parameter estimates from session 1 predicted task performance on session 2 substantially 

better than chance (mean=42%, chance=25% accuracy; t(46)=9.10, p<0.001; Figure 2.11a), 

ICC=0.60* 95% CI: 0.38-0.76 ICC=0.64* 95% CI: 0.43-0.78 ICC=0.56* 95% CI: 0.32-0.73

ICC=0.46* 95% CI: 0.20-0.66 ICC=0.03 95% CI: -0.26-0.31

Line of best-fit
Reference line (ICC=1)

a

b

* *

S1 M=0.33 (0.03)
S2 M=0.37 (0.03) 

S1 M=0.23 (0.02)
S2 M=0.27 (0.03) 

S1 M=7.93 (0.69)
S2 M=10.08 (0.81) 

S1 M=6.96 (0.64)
S2 M=7.80 (0.63) 

S1 M=0.02 (0.001)
S2 M=0.05 (0.003) 
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indicating that the model could predict future choices by using a generative model fit to the 

same participants’ data two weeks earlier. Using an individual’s parameter estimates to predict 

their own future choices was significantly better than when that prediction was based on the 

average of the other participants’ session 1 estimates (t(46)=3.20, p=0.003; Figure 2.11b), 

signifying good individual-level model generalizability.   

 

 
Figure 2.11 Posterior predictive performance of the winning reinforcement learning model derived from the 
four-armed bandit task. Boxplots depicting accuracy of bandit4arm_lapse model in predicting choices (a). 
Model estimates from session 1 (S1) predicted future session 2 (S2) behaviour above chance (black boxplot). 
Both S1 and S2 model estimates also predicted behaviour on the same session significantly above chance (blue 
and red boxplots). Predicting future performance (session 2 data) using a participant’s own model parameter 
estimates was significantly better than using other participants’ S1 model parameter estimates (b – zero 
indicates mean accuracy from other participants’ parameter estimates). SEM: standard error of the mean. 
*p<0.01. 

 

2.4.2 Physical effort task 

Acceptance rates depended on both reward and effort (interaction: F(1.963,64.783)=8.27, p=0.001, 

𝜂#;=0.20; Figure 2.12a), with no main effect of session or any interactions in the main ANOVA 

model of acceptance rates (all p>0.1). One-sample t-tests revealed that effort level had a 

significant negative effect on choice, such that increasing effort decreased acceptance rates 

(session 1: t(33)=8.55, p<0.001; session 2: t(33)=6.05, p<0.001). Reward level also had a significant 

positive effect on choice, such that increasing reward increased acceptance rates (session 1: 

a b

* ***

S2 performance 
predicted better by 
subject’s own S1 
model

S2 performance 
predicted better by other 
subjects’ S1 model
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t(33)=6.11, p<0.001; session 2: t(33)=5.34, p<0.001). Effort sensitivity decreased from session 1 to 

session 2 (t(33)=2.17, p=0.04, dz=0.37; Figure 2.12b). Reward sensitivity did not significantly 

differ between sessions (t(33)=0.08, p=0.941, dz=0.01). The overall probability to accept an 

offer increased significantly from session 1 to 2 (t(33)=2.59, p=0.01, dz=0.44). All measures 

exhibited good-to-excellent reliability (Figure 2.12c).  

 
Figure 2.12 Basic behaviour, practice effects, and test-retest reliability of the physical effort task. The bar 
graph shows the probability to accept based on reward and effort levels in session 1 and 2 (a). Boxplots show 
linear contrast of the reward and effort levels on the probability to accept (b). Scatter plots and reliability of the 
physical effort task measures over session 1 and 2 are presented (c). Consistency (assesses relative ranking score 
over time) intraclass correlation coefficients (ICC) are presented. SEM: standard error of the mean; CI: 
confidence interval; S1: session 1; S2: session 2; M: Mean. Numbers in brackets represent standard error of the 
mean. *p<0.05. 

 

ICC=0.83* 95% CI: 0.69-0.91

S1 M=0.75 (0.03)
S2 M=0.79 (0.03)

ICC=0.66* 95% CI: 0.42-0.82 ICC=0.75* 95% CI: 0.56-0.87

S1 M=-0.75 (0.09)
S2 M=-0.58 (0.10)

S1 M=0.52 (0.09)
S2 M=0.52 (0.10)
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2.4.3 Cognitive effort task (reward) 

The probability to accept an offer was modulated by both the reward and effort magnitude 

(interaction: F(2.088,102.29)=17.38, p<0.001, 𝜂#;=0.26; Figure 2.13a), with no main effect of session 

(p=0.51). As expected, increasing effort significantly decreased acceptance rates (session 1: 

t(49)=4.96, p<0.001; session 2: t(49)=4.65, p<0.001), while increasing reward displayed the 

opposite pattern (session 1: t(49)=4.42, p<0.001; session 2: t(49)=4.85, p<0.001). There was no 

effect of session on effort sensitivity (t(49)=0.74, p=0.46, dz=0.11). However, reward sensitivity 

increased significantly on session 2 compared with session 1 (t(49)=2.43, p=0.02, dz=0.34; 

Figure 2.13b), due to lower acceptance rates at low reward levels (Figure 2.13a). There was no 

effect of session on the overall probability to accept an offer (t(49)=1.37, p=0.18, dz=0.19). 

Overall p(accept) exhibited fair reliability, and reward sensitivity good reliability, while effort 

sensitivity was not reliable over the two sessions (Figure 2.13c).  
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Figure 2.13 Basic behaviour, practice effects, and test-retest reliability of the cognitive effort reward task. The 
bar graph shows the probability to accept based on reward and effort levels (a). Boxplots show linear contrast 
of the reward and effort levels on the probability to accept (b). Scatter plots and reliability of the cognitive 
effort reward task measures over session 1 and 2 are presented (c). Consistency (assesses relative ranking score 
over time) intraclass correlation coefficients (ICC) are presented. SEM: standard error of the mean; CI: 
confidence interval; S1: Session 1; S2: Session 2; M: Mean. Numbers in brackets represent standard error of the 
mean. *p<0.05. 

 

2.4.4 Cognitive effort task (punishment) 

Decisions were influenced by a combination of punishment and effort magnitude (interaction: 

F(1.53,68.92)=15.28, p<0.001, 𝜂#;=0.25; Figure 2.14a). As expected, effort had a significant negative 

effect on choice (session 1: t(45)=3.22, p=0.002; session 2: t(48)=3.31, p=0.002), and 

punishment had a significant positive effect on choice (session 1: t(45)=3.23, p=0.002; session 2: 

t(48)=3.05, p=0.004; Figure 2.14b). Effort sensitivity (t(45)=0.40, p=0.62, dz=0.07), punishment 

sensitivity (t(45)=0.76, p=0.45, dz=0.11), and overall probability to accept (t(45)=0.19, p=0.85, 

ICC=0.55* 95% CI: 0.32-0.71 ICC=0.21 95% CI: -0.07-0.46 ICC=0.65* 95% CI: 0.45-0.78

S1 M=-0.23 (0.05)
S2 M=-0.28 (0.06)

S1 M=0.90 (0.02)
S2 M=0.87 (0.02)

S1 M=0.22 (0.05)
S2 M=0.35 (0.07)
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dz=0.03) did not significantly differ between sessions (Figure 2.14). However, overall acceptance 

rates were very high, limiting the sensitivity of these analyses. Punishment sensitivity exhibited 

fair reliability, while all other outcomes were not reliable (Figure 2.14c).  

 
Figure 2.14 Basic behaviour, practice effects, and test-retest reliability of the cognitive effort punishment 
task. The bar graph shows the probability to accept based on punishment and effort levels (a). Boxplots show 
linear contrast of the punishment and effort levels on the probability to accept (b). Scatter plots and reliability 
of the cognitive effort punishment task measures over session 1 and 2 are presented (c). Consistency (assesses 
relative ranking score over time) intraclass correlation coefficients (ICC) are presented. SEM: standard error of 
the mean; CI: confidence interval; S1: Session 1; S2: Session 2; M: Mean. Numbers in brackets represent 
standard error of the mean. *p<0.05. 

 

2.4.5 Investor-trustee task 

As expected, betrayal of trust significantly influenced investment decisions (F(1,49)=15.01, 

p<0.001, 𝜂#;=0.24), reflecting a decrease in the proportion invested immediately after 

participants were betrayed, compared with the average proportion invested throughout the 

task (Figure 2.15a). There was no significant effect of session (main effect: F(1,49)=0.002, p=0.96, 

𝜂#;<0.001; interaction: F(1,49)=0.26, p=0.61, 𝜂#;=0.005). Sensitivity to betrayal of trust (difference 

ICC=0.29* 95% CI: 0.32-0.71

S1 M=0.95 (0.01)
S2 M=0.95 (0.01)

ICC=0.002 95% CI: -0.29-0.29 ICC=0.56* 95% CI: 0.33-0.73

S1 M=-0.10 (0.03)
S2 M=-0.12 (0.04)

S1 M=0.05 (0.03)
S2 M=0.07 (0.02)

a b

c
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between the mean investment, excluding the betrayal trial, and the investment made 

immediately after the betrayal) showed poor reliability (Figure 2.15b). However, separately, 

these measures had higher reliability: ICCMeanInvestment=0.84, ICCInvestAfterBetrayal=0.44.  

 

 
Figure 2.15 Basic behaviour, practice effects, and test-retest reliability of the investor-trustee task. Boxplots 
show the average proportion invested throughout the task (minus the betrayal trial) versus after the betrayal 
trial (a). Scatter plots and reliability of the investor-trustee task measures over session 1 and 2 are presented 
(b). Consistency (assesses relative ranking score over time) intraclass correlation coefficients (ICC) are 
presented. SEM: standard error of the mean; CI: confidence interval; S1: Session 1; S2: Session 2; M: Mean. 
Numbers in brackets represent standard error of the mean. *p<0.05. 

 

2.4.6 Gambling task 

2.4.6.1 Model-agnostic results 

As expected, the propensity to gamble was significantly higher on mixed gambles (F(1, 48)=13.71, 

p=0.001, 𝜂#;=0.22). There were no significant main (F(1, 48)=0.76, p=0.40, 𝜂#;=0.02) or interaction 

(F(1, 48)=1.07, p=0.31, 𝜂#;=0.02) effects of session on the propensity to gamble (session 

differences: probability to gamble on mixed trials t(48)=0.23, p=0.82, dz=0.03; probability to 

gamble on gain-only trials t(48)=1.51, p=0.14, dz=0.22; Figure 2.16a). Model-agnostic outcome 

measures on the gambling task exhibited good reliability (Figure 2.16b).  

 

 

ICC=0.26* 95% CI: -0.01-0.50
S1 M=-0.10 (0.03)
S2 M=-0.12 (0.04)

a b



 77 

 

2.4.6.2 Computational model 

The winning model was the prospect theory model (‘ra_prospect’ in the hBayesDM package) 

with loss aversion, risk aversion and inverse temperature parameters (this last parameter 

represents choice consistency; Table 2.4), consistent with previous reports (Charpentier et al., 

2017). A loss aversion parameter above 1 represents overweighting of losses to gains, while a 

risk aversion parameter less than 1 indicates aversion to risk. Model diagnostics indicated that 

this model performed well. All parameters showed high recoverability (Figure 2.17a), and 

synthetic data from the winning model accurately recapitulated real data (Figure 2.17b). 

 

 
Figure 2.16 Basic behaviour, practice effects, and test-retest reliability of model-agnostic measures on the 
gambling task. Boxplots show the probability to gamble based on the trial type in session 1 and 2, with no 
significant session effects (a). Scatter plots and reliability of the gambling task model-agnostic measures over 
session 1 and 2 (b). Consistency (assesses relative score ranking over time) intraclass correlation coefficients 
(ICC) are presented. SEM: standard error of the mean; CI: confidence interval; S1: Session 1; S2: Session 2; M: 
Mean. Numbers in brackets represent standard error of the mean. *p<0.001. 

Model  S1: LOOIC S2: LOOIC 
Ra_prospect 5249.68 5160.39 
Ra_noLA  6687.08 6551.38 
Ra_noRA 6723.99 7167.25 
Table 2.4 Model fits for the gambling task from the hBayesDM package. The winning model has the lowest 
Leave-One-Out Information Criterion (LOOIC) and noted in bold here. S1: Session 1; S2: Session 2. 

a
*

Line of best-fit
Reference line (ICC=1)

ICC=0.63* 95% CI: 0.43-0.77 ICC=0.60* 95% CI: 0.39-0.76
b

S1 M=0.48 (0.03)
S2 M=0.49 (0.03)

S1 M=0.38 (0.03)
S2 M=0.34 (0.03)
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There were significant session effects on all prospect theory model parameters (on session 2: 

decreased loss aversion: t(48)=2.17, p=0.04, dz=0.31; decreased risk aversion: t(48)=4.04, p<0.001, 

dz=0.58; increased inverse temperature: t(48)=3.07, p=0.004, dz=0.44; Figure 2.18a). All 

estimated parameters demonstrated good-to-excellent reliability (Figure 2.18b). Neither test-

retest nor practice effects were substantially altered, nor did any inferences change, when the 

model was fit under a single hierarchical prior. 

 

 

Figure 2.17 Model checks of the winning model from the gambling task. Plots show parameter recovery (a) 
and simulated against real participant data (b). Intraclass correlations (ICCs) represent two-way mixed model 
for single measures and absolute agreement. P(stay): probability to stay; M: mean; SEM: standard error of the 
mean; r: Pearson’s correlations. 
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Figure 2.18 Practice effects and test-retest reliability of the prospect theory model derived from the gambling 
task. Boxplots show point estimates of the prospect theory model parameters in session 1 and 2, fit under 
separate priors (a). Scatter plots and reliability of the prospect theory model parameters over session 1 and 2 
are presented (b). Consistency (assesses relative score ranking over time) intraclass correlation coefficients (ICC) 
are presented. CI: confidence interval; S1: Session 1; S2: Session 2; M: Mean. Numbers in brackets represent 
standard error of the mean. *p<0.05, **p<0.001. 

 

Examining the future posterior predictive accuracy of the gambling task showed that the 

prospect theory model parameters from session 1 predicted future choices at session 2 

significantly above chance (mean = 68%, chance = 50% accuracy; t(48)= 12.08, p<0.001; Figure 

2.19a). Predicting future performance at session 2 was significantly higher when based on 

participants’ own parameter estimates from session 1 compared with model parameter 

estimates of other participants from session 1 (t(48)=8.38, p<0.001; Figure 2.19b).   

 

ICC=0.70** 95% CI: 0.52-0.82 ICC=0.83** 95% CI: 0.71-0.90 ICC=0.83** 95% CI: 0.71-0.90

Line of best-fit
Reference line (ICC=1)
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b

* * *

S1 M=2.19 (0.10)
S2 M=2.00 (0.13)

S1 M=0.70 (0.04)
S2 M=0.61 (0.04)

S1 M=2.37 (0.31)
S2 M=3.00 (0.38)
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Figure 2.19 Posterior predictive performance of the prospect theory model derived from the gambling task. 
Boxplots depicting accuracy of prospect theory model in predicting choices (a). Session 1 (S1) model estimates 
predicted S1 behaviour significantly above chance (blue boxplot), as did session 2 (S2) model estimates on S2 
data (red boxplot). Importantly, model parameter estimates from S1 predicted task performance from S2 above 
chance (black boxplot). Predicting future S2 performance using a participant’s own S1 model parameter 
estimates was significantly better than using other participants’ S1 model parameter estimates (b – zero 
indicates mean accuracy from other participants’ parameter estimates). SEM: standard error of the mean. 
*p<0.001. 

 

2.4.7 Clock task  

Performance on the clock was significantly influenced by condition, such that go learning 

responses were significantly faster than no-go learning responses (F(1,49)=142.59, p<0.001, 

𝜂#;=0.74; Figure 2.20a). There was no significant main effect of session (F(1,49)=0.04, p=0.85, 

𝜂#;=0.001) or interaction (F(1,49)=0.37, p=0.55, 𝜂#;=0.007) on learning. There was no significant 

session effect on overall RT swing either (t(49)=1.48; p=0.14, dz=0.21; Figure 2.20b). Only the 

overall RT swing measure showed good reliability (Figure 2.20c). To better understand the poor 

reliability of the go and no-go learning measures, ICCs of the variables making up these 

measures (DEV, IEV and CEV conditions) were examined:  ICCDEV=0.10, ICCIEV=0.56, ICCCEV=0.19.  

 

 

S2 performance 
predicted better by 
subject’s own S1 
model

S2 performance 
predicted better by other 
subjects’ S1 model

a b
* * * *
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Figure 2.20 Basic behaviour, practice effects, and test-retest reliability of the clock task. Boxplots show go 
(mean RT difference between decreasing expected value and constant expected value condition) and no-go 
(mean RT difference between increasing expected value and constant expected value condition) learning (a) and 
overall RT swing in seconds, a measure of exploration (b). Scatter plots and reliability of clock task over session 1 
and 2 are presented (c). Consistency (assesses relative score ranking over time) intraclass correlation 
coefficients (ICC) are presented. CI: confidence interval; S1: Session 1; S2: Session 2; M: Mean. Numbers in 
brackets represent standard error of the mean. *p<0.05 

 

2.4.8 Exploratory analyses on effort tasks 

Success rates for all tasks are presented in Table 2.5. There was a significant main effect of 

effort on success rates (F(2,28.62)=71.20, p<0.001, 𝜂#;=0.72), such that all effort levels were 

ICC=-0.03 95% CI: -0.30-0.25

S1 M=-0.39 (0.09)
S2 M=-0.37 (0.08)

*

ICC=-0.09 95% CI: -0.36-0.19 ICC=0.64* 95% CI:0.44-0.78

S1 M=0.60 (0.11)
S2 M=0.53 (0.11)

S1 M=1.20 (0.03)
S2 M=1.25 (0.04)

c

a b
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significantly different from each other (all p<0.006). There was also a significant session-by-

success interaction (F(2,29.05)=17.82, p<0.001, 𝜂#;=0.39), driven by a significant difference on 

success rates between the 50% and 80% effort levels (p<0.001). In the cognitive effort reward 

task, there was only a significant main effect of effort on success rates success rates 

(F(2,82.31)=74.48, p<0.001, 𝜂#;=0.61), where each level was significantly different from each other 

(all p<0.004). Similarly, there was only a significant main effect of effort levels on success rates 

in the cognitive effort punishment task (F(2,78.71)=94.36, p<0.001, 𝜂#;=0.68), where each level was 

significantly different from each other (all p<0.01). Finally, all tasks significantly differed from 

each other in all outcome measures (all p<0.05; Table 2.5).  

 

2.4.9 Exploratory correlations 

There were no significant correlations (following Bonferroni correction) between any of the 

task measures and gender (all t<1.99, all uncorrected p>0.05), age or years of education (all 

absolute r-values <0.34, uncorrected p>0.01). The strongest association was observed between 

age and the punishment learning rate parameter from the four-armed bandit task (r=0.33, 

uncorrected p=0.02), with no other associations showing significant effects at an uncorrected 

level. 

 

 

Success rates     

Task 20% effort  
Mean (SD) 

50% effort  
Mean (SD) 

80% effort 
Mean (SD) 

S1 S2 S1 S2 S1 S2 
Physical effort  1 (0) 1 (0) 0.99 (0.03) 0.98 (0.04) 0.54 (0.31) 0.77 (0.20) 
Cognitive effort reward 0.73 (0.20) 0.72 (0.18) 0.67 (0.20) 0.69 (0.20) 0.46 (0.24) 0.52 (0.25) 
Cognitive effort punishment 0.72 (0.18) 0.75 (0.16) 0.70 (0.19) 0.69 (0.17) 0.45 (0.03) 0.51 (0.03) 
Outcome measures, across sessions, for all effort task measures   
Task p(accept)  

Mean (SD) 
Effort sensitivity 
Mean (SD) 

Valence sensitivity 
Mean (SD) 

Physical Effort 0.77 (0.03) -0.67 (0.08) 0.52 (0.09) 
Cognitive effort reward  0.86 (0.02) -0.27 (0.05) 0.37 (0.08) 
Cognitive effort punishment 0.95 (0.01) -0.12 (0.03) 0.06 (0.03) 
Table 2.5 Exploratory effort analyses. S1: Session 1; S2: Session 2. SD: Standard deviation. Note that N=34 in the 
analysis examining if measures between effort tasks were significantly different from each other, as some participants 
did not complete the physical effort task which was added part-way through the study. 
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2.5 Discussion  

The primary aim of this Chapter was to assess the psychometric properties of several tasks 

examining different aspects of reward and punishment processing such as learning, valuation, 

and motivation. Overall, task performance was as expected on all tasks and several tasks 

showed acceptable reliability, indicating translational potential of clinically-relevant measures. 

However, test-retest reliability varied substantially across and within tasks, highlighting the 

complexities of translating tasks to the clinic and using them in within-subjects designs.   

 

2.5.1 Reliability of learning and valuation tasks  

The reliability of model-agnostic measures across tasks measuring learning and valuation were 

generally mixed. For example, the bandit and clock task likely both incorporate aspects of 

learning and valuation into their model-agnostic measures (these processes can only be 

separated using computational models). However, only the bandit task demonstrated good 

reliability across its model-agnostic measures, while go and no-go learning in the clock task 

showed poor reliability. It is not entirely clear what this discrepancy in reliability stems from. 

One obvious difference between the tasks is in the modality of measures: choices in the bandit 

versus response times in the clock task. However, the investor-trustee task also encompasses 

elements of learning based on choices and showed similarly poor reliability as the clock task. 

However, the poor reliability in the investor-trustee task may have stemmed from participants 

knowing about the betrayal in their second session, and thus adjusting their behaviour. 

 

It has been suggested that one factor contributing to poor reliability is the use of difference 

scores (Hedge et al., 2018). The components making up the difference score tend to be highly 

correlated and thus the individual measurement errors are combined in the difference score. 

Difference scores tend to reduce variance between participants, such that the measurement 

error is increased relative to the between-subject variance. It then follows that the reliability 

will decrease as the between-subject variance is the numerator, and the measurement error is 

the denominator in the ICC calculation (Eq. 1). It is possible that the poor reliability in the clock 

and investor-trustee task may stem from this limitation as both used difference scores. Indeed, 
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when examining the ICCs of the components of the difference scores, these were generally 

higher for the clock and investor-trustee task. However, the model-agnostic measures from the 

bandit task were also based on difference scores, and the components making up the 

difference score of the clock task were still in the range of poor-to-fair reliability. Thus, it is not 

entirely clear whether difference scores contributed much to the lower reliability of the clock 

task. It has also recently been recognised that, in contrast to the popularly held belief that 

difference scores have low reliability (Thomas & Zumbo, 2012), this is not always the case when 

incorporating estimates of variability (Chiou & Spreng, 1996; Trafimow, 2015), supporting the 

findings of the current paper. In addition, many latent processes may contribute to the model-

agnostic measures of which some may be reliable. Thus, to establish if these processes indeed 

reflect poor reliability, modelling of them should be considered. 

 

Interestingly, RT swings, an index of exploration, in the clock task exhibited good reliability, 

suggesting that the clock task may still be suitable to assess uncertainty-driven exploration in 

repeated-testing contexts. Goal-directed exploration on the clock task has previously been 

associated with anhedonia (Strauss et al., 2011), suggesting that this measure in particular may 

be suitable for assessing the mechanisms of ketamine in a clinical trial.  

 

2.5.1.1 Reliability of computational models  

Overall, most parameters reflecting RL and decision-making processes exhibited adequate 

reliability and the winning models predicted future performance well. These results provide 

promise for their use in clinical settings and within-subjects designs. However, this conclusion 

again depends on the specific parameters assessed in each task.  

 

Reinforcement model: In contrast to our hypotheses, the computational measures of the bandit 

task exhibited similar reliability to the model-agnostic outcome. Reward and punishment 

learning rates from the bandit task demonstrated good reliability while reward and punishment 

sensitivity showed fair reliability, suggesting that this task may be more suitable for assessing 

learning rates than sensitivity. These results are however in contrast to previous studies 
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showing poor reliability of reward/punishment tasks with a learning component (Bland et al., 

2016; Moutoussis et al., 2018). These differences may arise for a multitude of reasons, including 

the parameter estimation method. Importantly, however, we provide evidence that it is 

possible to achieve at least moderate reliability for some canonical RL parameters. As elevated 

punishment learning rates (faster learning in the face of negative outcomes) have been 

associated with greater mood and anxiety symptoms (Aylward et al., 2019), these results 

suggest that this parameter may be appropriate for use as a potential measurable mechanistic 

treatment target. 

 

The lapse parameter has also previously been associated with mood disorders (Aylward et al., 

2019). However, in line with a previous study (Moutoussis et al., 2018), this parameter 

exhibited poor reliability. This parameter measures responding not captured by the model 

(including goal-directed and random exploration) and the sources of this ‘noise’ might differ 

across sessions. It is therefore perhaps unsurprising that this parameter was unreliable. 

Crucially, the lapse parameter showed poor recoverability, which places an upper limit on its 

potential reliability. Some of this poor recoverability may be explained by limited lapse 

variation, especially in session 1. This suggests that the lapse parameter could be replaced with 

a constant. 

 

Prospect theory model: All parameters from the gambling task showed good-to-excellent test-

retest reliability. These were also substantially higher than the reliability of the model-agnostic 

measures, suggesting that computational models may offer advantages in psychometric 

properties, in addition to their advantage in specifying mechanisms. In particular, the risk 

aversion parameter, which has previously been associated with clinical anxiety (Charpentier et 

al., 2017), exhibited excellent reliability (ICC>0.8), providing promise for use in clinical research 

and within-subjects designs. These results are consistent with previous studies, but we 

generally found considerably higher reliability than previously reported (previous reliability 

reports: loss aversion r≈0.25-0.61, risk aversion r≈0.50-0.60, inverse temperature r≈0.30-0.60)  

(Chung et al., 2017; Glockner & Pachur, 2012; Scheibehenne & Pachur, 2015). These studies all 
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used different estimation procedures, including hierarchical Bayesian, and employed both 

longer and shorter testing time-windows than the current study, suggesting that these factors 

may not fully explain the differences. It is possible that our results instead stem from different 

prospect model specifications (Chung et al., 2017; Glockner & Pachur, 2012; Scheibehenne & 

Pachur, 2015), as well as different task designs.  

 

The mean loss and risk aversion parameters observed are consistent with previous literature 

indicating that losses are weighed about twice as much as gains, and that people are on 

average risk averse (Kahneman & Tversky, 1979; Schonberg et al., 2011; Sokol-Hessner & 

Rutledge, 2019; Tversky & Kahneman, 1992). Indeed, prospect theory models have shown to be 

highly replicable across different contexts (Ruggeri et al., 2020). Our implementation of the 

gambling task may therefore represent a case where group-average results are highly 

reproducible, but the task is also suitable to assess individual differences. It has been observed 

that this is rarely the case, since tasks that are designed to produce reliable average effects do 

so by minimizing between-subject variance, whereas what makes tasks reliable and suitable for 

inter-individual assessments are large between-subject but small within-subject variances 

(Hedge et al., 2018). This may have occurred because of the calibrated design of the present 

gambling task. A similar approach of dynamically updating parameter values to each individual 

during task performance has previously been suggested as a solution to unreliable cognitive 

tasks (Palminteri & Chevallier, 2018). 

 

Future predictive accuracy: In addition to examining reliability using the traditional ICC method, 

we also examined how well the models predicted future task performance. This approach 

provides a complementary perspective on reliability, which is unique to computationally-

informed measures. Generative models were consistently able to predict participants’ future 

behaviour above chance. Notably, participant’s own parameter estimates from the first session 

were on average better at predicting their future performance compared with using parameter 

estimates from all other participants. This indicates that individuals do indeed differ reliably in 

the cognitive mechanisms underlying their decisions, and offers reassurance that hierarchical 
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estimation procedures are suitable for estimating inter-individual inferences (Brown et al., 

2020; Daw, 2011; Scheibehenne & Pachur, 2015). In other words, individuals show relatively 

idiosyncratic but consistent computational decision-making profiles. This is consistent with two 

previous studies using a different prospect theory model and gambling task (Glockner & Pachur, 

2012; Scheibehenne & Pachur, 2015).  

 

Practice effects: Some of the reliable parameters showed small-to-medium practice effects. 

Practice effects can either obscure a true effect or lead to false treatment claims if appropriate 

controls are not employed. Quantifying session effects allows such changes to be accounted 

for. In the RL model, reward sensitivity increased in the second session, while all other reliable 

RL processes were fairly stable. In contrast, all prospect theory parameters showed significant 

session effects. However, the sensitivity analysis showed no substantial practice effects of RL 

parameters when data were fit under a single prior, while the practice effects on prospect 

theory parameters remained. Thus, the apparent practice effects on the RL task should be 

interpreted with caution, as these may be overestimated under the two-prior estimation 

approach (Valton et al., 2020). Importantly, the ICC estimates were hardly influenced by the 

estimation approach. Although practice effects were evident in the computational parameters, 

no clear changes were observed in the model-agnostic measures, suggesting further that 

model-agnostic measures lack the precision to quantify these decision-making processes. 

 

2.5.2 Reliability of effort tasks 

Motivational deficits have consistently been associated with both MDD and anhedonia, 

underlining the importance of investigating these concepts in the mechanisms of ketamine’s 

beneficial effects (Husain & Roiser, 2018). Here we assessed three adaptations of effort tasks 

exploring motivation through physical effort, and cognitive effort to win rewards or to avoid 

punishments.  

 

Only the physical effort task showed reliability across all measures. Both overall probability to 

accept, and reward sensitivity exhibited excellent test-retest reliability, while good reliability 
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was observed for effort sensitivity. However, effort sensitivity decreased over sessions (albeit 

with a relatively modest effect size), while the overall probability to accept increased in the 

second session. Reward sensitivity did not significantly change between sessions, suggesting 

that the session effect seen in the overall p(accept) measure is primarily due to lower 

discounting of high effort levels. Since greater effort sensitivity has been associated with 

greater symptoms of apathy on this task (Bonnelle et al., 2016; Bonnelle et al., 2015), this effect 

is particularly worth considering in the context of a ketamine trial. If the anti-anhedonic effect 

of ketamine is equal to or lower than the practice effect, then this would suggest that no 

improvement in effort sensitivity was observed. However, previous studies have shown a large 

effect size of ketamine’s anti-anhedonic effect (Lally et al., 2014), suggesting that the anti-

anhedonic effects may still be observable. It is possible that the reduced effort sensitivity on the 

second testing session stems from the increase in success rates of the hardest effort level 

between sessions. Improving this task design limitation may therefore abolish the effort 

sensitivity practice effects. 

 

In contrast to the physical effort task, effort sensitivity in the cognitive effort reward task 

showed poor reliability with fair-to-good reliability on reward sensitivity and overall p(accept). 

The poor reliability of effort sensitivity seems to be driven by a number of individuals who were 

either very strongly sensitive or insensitive to effort on their first session, but showed the 

opposite pattern on their second session. This could reflect regression to the mean effects 

(Barnett et al., 2005). A similar relationship in effort sensitivity can be detected for a number of 

subjects in the cognitive effort punishment task, where neither effort sensitivity nor overall 

p(accept) was reliable.  

 

It is worth considering why effort sensitivity was reliable in the physical but not cognitive tasks. 

This may be due to the differences in the respective task designs. In the physical task, the time-

window of the effort execution was constant whereas in the cognitive tasks it terminated if an 

error was committed. This might suggest that effort was not perceived as very costly in the 

cognitive effort tasks, simply because a failure resulted in no effort execution. Indeed, overall 
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acceptance rates were greater in the cognitive effort tasks, compared with the physical task. 

Sensitivity to differences in effort magnitude was also lower in the cognitive effort tasks, 

despite low success rates in the cognitive tasks. A possible explanation is that participants’ 

decisions were influenced by different factors in the two effort tasks, possibly unrelated to 

effort valuation in the cognitive effort tasks. Future studies should therefore address this aspect 

of the cognitive effort design. Additionally, success rates on the high effort level were relatively 

low across tasks, which might have induced a risk confound. One way to address this would be 

to lower the effort levels and/or make the calibration easier.  

 

The results could also be due to differences between effort domains. It is as yet unclear if 

similar mechanisms underlie cognitive and physical effort. While some suggest that they are 

distinct (Croxson et al., 2009), others have found domain-general processes (Chong et al., 2017; 

Schmidt et al., 2012). In the present study all effort tasks significantly differed on overall accept, 

effort and reward sensitivity, suggesting different modulatory effects of both effort and valence 

domains. However, considering the above design limitations, these results are preliminary and 

should be interpreted with caution.   

 

Furthermore, both cognitive effort tasks exhibited very high overall acceptance rates (>0.85), 

especially the cognitive effort punishment task (0.95). This suggests that task performance was 

at ceiling and these tasks may thus not be sufficiently sensitive to probe individual differences 

in motivational processes. The cognitive effort tasks thus need further refinement before use, 

and therefore their reliabilities should be interpreted cautiously. However, the physical effort 

task shows strong potential for repeated-testing purposes, which is in line with other studies 

suggesting relatively good reliability of physical effort tasks (Ohmann et al., 2022; Reddy et al., 

2015). 

 

2.5.3 Limitations 

A number of limitations of this study merit comment. The main limitation concerns the analysis 

approach to derive the outcome measures. The majority of tasks were designed to be analysed 
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with computational models, as these have the advantage of uncovering specific processes that 

contribute to behaviour that cannot be examined with model-agnostic summary statistics 

(Adams et al., 2016; Huys et al., 2016; Teufel & Fletcher, 2016). This limitation is particularly 

pertinent to the clock task as it was only possible to examine crude measures of 

learning/valuation and exploration as there is currently no model implemented for the clock 

task in hBayesDM. As such, inferences are limited to the chosen outcome measures here.  

