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Abstract

I prove a Torelli theorem for certain Laurent polynomials. This provides strong evidence for

the idea that, under mirror symmetry, a Fano manifold corresponds to a single geometric object

called a cluster variety. As things stand, mirror symmetry provides a one-to-many correspon-

dence between a single Fano manifold and a collection of Laurent polynomials (or Landau–

Ginzburg models); my result gives a geometric proof that, for smooth Fanos in dimension two,

these Laurent polynomials assemble to give a single cluster variety.

My other theorem is joint work with Tom Coates and Qaasim Shafi, and determines, under

mild hypotheses, how the genus-zero Gromov–Witten invariants of a space X change under

blow-ups of X. This is a significant result in enumerative geometry; it also expands the range

of Fano manifolds for which we can establish mirror symmetry.

Impact Statement

I expect the methods used to prove my results to generalize in various directions and I have

ongoing projects and collaborations on these questions. For example, I expect many of the

results in Part I of the thesis to hold for more general Laurent polynomials in two variables

and Laurent polynomials in several variables. This will play an important role in the Fano

classification problem, by giving a good criterion to single out those varieties that are mirror

to a Fano manifold, Part II of the thesis expands the class of varieties we can verify mirror

symmetry for, and thereby allows us to gather more evidence for our conjectures
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Chapter 1

Introduction

Mirror symmetry is a relatively new area of research that originated in the 1980s when the

physicists Candelas et al [CdlOGP92] predicted the number of lines on the quintic threefold

using arguments from string theory. What followed was a period of immense activity to prove

the physicists’ conjecture and understand the mathematics behind it, creating the field of math-

ematics now known as mirror symmetry. The conjecture of [CdlOGP92] was reformulated in

precise mathematical terms by Kontsevich and subsequently proven by Givental [Giv96], [Giv98],

and Lian, Liu, Yau [LLY02]. Since then mirror symmetry has evolved to combine mathematics

ranging from Number Theory, Algebraic Geometry, Symplectic Geometry, Homological Algebra,

and Analysis.

Originally, mirror symmetry was formulated by mathematicians as a duality between Calabi-

Yau threefolds. Each such Calabi-Yau X has a so-called mirror Calabi-Yau X∨ whose Hodge

diamond is obtained from the Hodge diamond of X by a reflection along a 45◦ line (hence the

name “mirror symmetry”). There are now several introductory textbooks on mirror symmetry

for Calabi-Yau manifolds, see for example [CK99].

More recently, mirror symmetry has been generalized to more general varieties. These include

varieties for which −KX is merely nef: Givental [Giv95], [Giv98], produced a mirror to a nef

complete intersection Y in a toric variety X. The mirror to Y is in general an open variety

Y ∨ with a regular function W : Y ∨ → C, called the superpotential. In case Y is Calabi-Yau,

Givental proved that Y ∨ admits a natural compactification to a Calabi-Yau variety and that W

is constant and thereby recovers the duality between Calabi-Yau varieties mentioned above.

Givental phrases mirror symmetry as an equality of certain cohomology-valued generating func-

tions, the J-function and the I-function. The J-function is a generating function of certain

genus 0 Gromov–Witten invariants, see §6.3, whereas the I-function is built out of explicit hy-

pergeometric factors depending on the cohomology classes of the toric divisors on X and the

15



16 CHAPTER 1. INTRODUCTION

Chern classes of the line bundles cutting out the complete intersection X. This approach, called

’Givental’s symplectic formalism’ has proved to be very fruitful, and has led to mirror theorems

for a large class of varieties related to toric varieties: the Abelian/non-Abelian correspondence

[CFKS08] expresses the J-function of a GIT quotient V//G of a vector space V by a reductive

Lie group G in terms of the J-function of the corresponding quotient V//T by the maximal

torus T ⊂ G which has an explicit expression in terms of hypergeometric functions thanks

to Givental’s mirror theorem [Giv98]. Varieties of the form V//G with G non-Abelian include

Grassmannians and flag manifolds. One of the main results of this thesis is Theorem C, which is

a generalization of the Abelian/non-Abelian correspondence to certain zero loci in Grassmann

bundles, which allows, for example, to compute the J-function of certain blowups X̃ in terms of

the J-function of X.

The other part of my thesis concerns the Fano classification problem. The classification of

Fano manifolds is a long-standing open problem. A recent breakthrough here was the realisation

that there is a close link between Fano classification and mirror symmetry. This new approach

has recovered the classification of 3 dimensional Fano manifolds [CCGK16], and has led to

the discovery of more than 500 new 4-dimensional Fano manifolds [Kal19], [Pri20], [CKP15],

[CKP19].

This correspondence takes the following form: according to [CCG+13], a n-dimensional Fano

manifoldX should correspond under mirror symmetry to a Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

n ]

in n variables, and under this correspondence, the regularised quantum period ĜX(t) of X, a cer-

tain generating function for genus 0 descendent Gromov–Witten invariants with one insertion,

should match up with the classical period of f , defined by

πf (t) =
( 1

2πi

)n ∫
S1×···×S1

Ω

1− tf
=
∑
d≥0

c0(fd)td

where Ω = dx1
x1
∧ · · ·∧ dxn

xn
and c0(fd) denotes the constant term of fd. Here, the second equality

follows by Taylor expanding 1
1−tf near t = 0 and applying the Cauchy Residue Theorem n times.

Laurent polynomials mirror to a Fano variety have very special coefficients, they are expected

to be rigid maximally mutable Laurent polynomials, see [CKPT21]. On the other hand, many

different Laurent polynomials are usually mirror to the same Fano variety: an easy calculation

with the change of variable formula for integrals shows that if ϕ : (C×)2 99K (C×)2 is any volume

preserving map (i.e ϕ∗Ω = Ω) and ϕ∗f = g, then πf (t) = πg(t). By a result of Blanc [Bla13]

any such ϕ factors as a composition of certain easier birational maps (C×)2 99K (C×)2 called
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algebraic mutations. In all known examples where πf (t) = πg(t), the Laurent polynomials f

and g are actually mutation equivalent, meaning that there is a composition of such algebraic

mutations relating f and g (see Definition 2.2.3), so it is natural to conjecture the following:

Conjecture 1.0.1. Suppose that f and g are Laurent polynomials such that πf (t) = πg(t).

Then f and g are mutation equivalent.

Very little is known about this and it seems to be a very deep question and out of reach

in this generality. If true, it would imply that the analytic information provided by the power

series πf (t) is somehow sufficient to recover f up to some algebraic change of variables.

We can reinterpret all this as follows: the phenomenon that a Fano variety X has several mirror

Laurent polynomials can be explained by declaring that the true mirror object to a Fano variety

X should not be a Laurent polynomial, but rather a cluster variety X∨ with holomorphic volume

form ω, together with a regular function W : X∨ → C, called the superpotential. X∨ admits

a compactification to a log Calabi-Yau pair (Y,D). Given any Laurent polynomial f mirror

to X, we can construct X∨ by viewing f as an affine fibration f : (C×)n → C: this fibration

has a canonical compactification to a smooth projective variety Yf with a proper morphism

Yf
π−→ P1. Let Df = π−1(∞), then the pair (X∨,W ) is obtained by taking X∨ = Yf \Df , and

W = π|Yf\Df .

To recover Laurent polynomials from (X∨, ω,W ), we consider torus charts on X∨, i.e open sets

U ⊂ X∨ isomorphic to (C×)n. W |U is then a regular function on (C×)n, i.e a Laurent polynomial

in n variables, and ω|U = Ω. The transition functions relating two torus charts U and V is a

birational map φ : (C×)n 99K (C×)n satisfying φ∗Ω = Ω, so that all Laurent polynomials arising

from restricting W to a torus chart have the same classical period. We can then unambiguously

speak of the classical period πW (t) of the pair (X∨,W ).

This strongly suggests that πW (t), or equivalently ĜX(t) should be an object intrinsic to X∨,

and we can reformulate Conjecture 1.0.1 as a Torelli theorem:

Conjecture 1.0.2. Let X1 and X2 be Fano varieties with mirror Landau-Ginzburg models

(X∨1 ,W1) and (X∨2 ,W2). If πW1(t) = πW2(t) (or equivalently if ĜX1(t) = ĜX2(t)), then X∨1 and

X∨2 are isomorphic.

A more combinatorial, and coarser notion of mirror symmetry is obtained by replacing a

Laurent polynomial f by its Newton polytope Newt (f). An algebraic mutation of f induces a

mutation of Newt (f) (see Lemma 2.3.2) and this has led to a formulation of mirror symmetry

for orbifold del Pezzo surfaces.

Conjecture 1.0.3. [ACC+16] There is a one-to-one correspondence between
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• Q-Gorenstein (qG) deformation families of locally qG-rigid del Pezzo surfaces with cyclic

quotient singularities of class TG (i.e admits a qG degeneration with reduced fibres to a

normal toric del Pezzo surface)

• mutation equivalence classes of Fano polygons

Here, a Fano polygon is a lattice polygon P such that the vertices of P are primitive lattice

points and 0 is in the strict interior of P (see Definition 2.2.1). This correspondence is obtained by

sending a Fano polygon P to any qG deformation of the toric variety defined by the fan spanned

by the vertices of P . One expects to be able to read off the singularities of the general member

of the qG deformation family from the combinatorics of the corresponding Fano polygon: given

a Fano polygon P , [AK14] have defined the singularity content of P ; this is a subdivison of the

cones over edges of P into T -cones and R-cones. On the mirror del Pezzo surface, T -cones give

rise to singularities that admit a qG-smoothing, and R-cones give rise to qG-rigid singularities.

In particular, the generic member of a qG family mirror to P has singularities prescribed by the

R-cones of P . If the Fano polygon P does not admit any R cones, P is called a T -polygon, and

the general member of the qG family mirror to P is a smooth del Pezzo surface (see §2.2 for

details). Fano polygons related by mutations give rise to the same qG-deformation family, and

should correspond to the different toric degenerations of the general member of such a family.

So far, this conjecture has been verified in two cases: it is classically known that there are 10

deformation families of smooth del Pezzo surfaces, and [CH17] have shown that there are 29

deformation families of del Pezzo surfaces with 1
3(1, 1)-singularities, 26 of which are of class TG.

On the Fano polygon side, Kasprzyk, Nill, and Prince [KNP17] have combinatorially classified

certain Fano polygons: they have shown that there exist 10 mutation equivalence classes of T -

polygons, and 26 mutation equivalence classes of Fano polygons with singularity content 1
3(1, 1).

The other main theorem from my thesis is a new geometric, and arguably more intuitive proof

of the classification of T -polygons, see Theorem A.

1.1 Statement of results

Part I of this thesis is concerned with giving an entirely geometric proof of the classification of

T -polygons.

Theorem A (see Theorem 4.2.2). There are 10 mutation equivalence classes of T -polygons.

As mentioned in the introduction, the proof of the classification of T -polygons given in

[KNP17] is combinatorial and proceeds by introducing a notion of minimality of T -polygons. The
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classification is then obtained by reducing every T -polygon to a minimal T -polygon. However,

a geometric, and more direct proof is clearly desirable, not the least if we want to generalize

these results to other Fano polygons or to Fano polyhedra.

Recall that a Looijenga pair (Y,D) is a smooth projective surface Y with a nodal anticanonical

divisor D. Our geometric proof of Theorem A has three key ingredients: the first is the Torelli

theorem for Looijenga pairs of Gross, Hacking, and Keel [GHK14]. The second is Friedman’s

classification [Fri16, Proposition 9.15] of deformation families of Looijenga pairs (Y,D) with D

strictly negative semi-definite, of which we give a simplified proof, see Proposition 3.3.8 and

Theorem 3.3.9.

The third key ingredient is a result on factorizations of birational maps:

Theorem B (see Theorem 4.1.5). Let (Y,D) be a Looijenga pair with two toric models

(Y,D)

(Ȳ , D̄) (Ȳ ′, D̄′)

p

p′

ϕ

Then ϕ has a factorization

(Ȳ , D̄) = (Ȳ0, D̄0)
ϕ1→ (Ȳ1, D̄1)

ϕ2→ . . .
ϕn→ (Ȳn, D̄n) = (Ȳ ′, D̄′)

where each of the maps ϕk is a toric blowup, toric blowdown, or a mutation.

Moreover, let pk = ϕk ◦ . . . ϕ1 ◦ p. Then pk : (Y,D) 99K (Ȳk, D̄k) extends to a regular map

p̃k : (Ỹ , D̃)→ (Ȳk, D̄k)

on some corner blowup (Ỹ , D̃) of (Y,D).

Theorem B implies a closely related theorem of Blanc [Bla13] and may be of independent

interest. Using Theorem B, we also prove Conjecture 1.0.1 for normalized maximally mutable

Laurent polynomial f with Newt (f) a T -polygon, see Theorem 4.2.3.

Part II of this thesis is joint work with Tom Coates and Qaasim Shafi and concerns a

generalization of the Abelian/non-Abelian correspondence of [CFKS08]. The classical form of the

Abelian/non-Abelian correspondence [CFKS08] expresses the J-function of a GIT quotient V//G

of a vector space V by a reductive Lie group G in terms of the J-function of the corresponding

quotient V//T by the maximal torus T ⊂ G. Since V//T is a toric variety, Givental’s Mirror

Theorem [Giv98] gives an explicit expression for JV//T in terms of hypergeometric functions.
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Varieties of the form V//G with G non-Abelian include Grassmannians and flag manifolds.

The Abelian/non-Abelian correspondence has been generalised to families by Brown [Bro14]

and Oh [Oh21]. In more detail, let E = L0 ⊕ · · · ⊕ Ln → X be a direct sum of line bundles

on a smooth projective variety X. The GIT quotient E//GLr(C) is the Grassmann bundle

Gr(r, E) → X, and Brown and Oh have given an expression for JGr(r,E) in terms of JE//T , or

equivalently in terms of JX and explicit hypergeometric functions involving the Chern classes

of E.

A representation ρ : G→ GL(V ) induces a vector bundle Vρ = E×V//G on E//G, where G acts

on E × V via

g · (e, v) = (eg, ρ(g−1)v)

and we say that Vρ is representation-theoretic. We extend the above results to certain zero loci

of representation theoretic bundles in Grassmann bundles.

Theorem C (see Corollary 7.2.4 and Corollary 7.2.5). Let E = L0 ⊕ · · · ⊕ Ln → X be a direct

sum of line bundles on a smooth projective variety X, let Gr(r, E) be the Grassmann bundle

of E, and let Vρ be a nef, representation-theoretic bundle on Gr(r, E). Let Z be the zero locus

of a generic section of Vρ and suppose that Z is Fano. Then there exist an expression for JZ

in terms of JX and explicit hypergeometric functions involving the Chern classes of E and the

Chern classes of Vρ.

As mentioned before, the main application of this result is to compute the J-function of a

blowup X̃ in terms of the J-function of X. This is achieved by a new geometric construction

which expresses the blowup X̃ as the zero locus of a regular section of a vector bundle on a

Grassmann bundle.

Theorem D (see Theorem 7.3.2). Let X be a smooth projective variety, let E = L0⊕· · ·⊕Ln →

X be a direct sum of line bundles, and let Z ⊂ X be the zero locus of a regular section s of E.

Let π : Gr(n,E∨) → X be the Grassmann bundle of subspaces and let S → Gr(n,E∨) be the

tautological subbundle. Then the composition

S ↪→ π∗E∨
π∗s∨−−−→ O

defines a regular section of S∨, and the zero locus of this section is the blow-up X̃ = BlZ X.

Applying C to the Grassmann bundle Gr(n,E∨) and Vρ = S∨, shows that under certain

positivity assumptions, there exist an explicit expression for JX̃ in terms of JX , the Chern

classes of E and the Chern classes of S∨.
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Outline

This thesis is structured into two parts. The first part is an expanded version of the preprint

[Lut21]. §2 gives the necessary background material on mutations of polygons and Laurent

polynomials. For simplicity, we restrict ourselves to two dimensions, although many of the def-

initions generalize. We also introduce maximally mutable Laurent polynomials, those Laurent

polynomials that are conjecturally mirror to Fano varieties. §3 gives background material on the

Torelli theorem for Looijenga pairs of Gross, Hacking, and Keel [GHK14]. We then explain how

to canonically associate a Looijenga pair to a Laurent polynomial and give a simplified proof

of the classificaiton of negative semi-definite Looijenga pairs (Proposition 3.3.8 and Theorem

3.3.9). §4 is concerned with the proof of Theorem 4.1.5, from which we then deduce Theorem A.

The second part is a joint paper with Qaasim Shafi and Tom Coates [CLS21]. This paper has

been accepted for publication in Forum of Mathematics, Sigma. §5 explains our reformulation

of the Abelian/non-Abelian correspondence of [CFKS08] in the language of Lagrangian cones,

see [Giv95]. §6 gives the necessary background material: §6.1 explains the relationship between

GIT quotients of a space A by a complex reductive Lie group G, and the corresponding quotient

by the maximal torus T ⊂ G. §6.2 then specializes these results to the case of Grassmann and

flag bundles. After that, we give the necessary background material on Givental’s symplectic

formalism, I-functions, and J-functions in §6.4. We then introduce the Givental-Martin cone in

§6.5, which plays an important role in our formulation of the Abelian/non-Abelian correspon-

dence. §7 is devoted to proving Theorem C and D. We review the theorems of Brown [Bro14]

and [Oh21] in §7.1. After that, we prove our main Theorem C in §7.2. We continue by giving

our new construction of certain blowups as zero loci of a regular section of a vector bundle on

a Grassmann bundle in §7.3, and deduce Theorem D. Finally, we apply Theorem D to compute

quantum periods of certain Fano manifolds which arise as blowups.
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Part I

A Geometric Proof of the

Classification of T -Polygons
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Chapter 2

Mutations

We begin this section by collecting a few facts from toric geometry that will be used throughout

this thesis. A good reference for the material is [CLS11]. In §2.2, we define mutations of

polygons, and §2.3 is devoted to mutations of Laurent polynomials. We introduce Laurent

polynomials of Tveiten class and maximally mutable Laurent polynomials and prove results

about their geometry. §2.4 then constructs the rational elliptic surface Yf associated to a Laurent

polynomial.