 

Another factor to consider is the nature of the sample. Test-retest reliability of tasks in healthy 

individuals may differ from other population groups, especially clinical groups. This is worth 

considering since the goal is to apply these tasks in a clinical trial with both healthy and 

depressed individuals. Nevertheless, patient groups tend to show greater variability between 

individuals, which could potentially increase test-retest reliability in such populations (Palmer et 

al., 2017; Paulus et al., 2016). 

 

Finally, no measures were correlated with any demographic measures following correction for 

multiple comparisons, suggesting no evidence for associations with general cognitive abilities 

(although IQ was not directly assessed). This also suggests that if confounds do exist for age, 

gender, or years of education, they are likely to be relatively weak, which is important for 

clinical use.   

 

2.5.4 Conclusions 

In summary, the current study is an important first step in investigating the reliability of reward 

and punishment processes. The results suggest that several tasks across learning, valuation and 

motivation processes have adequate test-retest properties, but these conclusions depend on 

the specific outcome measures assessed. In particular, the four-armed bandit, gambling and 

physical effort tasks are fit to assess all their key measures in within-subjects designs, while the 

clock task may only be suitable for examining exploration. The investor-trustee may not be 

suitable for repeated-testing at all, and the present cognitive effort tasks need further fine-

tuning. Of note, computational RL reward and punishment processing parameters showed 
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similar reliability to their model-agnostic counterparts, while prospect theory risk/loss aversion 

parameters model exhibited substantial improvements over model-agnostic measures, 

illustrating the advantage of modelling behaviour for these processes. Overall, these results 

suggest that a multitude of reward and punishment processes, across model-agnostic and 

model-derived parameters can be measured reliably, encouraging their use in clinical trials.  
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3 The spatiotemporal dynamics of motivation to exert cognitive effort: 

a simultaneous EEG-fMRI study  

 

3.1 Abstract 

Motivation to exert cognitive effort might be an important process underlying anhedonia, and 

by extension aspects of the anti-anhedonic effects of ketamine. Although a ubiquitous process, 

relatively little is known about the neural spatiotemporal dynamics involved in cognitive effort-

related decisions. Few prior studies have specifically examined the neural mechanisms involved 

in reward and cognitive effort sensitivity independently. In this study healthy participants 

(N=22) completed a novel cognitive effort-based decision-making task, adapted from the design 

presented in Chapter 2, during simultaneous EEG-fMRI recording. As expected, decisions to 

exert cognitive effort increased with increasing reward levels and decreased with increasing 

effort levels. In the EEG analysis we found a parietal ERP peak around 220-280ms after offer 

presentation that was sensitive to decisions about effort costs, but not reward magnitude. In 

the fMRI analysis distinct regions were modulated by effort during decisions to accept an offer, 

in a quadratic manner. These included both regions previously shown to be important for 

physical effort, such as the ACC, and regions known to be important for higher-order cognitive 

processes such as dorsolateral PFC (dlPFC) and ventrolateral PFC (vlPFC). However, in a 

parametric analysis the identified ERP component could not be localised to any of these or 

other neural regions. These findings indicate that specific PFC regions are sensitive to decisions 

involving cognitive effort cost, and decision-related activity may emerge relatively early during 

effort-based decision making, around 200-300ms after offer presentations.  
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3.2 Introduction 

Every day we are faced with situations that require exerting effort to obtain rewards. These 

range from the trivial, such as getting up from the sofa to find a cookie in the kitchen, to the 

more involved, such as planning the number of steps and possible outcomes in a game of chess. 

Effort-based decision making seems to be particularly affected in MDD and other psychiatric 

disorders that have a strong motivational component (see Chapter 1). Most tasks examining 

effort-based decision making for reward have focused on physical effort. While this 

undoubtedly maps onto behaviours related to difficulty in motivation, it ignores the important 

domain of cognitive effort.  

 

Like physical effort, cognitive effort has been conceptualised in neuroeconomic terms, 

providing a useful account of how potential costs and benefits drive decisions to engage in 

effortful behaviour (Westbrook & Braver, 2015). Several experiments manipulating cognitive 

effort using various taxing cognitive functions, including task switching (Kool et al., 2010; 

McGuire & Botvinick, 2010), spatial attention shifts (Apps et al., 2015; Chong et al., 2017), and 

working memory (Westbrook et al., 2013), have shown that people are averse to cognitively 

demanding tasks (Kool & Botvinick, 2014; Kool et al., 2010). A consistent finding is that human 

participants will routinely forego money in order to avoid exerting cognitive effort, and indeed 

even incur physical pain (Vogel et al., 2020). These studies have further revealed that 

willingness to engage in cognitive effort varies considerably between individuals, which is 

associated with a variety of demographic and neurobiological factors (Hofmans et al., 2020; 

Westbrook & Braver, 2015; Westbrook et al., 2020). However, current cognitive effort 

paradigms do not adequately dissociate reward benefits and effort costs, and other potential 

confounds in existing paradigms, such as temporal and probability discounting, can complicate 

interpretations.   

 

Much of our understanding of the neural basis of motivated effort has emerged from physical 

effort paradigms. Several studies indicate that the willingness to exert effort depends on a 

distributed network of brain regions, including the striatum, vmPFC, ACC/dorsomedial (dm)PFC, 
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and anterior insula (Husain & Roiser, 2018). For example, reward computations at the decision-

phase during a physical effort task appear to activate the vmPFC and striatum, whereas 

decisions about physical effort activate motor areas, ACC and insula (Bonnelle et al., 2016; 

Hauser et al., 2017; Klein-Flügge et al., 2016). Interestingly, apathy has been associated with 

physical effort-related dmPFC and ACC activity in healthy individuals (Bonnelle et al., 2016; 

Hauser et al., 2017) and in children with a history of maltreatment, who show high levels of 

apathy (Armbruster-Genç et al., 2022). Most relevant to the current thesis, ketamine’s anti-

anhedonic effects are associated with changes in ACC metabolism (Lally et al., 2014; Lally et al., 

2015), and it has recently been hypothesised that the ACC may function as a hub in mediating 

ketamine’s antidepressant action (Alexander et al., 2021) . Although fMRI provides excellent 

spatial resolution, and thus insight into which neural regions may be involved in decisions about 

effort, much less is known about the temporal dynamics of the neural processes underlying 

effort-based decision-making.  

 

In this regard, two event-related potentials (ERPs) are of particular interest: the N2 and P3. The 

N2, a negative frontocentral ERP peaking around 200ms following cue onset, has been shown 

to be important for cognitive control processes (Glazer et al., 2018). For example, the N2 

amplitude may increase with perceived effort on a go/no-go task (Benikos et al., 2013), 

suggesting that this component might be sensitive to effort costs. However, these studies 

typically examined the N2 component during the execution of cognitively effortful processes 

(Folstein & Van Petten, 2008); thus, its role during decisions about effort is less clear, and to our 

knowledge has not been examined. Interestingly, this component has been suggested to be 

generated in the ACC (Baker & Holroyd, 2011). However, this conclusion is predominantly 

based on source localization techniques, which are fraught with spatial precision problems 

(Hallez et al., 2007). 

 

The P3, a positive parietal ERP peaking around 300-700ms post-stimulus (Fabiani et al., 1987), 

has shown to respond to motivational incentives (Kleih et al., 2010). For example, greater P3 

amplitude has been associated with greater reward incentives in motivational contexts 
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(Goldstein et al., 2006; Hughes et al., 2013; Zhang et al., 2017). Reward-anticipation-related P3 

activity may be related to both the ventral striatum (Pfabigan et al., 2014) and vmPFC 

(Giustiniani et al., 2020). Interestingly, in one study P3 magnitude, measured during the 

anticipatory stage of the monetary incentive delay (MID) task, was correlated with the 

probability to accept harder effort trials in the EEfRT (EEG was not recorded during the EFfRT 

itself in this study) (Zhang et al., 2017), suggesting that the P3 might be sensitive to motivation 

to exert effort. However, it is not clear whether the P3 signals overall motivation or is specific to 

reward or effort evaluations. Interestingly, the P3 may also be associated with motivational 

symptoms such as apathy and anhedonia (Dubal et al., 2000; Takayoshi et al., 2018). 

 

Collectively, these studies point to a set of fronto-striatal regions that might be important in 

signalling effort costs and reward benefits during decision-making. However, the neural 

computations subserving decisions about cognitive effort remain much less clear, particularly as 

existing tasks do not adequately parameterise reward and effort. Although some studies have 

examined the neural mechanisms of cognitive effort, these have typically only focused on the 

overall subjective value of options, i.e., the integration of rewards and efforts during decisions 

(Apps et al., 2015; Chong et al., 2017). Thus, the mechanisms underlying cognitive effort and 

reward sensitivity during decisions remain unclear, as differences in the subjective value of 

options could be driven by either or both. Moreover, it is unclear whether reward benefits and 

cognitive effort costs have temporally dissociable influences on effort-related decisions.  

 

The main aim of the current study was therefore to characterise the spatiotemporal neural 

activity during decisions to engage in cognitive effort using a novel cognitive effort task, by 

employing the complementary strengths of EEG and fMRI. Concurrent EEG-fMRI is however 

technically challenging, and thus the goal of the current study was to pilot the experimental set-

up and explore the spatiotemporal dynamics of neural mechanisms of cognitive effort in a pilot 

study. It was predicted that: 1) behaviourally, motivation to exert effort would increase with 

reward incentives and decrease with effort costs; 2) effort computations during decisions to 

accept would be positively associated with the N2 ERP and ACC activation, while reward would 
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positively scale with the P3 ERP, striatal and vmPFC activation; and 3) the neural generator of 

the N2 would be the ACC, while the P3 would be associated with striatal and vmPFC activation.   
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3.3 Methods 

3.3.1 Participants 

Twenty-six healthy, right-handed, participants were recruited from the UCL Institute of 

Cognitive Neuroscience participant database. Participants completed a novel cognitive effort 

decision-making task during simultaneous EEG-fMRI recording. Four participants were excluded 

due to poor data quality in either the fMRI or EEG modality (final N=22: 13 females [65%]; age 

range=20-50; mean age=26.40, SD±7.88 years; mean education=17.64, SD=±2.44 years). 

Participants reported no current or past psychiatric or neurological disorder; no cannabis use in 

the 31 days prior to testing; no alcohol consumption in the 24 hours prior to testing; no 

recreational drug use in the week prior to testing; and no MRI contradictions. All participants 

provided written informed consent and were compensated £40 and a bonus of up to £10 based 

on task performance. The study was approved by the UCL Psychology and Language Sciences 

Research Ethics Committee (Project ID Number: fMRI/2013/005). 

 

3.3.2 Behavioural data 

3.3.2.1 Task design 

A similar cognitive effort reward task as employed in Chapter 2 was used. The task was 

modified to address a number of limitations. These mainly involved reducing ceiling effects and 

increasing success rates across effort levels. On each trial, participants were initially presented 

with the number of points available, and the effort level exertion required to obtain the reward 

(Figure 3.1). They were free to accept or reject the offer. If an offer was rejected, the cognitive 

effort challenge was skipped, and a feedback screen displayed ‘No response required’. If an 

offer was accepted, participants were required to complete the cognitive effort challenge, 

which involved correctly categorising ten numbers (0-9) in a sequence as odd or even (0 

categorised as even) under time pressure. Effort was manipulated by changing the time 

pressure, with less time allowed to complete the categorisation task at higher effort levels.  

 

Based on piloting, the odd/even categorisation challenge was modified from Chapter 2 to 

require participants to complete the categorisation of all ten numbers even if mistakes were 
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made or the time limit had been exceeded. This modification was implemented to increase the 

sensitivity to effort, as in the previous version a single mistake would automatically terminate 

the challenge. If an error was made during the effort exertion (i.e., miscategorising a number), 

the number turned red, and the participant had to correct the error before the next number 

would appear, with correct responses turning green. In addition, one mistake was allowed in 

each “successful” sequence (incorrect sequences were not rewarded). This was implemented to 

increase success rates.  

 

The task was further adapted for use during simultaneous EEG-fMRI. The offer screen was 

divided into two parts such that one piece of information (reward or effort) was presented 

initially, with the second part of the offer (effort or reward) added to the screen one second 

later (Figure 3.1). This was implemented to allow for processing of both pieces of information 

before a decision was reached. The order of presentation was counterbalanced across 

participants (i.e., half of the participants were presented with the reward information initially, 

the other half with the effort information). The response screen was further separated from the 

offer screen in order to dissociate the motor response from the decision computation (Klein-

Flügge et al., 2016). The presentation side of ‘Y’ (accept offer) and ‘N’ (reject offer) was 

randomised within participants and appeared on each side (left/right) 50% of the time. This was 

introduced to reduce any motor preparatory activity during the decision phase, as participants 

could not anticipate which key they needed to press before the choice screen. Half of the 

accepted trials additionally skipped the effort challenge to reduce the task administration time 

and possible fatigue effects, as in previous studies (e.g., Klein-Flügge et al., 2016). However, 

participants were informed that they would have to complete these trials outside of the 

scanner.  

 

Prior to scanning, participants completed a practice session outside the scanner to become 

familiarised with the task. There were three levels each of reward and effort. These were 

presented to participants as ‘low reward’, ‘medium reward’, ‘high reward’ and ‘low effort’, 

‘medium effort’ and ‘high effort’. These descriptors were used to increase the sensitivity to 
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what each participant may perceive as ‘low’, ‘medium’ and ‘high’ reward/effort. The effort 

levels were further calibrated to each individual during a practice session inside the scanner. 

During the practice, participants were presented with the effort challenge and encouraged to 

correctly complete all numbers as fast as they could. Calibration was based on the fastest trial 

out of 40 without errors (or until a sequence with all correct answers was achieved). The 

calibration individually adjusted the effort levels. Low, medium and hard effort corresponded to 

20%, 40%, and 60% of the maximum completion speed, respectively. The effort levels were 

reduced from the previous version (Chapter 2) to increase success rates. Before the task 

commenced, participants had the opportunity to try out all effort levels. A rejected offer trial 

received the feedback: ‘You passed’; a missed trial: ‘Respond faster!’; an accepted and skipped 

trial: ‘No response required’; an accepted and correct trial: ‘+ [reward level]’; an accepted and 

failed trial (greater than one error and/or time ran out): ‘+0’. 

 

Participants completed six blocks of the task in the scanner with 54 condition trials (six trials per 

effort x reward combination) and six null event trials (fixation cross for eight seconds) per block, 

and also had the opportunity to rest between each block. Trial types (reward x effort 

combination) were presented in a random order with each block. Each block lasted around 12 

minutes, resulting in a 1.2-hour task administration.   
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Figure 3.1 Cognitive effort task. On each trial, participants were presented with the amount of reward available 
(or effort needed to exert), and then additionally the amount of effort needed to exert (or reward available) to 
win points. The decision phase, when both reward and effort were presented, were of main interest. 
Participants were free to accept (Y) or reject (N) an offer. Half of the time that participants accepted an offer, 
they had to complete the effort challenge, which involved correctly categorising ten digits in a sequence as odd 
or even under time pressure. Effort was manipulated by allowing less time for the categorisation on higher 
effort levels. 

 

 

3.3.2.2 Behavioural analyses 

A within-subjects ANOVA with factors reward (low, medium, high) and effort (low, medium, 

high) was performed on the probability to accept an offer. Success rates across reward and 

effort levels were examined in the same way. Data were processed in Matlab (R2019b) and 

analysed in SPSS (v28, IBM Corp, Armonk, NY). Greenhouse-Geisser corrected values of degrees 

of freedom are reported throughout for repeated-measures ANOVAs if sphericity assumptions 

were violated. For all analyses, p<0.05 (two-tailed) was considered statistically significant. 

 

+
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3.3.3 Simultaneous EEG-fMRI recording set-up 

Conducting simultaneous EEG-fMRI recording is technically challenging, especially for obtaining 

high quality EEG data. Extra care was taken to optimise the experimental set-up for high-quality 

EEG recordings and safety. This included keeping the EEG amplifier just outside and behind the 

MRI bore, preventing any looping of the EEG electrode bundle, and keeping cables outside the 

MRI bore to the greatest extent possible and exposing them to as few vibrations as possible by 

placing sandbags on top of the amplifier. Lights and ventilation were turned off for the duration 

of the scan.  

 

Five individuals rejected fewer than nine (out of 324) trials. These individuals were therefore 

not included in the EEG and fMRI analyses (final N=17) since they were apparently insensitive to 

the effort and reward levels.  

 

3.3.4 EEG data 

3.3.4.1 Recordings 

Continuous EEG data were acquired during simultaneous fMRI acquisition using MR-compatible 

EEG equipment (BrainProducts GmbH, Munich, Germany): a 32-channel customised BrainCap-

MR and a BrainAmp-MR DC-amplifier. EEG was recorded with a sampling rate of 5kHz. The 

recording reference was located at Fz, and the ground electrode at Fpz. The scalp electrodes 

covered the 10-20-system with the following electrodes: Fp1/2, AFz, Fz, F7/8, F3/4, FC4/5, 

FC1/2, T7/8, C3/4, Cz, CP1/2, TP9/10, P3/4, Pz, P7/8, POz, O1/2, left/right EOG. An ECG 

electrode was used for ballistocardiogram (BCG; see section 3.3.4.2) artifact removal. EOG 

electrodes were placed 1cm below and lateral of the outer corner of the eye. To obtain optimal 

gradient artifact (GA) removal, the EEG clock was synchronised with the MRI scanner clock 

(Syncbox, Brain Products, Germany) and the fMRI slice repetition time (TR) was a multiple of 

the EEG clock period (EEG clock period is 200μsec) (Mullinger et al., 2013). Ground and 

reference impedances were kept below 10kΩ, with EOGs and ECG below 50kΩ and all other 

electrodes below 20kΩ. MRI slice triggers were collected to enable MR gradient artifact 

removal during preprocessing. 
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3.3.4.2 Preprocessing  

EEG preprocessing was conducted using EEGLAB (version 2021.1) (Delorme & Makeig, 2004) in 

MATLAB (version R2019a). EEG data quality is severely compromised when acquired in an MR 

environment, obscuring the EEG signal, requiring several additional steps to preprocess the EEG 

data. The main artifacts include: 1) the GA, originating from the rapid switching of magnetic 

field gradients, inducing a current in EEG channels several hundred times greater than the 

neural activity (Allen et al., 2000); and 2) BCG artifacts related to cardiac-induced motion which 

can induce currents greater than the EEG signal and also at the same frequency as neural 

activity (Debener et al., 2007). Extensive exploration of several different open-source 

algorithms and toolboxes was conducted to optimize the obtained EEG data by retaining as 

much of the neural activity as possible while reducing artifacts as much as possible.  

 

GA removal was explored using both a traditional sliding average template (AAS) (Allen et al., 

2000) and a principal components analysis (PCA) method (default settings in AMRI toolbox 

version 1.1) (Liu et al., 2012). Based on inspecting the power spectral density of the data, it was 

determined that the AAS method over-corrects more than the PCA method under-corrects. To 

retain as much of the neural activity as possible, the PCA method was chosen for GA removal. 

For BCG artefact removal, the PCA method again outperformed and was chosen (using default 

settings in AMRI toolbox). Following GA but prior to BCG artifact removal, the data were 

downsampled to 250Hz and automatic heartbeat detection was applied to facilitate BCG 

artifact removal (AMRI toolbox). These were visually inspected, and poor automatic heartbeat 

detection was remedied manually. Following these artifact removals, a Butterworth, zero 

phase-shift, noncausal bandpass filter (24dB/octave roll off) was used between 0.1 and 20Hz 

based on recommendations for the P3 wave (Luck, 2014). The GA harmonics were removed 

with a 1Hz band rejection filter (Mayeli et al., 2021). Eye artifacts and any residual BCG artifacts 

were removed using independent components analysis (ICA) with the amica toolbox on the 

NeuroScience Gateway portal www.nsgportal.org (Hsu et al., 2018; Palmer et al., 2008). Bad 

channels were removed prior to ICA and interpolated following ICA. The data were then re-
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referenced to the average of the TP9/10 channels (approximate mastoid location) and the 

online recording channel (FCz) was reinstated. Finally, the data were segmented into stimulus-

locked epochs to the onset of the decision phase (-200ms to 800ms) and baseline-corrected (-

200ms). Any trials missing a response were removed (mean trials=7.87, SD=8.01), and any trials 

with amplitudes greater than ± 100µV on any channels were removed (mean trials=8.30, 

SD=9.45). 

 

3.3.4.3 Analyses 

To identify the N2 and P3 and determine the optimal time-window to analyse over, a collapsed 

localizer over all trials during the decision phase and over the mean of the anterior channels 

(Fz, FCz, FC1/2, Cz) for the N2 and posterior channels (Pz, POz, P3/P4, CP1/2) for the P3 was 

used. This allows selecting a time-window that is orthogonal to the conditions that will be 

analysed and thus minimises window selection biases that may increase the probability of type 

I errors (Luck, 2014). No N2 component was observed in the anterior channels, thus this 

component was not examined. A P3 component was evident in the posterior channels but 

peaking earlier (between 220-280ms) than the classic P3 (i.e., P3b which is usually observed 

between 300-700ms; Figure 3.2). All main analyses therefore focused on the mean amplitude 

between 220-280ms. These included the effect of: 1) reward on accepted trials, and 2) effort on 

accepted trials. For these analyses, three contrasts (high minus low, high minus medium, and 

medium minus low) were explored at every a priori defined posterior channel (Pz, POz, P3/P4, 

CP1/2). These contrasts were conducted with a repeated-measures, two-tailed permutation 

test based on the tmax statistic (Blair & Karniski, 1993) with a family-wise alpha level of 0.05, 

which allows for correcting the large number of comparisons, using the Mass Univariate ERP 

Toolbox (Groppe et al., 2011). Prior to the permutation tests, the data were downsampled to 

125Hz. 

 

To explore whether any other timepoints may be involved in either effort or reward signalling, 

time points between 200 and 780ms at all 28 scalp electrodes were tested. It was considered 

unlikely that higher cognitive computations occur earlier than 200ms, which typically only 
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reflect early visual processes (Woodman, 2010). This was again performed using mass 

univariate analyses with tmax permutation-based tests, controlling the family-wise error (FWE) 

rate at alpha=0.05.  

 

To ensure that the EEG data were of sufficient quality, a number of checks were implemented. 

Both motor responses and visual ERPs should be evident in the data. To examine motor-evoked 

ERPs, the data were locked to the onset of each participant’s yes/no motor response and 

examined over the C3 and C4 channels (averaged over all trials). A negative motor-related 

potential should be evident around 20ms post-response and show a lateralised negative scalp 

topography over left motor cortex in right-handed individuals (Melnik et al., 2017). For the 

visual check, a grand-average ERP (all trials) was generated over O1 and O2 channels, locked to 

the presentation of the first part of the offer. The ERP was inspected for a visual N1/N70 peak 

(negative over visual cortex) (Luck, 2014). 
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Figure 3.2 Collapsed EEG localizer. Trials across experimental conditions and posterior channels were used to 
identify the timing of an ERP component of interest for analysis at the onset of the decision phase. This 
approach is preferred in situations where prior research cannot inform the current study analysis parameters, 
as is the case in the current study. It further minimizes window selection biases and thus probability of type I 
errors. The shaded red area represents the time window used for the main analyses and the shaded grey area 
represents the 95% confidence interval. 

 

 

3.3.5 fMRI data 

3.3.5.1 Recordings 

fMRI data were acquired using a 1.5T Siemens Avanto MRI scanner (Birkbeck-UCL Centre for 

Neuroimaging) with a 32-channel head coil. An echo planar imaging (EPI) sequence with 40 

slices per volume, slice thickness of 2mm (1mm gap, 50% distance factor), slice TR of 85ms, 

transversal orientation, five dummy scans, an echo time (TE) of 50ms, a field of view (FOV) of 

204 mm, and a flip angle of 80 degrees was used. EPI images were acquired in ascending order 

with a 3x3x2mm voxel size. Prior to acquisition of functional images, T1-weighted MPRAGE 

images with 1mm isotropic anatomical scans were acquired (sagittal orientation, 2730ms TR, 

3.57ms TE, 7 degrees flip angle). A fieldmap was additionally acquired for each participant.  

 

220-280ms
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3.3.5.2 Preprocessing 

Preprocessing of fMRI data was conducted using SPM12 (Wellcome Trust Centre for 

NeuroImaging, UCL, London, UK) in MATLAB (version R2017b). Slice-time correction was 

applied to all data to minimize sampling differences and temporally align the data. After 

discarding the first five scans, scans were realigned to the sixth volume. Scan-to-scan 

movements greater than 1.5mm (half voxel size) or rotations greater than 1 degree were 

manually inspected. If artefacts were observed, these images were removed and replaced using 

interpolation (with slice-time correction and motion correction repeated for these scans). Scans 

were then co-registered to each subject’s anatomical scan and normalised to Montreal 

Neurological Institute (MNI) space. The normalised scans were then smoothed using a default 

Gaussian kernel of 8mm full-width at half maximum (FWHM).  

 

3.3.5.3 Analyses 

A whole-brain general linear model (GLM) analysis was conducted for accepted trials at the 

onset of the decision phase. The first-level analysis included regressors of reward and effort 

levels with a 1 s duration. Effort was modelled with a linear and quadratic parametric 

modulator, and reward with a linear parametric modulator (as some participants only accepted 

two reward levels) in the same model. Additional regressors of no interest included a 

parametric modulator on the feedback phase (loss and low, medium, high reward), a regressor 

for the motor response, the effort challenge (modelled with its duration), feedback when 

skipped, feedback when rejected, missed trials (duration of trial), and rejected offers (1 s 

duration). Serial orthogonalization in SPM was turned off and all parametric regressors were 

mean-centred. In addition, six movement parameters were included as nuisance regressors and 

null regressors were included to account for any interpolated scans during preprocessing. The 

second-level random-effects analysis was conducted with an initial cluster-forming threshold of 

p=0.001 and whole-brain FWE cluster-level correction of p=0.05, with one-sample t-tests for 

positive/negative reward and effort modulators. A second, otherwise identical model, 

additionally including a cost-benefit weighing parametric regressor (p(yes)-0.5) was conducted 
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(Bonnelle et al., 2016). However, due to the pattern of choices for some participants in several 

or all runs, this regressor was not estimable and thus this model was not considered further. 

 

In addition to the whole-brain analysis, a region-of-interest (ROI) analysis was conducted to 

examine whether the ACC was involved in cognitive effort computations, since this region has 

shown to be of particular importance during effort cost computations (Husain & Roiser, 2018). 

The ACC region was identified through the Neurosynth database (www.neurosynth.org) with 

the keyword ‘effort’ and striatum and vmPFC was identified with the keyword ‘reward’. A small 

volume correction with a 6mm radius sphere around the following MNI coordinates was 

applied for the ACC: x=0, y=14, z=46, left ventral striatum: x=-12, y=8, z=-8, right ventral 

striatum: x=12, y=10, z=-8, and vmPFC: x=2, y=58, z=-8:  

 

3.3.6 EEG-informed fMRI 

To better understand the origin of the identified ERP peak in the 220-280ms time window, 

single-trial mean amplitudes over this time-window were entered as a parametric modulator at 

the time of the decision in the first level GLM for each individual. Additional regressors included 

a parametric modulator of the feedback phase (loss, low, medium, high reward), regressors for 

the motor response, effort challenge, feedback of skipped trials, feedback of rejected trials, 

missed trials, rejected offers, and EEG artifact removed trials. The same threshold and 

correction for multiple comparison were applied in the second-level analysis as above.  

 

3.4 Results  

3.4.1 Behavioural results 

3.4.1.1 Acceptance rates 

As expected, participants’ choices were significantly modulated by reward (F(1.16,24.38)=45.48, 

p<0.001, 𝜂#;=0.68; Figure 3.3a), and effort (F(1.18, 24.78)=19.37, p<0.001, 𝜂#;=0.48; Figure 3.3a). 

There was also a significant interaction (F(2.27,47.67)=6.96, p=0.002, 𝜂#;=0.25), such that reward 

was discounted by effort to a greater extent at lower levels (Figure 3.3b).  
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Figure 3.3 Acceptance rates. The probability to accept an offer increased with increasing reward levels and 
decreased with increasing effort levels (a). Acceptance rates also varied as a function of both effort and reward 
(b). 

 

As a sensitivity analysis, we examined if the order of information (effort or reward presented 

first) influenced decisions. No significant order effects were observed (all p>0.17).  

 

3.4.1.2 Task manipulation checks 

Success rates. Success rates were uniformly high (Figure 3.4a). Importantly, there was no 

significant reward-by-effort interaction on success rates (F(1.67,28.43)=1.10, p=0.34, 𝜂#;=0.06; N=18 

as some participants did not accept at least one trial in each of the effort-reward 

combinations). There was no significant main effect of reward on success rates (F(1.23,20.84)=2.31, 

p=0.14, 𝜂#;=0.12). However, a significant main effect of effort on success rates was observed 

(F(1.29,21.90)=7.63, p=0.008, 𝜂#;=0.34). This was driven by lower success rates on the high 

compared with both medium (p=0.02) and low effort trials (p=0.01; Figure 3.4a). However, no 

significant correlations were found between overall accept and overall success rates (r=0.14, 

p=0.53), or between effort sensitivity (linear contrast of effort levels on acceptance rates) and 

the corresponding linear contrast on success rates (r=0.27, p=0.23; Figure 3.4b). This suggests 

that, even though participants performed slightly more poorly on the high effort trials, it was 

apparently not sufficiently substantial to impact their decision making. 

  

a b
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Completion times. As expected, participants were faster to complete the effort task with 

increasing effort levels (F(1.35,28.39)=6.38, p=0.01, 𝜂#;=0.23; low>medium: p=0.04; low>high: 

p=0.01; med>high: p=0.04; Figure 3.4c), suggesting that the effort manipulation was successful 

as participants modulated their behaviour according to the time limit. We further explored 

whether the number of switches also impacted performance. The time to complete the effort 

task increased with the number of odd/even switches on a given effort challenge trial (F(2.71, 

48.81)=8.25, p<0.001 𝜂#;=0.31; N=19 as not all participants experienced every number of 

odd/even switches; Figure 3.4d). Figure 3.4e shows how many trials for each given number of 

odd/even switches on a trial per effort level. The data suggest that, although the number of 

switches also had an impact on how effortful the task was, the occurrence of each level of 

switches were roughly similar across effort levels. Thus, although we did not explicitly 

manipulate this aspect of the effort challenge design, it was fairly constant between effort 

levels and unlikely to have impacted choices since participants would not know in advance how 

many switches were available on a given trial. 

 

Possible fatigue effects. To examine possible fatigue effects, a repeated-measures ANOVA with 

block (six blocks) and effort (low, medium, high) was performed on the probability to accept an 

offer, as well as on success rates. There was no significant interaction between block and effort 

(F(4.24,88.96)=1.02, p=0.41, 𝜂#;=0.05), or a main effect of block (F(1.91,40.08)=0.37, p=0.69, 𝜂#;=0.02) 

on the probability to accept an offer. There was no significant block-by-effort interaction on 

success rates either (F(4.98,104.56)=1.17, p=0.33, 𝜂#;=0.05), but there was a significant main effect 

of block on success rates (F(2.66,55.79)=2.91, p=0.048, 𝜂#;=0.12). This was driven by lower success 

rates overall on the last block (M=91.9%, SEM=2%) compared with the second (M=97.3%, 

SEM=0.7%; p=0.02), third (M=96.9%, SEM=0.08%; p=0.02) and fifth (M=95.9%, SEM=0.9%; 

p=0.03) blocks. These results indicate that fatigue effects were minimal, and largely confined to 

the last block.  



 110 

 
Figure 3.4 Manipulation checks. Boxplots of the probability to succeed on the effort challenge show that 
success rates were slightly lower on the hard effort condition (a) but effort sensitivity (linear contrasts of effort 
levels) to accept/reject an offer did not significantly correlate with effort sensitivity in terms of success rates 
(r=0.27, p=0.23; b). The time to complete the cognitive effort challenge decreased with increasing effort levels, 
in line with the effort manipulation (c). The time to complete the cognitive effort challenge further increased 
with the number of odd/even switches on a given challenge (d), but the distributions of odd/even switches were 
similar across all effort levels (e). Error bars reflect standard errors of the mean. *p<0.05.  

 

3.4.2 EEG results  

The linear contrast of effort (high minus low effort) survived FWE correction only at the P3 

electrode (p=0.028; note that this ERP is coincidentally also termed P3). High effort had a 

greater mean amplitude between 220-280ms compared with low effort at the P3 electrode 

(Figure 3.5). All other tests of effort and reward during the decision to accept were non-

significant at the corrected threshold level (pFWE>0.20). 

 

All participants had greater than 30 trials in each condition effort/reward level, which is the 

minimum recommended trials for analysing the P3 component (Luck, 2014), except for 4 
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individuals who accepted fewer than 11 trials in the low reward condition. The reward analysis 

was therefore repeated without these individuals as a sensitivity analysis. No reward conditions 

were significantly different from each other in this sub-analysis either (pFWE>0.05).  

 

To explore whether any other timepoints and electrodes might be affected by reward or effort, 

all time points between 200 and 780ms were examined. However, only the high versus low 

effort effect at 276ms at the P3 electrode was significant (reflecting the effect identified above). 

No other effects were significant when controlling the FWE rate at p<0.05.  
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Figure 3.5 P3-like ERP modulated by effort on accepted trials at the time of the decision screen, at the P3 electrode. 
The top figure (a) shows the ERP for low, medium, and high effort, which was analysed in the shaded time window (220-
280ms). Scalp topographies at the mean time window of 220-280ms are shown in the inset for each effort condition. 
Bottom figures (b) show the difference amplitude for each contrast. High effort showed a significantly greater mean 
amplitude of the shaded area compared with the low effort condition. Shaded regions around the difference waves 
indicate 95% confidence intervals.  

 

 

 

220-280ms
Low Medium High
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3.4.2.1 EEG checks 

Both visual (Figure 3.6a) and motor response (Figure 3.6b) ERPs were evident in the EEG data, 

suggesting that the EEG data were of good quality.  

 
Figure 3.6 EEG data checks. The left plot shows the waveform from electrodes C3 and C4 at the onset of the 
choice (a). A motor potential is evident around 20ms after a response was made, showing greater activity over 
the left motor cortex, as expected for a cohort who are right-handed. The right plot shows waveforms over 
occipital channels (O1, O2) stimulus-locked to the first piece of information (reward or effort level), showing a 
negative peak around 70ms corresponding to the N1/N75 component (b). Shaded areas represent 95% 
confidence intervals. 

 

3.4.3 fMRI results 

3.4.3.1 fMRI: ROI analyses  

No significant striatal or vmPFC clusters were identified for either the linear reward contrast or 

the linear/quadratic effort contrast. Significant ACC activation was however evident with a 

negative quadratic effort effect (MNI peak: -3, 14, 47; BA 24; small volume correction 

t(16)=3.79, k=8, pFWE=0.016; Figure 3.7). This was driven by lowest activation in the low-effort 

condition, intermediate activation in the high-effort condition, and highest activation in the 

medium-effort condition. 

C3
C4

32-72ms20ms

N1/N75

a b
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Figure 3.7 Effect of parametric negative quadratic effort modulation on ACC ROI activation. Effort-related 
activation in the a priori defined anterior cingulate cortex (ACC) region on accepted trials during the decision 
phase, identified using a cluster-forming threshold of p<0.001 and voxel-level family-wise error corrected within 
the region of interest at p<0.05. 

 

3.4.3.2 fMRI: whole-brain analyses  

A network of regions, including vlPFC, dlPFC, cingulate cortex, insula, and precentral gyrus 

encoded negative quadratic effects of accepted effort levels at the decision phase onset (Table 

3.1).  

 

In contrast, no regions emerged for the linear reward modulation of accepted trials at the time 

of the decision at a FWE-corrected cluster level. At a more lenient, exploratory, threshold 

(initial p=0.01, pFWE=0.05 cluster corrected), only the precuneus and posterior cingulate cortex 

(PCC) showed significant effects with increasing reward levels (Table 3.1, Figure 3.8). There 

were no significant activations with decreasing reward levels, even at the more liberal initial 

threshold.  

 

To better understand the quadratic effect of the effort results, the medium and high effort 

levels from each effort cluster (Table 3.1) were contrasted to examine whether they were 

different as a sensitivity analysis. The medium effort level was significantly lower than the high 

a b
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effort level across all effort clusters, including the ACC ROI analysis (all p<0.005), consistent with 

a negative quadratic relationship with increasing effort levels, and not a step-wise effect 

relative to the lowest effort level.  

 

 

 

Label Coordinates for 
peak voxel 

Size 
(voxels) 

Peak 
t(16) 

Cluster 
pFWE 

 x y z    
Neural activation with negative quadratic effort  
Left paracentral lobule/ precentral gyrus (BA 6) -12 -7 56 222 7.29 <0.001 
Right inferior temporal gyrus/ inferior occipital gyrus 51 -73 -4 69 7.05 0.004 
Right anterior prefrontal cortex 30 47 11 48 6.60 0.023 
Posterior cingulate cortex (BA23)/ middle cingulate cortex 0 -25 29 41 6.52 0.043 
Right vlPFC/insula 39 23 2 58 6.27 0.010 
Left middle temporal cortex (BA 21) -57 -40 2 60 5.64 0.008 
Left vlPFC -57 11 11 150 5.60 <0.001 
Left dlPFC/ anterior prefrontal cortex -42 35 20 110 5.16 <0.001 
Right middle frontal gyrus/ precentral gyrus (BA6)/ inferior 
frontal gyrus triangular part 

36 -1 47 46 5.06 0.027 

Neural activation with increasing reward 
Precuneus/posterior cingulate -9 -73 50 437 6.36 <0.001* 
Table 3.1 Whole-brain fMRI analysis of accepted trials during the decision phase. All clusters were corrected 
for multiple comparisons with a cluster-forming threshold of p<0.001 (uncorrected) and family-wise error (FWE) 
cluster correction at p<0.05. MNI coordinates are presented. Areas of activation were identified with a brain 
atlas (Mai et al., 2015). vlPFC: ventrolateral prefrontal cortex; dlPFC: dorsolateral prefrontal cortex. *No clusters 
for the reward modulator reached cluster-level FWE-correction when using a cluster-forming threshold of 
p<0.001 (uncorrected). The listed effect is present at a more liberal cluster-forming threshold of p<0.01 
(uncorrected) and pFWE<0.05 (original pFWE=0.158 with cluster-forming threshold p=0.001).  
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Figure 3.8 Effect of reward and effort on whole-brain activation. Whole-brain activation to parametric positive 
linear reward levels (a) and negative quadratic effort levels (b) on accepted trials at the decision-phase. All 
clusters are significant at a cluster-forming threshold of p<0.001 and family-wise error (FWE) cluster corrected 
at p<0.05, except the reward cluster which is only evident at a more liberal cluster-forming threshold of p<0.01 
(pFWE<0.05 cluster corrected). dlPFC: dorsolateral prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; IFG: 
inferior frontal gyrus. Colour bars indicate t-values and x, y, z, coordinates are in MNI space. 

 

3.4.4 EEG-informed fMRI results 

No significant clusters were identified in the EEG-informed fMRI analysis using a cluster-forming 

threshold of p<0.001 and pFWE<0.05 cluster-correction, or even when using a more lenient 

uncorrected initial threshold of p<0.01.    

Precuneus/posterior cingulate cortexa

-12 -7 56 

Left paracentral lobule/superior frontal gyrus, medial partb

6 -52 11

Precentral gyrusLeft dlPFC

-42 -1 41

vlPFC/IFG

-54 20 -1
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3.5 Discussion 

The goal of this study was to characterise the spatiotemporal dynamics of motivation to exert 

cognitive effort. The main aims were to establish the spatiotemporal dynamics of reward 

benefits, and separately, effort costs, to understand how these may influence choices. This may 

help clarify the neural mechanisms underlying difficulties in motivation, as observed in 

anhedonia. 

 

At a behavioural level, this task showed good face validity: reward motivated task engagement 

while effort decreased motivation to exert effort, as expected and in line with previous studies 

(Husain & Roiser, 2018). Importantly, success rates were uniformly high, suggesting that 

decisions were not influenced by how achievable the effort levels were. This is important, as 

otherwise decisions can be confounded by probability discounting, although this has not often 

been examined in effort paradigms. Similarly, decisions might also be confounded by the time 

to complete an effort challenge, as a more effortful challenge usually takes longer to complete 

leading to temporal discounting (Klein-Flügge et al., 2015). This is relatively easy to control for 

in physical effort paradigms, but harder to achieve for cognitive effort. Indeed, it is mostly not 

controlled for in current cognitive effort paradigms (Apps et al., 2015; Chong et al., 2017; 

Westbrook et al., 2013). In the current task, the number of digits to complete was the same for 

each effort level to avoid this confound. In addition, very minor fatigue effects were observed 

over six blocks; this is important because fatigue, which is conceptually related to anhedonia, 

also impacts motivation (Müller & Apps, 2019). Crucially, we were able to calibrate the effort 

challenge to each individual, which provides confidence that decisions are not related to 

individual differences in ability to complete the cognitive challenge per se. This is particularly 

important in clinical case-control studies, as patients may often experience cognitive 

impairment which could confound the results. Finally, by adopting a single-action decision to 

accept or reject offers, versus binary choices (low effort-low reward or high effort-high reward), 

this task might more closely mimic real-life decisions (Bonnelle et al., 2015; Pessiglione et al., 

2018).  
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At a neural level, we observed that ACC activation scaled with anticipated effort during the 

decision phase, consistent with the study hypotheses, albeit in a negative quadratic manner. 

Sensitivity to physical effort has previously shown to depend on the ACC (Bonnelle et al., 2016; 

Klein-Flügge et al., 2016). This suggests that cognitive effort might recruit similar neural regions 

as physical effort, at least during option valuation. Both domain-general and domain-specific 

neural mechanisms have been identified for decisions involving physical and cognitive effort 

(Chong et al., 2017). However, these were only examined for the cost-benefit valuation (i.e., the 

integration of rewards and efforts), and thus it remains unclear whether sensitivity to physical 

or cognitive effort is processed in the same neural regions.  

 

Surprisingly, ACC activation showed a negative quadratic relationship with increasing effort 

levels. The reason for this is not clear. On a physical effort version of this task, subjective 

valuation of effort is represented by both a linear and quadratic effort computational 

parameter (where a negative quadratic parameter indicates disproportionate increase in 

sensitivity to high effort levels) (Armbruster-Genç et al., 2022). Thus, it is possible that our 

results are related to this quadratic valuation of effort. This may indicate that cognitive effort is 

implemented in similar regions to physical effort, but that the computations may differ by 

effort domain. Future studies will need to clarify this by employing a computational approach. 

Alternatively, this ACC activation might reflect decision difficulty. Low and high effort trials 

might result in easier decisions (mostly accept and reject, respectively), than the medium effort 

level, which requires more deliberation. Indeed, the ACC has also been implicated in decision 

difficulty and conflict monitoring (Bonnelle et al., 2016; Westbrook & Braver, 2015). However, 

mean acceptance rates were high over all effort levels (over 70%) and the high effort level was 

closest to a mean acceptance rate of 50%, which would indicate that this level produced the 

most difficult decisions. Nevertheless, it is recognised that the ACC is involved in a plethora of 

processes (Ebitz & Hayden, 2016; Vassena et al., 2017), and thus future work is needed to 

establish its role in cognitive effort valuation. Finally, it is unlikely that this effect reflects 

differences in trial numbers as the number of accepted trials scaled linearly with effort levels.  
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Thus, the quadratic neural modulation of effort remains unclear but these results suggest a 

relationship with the effort manipulation. Nevertheless, this effect requires replication and 

future studies could clarify this using a computational model. Interestingly, a quadratic pattern 

corresponding to effort level was observed across all significant neural regions. Among others, 

these included frontal regions such as the dlPFC and vlPFC, and superior frontal gyrus; regions 

typically identified in higher-order cognitive processes, such as attention, inhibitory control and 

flexible cognition, as well as mental effort exertion (Friedman & Robbins, 2022; Nelson & 

Guyer, 2011; Ryman et al., 2019; Soutschek & Tobler, 2020). 

 

We did not observe that evaluation of reward during the decision to accept an offer scaled 

significantly with activation in either the vmPFC or striatum, as previously reported for physical 

effort tasks (Pessiglione et al., 2018). Reward evaluations were related more to PCC activation, 

but only at a lenient threshold, in line with one previous physical effort study (Klein-Flügge et 

al., 2016). Although not included in our predictions, the PCC is often activated during reward 

processing, together with the striatum and vmPFC (Bartra et al., 2013). Moreover, previous 

studies only identified vmPFC activity in individuals whose choices were most strongly driven by 

reward, as measured by a computational model (Klein-Flügge et al., 2016). Future studies could 

therefore use a model to elucidate if this might also be the case in the present study. 

Importantly, however, no regions overlapped between reward and effort, suggesting that the 

identified neural regions activate in a relatively specific manner to different types of 

information.  

 

Contrary to our hypotheses, we did not observe any classic N2 or P3 ERPs in frontal and 

posterior scalp electrodes. Although a P3-like ERP was observed in parietal channels, this did 

not scale with reward as hypothesised. Instead, a higher amplitude was observed with greater 

effort levels during the decision to accept. One previous study indicated that the amplitude of 

the P3, measured during anticipation of rewards on the MID task, increased with the 

willingness to accept high-effort/high-reward trials on the EEfRT (Zhang et al., 2017). However, 

unfortunately in that study EEG recording was not performed during EEfRT performance. Our 
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results suggest that perhaps this effect is driven by effort costs, rather than reward benefits. 

However, we did not detect correspondence between the activity of this P3-like component 

and any neural regions in our EEG-informed fMRI analysis. This might have occurred due to the 

poor signal-to-noise ratio inherent in single-trial EEG. Even though the EEG data were of 

sufficient data quality on average, this might not have been sufficient on a single-trial level and 

might need to be further optimised in an MRI environment. In addition, effort showed a linear 

relationship with this ERP, in contrast to the fMRI pattern, potentially reflecting different effort-

related evaluation processes. However, in the absence of an identified neural generator, the 

P3-like ERP is difficult to interpret, and should be considered preliminary.  

 

No N2 component was evident in frontal scalp channels. The reason behind this is not clear. 

Although we conducted a small pilot using only EEG, and did observe both N2 and P3 

components in expected channel locations, some individuals did show an N2 fronto-central 

component in the current study (data not shown), suggesting that this task might not have 

consistently engaged the N2 component. Speculatively, this might be because the N2 

component is mainly associated with executive functions, such as conflict monitoring and task 

difficulty, during the execution of such processes (Folstein & Van Petten, 2008), but might not 

be involved in the decision whether to engage or not in such processes.  

 

This study had several limitations, the main one being the small sample size. This was intended 

to be a pilot study to identify neural markers of interest, but this meant that we were also 

unable to examine certain analyses, such as brain-behaviour correlations. In addition, we did 

not examine reaction times, which might be informative for understanding the timing of 

decisions. This was due to the task design: choice execution was separated from the offer phase 

in order to avoid any possible confounds from the motor-response or post-decisional factors, 

and thereby increase sensitivity for examining decision-related processes. Finally, it is possible 

that our choice to present reward/effort information separately before the decision screen 

unexpectedly affected on our ability to detect typical ERP markers. This design was chosen to 

ensure that each condition (reward or effort) was processed sufficiently so that it would be 
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possible to examine ERPs close to the onset of the offer screen, as ERPs are typically examined 

within the first couple of hundred milliseconds. Although our behavioural analysis indicated 

that decisions were not affected by the order of presentation, we did not examine if this might 

have influenced the neural data due to the low sample size in each condition (eight individuals 

were presented with the effort level first and nine individuals with reward first). Future studies 

should examine this possibility. 

  

In summary, the current task addresses several shortcomings of previous paradigms and shows 

promise for examining willingness to exert cognitive effort. The neural mechanisms underlying 

decisions involving cognitive effort have remained largely unknown. The current study suggests 

that decisions to accept based on cognitive effort might be computed in regions previously 

identified as being involved in physical effort valuation, such as the ACC, and other regions 

involved in higher-order cognitive functions such as the dlPFC and vlPFC. A negative quadratic 

pattern was identified, with strongest activation for decisions involving medium effort levels. 

An ERP component around 200-300ms was associated with increasing effort linearly, but we 

were unable to demonstrate that this ERP corresponded to activation in the identified 

cognitive-effort-related regions. Overall, these results suggest that the motivation to exert 

cognitive effort elicits activation in a robust network concentrated on PFC regions with 

decisions about effort costs tentatively being most prominent around 200-300ms. Future, 

larger, studies are required to clarify the temporal dynamics of decisions involving cognitive 

effort in greater detail. 
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4 The effect of ketamine on fronto-striatal circuitry in depressed and 

healthy individuals: a resting-state fMRI study  

4.1 Abstract 

Ketamine improves motivation-related symptoms in MDD, but simultaneously elicits similar 

symptoms in healthy individuals, suggesting that it might have different effects in different 

populations. This study examined whether ketamine affects the brain’s fronto-striatal system, 

which is known to drive motivational behaviour. It also assessed whether inflammatory 

mechanisms—which are known to influence neural and behavioural motivational processes—

might underlie some of these changes. These questions were explored in the context of a 

double-blind, placebo-controlled, crossover trial of ketamine in 33 individuals with TRD and 25 

healthy controls (HCs). Resting-state fMRI (rsfMRI) was acquired two days post-ketamine (final 

sample: TRD N=27, HC N=19) and post-placebo (final sample: TRD N=25, HC N=18) infusions and 

was used to probe fronto-striatal circuitry with striatal seed-based functional connectivity. 

Ketamine increased fronto-striatal functional connectivity in TRD participants towards levels 

observed in HCs while shifting the connectivity profile in HCs towards a state similar to TRD 

participants under placebo. Preliminary findings suggest that these effects were largely 

observed in the absence of inflammatory (C-reactive protein; CRP) changes, and were 

associated with both acute and sustained improvements in symptoms in the TRD group. 

Ketamine thus normalized fronto-striatal connectivity in TRD participants but disrupted it in HCs 

independently of inflammatory processes. These findings highlight the potential importance of 

reward circuitry in ketamine’s mechanism of action, which may be particularly relevant for 

understanding ketamine-induced shifts in motivational symptoms.  
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4.2 Introduction 

The precise neural mechanisms underlying ketamine’s beneficial effects remain unknown. 

Unlike other antidepressants, ketamine is particularly effective in treating motivational 

dysfunction, such as anhedonia (Ballard et al., 2018; Lally et al., 2014; Lally et al., 2015). In a 

parallel line of research, ketamine has also been used to model symptoms of schizophrenia in 

HCs (Frohlich & Van Horn, 2014). Interestingly, some of those studies suggested that ketamine 

can transiently induce symptoms relating to impaired motivation in HCs (Driesen et al., 2013; 

Pollak et al., 2015; Stone et al., 2008; Thiebes et al., 2017). This echoes findings that ketamine 

moderately increased anhedonia and symptoms of difficulty in decision-making in HCs beyond 

its dissociative side effects (Nugent et al., 2019). While this prior work suggests that ketamine’s 

effects may be mediated through changes in motivational processing, the neural circuit-level 

mechanisms underlying this are poorly understood.  

 

A neural pathway of interest here is the brain’s reward circuit, including striatum and ventral 

PFC (Haber, 2016). The striatum acts as an important hub in the brain’s reward system and is 

thought to drive goal-directed behaviours through interplay with the PFC (Haber & Knutson, 

2010; Marquand et al., 2017). For this reason, both theoretical and empirical accounts implicate 

the fronto-striatal circuit as a key driver of motivational behaviour. In depressed individuals, 

task-based fMRI studies have consistently identified abnormalities in the brain’s reward system. 

Specifically, altered function has been observed in the OFC, dlPFC, and perigenual (pg) ACC, 

with striatal hypoactivation consistently implicated in MDD (Admon & Pizzagalli, 2015; Eshel & 

Roiser, 2010; Heller et al., 2009; Husain & Roiser, 2018; Price & Drevets, 2010, 2012). Lower 

fronto-striatal functional connectivity has also been associated with MDD and anhedonia during 

reward processing (Borsini et al., 2020; Heller et al., 2009; Rupprechter et al., 2020). 

Complementing and extending these findings, studies using rsfMRI—which is thought to reflect 

the intrinsic functional organization of neural circuits—reported that MDD is associated with 

altered functional connectivity between striatal and prefrontal regions (Furman et al., 2011; 

Gong et al., 2018; Hamilton et al., 2018; Kaiser et al., 2015; Marchand, 2010; Pan et al., 2017; 

Treadway & Pizzagalli, 2014). Furthermore, disrupted striatal and prefrontal function have been 
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associated with individual differences in reward-related processing (Felger et al., 2016; 

Greenberg et al., 2015; Sharma et al., 2017; Wang et al., 2016; Yang et al., 2017), suggesting 

that fronto-striatal circuitry plays an important role in the pathogenesis of motivational 

impairment.  

 

Several inflammatory processes have recently been proposed to influence the function of this 

fronto-striatal circuit as well as motivational impairments in MDD (Cooper et al., 2018; Felger & 

Treadway, 2017; Miller & Raison, 2015). Elevated peripheral markers of inflammation—as 

measured by CRP—have been associated with depression (Chamberlain et al., 2019; 

Haapakoski et al., 2015; Miller et al., 2009) and with lower cortico-striatal functional 

connectivity (Felger et al., 2016; Yin et al., 2019). Experimentally-induced inflammation in 

animals and humans has also been shown to cause motivational impairments and reduce 

striatal function (Capuron et al., 2012; Dantzer et al., 2008; Eisenberger et al., 2010; Vichaya & 

Dantzer, 2018). Inflammation may mediate motivational symptoms by dampening dopamine 

activity within reward circuitry, resulting in disrupted fronto-striatal functional connectivity 

(Felger & Treadway, 2017). Inflammatory processes are therefore well-situated to influence 

neural circuits underlying motivational symptoms. Interestingly, ketamine may affect 

dopaminergic function through glutamatergic downstream effects (Belujon & Grace, 2014; 

Kokkinou et al., 2018) and may also influence inflammatory processes (De Kock et al., 2013; 

Yang et al., 2015). 

 

Although these studies lend credence to the hypothesis that fronto-striatal circuitry is 

important in ketamine’s mechanism of action, this has never been directly tested. A secondary 

question is whether ketamine-induced fronto-striatal changes are mediated via inflammatory 

mechanisms. These questions were explored in the context of a double-blind, placebo-

controlled, crossover trial of ketamine in individuals with TRD and HCs that used rsfMRI to 

probe fronto-striatal circuitry and CRP measures to quantify peripheral inflammation. Given 

that ketamine has opposite effects on motivational symptoms in individuals with TRD and HCs, 

ketamine’s effects on reward circuitry and inflammation—two important neurobiological 



 125 

mechanisms underlying motivational behaviours—may underlie these observations. Based on 

prior studies indicating lower functional connectivity in fronto-striatal circuitry in MDD, it was 

hypothesised that ketamine would increase fronto-striatal functional connectivity in TRD 

participants but decrease it in HCs, and that these effects would be associated with ketamine-

induced changes in inflammatory response. 

 

4.3 Methods 

4.3.1 Participants 

Data for 58 participants (25 HCs and 33 TRD participants) were drawn from a larger clinical trial 

(NCT00088699) (Evans et al., 2018; Nugent et al., 2019). All participants were evaluated using 

the Structured Clinical Interview for Axis 1 DSM-IV Disorders (SCID)-patient and nonpatient 

versions (NP) (First et al., 2002a, 2002b). All TRD participants met criteria for recurrent MDD 

without psychotic features, had a Montgomery-Åsberg Depression Rating Scale (MADRS) 

(Montgomery & Åsberg, 1979) score ≥20 at screening and before each infusion, had not 

responded to at least one adequate antidepressant trial during their current episode, and had a 

current episode that lasted for at least four weeks. Before testing, all TRD participants were 

medication-free for at least two weeks (five weeks for fluoxetine, three weeks for aripiprazole). 

HCs had no family history of Axis I disorders in first-degree relatives as determined by the SCID-

NP. All participants were between 18-65 years of age and deemed to be in good physical health 

with no unstable medical problems, as determined by medical history, physical examination, 

blood labs, chest x-ray, electrocardiogram, toxicology, and urinalysis. Additional exclusion 

criteria included a current or past (past 3 months for patients, and lifetime for HCs) comorbid 

substance abuse or dependence (not including nicotine/caffeine) and any MRI contradictions. 

Female participants could additionally not be pregnant or nursing throughout their 

participation. All participants were admitted to an inpatient psychiatric unit at the NIMH during 

the study and provided written informed consent. The study was approved by the NIH 

Combined Central Nervous System IRB. 

 



 126 

4.3.2 Study procedures 

Participants were randomized to receive either a single intravenous infusion of subanaesthetic-

dose ketamine hydrochloride (0.5 mg/kg) or placebo (0.9% saline solution) during the first 

session and the alternative treatment in the second session, conducted two weeks later (Figure 

4.1). rsfMRI scans were obtained two days following each infusion. Ketamine and saline 

solutions were administered in identical syringes over 40 minutes via intravenous tubing in the 

forearms, and all subjects, researchers and clinicians were blind to the treatment assignment. 

 

 

 
Figure 4.1 Study design. Participants were randomised to receive either a subanaesthetic dose of ketamine or a 
placebo on their first infusion and the alternative treatment on their second infusion, two weeks later. 
Inflammatory markers (C-reactive protein: CRP) were analysed one day post-infusions and resting-state fMRI 
(rsfMRI) two days post-infusions. 

 

4.3.3 fMRI acquisition and preprocessing 

Data acquisition and preprocessing have previously been reported and were identical to those 

described in Evans et al. (2018). Eight-minute rsfMRI scans (3.75x3.75x3.5mm resolution, 64x64 

matrix, TR of 2.5s) were acquired on a 3T GE Healthcare MRI scanner (HDX; Milwaukee, WI) 

with an eight-channel coil. Participants were asked to close their eyes and relax but not fall 

asleep. rsfMRI scans were obtained two days following each infusion; given ketamine’s short 

half-life (Clements, 1982), it had been fully metabolized by this time point, which allowed us to 

examine lasting neural effects not attributable to ketamine’s immediate pharmacological 

effects. High-resolution structural images were obtained using a T1-weighted 3D fast spoiled 

gradient recalled echo sequence with an 8.8s TR, 3.4ms TE, 450ms inversion recovery time, 13 
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degrees flip angle, and with a 1mm isotropic resolution. Whole-brain rsfMRI images were 

obtained using a gradient recalled EPI sequence with a 90 degrees flip angle, 192 volumes, 45 

slices per volume, 3.75x3.75x3.5mm resolution, 64x64 matrix, TR of 2.5s, TE of 25ms, anterior-

posterior phase encoding direction and interleaved acquisition. In addition, cardiac and 

respiration traces were recorded during each scan using the GE photoplethysmograph and 

respiratory belt. 

 

Preprocessing was performed in AFNI with the afni_proc script. This included despiking, slice-

time correction, nuisance signal regression (motion: 12-parameter affine, registered to the third 

volume; physiological: slice-based, generated with McRetroTS), 6mm FWHM spatial smoothing, 

band-pass filtering (0.01-0.1Hz), alignment to the MNI 152 standard space, and motion 

censoring. Alignment to standard space was achieved by first aligning the structural image to 

the EPI with an affine transform using the LPC cost-function (align_epi_anat.py in AFNI). The 

anatomical image was non-linearly warped to the MNI 152 standard template and the EPI was 

transformed to standard space using the concatenated transformation matrices produced from 

the anatomical alignment steps. Image sequences were censored (i.e., removed) if there was 

movement greater than 0.2mm (Euclidean norm) per TR. If there were more than 15 censored 

time points per dataset, the dataset was excluded from further analysis. Motion (de-meaned 

and derivative) regressors were removed from the original time series simultaneously with 

band-pass filtering. 

 

As reported previously (Evans et al., 2018), data were excluded for the following reasons: 

incomplete physiological data (six TRD individuals and four HCs); excessive motion (>0.2mm/TR; 

nine TRD, 11 HC); high correlation between the respiration volume trace and the average global 

signal, which increased correlations across the brain (three TRD, three HC); and an extreme 

outlier data point in the group x treatment interaction results (one HC, excluding this individual 

did not significantly alter any results).  
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4.3.4 Seed regions 

In line with previous studies (Di Martino et al., 2008; Felger et al., 2016; Furman et al., 2011), 

four striatal seeds reflecting striatal functional subregions were chosen to assess fronto-striatal 

circuitry (3.5mm radius spheres). These included the ventral striatum (VS; ± 9, 9, -8), dorsal 

caudate (DC; ± 13, 15, 9), dorsal caudal putamen (DCP; ± 28, 1, 3), and ventral rostral putamen 

(VRP; ±20, 12, -3; see Figure 1). Left and right seeds were combined for analysis to increase 

signal-to-noise, as we expected that left and right seeds would show similar activity. For each 

participant, seed locations were visually inspected with reference to anatomical images to 

ensure appropriate positioning.  

 

4.3.5 ROI control  

The primary visual cortex (V1) was used as a control region for a sensitivity analysis examining 

whether the results were specific to the identified PFC regions or due to a global pattern. Left 

and right ROIs (3.5mm sphere radius per ROI) were collapsed for analysis (±8, -76, 10) (Yu et al., 

2008). 

 

4.3.6 Peripheral inflammatory markers  

CRP levels were used to assess peripheral inflammation, which show high correspondence with 

central markers of inflammation (Felger et al., 2018). These were acquired 60 minutes prior to 

each infusion and at 230 minutes, Day 1, and Day 3 after each infusion. Only data from Day 1 

were examined here as it was the timepoint closest to the scan and the infusion day and had 

the greatest number of available samples.  

 

Blood samples were collected using vacutainer tubes with sodium heparin and centrifuged at 

3000 rpm at 4°C for 10 minutes. Separated plasma samples were aliquoted and stored at -80°C 

until assay. Prior to processing, plasma samples were randomly allocated in the plates and 

blinded independently to minimize the impact of batch, treatment, or group effect in the 

sample. High-sensitivity CRP was quantified using the human CRP DuoSet ELISA kit (R & D 

Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. Plasma was 
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diluted 1:1000 with reagent diluent and carried out in duplicate, blind to clinical information. 

CRP standard solution was diluted to concentrations from 15.6 to 7500pg/ml to create the 

standard curve. After the addition of biotinylated detection antibody, streptavidin-HRP 

substrate, and stop solution (stepwise), plates were read at 450 nm with Synergy HTX Multi-

Mode Reader (BioTek, Winooski, VT, USA). CRP concentrations were calculated based on the 

standard curve. 

 

4.3.7 Symptom scales 

MADRS and SHAPS ratings were acquired 60 minutes before each infusion and at 40, 80, 120, 

230 minutes, and 1, 2, 3, 7, 10, and 11 days following each infusion. The SHAPS is a 14-item, 

self-administered psychometric scale (Snaith et al., 1995). Each item was scored between 1-4, 

resulting in a final score range between 14 and 56. For both scales, participants were asked to 

indicate how they felt since the last time the rating was administered. The primary symptom 

outcome was from Day 2, as this was the day of the rsfMRI scan. Secondary symptom outcomes 

were from Day 10, to explore if any ketamine-induced changes in fronto-striatal circuitry may 

have played a role in more sustained symptom improvements. For the correlations with the 

longer-term anti-anhedonic or antidepressant effects, psychometric data from Day 10 were 

chosen as this day had the greatest number of available samples. 

 

4.3.8 Data analysis 

Seed-to-whole-brain functional connectivity analyses were performed in AFNI (v.19.0.09) (Cox, 

1996) and all other analyses were conducted in SPSS (v25, IBM Corp, Armonk, NY). For all non-

neuroimaging analyses, statistical significance was assessed at p<0.05, two-tailed, without 

correction for multiple comparisons due to the exploratory nature of the study. No a priori 

power analysis was performed because the present study was a secondary analysis of a clinical 

trial (Nugent et al., 2019). However, conducting a retrospective sensitivity power analysis in 

G*Power (Faul et al., 2007) showed that we had 80% power to detect an effect size of 0.89 

between groups with 25 patients and 18 HCs (two-tailed, alpha=0.05).  
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4.3.8.1 Functional connectivity  

The final post-ketamine sample included 27 TRD participants and 19 HCs, and the final post-

placebo sample included 25 TRD participants and 18 HCs. Functional connectivity Fisher 

transformed z-maps were generated at the subject-level using 3dNetCorr in AFNI (Taylor & 

Saad, 2013). Linear mixed-effects models were conducted (3dLME) (Chen et al., 2013) at the 

group level to assess the effect of treatment on each seed region-to-whole-brain functional 

connectivity map. Each model included: random effect of subject; within-subject factors of 

treatment (ketamine, placebo) and infusion order; and a between-subjects group factor (HC, 

TRD). Infusion order was retained if there were significant treatment interactions. The main 

purpose of this study was to examine the group-by-treatment interaction but all results are 

presented for completeness. An initial cluster-forming threshold of p<0.005 (uncorrected), with 

cluster-level FWE correction at p<0.05 was used to correct for multiple comparisons. Monte-

Carlo simulation in AFNI (3dFWHMx, 3dClustSim) yielded a minimum cluster size of 46 voxels. 

Significant clusters—derived from the group-by-treatment whole-brain analyses—were used in 

correlational analyses with symptoms and CRP measures as described below. 

 

For the V1 control analyses, linear mixed-effects models (random effect: subjects; fixed effects: 

group, treatment, and their interaction) were conducted to assess whether ketamine 

influenced striatal (VS, DC, DCP, VRP)-V1 functional connectivity. 

 

4.3.8.2 Inflammatory markers (CRP) 

Linear mixed-effects analyses (random effect: subjects; fixed effects: group, treatment, and 

their interaction) were conducted to assess the effect of ketamine on CRP levels. For this 

analysis, CRP measures were log-transformed to conform to assumptions of normality. CRP has 

previously been strongly positively associated with body mass index (BMI) (Chamberlain et al., 

2019; Ridker et al., 2003; Zhao & Lv, 2013). To examine if this was the case in the current 

sample, BMI was correlated with both raw and log-transformed CRP levels at placebo and 

ketamine for both groups. An independent t-test was further used to examine whether there 

were any baseline differences in CRP levels (log-transformed) between groups (TRD N=30, HC 
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N=21). The -60 minute timepoint before the first infusion was used for the CRP data, as this 

most closely resembled approaches used in other cross-sectional studies investigating CRP 

levels between HCs and individuals with depression (Chamberlain et al., 2019).  

 

Pearson correlation coefficients explored the relationship between change in CRP measures 

and ketamine-induced shifts in fronto-striatal functional connectivity. Participants were 

included if they had CRP and rsfMRI data for both post-infusion days (ketamine and placebo). 