2.1 Toric Geometry

We assume the reader is familiar with the basics of toric geometry, and only give a very brief

recap. A toric variety is a variety Y containing an algebraic torus T as a dense subset, such that

the action of T on itself by multiplication extends to Y . Toric varieties can be constructed from

cones and fans: We fix throughout a rank n lattice M with dual lattice N . A strongly convex

rational polyhedral cone σ ⊂ N defines an affine toric variety

Uσ = Spec(C[σ∨ ∩M ])

where the dense torus T is given by TN := N ⊗Z C×. More generally, a fan Σ ⊂ N defines a

toric variety as follows: For every two full-dimensional cones σ and σ′ that share a face τ we

have the inclusions of affine toric varieties

Uσ ⊃ Uτ ⊂ Uσ′

25
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and the toric variety YΣ is obtained by glueing all affine open sets Uσ along these inclusions.

We will often start with a lattice polytope P ⊂M . For any vertex v of P , consider the cone

Cv = Cone(P ∩M − v) ⊂MR

The collection of dual cones C∨v ⊂ NR assemble to a fan ΣP , called the normal fan of P , and we

define YP = YΣP . We will see below that the toric variety YP comes with a distinguished ample

divisor DP .

The polytope P is also known as the moment polygon of the toric variety YP and records the

orbits of the action of TN on YP : k-dimensional strata of P correspond to k-dimensional orbits

of the TN action. In particular, we have

• vertices of P ↔ fixed points of the TN -action ↔ maximal cones in ΣP

• facets of P ↔ TN -invariant divisors ↔ rays in ΣP

We denote the TN -invariant divisor associated to a ray ρ by Dρ. If we are working with a

polytope P , we denote the toric divisor associated to the facet E by DE . We write Σ(1) for the

collection of rays in the fan Σ. There is a standard short exact sequence

0→M →
⊕
ρ

ZDρ → Cl(YΣ)→ 0

where m ∈ M maps to
∑

ρ〈m,uρ〉Dρ and the surjection maps a divisor to its class in Cl(YΣ).

Applying HomZ(−,C×) yields a short exact sequence

1→ G→ (C×)Σ(1) → TN → 1

where G = HomZ(Cl(YΣ),C×). It is shown in [CLS11, Theorem 5.1.11] that under suitable

conditions, we have an isomorphism

YΣ
∼= CΣ(1)//G

with respect to a suitable stability condition depending on the fan Σ. Given a lattice polytope

P , the toric variety YP has a distinguished ample Cartier divisor

DP = O(
∑
E⊂P

hEDE)
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where hE is the unique integer such that the facet E is contained in the hyperplane uE ·m = −hE ,

where uE is the minimal generator of the ray ρ corresponding to E (the inward normal to E).

and we have an isomorphism

Γ(YP ,O(DP )) ∼=
⊕

m∈P∩M
Cχm (2.1)

We will often choose local coordinates on the toric variety YP around a nonsingular torus fixed

point p: The fixed point p corresponds to a smooth cone σ in ΣP , let e1, . . . en be the minimal

generators of σ and define xi = χe
∗
i . This defines a local coordinate system around p under which

p corresponds to the origin and the n toric divisors containing p are given by the hyperplanes

xi = 0.

Suppose now that n = 2. If ỸP → YP denotes the toric minimal resolution, then DP pulls back

to a Cartier divisor on YP with isomorphic ring of sections ([CLS11, Proposition 6.2.7]). We

will need the following result:

Proposition 2.1.1. Let N be a 2-dimensional lattice, and let YΣ be the toric variety defined by

a fan Σ ⊂ N . Let D be a component of the toric boundary of YΣ. A choice of orientation of N

(i.e. a choice of generator of H1(D,Z) ∼= Z) gives a canonical identifiaction Dint ∼= C×.

Proof. Dint is canonically the torus TN/Zv, where v is the minimal generator of the ray of Σ

corresponding to D. We have

TN/Zv = SpecC[v⊥ ∩M ]

The 1-dimensional lattice N/Zv has two generators, and the choice of orientation of N picks out

a preferred generator e of N/Zv. Writing x = χe
∗
, this induces an isomorphism C[v⊥ ∩M ] ∼=

C[x, x−1], yielding the required identification Dint ∼= SpecC[x, x−1] ∼= C×.

2.2 Mutations of polygons

We now specialize to toric surfaces and polygons. Although many of the definitions carry over to

higher dimensions, this adds an additional layer of complication for which we have no use in this

thesis. So fix throughout a 2-dimensional lattice M with dual lattice N . We follow definitions

of [ACC+16] and [AK14].

Definition 2.2.1. A Fano polygon is a full-dimensional lattice polygon P ⊂MR such that

• 0 is in the strict interior of P

• all vertices of P are primitive lattice points
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Fix an edge E of P with primitive inward normal vector u. The lattice length `E is the

number of lattice points on E minus one, and the lattice height hE is the positive integer

−〈u,E〉. For every edge E, let mE be the unique positive integer such that

`E = mEhE + rE , 0 ≤ rE < hE

A Fano polygon defines two different toric surfaces: we have the polarized toric surface (YP , DP )

defined by the normal fan of P as defined in Section 2.1. The edges of P correspond to the toric

divisors of YP , and denoting the divisor corresponding to an edge E by DE , the distinguished

ample divisor DP is defined as

DP =
∑
E⊂P

hEDE .

(see Section 2.1).

However P also defines a different toric surface YSp(P ) via the spanning fan. This is the fan with

maximal cones equal to the cones over the edges of P , so in particular, YSp(P ) is only defined

when 0 is contained in the interior of P . It is not hard to see that if P is a reflexive polygon (i.e

the origin is the unique interior lattice point of P) and Q = P ? is the polar (or dual) polygon,

then the normal fan of P is interchanged with the spanning fan of Q and vice-versa. The mirror

symmetry conjecture of [ACC+16] predicts a one-to-one correspondence between Fano polygons

and deformation families of orbifold del Pezzo sufaces, up to an appropriate equivalence relation

We analyze the structure of the toric surface YSp(P ). Any edge E of P defines a maximal cone

σ in YSp(P ) which corresponds to a torus fixed point under the orbit-cone correspondence. Let

{u, v} be the rays spanning σ. We may find a basis e1, e2 for N such that σ is the cone spanned

by e1 and de1−ke2 for coprime integers d and k such that d > 0, 0 ≤ k < d. [CLS11, Proposition

10.1.2] shows that the affine toric surface Yσ defined by σ is the cyclic quotient singularity 1
d(1, k),

i.e the quotient C2/µd where µd acts with weights (1, k).

We introduce some terminology: Fix an edge E and let σ the corresponding cone of YSp(P ). If

rE = 0, we call σ a T -cone, and the singularity of Yσ is called a T -singularity. If in addition

mE = 1 (or in other words `(E) = h(E)), σ is called a primitive T -cone and Yσ is called a

primitive T -singularity. If mE = 0 and rE > 0, then σ is called a R-cone, and the singularity of

Yσ is a R-singularity. We may (non-uniquely) subdivide the cone σ into mE primitive T -cones

and one R-cone σR (if rE = 0 there is no R-cone), see Figure 2.1 for an example. Geometrically,

this corresponds to a partial crepant resolution

Ỹσ → Yσ
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· · ··
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· · · ·

·

· · ·· ·

Figure 2.1: A Fano polygon with seven T -cones and two R-cones (shaded in grey). The singu-
larity content of P is (7, {2× 1

3(1, 1)})

where Ỹσ now has mE primitive T -singularities and one R-singularity (or no R-singularity if

rE = 0). If YσR is the cyclic quotient singularity 1
d(1, k), we define the residue res(σ) of σ to be

res(σ) =


1
d(1, k) if rE 6= 0

∅ if rE = 0

This definition stems from the fact that T -singularities are Q-Gorenstein-(abbreviated to qG)

smoothable, whereas R-singularities are qG-rigid (see [ACC+16, p.1-2], for definitions of these

terms). Since there are no local to global obstructions for qG smoothings of toric del Pezzo

surfaces ([ACC+16, Lemma 6]), this shows that a general qG deformation Y of Ỹσ has exactly

one singularity of type res(σ). [AK14] have defined the singularity content of a Fano polygon

P . This is the pair (k,B), where k is the number of T -cones of P and B is a cyclically ordered

list of the residues of the R-cones of P . Choose now a decomposition of P into T -cones and

R-cones. For each R-cone, choose moreover the right vertex with respect to the anticlockwise

orientation.

Definition 2.2.2. We say that p ∈ P ∩M is a residual point if p = 0 or if p is contained in the

strict interior of an R-cone of P . We say that p is quasi-residual if p is residual or if p is the

right vertex (with respect to the chosen orientation) of an R-cone.

Figure 2.2 shows residual and quasi-residual points for a Fano polygon P . The set of residual

and quasi-residual points depends on choices, but this will be irrelevant in what follows.

As mentioned in the introduction, the classification of Fano polygons up to an appropriate

equivalence relation is conjecturally mirror to the classification of orbifold del Pezzo surfaces

admitting a toric degeneration. This equivalence relation is called mutation: while it is a bit

technical to define, the idea behind it is rather simple, see Figure 2.3.

Definition 2.2.3. Let P ⊂M be a Fano polygon and let v ∈ N be a primitive vector. Choose a
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Figure 2.2: A Fano polygon with a choice of decomposition into T -cones and R-cones. Residual
points in red, additional quasi-residual points in blue

· · ··

· · · ··

·

·

· × · ·

· · · ·

·

· · ·· ·

· · ··

· · · ··

·

·

· × · ·

· · · ·

·

· · ·· ·

mutF ,v

Figure 2.3: Mutation of the polygon P with respect to mutation data v = (0, 1), F = Newt (1+x).
The mutation contracts a grey T -cone on the left and adds a grey T -cone on the right.

line segment F ⊂ v⊥ ⊂M and write Pd for the slice of P at height d with respect to v. Suppose

that for all d < 0 we can decompose Pd = Rd+(−d)F as a Minkowski sum for some line segment

Rd (where we allow Rd = ∅). Then we say that P is mutable with respect to (v, F ), and define

P ′ = mutv,FP = conv

⋃
d<0

Rd ∪
⋃
d≥0

(Pd + dF )


We call F the factor of the mutation, and we say that two polygons P, P ′ are mutation equivalent

if there is a sequence of mutations of polygons starting with P and ending with P ′.

In the same notation as Definition 2.2.3, suppose F = kF ′ for some primitive line segment F ′

and positive integer k and suppose that P is mutable with respect to (v, F ). Then P ′ is obtained

from P by contracting k T -cones on one edge of P and adding k T -cones on the opposite edge of

P . In particular, we see that the condition of P to be mutable with respect to (v, F ) just means

that there is an edge of P perpendicular to v, long enough to contract k copies of F . We also

note that this shows that the singularity content of P is invariant under mutation (see [AK14,

Proposition 3.6]) for a proof). We now specialize to a special class of Fano polygons

Definition 2.2.4. A Fano polygon P is a T -polygon if for every edge E of P the lattice length
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`E is divisible by the lattice height hE .

T -polygons have singularity basket (k, ∅) for some k > 0. Since the singularity basket of a

Fano polygon is invariant under mutation, mutation descends to an equivalence relation on the

set of T -polygons.

2.3 Mutations of Laurent polynomials

Let now v ∈ N and f ∈ C[v⊥] ⊂ C[M ]. Following [GHK15] and [ACC+16], we define the

automorphism of the function field C(M)

xm 7→ xmf 〈m,v〉

which induces a birational map

ϕf : TN 99K TN

and we call ϕf an algebraic mutation, and f the factor of the mutation.

Definition 2.3.1. Given a Laurent polynomial g ∈ C[M ], we say that g is mutable with respect

to ϕf if ϕ∗f (g) ∈ C[M ], i.e ϕ∗f (g) is again a Laurent polynomial. We also say that ϕf is an

algebraic mutation of g.

Given g, g′ ∈ C[M ], we say that g and g′ are mutation equivalent if there exist algebraic mutations

ϕi for 1 ≤ i ≤ n and Laurent polynomials gi ∈ C[M ] for 0 ≤ i ≤ n such that g0 = g, gn = g′ and

ϕ∗i gi−1 = gi for all i.

Let us interpret mutability more concretely. v gives a Z-grading of M by height, let us write

g =
∑m

d=−h gd where gd is the sum of the monomials of g at height d. Extend v to a basis

e1 = v, e2 for N . Write x = xe
∗
2 and y = xe

∗
1 . The factor f is a Laurent polynomial in x and

ϕ∗f (gd) = gdf
d. It follows that g ∈ C[M ] is mutable with respect to ϕf if and only if g−d is

divisible by fd for d > 0.

Note that if f is a monomial, then every Laurent polynomial is mutable with respect to ϕf ,

so we regard such mutations as trivial. If a factor is of the form (λ + xu) for some λ ∈ C×

and primitive u ∈ M , we call the mutation standard. It is clear that any factor is a product of

standard and trivial factors. We have the following easy lemma:

Lemma 2.3.2. Suppose that g ∈ C[M ] is mutable with respect to ϕf and that P = Newt (g) is

a Fano polygon. Then P is mutable with respect to (v,Newt (f)).

Proof. Since P is Fano, the origin is an interior lattice point so we have that g =
∑m

d=−h gd for

some h,m > 1. Since g is mutable with respect to f , g−d is divisible by fd for all d > 0 and we



32 CHAPTER 2. MUTATIONS

a b c

···

·

··

·

·

· · ·

· × · ·

· · · ·

·

Figure 2.4

may write g−d = fdr−d for some r−d. This implies that

Newt (g−d) = R−d + dNewt (f)

for all d > 0, where R−d = Newt (r−d). This is exactly the condition for P to be mutable with

respect to (v,Newt (f)).

We say that the algebraic mutation ϕf induces the mutation of Newt (g). The converse to

2.3.2 fails; it is not true that every mutation of Newt (g) is induced by a mutation of g:

Example 2.3.3. Consider the Fano polygon P in Figure 2.4. P is mutable with respect to

v = (0, 1) and F = Newt (1 + x). We have that

g−2 = y−2(a+ bx+ cx2)x−1

For g to be mutable with respect to f = λ + x for some λ ∈ C, we must have that f2 divides

g−2 which happens if and only if b2 = 4ac

We now define special classes of Laurent polynomials which are ‘as mutable as possible’ in a

precise sense.

Definition 2.3.4. Let P be a Fano polygon. A Laurent polynomial g ∈ C[M ] with Newt (g) = P

is of Tveiten class if every mutation of P is induced by an algebraic mutation ϕf of g.

Let us investigate the consequences of this, keeping the same notation as before. Fix an

edge E of P with inner normal v and write `E = mh + r as before. Then P is mutable with

respect to (v, kF ) for all 1 ≤ k ≤ m where F ⊂ v⊥ be a primitive line segment. These mutations

can only be induced by an algebraic mutation of g if there exists a polynomial f ∈ C[x] with

Newt (f) = mF such that for all 0 ≤ d ≤ h, g−d is divisible by fd in C[M ]. This is quite

restrictive: up to a unit in C[M ] we may write f =
∏m
i=1(λi + x) with λi 6= 0, so that we have
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(again up to a unit)

g−d =

m∏
i=1

(λi + x)d · r−d

where r−d ∈ C[x].

We see from this that a Laurent polynomial g of Tveiten class is mutable with respect to m (not

necessarily distinct) standard factors (λi + x) along the edge E, one for each primitive T -cone

on E. Since deg(r−h) = r < h, it follows that any Laurent polynomial g can be mutable with

respect to a maximum of m standard factors along E, this motivates the term maximally mu-

table used for Laurent polynomials of Tveiten class in [Tve15]. However, we reserve this notion

for those Laurent polynomials where all of the factors have λi ≡ 1, see Definition 2.3.23.

Let e1 = v, e2 be a basis for one of the two smooth cones σ in ΣP containing the ray R≥0v

and write x = χe
∗
2 , y = χe

∗
1 . Then DE is given by the equation y = 0, and x is a local coordinate

on DE around the torus fixed point corresponding to the cone σ.

Definition 2.3.5. Suppose that g is mutable with factor (λ+ x), and let p be the point on DE

where λ + x = 0, i.e the point with coordinates (−λ, 0). Then we say that g is mutable with

respect to p.

Similarly, if g is mutable with factor (λ + x)m for some positive integer m, we say that g is

mutable at mp. The set of all points with respect to which g is mutable defines a zero cycle Z

supported on the interior of DE , called the mutable cycle of g.

We see that g with Newt (g) = P is of Tveiten class if and only if the mutable cycle has

degree mE along the edge E, the maximal possible degree.

We next characterize 0-cycles Z that can appear as mutable cycles of a Laurent polynomial (see

Proposition 2.3.7. Clearly, a necessary condition is that the intersection Z ∩ DE must be of

degree ≤ mE .

Definition 2.3.6. Let P be a Fano polygon, and let Z be a zero cycle supported on the interior

of the toric boundary ∂XP . We say that Z is admissible if

deg(Z ∩DE) ≤ mE

for every edge E. We say that Z is maximal admissible if

deg(Z ∩DE) = mE

for every edge E.



34 CHAPTER 2. MUTATIONS

We now give a classification of Laurent polynomials of Tveiten class. This is a slight gener-

alization of [CKPT21, Proposition 3.7], and we closely follow their setup and notation. Let P

be a Fano polygon and let YP be the associated toric variety. For every edge E of P , the choice

of orientation of N gives identifications Dint
E
∼= C× by Proposition 2.1.1. If Z is a maximal

admissible zero-cycle, the restriction Z ∩ DE is then a set of (not necessarily distinct) points

λ1, . . . , λmE ∈ C×. We have the following result:

Proposition 2.3.7. Let P be a Fano polygon and let Z be a maximal admissible zero cycle

supported on the toric boundary ∂XP .

• If P is a T -polygon, there exists a Laurent polynomial g of Tveiten class with Newton

polygon P and mutable cycle Z if and only if

∏
E⊂P

∏
i

λi = 1

The coefficients of a generic such g are linear functions in the coefficient of the origin and

the coefficient of one vertex.

• If P is not a T -polygon, there always exists a Laurent polynomial g of Tveiten class with

Newton polygon P and mutable cycle Z. The coefficients of a generic such g are linear

functions of the coefficients of a choice of quasi-residual points

Proof. The setup is almost identical to [CKPT21, Proposition 3.7], and we keep their notation.