Thirty-eight participants (TRD: 22, HC: 16) had usable CRP and rsfMRI data at both post-infusion 

timepoints. Changes in CRP levels (ketamine minus placebo; ΔCRP) were correlated with 

changes in functional connectivity (ketamine minus placebo; ΔFC) for each identified region 

from the seed-to-whole-brain functional connectivity result (i.e., the group-by-treatment 

interaction results). Correlations were conducted separately for each group. We also explored 

whether baseline CRP levels might moderate the change in fronto-striatal circuitry and 

anhedonia post-ketamine in individuals with TRD. The average of the log-transformed baseline 

CRP measures (-60 timepoint before both infusions) were correlated with change in SHAPS 

scores (ketamine minus placebo) as well as change in each identified striatal-frontal functional 

connectivity (ketamine minus placebo). 

 

4.3.8.3 Symptom scales 

A linear mixed effects model per group and symptom scale (MADRS, SHAPS) was used to 

examine the effect of ketamine versus placebo on symptoms. Each model included a random 

effect for participants along with fixed effects of time, treatment, and their interaction. 

Baseline scores on each infusion day (-60 minutes) was included as a covariate to correct for 

baseline symptom levels. Functional connectivity changes were correlated with ketamine’s 

acute and longer-term anti-anhedonic or antidepressant effects in TRD. Differences in MADRS 

(ketamine minus placebo; ΔMADRS) and SHAPS (ketamine minus placebo; ΔSHAPS) scores on 

Day 2 (the rsfMRI scan day) and Day 10 were correlated with post-ketamine changes in fronto-

striatal functional connectivity (ketamine minus placebo). Twenty-two TRD participants had 

MADRS scores at Day 2 after both infusions, and 12 TRD participants had SHAPS scores at Day 2 
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after both infusions. Nineteen TRD participants had MADRS scores at Day 10 after both 

infusions, and 12 had SHAPS scores at Day 10 after both infusions. 

 

4.4 Results   

4.4.1 Participant characteristics and psychometric scales 

The patient group included significantly more Caucasian individuals than the healthy control 

group, with no other significant difference in demographic characteristics (Table 2.1). 

 

 

As reported previously with this sample (Nugent et al., 2019), ketamine had a significant effect 

on both MADRS and SHAPS scores (Figure 4.2). In patients, ketamine significantly decreased 

MADRS scores (main effect of treatment: F(1,480.65)=127.23, p<0.001), and this did not vary with 

time (treatment-by-time interaction: F(9, 471.25)=1.18, p=0.31). Similarly, ketamine significantly 

decreased SHAPS scores in patients (F(1,280.89)=52.80, p<0.001), with no significant interaction 

effect with time (treatment-by-time interaction: F(9, 263.89)=0.85, p=0.57). There was a significant 

main effect of treatment on MADRS scores in healthy controls (F(1,290.10)=33.45, p<0.001), with a 

temporary increase in depressive symptoms (treatment-by-time interaction: F(9,282.97)=7.68, 

p<0.001). Similarly, ketamine significantly increased SHAPS scores in healthy controls 

(F(1,219.883)=7.81, p=0.006; no significant interaction with time: F(9,205.61)=1.00, p=0.44). 

 

 TRD (N=30) HC (N=21) p-value 
Mean (std. dev.) Mean (std. dev.)  

Age  36 (9.54) 34 (10.97) 0.55 
Female 18 (60%) 14 (67%) 0.63 
BMI (kg/m2) 26.54 (5.66) 27.87 (4.16) 0.37 
Caucasian (%)  25 (83%) 11 (52%) 0.02 
Length of illness  20.80 (10.74) years –  
Length of current episode  45.50 (73.20) months –  
Number of failed antidepressant treatments  6.5 (3.66) –  
Table 4.1 Characteristics for participants with at least one post-infusion (ketamine or placebo) scan 
included in the rsfMRI analyses. BMI: body mass index; rsfMRI: resting-state functional magnetic 
resonance imaging; TRD: treatment-resistant depression; HC: healthy control 
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Figure 4.2  Ketamine’s effects on symptoms within the current study sample. Participants represent a 
subsample drawn from a larger study (Nugent et al., 2019). Plots of ketamine’s effects on raw Montgomery-
Asberg Depression Rating Scale (MADRS) and raw Snaith-Hamilton Pleasure Scale (SHAPS) scores in individuals 
with treatment-resistant depression (TRD; a and b), and healthy controls (HCs; c and d) are presented.  

 

4.4.2 Ketamine effects on fronto-striatal connectivity  

Significant group-by-treatment interactions were observed across all striatal seeds (Table 4.2). 

Specifically, functional connectivity between VS-left dlPFC, DC-right vlPFC, DCP-pgACC, and VRP-

OFC was increased in TRD participants but decreased in HCs post-ketamine (Figure 4.3).  

 

Ketamine Placebo

A. B.

D.C.

a b

c d
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Figure 4.3 Group differences in the effects of ketamine on functional connectivity across four striatal seeds. 
Ketamine differentially altered functional connectivity between the groups, as reflected in VS-left dlPFC (a), DC-
right vlPFC (b), DCP-pgACC (c), and VRP-left/right OFC (d) coupling. This was identified using group-by-treatment 
F-tests at an FWE cluster-corrected threshold level of p<0.05. Boxplots with individual data points and 
distributions show that functional connectivity was increased in individuals with treatment-resistant depression 
(TRD) but reduced in healthy controls (HCs) post-ketamine relative to placebo (a-d). Resting-state functional 
magnetic resonance imagining scans (rsfMRI) were acquired two days after each infusion. Abbreviations: VS: 
ventral striatum; DC: dorsal caudate; DCP: dorsal caudal putamen; VRP: ventral rostral putamen; dlPFC: 
dorsolateral prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; pgACC: perigenual anterior cingulate 
cortex; OFC: orbitofrontal cortex; L: left; R: right; FWE: family-wise error. 

 

All striatal seed-to-whole-brain functional connectivity analyses were repeated, controlling for 

age, sex, race, and BMI. Continuous covariates (age and BMI) were mean-centred within each 

group-by-treatment factor. Results are presented in Table 4.3. To explore what might be driving 

a b c d

HC TRD HC TRD HC TRD HC TRD HC TRD

Effect Seed Label Size (voxels) Peak x Peak y Peak z F-statistic p-value 
Group * 
treatment 

VS Right putamen 79 21 5.2 -3.8 F(1,36)=27.06 <0.01  
Left dlPFC 51 -28 43.8 31.2 F(1,36)=20.54 <0.04 

DC Right vlPFC 52 52.5 36.8 3.2 F(1,32)=20.37 <0.03 

DCP pgACC 58 7 33.2 -0.2 F(1,36)=17.18 <0.03 
VRP Left OFC 81 -21 26.2 -10.8 F(1,32)=28.22 <0.01 
 

Right OFC 66 28 26.2 3.2 F(1,32)=16.96 <0.02 

Table 4.2 Striatum-to-whole-brain functional connectivity results. Abbreviations: VS: ventral striatum; DC: dorsal 
caudate; DCP: dorsal caudal putamen; VRP: ventral rostral putamen; dlPFC: dorsolateral prefrontal cortex; vlPFC: 
ventrolateral prefrontal cortex; pgACC: perigenual anterior cingulate cortex; OFC: orbitofrontal cortex. All clusters 
were corrected for multiple comparisons with a cluster-forming threshold of p<0.005 (uncorrected) and family-
wise error (FWE) cluster correction at p<0.05 using Monte-Carlo simulation in AFNI.   
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the discrepancy between DCP and VRP-right OFC results from the original results, separate DCP 

and VRP linear mixed models were conducted for each covariate. Results were largely 

unchanged from the main results (DCP and VRP seeds in Table 4.2) with separate sex, age, and 

BMI covariate models. However, in both the DCP and VRP models that included only the race 

covariate, the results mirrored the fully-adjusted effects (Table 4.3), indicating that race was 

likely driving these deviations from the original results in Table 4.2. Because race was the only 

covariate that was unbalanced between groups (Table 4.1), future studies should examine 

whether these effects remain when race is balanced between the groups. However, the original 

VRP-right OFC cluster (Table 4.1) overlapped with the covariate-controlled VRP-right OFC 

cluster (Table 4.3), and although the VRP and DCP analyses including covariates differed slightly 

from the original results, it is important to note that each included covariate reduced the 

available degrees of freedom. Thus, the covariate-controlled results have lower power to assess 

ketamine’s effects on fronto-striatal circuitry. In summary, these analyses suggest that the 

fronto-striatal functional connectivity results remained largely unchanged when controlling for 

covariates, although DCP connectivity may have been influenced by race. 

 

 

Effect Seed Label Size (voxels) Peak x Peak y Peak z F-statistic p-value 
Group * 
treatment 

VS Right putamen 63 21 5.2 -3.8 F(1,30)=27.19 <0.02 
 

Left dlPFC 54 -28 47.2 17.2 F(1,30)=23.40 <0.03 

DC Right vlPFC 43 52.5 36.8 3.2 F(1,28)=22.51 <0.07* 

VRP Left OFC 85 -21 26.2 -10.8 F(1,28)=28.57 <0.01 
 

Right striatum/ OFC 133 14 19.2 -10.8 F(1,28)=28.09 <0.01 
Table 4.3 Striatum-to-whole-brain functional connectivity results controlling for sex, age, race and BMI. All 
clusters were corrected for multiple comparisons with a cluster-forming threshold of p<0.005 (uncorrected) 
and family-wise error (FWE) cluster correction at p<0.05 using Monte-Carlo simulation in AFNI resulting in 
minimum 46 voxels. Abbreviations: VS: ventral striatum; DC: dorsal caudate; VRP: ventral rostral putamen; 
dlPFC: dorsolateral prefrontal cortex; vlPFC: ventrolateral prefrontal cortex; OFC: orbitofrontal cortex.  

*This effect narrowly misses the minimum cluster-corrected voxel size of 46 voxels when all covariates are 
included but emerges at 47 voxels (p<0.05 FWE cluster-corrected) with sex excluded from the model. Sex did 
not exert a significant main effect or treatment interaction in the DC seed model, but its inclusion decreases 
degrees of freedom. 
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All other significant results from each striatal whole-brain functional connectivity analysis and 

ketamine’s group-specific effects are presented in Table 4.4, showing a similar pattern of 

ketamine primarily affecting fronto-striatal functional connectivity in patients and HCs.  

 

 

4.4.3 Control analyses: ketamine effects on striatal-V1 functional connectivity  

Control analyses indicated that ketamine exerted no significant effects on functional 

connectivity between any of the striatal seeds and the V1 control region (group-by-treatment 

interaction striatal-V1 functional connections: all Fs<1.99, all ps>0.17; Figure 4.4).  

Significant results from each striatal whole-brain functional connectivity analysis  
Effect Seed Label Size (voxels) Peak x Peak y Peak z F-statistic p-value 
Treatment 
(Ket > Pla) 

VS Precuneus 71 -0.0 -71.8 +48.8 F(1,49)=17.00 <0.01 

Group* Infusion 
order 

DC Insular cortex 62 +42.0 -1.8 -21.2 F(1,32)=21.71 <0.02 
DC Frontal pole 123 +7.0 +61.2 -21.2 F(1,32)=19.30 <0.01 

Treatment* 
Infusion order 

DC 
 

Precuneus 120 +3.5 -54.2 +17.2 F(1,32)=20.88 <0.01 

 VRP Frontal pole 154 -0.0 +61.2 -3.8 F(1,32)=26.88 <0.001 
Significant post-hoc group-specific ketamine effects from each striatal whole-brain functional connectivity analysis 
Treatment-resistant depressed (TRD) individuals 
Effect Seed Label Size (voxels) Peak x Peak y Peak z z-score p-value 
Ketamine> 
Placebo 

VS Precuneus 168 -7 -78.8 52.2 3.62 <0.001 

  Left OP10/dlPFC 118 -21 57.8 6.8 3.78 <0.01 

  Right OP10/ 
dlPFC  

104 24.5 43.8 24.2 4.64 <0.01 

  PCC 96 -3.5 -26.2 31.2 4.27 <0.01 
 DC Left OP10/dlPFC 67 -35 40.2 10.2 3.47 <0.02 
 VRP dlPFC 63 -31.5 33.2 31.2 3.43 <0.02 
  Right OFC 47 10.5 29.8 -14.2 3.80 <0.05 
Healthy controls (HC) 
Placebo> 
Ketamine 

DC Right vlPFC 52 56 33.2 13.8 -4.76 <0.04 

 VRP Right SFG 70 14 -8.8 62.8 -3.94 <0.01 
Table 4.4  Significant results from each striatal whole-brain functional connectivity analysis and post-hoc group-
specific ketamine effects. All clusters were corrected for multiple comparisons with a cluster-forming threshold of 
p<0.005 (uncorrected), with a family-wise error (FWE) correction at p<0.05 using Monte-Carlo simulation in AFNI. VS: 
ventral striatum; DC: dorsal caudate; VRP: ventral rostral putamen; dlPFC: dorsolateral prefrontal cortex; PCC: 
posterior cingulate cortex; vlPFC: ventrolateral prefrontal cortex; OFC: orbitofrontal cortex; SFG: superior frontal gyrus; 
Ket: ketamine; Pla: placebo. There were no significant clusters from the dorsal caudal putamen seed in TRD or HC 
individuals, and no significant clusters from the VS seed in HCs at this threshold. Only ketamine>placebo contrast 
clusters were present for TRD patients and placebo>ketamine contrast clusters in HCs. 
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Figure 4.4 Ketamine effects on striatal-V1 functional connectivity. Ketamine had no significant effect on 
functional connectivity between the striatum and primary visual cortex (V1). Individual data points, box plots, 
and data distributions are plotted for ventral striatum (VS)-V1 (a), dorsal caudate (DC)-V1 (b), dorsal caudal 
putamen (DCP)-V1 (c), and ventral rostral putamen (VRP)-V1 (d) functional connectivity post-ketamine and post-
placebo for healthy controls (HCs) and individuals with treatment-resistant depression (TRD). 

 

4.4.4 Inflammatory markers (CRP)  

There were no significant correlations between peripheral inflammation and BMI within the 

TRD (all r<0.37, all p>0.07) or HC groups (all r<0.41, all p>0.08). BMI was therefore not included 

as a covariate in any subsequent analyses. No significant main effects on CRP levels were noted 

for group (F(1,48.50)=1.11, p=0.30), treatment (F(1,45.52)=0.37, p=0.55), or group-by-treatment 

interaction (F(1, 45.52)=1.61, p=0.21; Figure 4.5a). No significant differences in CRP levels between 

groups were found at baseline either (t(49)=0.72, p=0.48; Figure 4.5b). 

 

 

a b c d

HC TRD HC TRD HC TRD HC TRD
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Figure 4.5 C-Reactive Protein (CRP) effects. There were no significant effects of ketamine on CRP levels (a) or 
differences between groups at baseline (-60 minutes before the first infusion; b). Raw CRP levels are presented 
but analyses were conducted on log-transformed data. HC: Healthy control; TRD: Treatment-resistant 
depression. 

 

A negative association was observed between ΔCRP and VRP-right OFC ΔFC in HCs (r=-0.64, 

p=0.007; Figure 4.6), such that increased CRP levels post-ketamine correlated with decreased 

VRP-right OFC functional connectivity. However, this was not the case for TRD participants (r=-

0.07, p=0.77; Figure 4.6). The difference in correlation coefficients between HCs and TRD 

participants narrowly missed significance, although it should be noted that statistical power for 

this comparison is low (Fisher’s Z test: z=1.91, p=0.06). No other relationships between ΔCRP 

and ΔFC post-ketamine were significant (all absolute r<0.45, all p>0.08). No significant 

relationship was observed between averaged baseline CRP levels and change in SHAPS scores 

post-ketamine in patients (r=-0.14, p=0.61, N=15), or between averaged baseline CRP levels and 

ketamine-induced changes in fronto-striatal circuitry in patients (all absolute r<0.35, all p>0.11, 

N=22).   
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Figure 4.6 The relationship between ketamine-induced changes in peripheral inflammation with changes in 
VRP-OFC functional connectivity. Data are plotted separately for healthy controls (HCs; p=0.007) and 
individuals with treatment-resistant depression (TRD; p=0.77). CRP: C-Reactive Protein; VRP: Ventral Rostral 
Putamen; OFC: Orbitofrontal cortex; Δ: ketamine minus placebo. 

 

4.4.5 Association with symptoms on Day 2   

No significant correlations were noted between ΔMADRS and ΔFC at Day 2 in TRD participants 

(all absolute r<0.20, p>0.38). However, a significant correlation was observed between post-

ketamine improvement (i.e., reduction) in SHAPS score and post-ketamine increases in DC-right 

vlPFC functional connectivity on Day 2 (Figure 4.7a; r=-0.60, p=0.04; other ΔSHAPS and striatal-

PFC ΔFC associations at Day 2: all absolute r<0.16, p>0.62).  

 

4.4.6 Association with symptoms on Day 10  

No significant correlations were observed between ΔMADRS and ΔFC at Day 10 in TRD 

participants (all absolute r<0.32, p>0.18). Improvement in Day 10 SHAPS scores were associated 

with post-ketamine increases in DCP-pgACC connectivity (Figure 4.7b; r=-0.64, p=0.02). All other 

correlations between fronto-striatal ΔFC and Day 10 ΔSHAPS showed a similar, but non-

TRD:
HC:
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significant pattern (DC-right vlPFC: r=-0.56, p=0.06; VRP-right OFC: r=-0.54, p=0.07; VS-left 

dlPFC: r=-0.47, p=0.12; VRP-left OFC: r=-0.34, p=0.28; Figure 4.7c-f). 

 

 

 
Figure 4.7 Associations between changes in fronto-striatal circuitry and improvements in SHAPS scores. 
Associations between ketamine-induced changes in DC-right vlPFC connectivity and SHAPS scores two days 
post-infusion (scan day; a), and 10 days post-infusion (b-f) in individuals with treatment-resistant depression. 
Negative SHAPS scores indicate post-ketamine improvements compared with post-placebo and positive 
functional connectivity scores indicate increased functional connectivity post-ketamine compared with post-
placebo. Shaded area represents estimated 95% confidence interval. SHAPS: Snaith-Hamilton Pleasure Scale; 
DC: dorsal caudate; vlPFC: ventrolateral prefrontal cortex; DCP: dorsal caudal putamen; pgACC: perigenual 
anterior cingulate cortex; VRP: ventral rostral putamen; OFC: orbitofrontal cortex; Δ: ketamine minus placebo. 
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4.5 Discussion  

This study sought to examine how ketamine affects fronto-striatal neural circuitry in TRD 

participants relative to HCs. Ketamine was found to modulate fronto-striatal circuitry in a 

diagnosis-specific manner. In TRD participants, ketamine increased functional connectivity 

between the caudate and prefrontal regions (left dlPFC and right vlPFC) commonly implicated in 

cognitive processes and between the putamen and prefrontal regions (pgACC and OFC) 

commonly implicated affective processes. However, in HCs, functional connectivity with the 

striatum in these same frontal regions decreased post-ketamine. Notably, this was not simply 

due to a global shift in functional connectivity across the brain, as previously suggested (Driesen 

et al., 2013), but specific to the PFC (Abdallah et al., 2017); in particular, striatal-visual cortex 

connectivity was not similarly affected by ketamine. These results underscore the complexities 

of ketamine’s neural effects.  

 

Previous studies found that ketamine improves anhedonia symptoms and increases glucose 

metabolism in the VS, putamen, and dorsal ACC, extending into the sgACC and dlPFC, in 

individuals with treatment-resistant MDD and bipolar disorder (Lally et al., 2014; Lally et al., 

2015; Nugent et al., 2014). Similarly, ketamine has been shown to increase striatal responses 

during emotional processing (Murrough et al., 2015) and global brain connectivity in the 

striatum and PFC (Abdallah et al., 2017). The present study extends these findings by showing 

that, compared with placebo, ketamine increased functional connectivity specifically within this 

fronto-striatal network in TRD participants. This is an important extension, given that 

psychiatric disorders may be better characterized as disruptions in circuit-level networks than in 

individual regions, as behaviours are thought to be achieved through multiple neural regions 

acting in concert (Treadway & Pizzagalli, 2014). 

 

While ketamine can improve motivational symptoms in MDD, it often produces mild symptoms 

of impaired motivation, such as anhedonia and lassitude, in HCs (Ballard et al., 2018; Driesen et 

al., 2013; Lally et al., 2014; Lally et al., 2015; Nugent et al., 2019; Pollak et al., 2015; Stone et al., 

2008; Thiebes et al., 2017). This pattern dovetails with recent findings showing that ketamine 
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restores dysfunctional neural mechanisms underlying emotional processing in depression but 

shifts these in the opposite direction in HCs (Reed et al., 2018, 2019). These diagnosis-

dependent effects suggest that the initial functioning level of the neural circuit may be key to 

determining neurobiological response to ketamine. Ketamine also promotes glutamate 

signalling within cortico-limbic-striatal circuits and potentiates dopaminergic activity within the 

striatum and PFC (Duman & Aghajanian, 2012; Kokkinou et al., 2018; Yao et al., 2018), 

suggesting that glutamatergic signalling and downstream modulation of dopaminergic activity 

within the fronto-striatal circuitry may form a crucial part of ketamine’s neural effects (Belujon 

& Grace, 2014; Murrough et al., 2015). 

 

A secondary goal of the study was to explore whether inflammatory processes, as assessed via 

CRP levels, affected ketamine-induced shifts in fronto-striatal connectivity (Cooper et al., 2018; 

Felger & Treadway, 2017; Miller & Raison, 2015). Contrary to our hypotheses, there was no 

clear evidence that ketamine-induced fronto-striatal connectivity changes depended on 

peripheral inflammatory processes. Increased CRP levels post-ketamine were associated with 

reduced VRP-right OFC functional connectivity, but only in HCs. This implies that 

downregulation of some aspects of the brain’s reward system may be associated with changes 

in inflammatory processes in HCs. This finding is in line with previous studies suggesting that 

inflammatory processes are particularly associated with OFC functioning (Felger et al., 2016; Yin 

et al., 2019), although our OFC region was more lateral than found in previous studies. In 

addition, ketamine did not significantly affect CRP levels, nor did the association between 

change in VRP-right OFC and change in CRP levels post-ketamine differ significantly from the 

non-significant association in TRD participants. The identified association should therefore be 

considered tentative.  

 

To date, ketamine’s effects on reward-circuitry have not been extensively examined despite 

strong theoretical and empirical grounds (Alexander et al., 2019; Ballard et al., 2018; Duman & 

Aghajanian, 2012; Gould et al., 2019; Lally et al., 2014; Lally et al., 2015). Echoing the present 

results, a previous study found reduced functional connectivity within cortico-striatal nodes in 
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healthy non-human primates 24 hours post-ketamine (Lv et al., 2016). In contrast, another 

study found the opposite pattern in human HCs (Dandash et al., 2015). An important 

implication of the present study, however, is that investigations of ketamine’s antidepressant 

mechanisms should be interpreted with caution when based on healthy populations only, as 

previously reported (Nugent et al., 2019; Reed et al., 2018, 2019).  

 

A number of limitations of this study merit comment. Firstly, ketamine-induced increases in 

fronto-striatal connectivity would be expected to relate to improvements in anhedonia in TRD 

participants, but a significant relationship was detected only with DC-right vlPFC connectivity. 

That said, only a subset of the sample had SHAPS measures at both placebo and ketamine 

sessions, meaning that the study may have been underpowered to detect such associations. 

Similarly, the manner in which neural changes may relate to symptom changes in HCs was not 

investigated, given that all post-ketamine symptom changes had subsided to baseline levels by 

the day of the rsfMRI scan. However, the HC findings are consistent with previous studies 

demonstrating that decreased global connectivity in the striatum and decreased cerebral blood 

flow in the PFC are associated with increasing levels of negative symptoms/anhedonia 

immediately post-ketamine administration in HCs (Driesen et al., 2013; Pollak et al., 2015).  

 

Secondly, few participants had symptom and CRP data at both rsfMRI scans. Likewise, CRP and 

rsfMRI data were not available at the same timepoint. Due to the exploratory nature of these 

correlational analyses, the data were not corrected for multiple comparisons. In addition, larger 

sample sizes than tested here are required to establish robust brain-behaviour associations 

(Marek et al., 2022). As such, the symptom and CRP associations should be considered 

preliminary and require further confirmation. 

 

Finally, in contrast to previous cross-sectional studies (Chamberlain et al., 2019; Haapakoski et 

al., 2015; Miller et al., 2009), the participant population did not differ from HCs in terms of 

baseline CRP levels, suggesting that the current study captured a subgroup of TRD participants 

not characterized by dysfunctional inflammatory functioning. This may have obscured our 
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ability to properly examine relationships with inflammation, as TRD participants did not exhibit 

a large range of CRP levels. Future studies should seek to recruit a more heterogeneous sample 

in terms of baseline inflammation levels to determine whether ketamine might exert important 

effects mediated by inflammatory processes. 

 

In summary, the present study suggests that low fronto-striatal connectivity is normalized in 

TRD participants but disrupted in HCs post-ketamine, and preliminary evidence suggest that 

this largely occurs independently from peripheral inflammatory processes. This highlights the 

importance of including HCs as a normative model to draw comparisons. Considering the crucial 

role that fronto-striatal circuitry plays in goal-directed behaviours, these findings may be 

particularly relevant for the rapid and sustained reorientation of motivational states observed 

post-ketamine. 

  



 145 

5 The effect of ketamine on reward and punishment processing in TRD 

5.1 Abstract 

The aim of this chapter was to address the main question of the thesis, asking which reward 

and punishment behavioural mechanisms may underlie ketamine’s beneficial effects in TRD 

patients. Based on the literature suggesting impairments in reinforcement learning, decision-

making, and willingness to exert effort in depression, four tasks spanning these processes were 

chosen based on acceptable psychometric properties identified in Chapter 2: a restless four-

armed bandit task; a reward/punishment bias task (adapted from the PRT); the clock task, 

testing exploratory behaviour; and a physical effort task. Case-control comparisons in a sample 

prior to treatment revealed no significant differences between healthy individuals (total N=13) 

and MDD patients (total N=21) on any behavioural measures. These tasks were then 

administered to nine TRD individuals who underwent a randomised, double-blind, placebo-

controlled crossover trial of ketamine (0.5mg/kg), tested one day post-infusion. Prior exposure 

to a sub-anaesthetic dose of ketamine significantly increased exploratory behaviour in the clock 

task, in line with predictions; notably, this pattern was observed in every individual. Ketamine 

also increased punishment learning rate in the four-armed bandit task, but did not significantly 

affect response bias or physical effort processing, although the limited statistical power of the 

analysis should be noted. Unfortunately, this also precluded examination of relationships 

between ketamine’s effects on anhedonia and reward processing. These very preliminary 

results suggest that ketamine might exert its beneficial effects through improvements in goal-

directed exploratory behaviours. Due to the exploratory nature of this study, future research is 

needed to replicate and extend these results and better understand how they may relate to the 

previously observed anti-anhedonic effects of ketamine.  
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5.2 Introduction 

Multiple studies have suggested that a single sub-anaesthetic dose of ketamine may improve 

symptoms of anhedonia (Lally et al., 2014; Lally et al., 2015). However, symptom scales do not 

offer the mechanistic insight needed to understand the cognitive components that underlie 

ketamine’s anti-anhedonic effects. This is necessary if we wish to improve existing treatments 

or target existing ones better. Prominent theories emphasise the importance of alterations of 

components of reward and punishment processing in MDD, as discussed in Chapter 1. 

Therefore, the current chapter focuses on several candidate mechanisms, involving RL, 

motivation to exert effort and decision-making, that may underlie ketamine’s anti-anhedonic 

effects.  

 

Despite theoretical and empirical accounts implicating the importance of reward-related 

processing in anhedonia (Admon & Pizzagalli, 2015; Bekhbat et al., 2022; Bishop & Gagne, 2018; 

Borsini et al., 2020; Cooper et al., 2018; Der-Avakian & Markou, 2012; Der-Avakian & Pizzagalli, 

2018; Eshel & Roiser, 2010; Felger & Treadway, 2017; Husain & Roiser, 2018; Huys et al., 2021; 

Kieslich et al., 2022; Lucido et al., 2021; Pizzagalli, 2014; Rizvi et al., 2016; Rømer Thomsen et 

al., 2015; Treadway, 2016; Treadway et al., 2019; Treadway & Pizzagalli, 2014; Treadway & 

Zald, 2011, 2013; Wang et al., 2021; Zald & Treadway, 2017; Zhang et al., 2016), few studies 

have examined how ketamine affects behavioural reward and punishment processes. 

Preliminary data in a small sample of TRD patients and rodents have suggested that ketamine 

does not improve effort-related decision-making (Griesius et al., 2020; Lally, 2015). However, 

these studies used a task where reward and effort were not orthogonal and additionally 

included a probabilistic element (Treadway et al., 2009), complicating interpretation of 

performance. In the same TRD patient study, ketamine also did not significantly modulate 

learning in a static RL task using high and low probabilities of reward (Lally, 2015). However, it is 

unclear if ketamine might affect learning in more uncertain environments, which likely more 

closely mimic real-life, or computational measures of RL, which allow dissecting the precise 

cognitive components driving behaviour (Huys et al., 2016). A recent study in healthy marmoset 

monkeys indicated that ketamine can acutely (post 2 hours) increase reward responsiveness on 
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the PRT (Wooldridge et al., 2020). On this task depressed patients commonly lack a bias toward 

the more rewarded stimuli, as compared with healthy individuals, which has been associated 

with anhedonia (Huys et al., 2013). This raises the prospect that ketamine might have beneficial 

effects on this aspect of reward processing in depression. 

 

Besides the above study in TRD patients, no studies have specifically examined whether 

ketamine affects cognitive and computational markers of reward and punishment processing in 

TRD patients in the context of randomised, double-blind, placebo-controlled experiments. 

Several suitable tasks were identified to address this, and examined for acceptable 

psychometric properties in Chapter 2, to maximise sensitivity of measurement in the context of 

a crossover (within-subjects) design. From Chapter 2, the current study included the restless 

four-armed bandit task (Daw et al., 2006), measuring reward/punishment learning and 

sensitivity; a physical effort-based decision-making task (Bonnelle et al., 2016), to probe 

willingness to exert effort; a reward/punishment bias task, measuring response bias to rewards 

and punishments, adapted from the PRT (Pizzagalli et al., 2005); and the clock task (Frank et al., 

2009), assessing exploratory behaviours. It was reasoned that these tasks cover aspects of 

reward and punishment which may be particularly important in anhedonia (see Chapter 1), and 

thus represent central candidate mechanisms of ketamine’s anti-anhedonic effects. 

Importantly, these tasks were identified as having at least one measure of interest with 

acceptable test-retest properties, as assessed in Chapter 2, and were thus deemed suitable for 

repeated testing. 

 

These four tasks allowed us to test the hypothesis that ketamine’s beneficial effects are driven 

by changes in reward and punishment processing. Based on previous studies indicating lower 

reward responsiveness (PRT), lower reward sensitivity and learning (bandit task), lower 

willingness to exert effort (physical effort task), and lower goal-directed exploratory behaviours 

(clock task) in anhedonia and MDD (Halahakoon et al., 2020; Husain & Roiser, 2018; Huys et al., 

2021; Huys et al., 2013; Strauss et al., 2011), several predictions were made. Specifically, it was 

hypothesised that: 1) at baseline and compared with healthy individuals, patients would show 
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lower reward response bias, as tested in the reward/punishment bias task, lower reward 

learning and sensitivity in the bandit task, lower willingness to exert physical effort and lower 

exploratory behaviours in the clock task; and that 2) these effects would correlate with 

anhedonic symptom severity in patients. It was further predicted that 3) a single sub-

anaesthetic dose of ketamine would remediate impairments in TRD in the above processes.  
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5.3 Methods 

5.3.1 Participants 

Thirteen HCs and twenty-three MDD patients were recruited from various study protocols at 

the NIH, Bethesda, Maryland, USA. All participants were initially enrolled under a screening 

protocol during which the SCID (First et al., 2002a, 2002b) was used to evaluate and diagnose 

participants. If eligible, participants were allocated to various active study protocols at the 

NIMH ETPB. Most participants included in the current chapter were drawn from a larger clinical 

trial of ketamine (‘Neuropharmacologic Imaging and Biomarker Assessments of Response to 

Acute and Repeated-Dosed Ketamine Infusions in Major Depressive Disorder’; NCT03065335). 

All participants completed behavioural measures at baseline, and two of the HCs and thirteen 

of the TRD patients were admitted to an inpatient psychiatric unit at the NIMH and enrolled in 

the ketamine clinical trial.  

 

Inclusion criteria for MDD patients in the ketamine clinical trial included a current DSM-5 

diagnosis of MDD; a baseline score of at least 20 on the MADRS (Montgomery & Åsberg, 1979) 

and less than 12 on the Young Mania Rating Scale (YMRS) (Young et al., 1978) at the initial 

screening and before any ketamine infusions. Patients were also required to have had at least 

one current or previous lack of response to an adequate antidepressant trial (electroconvulsive 

therapy included). Before testing, all patients were free of psychotropic medication for at least 

2 weeks (5 weeks for fluoxetine, 3 weeks for aripiprazole). Patient exclusion criteria included a 

current diagnosis of bipolar disorder or any psychotic disorder. Exclusion criteria for HCs 

included a current or past history of any DSM-5 axis I disorder. All participants were deemed to 

be in good physical health with no poorly-controlled medical problems, as determined by 

medical history, physical examination, blood labs, chest x-ray, electrocardiogram, toxicology, 

and urinalysis. No participants met criteria for drug or alcohol use disorder, dependency or 

abuse (caffeine/nicotine was allowed) within the preceding three months (patients) or lifetime 

(HCs). For all participants additional inclusion criteria included: 18-65 years of age; no 

pregnancy or nursing in women; use of effective birth control in women during study 

participation; and weight less than 119kg. One patient was excluded due to not meeting the 
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minimum score on the MADRS before testing. Additionally, three patients withdrew before 

completing the post-infusion assessments but completed the baseline assessment, leaving nine 

patients in the final analysis. 

 

Additional participants for the baseline measures were tested under other study protocols. Ten 

HCs were enrolled in a ketamine sub-study assessing ketamine metabolites, and one HC was 

enrolled in a test-retest study, part of a ‘development’ protocol used for various studies. 

Inclusion and exclusion criteria of HCs for these protocols were identical to the ones listed 

above. Three additional patients were tested under the developmental protocol with identical 

inclusion/exclusion criteria for patients as listed above, except that they did not need to meet 

the failed antidepressant trial criteria. Finally, seven patients were tested under a screening 

protocol. Current psychotropic medication in patients was not an exclusion criterion in the 

screening protocol. One of these seven patients was excluded in the current study due to active 

alcohol abuse. Out of the remaining six, four were on antidepressant medication. See Table 5.1 

and Table 5.2 for a detailed breakdown of participant study allocation and characteristics. All 

participants provided written informed consent, and the study was approved by the NIH 

Combined Central Nervous System IRB.  

 

5.3.2 Case-control baseline study design  

A baseline behavioural assessment was completed to assess case-control comparisons on 

various reward and punishment processing tasks (see below). Patients who did not enrol in the 

ketamine clinical trial study were tested only once to provide baseline datapoints. Table 5.1 

describes the final allocation of participants across task measures and study protocols.  
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5.3.3 Ketamine study design  

The ketamine study employed a double-blind, placebo-controlled, crossover design with three 

phases (Figure 5.1). Infusions were administered through intravenous tubing in the forearms 

over 40 minutes using identical injections to ensure blinding. Participants’ baseline session 

occurred in phase 1, approximately one week before their first infusion. In phase 2, participants 

were randomised to receive either a single intravenous infusion of a subanaesthetic-dose of 

ketamine hydrochloride (0.5 mg/kg) or placebo (0.9% saline solution) during the first session 

(day 0) and the alternative treatment in the second session (day 7) conducted one week later. 

Participants additionally received an identical ketamine and placebo infusion three and four 

weeks after their first infusion (not depicted in Figure 5.1). Thus, in total, participants received 

four drug infusions (two ketamine and two placebo) in phase 2. The current study procedures 

of assessing the effect of ketamine, compared with placebo, on various reward and punishment 

tasks, were completed only following the first two infusions. These testing sessions occurred 

one day post-infusion, as ketamine produces the greatest anti-anhedonic effect at this 

timepoint (Lally et al., 2014). Following phase 2, patients, but not HCs, were enrolled in phase 3, 

which consisted of biweekly infusions of either ketamine (0.5 mg/kg) or an active control (0.1 

Case-control baseline study 
 Study protocol 

 Healthy controls (HC) Patients (MDD) 
Tasks Ketamine 

clinical trial 
Ketamine 

metabolite 
Test-
retest 

HC 
Total N 

Ketamine 
clinical trial 

Development Screening MDD 
Total N 

Bandit  2 10 1 13 12 3 6 21 
Physical effort 2 10 0 12 11 0 6 17 
Clock 2 10 1 13 12 0 6 18 
Rew/pun bias 2 9 1 12 12 3 6 21 
Table 5.1 Final participant allocation across study protocols for baseline measures. Baseline measures were used 
from the ketamine clinical trial. The ketamine metabolite study involved healthy controls only, in which they 
completed a baseline assessment followed by an open-label ketamine infusion (0.5mg/kg) one day later and lumbar 
puncture to examine ketamine metabolites from cerebrospinal fluid. Only data from the baseline assessment is 
analysed from the ketamine metabolite study due to the low number of participants completing post-infusion 
measures (N=8) and the lack of an assessment on practice effects on measures tested on consecutive days. In the 
test-retest study, participants completed the task battery on two consecutive days, with only the baseline assessment 
included here. In the development study, unmedicated patients were tested on baseline tasks once. In the screening 
protocol, medicated (N=4) and unmedicated patients who did not proceed to the ketamine clinical trial due to 
exclusion criteria completed the baseline assessment. The bandit task is short for the four-armed bandit task. MDD: 
Major Depressive Disorder; N: Number of participants; Rew: Reward; Pun: Punishment. 
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mg/kg ketamine) for four weeks to assess the safety and efficacy of repeated ketamine 

administrations. Patients completed the current study measures at the end of phase 3 as well. 

However, only phase 2 post-infusion behavioural data were analysed due to the low number of 

participants completing phase 3 (total N=8) and difficulty in unblinding patients’ treatment 

allocation in phase 3. Similarly, no data from HCs in phase 2 were analysed due to the small 

number of HCs with post-infusion data (N=2). Data were analysed from the first two infusions in 

phase 2 on patients who completed both placebo and ketamine infusions (N=9).  

 

 
Figure 5.1 Ketamine study design. Approximately one week prior to the first infusion, participants completed a 
battery of reward and punishment tasks along with psychometric scales in phase 1. In phase 2, participants 
were randomised to receive either ketamine or placebo on their first infusion and the alternative treatment one 
week later. Task and scale measures were again administered one day post their first and second infusion in 
phase 2. Following their second infusion, participants received two more infusions (ketamine and placebo) one 
week apart (infusion three on day 14 and infusion four on day 21). Participants were not tested following 
infusion three and four on the behavioural measures presented here and these infusions are therefore omitted 
in the figure.  

 

5.3.4 Unblinding 

At the time of writing, the ketamine study was an active trial, and thus formal unblinding of 

drug randomisation was not possible. In lieu of this, preliminary unblinding of phase 2 was 

conducted based on blood pressure values monitored by a study researcher not involved in the 

analysis of the current data, as ketamine is known to temporarily, but robustly, increase blood 

pressure (Riva-Posse et al., 2018). To supplement these drug session guesses, symptom scores 

from the Clinician-Administered Dissociative States Scale (CADSS) (Bremner et al., 1998) were 

analysed 40-minutes post-infusion, as ketamine has shown to temporarily increase CADSS 

scores 40 minutes post-infusion (Ballard & Zarate, 2020). The CADSS is a 23-item clinician-

DAY  0
Infusion

Placebo
0.9% saline

DAY  1
Tasks
Scales

DAY  7
Infusion

Placebo
0.9% saline

Ketamine
0.5mg/kg

DAY  8
Tasks
Scales

DAY -6
Tasks
Scales

Baseline

Ketamine
0.5mg/kg

Biweekly infusions for 4 weeks
Tasks and scales measured at the end  

Active control

Ketamine
0.5mg/kg

Phase 1 Phase 2 Phase 3

0.1mg/kg ketamine
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administered measure of perceptual, behavioural, and attentional alterations occurring during 

dissociative experiences.  

 

5.3.5 Symptom scales  

The following symptom scales were administered at baseline and post-infusion: MADRS 

(Montgomery & Åsberg, 1979), the Beck Depression Inventory Second Edition (BDI-II) (Beck et 

al., 1996), the SHAPS, the Temporal Experience of Pleasure Scale (TEPS) (Gard et al., 2006), the 

Dysfunctional Attitudes Scale Short Form 2 (DAS-SF2) (Beevers et al., 2007), the Fatigue Severity 

Scale (FSS) (Kleinman et al., 2000), the General Self-Efficacy Scale (GSE) (Schwarzer & Jerusalem, 

1995), the Life Orientation Test- Revised (LOT-R) (Scheier et al., 1994), the State-Trait Anxiety 

Inventory (STAI) (Spielberger, 1989), and the Apathy Motivation Index (AMI) (Ang et al., 2017). 

When scales were administered post-infusion, participants were asked to indicate how they felt 

since the last time the rating was administered. 

 

The MADRS, SHAPS and TEPS scales were the primary scales of interest at the post-infusion 

assessments. The MADRS is a 10-item clinician-rated instrument for the evaluation of general 

depressive symptoms and was analysed 60 minutes before each infusion, 120, 230 minutes and 

one, two, three, and six days post-infusion, with higher scores indicating more severe 

depression. The SHAPS is a 14-item self-report scale assessing hedonic capacity with higher 

scores indicating greater levels of anhedonia. Data for the SHAPS was available at baseline, 120, 

230 minutes and one, two, three, and six days post-infusion. Similarly, the TEPS is a self-report 

measure of anhedonia, which attempts to dissociate its anticipatory and consummatory 

aspects, with lower scores indicating more severe levels of anhedonia. The scale consists of 18 

items in total (10 items for anticipatory anhedonia, eight for consummatory anhedonia) and 

was analysed at baseline, 120, 230 minutes and one, two, three, and six days post-infusion. 

 

The scales of secondary interest were the BDI-II, DAS-SF2, FSS, GSE, LOT-R, STAI, and AMI, 

where higher scores indicate greater severity of the construct the scale assesses, except in GSE 

and LOT-R, where lower scores indicate greater severity. Data for these scales were available at 
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baseline and one-day post-infusion. The BDI-II is 21-item self-report scale measuring various 

aspects of depressive symptoms, the DAS-SF2 is a 9-item self-report scale of various 

dysfunctional attitudes such as negative and perfectionist attitudes, the FSS is a 9-item self-

report measure of fatigue severity, the GSE is a 10-item self-report psychometric scale of self-

efficacy, the LOT-R is a 10-item self-report questionnaire to assess generalized optimism versus 

pessimism, STAI is a self-report measure of both state (20 items) and trait (20 items) anxiety, 

and the AMI is an 18-item self-report measure of motivational deficits in behavioural, social and 

emotional areas designed for use in the general population. 

 

5.3.6 Reward and punishment tasks  

Participants were administered a battery of tasks assessing various components of reward and 

punishment processing. All tasks were presented in a randomised order at baseline and post-

infusion sessions. The gambling task, which showed excellent reliability in Chapter 2, was not 

included in this battery due to time constraints. Priority was given to tasks that, based on the 

literature, were hypothesised to be most relevant for assessing cognitive processes underlying 

anhedonia; in this regard, fewer prior studies indicate disruption of loss/risk aversion processes 

in anhedonia compared with the other tasks.    

 

All tasks were presented on a laptop using MATLAB (R2015b, The MathWorks, Inc., Natick, MA, 

United States) with either Psychtoolbox (http://psychtoolbox.org) or Cogent (Wellcome Centre 

for Human Neuroimaging and Institute of Cognitive Neuroscience, UCL, London, U.K.). 

Participants were reimbursed $40 and could win a bonus of up to $40 based on performance 

for each session. At the end of each session the computer randomly picked 100 trials across all 

the tasks to calculate the performance-based bonus. The bonus was revealed to the participant 

at the end of the final session.  

 

5.3.6.1 Four-armed bandit task 

The restless four-armed bandit task assesses the independent effects of rewards and 

punishments on decisions (Daw et al., 2006; Seymour et al., 2012). On each trial participants 
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were asked to choose one out of four bandits (represented as boxes), which would display one 

out of four possible outcomes following a choice: reward (green token), punishment (red 

token), neither reward nor punishment (empty box) or both reward and punishment (red and 

green token; Figure 5.2). The probability of reward and punishment outcomes varied over time 

(with a slow random walk) independently of one another within each bandit, and 

independently between bandits (meaning that it is possible for both reward and punishment to 

be delivered simultaneously). Participants were instructed on the non-stationary and 

independent nature of choice outcomes and were told that the goal was to maximize gains and 

minimize losses. The task lasted around 15 minutes with 200 trials in total. This was the 

identical version of the task described in Chapter 2. 

 

 
Figure 5.2 Example trial of the restless four-armed bandit task. On each trial, participants chose one out of four 
bandits and received one out of four possible outcomes: reward (green token), punishment (red token), neither 
reward nor punishment (empty box) or both reward and punishment (red and green token). 
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5.3.6.2 Physical effort task 

The physical effort task measures motivation to exert physical effort for rewards (Bonnelle et 

al., 2016; Bonnelle et al., 2015). A different version of the task was used from Chapter 2. Here 

participants were required to squeeze a hand dynamometer with their non-dominant hand in 

order to obtain rewards (instead of button pressing in Chapter 2), with the amount of reward 

available and effort required varying parametrically. Participants were presented with 

challenges comprising different combinations of reward and effort, and could choose whether 

to engage in the challenge or not. Before the task commenced, participants completed a 

practice session in which they squeezed at their maximum strength on six trials to estimate 

their maximum voluntary contraction (MVC). This ensured that the effort levels were calibrated 

to each participant’s force capacity. The purpose of the calibration phase was not explicitly 

conveyed to participants, instead being framed as a practice phase. 

 

In the main part of the task, participants were presented with an offer indicating how much 

physical effort (20, 40, 60 or 80% of their MVC) they had to exert for a set amount of reward (3, 

6, 9 or 12 points; Figure 5.3). The offer was shown in the form of an apple tree where the 

number of apples in the tree indicated the reward available in the trial, and the effort level was 

shown with a yellow line on the tree trunk such that one had to squeeze above the line and 

hold continuously for at least three seconds to collect the apples (points). Thus, a higher effort 

level was depicted with the yellow line placed at a higher level on the tree trunk, signifying that 

greater force would be needed to obtain the reward. Participants were free to accept/reject 

offers based on their perception of the effort-reward combination. If a trial was rejected, the 

task moved on to the next trial. A failed or rejected trial resulted in zero points. To avoid 

possible fatigue effects, 25% of accepted trials skipped the effort execution phase. No points 

were won on the skipped trials, and participants were informed that some accepted trials 

would randomly be skipped.  

 

The task lasted for approximately 20 minutes and contained 5 trials per effort x reward 

combination, with each combination randomly presented throughout the task, resulting in a 
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total of 80 trials. Participants were instructed that the goal was to win as many points as 

possible and that they could take breaks between each block (five blocks with 16 trials). 

 

The design of the physical effort task administered in the test-retest study in Chapter 2 was 

based on this task (but instead using keypresses for physical effort, and with one fewer level of 

each of the reward and effort factors). The tasks were therefore very similar, with the 

assumption that the reliability would be similar.  

 

 

 
Figure 5.3 Example trial of the physical effort task. On each trial participants were presented with a tree on 
which a yellow line on the trunk represented the required effort level, and the number of apples represented 
the number of available points. Participants decided if they wanted to accept or reject the offer based on the 
number of points and effort level. If the offer was declined, no points were won, and the task moved on to the 
next trial. If an offer was accepted, participants were required to squeeze a hand dynamometer above the 
yellow line for 3 consecutive seconds to win the points.  

 

5.3.6.3 Clock task 

The clock task measures uncertainty-driven exploration and go/no-go learning (Frank et al., 

2009; Moustafa et al., 2008). On each trial, a clock was presented with a rotating arm and 

participants were asked to stop it within a five second period by pressing the spacebar (Figure 
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5.4). Depending on when they chose to stop it, participants could win different numbers of 

points. The task consisted of four conditions with different EV by manipulating reward 

probability and magnitude of each condition: 1) IEV, promoting slower response times to 

maximise reward; 2) DEV, promoting faster response times to maximise reward; 3) CEV, reward 

probability decreased over time while reward magnitude increased over time (baseline 

condition controlling for individual differences in motor responding); and 4) CEVR, the opposite 

of the CEV condition.  

 

There were four blocks in total, each corresponding to one of the task conditions. At the 

beginning of each block participants were told that they would interact with a new clock (also 

indicated by a different colour clock face which was randomised across subjects), for which 

they had to learn the optimal style of responding (e.g., fast or slow) to maximize rewards. The 

condition blocks were presented in a random order across participants. There were 160 trials in 

total (40 trials/ condition) with each trial lasting five seconds regardless of when a response was 

executed, and the task lasted approximately 15 minutes. This was the identical version of the 

task described in Chapter 2. 

 
Figure 5.4 Example trial of the clock task. On each trial, participants were presented with a clock face on which 
the clock arm would rotate for five seconds and participants had to learn the optimal style of responding (e.g., 
stop the arm early or late) to maximize rewards. The task consisted of four conditions with different expected 
values to promote different types of responding. 
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5.3.6.4 Reward/punishment bias task  

The reward/punishment bias task is a modified version of the PRT (Pizzagalli et al., 2005), which 

is based on signal detection theory. This version measures reward and punishment response 

bias using a difficult visual discrimination paradigm. During the task, participants were asked to 

indicate whether a presented bar was short (11.5mm) or long (13mm; Figure 5.5). Asymmetric 

reward and punishment reinforcement schedules were used to induce response biases for the 

more frequently rewarded/punished stimulus. The small perceptual difference between a short 

and a long bar creates stimulus ambiguity, which promotes responses toward selecting the 

more frequently rewarded stimulus (as on average this will lead to greater rewards) and the 

more frequently punished stimulus (as responding correctly to this stimulus will lead to fewer 

losses). 

 

On each trial, a short or a long bar was presented for 100ms, and the bar could be either 

horizontal or vertical. The task consisted of two valence conditions (reward and punishment), 

where, for example, correct responses on the horizontal bars could be rewarded and incorrect 

responses on the vertical bars could lead to losses (valence condition assignment to 

horizontal/vertical bars were counterbalanced across participants). Participants were informed 

that correct responses to one stimulus (short or long bar) in the reward condition would be 

three times more likely to result in a reward (+5 points) than correct responses to the other 

stimulus (short or long bar). Similarly, in the punishment condition, participants were instructed 

that one stimulus (short or long bar) would be three times more likely to result in a loss (-5 

points) for an incorrect response compared with incorrect responses to the other stimulus 

(short or long bar). Unlike the original specification of the task, participants were instructed 

which stimulus was the ‘best’ (i.e., the one reinforced more frequently), with the aim of 

removing the learning component of the original task. The assignment of the frequent versus 

rare stimulus to short/long bars was counterbalanced across valence conditions and within the 

valence condition. They were further instructed that a correct response in the reward condition 

would not always lead to a reward and an incorrect response in the punishment condition 

would not always lead to a loss. Participants were asked to respond using the left/right arrow 
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keys on horizontal trials and the up/down arrow keys on vertical trials, with key assignments to 

short/long bars counterbalanced across participants.  

 

The task consisted of 3 blocks with 100 trials per block (50 reward and 50 punishment trials 

totalling 150 trials per valence condition) with reward and punishment trials presented in an 

interleaved random order across blocks. Participants were free to take breaks between blocks, 

and the task lasted about 20 minutes. 

 

The reward/punishment bias task was thus modified from the original PRT in the following 

important aspects: 1) a punishment condition was added to assess how response bias is 

modulated by losses versus rewards, 2) a bar in a box was used instead of a mouth in a face as 

depressed individuals might assign affective valence to faces, and 3) the learning requirement 

was removed such that individuals were explicitly instructed on which stimulus was more 

frequently reinforced in order to reduce task difficulty and dissociate any bias effects from 

learning ability. This was the identical version of the task described in Chapter 2. Although it 

was not possible to examine reliability of this task in Chapter 2 due to a coding error, previous 

studies indicate that response bias on the PRT is reliable over long testing intervals (20-120 days 

range; r=0.57) (Pizzagalli et al., 2005). 

 

 
Figure 5.5 Example trials of the reward/punishment bias task. On each trial, participants were flashed with a 
bar and had to correctly identify if it was short or long. The task consisted of both reward and punishment 
conditions (either horizontal or vertical bars) where either the long or short bar was more frequently rewarded 
for correct responses or punished for incorrect responses. Reward and punishment conditions were presented 
in an interleaved order.  
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5.3.7 Data analysis  

5.3.7.1 Symptom scales 

Pearson correlation coefficients were used to explore correlations between scales at baseline 

within healthy controls and patients separately. These analyses were mainly conducted to 

better characterise the patient sample. To examine the effect of ketamine versus placebo on 

scales with multiple timepoints (MADRS, SHAPS, TEPS), a linear mixed effects model with fixed 

effects of time, treatment, and their interaction was used with a compound covariance 

structure. No random effect was estimated here since the model would not converge. For the 

MADRS scale, the baseline scores (60 minutes prior to each infusion) were included as a 

covariate (fixed main effect) to correct for baseline symptom levels. The main time-point of 

interest was day one (24h post-infusion) since ketamine’s antidepressant and anti-anhedonic 

effects have previously shown to be greatest at this timepoint (Kryst et al., 2020; Lally et al., 

2014) and the task battery was administered on this day as well. Uncorrected simple effects 

tests within the linear model were therefore performed to examine ketamine effects on 

symptoms at day one. To examine ketamine versus placebo effects on scales with only one 

timepoint (one day post-infusion: BDI-II, DAS-SF2, FSS, GSE, LOT-R, STAI, AMI), paired t-tests 

were conducted. Cohen’s dz effect sizes are presented for the day one effects. For all scales, 

these effect sizes were based on a paired t-test. Thus, for the MADRS, SHAPS and TEPS scales, 

these only provide approximate effect sizes. 

 

Pearson correlation coefficients were used to examine relationships between a set of scales 

defined a priori (SHAPS, TEPS, AMI and BDI) and task performance at baseline in patients. These 

scales were prioritised to reduce the number of multiple tests performed and because they 

were deemed to be of primary interest as scales measuring general depression and various 

aspects of anhedonia. The BDI was chosen over the MADRS since BDI data were available for all 

patients as compared with the MADRS. Correlations were only performed within the patient 

cohort as 1) the patient and HC group were almost perfectly non-overlapping on most symptom 

scales (with the HCs generally scoring at the extreme lower end; Figure 5.7), and 2) there were 

insufficient participants to explore correlations within the HC group. No correlations between 
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task measures and scales were conducted in the post-infusion sessions due to the sample size 

being too low to conduct meaningful analyses (N=9). 

 

5.3.7.2 Restless four-armed bandit task 

As in Chapter 2, model-agnostic analyses focussed on examining the probability of repeating a 

choice after win-only, loss-only and no outcomes (number of repeated choices/total choices in 

that category). For the bandit case-control comparison, a mixed ANOVA was conducted with a 

between-subjects factor group (HC, patients) and a within-subjects factor outcome (win, loss, 

neither). Model-agnostic derived measures of reward sensitivity (probability to stay after 

reward minus probability to stay after neither) and punishment sensitivity (probability to stay 

after punishment minus probability to stay after neither) were used to correlate with symptom 

scales. To assess the effect of ketamine on task performance, a repeated-measures ANOVA was 

conducted with the within-subjects factors being outcome (win, loss, neither) and treatment 

(ketamine, placebo).  

 

For the computational model analysis, we initially fit the previously identified winning RL model 

from Chapter 2, the Bandit4arm_lapse model from the hBayesDM package. This model 

included five parameters: a reward learning, punishment learning, reward sensitivity, 

punishment sensitivity, and lapse parameter. However, this model showed high trade-off (i.e., 

correlations) between the lapse and other parameters in the current dataset, indicating non-

identifiability of these parameters. In addition, in Chapter 2 it was demonstrated that the lapse 

parameter showed poor reliability and recoverability, thus the second-best winning model from 

Chapter 2 was used here. This model (called Bandit4arm_4par in the hBayesDM package) had 

similar reliabilities as the reported model in Chapter 2 (Bandit4arm_4par reliability: reward 

learning ICC=0.62, 95% CI 0.41-0.76; punishment learning rate ICC=0.65, 95% CI 0.45-0.78; 

reward sensitivity ICC=0.55, 95% ICC 0.33-0.72; punishment sensitivity ICC=0.44, 95% ICC 0.19-

0.64) and comprised the same parameters as the Bandit4arm_lapse but excluded the lapse 

parameter (Aylward et al., 2019): 
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𝑉𝑎𝑙𝑢𝑒!(#)%&' = 𝑉𝑎𝑙𝑢𝑒!(#)%&' + 	𝑅𝑒𝑤𝑎𝑟𝑑	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)%&'	(1) 

 

𝑉𝑎𝑙𝑢𝑒!(#)
()* = 𝑉𝑎𝑙𝑢𝑒!(#)

()* + 	𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑅𝑎𝑡𝑒 × 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)
()*	(2)  

 

‘rew’ and ‘pun’ refers to the reward (1,0) and punishment (0,-1) values on each trial (t) for a 

given bandit (i). 

 

𝑖𝑓	𝑖 = 𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)%&' = 𝑅𝑒𝑤𝑎𝑟𝑑	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑅𝑒𝑤𝑎𝑟𝑑	𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑡) − 𝑉𝑎𝑙𝑢𝑒!+,(#)%&' 	(3)  

 

𝑖𝑓	𝑖 = 𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)%&' = −𝑉𝑎𝑙𝑢𝑒!+,(#)%&'   

 

𝑖𝑓	𝑖 = 𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)
()* = 𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 × 	𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡	𝑂𝑢𝑡𝑐𝑜𝑚𝑒(𝑡) − 𝑉𝑎𝑙𝑢𝑒!+,(#)

()* 	(4) 

 

𝑖𝑓	𝑖 = 𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛:	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟!(#)
()* = −𝑉𝑎𝑙𝑢𝑒!+,(#)

()* 	 

 

The subjective reward and punishment values were passed through a softmax function to 

estimate the probability of choosing a given bandit on each trial (j represents all bandits): 

 

𝐶ℎ𝑜𝑖𝑐𝑒	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
exp	(𝑉𝑎𝑙𝑢𝑒!(#)%&' +	𝑉𝑎𝑙𝑢𝑒!(#)

()*)
∑ exp	(𝑉𝑎𝑙𝑢𝑒!(#)

%&' +	𝑉𝑎𝑙𝑢𝑒!(#)
()*)-

		 

 

The case-control baseline data were fit with the Bandit4arm_4par model using a single 

hierarchical prior (i.e., both patients and healthy controls were fit together), as this approach is 

more conservative than estimating the groups separately. The same model was used to fit the 

post-infusion data with a single prior again (placebo and ketamine data together). Independent 

t-tests were used to assess any group differences on mean parameter point estimates at 

baseline. The individual mean posterior parameter estimates of patients were used to correlate 

with symptom scales at baseline. Paired t-tests were used to assess the differential effects of 

ketamine and placebo on parameters.  
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5.3.7.3 Clock task 

As in Chapter 2, model-agnostic measures of go and no-go learning were computed from the 

mean response times of the IEV, DEV, and CEV conditions (go learning=DEV minus CEV; no-go 

learning=IEV minus CEV) (Moustafa et al., 2008). For the case-control analysis, a mixed-effects 

ANOVA was performed with a between-subjects factor of group (HC, MDD) and within-subjects 

factor condition (go learning, no-go learning). Trial-to-trial variance was measured as an index 

of overall RT swings (i.e., change in response times) and a model-agnostic proxy for uncertainty-

driven exploration (manifested behaviourally as RT swings):  

 

 

 

where 𝑖 is the trial number and 𝑛 is the total number of trials. An independent t-test was used 

to compare groups on overall RT swings. A repeated-measures ANOVA with treatment 

(ketamine, placebo) and learning condition (go and no-go learning) as within-subjects factor 

was used to assess the effect of ketamine on learning. A paired t-test was used to examine the 

effect of ketamine, compared with placebo, on overall RT swings.  

 

5.3.7.4 Physical effort task 

As in Chapter 2, the main model-agnostic measure of interest in the physical effort task was the 

probability to accept an offer. For the case-control comparison analysis, a mixed effects ANOVA 

was used with a between-subject factor group (HCs, patients) and within-subject factors reward 

(3, 6, 9, 12 points) and effort (20, 40, 60, 80%). Due to the low sample size in the post-infusion 

sessions, the equivalent within-subjects ANOVA analysis was not possible. Linear contrasts of 

effort and reward were computed to assess the degree to which reward and effort influenced 

behaviour:  

 

𝑅𝑒𝑤𝑎𝑟𝑑	𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦 =
1.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	12) + 0.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	9) − 0.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎	6) − 1.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	3)

𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑝(𝑎𝑐𝑐𝑒𝑝𝑡)  

 

𝐸𝑓𝑓𝑜𝑟𝑡	𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦 =
1.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	80%) + 0.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	60%) − 0.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎	40%) − 1.5 × 𝑝(𝑎𝑐𝑐𝑒𝑝𝑡	𝑎𝑡	20%)

𝑜𝑣𝑒𝑟𝑎𝑙𝑙	𝑝(𝑎𝑐𝑐𝑒𝑝𝑡)  
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An independent t-test was used to assess group differences and a paired t-test was used to 

assess ketamine versus placebo effects on these linear contrasts. A paired t-test was 

additionally performed to examine the effect of ketamine, compared with placebo, on the 

overall probability to accept an offer.  

 

5.3.7.5 Reward/punishment bias task  

As in previous studies, model-agnostic measures were derived from signal detection theory 

(Pizzagalli et al., 2008; Pizzagalli et al., 2005). Response bias is the main variable of interest in 

this task and describes the preference of one stimulus over the other due to the reinforcement 

schedule. Response bias was calculated separately for each valence condition where a high 

response bias in the reward condition corresponds to a preference for the more frequently 

rewarded stimulus and a high punishment response bias corresponds to a preference for the 

more frequently punished stimulus (as being correct on this stimulus allows avoiding greater 

losses). Response bias was calculated as follows:  

 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑏𝑖𝑎𝑠 = 0.5 ∗ 𝑙𝑜𝑔 2
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡!"##$!% ∗ 𝑅𝑎𝑟𝑒&'!"##$!%
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡&'!"##$!% ∗ 𝑅𝑎𝑟𝑒!"##$!%

8, 

 

where ‘frequent correct’ corresponds to correct responses on the stimulus that was more 

frequently reinforced (rewarded or punished) and ‘rare correct’ corresponds to correct 

responses on the stimulus that was less frequently reinforced. In previous studies with the 

original version of this task, ‘frequent’ corresponds to the ‘rich’ stimulus and ‘rare’ corresponds 

to the ‘lean’ stimulus. 

 

To dissociate differences in response bias from potential differences in the perceptual ability to 

distinguish between the short and long stimulus, task discriminability was assessed (proxy of 

task difficulty) and is computed as: 

 

𝑇𝑎𝑠𝑘	𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5 ∗ 𝑙𝑜𝑔(
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡!"##$!% ∗ 𝑅𝑎𝑟𝑒!"##$!%

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡&'!"##$!% ∗ 𝑅𝑎𝑟𝑒&'!"##$!%
) 



 166 

 

Higher task discriminability arises as the task is perceived to be easier. Due to some values 

being 0 (and the log of 0 being undefined), 0.5 was added to each cell in both response bias and 

task discriminability calculations. Trials were excluded if participants responded to vertical trials 

using horizontal arrow keys and vice versa (mean number of trials excluded: HC=3.61% trials, 

MDD=2.23%, ketamine=0.62%, placebo=1.81%). 

 

For the case-control baseline analysis, mixed-effects ANOVAs with between-subjects factor 

group (HC, MDD) and within-subjects factor valence (reward, punishment) were conducted on 

response bias and task discriminability. One patient was excluded in the baseline session 

(resulting in N=20 patients) due to only making “left” responses on horizontal trials and “up” 

responses on vertical trials, indicating that they did not engage with the task.  

 

Repeated-measures ANOVAs with treatment (ketamine, placebo) and valence (reward, 

punishment) were conducted to examine ketamine effects on response bias and task 

discriminability. One patient had a faulty recording during their placebo session and the same 

patient who had to be excluded in the baseline session was excluded in their post-infusion 

sessions for the same identified reason. These exclusions resulted in N=7 patients for the post-

infusion analysis. However, including or excluding the patient who did not engage in the task 

did not substantially change the results. 

 

5.3.7.6 General data analysis 

Data were processed in Matlab (R2019b) and analysed in SPSS (v28, IBM Corp, Armonk, NY) and 

R (v.4.1.2). Computational modelling of the four-armed bandit task was completed with the 

hBayesDM package (https://github.com/CCS-Lab/hBayesDM) (Ahn et al., 2017) for R (v.4.1.2) in 

RStudio (v.2021.01.1), using hierarchical Bayesian modelling in Stan (v.2.21.1). Cohen’s d effect 

size is presented for case-control comparisons and Cohen’s dz for within-group comparisons 

(Lakens, 2013). If any demographic variable was significantly different between HCs and 

patients, it was mean-centred and initially added as a covariate in all the case-control analyses. 
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However, no covariate had a significant main effect on task behaviour and therefore they were 

dropped from all analyses to retain degrees of freedom; analyses including covariates are 

therefore not reported. When the equal variances assumption was violated for independent t-

tests, the Welch test was used. Greenhouse-Geisser corrected values of degrees of freedom are 

reported throughout for repeated-measures ANOVAs if sphericity assumptions were violated. 

Infusion order was not included as a factor in any post-ketamine analyses due to the low 

sample size. For all analyses, p<0.05 (two-tailed) was considered statistically significant, and 

due to the exploratory nature of the study no correction for multiple comparisons was applied. 

 

5.3.7.7 Power analysis  

We initially anticipated that 50 patients would be recruited for the clinical trial, as stated 

on ClinicalTrials.gov (NCT03065335). However, for various reasons, most notably Covid-19, less 

than one-fifth of the originally planned sample size had been collected at the time of writing. 

Conducting a retrospective sensitivity power analysis, with a sample size of N=9 patients, this 

study had 80% power to detect a ketamine effect size of 1.07 (two-tailed paired t-test, alpha 

level=0.05), calculated in G*Power (Faul et al., 2007). 
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5.4 Results 

5.4.1 Symptom scales and demographics: Case-control baseline comparison 

Participant characteristics at baseline are presented in Table 5.2. The only demographic variable 

that was significantly different between groups was age, with patients being on average almost 

11 years older than healthy controls.  