We fix a decomposition of P into T -cones and R-cones in such a way that the R-cones are always

on the right of E with respect to the anticlockwise orientation. This fixes a set of residual points

on P , and we take the quasi-residual points to be the right vertices of the R-cones, again with

respect to the anticlockwise orientation. If P is not a T -polygon, we define R to be the set of

quasi-residual points. If P is a T -polygon, we define R = {0, v}, where v is any vertex of P . We

define the P -height of a lattice point p ∈ P to be the non-negative rational number s such that p

lies on the boundary of sP . It is clear that s must lie in the interval [0, 1] and we let R≥s be the

set of points in R of P -height at least s. Fix a generic Laurent polynomial g =
∑

v∈P∩M avx
v.

Using downward induction on s, we will prove:

The coefficients av such that v has P -height s are linear functions of the coefficients aw for

w ∈ R≥s. Moreover, these coefficients aw of g are independent.

We need to prove (2.3) for all 0 ≤ s ≤ 1. The base case is s = 1. The points of P -height 1 are

exactly the points on the boundary ∂P ∩M . Fix an edge E. In suitable coordinates, the part
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of g along E are (up to overall multiplication by a constant monomial)

a0 + a1x+ · · ·+ a`x
`

such that a0 is the coeffcient of the left vertex of E in our chosen orientation. Here ` = `E is the

length of E and we write ` = hm+r as before, where h = hE and r = rE . The restriction of Z to

DE is a zero-cycle of degree m = mE , let −λ1, . . . ,−λm be the coordinates of the corresponding

(not necessarily distinct) points on DE . The condition that g is mutable with respect to Z

implies that

a0 + a1x+ · · ·+ a`x
` =

m∏
i=1

(λi + x)h(

r∑
i=0

cix
i) (2.2)

for some ci ∈ C. We first show that we can solve (2.2) uniqely for ci in terms of linear functions

of a0, amh+1, . . . amh+r. We argue by downward induction. Clearly we have cr = amh+r, this is

the base case. Suppose that ci has been determined in such a way for i > k. Comparing the

two sides of (2.2) we obtain

amh+k =
r−k∑
i=0

pick+i

for homogeneous polynomials pi(λ1, . . . λk) of degree i. Note that p0 = 1 so that we can solve

ck = amh+k −
r−k∑
i=1

pick+i

By the induction hypothesis, the right hand side is a linear function of amh+k, . . . amh+r. This

shows that c1, . . . , cr are uniquely determined as linear functions of amh+1, . . . amh+r. We also

see that c0 =
∏
i λ

h
i a0, so this proves that all coefficients of a0 + a1x+ · · ·+ amh+rx

r are linear

functions in a0, amh+1, . . . amh+r.

We can repeat this procedure for every edge, however we need to ensure compatibility at the

vertices: indeed, if E does not support an R-cone, then r = 0 and the coefficients a0 and

a` = amh are not independent since a0 =
∏
i λ

h
i a`. After eliminating as many vertex coefficients

as possible, we obtain the following:

• If P is a T -polygon, then the induction hypothesis holds for s = 1 if and only if

∏
E⊂P

∏
i

λi = 1 (2.3)

In this case, the coefficients of P at P -height 1 are linear functions in the coefficient av

where {v} = R≥1.
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• If P is not a T -polygon, then the induction hypothesis always holds for s = 1, and the

coefficients of P at P -height 1 are linear functions in the coefficients aw for aw ∈ R≥1.

The rest of the proof now goes through as in [CKPT21, Proposition 3.7]. We proceed by

induction on the P -height s, where 0 < s < 1 and we suppose that the coefficients of P along

lattice points in qP for q > s have been determined. Suppose that there is a lattice point

p ∈ P ∩M at P -height s. Since P is Fano, p must lie in the cone CE over an unique edge E.

As before, in suitable coordinates, the part of g supported on the line L through p parallel to E

is given by

a0 + a1x+ · · ·+ akx
k

up to overall multiplication by a constant monomial, such that a0 is the coefficient of the left

vertex of L ∩ P ∩M . Write h = hE and m = mE as before. The line L is at height sh with

respect to E, and since a T -cone supports exactly d lattice points at height d for 0 < d < h,

L ∩ P ∩ M contains at least shm lattice points. The restriction of Z to DE is a zero-cycle

of degree m = mE , let −λ1, . . . ,−λm be the coordinates of the corresponding (not necessarily

distinct) points on DE . The condition that g is mutable with respect to Z gives

a0 + a1x+ · · ·+ akx
k =

m∏
i=1

(λi + x)sh
s∑
i=0

cix
i (2.4)

for some ci ∈ C. Lattice points along L fall into three categories: residual points in CE ,

nonresidual points in CE and points outside of CE . By convexity, the points outside of CE are at

P -height greater than s and hence their coefficients are determined by our induction hypothesis.

so if L does not contain any residual points and no points outside CE then k = shm − 1 and

therefore a0 = · · · = ak = 0, so (2.4) trivially holds. Otherwise, (2.4) holds with s + 1 equal to

the number of points on L ∩ E that are either residual or outside CE . The coefficients of these

points are a0, . . . ai and aj , . . . ak for some i < j. As before we can inductively solve (2.4) for the

ci in terms of a0, . . . ak and ak′ , . . . am, proving the theorem.

Corollary 2.3.8. Let P be a T -polygon. The space of Laurent polynomial of Tveiten class for

P is a dense open subset of a vector space of dimension equal to the number of quasiresidual

points if P is not a T -polygon, and equal to two if P is a T -polygon.

Proof. We showed in Proposition 2.3.7 that the space of Laurent polynomials mutable with

respect to Z is a vector space of the above stated dimension. Such a Laurent polynomial only

fails to be of Tveiten class if Newt (g) ( P , which only happens along the union of the loci

aw = 0 for w quasi-residual. The result follows.
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Example 2.3.9. (Adapted from [CKPT21, Example 3.8]). Let P the lattice polygon with

vertices (−2,−1), (2,−1), (2, 3), (−2, 3) and take Z to be the maximal admissible cycle supported

at the point [−1 : 1] on each edge. P has singularity content (9, {1
3(1, 1)). The space of Laurent

polynomials g with Newt (g) = P of Tveiten class with mutable cycle Z is the dense open subset

α 6= 0 of the three-dimensional subspace of C25 illustrated below (where α, β, γ ∈ C).

•
α

•
4α

•
6α

•
4α

•
α

•4α ·
β

·
2β−8α

·
β

• 4α

•6α ·
2β−8α

·
4β−28α

·2β−8α• 6α

•4α ·β ·
γ

· β • 4α

•
α

•
4α

•
6α

•
4α

•
α

We will need the following lemma.

Lemma 2.3.10. Let P be a Fano polygon, and let E be an edge of height h supporting an R-cone

C. Then C has an interior lattice point at height h− 1.

Proof. This is essentially an easy exercise in trigonometry. Since P is a T -polygon, the vertices

of P are primitive lattice points, and it follows that the vertices of every primitive T -cone on E

are also primitive. We may therefore assume that there is a unique primitive T -cone supported

on E. We can also assume that E is horizontal, as in Figure 2.5. If the R-cone has length ≥ 2

then the intersection of C with the horizontal line L at height h − 1 has length > 1 and hence

the lemma holds. It remains to check the case where the R-cone has length 1.

· × × × ·

· · · · ·

· · · · ·

· · · · ·

· · · · ··

·

·

·

·

·

·

·

·

·

·

• ·

·

·

·

·

×

·

·

·

·

·

×

• · · · · ·

Figure 2.5: The R-cone over the edge E for different possible locations of the origin, in the case
where h = 5.
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Refer to Figure 2.6 for notation. We will only treat the case where the origin is to the right

of v, the other case is entirely analogous.

The x-coordinates of the two blue points are −n+ n
h and −n+ 1 + n−1

h , so it suffices to show

that there is an integer in the interval (−n + n
h ,−n + 1 + n−1

h ). We may write n = mh + ` for

0 ≤ ` < h and k ∈ N≥0. Note that if ` = 0 then v is not primitive, and if ` = 1, then w is not

primitive, so we may assume that ` ≥ 2. This shows that

−n+ n
h = −mh− `+m+ `

h < −mh− `+m+ 1

−n+ 1 + n−1
h = −mh− `+ 1 +m+ `−1

h > −mh− `+ 1 +m

It follows that (−mh− `+ 1 +m,h− 1) ∈M is in the interior of C as required.

n

h+ 1

h

• •

· · × · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ··

·

·

·

·

•w

·

·

·

·

·

v• · · · · ·

Figure 2.6

We now investigate the geometry of the curve g = 0, or rather a suitable compactification

thereof in the toric variety YP . Fix a Fano polygon P , let g ∈ C[M ] with Newt (g) = P . g defines

a section g̃ of O(DP ) by (2.1), and the vanishing locus Z(g̃) is an algebraic curve that restricts

to the affine curve g = 0 on the dense torus (C×)2 ⊂ YP . For simplicity we also denote Z by

g. Since Newt (g) = P , the curve g = 0 does not contain any of the toric divisors. Moreover,

we claim that g also does not pass through any torus fixed point. Indeed, the restriction of g

to DE
∼= P1 is given by the sum of monomials supported on E, which is given by the vanishing

of a homogeneous polynomial p = a0y
` + a1xy

`−1 + . . . a`x
`. The condition that Newt (g) = P

implies that a0 and a` are nonzero, so that p does not vanish at x = 0 or y = 0, which are the

coordinates of the torus fixed points on DE . It follows that the strict transform of g under the

minimal resolution ỸP → YP is isomorphic to g and we may assume that YP is smooth for the
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purposes of studying the curve g.

We recall the following definition

Definition 2.3.11. Let C be a curve. We say that p ∈ C is a point of multiplicity h if in suitable

local coordinates centered at p, C has a Taylor expansion of the form f =
∑

i,j≥h cijx
iyj = 0.

We say that p is an ordinary point of multiplicity h if additionally the discriminant of the initial

polynomial fin =
∑

i+j=h cijx
iyj is nonzero.

The condition that the discriminant of fin =
∑

i+j=h cijy
ixj =:

∑
i ciy

ixh−i is nonzero is

equivalent to the statement that we may factor

fin =

h∏
i=1

(αiy + βix)

for αi, βi ∈ C× such that [αi : βi] ∈ P1 are distinct. This implies that locally at p, C has h

distinct smooth branches with distinct tangents. We also note that if ch 6= 0 (which will almost

always be the case for us), then the line x = 0 is not tangent to any branch of C at p, and we

can rewrite

fin =

h∏
i=1

(y + γix)

for γi ∈ C. If in addition c0 6= 0, then the γi ∈ C×. Since the discriminant of fin is nonzero,

the γi are all distinct, and the singularity p ∈ C can be resolved by a single point blowup. The

strict transform C̃ satisfies C̃ = π∗C − hE, where E denotes the exceptional divisor.

Definition 2.3.12. Let C and D be curves on a smooth surface Y , and let p ∈ C ∩ D be

a smooth point on C and D. We say that C and D are tangent to order k at p if the local

intersection number (C · D)p = k. Equivalently, k successive point-blowups are necessary to

separate the strict transforms C̃ and D̃.

In our definition, C is transverse to D at p iff C and D are tangent to order 1.

Definition 2.3.13. We say that p ∈ C is an ordinary point of multiplicity h with k-fold tangency

along a divisor D if we may choose local coordinates based at p such that D is given by y = 0

and C has a Taylor expansion

f =
∑
i

ciy
ixk(h−i) + (terms of degree at least kh+ 1)

with respect to the grading deg(x) = 1 and deg(y) = k and moreover the discriminant of the

polynomial
∑

i ciy
izh−i is nonzero, where z = xk. If k > 1, we also require that ch 6= 0.



40 CHAPTER 2. MUTATIONS

A familiar example is the tacnode (y − x2)(y + x2) = 0, which in our definition is a double

point with (exact) twofold tangency.

As before, the condition that the discriminant is nonzero is equivalent to the statement that we

may factor ∑
i

ciy
ixk(h−i) =

h∏
i=1

(y + γix
k) (2.5)

for distinct γi ∈ C. In our definition, an ordinary point of multiplicity h with 1-fold tangency

along a divisor D is just an ordinary point p of multiplicity h which happens to lie on D. We

will show that an ordinary point of multiplicity h with k-fold tangency along a divisor D indeed

deserves its name: it is locally the union of distinct branches, each of which are tangent to order

at least k to D at p (see Corollary 2.3.15 for a more precise statement). We have the following

Lemma

Lemma 2.3.14. Let k > 1, and let p ∈ C be an ordinary point of multiplicity h with k-

fold tangency along a smooth divisor D, and let q : Ỹ → Y be the blowup of Y along p with

exceptional divisor E. Then E intersects the strict transform C̃ at a unique point p′, and p′ ∈ C̃

is an ordinary point of multiplicity h with (k − 1)-fold tangency along D̃.

Proof. By definition, C locally has an equation of the form

h∏
i=1

(y + γix
k) + r(x, y)

for γi ∈ C and some polynomial r(x, y) which consists of monomials of degree at least kh + 1

with respect to the grading deg(x) = 1, deg(y) = k. Let q : Ỹ → Y be the blowup of p. Locally,

we are blowing up C2 in the point (0, 0), so that Ỹ is given by

{z0y − z1x = 0} ⊂ P1
[z0:z1] × C2

xy

Let U ′ be the chart on Ỹ with coordinates u = x, v = z1
z0

. On U ′, q is given by (u, v) 7→ (u, uv),

so that the pullback of C is given by

uh
h∏
i=1

(v + γiu
k−1) + r(u, uv) = uh

(
h∏
i=1

(v + γiu
k−1) + us(u, v)

)

where s(u, v) = r(u, uv)/uh+1. Note that s is a polynomial since each term in r has total degree

at least h+ 1 (with respect to the grading deg(x) = 1,deg(y) = 1). Since u = 0 is the equation
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of the exceptional divisor E, it follows that the strict transform C̃ is given by

h∏
i=1

(v + γiu
k−1) + us(u, v)

Since k > 1, the point (0, 0) is the only point in E ∩ C̃. The condition that every monomial

in r(x, y) has at least degree kh + 1 with respect to the grading deg(x) = 1,deg(y) = k, then

implies that every monomial in us(u, v) has at least degree (k − 1)h + 1 with respect to the

grading deg(u) = 1, deg(v) = k − 1. The condition on the discriminant is still satisfied, and

v = 0 is the equation of the strict transform D̃, so it follows that the point (0, 0) is a point of

multiplicity h with tangency k − 1 along D̃.

Corollary 2.3.15. Let p ∈ C be an ordinary point of multiplicity h with k-fold tangency along

a smooth divisor D, then every branch of C is tangent to D at p to exact order k to D at p,

except possibly for one branch, which might be tangent to higher order. If the coefficient c0 6= 0

in (2.5), then every branch is tangent to exact order k.

Proof. Applying Lemma 2.3.14 several times shows that there is a unique composition of suc-

cessive point blowups

Yk−1
qk−1−−−→ . . .

q1−→ Y0

such that the strict transform of C under q1 ◦ · · · ◦ qi is an ordinary point of multiplicity h with

(k− i)-fold tangency along the strict transform of D. In particular, the strict transform C̃ under

q1 ◦ · · · ◦ qk−1 is an ordinary point of multiplicity h lying on the strict transform of D, i.e. C̃ is

locally the union of h distinct curves Ci with distinct tangents meeting D at a point. It follows

that (Ci · D) ≥ 1, and if y = 0 is not tangent to any branch (or equivalently c0 6= 0), then

(Ci ·D) = 1 for all i. Now C is locally the union of the curves (q1 ◦ · · · ◦ qk−1)(Ci), and since

every blowup decreases the order of tangency by 1, the result follows.

It follows from the proof of Corollary 2.3.15 that the singularity (p ∈ C) can be resolved

by a composition q of k successive point blowups, and the strict transform C̃ satisfies C̃ =

q∗C − hE1 − · · · − hEk, where the Ei are the exceptional divisors.

Inspired by Corollary 2.3.15 we make the following definition.

Definition 2.3.16. We say that p ∈ C is an ordinary point of multiplicity h with exact k-fold

tangency along D if p is an ordinary point of multiplicity h with k-fold tangency along D, and

c0 6= 0 in (2.5) (or equivalently, each branch of C is tangent to exact order k along D at p).

In terms of (2.5), exact k-fold tangency is equivalent to the statement that the γi ∈ C×.
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Lemma 2.3.17. Let f =
∑h

i=0 ciy
ixh−i and suppose that one of the following holds

• ch is generic and c0 6= 0

• c1 is generic and ch 6= 0

Then the discriminant ∆f of f is nonzero.

Proof. The discriminant of f is defined as the resultant of f and its derivative f ′, i.e as the

determinant

∆f =
1

ch

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 . . . ch−2 ch−1 ch 0 . . . 0

0 c0 . . . ch−3 ch−2 ch−1 ch . . . 0
...

. . .
. . .

0 . . . 0 c0 c1 c2 c3 . . . ch

c1 2c2 . . . . . . hch 0 . . .

0 c1 2c2 . . . . . . hch 0 . . .

0 0 c1 2c2 . . . 0 hch 0 . . .
...

. . .
. . .

. . .

0 0 . . . 0 c1 2c2 . . . hch

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The terms of ∆f only involving c0 and ch are obtained by setting all the other ci equal to zero.

We immediately see that the only contribution comes from the diagaonal, yielding a summand

of the form hh(c0ch)h−1. We may write the discriminant as a polynomial p in ch

p = hh(c0ch)h−1 + (terms of degree < h− 1 in ch)

Since ch is generic, this can only be zero if all coefficients of p are zero. However, by assumption

c0 6= 0, so the leading coeffcient is nonzero, and hence ∆f 6= 0 for generic ch.

Similarly, the terms of ∆f only involving c1 and ch are obtained by setting all other ci equal to

zero. Expanding along the first column gives

c1

ch

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 0 . . . 0 ch 0 . . . 0

0 c1 0 . . . 0 ch . . . 0
...

. . .
. . .

...

0 . . . 0 c1 0 . . . 0 ch

c1 0 . . . . . . hch 0 . . .

0 c1 0 . . . 0 hch 0 . . .
...

. . .
. . .

. . .

0 . . . 0 c1 0 . . . 0 hch

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Nch1c
h−2
h
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for some integer N (which we will not bother to work out). Since h > 1, the rows of the matrix

are linearly independent we must have that N 6= 0. We may expand the discriminant as a

polynomial p in c1:

p = Nch1c
h−2
h + (terms of degree < h in c1)

The same argument as before now shows that if ch 6= 0 and c1 is generic, then ∆f 6= 0.