 

 

Figure 5.6 depicts the correlations between symptom scales in healthy controls and patients 

separately. Of interest here, TEPS-A and TEPS-C correlated only moderately in patients (r=0.54, 

p=0.01), indicating that these two scales may be measuring somewhat different aspects of 

anhedonia in the current patient population. SHAPS was also more strongly related to TEPS-C 

(r=-0.72, p<0.001) than TEPS-A (r=-0.58, p=0.005), although this difference was not statistically 

different (Dunn and Clark's z =0.90, p=0.37) (Silver et al., 2004). MADRS and SHAPS correlated 

moderately in patients (r=0.54, p=0.02), as did MADRS and TEPS-C (r=-0.56, p=0.01), while 

MADRS and TEPS-A were only weakly and non-significantly correlated (r=-0.23, p=0.34). This 

indicates that anticipatory anhedonia, as measured by the TEPS-A, might be assessing relatively 

specific aspects of motivational symptoms not captured by MADRS, SHAPS or TEPS-C in this 

group of patients. Similarly, AMI-BA, which measures the propensity to self-initiate goal-

directed behaviours (i.e., apathy), showed relatively weak-to-moderate correlations with 

MADRS (r=0.41, p=0.09), SHAPS (r=0.31, p=0.20), TEPS-A (r=-0.14, p=0.56) and TEPS-C (r=-0.18, 

 Healthy controls (N=13)  MDD Patients (N=21)  
 Mean SD Mean SD t-value p-value 
Age 28.77 6.82 39.62 13.40 3.12 0.004 
Years of education  17.79 (N=12) 2.82 17.00 (N=17) 3.81 0.62 0.55 
Age of onset NA NA 15.95 7.41   
Length of illness (years) NA NA 23.76 12.70   
Failed antidepressant 
treatments 

NA NA 8 (N=17) 4.5   

 N % N %   
Female 7 54 9 43 0.39 0.53 
TRD NA NA 18 (N=19) 95   
Currently medicated NA NA 4 19   
Table 5.2 Demographic and clinical variables for the baseline case-control analysis. MDD: Major Depressive 
Disorder; N: Number; SD: Standard Deviation; TRD: Treatment-resistant depression.  
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p=0.45), suggesting that this scale captures unique features of motivational impairments not 

related to general depressive symptoms or anhedonia in this patient cohort. All the subscales of 

the AMI showed relatively weak correlations with each other, with the strongest between AMI-

SM and AMI-BA (r=0.53, p=0.02). In HCs, the strongest observed scale associations were 

between TEPS-A and TEPS-C (r=0.87, p<0.001), between BDI-II and STAI-State (r=0.83, p<0.001), 

AMI-SM and TEPS-A (r=0.81, p<0.001), and AMI-SM and TEPS-C (r=0.80, p<0.001).  

 

Figure 5.7 shows the difference between patients and HCs on all the scales. The only scale that 

showed an almost complete overlap in scores between groups was the AMI-ES (measuring 

feelings of positive and negative affection), where only a small difference was detected 

between groups (Cohen’s d=0.25), which did not achieve significance. Interestingly, compared 

with the other anhedonia scales, patients seemed to have less pronounced consummatory 

anhedonia (TEPS-C), consistent with reports from behavioural studies (Kieslich et al., 2022). The 

symptom scales on which patients showed the most pronounced difference on from HCs, 

besides MADRS (part of the inclusion criteria), were BDI-II, STAI-Trait (these two also correlated 

strongly in patients; Figure 5.6) and AMI-BA.  
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Figure 5.6 Correlations between symptom scales at baseline separately for healthy controls (bottom) and 
patients with major depressive disorder (MDD; top). Higher scores indicate greater severity on the symptom 
dimension measured by all scales, except the TEPS, GSE and LOT-R, where lower scores indicate greater 
severity. Data is presented for 13 healthy controls and 21 patients, with fewer datapoints available for the 
MADRS (HC N=11, MDD N=19), DAS-SF2 (MDD N=20), LOT-R (MDD N=20), STAI (MDD N=19), and AMI (MDD 
N=19). Abbreviations: MADRS: Montgomery-Åsberg Depression Rating Scale; SHAPS:  Snaith-Hamilton Pleasure 
Scale; TEPS-A: Temporal Experience of Pleasure Scale Anticipatory Subscale; TEPS-C: Temporal Experience of 
Pleasure Scale Consummatory Subscale;  BDI-II: Beck Depression Inventory Second Edition; DAS-SF2: 
Dysfunctional Attitude Scale Short Form 2; FSS: Fatigue Severity Scale; GSE: General Self-Efficacy Scale; LOT-R: 
Life Orientation Test-Revised; STAI-State: State-Trait Anxiety Inventory-State Subscale; STAI-Trait: State-Trait 
Anxiety Inventory-Trait Subscale; AMI-BA: Apathy Motivation Index Behavioural Activation; AMI-SM: Apathy 
Motivation Index Social Motivation; AMI-ES: Apathy Motivation Index Emotional Sensitivity. 
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Figure 5.7 Case-control comparison on symptom scales at baseline. Individual data points, boxplots, data 
distributions and mean±standard error of the mean are plotted for thirteen healthy controls (HC) and 21 
patients with major depressive disorder (MDD) except when the sample size (N) is specified differently in the 
figure. Cohen’s d effect sizes are presented for the difference between HCs and MDD. Higher scores indicate 
greater severity on the symptom dimension measured by all scales, except the TEPS, GSE and LOT-R, where 
lower scores indicate greater severity. Abbreviations: MADRS: Montgomery-Åsberg Depression Rating Scale (a); 
SHAPS:  Snaith-Hamilton Pleasure Scale (b); TEPS-A: Temporal Experience of Pleasure Scale Anticipatory 
Subscale (c); TEPS-C: Temporal Experience of Pleasure Scale Consummatory Subscale (d);  BDI-II: Beck 
Depression Inventory Second Edition (e); DAS-SF2: Dysfunctional Attitude Scale Short Form 2 (f); FSS: Fatigue 
Severity Scale (g); GSE: General Self-Efficacy Scale (h); LOT-R: Life Orientation Test-Revised (i); STAI-State: State-
Trait Anxiety Inventory-State Subscale (j); STAI-Trait: State-Trait Anxiety Inventory-Trait Subscale (k); AMI-BA: 
Apathy Motivation Index Behavioural Activation (l); AMI-SM: Apathy Motivation Index Social Motivation (m); 
AMI-ES: Apathy Motivation Index Emotional Sensitivity (n). 

 

5.4.2 Four-armed bandit task: Case-control baseline comparison 

5.4.2.1 Model-agnostic measures  

There was an expected significant main effect of outcome on subsequent choice (F(2,64)=46.14, 

p<0.001, partial hp
2=0.59), such that the probability of staying was different after each outcome 

type (loss<neither<win; all p<0.001). Overall probability of staying was numerically higher in 

patients than healthy controls, although this narrowly missed significance (main effect of group: 

F(1,632)=3.76, p=0.06, partial 𝜂#;=0.11), as did the group-by-outcome interaction (F(2,64)=2.50, 

p=0.09, partial 𝜂#;=0.07; Figure 5.8). There were no significant correlations between any of the 

symptom scales and probability of staying following wins (all absolute r<0.23, p>0.42) or losses 

(all r<0.40, p>0.09) in patients.  
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Figure 5.8 Performance on the four-armed bandit task at baseline (model-agnostic measures). Boxplots 
showing the probability of staying after different outcomes in healthy controls (HC; N=13) and patients with 
major depressive disorder (MDD; N=21). SEM: Standard error of the mean. 

 

5.4.2.2 Computational model  

There were no significant group differences between any of the parameters in the RL model of 

the four-armed bandit task (reward learning: t(32)=0.21, p=0.84, d=0.07; punishment learning: 

t(32)=1.27, p=0.21, d=0.45; reward sensitivity: t(27.84)=1.35, p=0.19, d=0.40; punishment 

sensitivity: t(32)=0.56, p=0.58, d=0.20; Figure 5.9). 

 
Figure 5.9 Case-control comparison at baseline on the four-armed bandit reinforcement learning model. 
Mean posterior point estimates of subject-specific reward learning (a), punishment learning (b), reward 
sensitivity (c) and punishment sensitivity (d) parameters are presented for healthy controls (HC; N=13) and 
patients with major depressive disorder (MDD; N=21). SEM: Standard error of the mean. 
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Contrary to predictions, higher reward learning rates were associated with greater SHAPS 

scores in patients (r=0.64, p=0.002), lower TEPS-A scores (i.e., greater anticipatory anhedonia; 

r=-0.45, p=0.04), and lower TEPS-C scores (i.e., greater consummatory anhedonia; r=-0.62, 

p=0.003; Figure 5.10a), suggesting that more anhedonic patients learned faster about rewards. 

No other significant relationships with reward learning rate were observed (all absolute r<0.45, 

all p>0.05). No other parameters correlated significantly with any of the pre-specified symptom 

scales (all absolute r<0.38, all p>0.11). To better understand these effects, we explored the 

correlation between the reward learning parameter and performance on the task in terms of 

the number of points won. In patients, the number of points won was not significantly 

associated with reward learning rate (r=-0.18, p=0.43; Figure 5.10b), suggesting that higher 

reward learning rate does not significantly impair overall performance.  

 
Figure 5.10 Correlations between reward learning rate, symptom scales and winnings on the four-armed 
bandit task in patients. Greater reward learning rate was associated with greater anhedonia across several 
anhedonia scales (a). Fewer points won on the task was associated with greater reward learning, but this 
association was not significant (p=0.43) (b). SHAPS: Snaith-Hamilton Pleasure Scale; TEPS-A: Temporal 
Experience of Pleasure Scale Anticipatory Subscale; TEPS-C: Temporal Experience of Pleasure Scale 
Consummatory Subscale. 

 

5.4.3 Physical effort task: Case-control baseline comparison  
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a significant effort-by-reward interaction (F(3.44,92.85)=14.52, p<0.001, 𝜂#;=0.35; Figure 5.11a), 

such that increasing reward had a greater impact on choices at higher effort levels. As such, 

reward had a significant positive effect on acceptance rates and effort had a significant negative 

effect on behaviour (all p<0.001; Figure 5.11b). However, there was no significant effect of 
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probability to accept, reward sensitivity, and effort sensitivity did not significantly correlate 

with any symptom scales in patients (overall probability to accept: all absolute r-values<0.35, all 

p>0.16; reward sensitivity: absolute r-values<0.31, all p>0.23; effort sensitivity: absolute r-

values<0.33, all p>0.20).  

 

There was a significant effect of effort on success rates (F(1.14,28.55)=11.94, p=0.001, 𝜂#;=0.32), but 

no significant difference interaction between effort and group on success rates (F(3,75)=0.04, 

p=0.99, 𝜂#;=0.02). The significant effort effect on success rates was driven by significantly lower 

success rates on the 80% effort level (M=0.85, SEM=0.04) compared with 60% effort (M=0.97, 

SEM=0.02; p=0.001), 40% effort (M=0.99, SEM=0.01; p=0.002), and 20% effort (M=1.00, 

SEM=0.00; p=0.002), and lower success rates at the 60% relative to the 20% effort level 

(p=0.04). There was no significant correlation between the overall probability to accept 

(M=0.84, SEM=0.02) and overall success rates (M=0.96, SEM=0.01; r=-0.12, p=0.54, assessed 

across groups), nor between effort sensitivity in terms of acceptance rates (M=-0.90, SEM=0.16) 

and effort sensitivity in terms of success rates (M=-0.29, SEM=0.09; r=-0.02, p=0.93, linear 

contrasts of effort levels assessed across groups). In summary, success rates were generally 

high and did not seem to significantly influence decisions to accept an offer.  
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Figure 5.11 Case-control comparisons at baseline on the physical effort task. The probability to accept an offer 
based on reward and effort levels are presented for healthy controls (HC; N=12) and patients with major 
depressive disorder (MDD; N=17; a). Boxplots of reward and effort linear contrasts are displayed for healthy 
individuals and patients (b). Positive values indicate greater acceptance with increasing condition levels and 
negative values indicate lower acceptance with increasing effort levels. SEM: Standard error of the mean. 

 

5.4.4 Clock task: Case-control baseline comparison 

The main variable of interest in this task was the RT swing measure, indicating the degree of 

exploration in participants. Although patients had numerically lower scores on this measure 

(Figure 5.12a), this difference was not statistically significant (t(29)=0.65, p=0.52). As expected, 

responses were slower in the no-go than in the go learning condition (main effect: F(1,29)=33.23, 

p<0.001, 𝜂#;=53; Figure 5.12b). However, there were no significant effects involving group (main 

effect of group: F(1,29)=0.02, p=0.90, 𝜂#;=0.001; group-by-learning interaction: F(1,29)=2.87, 

p=0.10, 𝜂#;=0.09). There were also no significant correlations between any of the clock task 

measures and psychometric scales in patients: go-learning (absolute r-values<0.32, all p>0.20), 

no-go learning (absolute r-values<0.23, all p>0.35) and overall RT swing (absolute r-values<0.36, 

all p>0.15).  
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Figure 5.12 Case-control comparisons at baseline on the clock task. The overall RT swing, a proxy of 
exploration, is displayed for healthy controls (HC; N=13) and patients with major depressive disorder (MDD; 
N=18; a). Response times for go (speeding of responses; decreasing expected value – DEV – condition minus the 
constant expected value – CEV – condition) and no-go (slowing of responses; increasing expected value – IEV – 
condition minus the CEV condition) are presented for both groups (b). SEM: Standard error of the mean. 

 

5.4.5 Reward/punishment bias task: Case-control baseline comparison 

There was no significant main effect of valence on response bias (F(1,30)=1.32, p=0.26, 𝜂#;=0.04). 

In contrast to predictions however, response bias valence did not significantly differ between 

healthy controls and patients (response bias valence x group interaction: F(1,30)=0.81, p=0.38, 

𝜂#;=0.03; Figure 5.13a), and the groups did not differ significantly in their overall response bias 

(F(1,30)=0.002, p=0.97, 𝜂#;<0.001). However, one-sample t-tests (test value=0) did not reveal an 

expected significant reward response bias (t(31)=0.40, p=0.69, Cohen’s d=0.07), while a 

significant response bias was evident in the punishment condition (t(31)=2.44, p=0.01, Cohen’s 

d=0.43). There was no significant interaction between group and valence (reward/punishment) 

condition on task discriminability (F(1,30)=1.82, p=0.19, 𝜂#;=0.06; Figure 5.13b) or any group 

(F(1,30)=0.90, p=0.35, 𝜂#;=0.03) or valence effects (F(1,30)=0.49, p=0.49, 𝜂#;=0.02). There were no 

significant correlations between response bias and psychometric scale in patients (reward: all 

absolute r-values<0.30, all p>0.20; punishment: all absolute r-values<0.27, all p>0.25). Task 

discriminability on reward trials was negatively correlated with BDI scores in patients (r=-0.58, 
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p=0.007), but did not significantly correlate with any other scales (all absolute r-values<0.38, all 

p>0.12). Task discriminability on punishment trials showed a similar relationship with BDI in 

patients, although this narrowly missed statistical significance (r=-0.41, p=0.07). No other 

correlations approached significance (all absolute r-values<0.32, all p>0.19). 

 

 
Figure 5.13 Case-control comparisons at baseline on the reward/punishment bias task. Boxplots of response 
bias for the reward and punishment conditions in healthy controls (HC; N=12) and patients with major 
depressive disorder (MDD; N=20; a) Positive values indicate a preference for the stimuli that was rewarded 
more often/punished more often, as correct responses on these trials would lead to more rewards/avoiding 
more losses. Boxplots of task discriminability for the reward and punishment condition in HCs and patients (b). 
SEM: Standard error of the mean. 

 

5.4.6 Ketamine effects: Unblinding  

Since unblinding was not possible at the time of writing, CADSS scores were examined 40 

minutes post-infusion. For all individuals except one (patient 7, for whom CADSS scores 

remained the same under placebo and ketamine), CADSS scores were numerically higher under 

ketamine 40 minutes post-infusion (Figure 5.14). This offers reassurance that the current 

unblinding is correct. However, since official unblinding was not possible – all following 

ketamine effects are only presumed and labelled as such.  
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Figure 5.14 Post-infusion scores on the Clinician-Administered Dissociative States Scale (CADSS). Data is 
provided for all nine patients completing both placebo and ketamine infusions, with CADSS scores presented 40-
minutes post-infusion. Greater scores indicate greater dissociative symptoms.  

 

5.4.7 Symptom scales: Presumed ketamine effects 

Figure 5.15a shows the effect of presumed ketamine, versus placebo, on MADRS raw scores 

over time (not showing adjusted values controlling for baseline scores as assessed in the 

model). All presented effect sizes (dz scores) here are derived from simple paired t-tests (non-

hierarchical). Although MADRS scores were numerically lower on average post-ketamine 

(M=25.75, SEM=0.82) than post-placebo (M=27.43, SEM=0.82), this difference narrowly missed 

significance (main effect of treatment: F(1,90.98)=2.89, p=0.09). MADRS scores did not 

significantly differ over time between presumed ketamine and placebo infusions either 

(treatment-by-time interaction: F(5, 80.26)=0.78, p=0.57). There was also no significant effect of 

presumed ketamine on day-one MADRS scores (F(1,82.415)=1.81, p=0.18, dz=0.27). SHAPS scores 

were numerically reduced on average post- presumed ketamine, although this difference 

narrowly missed significance (main effect of treatment: F(1, 88)=3.03, p=0.085; placebo: 

M=38.17, SEM=2.30; ketamine: M=37.22, SEM=2.30), but this did not differ over time 

(treatment-by-time interaction: F(5, 88)=0.73, p=0.61; Figure 5.15b). The effect of presumed 

ketamine on SHAPS scores was largest on day one, and again this effect narrowly missed 
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significance (F(1,88)=3.39, p=0.07; dz=0.48). Anticipatory anhedonia (TEPS-A) was not significantly 

different between presumed placebo and ketamine overall (F(1, 88)=2.70, p=0.10; placebo: 

M=20.13, SEM=3.53; ketamine: M=21.06, SEM=3.53), and there was no significant differential 

presumed ketamine effect over time (treatment-by-time interaction: F(5, 88)=1.29, p=0.27; Figure 

5.15c). At one day post-infusion anticipatory anhedonia was lower post- presumed ketamine, 

although this effect narrowly missed significance (F(1,88)=2.86, p=0.09, dz=0.61). Presumed 

ketamine did however significantly decrease consummatory anhedonia (TEPS-C, indicated by 

lower scores) overall (F(1, 88)=19.0, p<0.001; placebo: M=24.69, SEM=2.80; ketamine: M=26.82, 

SEM=2.80). There was also a main effect of time (F(5, 88)=4.50, p=0.001) with scores being 

greater (lower anhedonia) closer to the infusion time (all p<0.02). However, the treatment-by-

time interaction was non-significant (F(5, 88)=0.47, p=0.78, Figure 5.15d), and there was no 

significant effect of presumed ketamine one day post-infusion (F(1,88)=2.50, p=0.12, dz=0.49). 

Finally, there were no significant effects of presumed ketamine on any of the secondary scales 

of interest, for which data were only available on the day of testing (day one; Table 5.3; Figure 

5.15e). 
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Figure 5.15 Presumed ketamine effects on symptom scales. All figures show boxplots with overlaid individual 
data points, data distributions and mean±standard error of the mean. Changes in Montgomery-Åsberg 
Depression Rating Scale (MADRS; a), Snaith-Hamilton Pleasure Scale (SHAPS; b), Temporal Experience of 
Pleasure Scale Anticipatory Subscale (TEPS-A; c), and Temporal Experience of Pleasure Scale Consummatory 
Subscale (TEPS-C; d) following ketamine and placebo over time. Changes in secondary scale one day following 
ketamine and placebo (e). Higher scores indicate greater severity on the symptom dimension measured by all 
scales, except the TEPS, GSE and LOT-R, where lower scores indicate greater severity. Post-ketamine changes for 
all scales were in the expected direction (lower symptom severity) except for the FSS, LOT-R, STAI-State and 
AMI-ES. BDI-II: Beck Depression Inventory Second Edition; DAS-SF2: Dysfunctional Attitude Scale Short Form 2; 
FSS: Fatigue Severity Scale; GSE: General Self-Efficacy Scale; LOT-R: Life Orientation Test-Revised; STAI-State: 
State-Trait Anxiety Inventory-State Subscale; STAI-Trait: State-Trait Anxiety Inventory-Trait Subscale; AMI-BA: 
Apathy Motivation Index Behavioural Activation; AMI-SM: Apathy Motivation Index Social Motivation; AMI-ES: 
Apathy Motivation Index Emotional Sensitivity. 

0

20

40

120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

TE
PS

−C Drug
0
1

0

20

40

60

120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

TE
PS

−A Drug
0
1

20

40

60

120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

SH
AP

S Drug
0
1

0

20

40

60

−60 120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

M
AD

R
S Drug

0
1

20

40

60

120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

SH
AP

S Drug
0
1
Placebo

20

40

60

120 230 DAY 1 DAY 2 DAY 3 DAY 6
Minutes/Days

SH
AP

S Drug
0
1Ketamine

0

10

20

AM
I−
ES Drug

0
1

0

10

20

30

AM
I−
SM Drug

0
1

10

20

AM
I−
BA Drug

0
1

40

60

80

ST
AI
−T
ra
it

Drug
0
1

25

50

75

ST
AI
−S
ta
te

Drug
0
1

0

10

LO
T−
R Drug

0
1

0

10

20

30

40

50
G
SE

Drug
0
1

0

20

40

60

80

FS
S Drug

0
1

10

20

30

DA
S−
SF

2 Drug
0
1

0

20

40

BD
I−
II Drug

0
1

a b

c

e

d



 181 

 

 

5.4.8 Four-armed bandit task: Presumed ketamine effects 

5.4.8.1 Model-agnostic measures  

Consistent with data collected at baseline, participants’ choices were modulated by outcome 

type (F(2,10.05)=16.44, p=0.002, 𝜂#;=0.67). They were more likely to repeat an option if it was 

rewarded compared with receiving no feedback (p=0.01) or punishment (p<0.001), and less 

likely to repeat a choice if it was punished compared with no feedback (p=0.01). However 

presumed ketamine did not modulate the overall probability to stay (F(1,8)=0.15, p=0.71, 

𝜂#;=0.02), nor did it modulate the probability to stay after a specific outcome type 

(F(2,10.74)=0.86, p=0.40, 𝜂#;=0.10; Figure 5.16).  

 

 

Scale t-value p-value Cohen’s dz 
BDI-II 0.70 0.50 +0.23 
DAS-SF2 1.81 0.12 +0.60 
FSS 1.02 0.34 -0.34 
GSE 1.67 0.13 -0.56 
LOT-R 1.32 0.23 +0.44 
STAI-State 0.31 0.76 -0.10 
STAI-Trait 0.00 1.00 +0.00 
AMI-BA 0.71 0.50 +0.24 
AMI-SM 0.84 0.43 +0.28 
AMI-ES 0.55 0.59 -0.19 
Table 5.3 Presumed ketamine effects on secondary scales of interest on the day of testing (Day 1) for nine 
treatment-resistant depressed patients. Effects are presented for the presumed placebo minus ketamine 
sessions. Higher scores indicate greater severity on the symptom dimension measured by all scales, except the 
GSE and LOT-R, where lower scores indicate greater severity. Post-ketamine changes for all scales were in the 
expected direction (lower symptom severity) except for the FSS, LOT-R, STAI-State and AMI-ES. BDI-II: Beck 
Depression Inventory Second Edition; DAS-SF2: Dysfunctional Attitude Scale Short Form 2; FSS: Fatigue Severity 
Scale; GSE: General Self-Efficacy Scale; LOT-R: Life Orientation Test-Revised; STAI-State: State-Trait Anxiety 
Inventory-State Subscale; STAI-Trait: State-Trait Anxiety Inventory-Trait Subscale; AMI-BA: Apathy Motivation 
Index Behavioural Activation; AMI-SM: Apathy Motivation Index Social Motivation; AMI-ES: Apathy Motivation 
Index Emotional Sensitivity. 
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Figure 5.16 Post-infusion task performance on the four-armed bandit task (model-agonist measures). Boxplots 
with individual datapoints displaying the probability to stay after a certain outcome one day post-presumed 
ketamine and post-placebo infusions in treatment-resistant patients. SEM: Standard error of the mean.  

 

5.4.8.2 Computational model 

Presumed ketamine significantly increased punishment learning rate compared with placebo 

(t(8)=2.55, p=0.03, dz=0.85). There were no other significant differences between presumed 

ketamine and placebo on RL parameters (reward learning: t(8)=0.38, p=0.71, dz=0.13; reward 

sensitivity: t(8)=0.28, p=0.79, dz=0.09; punishment sensitivity t(8)=0.02, p=0.98, dz=0.01; Figure 

5.17).  
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Figure 5.17 Presumed ketamine effects on the four-armed bandit reinforcement learning model in treatment-
resistant depressed patients. Mean posterior point estimates of subject-specific reward learning (a), 
punishment learning (b), reward sensitivity (c) and punishment sensitivity (d) parameters are presented for 
presumed ketamine and placebo. SEM: Standard error of the mean. 

 

To further understand the presumed post-ketamine increase in punishment learning, the 

difference in this parameter between sessions (ketamine minus placebo) was correlated with 

the difference in total number of points lost between sessions (ketamine minus placebo). A 

higher number of punishment outcomes experienced post-presumed ketamine was associated 

with higher punishment learning rate post-presumed ketamine (r=0.68, p=0.045; Figure 5.18). 

The number of points won on this task was however significantly greater in the presumed 

ketamine than placebo condition (placebo wins: M=52.89, SEM=1.68; ketamine wins: M=59.67, 

SEM=2.74; t(8)=2.88, p=0.02, dz=0.96), while the number of points lost was very similar 

between sessions (placebo losses: M=59.78, SEM=1.20; ketamine losses: M=59.67, SEM=2.00; 

t(8)=0.06, p=0.96, dz=0.02). 
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Figure 5.18 Correlation between the difference in post-infusion punishment learning rate and number of 
punishments experienced on the four-armed bandit task. Positive numbers indicate increases under presumed 
ketamine compared with placebo. 

 

5.4.9 Physical effort task: Presumed ketamine effects 

Both reward and effort exerted a significant effect on behaviour, increasing the probability to 

accept an offer with increasing reward, and reducing the probability to accept an offer with 

increasing effort levels (all p<0.02). Presumed ketamine did not modulate the propensity to 

accept offers (reward sensitivity: t(8)=0.91, p=0.39, dz=0.30; effort sensitivity: t(8)=0.70, p=0.50, 

dz=0.23; overall probability to accept offer: t(9)=0.68, p=0.52, dz=0.23; Figure 5.19a-b). No 

significant effects of effort on success rates or effort-by-treatment effects were observed (all 

p>0.22; success rates per effort level: 80% M=0.94, SEM=0.04; 60% M=0.98, SEM=0.01; 40% 

M=0.99, SEM=0.01; 20% M=0.99, SEM=0.01; N=7 for this analysis as two subjects did not accept 

any trials at a certain effort level). 
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Figure 5.19 Post-infusion task performance on the physical effort task in treatment-resistant depressed 
patients. Boxplots with individual datapoints displaying reward and effort linear contrasts post-presumed 
ketamine and post-placebo sessions (a). Positive values indicate greater acceptance levels with increasing 
condition levels and negative values indicate lower acceptance levels with increasing condition levels. The effect 
of presumed ketamine versus placebo on the overall probability to accept an offer (b). SEM: Standard error of 
the mean. 

 

5.4.10 Clock task: Presumed ketamine effects 

Participants showed the expected go and no-go learning patterns on the clock task (main effect 

of condition: F(1,8)=13.11, p=0.007, 𝜂#;=0.62), producing faster response times in go (difference 

in response times between the CEV and DEV condition) than no-go (difference in response 

times between the CEV and IED condition) learning conditions.  

 

Interestingly, presumed ketamine significantly increased RT swings (t(8)=5.17, p<0.001, dz=1.72; 

Figure 5.20a). It is here assumed that RT swings are related to uncertainty-driven exploration, 

which potentially might facilitate performance over time. To examine this assumption, we 

explored the relationship between overall RT swings and rewards won post-infusion. Although 

there was a positive relationship between points won and increases in RT swings post-

presumed ketamine, relative to post-placebo, this relationship was not significant (r=0.12, 
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interaction: F(1,8)=0.19, p=0.68, 𝜂#;=0.02; Figure 5.20b), nor did it have an overall effect on 

response times (main effect of treatment: F(1,8)=0.25, p=0.63, 𝜂#;=0.03).  

 

 
Figure 5.20 Post-infusion performance on the clock task in treatment-resistant depressed patients. Boxplots 
with individual datapoints displaying response times for “go learning” (speeding of responses: the constant 
expected value condition minus the decreasing expected value condition) and “no-go learning” (slowing of 
responses: the constant expected value condition minus the increasing expected value condition) trials (a), and 
the overall RT swing, a proxy of exploration (b). Greater RT swing scores indicate greater exploration. SEM: 
Standard error of the mean. 

 

5.4.11 Reward/punishment bias task: Presumed ketamine effects  

Presumed ketamine did not significantly impact response bias compared with placebo (main 

effect of treatment: F(1,6)=1.36, p=0.29, 𝜂#;=0.19; treatment-by-valence interaction: F(1,6)=1.30, 

p=0.30, 𝜂#;=0.18; Figure 5.21a). Response bias was also not significantly different between the 

reward and punishment conditions (F(1,6)=0.67, p=0.44, 𝜂#;=0.10). Similarly, there were no 

significant effects of presumed ketamine on task discriminability (treatment main effect: 

F(1,6)=1.24, p=0.31, 𝜂#;=0.17; treatment-by-valence condition interaction: F(1,6)=0.003, p=0.96, 

𝜂#;<0.001; Figure 5.21b). Discriminability did not significantly differ between the reward and 

punishment conditions either (F(1,6)=0.81, p=0.40, 𝜂#;=0.12).  
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Figure 5.21 Post-infusion task performance on the reward/punishment bias task in treatment-resistant 
depressed patients (N=7). Boxplots of response bias for the reward and punishment conditions (a). Positive 
values indicate a preference for the stimuli that was rewarded more often/punished more often, as correct 
responses on these trials would lead to greater rewards/avoiding more losses. Boxplots of task discriminability 
for the reward and punishment condition (b). Greater values indicate greater discriminability between the two 
task stimuli, long and short bars (i.e., the task is easier). SEM: Standard error of the mean. 

 

 

  

Reward Punishment
Valence

-2

-1

0

1

2

3

R
es

po
ns

e 
bi

as

MedianMean SEMKetaminePlacebo

Reward Punishment
Valence

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

D
is
cr
im
in
ab
ilit
y

MedianMean SEMKetaminePlacebo

0

0.2

0.4

0.6

0.8

1

O
ve

ra
ll p

(a
cc

ep
t)

Median
Mean SEM
Ketamine
Placebo

a b



 188 

5.5 Discussion 

The aim of this study was to understand the mechanisms underlying ketamine’s anti-anhedonic 

effects. In particular, the current chapter focused on understanding this from the perspective of 

changes in reward and punishment processing, drawing on a rich literature that has implicated 

these as key components in anhedonic symptomatology (Admon & Pizzagalli, 2015; Bekhbat et 

al., 2022; Bishop & Gagne, 2018; Borsini et al., 2020; Cooper et al., 2018; Der-Avakian & 

Markou, 2012; Der-Avakian & Pizzagalli, 2018; Eshel & Roiser, 2010; Felger & Treadway, 2017; 

Husain & Roiser, 2018; Huys et al., 2021; Kieslich et al., 2022; Lucido et al., 2021; Pizzagalli, 

2014; Rizvi et al., 2016; Rømer Thomsen et al., 2015; Treadway, 2016; Treadway et al., 2019; 

Treadway & Pizzagalli, 2014; Treadway & Zald, 2011, 2013; Wang et al., 2021; Zald & Treadway, 

2017; Zhang et al., 2016). Notably, presumed ketamine increased exploratory behaviours, as 

assessed with the clock task, with this pattern observed in every individual. In addition, 

presumed ketamine increased punishment learning rates, with preliminary analyses suggesting 

that this may have been associated with worse task performance. However, no significant 

effects of presumed ketamine on any other motivational processes emerged, including reward 

learning or sensitivity, punishment sensitivity, willingness to exert physical effort, or response 

biases to either rewards or punishments. However, these conclusions are strongly limited by 

the small sample size. Indeed, although moderate-to-large decreases in symptoms were 

observed following presumed ketamine (effect sizes of dz up to 0.61 one day post-infusion), 

none of these achieved statistical significance.  

 

5.5.1 Clock task 

The increase in RT swing following presumed ketamine, indexing exploratory behaviours, is 

consistent with the study hypotheses. The effect size observed was extremely large, and due to 

the small sample size is likely an over-estimation. Although no significant differences were 

detected for the case-control comparison, as expected exploratory behaviours were 

numerically lower in patients. Adaptive behaviour requires striking a balance between 

exploiting, i.e., choosing the option with the highest expected value given what you know, and 

exploring options for potential better outcomes. Exploratory behaviours are however not 
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always adaptive. Human behaviour comprises at least two types of exploratory behaviours: 

random and directed; directed exploration guides choices toward options with greater relative 

uncertainty about reward outcomes (information-gathering-based exploration) (Gershman, 

2018; Wilson et al., 2021). Previous studies suggest that individuals with MDD and anhedonia 

might show greater choice variability (Robinson & Chase, 2017) , which has been presumed to 

reflect random exploration. However, few previous studies have explicitly examined goal-

directed exploration in MDD. One advantage of the clock task is that previous studies suggest 

that the exploratory behaviour, as measured with RT swings, do indicate uncertainty-driven 

exploration more than random exploration (Badre et al., 2012; Cavanagh et al., 2012; Frank et 

al., 2009; Kayser et al., 2015; Morris, Baek, et al., 2016; Strauss et al., 2011). These results thus 

extend earlier findings showing lower uncertainty-driven exploration in individuals with greater 

anhedonia (Strauss et al., 2011), and suggest that this might be one possible cognitive process 

involved in the antidepressant effects of ketamine.  