Proposition 2.3.18. Let P be a Fano polygon, and let g with Newt (g) = P be a Laurent

polynomial that is generic subject to the condition that g be mutable at p ∈ DE. Then g has an

ordinary point of multiplicity h at p, and DE is not tangent to any branch of g at p.

Proof. Choose local coordinates x and y around a torus fixed point v corresponding to a maximal

cone σ as before, let E′ be the other edge containing p, and write h = hE , h
′ = hE′ . Suppose

that p = (−λ, 0) in these coordinates, then g is mutable with respect to the factor λ+ x. This

means that g is of the form

g =
0∑

i=−n
yi(λ+ x)−iri(x) +

m∑
i=1

yiri(x) (2.6)

for generic Laurent polynomials ri(x),−n ≤ i ≤ m. The condition that Newt (g) = P implies

that n = h and

(λ+ x)−iri(x) = cx−h
′
+ (terms of degree > −h′)

for some c ∈ C×. We want to find a local equation for the zero locus of the section g ∈ O(DP ).

Note that

O(DP )|Uσ = y−hx−h
′
C[x, y]

it follows that we obtain a local equation for g by multiplying (2.6) through by yhxh
′
, giving

h∑
i=0

yi(λ+ x)h−ir̃i−h(x) +

m∑
i=1

yi+hr̃i(x) = 0 (2.7)

where r̃i−h(x) = ri−h(x)xh
′

is now a polynomial. Making the coordinate change x 7→ λ+ x, we

see that

g =
h∑
i=0

yixh−ir̃i−h(x− λ) + (terms of total degree at least h+ 1)

=
h∑
i=0

ciy
ixh−i + (terms of total degree at least h+ 1)

where ci = r̃i−h(−λ). This shows that the point p = (−λ, 0) (before the coordinate change) is a
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point of multiplicity at least h.

To prove the remaining statements, we consider the discriminant ∆ of the polynomial
∑h

i=0 ciy
ixh−i.

p is an ordinary h-uple point if and only if ∆ 6= 0. Note that ch contains a summand of the form

const(g) · λh′ . Since const(g) is generic by assumption and λ 6= 0, it follows that ch is generic.

Since g is generic, r̃i−h is a generic polynomial of degree `E−h, and therefore c0 = r̃i−h(−λ) 6= 0.

By Lemma 2.3.17, this implies that ∆ 6= 0. We also see that y is not a factor of ∆, so that DE

is not tangent to g at p, as required.

Proposition 2.3.19. Let P be a Fano polygon, let E be an edge of P at height h, and let g be

a be a Laurent polynomial with Newt (g) = P that is generic subject to the condition that g be

mutable with respect to kp ∈ DE. Then p is an ordinary point of multiplicity h and exact k-fold

tangency along DE.

Proof. Choose local coordinates as before around a torus fixed point of P contained in E as

before, then g must be of the form

g =
0∑

i=−n
yi(λ+ x)−kiri(x) +

m∑
i=1

yiri(x)

and the same argument as in Proposition 2.3.20 shows that

g =

h∑
i=0

ciy
ixk(h−i) + (terms of degree at least kh+ 1)

where ci = r̃i−h(−λ). As before we must have that ch is generic, and since g is generic, r̃i−h is a

generic polynomial of degree `E − hk, and therefore c0 = r̃i−h(−λ) 6= 0. By Lemma 2.3.17, the

discriminant of the polynomial
∑h

i=0 ciy
iz(h−i) is nonzero, and therefore p is an ordinary point

of multiplicity h and exact k-fold tangency.

Proposition 2.3.20. Let P be a Fano polygon, let E be an edge of P at height h, and let Z be

a maximal admissible zero cycle on P . Let g with Newt (g) = P be mutable with respect to Z.

Suppose that p ∈ Z ∩DE appears in Z with multiplicity k.

If g has generic coefficients along residual points of P , then p is an ordinary point of multiplicity

h with k-fold tangency along DE.

If moreover P does not support an R-cone, then p is an ordinary point of multiplicity h with

exact k-fold tangency along DE.

Proof. The restriction of Z to DE is a zero-cycle of degree m = mE , let p = −λ0,−λ1, . . . ,−λm

be the coordinates of the corresponding (not necessarily distinct) points on DE . The condition
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that g is mutable with respect to Z implies that

g−h =
m∏
i=1

(λi + x)hr̃−h (2.8)

where r̃−h is a nonzero polynomial of degree rE . The same argument as in Corollary 2.3.19

shows that g has a point of multiplicity h at x = −λi and locally has a Taylor expansion of the

form

g =
h∑
i=0

ciy
ixk(h−i) + (terms of degree at least h+ 1)

where ci = r̃i−h(−λ0).

It remains to show that the discriminant ∆ of the polynomial
∑h

i=0 ciy
iz(h−i) is nonzero. As

before, ch is generic because the origin is a residual point. If E does not support any R-cone,

then r̃−h is constant and we must have c0 6= 0 (otherwise we couldn’t have Newt (g) = P ), and

Lemma 2.3.17 implies that ∆ 6= 0. We also see that y is not a factor of ∆ (i.e c0 6= 0), so that

then each branch of g has exact tangency k to DE at p. If E supports an R-cone, it might happen

that c0 = 0 (see Example 2.3.22). However, by Lemma 2.3.10, the R-cone contains a lattice

point at height h − 1, so that r̃−h+1 has generic leading term and c1 is generic. Lemma 2.3.17

now implies that ∆ 6= 0 in this case as well.

We obtain the following Corollary for T -polygons

Corollary 2.3.21. Let P be a T -polygon, let Z be a maximal admissible zero-cycle and let g be

any (not necessarily generic) Laurent polynomial of Tveiten class. Suppose that p appears in the

mutable cycle with multiplicity k, and let λ ∈ C be generic. Then g + λ satisfies the conclusion

of Proposition 2.3.20.

Proof. Since P is a T -polygon, the origin is the only residual point on P , and hence g + λ has

generic coefficients at residual points. So Proposition 2.3.20 applies.

Example 2.3.22. To illustrate Proposition 2.3.20, consider the polygon P from Example 2.3.9.

Figure 2.7 is a sketch of the curve g = 0 close to the toric boundary, where g is of Tveiten class

with Newt (g) = P , has generic coefficients along residual points and has

• generic mutable cycle (on the left)

• mutable cycle supported entirely on the points [−1 : 1] ∈ DE
∼= P1 (on the right)

The bottom edge E of P has mE = 1 and hE = 3, so Proposition 2.3.20 implies that the curve

g = 0 has an ordinary triple point along DE . However, in the right picture, the condition that



46 CHAPTER 2. MUTATIONS

g be mutable implies that the restriction of g to DE is of the form

(1 + x)3(α+ βx)

for some α, β ∈ C×. Enforcing mutability along each edge shows that the coefficient of g at the

bottom left vertex must be equal to the coefficient at the bottom right vertex, so that α = β. It

follows that g = 0 meets DE only at the point [−1 : 1] ∈ DE
∼= P1. In the notation of the proof

of Proposition 2.3.20) we have that c0 = 0 for the bottom edge E. The curve g = 0 still has an

ordinary triple point along the corresponding divisor DE , but one branch of the curve now has

second order tangency along DE .

· · ··

· · · ··

·

·

· × · ·

· · · ·

·

· · ·· ·

· · ··

· · · ··

·

·

· × · ·

· · · ·

·

· · ·· ·

Figure 2.7

We now define maximally mutable Laurent polynomials (MMLP).

Definition 2.3.23. Let P be a Fano polygon. A Laurent polynomial g with Newt (g) = P

is maximally mutable if every mutation of P is induced by an algebraic mutation ϕf of g and

moreover, the factor f of ϕf can be taken to be f = (1+xu)k for a primitive generator u ∈ C[v⊥]

and some k ∈ Z>0.

Suppose that g with Newt (g) = P is maximally mutable. Then we see that for 0 ≤ d ≤ h,

we must have up to a unit that

g−d =
m∏
i=1

(1 + x)d · r−d = (1 + x)dm · r−d

where r−d ∈ C[x]. In particular, if P is a T -polygon, then g−h = c(1 + x)mh for some c ∈ C×.

In terms of the mutable cycle, we see that g is maximally mutable if and only if the mutable

cycle Z of g is maximal and Z ∩DE is supported on the point [−1 : 1] ∈ DE
∼= P1.

We summarize the above in the following theorem, which is originally due to [Tve15] and [AK14].

Theorem 2.3.24. Let P be a T -polygon. The MMLPs g with Newt (g) = P is two dimensional.
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If g is generic, then g has an ordinary hE-uple point with mE-fold tangency along DE at [−1, 1] ∈

DE
∼= P1.

Proof. The mutable cycle Z with Z ∩DE = mE · [−1 : 1] is maximal admissible, and satisfies

condition (2.3). Proposition 2.3.7 implies that the space of MMLPs is two dimensional. The

second part then follows from Proposition 2.3.20.

Definition 2.3.25. A MMLP is normalized if the coefficient of g at each quasi-residual vertex

of Newt (g) is 1, and the coefficient of the constant monomial is 0.

Since the mutable cycle of a MMLP is supported on the points [−1 : 1] ∈ DE , it follows that

the coefficients of a normalized MMLP along all vertices are equal to 1. Suppose that g with

Newt (g) = P is normalized maximally mutable. In the same notation as before, we must have

that up to a unit

g−h =

m∏
i=1

(1 + x)h · r−h = (1 + x)mhr−h

where r−h = 1 + a1x + · · · + arEx
rE−1 + xrE . In particular, if P is a T -polygon, then g−h =

(1 + x)mh. More generally, we immediately deduce from Corollary 2.3.24:

Corollary 2.3.26. Let P be a T -polygon. There is a unique normalized MMLP g with Newt (g) =

P .

Proof. The affine space of normalized MMLPs is obtained from the two-dimensional space of

MMLPs by setting the two coordinates equal to 0 and 1.

We make the following definition

Definition 2.3.27. Let D be the toric boundary of the toric variety ȲP , let p ∈ Dint and m ≥ 1.

The blowup of ȲP along m · p is defined as an iterated blowup

Ym → Ym−1 → · · · → Y1 → Y0 = ȲP

where Y1 → ȲP is the blowup of ȲP at p and Yi+1 → Yi is the blowup of Yi along the intersection

of the strict transform of D under Yi → ȲP and the exceptional divisor of Yi → Yi−1.

Given a zero-cycle Z =
∑

imipi supported on Dint, we similarly define the blowup of ȲP along

Z as mi iterated blowups at each pi.

Definition 2.3.28. Given a Fano polygon P , and a generic Laurent polynomial f of Tveiten

class with Newt (f) = P , we define the surface q : ỸZ → ȲP to be the blowup along the mutable

cycle Z of f .
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Let C be the curve in ȲP defined by f . Proposition 2.3.20 combined with the discussion

after Corollary 2.3.15 shows that the strict transform C̃ of C under q is a desingularization of

C. The genus of this curve has been computed by Tveiten [Tve15, Theorem 3.5]:

Theorem 2.3.29. The genus of the curve C̃ is equal to the number of residual points of P .

Proof. Let q : ỸZ → ȲP be the blow-up of the mutable cycle of f . We have

C̃ = π∗C −
∑
E⊂P

mE∑
i=1

hEEi

on ỸZ , where the Ei are the pullbacks of the exceptional divisors. We compute

C̃2 = (π∗C −
∑
E⊂P

mE∑
i=1

hEEi)
2 = C2 −

∑
E⊂P

mEh
2
E

KỸZ
· C̃ = (π∗KȲP

+
∑
E⊂P

mE∑
i=1

Ei) · C̃ = KȲP
· C +

∑
E⊂P

hEmE

Using the adjunction formula, we obtain

g(C̃) = 1
2 C̃(C̃ +KỸf

) + 1 = 1
2C(C +KȲP

) + 1− 1
2

∑
E⊂P

mEhE(hE − 1)

The number 1
2C(C+KȲP

)+1 equals the genus of a generic Laurent polynomial g with Newt (g) =

P , which is equal to |Int(P ) ∩M | by [CLS11, Proposition 10.5.4]. Since a primitive T -cone of

height h contains exactly k lattice points at height k for 1 ≤ k < h, the quantity

1
2

∑
E⊂P

mEhE(hE − 1)

equals the number of lattice points in P interior to T -cones, so that g(C̃) is equal to the number

of residual points on P , as required.

We can use similar ideas to give an alternative proof of Proposition 2.3.7 (almost, see the

remark after the proof). The crucial point is the following: Fix a Fano polygon P and a maximal

admissible zero-cycle. Then a Laurent polynomials g with Newt (g) ⊂ P is mutable with respect

to Z if and only if g extends to a section of

D̃P = π∗DP −
∑
E⊂P

mE∑
i=1

hEEi

where π : ỸZ → ȲP is the blowup of the mutable cycle. It follows by Corollary 2.3.8 that the
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space of Laurent polynomial of Tveiten class for Z is a dense subset of h0(ỸZ ,O(D̃P )), so we

can compute its dimension using the Riemann-Roch formula.

Proposition 2.3.30. Let P be a Fano polygon, and suppose there exists a Laurent polynomial

g of Tveiten class with Newt (g) = P . If P is not a T -polygon, then h0(ỸZ ,O(D̃P )) is equal to

the number of quasi-residual points on P . If P is a T -polygon, then h0(ỸZ ,O(D̃P )) = 2.

Proof. Riemann-Roch for surfaces gives

χ(O(D̃P )) = χ(O) + 1
2D̃P · (D̃P −KỸZ

)

and χ(O) = 1 since ỸZ is rational. We will use [CLS11, Proposition 10.5.6] which says that

D2
P = 2Area(P )

−KȲP
·DP = |∂P ∩M |

We compute

D̃2
P = (π∗DP −

∑
E⊂P

mE∑
i=1

hEEi)
2 = 2Area(P )−

∑
E⊂P

mEh
2
E

−KỸZ
· D̃P = (π∗(−KȲP

)−
∑
E⊂P

mE∑
i=1

Ei) · D̃P = −KȲP
·DP − (

∑
E⊂P

mE∑
i=1

Ei) ·D

= |∂P ∩M | −
∑
E⊂P

hEmE

Putting everything together gives

χ(O(D̃P )) = 1 + Area(P )− 1
2

∑
E⊂P

mEhE(hE + 1) + 1
2 |∂P ∩M | (2.9)

And using Pick’s formula:

Area(P ) = |Int(P ) ∩M |+ 1
2 |∂P ∩M | − 1

we can simplify (2.9) to

χ(O(D̃P )) = |P ∩M | − 1
2

∑
E⊂P

mEhE(hE + 1)

A primitive T -cone of height h contains in its closure exactly k lattice points at height k for

1 ≤ k < h and h + 1 lattice points at height h. This implies that 1
2h(h + 1) + 1 is the number



50 CHAPTER 2. MUTATIONS

of lattice points in the closure of such a T -cone, and it follows that χ(O(D̃P ))) is exactly equal

to the number of quasi-residual points of P if P is not a T -polygon, and 1 otherwise.

We now need to compute the dimensions of the individual cohomology groups, for which we

follow [Fri16, Lemma 4.13]. Note first that D̃P −KỸZ
is effective since D̃P is linearly equivalent

to the strict transform of DP and −KỸZ
is linearly equivalent to the strict transform of the toric

boundary. Using Serre duality, it follows that h2(O(D̃P )) = h0(O(−D̃P ) +KỸZ
) = 0. Consider

now the short exact sequence

0→ OỸZ → O(D̃P )→ O(D̃P )|D̃P → 0

which gives rise to an isomorphism h1(O(D̃P )) = h1(O(D̃P )|D̃P ) since ỸZ is rational and has

vanishing higher cohomology. The adjunction formula for O(D̃P ) now gives KD̃P
= KỸZ

|D̃P ⊗

O(D̃P )|D̃P . Using Serre duality on D̃P , we obtain h1(O(D̃P )|D̃P ) = h0(KỸZ
|D̃P ).

Let C be the curve defined by g = 0. Since the base locus of the pencil generated by C and

DP consists of isolated points on the interior of the toric boundary, the strict transform C̃ of

a general member of the pencil is smooth away from these basepoints, using Bertini’s theorem.

If P is not a T -polygon, then the curve C meets the toric boundary at least at one point away

from the support of the mutable cycle and it follows that C̃ ∈ |D̃P | meets the strict transform

of the toric boundary D̃ ∈ |−KỸZ
|. We conclude that D̃ · C̃ > 0 and therefore h0(KỸZ

|D̃P ) = 0.

It follows that h0(D̃P ) = χ(O(D̃P )) is equal to the number of quasi-residual points on P .

If P is a T -polygon, then C̃ · D̃ = 0, so that we have h0(KỸZ
|D̃P ) = h0(OD̃P ) = 1, giving

χ(D̃P ) = |P ∩M | − 1
2

∑
E⊂P

mEhE(hE + 1) + 1 = 2

as required.

Remark 2.3.31. While this proof is much more concise than Proposition 2.3.7 it requires the

previous knowledge that there exists a Laurent polynomial of Tveiten class to compute the

dimension of the space. Moreover, we cannot conclude that the coeffients of a general g can be

expressed in terms of linear functions in the quasi-residual points on P , nor can we say anything

about the existence of normalized Laurent polynomials.

2.4 The surface of a Laurent polynomial

Let f be a Laurent polynomial with Newt (f) = P a T -polygon and mutable cycle Z. Define Γf

to be the pencil of sections of O(DP ) on YP generated by f and the constant Laurent polynomial
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1. Since the singularities of YP are torus fixed points, Γf pulls back to a pencil without fixed

component on the minimal resolution ȲP , defining a rational map ȲP 99K P1 given by [f : 1].

We will now see that the surface ỸZ (defined in the previous section) comes with a proper map

to P1, obtained by resolving this rational map. Even though the surface ỸZ only depends on the

base locus of Γf , the map ỸZ → P1 depends on a specific member f ∈ Γf , and for this reason,

we will from now on denote ỸZ by Ỹf . We first recall a few definitions.

Given a linear system Γ without fixed components on a smooth projective surface Y and a

birational map q : X 99K Y , we define the strict transform q−1
∗ Γ to be the linear system on X

whose general member is the birational transform of the general member of Γ. Equivalently,

we may decompose q∗Γ = F + M into fixed and mobile components, and define q−1
∗ Γ = M .