 

The above discussion assumes that the RT swing measure represents goal-directed exploration, 

as previous studies have found strong positive correlations between an uncertainty-driven 

exploration parameter and RT swings (Badre et al., 2012; Frank et al., 2009; Strauss et al., 

2011), however some studies have recently cast doubt on this; these have suggested that RT 

swings instead represent stochastic exploration that does not facilitate behaviour (Hallquist & 

Dombrovski, 2019). If this explanation is correct, higher RT swings would potentially lead to 

suboptimal behaviours. However, no presumed ketamine effects were observed on general 

performance on the clock task (go/no-go learning). One possible explanation for this is that only 

the overall RT swing measure showed good reliability, as identified in Chapter 2. In addition, we 

note that overall RT swings were positively, but not significantly, correlated with the number of 

points won on this task. These would be in line with a directed, rather than random exploration 

interpretation, arguing against a pure random exploration account of RT swings. However, it 

must be recognised that adaptive exploratory choices may follow an inverted U-shaped 

trajectory (Addicott et al., 2017), thus the relationship between overall RT swings and points 

won might be more complicated than can be assessed in this study. Ultimately, a computational 
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model is required to clarify the precise nature of the current exploration measure. It will 

additionally be important to examine how ketamine affects random and directed exploration, 

which can be assessed using tasks that specifically distinguish between these two (Gershman, 

2018; Wilson et al., 2014)  

 

Despite the above caveats, our finding of a specific presumed ketamine effect on exploratory 

behaviours is intriguing, and to our knowledge, no previous studies have examined this. Of 

note, it has been suggested that exploration may play a role in curiosity-driven behaviours and 

interest (Berlyne, 1966; Geana et al., 2016; Gottlieb et al., 2013; Kidd & Hayden, 2015; Peterson 

& Verstynen, 2022; Schwartenbeck et al., 2019). Thus, one interpretation is that ketamine may 

facilitate the need to explore and be curious about the world, which is more closely related to 

intrinsic motivation; consistent with this, a lack of curiosity has previously been described in 

anhedonia (Watson et al., 2020). Thus, in curiosity-driven exploration, information-seeking is 

rewarding and a goal in and of itself, while goal-directed exploration can also be an 

intermediate step toward achieving a goal, such as maximising rewards. It has also recently 

been suggested that confidence (here meaning uncertainty in an individual’s representation of 

value beliefs, which is measured through explicit confidence judgments) may influence the 

balance between exploitation and exploration, with greater metacognitive insight being 

associated with better tracking of uncertainty (Boldt et al., 2019). Interestingly, one previous 

study in healthy individuals suggests that ketamine might modulate a ‘meta-level’ confidence-

related parameter, which in turn influences choice temperature (putatively reflecting random 

exploration) and learning rate parameters on a reversal learning task in healthy individuals 

(Vinckier et al., 2016). Thus, an interesting extension of the current findings would be to 

examine whether ketamine alters the precision of beliefs about the state of the world, and/or 

on the ability to use confidence information to inform uncertainty-driven exploration. 

 

5.5.2 Four-armed bandit task  

In contrast with our predictions however, there was no clear evidence for presumed ketamine 

affecting reward learning or sensitivity on the four-armed bandit task. Indeed, contrary to our 
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predictions based on case-control contrasts (Halahakoon et al., 2020), patients with greater 

anhedonia symptoms displayed greater reward learning. Although puzzling at a first glance, 

lower reward learning rates were associated with greater accumulated rewards, suggesting that 

a high reward learning rate is not necessarily adaptive on this task. However, this effect was 

weak and, importantly, not significant. Thus, the greater reward learning rate in more 

anhedonic patients is currently unclear as it did not significantly impair overall performance. 

Nevertheless, a possible interpretation might lie in how reward learning rates are calculated, 

where a higher learning rate could be due to learning about good things, but also due to 

learning from omissions of rewards — a subtle but important distinction. In this case, it is 

possible that the higher reward learning rate in more severe anhedonic patients may stem from 

learning more from omissions of rewards. However, this finding contrasts with previous studies 

suggesting that reward sensitivity, but not reward learning rates are lower in anhedonia (Huys 

et al., 2013) as well as previous studies indicating lower reward learning rates in depression 

(Admon et al., 2017; Chase et al., 2010; Chen et al., 2015; Gradin et al., 2011; Greenberg et al., 

2015; Halahakoon et al., 2020; Kumar et al., 2018; Kumar et al., 2008; Reinen et al., 2021; 

Robinson & Chase, 2017; Robinson et al., 2012; Vrieze et al., 2013, Brown et al 2021). Thus, the 

identified relationship should be considered preliminary and requires replication. 

 

Interestingly, presumed ketamine did not significantly modulate reward learning rate, although 

again it is important to acknowledge the low power of the study. In contrast, punishment 

learning rates were increased post-presumed ketamine, again contrary to initial predictions. 

Previous studies suggest that patients with mood and anxiety symptoms have an elevated 

punishment learning rate, reflecting faster learning about punishments (Aylward et al., 2019), 

with a recent meta-analysis suggesting that patients with mood and anxiety disorder show 

elevated punishment learning rates across tasks (Pike & Robinson, 2022). The presumed 

ketamine-induced increase in punishment learning rate in the current study was further 

associated with losing more points, suggesting that this increase was not necessarily adaptive. 

However, we also observed that presumed ketamine facilitated overall task performance as 

demonstrated by significantly more points won post-presumed ketamine than post-placebo 
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(although surprisingly this effect was not reflected in any model-based or model-agnostic 

measures), while no such infusion-difference was observed for the number of points lost. One 

possibility is that presumed ketamine’s effects on points won compared with lost are not 

related since the task is designed to assess the independent effect of rewards and punishments. 

However, considering the small range in punishment learning rates as compared with the 

reward learning rates (see Figure 5.9 and Figure 5.17), the low statistical power and that this 

effect was not a priori hypothesised, this finding should be considered preliminary and requires 

replication. 

 

Only one previous study has examined ketamine’s effects on reinforcement learning in TRD 

patients. Similar to the present results, this previous study did not find an effect of ketamine on 

reward learning on a simple reinforcement learning task (Lally, 2015; Mkrtchian et al., 2019). 

Acute ketamine (1h post ketamine administration) has been shown to impair general RL on a 

probabilistic reversal learning task assessing only reward learning in rodents (Wilkinson et al., 

2020). However, considering that ketamine may have differential effects in healthy and 

depressed populations (as discussed in Chapter 4) and the higher dosages in the rodent study 

(1, 3, and 10mg/kg), coupled with the different timepoints tested (1 hour in rodents, versus 

one-day post-infusion here), these results are difficult to compare. In particular the changes 

observed in rodents might reflect general cognitive impairment unrelated to antidepressant 

effects as impairments were most prominent on the highest ketamine dose (Wilkinson et al., 

2020). 

 

5.5.3 Reward/punishment bias task  

Although past studies suggest mixed evidence for the association between reward sensitivity 

and/or learning with anhedonia, it has been much more consistently reported that individuals 

with depression and anhedonia show lower reward bias (Halahakoon et al., 2020). Indeed, in a 

large meta-analysis examining differences in various aspects of reward-processing between 

depressed and healthy individuals, the most prominent effect emerged for a reward response 

bias impairment in the PRT (Halahakoon et al., 2020). Surprisingly, the current study did not 
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find a similar effect. However, the current task was substantially modified to incorporate a 

punishment condition to examine the specificity of the valence effect. Reward and punishment 

conditions were presented in an interleaved manner, potentially leading to greater working 

memory demands than previous versions. Although the learning component was removed to 

make the task easier (by instructing participants), it is quite possible that the addition of the 

punishment condition altered responses observed on this task. Indeed, neither patients nor HCs 

exhibited the expected reward response bias, although a punishment response bias was 

evident. Thus, introducing the punishment condition may have inadvertently interfered with 

the reward condition, such that the punishment condition was more salient. Future studies 

should use separate blocks of each valence condition to remedy this.  

 

Lower ability to perceptually distinguish between the short and long bars (discriminability) on 

this task was however associated with greater depression severity. This contrasts with previous 

studies reporting altered response bias but intact task discriminability in depression on the 

original task (Huys et al., 2013). This finding might also be related to the novel task design, 

which might have promoted lapses in attention due to greater complexity, or the more severe 

patient group. Notably, depression is associated with cognitive impairments such as difficulty 

concentrating (American Psychiatric Association, 2013), potentially explaining this finding. 

 

Interestingly, a recent study in marmoset monkeys demonstrated an increase in reward 

response bias post-ketamine (Wooldridge et al., 2020). However, this study used considerably 

higher doses of ketamine (1-10mg/kg) than in the current study and impairments were 

observed at the highest dosage. Thus, it is unclear if similar effects would be observable at the 

antidepressant dose of 0.5mg/kg in TRD patients. Although the current study did find a 

numerical increase of reward response bias under presumed ketamine, compared with placebo, 

consistent with the hypotheses, this effect was not significant and in any case is difficult to 

interpret in light of the absence of a reward bias overall. It is speculated that the current task 

design may have hampered our ability to fully examine the effect of ketamine on reward 
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response bias. Considering the positive findings from the non-human primate study, future 

ketamine studies in TRD patients on the PRT are warranted.   

 

5.5.4 Physical effort task 

In contrast to our predictions and previous case-control studies (Husain & Roiser, 2018; Huys et 

al., 2021; Treadway & Zald, 2013), no differences were observed between patients and healthy 

individuals on the physical effort task as measured by either overall probability to accept an 

offer, or effort sensitivity. Reward sensitivity did not differ significantly between groups either. 

Although surprising, we note that at least one previous study also failed to detect an 

impairment in effort-based decision making in patients (Lally, 2015); although, like the current 

study, this previous study was limited by sample size. It is also possible that participants were 

performing at ceiling levels in this task, as the overall probability to accept an offer was over 

80%, with four individuals accepting all offers, and eight individuals accepting over 90% (across 

patients and healthy individuals). Thus, the current task version may have not sufficiently 

sensitive and may require additional effort/reward levels to increase sensitivity. 

 

Presumed ketamine did not modulate any measures on the physical effort task either. We 

noted significant small-to-medium practice effects on the effort sensitivity and overall 

probability to accept measures on a similar effort task in Chapter 2. Considering that the anti-

anhedonic effect was relatively modest in the current sample (largest effect size on day 1 found 

for anticipatory anhedonia dz=0.61) compared with previous reports (Lally et al., 2014), it is 

possible that this may have prevented us from detecting a ketamine effect on physical effort. 

Although contrary to our initial hypotheses, this is consistent with one previous study using a 

conceptually similar task (Lally, 2015). This study employed the EEfRT, in which participants 

choose between an easy or hard physical effort challenge with the hard option varying in the 

number of rewards on offer (Treadway et al., 2009). Another study using this task in rodents 

similarly did not find an effect of acute ketamine (1 hour post-ketamine) on effort-based 

decision making (Griesius et al., 2020). Instead, the willingness to exert effort for higher 

rewards was if anything reduced under ketamine. However, this was most noticeable at the 
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highest dose of ketamine (10mg/kg), while a much lower dose is typical for antidepressant 

studies in humans (0.5mg/kg), suggesting that the impairment may be unrelated to any 

antidepressant effects, which were not examined in this rodent study. 

 

Although the current study employed an effort-based task to address some of the limitations of 

the previously used EEfRT in ketamine studies, such as insufficient orthogonalizing of reward 

and effort levels, and the complication of modulating reward probability, the current study also 

did not find a significant ketamine effect on effort decisions. Thus, considering the similar 

pattern of results across studies, while limited by low statistical power, these results tentatively 

do not support the hypothesis that willingness to exert physical effect is involved in ketamine’s 

antidepressant effects.  

 

5.5.5 Limitations 

Several limitations however merit comment. First, and most importantly, the very small sample 

size, particularly in the ketamine study, preclude any strong inferences from these results, 

especially in relation to non-significant results. Thus, unfortunately, the current study is not 

properly powered to assess the outlined research questions and all reported results should be 

considered preliminary. 

 

Second, we did not find any expected correlations at baseline between task measures and 

anhedonia symptomatology in patients at baseline. Again, the low sample size is likely to have 

obscured our ability to properly test this. Notably, however, the inclusion criteria for our 

patient cohort were based on a MADRS score of at least 20. Thus, the current study sample 

included participants at the extreme end of symptom severity, which likely restricted the 

symptom range. Future studies should explore this in cohorts with greater symptom variability 

and greater sample sizes. Similarly, the low sample size impeded any exploration of whether 

ketamine’s effects on reward and punishment processes were associated with the anti-

anhedonic or general anti-depressive effects.  
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A third limitation concerns the lack of computational models to examine performance on all the 

tasks. This limitation primarily pertains to the measure of exploration in the clock task. 

Although previous studies (Badre et al., 2012; Cavanagh et al., 2012; Frank et al., 2009; Kayser 

et al., 2015; Morris, Baek, et al., 2016; Strauss et al., 2011), have suggested that RT swings 

reflects goal-directed exploration, future studies need to employ a computational model to 

ascertain this assumption. This was not possible due to the lack of an existing model 

implemented in Stan for the clock task. 

 

Fourth, four MDD patients were on current antidepressant medication during baseline testing, 

which may have affected the results. No sub-analysis was performed due to the limited 

interpretability with the low sample size. However, we note that a previous meta-analysis did 

not find that medication status exerted a significant influence on reward processing 

(Halahakoon et al., 2020). 

 

Finally, due to the active status of the ketamine clinical trial at the time of writing, it was not 

possible to conduct official unblinding of treatment allocations. Ketamine and placebo 

randomisations were therefore guessed based on increases in blood pressure and CADSS scores 

post-infusions. However, it should be acknowledged that this resulted in effectively unblinding 

the trial, which ordinarily should not be done unless a medical emergency requires it. 

Unfortunately, this was necessary for completion of this thesis due to the extraordinary 

circumstances of Covid-19 which delayed the trial and prevented proper procedures in this 

instance. In addition, although the CADSS scores indicate that the current treatment allocation 

is correct, results should be interpreted with caution until unblinding can be performed.  

 

5.5.6 Conclusion 

In summary, across a battery of tasks measuring various aspects of reinforcement learning, 

decision-making and motivation, presumed ketamine increased exploratory behaviours and 

punishment learning rates in TRD patients, but did not significantly affect any other of the 

reward processes examined. No differences were detected between patients and healthy 
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individuals on any reward or punishment processing domain at baseline, although greater 

anhedonia severity was associated with greater (and potentially suboptimal) reward learning 

rates in patients. Taken together, these results indicate that ketamine might most prominently 

affect reward and punishment processing related to goal-directed behaviours. However, due to 

the preliminary nature of these results, future studies are required to replicate them and 

examine if other reward processing mechanisms not tested here might be more relevant to 

ketamine’s anti-anhedonic effects.    
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6 General discussion  

This chapter will synthesise the findings across experimental Chapters 2-5. Following brief 

overviews of each of the experimental chapters, highlighting the key findings, I will discuss how 

these findings provide insight into understanding anhedonia in relation to the models discussed 

in Chapter 1, and how they might relate to models of antidepressant action. I will then examine 

the potential implications and general limitations of the current work, and finally, general 

outstanding questions that could be addressed in future studies.  

 

6.1 Chapter summaries  

6.1.1 Chapter 2: Reliability of reward and punishment tasks 

The test-retest reliability of eight reward and punishment tasks, spanning learning, valuation 

and decision-making, and motivated effort processes, was assessed in healthy individuals. The 

tasks were primarily chosen based on previous studies indicating that these processes might be 

important in anhedonia, depression, or other motivation-related psychiatric symptoms. Mixed 

reliability was found both across and within tasks. Both model-agnostic and computational 

measures of performance in the bandit task demonstrated fair-to-good reliability, while 

computational measures of performance in the gambling task outperformed (good-to-

excellent) model-agnostic measures in the gambling task. Only uncertainty-driven exploration 

showed any reliability (good) in the clock task while the investor-trustee task had poor 

reliability. Finally, while the measured reliabilities of the physical effort measures were good-to-

excellent, the cognitive effort tasks suffered from poor reliability in at least one task measure. 

Reliability was not assessed for the reward/punishment bias task due to a coding error that only 

came to light after the end of data collection. Overall, these results support the use of several 

tasks and their associated computational models, spanning different aspects of reward and 

punishment processing in a ketamine clinical trial.  
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6.1.2 Chapter 3: The spatiotemporal dynamics of motivation to exert cognitive effort: a 

simultaneous EEG-fMRI study 

The goal of Chapter 3 was to explore and establish spatial and temporal neural markers of 

motivation to exert cognitive effort. This chapter reports the results of a simultaneous EEG-

fMRI pilot study in healthy participants. At the time this approach was intended for future use 

in a ketamine clinical trial, although ultimately this was not implemented. The study used a 

novel calibrated cognitive effort task, categorising ten digits in a sequence as odd or even under 

time pressure, allowing the assessment of each participant’s propensity to exert cognitive 

effort. This task addressed several shortcomings of existing cognitive effort paradigms. As 

expected, increasing effort decreased the probability to accept effort challenges, while 

increasing reward increased the probability of acceptance. Using fMRI, effort-related activation 

during the choice to accept was apparent in a number of PFC regions, including the ACC, dlPFC 

and vlPFC. In these regions an inverted U-shape of activation with increasing effort was 

observed consistently. The reasons underlying this pattern of activation are unclear, but future 

computational models may offer clarification. In the EEG analysis, a P3-like ERP peaking around 

220-280ms had a greater amplitude for high than low effort. However, no corresponding 

regions were identified for this component in the fMRI analysis when using a trial-by-trial 

parametric approach incorporating the P3 amplitude. Thus, the relationship between temporal 

and spatial markers of effort sensitivity remains unclear. Although this study showed promise 

for examining spatial and, to some extent, temporal markers of motivation, for practical 

reasons it was unfortunately not possible to examine the effect of ketamine on the 

spatiotemporal dynamics of motivated cognitive effort. 

 

6.1.3 Chapter 4: The effect of ketamine on fronto-striatal circuitry in depressed and healthy 

individuals: a resting-state fMRI study 

The goal of Chapter 4 was to examine how ketamine affects fronto-striatal circuit connectivity 

in HCs and TRD patients. This was examined in a double-blind, randomised, placebo-controlled 

crossover trial in which individuals were examined two days post-infusions using rsfMRI. 

Ketamine modulated fronto-striatal circuitry in opposite directions in healthy and TRD 
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individuals: increasing functional connectivity between the striatum and PFC regions in TRD 

patients, while decreasing connectivity between these regions in healthy individuals, compared 

with placebo. Preliminary results did not provide strong evidence that these effects were driven 

by changes in peripheral inflammatory processes. However, associations between some of the 

fronto-striatal resting-state measures and improvements in anhedonia were observed, assessed 

both on the day of the scan and ten days afterwards. These results suggest that ketamine 

impacts a core brain circuit for motivational behaviours, which may underlie its effects on 

motivational symptoms and cognition.  

 

6.1.4 Chapter 5: The effect of ketamine on reward and punishment processing in TRD 

Chapter 5 examined whether ketamine affects cognitive and computational reward and 

punishment processing in TRD. In a randomised, double-blind, placebo-controlled, crossover 

study, TRD patients were tested on the four-armed bandit, reward/punishment bias, clock, and 

physical effort task from Chapter 2, one day post-ketamine and post-placebo infusions. Case-

control comparisons before infusions were additionally conducted. No clear differences were 

found between TRD patients and healthy individuals on reward and punishment processes at 

baseline, although the relatively low number of participants affected statistical power. Similarly, 

presumed ketamine did not cause any significant changes in reward learning or sensitivity, 

reward or punishment response bias, motivation to exert physical effort, or go/no-go learning, 

although again statistical power may have limited the sensitivity of the analyses. However, and 

in line with predictions, presumed ketamine markedly increased exploratory behaviour, which 

here is tentatively assumed to reflect uncertainty-driven exploration (Frank et al., 2009); and to 

a lesser (although still substantial) effect punishment learning rates, although this is not in line 

with predictions. The results on exploratory behaviours provide preliminary support for the 

hypothesis that ketamine affects motivational symptoms in TRD through boosting reward-

related processing, particularly suggesting that ketamine may modulate uncertainty-driven 

exploration, a cognitive process centrally implicated in goal-directed flexible behaviour. 

However, the small sample size limits any strong conclusions.  
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6.2 Ketamine’s effects on motivational processes in relation to anhedonia models 

6.2.1 Ketamine affects motivation-related neural circuitry previously implicated in MDD 

In Chapter 4 we observed that ketamine increased functional connectivity between striatal and 

PFC regions in TRD patients. Under placebo, this circuitry showed lower functional integration, 

compared with healthy individuals. This is in line with a number of models of anhedonia that 

emphasise the importance of this circuitry in mediating reward-related symptoms observed in 

MDD and other disorders (Admon & Pizzagalli, 2015; Der-Avakian & Markou, 2012; Der-Avakian 

& Pizzagalli, 2018; Eshel & Roiser, 2010; Felger & Treadway, 2017; Husain & Roiser, 2018; Wang 

et al., 2021; Zhang et al., 2016). The present study thus adds to the growing literature 

suggesting disrupted fronto-striatal functioning in depression (Admon & Pizzagalli, 2015; Eshel 

& Roiser, 2010; Furman et al., 2011; Hamilton et al., 2018; Heller et al., 2009; Hoflich et al., 

2019; Husain & Roiser, 2018; Kaiser et al., 2015; Pan et al., 2017; Price & Drevets, 2010, 2012; 

Sharma et al., 2017; Treadway & Pizzagalli, 2014; Wang et al., 2016; Yang et al., 2017).  

 

Both human and animal findings have suggested that fronto-striatal interactions are crucial for 

motivated behaviour, through their role in integrating value signals with current goals to 

promote flexible responding (Balleine & O'Doherty, 2010; Haber, 2016; Haber & Knutson, 2010; 

Marquand et al., 2017). Dysfunction in these processes could manifest as various types of 

depressive symptoms and anhedonic profiles. Indeed, the prefrontal regions identified in the 

current study have been implicated in distinct aspects of goal-directed behaviour. While the 

dlPFC and vlPFC have been shown to modulate cognitive control and flexible behaviour, the 

OFC and pgACC have been linked more directly to reward learning and decision-making (Haber, 

2016; Haber & Knutson, 2010; Insel et al., 2017). However, we see a notable difference from 

current models as a connection to the vmPFC was not evident in the current study. According 

to several studies in healthy individuals, rodents, and MDD/anhedonia models, the vmPFC 

might be important for reward valuation in concert with the striatum (Bartra et al., 2013; Felger 

& Treadway, 2017; Ferenczi et al., 2016; Morris, Kundu, et al., 2016; Pujara et al., 2016). It is not 

yet clear if this region is not as important in symptoms of anhedonia as previously thought, or if 

a task-based neuroimaging study might be more sensitive to probe striatal-vmPFC circuitry 
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(although previous studies, e.g., Felger et al. (2016) have identified such a circuit at rest), or if 

the parameters of the current study was not sensitive enough to identify this circuit (e.g., the 

timing of the fMRI scan might not have been ideal – discussed further in section 6.5.3 below). 

Consistent with a lack of change in striatal-vmPFC connectivity, we also did not observe that 

ketamine affected reward valuation in Chapter 5, although this null effect is difficult to 

interpret with the limited sample size in that study. 

 

Nonetheless, these results provide the first clue that ketamine might affect motivation-related 

processes, implicating neural regions previously shown to be important for various goal-

directed processes and which are known to be altered in MDD/anhedonia. Although resting-

state fMRI studies can give us an idea of which neural regions might be affected by ketamine, 

and perhaps clues of which functions may be implicated, it is crucial to additionally understand 

how ketamine works by examining the cognitive computations. This is because to provide a 

complete explanation of ketamine’s effects, ultimately, we are interested in behavioural 

outputs (Niv, 2021). 

 

6.2.2 Presumed ketamine increases exploratory behaviours in TRD patients  

To examine which cognitive mechanisms of motivational processes are impacted by ketamine, 

in Chapter 5 we homed in on specific processes related to learning, valuation, and motivated 

effort that have been shown to be relevant to motivation-related symptoms. Preliminary 

findings indicate that presumed ketamine predominantly influenced exploration, putatively by 

increasing uncertainty-driven exploration, and to a lesser extent punishment learning rates. 

 

Adaptive learning and decision-making rely on a trade-off between immediate reward-

maximisation (exploitation) and gathering information to find better reward values 

(exploration) (Gershman, 2019; Wilson et al., 2014). The trade-off between exploration and 

exploitation is a fundamental goal-directed function and a well-described problem in RL (Sutton 

& Barto, 2018). Yet, despite theoretical accounts emphasising an important role of goal-

directed exploration in RL and in psychiatric disorders, very little is known about how it is 
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affected in MDD/anhedonia (Addicott et al., 2017; Huys et al., 2016; Scholl & Klein-Flugge, 

2018). The current results provide preliminary evidence for the importance of goal-directed 

exploration in MDD, and aligns with a schizophrenia study showing lower uncertainty-driven 

exploration with greater anhedonia severity and general suboptimal explore-exploit decisions in 

MDD and schizophrenia (Blanco et al., 2013; Strauss et al., 2011). In RL, this might mean that 

ketamine affects the policy during learning (Gershman & Uchida, 2019). This could thus 

represent a possible cognitive process by which ketamine causes general changes in 

motivational states. Although we were unable to examine any associations with ketamine’s 

anti-anhedonic effects due to the low sample size, and did not have a HC group to compare 

with, presumed ketamine’s largest effects on the day of testing were on symptoms related to 

anticipatory anhedonia, dysfunctional attitudes, and self-efficacy. Speculatively, the increase in 

exploration might therefore be linked to these symptom changes although this needs to be 

tested in future studies. In line with this, a previous study indicated that individuals who more 

strongly believe that their choices can determine future events show greater uncertainty-driven 

exploration on the clock task (Kayser et al., 2015). However, again, future studies need to 

directly test this. It should also be noted that we did not find a correlation with anhedonia at 

baseline with performance on the clock task, nor a significant difference between MDD patients 

and HCs. It is too early to tell if this is due to a meaningful null effect, considering the low power 

in this study. It is also possible that the model-agnostic measure for exploration (overall RT 

swings) captures additional components not directly involved in uncertainty-driven exploration, 

making this measure a less sensitive index of exploration than a computational parameter 

(Frank et al., 2009).  

 

In contrast to the dearth of research on goal-directed exploration in MDD/anhedonia, several 

studies have implicated depression and anhedonia-associated impairments in reward learning, 

reward valuation, and motivated effort (Halahakoon et al., 2020; Huys et al., 2021; Huys et al., 

2013; Kieslich et al., 2022; Treadway & Zald, 2013). Among the most consistent patterns is a low 

sensitivity to rewards in anhedonia (Halahakoon et al., 2020), however we did not observe that 

presumed ketamine affected reward sensitivity across several tasks (the four-armed bandit, the 
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reward/punishment bias, and the physical effort task). In addition to the possible reasons 

discussed in Chapter 5, the reliability of reward sensitivity in the bandit task, as identified in 

Chapter 2, may not have been sufficient to examine this measure in a clinical trial. However, 

this would not necessarily explain the null effects on the other tasks, where e.g., reward 

sensitivity in the effort task showed excellent reliability (Chapter 2). One alternative 

interpretation is that these tasks address different facets of ‘reward sensitivity’. Lack of 

converging validity across various tasks theoretically measuring the same concept has been 

identified for other processes, such as ‘impulsivity’ or ‘risk preference’ (Caswell et al., 2015; 

Pedroni et al., 2017). To disambiguate between these accounts, a greater sample size would be 

required. 

 

Similarly, behavioural and neural-related motivated effort has been implicated across several 

motivation-related symptoms, which have motivated numerous models of anhedonia centred 

on impaired effort-related decision making processes (Culbreth et al., 2018a, 2018b; Husain & 

Roiser, 2018; Le Heron et al., 2018; Treadway & Zald, 2011, 2013; Zald & Treadway, 2017). In 

Chapter 3 we identified that the ACC was modulated by cognitive effort costs. Apathy in non-

clinical samples has been associated with disrupted physical effort-related ACC function 

(Bonnelle et al., 2016; Hauser et al., 2017; Husain & Roiser, 2018; Le Heron et al., 2018). That 

the ACC was linked to cognitive effort-related computation here, might suggest that 

motivation-related symptoms are associated with domain-general effort-related ACC function. 

However, this hypothesis would need to be tested directly. In addition, physical effort-related 

ACC function has shown to be predictive of future vulnerability to psychiatric symptoms, 

suggesting a possible casual role of effort-related ACC function in mental illness (Armbruster-

Genç et al., 2022). If alterations in effort-related ACC function represent a pathway to 

motivation-related symptoms, then these could represent a possible neural mechanism by 

which ketamine exerts some of its beneficial effects.  

 

We did not however observe that presumed ketamine affected effort sensitivity or the overall 

probability to accept offers on the physical effort task version in Chapter 5. While unexpected, 
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it is difficult to draw conclusions based on null findings when the analysis only had power to 

detect very large effects. It is possible that ketamine’s effects on effort-related processing 

might only be evident at a neural level, as some previous studies have only implicated altered 

effort-related ACC functioning, but no behavioural differences (Armbruster-Genç et al., 2022). It 

may also be that the behavioural effect is small and requires a larger sample size to detect or 

that it is absent. The neural circuit underlying effort-related computations in Chapter 3 was 

different to the circuitry found to be modulated by ketamine in Chapter 4. Although we 

identified the pgACC in Chapter 4, this region is quite distant from the more dorsally located 

ACC implicated in effort-related computations (Bonnelle et al., 2016; Hauser et al., 2017; Klein-

Flügge et al., 2016). In any case, these effects are however not directly comparable since we 

were not able to examine the effect of ketamine on the neural mechanisms driving cognitive 

effort-based decision making.  

 

An alternative explanation is that aberrant effort-related computations in MDD are associated 

with a specific anhedonic profile of increased inflammation, particularly in TRD (Felger & 

Treadway, 2017; Lucido et al., 2021). Preliminary evidence from Chapter 4 did not suggest that 

inflammation has a critical role in ketamine’s beneficial effects. Although we did not examine 

inflammatory processes in Chapter 5, it is unlikely that we would have found a very different 

result to Chapter 4 in terms of inflammation since participants undergo a rigorous medical 

examination to rule out any possible unstable medical problems, which likely results in patients 

with low inflammation. This does not preclude the possibility that ketamine might still 

modulate these processes, but speculatively could point to subgroups of patients experiencing 

anhedonia. Of note, previous studies have implicated the ACC in ketamine’s anti-anhedonic 

effects in TRD patients (Lally et al., 2014; Lally et al., 2015). These studies however examined 

resting-state glucose metabolism using PET two hours post-infusion, whereas the studies in 

Chapter 4 and 5 examined effects two and one days post-infusion, respectively. Thus, it is not 

clear if differences might be due to timing, insufficient power, or examination of different 

circuits (ACC effort versus striatal reward-driven networks). Examining rsfMRI might also differ 

from task-based fMRI. Unfortunately, it was not possible to examine the effect of ketamine on 
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the spatiotemporal dynamics of motivation to exert cognitive effort. Thus, it is yet not clear 

how ketamine might influence these neural computations, which should be elucidated in the 

future. 

 

We also observed that depressed individuals with greater anhedonia had greater reward 

learning rates at baseline. Although we did not observe a significant relationship with the 

number of points won, the relationship between points won and reward learning rate was 

negative, possibly suggesting that high reward learning rates on this task are not adaptive. 

Speculatively, this might be related with mis-estimation of the volatility of the reward 

environment. For example, it is adaptive to have high learning rates (update more based on 

recent outcomes) when the environment is highly volatile (changes rapidly) but in less volatile 

environments, such as in the bandit task where the reward and punishment probabilities 

change slowly, a lower learning rate is more adaptive (Behrens et al., 2007; Pulcu & Browning, 

2017). Whether this is due to a difference in RPE signalling, heightened sensitivity to omission 

of rewards, or suboptimal estimation of uncertainties (Pulcu & Browning, 2019) needs to be 

determined in future studies. Reward learning is however strongly associated with RPEs in the 

striatum (Nasser et al., 2017; Schultz, 2016), and although we observed that ketamine affected 

striatal functional connectivity in Chapter 4, unexpectedly no effect of presumed ketamine on 

reward learning was observed in Chapter 5. One possible reason is that the fronto-striatal 

changes are related to other goal-directed behaviours (discussed below) and the association 

between altered reward learning and anhedonia is subtle. Indeed, we did not observe any 

significant case-control baseline differences in reward learning despite large differences 

between groups on all motivation-related scales (Figure 5.7). Unfortunately, we were not 

powered to detect more subtle ketamine changes in Chapter 5. Consequently, this association 

with anhedonia is tentative and requires replication.  

 

Finally, we also observed that presumed ketamine significantly increased punishment learning 

rates which was tentatively associated with more points lost, suggesting that this presumed 

ketamine-induced increase was maladaptive. This finding is surprising and difficult to interpret. 
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One possibility might be that it is related to the small (but non-significant) increase in state 

anxiety (Table 5.3) following presumed ketamine, since clinical anxiety has previously been 

associated with elevated punishment learning rates (Aylward et al., 2019). This could 

potentially suggest that ketamine does not provide beneficial effects across all reward and 

punishment aspects in TRD, in line with studies in healthy individuals showing that ketamine 

can impair aspects of RL (Vinckier et al., 2016). Importantly however, this effect was not a priori 

hypothesised and considering the very preliminary nature of this study, this effect is not 

interpreted further.   