The linear system q−1
∗ Γ is generated by the strict transforms of general members of Γ, and both

linear systems define the same map to projective space in the sense that the diagram

X

Y PN
q

q−1
∗ Γ

Γ

commutes. We have the following result

Proposition 2.4.1. Suppose that P is a T -polygon and that f with Newt (f) = P is any (not

necessarily generic) Laurent polynomial of Tveiten class. Let q : Ỹf → ȲP be the blowup of the

mutable cycle of f . Then the pencil q−1
∗ (Γf ) is base point free, and the strict transform of DP

is a member of q−1
∗ (Γf ) .

Proof. The zero scheme Z(1) is equal to DP , so that the basepoints of Γf are exactly the points

where f intersects the toric boundary. Suppose that p = (−λ, 0) appears in the mutable cycle

with multiplicity k. This means that f is mutable with respect to the factor (λ + x)k, but not

with respect to the factor (λ+ x)k+1. Since P is a T -polygon, Corollary 2.3.21 then shows that

on the generic member of Γf , p is a point of multiplicity hE with exact k-fold tangency to DE

so that the general member of Γf has an equation of the form

h∏
i=1

(y + γix
k) + r(x, y) = 0

for distinct γi ∈ C×, and some polynomial r(x, y) which consists of monomials of degree at least

kh+ 1 with respect to the grading deg(x) = 1,deg(y) = k. Note that r must be divisible by y:
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indeed, we have that

r = s−h + s−h+1y + · · ·+ s0y
h + (terms of degree at least h+ 1 in y)

where s−i is the polynomial obtained from r̃−i by deleting the constant term (see the proof

of Proposition 2.3.18 for the definition of r̃−i). Since P is a T -polygon, the polynomial r̃−h is

constant so that s−h = 0, and we let r′ = r/y. A similar calculation to Lemma 2.3.14 shows

that if q : Ỹ → ȲP is the blowup of p, then q−1
∗ (Γf ) = q∗(Γf ) − hE and the general member of

q−1
∗ (Γf ) is given by

h∏
i=1

(v + ciu
k−1) + uvs(u, v)

where s(u, v) = r′(u, uv)/uh. (Note as before that s is a polynomial since each term in r′ has

total degree at least h (with respect to the grading deg(x) = 1,deg(y) = 1). As before, we can

also show that the general member of q−1
∗ (Γf ), (0, 0) is a point of multiplicity hE with (k−1)-fold

tangency along DE .

The local equation for DP is yh(x − λ)h
′
, so that D̃P = π∗DP − hE is a member of q−1

∗ (Γf ),

with local equation vh(u − λ)h
′
. This shows that the basepoints of q−1

∗ (Γf ) are exactly those

points where the general member of q−1
∗ (Γf ) meets the strict transform of the toric boundary.

Moreover, if k > 1, the only basepoint of q−1
∗ (Γf ) lying on the exceptional divisor u = 0 is

the point (0, 0), and if k = 1, then q−1
∗ (Γf ) has no basepoint lying on u = 0. Inductively, this

shows that blowing up the cycle k · p removes the basepoint p. To see that f does not have any

basepoints away from the support of the mutable cycle, note that the restriction of f to DE is

given by fh =
∏
i(1 +λix)h, so that the only basepoints on DE are given by the points x = −λi,

which all appear in the mutable cycle.

Remark 2.4.2. We note that the mutable cycle is in general distinct from the base scheme of

Γf , although they are supported on the same points. Blowing up the base scheme instead of the

mutable cycle in general leads to a non-normal surface and destroys the log Calabi-Yau property

that we need later on.

Let us explore the consequences of Proposition 2.4.1. Fix a T -polygon P , let f be of Tveiten

class, and let q : Ỹf → ȲP be the blowup of the mutable cycle of f . Then the rational map

q : ȲP 99K P1 defined by Γf extends to a regular map π : Ỹf → P1, defined by the base-point free
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pencil q−1
∗ Γf . The surface Ỹf fits in a diagram

(C×)2 Ỹf

C P1

f π

such that the fibre of π over [s : t] ∈ P1 is a compactification of the curve f = s
t . Moreover,

Proposition 2.4.1 also shows that π∗(∞) is the strict transform of DP . Since P does not have

any R-cones, it follows from Theorem 2.3.29 that the genus of the general fibre of π is one, so

that Ỹf is a fibration by genus 1 curves over P1. This fibration might not be relatively minimal,

but we can contract all (−1)-curves contained in fibres to obtain a surface Yf . We note the

following.

Lemma 2.4.3. Any (−1)-curve contained in a fibre of Ỹf is a component of π∗(∞).

Proof. Let D̃ denote the strict transform of the toric boundary of ȲP under Ỹf → ȲP . If C

is a (−1)-curve contained in a fibre different from π∗(∞), we must have D̃ · C = 0, since D̃ is

the underlying curve of π∗(∞). However, in order to obtain Ỹf , we only blew up points in the

interior of the toric boundary, or in the interior of a strict transform of the toric boundary, and

therefore D̃ ∈ | −KỸf
|. Adjunction then gives D̃ · C = 1, a contradiction.

Given a relatively minimal genus 1 fibration π : Y → C over a curve C, Kodaira [Kod66] has

classified all possible singular fibres of π (see for example [BHPVdV04, V.7]). It follows from

the classification that if a singular fibre is not simply connected, it must be of the form F = mD

where D is either an irreducible nodal rational curve or a cycle of n reduced rational (−2)-

curves. This means that the intersection matrix of D must be strictly negative semidefinite. If

F is reduced, the singular fibre F is denoted In, and the corresponding multiple fibre mF is

denoted mIn.

Proposition 2.4.4. Let f be a Laurent polynomial of Tveiten class with P = Newt (f) a T -

polygon, and let Yf → P1 the associated genus 1 fibration. Then the fibre π∗(∞) is of Kodaira

type mIn for some m and n.

Proof. Consider first the fibre (Ỹf )∞, which is equal to the strict transform of DP by Propo-

sition 2.4.1. By Lemma 2.4.3, performing a relative minimal model amounts to blowing down

(−1)-curves in (Ỹf )∞ to obtain (Yf )∞, which must be one of the singular fibres in Kodaira’s

list. Since (Yf )∞ is not simply connected, the only possibility is that (Yf )∞ is of type mIn.

Remark 2.4.5. We will show in Proposition 3.2.6 that we must have m = 1 and 1 ≤ n ≤ 9 in

Proposition 2.4.4.
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Figure 2.8: On the left a T -polygon P , divided into primitive T -cones. On the right the fan of
the minimal resolution ȲP , with the rays of the fan of YP in red.

We summarise all this as follows

Definition 2.4.6. Let f be a Laurent polynomial of Tveiten class with P = Newt (f) a T -

polygon, and let YP be the toric variety defined by P . Then the associated surface Yf is

constructed by

• Performing a toric resolution of singularities ȲP → YP

• Blowing up the mutable locus of Γf , yielding a genus 1 fibration π : Ỹf → P1

• Contracting (−1)-curves contained in fibres of π, yielding a relatively minimal genus 1

fibration π : Yf → P1

Example 2.4.7. Consider the T -polygon P shown in the left of Figure 2.8. The unique nor-

malized maximally mutable Laurent polynomial with Newton polygon P is f = y+ 1
xy + 2

y2
+ x
y3

.

The fan of the minimal resolution ȲP of the toric variety YP is shown on the right of Figure 2.8.

The generic member of the pencil Γf has one basepoint of multiplicity 2 along the edge of P of

length 2, and one basepoint of multiplicity 1 along the two other edges. Blowing up these three

basepoints, we arrive at the toric surface Ỹf , as shown in Figure 2.9 (adapted from [Duc21]). The

strict transform of the toric boundary D̄P has 10 components, whose self-intersection numbers

are shown in 2.9. Note that the component of self-intersection (−1) appears with multiplicity 2

in π∗(∞). To obtain Yf , we contract the (−1) curve in π∗(∞). The fibre over ∞ is now a cycle

of 9 (−2)-curves, and the elliptic surface Yf → P1 is well-known as the modular elliptic surface

associated to the congruence subgroup Γ1(3).
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Figure 2.9: The singular fibres of Ỹf → P1.
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Chapter 3

Looijenga pairs and Laurent

polynomials

We will now rephrase the constructions of §2 in the language of Looijenga pairs. We start by

briefly reviewing the relevant notions, and state the Torelli Theorem for Looijenga pairs of Gross,

Hacking, and Keel [GHK14] in §3.1. After that, in §3.2 we associate to a Laurent polynomial

f of Tveiten class a Looijenga pair (Yf , D) and prove it has period point 1. In §3.3 we give a

simplified proof of Friedman’s classification of negative semidefinite Looijenga pairs.

Let Y be a smooth projective surface and D ∈ | −KY | a singular anticanonical divisor with

at worst nodal singularities. The pair (Y,D) is called a Looijenga pair. D is either a nodal

curve, or a cycle of n rational curves. An orientation of (Y,D) is a choice of generator for

H1(D,Z) ∼= Z, and a labeling of (Y,D) is an indexing D = D1 + · · · + Dn of the components

of D. An isomorphism (Y,D) ∼= (Y ′, D′) is an isomorphism f : Y → Y ′ such that f(Di) = D′i

for all i = 1, . . . , n and f is orientation-preserving. We fix a labeling and orientation of (Y,D)

throughout. If Y is a toric surface with D = Y \ (C×)2 its toric boundary, then (Y,D) is called

a toric pair. Given a Looijenga pair (Y,D), there are two elementary operations to produce

another Looijenga pair:

• Let p : Y ′ → Y be the blowup of Y at a smooth point of D. Denoting by D′ the strict

transform of D, the pair (Y ′, D′) is again a Looijenga pair. The map p is called an interior

blowup.

• Let p : Y ′ → Y the blowup of a node of D. Denoting by D′ the reduced inverse image of

D, the pair (Y ′, D′) is again a Looijenga pair. The map p is called a corner blowup.

By the birational classification of surfaces, Y must be rational, so that we have Pic(Y ) =

57



58 CHAPTER 3. LOOIJENGA PAIRS AND LAURENT POLYNOMIALS

H2(Y,Z).

Remark 3.0.1. In the literature, corner blowups are often called toric blowups. To avoid

confusion, we reserve this notion for the blowup of a toric surface along a torus fix point (which

is a special case of a corner blowup).

Given a Looijenga pair (Y,D) it is shown in [GHK14, Proposition 1.3] that we may always

find a diagram

(Y,D)
p←− (Ỹ , D̃)

p′−→ (Ȳ , D̄)

where p is a composition of corner blowups, p′ is a composition of interior blowups, and the pair

(Ȳ , D̄) is a toric pair. If p is the identity map, we call p′ a toric model for (Y,D).

Let π : Y → S be a family of smooth projective surfaces and suppose that D is a relative

anticanonical divisor with normal crossings on Y (i.e D restrict to a nodal anticanonical divisor

on each fibre of π). We say that (Y,D) is a family of Looijenga pairs if the family π| D is locally

trivial on S. In particular, this implies that each anticanonical divisor Ds has the same number

of components.

The adjunction formula implies that an exceptional curve E on Y (i.e E ∼= P1 and E2 = −1) is

either a component of D, or meets D transversely in one point p ∈ Dint. In the latter case, we

say that E is an interior exceptional curve. A (−2)-curve on Y disjoint from D will be called

an internal (−2)-curve.

Given a toric model (Y ′, D′)→ (Y,D), each connected component of the exceptional locus is a

chain E1 + · · ·+ Er of smooth rational curves (where r is the number of times we blow up the

corresponding point), and we have E2
r = −1 and E2

i = −2 for i 6= r. The curves

C1 = Er, C2 = Er + Er−1, . . . , Cr = E1 + · · ·+ Er

then all have self-intersection (−1) and are called the exceptional curves for this toric model.

We say that a Looijenga pair (Y,D) is negative definite if the matrix with entries (Di ·Dj)1≤i,j≤n

is negative definite. Similarly, we call (Y,D) is negative semidefinite if the matrix with entries

(Di · Dj)1≤i,j≤n is negative semidefinite. We say that (Y,D) is positive if it is not negative

semidefinite. Looijenga pairs have been classified to a certain extent by Mandel [Man19]. We

will be most interested in strictly negative semidefinite (Y,D). Such a pair must satisfy D2 = 0

and D is either an irreducible nodal 0-curve, or a cycle of (−2)-curves.
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3.1 Torelli for Looijenga pairs

In this section, we review the Torelli Theorem for Looijenga pairs of Gross, Hacking, and Keel

[GHK14].

Following [GHK14], Definition 1.7 we define the cone C+ to be the connected component of

{x ∈ Pic(Y )R | x2 > 0} containing all the ample classes. For a given ample H define an effective

numerical exceptional curve as a class E with E2 = KY · E = −1, and E ·H > 0. This notion

is independent of H, see [GHK14, Lemma 2.13]. Let C++ ⊂ C+ be the subcone defined by the

inequalities x·E ≥ 0 for all effective numerical exceptional curves E, and let C++
D be the subcone

of C++ defined by x ·Di ≥ 0 for all i. The cone C++
D should be thought of as an enlargement of

Nef(Y ) invariant under deformation (see [GHK14, Lemma 2.13]). Indeed, Nef(Y ) is the subcone

of C++
D defined by the inequalities x · α ≥ 0 for α ∈ ∆Y , where ∆Y is the set of internal −2-

curves on Y . Since such a −2-curve might move to a difference of two (−1)-curves under parallel

transport in a family of Looijenga pairs, Nef(Y ) is in general not preserved under deformation.

Note also that a generic Looijenga pair (Y,D) does not support any internal −2-curves, so that

Nef(Y ) = C++
D for generic (Y,D). This explains the name ‘generic ample cone’ for C++

D used in

[Fri16]. The cone C++ determines the pair (Y,D) up to deformation:

Proposition 3.1.1. [Fri16, Theorem 5.13], Two Looijenga pairs (Y,D) and (Y ′, D′) are de-

formation equivalent if and only if there exists a labeling of D and D′ and an integral isometry

µ : Pic(Y )→ Pic(Y ′) satisfying µ([Di]) = [D′i] and µ(C++) = C++.

If we fix a toric model, then we can obtain deformation equivalent Looijenga pairs by simply

varying the location of the blowups on the toric boundary. Therefore, Proposition 3.3.8 is most

useful in the absense of a canonical choice of toric model. To distinguish Looijenga pairs in the

same deformation family, we introduce the period point of a Looijenga pair:

Definition 3.1.2. Let (Y,D) be a Looijenga pair. Define the lattice

Λ = {L ∈ Pic(Y ) | L ·Di = 0 for all i}

By Lemma 2.1.1, the orientation of D induces a canonical identification Pic0(D) = C×. The

map

φY : Λ→ Pic0(D) = C×, L 7→ L|D

is called the period point φY ∈ Hom(Λ,C×) of (Y,D).

The main result of [GHK14] is that the period point determines a Looijenga pair in a defor-

mation family up to isomorphism:
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Theorem 3.1.3. [GHK14, Theorem 1.8](Weak Torelli Theorem) Let (Y,D) and (Y ′, D′) be

Looijenga pairs and let

µ : Pic(Y )→ Pic(Y ′)

be an isomorphism of lattices. There exist an isomorphism of pairs f : (Y,D)→ (Y ′, D′) iff all

of the following hold:

1. µ([Di]) = [Di] for all i.

2. µ(C++) = C++.

3. φY ′ ◦ µ = φY .

Remark 3.1.4. In order to conclude µ = f∗ in the statement above, one needs to add the

condition that µ(∆Y ) = ∆Y ′ . For our purposes, the weaker conclusion of Theorem 3.1.3 will be

sufficient.

3.2 The Looijenga pair associated to a Laurent polynomial

We will now rephrase the construction of Yf in the language of Looijenga pairs.

Consider the smooth toric surface ȲP as a Looijenga pair (ȲP , D̄) , where D̄ is the toric boundary

of ȲP . Recall from 2.4.1 that q : Ỹf → ȲP is constructed by blowing up the mutable cycle on

ȲP , which is a zero-cycle on ȲP supported in the interior of D̄. q is a composition of interior

blowups, so D̃, the strict transform of D̄ under q, satisfies D̃ ∈ | − KỸf
|. It follows that

q : (Ỹf , D̃)→ (ȲP , D̄) is a toric model. Since D̃ is the underlying reduced curve of DP = π∗(∞),

Lemma 2.4.3 implies that the morphism Ỹf → Yf contracting all (−1)-curves contained in fibres

of π is a corner blowdown (Ỹf , D̃)→ (Yf , D). We summarise all this as follows.

Definition 3.2.1. Let f be a Laurent polynomial of Tveiten class with P = Newt (f) a T -

polygon, let YP be the toric variety defined by P , and let ȲP be the toric minimal resolution.

Then the associated Looijenga pair (Yf , D) is constructed by

• Blowing up the mutable cycle on ȲP , yielding a toric model (Ỹf , D̃) → (ȲP , D̄), with a

genus 1 fibration π : Ỹf → P1

• Blowing down (−1)-curves contained in fibres of π, yielding a corner blowdown (Ỹf , D̃)→

(Yf , D) with a relatively minimal genus 1 fibration π : Yf → P1, such that mD = π∗(∞)

for some m > 0.

Since D is a fibre of Kodaira type mIn for some n > 0, the pair (Yf , D) is strictly negative

semidefinite.
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We have the following result:

Proposition 3.2.2. Let P be a T -polygon. The Looijenga pairs (Yf , D) with f of Tveiten class

and Newt (f) = P are all deformation equivalent.

Proof. Let YP be the toric variety associated to P as before and label the components of the

toric boundary as D0, . . . , Dr. As before, write `DE = mEhE + rE , where 0 ≤ rE < hE . Since

f is of Tveiten class, the mutable cycle of f is a cycle of degree mEhE on Dint
E . We first show

the following: Given a smooth surface Y and a twice punctured smooth rational curve D◦ ∼= C×

in Y , there is a smooth family Y → C× such that the fibre over λ ∈ C× is the blowup of

λ ∈ D◦ ∼= C× in Y .

Choose local coordinates x and y on an open set U ⊂ Y around one of the punctures such that

D◦ is given by y = 0. Then the required family is given by

Y = (x− λ)t+ ys = 0 ⊂ U × P1
s:t × C×λ

C×λ

Note that D = {t = 0} ⊂ Y is a divisor on Y which restricts to the strict tranform of D◦ on

each fibre, so that we have actually constructed a family of pairs (Y,D)→ C×.

Resolve singularities of YP to obtain a smooth toric pair (ȲP , D̄). Iterating the construction

above, we obtain a family of pairs

(Ỹ, D̃)→ (Dint
0 )a1 × · · · × (Dint

r )ar ∼= (C×)N

where N =
∑

EmEhE and the fibre over (p11, . . . , prar) is the pair (Y,D) obtained by blowing

up the zero-cycle Z =
∑

i,j pij on (ȲP , D̄), The mutable cycle of f is a zero cycle of that form,

so (Ỹf , D) is isomorphic to a fibre of the family (Ỹ, D̃). By construction, the family D̃ → CN

is trivial and restricts to an anticanonical divisor on each fibre, so that (Ỹ, D̃) is a family of

Looijenga pairs.

Finally, if D̃ → D is a toric blowdown, then we may contract the corresponding component

in every fibre (this is well-defined since the family D̃ → CN is trivial, and the fibres have the

same self-intersection sequences). This gives rise to a divisorial contraction (Ỹ, D̃) → (Y,D)

over (C×)N , such that (Yf , Df ) is isomorphic to a fibre of this family, as required.

We now state the main result of this section, that if f is maximally mutable, then the period

point of the surface (Yf , D) is equal to 1. This follows easily from the results of [GHK14], but

we first need a further definition.
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Definition 3.2.3. Given a Looijenga pair (Y,D), a marking of D is a choice of point pi ∈ Di

for all i. Given a marking of D, we can define φ ∈ Hom(Pic(Y ),Pic0(D)) by

φ(L) = (L|D)⊗
n⊗
i=1

OD(−(L ·Di)pi)

the marked period point of (Y,D, pi). Note that φ|Λ = φY is the period point of Y as defined

before.

Proposition 3.2.4. Let P be a lattice polygon and f be a maximally mutable Laurent polynomial

with Newt f = P . Then the Looijenga pair (Yf , D) associated to f has period point φYf = 1, i.e

φYf : Λ→ C× is the constant function 1.

Proof. Recall the diagram in Proposition 3.2.1 summarising the construction of (Yf , D). We

start with the toric pair (ȲP , D̄) and then blow up the mutable cycle of f to obtain a Looijenga

pair (Ỹf , D̃). A choice of orientation of D̄ gives rise to a canonical identification Dint
i
∼= C× by

Proposition 2.1.1. Let mi correspond to (−1) under this identification. Let φ̃ ∈ Hom(Ỹf ,C×)

be the marked period point of (Ỹf , D̃,mi) (where we identify mi with the corresponding point

on the strict transform D̃ of D). [GHK14, Lemma 2.8] shows that the marked period point of

(ȲP , D̄,mi) is 1, so φ̃|ȲP = 1. f is maximally mutable, so the mutable cycle of f is supported

on the points mi. It follows that in the construction of (Ỹf , D̃) we only blow up the points

mi or points on a strict transform of D lying over mi, so for any exceptional curve E meeting

Di we have that φ̃(E) = OD̃(mi) ⊗ OD̃(−mi) = OD̃. Since the exceptional curves together

with Pic(ȲP ) generate Pic(Ỹf ) we conclude that φ̃ = 1 and hence also that φỸf = φ̃|Λ = 1.

Finally, recall that in order to pass to (Yf , D), we perform a composition of toric blowdowns

π : (Ỹf , D̃) → (Yf , D). This gives a canonical identification between the lattices ΛỸf and ΛYf

via π∗ and an isomorphism π∗ : Pic0(D) → Pic0(D̃). The period points are then the same in

the sense that π∗ ◦ φYf = φỸf ◦ π
∗, so we have that φYf = 1 as well.

Remark 3.2.5. The statement that the period point of (Yf , D) is 1 is equivalent to the statement

that the mixed Hodge structure on H2(Yf \D) is split, see [Fri16, Proposition 3.12].

Recall from Definition 3.2.1 that Yf admits a relatively minimal genus 1 fibration Yf
π−→ P1

Proposition 3.2.6. Suppose that f is of Tveiten class and let π : Yf → P1 be the associated

genus 1 fibration. Then the fibre π∗(∞) is of Kodaira type In for 1 ≤ n ≤ 9. In particular,

π∗(∞) = D, and π admits a section.

Proof. Suppose first that f is maximally mutable. By Proposition 2.4.4, we have that π∗(∞) =

mD for some m > 0, and therefore D2 = 0 and hence [D] ∈ Λ. Applying the period map, we
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obtain

φYf ([D]) = O(D)|D

Since f is maximally mutable, φYf ≡ 1, so in particular O(D)|D is trivial. However, [BHPVdV04,

III, Lemma 8.3] shows that if π−1(∞) = mD then O(D)|D is torsion of exact order m. We

conclude that m = 1. Equivalently, all components of the strict transform of DP on Yf must

have multiplicity 1. However, this characterization is independent of the choice of mutable cycle,

so we conclude that m = 1 for any f of Tveiten class. It follows that −KYf is the class of a

fibre [F ]. Therefore, any irreducible (−1)-curve E (for example, the exceptional divisor of the

last blowup) on Yf satisfies E · F = 1 by adjunction and so E is a section of Yf . Finally, since

the Picard rank of Yf is 10, we see that n ≤ 9.

3.3 Deformation Families of Looijenga pairs and Lattice Theory

In Section 3.2 we have associated to a Laurent polynomial of Tveiten class a strictly negative

semidefinite Looijenga pair (Yf , D). We now want to show that there are exactly 10 deformation

families of strictly negative semi-definite Looijenga pairs (Y,D). We assume throughout that

(Y,D) is minimal, i.e that D does not contain any (−1)-components. We proceed by associating

to (Y,D) a root sublattices Ar ⊂ E8 up to isometry, and then derive the result from the clas-

sification of root sublattices of E8. This result has first appeared in [Fri16]. We give a slightly

different, more elementary proof here. See [Dol12, Chapter 8] for a good introduction to lattice

theory in the context of Algebraic Geometry.

Throughout this section, a lattice L is an abelian group together with a symmetric nonde-

generate bilinear form. A class α ∈ L is called a root if α2 = −2. A negative definite lattice

that is generated by its roots is called a root lattice. Given a Dynkin diagram of type ADE,

we can contruct an associated root lattice as follows: label the vertices as α0, . . . , αn and define

R = Zα0 ⊕ · · · ⊕ Zαn. The intersection product on R is defined by α2
i = −2, αi · αj = 1 or 0,

depending on whether there is an edge joining αi to αj or not. Given any root lattice R of type

ADE and a root basis {β0, . . . βn} such that βi ·βj ≥ 0 for i 6= j, we may consider the associated

Coxeter-Dynkin diagram: This is a graph with n+ 1 vertices and βi ·βj edges between vertices i

and j. We say that {β0, . . . βn} is a canonical root basis for R if the associated Coxeter-Dynkin

diagram is the Dynkin diagram R.

Let I1,n be the (up to isomorphism unique) unimodular lattice of signature (1, n). I1,n has a

basis given by classes e0, e1 . . . , en satisfying e2
0 = 1, e2

i = −1, ei · ej = 0 for all i 6= j. Any
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other basis (v0, . . . , vn) for I1,n with the same intersection products will be called an orthonormal

basis. Define the special element kn = −3e0 +
∑n

i=1 ei and define the lattice (Zkn)⊥ ⊂ I1,n. This

has a basis of roots given by

αi = ei − ei+1, 1 ≤ i ≤ n− 1

α0 = e0 − e1 − e2 − e3

and the Coxeter-Dynkin diagram associated to this basis is En, so that (Zkn)⊥ ∼= En. We have

the following Lemma from [Dol12, Lemma 8.2.6]

Lemma 3.3.1. Suppose that n ≥ 3, and let (v0, . . . , vn) be an orthonormal basis for I1,n such

that −3v0 +
∑n

i=1 vi = kn. Then

β0 = v0 − v1 − v2 − v3

βi = vi − vi+1, 1 ≤ i ≤ n− 1

is a canonical root basis for (Zkn)⊥.

Proof. By inspection, we see that βi · kn = 0 for all i. Every v =
∑n

i=1 aivi ∈ k⊥n must satisfy

3a0 + a1 + · · ·+ an = 0 (3.1)

We can write

v = a0β0 + (a0 + a1)β1 + (2a0 + a1 + a2)β2 + (3a0 + a1 + a2 + a3)β3 + · · ·+ (3a0 +
n−1∑
i=1

ai)βn−1

using that 3a0 +
∑n−1

i=1 ai = −an by (3.1) so we see that the βi form a basis. A quick calculation

of intersection products shows that the associated Coxeter-Dynkin diagram is En, so the claim

follows.

Given a root lattice R, we denote O(R) the group of isometries of R. The Weyl group

W (R) is the subgroup of O(R) generated by reflection in the roots. Explicitly, for a root α the

corresponding reflection sα is defined as sα(β) = β + 〈β, α〉α. For a finite root lattice of type

ADE we have

O(R) ∼= A(R) nW (R) (3.2)

where A(R) denotes the group of automorphisms of the Dynkin diagram of R. We will be most

interested in the lattice (Zk9)⊥, in this case we have the following lemma:
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Lemma 3.3.2. Given a canonical root basis β0, . . . , β8 for (Zk9)⊥ we have an induced isomor-

phism of lattices

E9
∼= E8 ⊕ (0)

where (0) denotes the lattice with underlying group Z and trivial intersection product, generated

by k9.

Proof. Note first that k2
9 = 0. The roots β0, . . . , β7 are linearly independent and have Coxeter-

Dynkin diagram E8, so span a root lattice isomorphic to E8. Define an injective homomorphism

of groups by

ϕ : Z⊕ E8 → (Zk9)⊥, (nk9, α) 7→ nk9 + α

ϕ preserves the intersection pairing since k9 · βi = 0 for all i. Note that we have

−k9 = 3β0 + 2β1 + 4β2 + 6β3 + 5β4 + 4β5 + 3β6 + 2β7 + β8

so that given any α ∈ (Zk9)⊥, we may uniquely write α = nk9 + α′ for some α′ ∈ E8, showing

that ϕ is surjective.

We now reinterpret these definitions in a geometric context. Let Y be a rational surface with

Pic(Y ) ∼= I1,n. Recall that a class α ∈ Pic(Y ) is numerically exceptional if α2 = α ·KY = −1.

For later use, we have the following result from [Fri16, Lemma 5.9(ii)]

Lemma 3.3.3. Any numerically exceptional class on a rational elliptic surface Y is effective.

Proof. Let α ∈ Pic(Y ) be numerically exceptional, i.e α2 = α·KY = −1 and write Lα for the line

bundle associated to α. We have that χ(Lα) = 1 by Riemann Roch and h2(Lα) = h0(L−1
α ⊗KY )

by Serre duality. Observe that −α+KY cannot be the class of an effective divisor since −KY is

nef and −KY · (−α+KY ) = −1. So h2(Lα) = 0 and therefore h0(Lα) ≥ 1, i.e α is effective.

We make the following definition

Definition 3.3.4. Let Y be a rational surface with Pic(Y ) ∼= I1,n. A marking of Y is an ordered

orthonormal basis (v0, v1, . . . vn) for Pic(Y ) such that v1, . . . vn are numerically exceptional,

v2
0 = 1 and −KY = 3v0 −

∑n
i=1 vi.

We have the following easy result

Lemma 3.3.5. Let (Y,D) be a family of Looijenga pairs over a connected surface S, and suppose

that we are given a path γ : [0, 1] → S and a marking of Yγ(0). Then parallel transport along γ

induces a marking of Yγ(1).
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Proof. Write s = γ(0) and t = γ(1). Since Pic(Y ) = H2(Y ) for a Looijenga pair (Y,D), parallel

transport induces an isometry µ : Pic(Ys) ∼= Pic(Yt), and therefore v′i = µ(vi), 0 ≤ i ≤ n is an

ordered orthonormal basis for Pic(Yt). Since (Ys, Ds) and (Yt, Dt) are deformation equivalent as

Looijenga pairs we have µ(KYs) = KYt . This shows that numerically exceptional classes map to

numerically exceptional classes under µ so that the v′i give a marking for Pic(Yt).

A marking of Y gives an isomorphism Pic(Y ) ∼= I1,n by sending each vi to ei, and under

this identification KY maps to the class kn. This induces an isomorphism K⊥Y
∼= k⊥n , and under

this isomorphism, the canonical root basis β0, . . . , βn induced by the marking on Y maps to the

canonical root basis α0, . . . , αn for En.

Examples of markings arise by representing Y as an iterated blowup of P2: A blowing-down

structure on Y is a composition of birational morphisms

Y = Yn → Yn−1 → · · · → Y1 → P2

where each morphism Yi → Yi−1 is given by blowing up a point on Yi. A blowing-down structure

on Y induces a marking of Pic(Y ) ∼= I1,n : Let Ei be the divisor class of the total transform

of the i-th exceptional divisor, and H the pullback of the ample generator of Pic(P2). Then

(H,E1, . . . , En) is an orthonormal basis, the Ei are numerically exceptional, and it is clear that

−KY = 3H −
∑

iEi. A marking of Y obtained from a blowing-down structure is called a

geometric marking.

Suppose now that (Y,D) is a Looijenga pair and write D = D0 + · · ·+Dr. Since [D] = −KY ,

we see that a marking of Y induces an isomorphism D⊥ ∼= k⊥n . If the intersection matrix of D is

strictly negative semidefinite, we simply say that (Y,D) is strictly negative semidefinite. Such

D is either an irreducible nodal 0-curve, or a cycle of (−2)-curves. This implies that D2 = 0

and D ·Di = 0 for all i. We have the following easy result, adapted from [Fuj90];

Lemma 3.3.6. Suppose that (Y,D) is strictly negative semidefinite. Then Y can be given a

blowing-down structure consisting of nine blowups.

Proof. Since D is nef, we must have that C2 = D · C − 2 ≥ −2 for every smooth rational curve

C on Y , by the adjunction formula. The same statement holds for any blowdown of Y , as any

blowdown of Y is either an interior blowdown or a corner blowdown, again by the adjunction

formula. It follows that we may blow down Y to P2,F0 or F2. Every one-point blowup of F0 is

a two point blowup of P2, so we only need to check the case where the minimal model is F2. In

this case, the unique (−2) curve cannot contain any of the blown-up points, by the inequality

above. Since a blowup of F2 at a point away from the (−2)-curve is a two-point blowup of P2,
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we see that Y is a blowup of P2. Using K2
Y = 0, Noether’s formula gives χ(Y ) = 12, so that Y

is the blowup of P2 in nine (possibly infinitely near) points.

We conclude that in the strictly negative semidefinite case, D⊥ ∼= k⊥9 . In particular, a

marking of Y gives an embedding

ZD0 + · · ·+ ZDr/[D]→ D⊥/[D] ∼= k⊥9 /k9
∼= E8

We have an abstract isomorphism ZD0 + · · ·+ ZDr/[D] ∼= Ar, so that this construction gives a

root sublattice

L = ϕ(ZD0 + · · ·+ ZDr/[D]) ⊂ E8

isomorphic to Ar. We summarize all this in the following:

Proposition 3.3.7. Let (Y,D) be a strictly negative semidefinite Looijenga pair such that D

has r + 1 components

• A marking of Y determines a root sublattice L ⊂ E8 isomorphic to Ar

• A geometric marking of Y determines a root sublattice L ⊂ E8 isomorphic to Ar together

with a root basis for L.

• Changing the marking on Y changes L by an element of W (E8).

Proof. The first part is clear from the discussion preceding the proposition. Let β0, . . . β7 be the

canonical root basis induced by the marking, and consider the induced splitting

D⊥ = ZD ⊕K

where K is the lattice generated by β0, . . . β7. If the marking on Y is geometric, then the class of

the last exceptional divisor v9 is an interior exceptional curve. We have v9 ·D = 1 by adjunction.

Since D does not have any (−1)-components, v9 is not a component of D, and therefore meets

a unique component D0, and it follows that the inclusion ZD1 + · · · + ZDr → D⊥ has image

contained in K. We obtain an inclusion

ZD1 + · · ·+ ZDr ↪→ K ∼= E8

where the last isomorphism is determined by the (geometric) marking on Y . The image of the

Di under this composition give a basis for L, and therefore a canonical isomorphism L ∼= Ar.
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Two different markings give rise to two isomorphisms D⊥/D ∼= E8 and therefore differ by an

element of O(E8). By (3.2), we have that O(E8) = W (E8), so the final claim follows.

Given any root sublattice L ⊂ E8, we write [L] for the equivalence class under the action of

W (E8).

Proposition 3.3.8. Let (Y,D) and (Y ′, D′) are two strictly negative semidefinite Looijenga

pairs. Then the pairs are deformation equivalent iff the associated equivalence class of root

sublattice is the same.

Proof. Suppose first that the pairs are deformation equivalent. Then there exists a family

(Y,D)/S and a path γ : [0, 1]→ S such that (Y,D) = (Yγ(0),Dγ(0)) and (Y ′, D′) = (Yγ(1),Dγ(1)).

Parallel transport induces an isometry µ : Pic(Y ) → Pic(Y ′) which sends D to D′ and D⊥ to

D′⊥, so we obtain an induced isometry µ : D⊥/[D]→ D′⊥/[D′]. Since Y and Y ′ are blowups of

P2 in nine points, we may choose (geometric) markings, yielding isomorphisms ϕ : D⊥/D ∼= E8

and ϕ′ : D′⊥/D′ ∼= E8. Let w ∈W (E8) = O(E8) be the element making the diagram

D⊥/[D] D′⊥/[D′]

E8 E8

µ

ϕ ϕ′

w

commute. Since µ is induced by parallel transport, we have µ(Di) = D′i for all i, so that

µ(ZD0 + · · ·+ ZDr/[D]) = ZD′0 + · · ·+ ZD′r/[D′]

and therefore L′ = w(L), as required.