 

The current thesis was influenced by contemporary empirical and theoretical works of 

anhedonia implicating reward learning, value, and effort, as discussed in Chapter 1. However, 

these models are predominantly based on cross-sectional studies, limiting our understanding of 

the casual mechanisms related to anhedonia (Kieslich et al., 2022; Paulus et al., 2016). It has 

been argued that case-control studies may simply reiterate current psychiatric diagnoses, which 

do not necessarily advance our understanding of mechanisms underlying disorders (Redish & 

Joshua, 2016). Interventional studies are an alternative approach. Ketamine might offer a 

window into examining which aspects of reward processing are causally associated with 

anhedonia. In line with the theorised importance of fronto-striatal circuitry in anhedonia 

(Admon & Pizzagalli, 2015; Der-Avakian & Markou, 2012; Der-Avakian & Pizzagalli, 2018; Eshel 

& Roiser, 2010; Felger & Treadway, 2017; Husain & Roiser, 2018; Wang et al., 2021; Zhang et 

al., 2016), we observed in Chapter 4 that ketamine normalised this circuitry in TRD patients 

where functional connectivity between the caudate and vlPFC was associated with 

improvements in anhedonia. Likewise, one very tentative conclusion that might be drawn is 

that a cognitive mechanism underlying ketamine’s antidepressant effects could be to 

ameliorate a lower tendency to explore actions.  

 

6.2.3 How do the neural and cognitive effects of ketamine relate to each other? 

The identified ketamine-induced changes in fronto-striatal circuitry in Chapter 4 have previously 

been associated with specific goal-directed behaviours. For example, lower VS-dlPFC functional 
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connectivity (identified under placebo in TRD participants versus HCs) has been associated with 

impaired cognitive flexibility, while lower connectivity between the VS (including the VRP) and 

lateral OFC has been associated with slower updating of value representations to guide optimal 

decision-making during a reversal learning task (Clark et al., 2004; Morris, Kundu, et al., 2016). 

These findings suggest that ketamine’s fronto-striatal effects may be related to flexible use of 

reward-related information to optimise behaviour. It is not clear whether these fronto-striatal 

shifts are related to the presumed ketamine-induced increase in exploratory behaviours in 

Chapter 5, as no behavioural data were collected in Chapter 4; however optimally balancing 

exploration against exploitation requires similar flexible behaviours. Uncertainty-driven 

exploration in this task and others has also consistently been associated with PFC, specifically 

rlPFC, function (Badre et al., 2012; Cavanagh et al., 2012; Frank et al., 2009; Morris, Baek, et al., 

2016; Tomov et al., 2020; Zajkowski et al., 2017), and others have also emphasised the OFC 

(Costa & Averbeck, 2020). It has further been suggested that the striatum is also involved in 

exploratory decisions (Costa et al., 2019), although others emphasise an exploitation, rather 

than exploration, role of the striatum (Frank et al., 2009; Maia, 2009). The rlPFC was however 

not identified in the fronto-striatal circuitry in Chapter 4. How exactly the striatum and PFC 

interact during explore-exploit decisions remain to be determined (Hogeveen et al., 2021) but 

may be broadly consistent with the results from Chapter 4.  

 

A potential unifying account involves the dopaminergic system. Striatal and PFC functioning, 

and uncertainty-driven exploration have consistently suggested an important role of dopamine. 

For example, Frank et al. (2009) identified that a gene controlling PFC dopamine function was 

specifically associated with uncertainty-driven exploration on the clock task (but see Gershman 

and Tzovaras (2018)), while genes involved in striatal dopamine functioning were involved in 

exploitative decisions, suggesting dissociative roles of dopaminergic functions in the PFC and 

striatum to explore-exploit trade-off decisions. This is in line with other studies indicating that 

greater prefrontal dopaminergic tone is associated with goal-directed exploration (Blanco et al., 

2015; Kayser et al., 2015). Decreased functional connectivity between the striatum and PFC has 

also been found following dopamine depletion, which was further associated with reduced 
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performance during a set-shifting task (Nagano-Saito et al., 2008). Several studies indicate that 

ketamine has downstream dopaminergic effects (Belujon & Grace, 2014; Collo & Merlo Pich, 

2018; Kokkinou et al., 2018; Rincón-Cortés & Grace, 2020) and can strengthen weakened VTA-

PFC connectivity in a rodent helplessness model through glutamatergic and dopaminergic 

signalling, ameliorating depressive-like behaviours (Wu et al., 2021). Notably, uncertainty-

driven exploration is associated with increased functional connectivity between the striatum 

and PFC, particularly the lateral frontopolar cortex (Morris, Baek, et al., 2016). Tentatively, the 

findings in Chapter 4 and 5 are associated with glutamatergic and dopaminergic signalling in the 

fronto-striatal circuitry. However, this needs to be tested directly. Furthermore, it is not clear 

whether these effects might be specific to the striatum, PFC or signalling between these 

regions, or whether other neurotransmitters, such as acetylcholine and norepinephrine 

(Addicott et al., 2017; Yu & Dayan, 2005), might also play an important role. 

 

6.3 How do these findings relate to models of antidepressant action? 

6.3.1 Neuroplasticity models 

Neuroplasticity models of antidepressant action emphasise that dysregulation of homeostatic 

neural mechanisms might lead to altered functional connectivity in depression, particularly 

within cortico-limbic-striatal circuitry (Duman & Aghajanian, 2012; Price & Drevets, 2010). 

Ketamine may subsequently partly act by restoring disrupted homeostatic regulation (Duman & 

Aghajanian, 2012; Duman et al., 2019; Nugent et al., 2019). The current thesis has not 

specifically tested any models of neuroplasticity directly, however some of the findings might 

be consistent with such a model. 

 

Specifically, the results from Chapter 4 may partially support such an account, at least at the 

neural circuit level, given that increased anti-anhedonic effects were associated with greater 

functional connectivity post-ketamine between the caudate and vlPFC. If ketamine affects 

homeostatic neural regulation in general, this may also explain why ketamine may restore 

neural regulation in individuals with depression but disrupt fronto-striatal functioning in 

healthy individuals. The initial functioning of the fronto-striatal circuitry might therefore be 
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important in determining the response to ketamine. However, a more direct test of this 

hypothesis would be to examine baseline fronto-striatal circuitry.  

 

It remains unclear whether presumed ketamine’s effects on exploration can be attributed to 

restoration of homeostatic mechanisms. We were restricted by sample size to examine any 

associations with ketamine’s anti-anhedonic effects, and did not have a HC group to compare 

with, nor did we directly examine any neural processes. Interestingly, some accounts of the 

explore-exploit trade-off are consistent with the notion that it follows homeostatic principles 

(Addicott et al., 2017). Adaptive goal-directed behaviour relies on striking a balance between 

exploring and exploiting options, which may follow an inverted U-shaped pattern (Addicott et 

al., 2017). Thus, maladaptive decisions might be driven by extreme biases at either end of the 

explore-exploit trade-off when these strategies are not adaptive to the environment: too much 

exploitation/too little exploration or too much exploration/too little exploitation. In this model, 

it has been suggested that motivational impairments might be related to low exploration/overly 

exploitative decisions (Addicott et al., 2017). PFC dopaminergic modulation of cognitive 

functions may also follow an inverted U-shape where optimal functioning lies in the middle 

(Cools & D'Esposito, 2011; Weber et al., 2022). Speculatively, these results might reflect the 

downstream effects of ketamine on a relative shift in dopaminergic modulated striatal-PFC 

balance.  

 

Considering the complexity of the dopaminergic system and interaction with ketamine, the 

above explanation is likely an oversimplification. It is also not clear how such an explanation 

might fit with the differential effects of ketamine on fronto-striatal circuitry in patients and HCs, 

unless low functional connectivity can be the result of both ‘too little’ and ‘too much’ (i.e., 

suboptimal) dopamine levels, which has been suggested previously for other cognitive 

functions (Wallace et al., 2011). In addition, it is unclear how ketamine would affect exploration 

in HCs, as according to this account it would make them even more exploratory, which is still 

maladaptive; however, it is less clear how increased exploration would then be associated with 

motivational-related symptoms in TRD, unless it perhaps involves random exploration as 



 211 

previously observed in anhedonia (Robinson & Chase, 2017). This would require additionally 

examining the interplay between random and directed exploration. Future studies will need to 

address these questions and directly examine whether the current findings stem from altered 

glutamate and dopaminergic synaptic plasticity in reward-circuitry and interact with baseline 

dopamine levels.  

 

6.3.2 Cognitive neuropsychological model  

There is a lack of cognitive models of ketamine’s antidepressant mechanisms, owing to the 

dearth of studies examining ketamine’s cognitive mechanisms. The cognitive 

neuropsychological model suggests that ketamine directly affects ‘top-down’, putatively PFC-

associated, negative priors (Roiser et al., 2012). This type of negative schema might rely on 

previously acquired negative memory-associations that ketamine abolishes (Godlewska & 

Harmer, 2021; Harmer et al., 2017; Stuart et al., 2015). However, we did not examine memory-

related functions here or negative schemata. In addition, it is not entirely clear how these 

mechanisms relate to negative mood versus anhedonia. As discussed in Chapter 5, ketamine 

has previously shown to influence a ‘higher-level’ confidence parameter that modulated 

exploration (Vinckier et al., 2016), suggesting that ketamine affects the precision of beliefs 

about the world, in relation to reward statistics. Such an account could fit with the cognitive 

neuropsychological model that suggests that ketamine affects priors, but was not directly 

tested here. In addition, this model does not adequately address the different effects of 

ketamine in patients and HCs, as observed in Chapter 4. 

 

Interestingly, a recent model of ketamine’s psychomimetic effects in healthy individuals and 

antidepressant effects in MDD, the ‘continuum hypothesis of psychotomimetic rapid 

antidepressants’, proposes that ketamine might increase cognitive flexibility by decreasing the 

precision of overly precise prior expectations (‘inflexible thinking’) in depression (Haarsma et 

al., 2021). This is based on a Bayesian account such that the prior is represented by a 

distribution with a mean and variance, and the proposal suggests that ketamine increases the 

variance of this distribution. Here, cognitive inflexibility is thought to relate to depression by 
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constraining beliefs about affective events, such that the probability of negative events is 

overweighted, and positive events underweighted. Putatively, the latter would be associated 

with anhedonia. Interestingly, NMDA receptors are thought to code the precision of prior 

beliefs (based on a Bayesian predictive coding account) (Corlett et al., 2016) and ketamine-

induced negative symptoms have previously shown to be positively correlated with PFC NMDA 

receptor binding (Stone et al., 2008). Speculatively, our results could align with such an account 

since exploration is broadly related to behavioural flexibility. As noted, lower VS-dlPFC 

functional connectivity has previously been associated with impaired cognitive flexibility 

(Morris, Kundu, et al., 2016), which was normalised by ketamine in Chapter 4. Goal-directed 

behaviour also relies on behavioural flexibility to adaptively balance exploration with 

exploitation (Addicott et al., 2017). However, whether this model can account for the results in 

Chapter 4 and 5 and the opposing symptom and neural effects of ketamine in healthy versus 

depressed individuals remains an open question.  

 

6.4 Implications of the research  

6.4.1 Chapter 2  

Chapter 2 has several implications, particularly for translating cognitive neuroscience to clinical 

trials. Reliability in cognitive neuroscience has garnered increased attention in recent years, 

with worryingly low reliability across conventional measures from both cognitive tasks and 

functional neuroimaging (Elliott et al., 2020; Enkavi et al., 2019; Frey et al., 2017; Noble et al., 

2019; Nord et al., 2017; Rodebaugh et al., 2016). While questionnaires are usually 

systematically examined for validity and reliability before use, this criterion is rarely applied for 

cognitive tasks (Horan et al., 2015). This is partly due to cognitive tasks being considered more 

objective and directly relevant to examining mechanisms underlying behaviour and therefore 

changes to treatment (Goldberg et al., 2010). In Chapter 2, although most tasks had at least one 

measure with some degree of reliability, this study shows that reliability of cognitive measures 

cannot be assumed. Reliability is thus a crucial, but often neglected, consideration for any 

successful attempts at applying a cognitive neuroscience approach to psychiatry. In particular, it 

is important to have sufficient reliability for within-subjects study designs, such as a crossover 
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randomised control trial, and longitudinal designs. Poor reliability in these contexts will add 

noise to measures of interest and decrease the sensitivity to detect effects of interest. 

Illustrating this point, only the measures from Chapter 2 that showed at least a good level of 

reliability showed an effect of ketamine in Chapter 5 (RT swings and punishment learning rate).  

 

It is however unlikely that computational modelling is a panacea to this problem. The model-

agnostic measures on the bandit task exhibited similar reliability to the computational 

measures. Model-agnostic measures of cognitive tasks have often been reported to exhibit 

poor-to-moderate reliability (Enkavi et al., 2019; Hedge et al., 2018; Rodebaugh et al., 2016). It 

has been argued that this may be due to their inability to capture the generative process 

underlying task performance (Huys et al., 2021; Price et al., 2019). However, our results suggest 

that it should not be assumed that computational parameters will always provide greater 

reliability than non-computational ones. That said, the model-agnostic outcome measures 

represent more distal proxies of the processes driving behaviour on the bandit task, as it is 

difficult to compute model-agnostic equivalents of some parameters, such as 

reward/punishment sensitivity. Importantly, computational models make explicit and falsifiable 

predictions about the components driving behaviour, which can be refined and used to 

simulate artificial data to generate new predictions. Thus, computational modelling is a more 

rigorous and preferable method for assessing behaviour than model-agnostic measures, which, 

unlike computational methods, lack the mechanistic insights into the underlying processes 

generating behaviour. 

 

Contemporary approaches to psychiatry, such as RDoC, emphasise dimensional, instead of 

categorical, frameworks (Insel et al., 2010). This is based on the premise that psychiatric 

disorders do not have discrete underlying explainable cognitive and neural mechanisms but 

might be better represented along various dimensions. That is, individual differences rather 

than group differences should be the focus. Moreover, group effects are invariably not 

predictive of individual scores, as different statistics are used for these different purposes (e.g., 

correlation versus t-test) (Fisher et al., 2018; Fröhner et al., 2019; Hedge et al., 2018). Thus, 
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reliability is also an important consideration for studies assessing individual differences (Fisher 

et al., 2018). The current results highlight this, as the majority of the reliable measures (e.g., 

punishment learning rate, physical effort sensitivity, and exploration) have also previously been 

associated with individual differences in prior studies (Aylward et al., 2019; Bonnelle et al., 

2016; Strauss et al., 2011), as they were in the current study (Chapter 5: reward learning and 

anhedonia).  

 

6.4.2 Chapter 3 

The results from Chapter 3 have several implications. Firstly, this study indicated that our novel 

task, which was designed to overcome several limitations of currently used cognitive effort 

tasks and provide a patient-friendly paradigm, appears to be appropriate for probing 

motivation to exert cognitive effort. Although cognitive effort is a ubiquitous function, allowing 

us to adjust how much we engage with cognitively demanding tasks, it has received very little 

attention in research on anhedonia. It may also be an important mediator of various other 

cognitive functions, such as cognitive fatigue, habitual versus goal-directed behaviour, logical 

reasoning, and cognitive control (Boksem & Tops, 2008; Müller & Apps, 2019; Otto et al., 2015; 

Westbrook & Braver, 2015). In addition, cognitive effort is associated with real-life outcomes 

such as academic achievement (Shenhav et al., 2017). The current task design was based on a 

physical effort paradigm, previously mainly used in research on apathy. The current study 

provides an important extension of this work, meaning that decision making relating to both 

physical and cognitive effort can be probed to examine if any impairments identified are 

domain general or specific.  

 

Secondly, even though EEG provides a more direct readout of the neuronal activity underlying 

cognition than fMRI, EEG research on effort-based decision making is scarce. In combination 

with fMRI, the neural processes driving decisions may be more precisely characterised (Pisauro 

et al., 2017). We identified a P3-like ERP that was related to cognitive effort level during 

decisions to accept an offer. The P3 ERP has previously been associated with motivational 

symptoms. For example, lower P3 amplitude during focused attention was associated with 
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greater symptoms of anhedonia, while a negative association between the P3 and symptoms of 

apathy was observed in an MID-like task (Dubal et al., 2000; Takayoshi et al., 2018). Similarly, 

effort-related ACC responses have been associated with apathy (Bonnelle et al., 2016; Hauser 

et al., 2017). Thus, the current study identified two neural signals known to be important in 

motivation-related symptoms. However, this will need to be assessed directly in future studies. 

Whether these two neural signals are related or represent different effort evaluation processes 

remains undetermined, since we were unable to identify a neural generator of this P3 in the 

current study.   

 

6.4.3 Chapter 4 

The results of Chapter 4 indicate that fronto-striatal functional connectivity might be an 

important mechanism underlying ketamine’s beneficial effects. Increased fronto-striatal 

connectivity post-ketamine was associated with sustained improvements (ten days post-

infusion) in anhedonia, but not general depressive symptoms, in TRD participants. The effects 

were most prominent for striatal interactions with the pgACC, although all PFC regions showed 

similar patterns. Changes in this circuitry might therefore drive ketamine’s sustained 

motivational symptom improvements. It is however not entirely clear if there are different 

neural mechanisms associated with different stages of ketamine’s anti-anhedonic effects. These 

results should also be considered preliminary due to the small sample size. If replicated, this 

ketamine-induced change in fronto-striatal circuitry could potentially serve as a predictor of 

sustained ketamine response, as suggested for other early cognitive and neural signs of 

antidepressant response (Browning et al., 2019). Speculatively, in such a case, it might 

represent circuitry to target in order to prolong the beneficial effects of ketamine, or use as a 

neural marker when screening anti-anhedonic responses of novel drugs during development 

(Krystal et al., 2020). 

 

A strength of this chapter was the inclusion of healthy individuals to compare ketamine effects 

with. Usually, ketamine trials in TRD patients only include healthy individuals pre-treatment or 

not at all. In other approaches, the mechanisms of ketamine’s antidepressant effects have been 
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examined using healthy individuals only. Indeed, it has been suggested that HCs may be useful 

for understanding mechanism of action of antidepressant drugs (Pringle et al., 2011). However, 

in the current study, ketamine showed opposite effects on the fronto-striatal circuitry than TRD 

patients, suggesting that it might not be appropriate to extrapolate ketamine’s mechanism of 

action based on results from a non-depressed sample.  

 

In addition, these results suggest that perhaps instead, ketamine’s effects in healthy individuals 

could potentially be used as a model of anhedonia (Nugent et al., 2019). This would be similar 

to how ketamine’s psychomimetic effects in HCs have been used to test mechanisms underlying 

psychosis in schizophrenia (Corlett et al., 2016; Frohlich & Van Horn, 2014). Ketamine has also 

been used to examine negative symptoms of schizophrenia, albeit to a far lesser extent than 

positive symptoms of schizophrenia (Driesen et al., 2013; Pollak et al., 2015; Stone et al., 2008; 

Thiebes et al., 2017). To validate this approach, ketamine in healthy individuals could be used to 

examine which aspects of anhedonia in MDD can be mimicked and further test theories of 

ketamine’s mechanism of action, such as the ‘continuum hypothesis of psychotomimetic rapid 

antidepressants’ (Haarsma et al., 2021). To extend this further, such an approach could 

potentially compare ketamine-induced anhedonia with other approaches, such as inflammation 

induction (Lucido et al., 2021), to generate new hypotheses of mechanisms underlying 

anhedonia. 

 

Using ketamine in healthy individuals as a model of anhedonia has been suggested previously 

using the same sample as in Chapter 4. This was based on the observation that ketamine 

acutely, transiently, and mildly increases motivation-related symptoms in HCs (Nugent et al., 

2019). Notably, in this study, every item on the SHAPS, but those relating to appetite, increased 

in HCs but decreased in patients. We extend this proposition by showing that ketamine impacts 

a neural circuit important for motivational behaviours in both populations.  
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6.4.4 Chapter 5 

An unexpected finding in Chapter 5 was that greater anhedonia was associated with higher 

reward learning rates. This finding contrasts with previous studies suggesting that MDD and 

depression is associated lower reward learning rates (Brown et al., 2021; Chase et al., 2010). 

However, recent studies highlight that RL parameters measured in one task may not generalise 

to another, especially learning rates (Eckstein, Master, et al., 2021; Eckstein, Wilbrecht, et al., 

2021). This has a broader implication for fields such as computational psychiatry. For example, 

it implies that associations between symptoms and RL parameters need to be carefully 

evaluated in relation to the context in which they are studied, and concluding that (for 

example) low reward learning rate in general is associated with anhedonia might not be valid. 

Despite this, no similar associations were found in the model-agnostic measures, highlighting 

the utility and sensitivity of computational methods to understand behaviour here, if 

replicated.  

 

6.5 Limitations 

6.5.1 Statistical power  

A major limitation across multiple chapters, particularly Chapters 3, 4 and 5 concerns the 

sample size. In Chapter 3 this might have primarily interfered with our ability to properly 

characterise the time course of decisions involving effort execution since EEG data tend to 

suffer from poor signal-to-noise at the single trial level (Luck, 2014). To counterbalance this, an 

increase in trials or participants would be needed.  

 

Importantly, this limitation strongly constrains conclusions in Chapter 4 and 5, which were the 

main studies assessing ketamine’s effects on motivational processes. For example, in Chapter 4 

and 5, we were 80% powered to detect only very large effect sizes (Chapter 4: d=0.9, Chapter 5: 

dz=1.07). This means that smaller, but potentially interesting effects, will very likely have been 

missed. The small sample size in both of these studies was mainly due to challenges associated 

with a rigorous study design and recruiting a specific patient population. Importantly, null 

effects are difficult to interpret considering low power. For example, the effect sizes we were 
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powered to detect are higher than the previously reported anti-anhedonic effects of ketamine 

(around d=0.8 one day post-infusion) (Lally et al., 2014). Similarly, we were likely underpowered 

to detect any differences between patients and healthy individuals on cognitive measures 

considering that previous studies suggest that effect sizes for case-control differences in reward 

processing range from small to medium for RL impairments (d=0.35) and medium to large for 

reward bias (d=0.64). By comparison, we had 80% to detect an effect size of around d=1 when 

examining case-control differences in effect size in Chapter 5, which is substantially larger than 

previously observed differences in reward processing between healthy individuals and patients 

(Halahakoon et al., 2020). This may also explain why we did not replicate the expected 

significant improvements in symptoms following presumed ketamine, as previously reported 

across various studies and cohorts (Coyle & Laws, 2015; Fond et al., 2014; Kishimoto et al., 

2016; McGirr et al., 2015; Wilkinson et al., 2018). These issues may have thus impeded our 

ability to properly characterize ketamine’s effects on fronto-striatal connectivity, and 

particularly its effects on reward processing. In addition, this limitation obscured our ability to 

investigate any associations between presumed ketamine-induced changes in reward and 

punishment tasks and changes in motivational symptoms in Chapter 5. In light of this limitation, 

findings presented in this thesis are tentative and require replication using larger sample sizes. 

 

6.5.2 Blinding in ketamine studies  

A common criticism of saline placebo-controlled, double-blind trials of ketamine is that these 

are not truly blinded, since the side effects of ketamine may immediately unblind participants 

(Murrough et al., 2013). Although this is a valid concern, importantly, studies employing an 

active control, such as midazolam, still show a significant antidepressant response in TRD 

patients (Murrough et al., 2013; Shiroma et al., 2020). In addition, the strength of ketamine’s 

side effects and its beneficial effects are not straight forward. For example, increasing the 

ketamine dosage, which increases the dissociative effects, does not seem to increase the 

antidepressant effects of ketamine (Fava et al., 2020), and in general the evidence that 

dissociation is necessary for ketamine’s antidepressant response is weak (Ballard & Zarate, 

2020). Furthermore, the current focus of this thesis was not to assess ketamine’s efficacy, 
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which has been established previously (Coyle & Laws, 2015; Fond et al., 2014; Kishimoto et al., 

2016; Kryst et al., 2020; McGirr et al., 2015; Wilkinson et al., 2018). Instead, the focus of our 

experiments was to understand the mechanisms of action of ketamine. Introducing an active 

placebo agent such as midazolam might therefore have rendered our results difficult to 

interpret.  

 

6.5.3 Testing time-window 

Another potential limitation concerns the time-window used to assess ketamine-associated 

effects on motivational processes. Ketamine produces rapid-acting improvements in 

anhedonia. For example, in Chapter 4, these effects were evident from 40 minutes post-

infusion. However, the rsfMRI scan occurred two days post-infusion. Similarly, we administered 

the reward and punishment processing tasks one day post-infusion. A complication of 

investigating mechanisms of rapid-acting antidepressants is that it is difficult to establish 

mechanisms prior to the emergence of symptom changes (Kotoula et al., 2022). It is, for 

example, possible that ketamine produces immediate changes in cognitive and neural 

motivational processes that drive its anti-anhedonic effects, which might be different from the 

more sustained anti-anhedonic response. For example, a recent study in rodents indicated 

separate PFC mechanisms driving ketamine’s acute (within hours) antidepressant-like effects 

than its more sustained antidepressant-like effects (12-24h post-ketamine) (Moda-Sava et al., 

2019). Whether such time-dependent differences in mechanisms can be observed in TRD 

patients remains to be tested. However, we chose to test reward processing one day post-

infusion in Chapter 5 as ketamine’s anti-anhedonic effects have previously shown to peak at 

this time (Lally et al., 2014; Zarate et al., 2006). This therefore allowed us to increase our 

sensitivity to detect ketamine-induced effects on motivational processes. The effect size of 

ketamine’s anti-anhedonic effects was also medium-to-high in Chapter 5, and were also robust 

at the scanning timepoint in Chapter 4. Importantly, these timepoints were chosen so that 

ketamine would be fully metabolized at the time of testing, meaning that the results would not 

be confounded by ketamine’s direct pharmacological effects. Nevertheless, it is likely that there 

are individual differences in the trajectory of ketamine’s beneficial effects, and it will be 
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important for future studies to map ketamine’s cognitive and neural reward effects across 

different timepoints and examine their relationship to different symptom dimensions. 

 

6.6 Future directions  

6.6.1 Leveraging multiple measures to pinpoint ketamine’s beneficial effects  

Although we argue that neural and cognitive measures offer more precise and mechanistic 

insight into ketamine’s beneficial effects, self-report scales are currently the main tool to assess 

treatment effectiveness and must therefore be part of clinical endpoints. An outstanding 

question is how changes in symptoms, cognition and neural function following ketamine are 

related. One problem with simply correlating several measures with each other is that it may 

miss important effects. As an example, exploration has shown to be higher in individuals with 

high anxiety (Aberg et al., 2021) but has also been observed to be lower in anhedonia (Strauss 

et al., 2011). Appropriately teasing these accounts apart is challenging, especially when studies 

are based on symptom-clusters such as in case-control designs. One way to extend simple 

correlations between multiple measures is to examine shared features among measures 

through data reduction techniques such as factor analysis (e.g., (Gillan et al., 2016; Rouault et 

al., 2018)). This has been shown to be valuable for uncovering the symptom dimensions 

associated with metacognition (Rouault et al., 2018), goal-directed control (Gillan et al., 2016), 

and tentatively, ketamine response (Ballard et al., 2018), which was not apparent with standard 

scales. In Chapter 5, a broad set of symptom scales was administered, including several 

measures of motivation-related symptoms. However, due to the small sample size, performing 

a factor analysis was not possible. Future studies may benefit from this approach in larger 

sample sizes. This can also be extended into identifying overlapping and distinct reward and 

punishment constructs using task measures, and for example, address the question of whether 

reward sensitivity across tasks taps into the same concept.   

 

6.6.2 Predicting the anti-anhedonic response to ketamine 

The current work has focused on understanding the mechanisms of action of ketamine; that is, 

which processes mediate ketamine’s beneficial effects. However, it will also be important to 



 221 

establish the mechanisms predicting (moderating) response to ketamine. This has the potential 

to establish biomarkers and identify for whom treatments might work and thus optimize 

treatment selection (Kraemer et al., 2002). This is a key objective of many goals of psychiatry 

(Browning et al., 2020; Paulus et al., 2016), but as of yet has remained elusive. Moderation can 

be studied by assessing pre-randomisation measures of cognitive, neural and computational 

processes and examining how these may predict response to a treatment (but not a control 

intervention) in the context of a randomised clinical trial (Kraemer et al., 2002). To qualify as a 

prognostic marker, the measure must be reliable. From Chapter 2, potential cognitive markers 

may thus include the RT swing measure in the clock task, reward and punishment learning in 

the bandit task, and all measures from the physical effort and gambling tasks. To take a step 

further, such mechanistic measures could potentially be combined and used to predict 

response using machine learning techniques, although it should be noted that this approach 

requires large samples. If based on theoretically-relevant features, this approach may prove 

useful in predicting treatment response (Huys et al., 2016; Paulus et al., 2016). For example, 

multivariate task measures have shown to predict response to SSRIs in a large study (Etkin et 

al., 2015). 

 

6.6.3 Other putatively important cognitive processes in anhedonia 

This thesis has focused on processes relating to various aspects of reward and punishment, 

reflecting the current state of knowledge of cognitive mechanisms underlying anhedonia in 

MDD, almost entirely derived from cross-sectional studies (Halahakoon et al., 2020; Kieslich et 

al., 2022). However, the mechanisms underlying anhedonia are not well understood, and as 

discussed earlier, a more promising approach to this question will be to causally examine 

mechanisms in interventional studies, as well as in longitudinal studies. Other processes than 

the ones examined in this thesis might be important for ketamine’s anti-anhedonic effects. For 

example, it has recently been proposed that current paradigms examining mechanisms of 

anhedonia may be insufficient in capturing the nature of impairment, as these are typically 

unidimensional in design (e.g., assume a single value function) (Huys & Browning, 2021). A 

limitation of the unidimensional approach is that it does not allow for examining how valuation 
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depends on internal states of agents. The idea here is that it matters less how “good” an 

outcome is in driving behaviour, but more how well aligned rewards are with the agent’s goals. 

This type of framework draws on classical drive-reduction theories of motivation which are 

based on homeostatic principles (Juechems & Summerfield, 2019; O'Reilly, 2020). Future 

studies may therefore benefit from incorporating more complex task designs (i.e., 

multidimensional value/goals) in which this can be examined.  

 

To further understand ketamine’s effects on exploration, paradigms based on foraging theory 

might be of interest. These tasks are not based on choosing between two options but instead 

whether to engage with a current option or decide to opt-out of a default state to explore for 

other opportunities (Scholl & Klein-Flugge, 2018). This framework might provide a more 

ecologically valid setting, since most real-world decisions are of this type – such as the example 

given at the start of this thesis of getting up from the sofa (default) to find a cookie in the 

kitchen (foraging); for this reason, foraging is often used to study decision making in animals 

(Addicott et al., 2017). Interestingly, these kinds of decisions have been shown to rely on the 

ACC, which has been proposed to signal the value of exploration (Kolling et al., 2016).  

 

6.7 Conclusion 

Our lack of understanding of treatment mechanisms contributes to the trial-and-error approach 

in treatment selection in psychiatry and difficulties in developing more efficient treatments. 

The primary aim of the current thesis was to better understand how ketamine, a relatively 

novel rapid-acting antidepressant, exerts its effects. Tools from cognitive neuroscience were 

used to address this question, which have previously been underutilised in understanding how 

ketamine works. Specifically, I examined candidate neural, cognitive, and computational 

mechanisms of motivational processes, since ketamine has previously shown to affect 

motivation-related symptoms (Lally et al., 2014; Lally et al., 2015; Nugent et al., 2019). This 

thesis tentatively suggests that ketamine most prominently enhances functional connectivity 

between the striatum and PFC in TRD, neural circuitry known to underlie reward-related 

processing. We also found that ketamine increased exploratory behaviour in TRD patients, 
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putatively related to goal-directed uncertainty-driven exploration. However, we failed to find 

evidence of ketamine-associated improvements in other reward-related mechanisms previously 

strongly associated with anhedonia, such as reward sensitivity, reward learning, and effort-

based motivation. While this could suggest that these cognitive mechanisms are not as strongly 

related to ketamine’s beneficial effects, this thesis is unable to draw that conclusion due to the 

small sample size in Chapter 5.  

 

Speculatively, these findings might reflect to downstream plasticity effects of ketamine on 

dopaminergic systems, a prediction that needs to be tested in future work. Whether current 

neural and cognitive theories of antidepressant action are sufficient to account for these 

findings is not clear. The ketamine-induced neural shifts could potentially be consistent with 

neuroplasticity models of ketamine’s antidepressant effects in terms of regulating neural 

homeostatic balance. However, a more complete model will need to link across cellular and 

cognitive levels and attempt to incorporate findings of differential effects of ketamine in 

patients versus healthy individuals, as observed in Chapter 4. Such an attempt has not been 

made here, but it has been highlighted that current theories of antidepressant action cannot 

adequately explain all these findings. 

 

In contrast to traditional antidepressants, ketamine rapidly improves symptoms, and 

specifically anhedonia. Understanding its mechanisms therefore offers potential in advancing 

our understanding of both more targeted and more efficient treatments of anhedonia, as well 

as the aberrant mechanisms maintaining anhedonia. This thesis has provided very preliminary 

evidence of potential neural and cognitive mechanisms with the hope that this will inspire 

future work that one day might advance the treatment of depression.   
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