Conversely, suppose that the equivalence classes of root sublattices associated to (Y,D) and

(Y ′, D′) are the same. We will show that for a certain choice of labelings on D and D′, we can

construct an isometry µ : Pic(Y )→ Pic(Y ′) satisfying the conditions of Proposition 3.1.1, thus

showing that the pairs (Y,D) and (Y ′, D′) are deformation equivalent. By 3.3.6, we may choose

geometric markings v0, . . . v9 for Y and v′0, . . . , v
′
9 for Y ′, with associated canonical root bases

β0, . . . β8 and β′0, . . . β
′
8. As in Proposition 3.3.7 this determines distinguished components D0

(resp D′0) met by the last exceptional divisor. We label the remaining components D1, . . . Dr

(resp D′1, . . . D
′
r), note that this labeling involves an arbitrary choice of orientation of D. We

obtain splittings D⊥ = ZD⊕K and D⊥ = ZD′⊕K ′, where K and K ′ are the lattices generated
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by β0, . . . , β7 and β′0, . . . β
′
7, respectively and we obtain inclusions

ZD1 + · · ·+ ZDr ↪→ K
ϕ
∼−→ E8

ZD′1 + · · ·+ ZD′r ↪→ K ′
ϕ′
∼−→ E8

Let L and L′ be the associated root sublattices of E8. Define moreover ai = ϕ([Di]) and

bi = ϕ′([D′i]). By assumption, we have [L] = [L′], so there exists w ∈ W (E8) such that

w(L) = L′. The sets {w(ai)}1≤i≤r and {bi}1≤i≤r are both root bases for L′, so there exist an

isometry σ ∈ O(L′) mapping each w(ai) to bi. The automorphism group of the Dynkin diagram

of Ar is Z/2Z, so up to changing the orientation of D we may assume that σ ∈W (L′) ⊂W (E8)

by (3.2). So we may actually find w ∈ W (E8) such that w(ai) = bi for 1 ≤ i ≤ r. Consider the

isometry

e : Pic(Y )→ Pic(Y ′) vi 7→ v′i

Note that e restricts to an isometry K → K ′ mapping each βi to β′i, so that the top square of

(3.3) commutes.

K E8

K ′ E8

K ′ E8

ϕ
∼

e id
ϕ′
∼

w′ w
ϕ′
∼

(3.3)

If we set w′ = ϕ′−1◦w◦ϕ′ ∈W (K ′) ⊂ Aut(Pic(Y ′)), then the bottom square (3.3) also commutes

and it follows that the isometry

µ := w′ ◦ e : Pic(Y )→ Pic(Y ′)

satisfies

µ(Di) = ϕ′−1 ◦ w ◦ ϕ(Di) = ϕ′−1(w(ai)) = ϕ′−1(bi) = D′i

for 1 ≤ i ≤ r. We also have that µ(−KY ) = −KY ′ because w′ is a product of reflections in roots

β′ ∈ K⊥Y ′ , so it follows that µ(D0) = D′0 as well, since D0 = −KY −D1 − · · · −Dr.

The cone C+ has two connected components and any isometry must either preserve them or

exchange them. Note that [D], being the class of a nef divisor, lies on the boundary of C+ and

since µ([D]) = [D′], µ must in fact preserve the cone C+.

Finally we need to show that µ preserves the cone C++. For this, we need to show that
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µ permutes the set of effective numerically exceptional curves. Since µ is an isometry and

µ(−KY ) = −KY ′ it is clear that µ permutes numerically exceptional curves, and we have shown

in Lemma 3.3.3 that every such curve is effective.

Summarising, we have shown that with respect to our labeling of D and D′ the isometry

µ : Pic(Y ) → Pic(Y ′) satisifes µ(Di) = D′i for 0 ≤ i ≤ r and µ(C++) = C++, so by Proposi-

tion 3.1.1, (Y,D) and (Y ′, D′) are deformation equivalent.

We can now finish our proof of Friedman’s classification result (c.f [Fri16, Theorem 9.15,

Proposition 9.16])

Theorem 3.3.9. There exist 10 deformation classes of strictly negative semidefinite Looijenga

pairs (Y,D).

Proof. Equivalence classes of root sublattice embeddings Ar−1 ⊂ E8 up to W (E8) have been clas-

sified, see for example [SS19, Theorem 8.2]. There exist a unique embedding for 0 ≤ r ≤ 9, r 6=

8, and two nonequivalent embeddings for r = 8. In the latter case one embedding is primitive

and one imprimitive. It follows by Proposition 3.3.8 that there exist at most 10 deformation

classes of such Looijenga pairs (Y,D). To see that there are exactly 10 deformation equivalence

classes we simply find representatives for each class: let (Yfn , Dfn) be the pairs associated to

the Laurent polynomials fn, 1, . . . , 8, 8′, 9 in Figure 4.1. The pairs with n 6= 8 give distinct

representatives because D has a different number of components in each case, so it suffices to

show that the pairs (Yf8 , D) and (Yf8′ , D) are distinct, where

f8 = x+ y + 1
xy + 1

y

f8′ = x+ y + 1
x + 1

y

Let U = Y \ D. Then the long exact cohomology sequence of the pair (Y,U) shows that

H1(Uf8 ,Z) = 0 but H1(Uf8′ ,Z) = Z/2, so that the pairs (Yf8 , D) and (Yf8′ , D) cannot be

deformation equivalent.



Chapter 4

The classification of T -polygons

In this section, we give a new geometric proof (Corollary 4.2.2), of the classification of T -

polygons. We briefly explain the main idea: the results of Chapter 3 construct for each maximally

mutable Laurent polynomial f with P = Newt (f) a T -polygon a strictly negative semidefinite

Looijenga pair (Yf , D) with period point φY ≡ 1. The classification of deformation families 3.3.9

combined with the Torelli theorem 3.1.3 imply that there exist exactly 10 such pairs (Yf , D).

Consequently, our pair (Yf , D) must be isomorphic to one of our 10 reference pairs, say (Yfn , D).

This gives a diagram (possibly after a corner blowup)

Yf = Yfn

(C×)2 ⊂ ȲP ȲPn ⊃ (C×)2ϕ

where the vertical maps are interior blowdowns. The birational map ϕ : (C×)2 99K (C×)2 is

volume-preserving (see §4.1)) and satisfies ϕ∗f = fn. If we can show that f and fn are mutation

equivalent, then it follows by Lemma 2.3.2 that P is mutation equivalent to the polygon Pn.

Blanc has proved that any volume-preserving birational map factors as a composition of algebraic

mutations, so we have that ϕ = ϕn ◦ · · · ◦ ϕ1, where the ϕi are algebraic mutations. However,

to conclude that f and fn are mutation-equivalent, we must also have that ϕi ◦ · · · ◦ ϕ∗1f is a

Laurent polynomial for all i, and this does not follow from Blanc’s result.

In §4.1 we prove Theorem 4.1.5 (Theorem B in the introduction) using an adapted version of

the Sarkisov algorithm for factorizing birational maps. Theorem 4.1.5 implies Blanc’s result and

also implies that f and fn are mutation-equivalent (see Theorem 4.2.1). This section is logically

independent from the rest of the thesis, and the result may be of independent interest.

In §4.2, we prove the classification of T -polygons and a few related results, for instance we show

that for normalized maximally mutable Laurent polynomials, the classical period determines

71
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the polynomial up to birational equivalence, see Theorem 4.2.3.

4.1 An adapted Sarkisov algorithm

Let Γ be a linear system without fixed components on a surface Y . We define the multiplicity

mp(Γ) of Γ at p ∈ Y to be the multiplicity of a general member of Γ at p, and we say that p is

a proper base point of Γ if mp(Γ) > 0. There is a finite sequence of birational maps

π : Yn
πn−→ Yn−1

πn−1−−−→ . . .
π2−→ Y1

π1−→ Y0 = Y

such that πk blows up all proper basepoints of the birational transform Γk := (π1 ◦ · · · ◦πk)−1
∗ (Γ)

and Γn is basepoint free. The set of points where π−1
k is undefined is the set of infinitely near

base points of order k. We define the multiplicity of Γ at an infinitely near base point q of order

k to be mq(Γk). We say that q lies over p = (π1 ◦ · · · ◦ πk)(q) and write q 7→ p.

Let (Y,D) be a Looijenga pair. Since KY + D ∼ 0, there exists a nowhere vanishing volume

form Ω on Y \D with simple poles along D, necessarily unique up to scaling.

Definition 4.1.1. Let (Y,D) and (Y ′, D′) be Looijenga pairs, and let ϕ : Y 99K Y ′ be a bira-

tional map. We say that ϕ is volume-preserving if there exists a resolution

Z

Y Y ′
p

p′

ϕ

such that p∗Ω = λp′∗Ω′ for some λ ∈ C× where Ω is a holomorphic volume form on Y \D with

simple poles along D, and similarly for Ω′.

We have the following easy lemma

Lemma 4.1.2. Let (Y,D) and (Y ′, D′) be Looijenga pairs. A birational morphism p : Y → Y ′

is volume preserving iff it is a composition of corner blowups, interior blowups, and volume-

preserving isomorphisms.

Proof. If p is an interior or corner blowup, then one computes that p∗(KY ′ + D′) = KY + D,

showing that p is volume-preserving. On the other hand, we can use [ACn02, Theorem 1.3.5],

to factor p as

p = pn ◦ · · · ◦ p1 ◦ u
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where the pi are point blowups and u is an isomorphism. We calculate that

p∗(KY +D) = KY ′ + u∗D̃ −
k∑
i=1

u∗Ei

where the sum is over all exceptional divisors arising from blowups of points that are not on D

(or a strict transform of D), and Ei is the pullback of the class of the corresponding exceptional

divisor to Z. Since p is volume preserving, we must have u∗D̃ = D and k = 0, showing that u

is volume preserving, and the pi are interior or corner blowups.

Theorem 4.1.3. The following are equivalent:

1. ϕ is volume-preserving

2. There exists a resolution
Z ′

Y Y ′
p

p′

ϕ

where p and p′ are volume-preserving birational morphisms

3. ϕ restricts to a birational map ϕ : D 99K D′ and the morphism that blows up all points

(including infinitely near ones) on Y where ϕ is undefined is a composition of corner and

interior blowups, and similarly for Y ′ and ϕ−1.

Proof. (2) =⇒ (1): By Lemma 4.1.2 we have p∗(KY +D) = KZ+D̃, so that p∗(Ω) is a nowhere

vanishing holomorphic form on Z \ D̃ with simple poles along D̃. The same holds true for p′∗Ω,

so that p′∗Ω = λp∗Ω for some λ ∈ C×, i.e ϕ is volume-preserving.

(1) =⇒ (2): We have that p∗(KY +D) = KZ+D̃−
∑

iEi, where the sum is over all exceptional

divisors arising from blowups of points that are not on D (or a strict transform of D), and Ei is

the pullback of the class of the corresponding exceptional divisor to Z. This means that there

exists a holomorphic form un Z \ D̃ with simples poles along D̃ and simple zeros along the Ei.

Similarly, we have p′∗(KY ′+D) = KZ + D̃′−
∑

i Fi. Since ϕ is volume preserving, we must have

D̃ = D̃′ and Ei = Fi up to reordering. Note that each Ei is a chain of smooth rational curves

of the form Ei = C1 + · · · + Cr where each of the Ci is the strict transform of an exceptional

divisor arising from a blowup of a point not on D (or a strict transform of D). It follows that
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we may successively contract (−1)-curves on Z to obtain a factorization

Z

Z ′

Y Y ′

p

p′

q

q′

ϕ

where q∗(KY + D) = KZ + D̃ and similarly for q′, meaning that q and q′ are compositions of

interior and corner blowups and hence volume-preserving.

(3) =⇒ (2): By [ACn02, Corollary 1.3.8], there exists a commutative diagram

Ỹ Ỹ ′

Y Y ′

q

u

q′

ϕ

where q blows up all points where ϕ is undefined, q′ blows up all points where ϕ′ is undefined and

u is a birational isomorphism. Since ϕ restricts to a birational map D 99K D′, the isomorphism

u must be volume-preserving, so we may take p = q and p′ = q′ ◦ u.

(2) =⇒ (3): It is clear that ϕ restricts to a birational morphism D 99K D′. Let q be the

morphism that blows up all basepoints of ϕ. By [ACn02, Theorem 1.3.7, Corollary 1.3.8], there

exist morphisms Z ′ → Ỹ and q′ : Ỹ → Y ′ making the diagram

Z ′

Ỹ

Y Y ′

p

p′

q

q′

ϕ

commute. By assumption, p is volume-preserving, so that p∗(KY + D) = KZ′ + D̃ and there

exists a nowhere vanishing holomorphic volume p∗(Ω) on Z ′ \ D̃ with simple poles along D̃. If

ϕ had a basepoint away from D (or a strict transform of D), then p∗(Ω) would vanish on the

corresponding exceptional divisor, so we conclude that there cannot be such basepoints. The

same argument shows the corresponding statement for ϕ−1, as required.

Given a toric surface S, write ∂S for its toric boundary. We will use the following definition:

Definition 4.1.4. Let S → C be a P1-bundle over a curve and p ∈ S a point. The elementary

transformation at p is the birational map αp : S 99K S′ over C given by blowing up p and

contracting the strict transform of the fiber through p.
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Consider the toric pair (Fk, ∂Fk) with projection π : Fk → P1 and suppose p lies in the

interior of one of the torus invariant sections. Then the elementary transformation at p is a

volume-preserving map αp : (Fk, ∂Fk) 99K (Fk±1, ∂Fk±1) of toric Looijenga pairs, and we call αp

a mutation.

This terminology stems from the fact that the restriction of the mutation αp to the big tori

gives a map ϕ : TN 99K TN which is an algebraic mutation, as we now explain.

Let P be the toric variety defined by the fan consisting of the two rays R≥0v and R≤0v. The

lattice morphism N → N/Zv induces a map P → TN/Zv ∼= C×, giving P the structure of a

P1-bundle. P comes with two toric divisors D+ and D−, which we think of as sections at 0 and

∞. Since f ∈ C[v⊥], the Laurent polynomial f defines a regular function on TN/Zv, and we

write p± = π−1(V (f))∩D±. Let b± : P̃± → P be the blowup of P at p±. It is shown in [GHK15,

Lemma 3.2] that µf : P 99K P extends to a regular isomorphism P̃+ → P̃−, so that µf is the

birational map which blows up p+ and contracts the strict transform of π−1(V (f)) to p− ⊂ P.

More generally, let P be a Fano polygon, and ΣP the normal fan of P , and suppose that R≥0v

is a ray of ΣP . Possibly after performing a toric blowup, we may assume that R≤0v is also a

ray of ΣP , so that we have a proper map YP → P1. Let D± be the toric divisors corresponding

to R≥0v and R≤0v and let Q be the Fano polygon obtained by mutating P with respect to the

mutation data (v,Newt (f)). Then the birational map µ(u,v) : YP 99K YQ is the map which blows

up p+ = π−1(V (f)) ∩D+ and contracts the strict transform of π−1(V (f)).

We now state the main theorem of this chapter

Theorem 4.1.5. Let (Y,D) be a Looijenga pair with two toric models

(Y,D)

(Ȳ , D̄) (Ȳ ′, D̄′)

p

p′

ϕ

Then ϕ has a factorization

(Ȳ , D̄) = (Ȳ0, D̄0)
ϕ1→ (Ȳ1, D̄1)

ϕ2→ . . .
ϕn→ (Ȳn, D̄n) = (Ȳ ′, D̄′)

where each of the maps ϕk is a toric blowup, toric blowdown, or a mutation.

Moreover, let pk = ϕk ◦ . . . ϕ1 ◦ p. Then pk : (Y,D) 99K (Ȳk, D̄k) extends to a regular map

p̃k : (Ỹ , D̃)→ (Ȳk, D̄k)

on some corner blowup (Ỹ , D̃) of (Y,D).
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If (Ȳ , D̄) is a toric Looijenga pair and p : (Y,D)→ (Ȳ , D̄) is a composition of toric blowdowns

and nontoric blowdowns then p−1((C×)2) is a well-defined torus chart on U = Y \D. Conversely,

any torus chart arises in this way from a toric model. We conclude:

Corollary 4.1.6. Any two torus charts j, j′ : (C×)2 ↪→ U on a Looijenga pair (Y,D) with

U = Y \D are related by a composition of algebraic mutations between torus charts on U .

We will deduce Theorem 4.1.5 from a modified version of the Sarkisov program for surfaces.

We recall the setup, closely following the exposition in [KSC04]. For k ∈ Z≥0, we denote by Fk

the P1-bundle

P(O⊕ O(−k))→ P1

and we will use the notation F to denote either Fk or P2. It will be convenient to fix bases for

Pic(F): if F = P2 we take the hyperplane class H as a basis of Pic(F). If F = Fk we take A

and B as a basis for Pic(F), where A is the fibre class and B is the class of self-intersection −k.

Note that if k = 0, then F0 is simply P1 × P1, although the notation F0 indicates that we have

chosen one of the projections P1 × P1 → P1. The classes A,B satisfy

A2 = 0, B2 = −k, AB = 1

We will be concerned with birational maps ϕ : F 99K P2. Associated to such ϕ is the linear

system Γ = ϕ−1
∗ (|H|). Since ϕ is birational, the linear system Γ is mobile, meaning that the

locus where ϕ is undefined does not contain any divisors. Since mobile implies nef on a surface

we have that

• Γ ⊂ |nH| for n > 0 if F = P2

• Γ ⊂ |aA+ bB| for b ≥ 0, a ≥ kb if Y = Fk and k > 0

• Γ ⊂ |aA+ bB| for a, b > 0 if Y = F0.

We now define the Sarkisov degree of ϕ.

Definition 4.1.7. Let ϕ : F 99K P2 be a birational map. The Sarkisov degree of ϕ is defined to

be

• n
3 if F = P2 and Γ = ϕ−1

∗ (|H|) ⊂ |nH|

• b
2 if F = Fk and Γ = ϕ−1

∗ (|H|) ⊂ |aA+ bB|

The Sarkisov degree is defined in order to compare Γ to the canonical class of F. Indeed,

let λ be the Sarkisov degree of ϕ, we see that if F = P2 then λKF + Γ ∼ 0 and if F = Fk, then
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−KF = (2 + k)A+ 2B, so that λKF + Γ is at least numerically trivial on the fibres of Fk → P1.

[KSC04, Theorem 2.24] shows that any birational map ϕ : F 99K P2 factors as a composition

of elementary birational maps called links of type I to IV. The proof proceeds by giving an

algorithm to find a link α : F 99K F′ such that the birational map ϕ ◦ α−1 is ’simpler’ than ϕ.

We can then factor ϕ as

F α→ F′ ϕ◦α
−1

−−→ P2

In most cases, ‘simpler’ will mean that the Sarkisov degree has dropped. In those cases where

it remains constant, a secondary invariant that decreases has to be found, see Definition 4.1.12.

We cannot apply this result directly because we only want to use links which induce volume-

preserving maps (Ȳ , D̄) 99K (Ȳ ′, D̄′) between toric pairs in our factorization. We will call such

links admissible. The strategy of proof is then exactly the same: for each volume-preserving

map ϕ : (Ȳ , D̄) 99K (P2, ∂P2) we want to show that we can precompose ϕ with a sequence of

admissible links lowering the Sarkisov degree. We recall the definition of the different types of

links:

Definition 4.1.8. A Sarkisov link is a birational map of one of the following types:

• A link of type I is the blowup ε : F1 → P2 of a point p ∈ P2. The link ε is admissible if and

only if p is a torus fixed point, i.e iff ε is a toric blowup.

• A link of type II is an elementary transformation αp : Fk 99K Fk±1. The link αp is admissible

if and only if p is either a torus fixed point, or lies in the interior of one of the two torus

invariant sections. In the former case, αp is a toric blowup followed by a toric blowdown,

and in the latter case αp is a mutation.

• A link of type III is the inverse ε−1 : P2 99K F1 of a point blowup. The link ε−1 is admissible

if and only if p is a torus fixed point, i.e iff ε−1 is a toric blowdown.

• A link of type IV is the involution τ : P1 × P1 → P1 × P1 exchanging the two factors. A

link of type IV is always admissible.

We see from this that finding a factorization of ϕ into admissible Sarkisov links is equivalent to

factoring ϕ as a composition of mutations and toric blowups and blowdowns as in Theorem 4.1.5.

In order to prove that such a factorisation by admissible links exists we will use the following

elementary but crucial property of volume-preserving birational maps.
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Proposition 4.1.9. Let ϕ : (Y,D) 99K (P2, ∂P2) be a volume-preserving birational map of Looi-

jenga pairs and let Γ = ϕ−1
∗ (|H|). Then every component Di of D satisfies

∑
q

mq(Γ) ≤ Γ ·Di

where the sum is over all basepoints q (including infinitely near ones) of Γ such that q 7→ p for

some p ∈ Dint
i , where Dint

i := Di \
⋃
j 6=iDj

Proof. Since ϕ is volume-preserving, Theorem 4.1.3 shows that the morphism π : (Ỹ , D̃) →

(Y,D) that blows up all basepoints of ϕ that lie over Dint
i is a composition of interior blowups.

Denote Γ̃ = π−1
∗ (Γ) and let D̃i be the strict transform of Di. We have

0 ≤ Γ̃ · D̃i = (π∗Γ−
∑
q

mq(Γ)Eq) · (π∗Di −
∑
q

Eq) = Γ ·Di −
∑
q

mq(Γ)

where the Eq are pullbacks of the exceptional divisors to Ỹ and mq(Γ) is the multiplicity of the

corresponding basepoint. The required inequality follows.

We emphasize that Proposition 4.1.9 may be false for a general birational map ϕ : F 99K

P2, since ϕ might have infinitely near base points away from the strict transform of the toric

boundary. We recall [KSC04, Lemma 2.26]

Lemma 4.1.10. Let ϕ : F 99K P2 be a birational map which is not an isomorphism. Then

Γ = ϕ−1
∗ (|H|) has a basepoint of multiplicity strictly higher than the Sarkisov degree, unless

• F = F0 = P1 × P1 and Γ ⊂ |aA+ bB| for a < b; or

• F = F1 and Γ ⊂ |aA+ bB| for a
3 <

b
2

We will use the following repeatedly

Lemma 4.1.11. Let p ∈ Fk and let αp : Fk 99K Fk±1 be an elementary transformation. Let

Γ ⊂ |aA + bB| be a mobile linear system and let m = mp(Γ). The strict transform αp∗(Γ) is a

mobile linear system contained in

• |(a+ b−m)A+ bB| if p lies on B

• |(a−m)A+ bB| otherwise

In particular, for k = 0, the strict transform of Γ is always contained in |(a+ b−m)A+ bB|.

Definition 4.1.12. Let ϕ : F 99K P2 be a birational map, and define the Sarkisov bidegree to

be the pair consisting of the Sarkisov degree, and the integer which is equal to the sum of the

multiplicities of all base points (including infinitely near ones) of Γ.
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We will prove the factorization Theorem by induction on the Sarkisov bidegree, ordered

lexicographically.

Proposition 4.1.13. Let ϕ : (F, ∂F) 99K (P2, ∂P2) be a volume-preserving birational map. Sup-

pose that Γ has a basepoint of multiplicity larger than the Sarkisov degree. Then there is a toric

pair (F′, ∂F′) and a composition of admissible Sarkisov links ϕ′ : (F, ∂F) 99K (F′, ∂F′) such that

the Sarkisov bidegree of ϕ ◦ ϕ′−1 is strictly smaller than the Sarkisov bidegree of ϕ.

Proof. As in [KSC04], the proof proceeds by explicitly finding ϕ′ for all possible F.

Suppose first that F = P2. We have Γ ⊂ |nH| for some n > 0, so the Sarkisov degree equals n
3 .

By assumption, Γ has a base point q of multiplicity mq >
n
3 . If q is a torus fixed point, let

ϕ′ : (F1, ∂F1)→ (P2, ∂P2) be the blowup of q. The composition

F1
ϕ′−→ P2 ϕ→ P2

is defined by a linear system Γ′ ⊂ |nA+ (n−mq)B| which has Sarkisov degree
n−mq

2 < n
3 .

If q is not a torus fixed point we proceed as follows. Let p be the torus fixed point opposite

to the edge containing q, and let ε : F1 → P2 be the blowup of p. On F1, let F be the fibre

passing through q, and consider the elementary transformation αq obtained by blowing up q and

contracting the strict transform of F . Since q does not lie on the negative section of F1, this

elementary transformation is a mutation αq : (F1, ∂F1) 99K (F0, ∂F0). Finally, switch the choice

of ruling on F0 = P1×P1. Denoting by mp,mq the multiplicities of Γ at p, q, we see by applying

Lemma 4.1.11 that the composition

F0
τ−→ F0

α−1
q−→ F1

ε−→ P2 ϕ→ P2

is defined by a linear system contained in |(n − mp)A + (n − mq)B|, with Sarkisov degree

n−mq
2 < n

3 .

Suppose now that F = Fk. We have Γ ⊂ |aA+ bB| for b > 0 and a ≥ kb with Sarkisov degree b
2 .

By assumption, Γ has a base point q of multiplicity mq >
b
2 . If q is contained in either of the two

torus-invariant sections, the elementary transformation based at q is admissible: If q is a torus

fixed point the elementary transformation is a toric blowup followed by a toric blowdown, and

if q is in the interior of a torus invariant section, the elementary transformation is a mutation.

The strict transform of Γ is contained in |(a+ b−mq)A+ bB| or |(a−mq)A+ bB|, depending

on whether q lies on B or not, so in either case the Sarkisov degree remains the same. However,

since Γ·A = b, we see that αq removes a basepoint of multplicity mq, and creates a new basepoint

of multiplicity b −mq and leaves all other basepoints unchanged. Since mq >
b
2 , αq decreases
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the Sarkisov bidegree.

If q is in the interior of one of the two torus invariant fibres the algorithm is more involved.

Note first that we can assume that there are no base points of multiplicity > b
2 outside the

interior of the two torus invariant fibres (otherwise we may perform the admissible elementary

transformation there and decrease the Sarkisov bidegree). Since Γ · A = b, Proposition 4.1.9

crucially shows there can be at most one base point of multiplicity > b
2 in each of the two torus

invariant fibres, so we conclude that the total number of basepoints of multiplicity > b
2 is either

one or two.

Case A: F = F0 and there is exactly one base point q of multiplicity m > b
2 . Switch the ruling

of F0 so that B becomes the class of a fibre. The elementary transformation αq : F0 99K F1

is a mutation with respect to this ruling and the strict transform of Γ under αq is contained

in |(b + a − m)A + aB| by Lemma 4.1.11. On the resulting surface F1, contract the unique

(−1)-curve. The composition

P2 ε−1

−→ F1
α−1
q−→ F0

τ−→ F0
ϕ→ P2

is defined by a linear system contained in |(b + a −m)H|. We use Lemma 4.1.14(1) below to

calculate

b+ a−m < b+ 1
b (b−m)2 + 3

2m−m < b+ 1
2(b−m) + m

2 = 3b
2

where we have used b−m < b
2 in the last inequality. The new Sarkisov degree is b+a−m

3 < b
2 so

our operation has decreased the Sarkisov degree.

Case B: F = F0 and there are exactly two basepoints p, q of multiplicity mp,mq >
b
2 , one

in each of the two torus-invariant fibres. Even though we may assume that both p and q are

contained in the interior of the torus invariant fibres, it will be convenient for later to work

with the weaker assumption that p lies anywhere on the torus invariant fibre, not necessarily in

the interior. Switch the ruling on F0 so that B becomes the class of a fibre. Note that p and

q do not lie on the same fibre with respect to the new ruling (otherwise, performing the two

elementary transformations at p and q with respect to the old ruling takes us to F2, and the strict

transform of Γ now has no basepoints of multiplicity > b
2 contradicting Lemma 4.1.10. Apply

the elementary transformation αp, taking us to F1, followed by the elementary transformation

αq. Since q is not on the negative section, αq takes us back to F0. Finally switch the ruling on

F0 again. Repeated application of Lemma 4.1.11 shows that the composition

F0
τ−→ F0

α−1
q−→ F1

α−1
p−→ F0

τ−→ F0
ϕ→ P2
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is defined by a linear system contained in |aA+ (b+ a−mp −mq)B|. A similar calculation to

before using Lemma 4.1.14(2) shows that

b+ a−mp −mq < b+ 1
b ((b−mp)

2 + (b−mq)
2)− b+ 3

2(mp +mq)−mp −mq

< 1
2(b−mp) + 1

2(b−mq) +
mp+mq

2 = b

where we have used that b −mp <
b
2 and b −mq <

b
2 in the last inequality. The new Sarkisov

degree is
b+a−mp−mq

2 < b
2 , so our operation has again decreased the Sarkisov degree.

Case C: F = Fk for k > 0 and Γ has either one basepoint q or two basepoints p, q of multiplicity

larger than b
2 . Performing a sequence of toric blowups and blowdowns on the fibre not containing

q we arrive at F0. The composition

F0 99K · · · 99K Fk
ϕ→ P2

is defined by a linear system Γ′ contained in |a′A+ bB| for some a′ ≥ 0, so the Sarkisov degree is

still b
2 . Observe that this operation only moved around basepoints on the fibre not containing q.

In particular, Γ′ now has either one basepoint q of multiplicity larger than b
2 , contained in the

interior of a fibre, or two basepoints q, p of multiplicity larger than b
2 where q is in the interior of

a fibre and p is a torus fixed point. By case A or case B, we can find a composition of admissible

links F′ 99K F0 such that the Sarkisov degree of F′ 99K F0 99K Fk
ϕ→ P2 is strictly smaller than

b
2 . This completes the proof.

Lemma 4.1.14. Let ϕ : F0 99K P2 be a birational map and suppose Γ = ϕ−1
∗ (|H|) ⊂ |aA+ bB|

has at most two basepoints of multiplicity larger than b
2 .

1. If Γ has exactly one basepoint q of multiplicity m > b
2 then

a < 1
b (b−m)2 + 3

2m

2. If Γ has exactly two basepoints p, q of multiplicity mp,mq >
b
2 then

a < 1
b ((b−mp)

2 + (b−mq)
2)− b+ 3

2(mp +mq)

Proof. We have the following equalities for Γ [KSC04, Exercise 2.8]:

∑
m2
p = Γ2 − 1 = 2ab− 1∑

mp = Γ · (−KF0)− 3 = 2a+ 2b− 3
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where the sum is over all basepoints p of Γ and mp denotes the multiplicity of the basepoint p.

For (1), this gives

2ab− 1 =
∑

m2
p = m2 +

∑
p6=q

m2
p ≤ m2 + b

2

∑
p 6=q

mp ≤ m2 + b
2(2a+ 2b− 3−m)

Simplifying and dividing by b (noting that b > 0 since ϕ is birational), we obtain

a− 1
b + 3

2 ≤
m2

b + b− m
2 = 1

b (b−m)2 + 3
2m

This gives

a < a− 1
b + 3

2 ≤
1
b (b−m)2 + 3

2m

as required. The proof of (2) is completely analogous so we omit the calculation.

Proof of Theorem 4.1.5. We first prove the existence of the factorization, which is now entirely

analogous to the proof of [KSC04, Theorem 2.24]. Any smooth projective toric surface can

be obtained from P2 by a sequence of toric blowups and blowdowns, so we may assume that

(Ȳ , D̄) = (F, ∂F) and (Ȳ ′, D̄′) = (P2, ∂P2), as in the statement of Proposition 4.1.13. Let ϕ

be the induced birational map and Γ = ϕ−1
∗ (|H|). We argue by induction on the Sarkisov

bidgree. Proposition 4.1.13 shows that as long as Γ has a base point of multiplicity larger than

the Sarkisov degree, we can find a composition of admissible links ϕ′ : (F, ∂F) 99K (F′, ∂F′) such

that we can factor ϕ as

F ϕ′→ F′ ϕϕ
′−1

−−→ P2

and the Sarkisov bidegree of ϕ ◦ ϕ′−1 is smaller than the Sarkisov bidegree of ϕ. We need to

show that we can find such a ϕ′ also if Γ does not have a base point of multiplicity larger than

the Sarkisov degree. By Lemma 4.1.10, this can only happen if F is F0 or F1. In the former

case we must have a < b so we simply switch the ruling on F0. In the latter case, we must have

a
3 <

b
2 so contracting the negative section on F1 lowers the Sarkisov degree. In both cases, the

link is clearly admissible. We conclude that we can factor ϕ as

F ϕ′→ F′ p−→ P2

where F 99K F′ is a composition of admissible Sarkisov links and p is an isomorphism. Since

both ϕ and ϕ′ are volume preserving, so is p, which completes the proof of the first claim.

For the second part, we simply note that the birational maps appearing in our factorization only

blow up or blow down torus fixed points and base points of ϕ, so that pk is a regular map (after
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passing to a suitable corner blowup (Ỹ , D̃)).

4.2 The classification of T -polygons

We will deduce the classification of T -polygons from the following theorem

Theorem 4.2.1. Let P and Q be T -polygons, and let f and g be maximally mutable Laurent

polynomials supported on P and Q respectively. If the Looijenga pairs (Yf , D) and (Yg, D) are

isomorphic then P and Q are mutation equivalent.

Proof. Possibly after passing to a corner blowup (Y,D) of (Yf , D) = (Yg, D), we have a diagram

Y

(C×)2 ⊂ ȲP ȲQ ⊃ (C×)2ϕ

where the vertical maps are toric models. It follows that the induced birational map ϕ : (C×)2 99K

(C×)2 is volume-preserving, i.e ϕ∗Ω = λΩ for some λ ∈ C×, where Ω = dx∧dy
xy . In fact, by pairing

Ω with the integral generator {|x| = 1, |y| = 1} ∈ H2((C×)2,Z) and using the change of variable

formula, we see that λ = ±1, and up to composing with the volume-reversing automorphism of

(C×)2 given by (x, y) 7→ (x, 1
y ), we may assume that λ = 1.

Let p and q be the elliptic fibrations on Y induced by f and g. Since f is maximally mutable,

the elliptic surface Yf has a section s by Proposition 3.2.6. The isomorphism (Yf , D) ∼= (Yg, D)

of Looijenga pairs maps the fibre p−1(∞) to q−1(∞). It follows from [CKM88, Lemma 1.5] that

the isomorphism maps every fibre of p to a fibre of q. It follows that α = q◦s is an automorphism

of P1, so that the diagram

P1

Y

P1

p

q

α

commutes. Since α fixes ∞ it must be of the form z 7→ az + b for a, b ∈ C and a 6= 0. It follows

that ϕ∗g = af + b. Set f ′ := af + b, which is still maximally mutable and has Newt (f ′) = P .

By Theorem 4.1.5, we have a factorization

(Ȳ , D̄) = (Ȳn, D̄n)
ϕn→ (Ȳn−1, D̄n−1)

ϕn−1− → . . .
ϕ1→ (Ȳ0, D̄0) = (Ȳ ′, D̄′)

where each of the ϕk is either a toric blowup, toric blowdown, or mutation. On dense tori
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Ȳk \ D̄k, toric blowups and toric blowdowns restrict to the identity, whereas mutations restrict

to algebraic mutations. It follows that (after relabeling) ϕ = ϕn ◦ · · · ◦ ϕ1 factorizes as a

composition of algebraic mutations. It remains to show that f ′ and g are mutation equivalent,

i.e that fk := (ϕk ◦· · ·◦ϕ1)∗g is a Laurent polynomial for all k. For this we use the second part of

Theorem 4.1.5: Set U = Y \D = Yf\Df , and letW = q|U : U → C. Since pk : (Y,D) 99K (Ȳk, D̄k)

extends to a regular map

p̃k : (Ỹ , D̃)→ (Ȳk, D̄k)

on some corner blowup (Ỹ , D̃) of (Y,D), each of the toric pairs (Ȳk, D̄k) appearing in the

factorization gives rise to a torus chart jk : (C×)2 → U . We obtain the following diagram.

U C

(C×)2 . . . (C×)2

W

j

ϕn ϕ1

j′

By construction, we have f ′ = j∗W and g = j′∗W , and the pullback fk := (ϕk ◦ · · · ◦ ϕ1)∗g is

similarly given by restricting W via the torus chart jk : (C×)2 → U induced by the toric model

(Ȳk, D̄k). In particular, fk is a Laurent polynomial for all k, so that there is a sequence of

algebraic mutations mapping g = f0 7→ f1 7→ · · · 7→ fn = f ′. By Lemma 2.3.2, this induces a

sequence of mutations Q = Newt (f ′)→ · · · → Newt (fn) = P which proves that P is mutation-

equivalent to Q, as required.

We can now complete the classfication of T -polygons

Corollary 4.2.2. There are 10 mutation equivalence classes of T -polygons.

Proof. Let P be any T -polygon, and let f be a maximally mutable Laurent polynomial supported

on P . The Looijenga pair (Yf , D) must be deformation equivalent to one of the pairs (Yfn , Dfn)

by Theorem 3.3.9, where fn are as in Figure 4.1. Since both pairs have period point 1, the pairs

must be isomorphic by Theorem 3.1.3. It now follows from Theorem 4.2.1 that P is mutation

equivalent to the polygon Pn in Figure 4.1.

We now prove Conjecture 1.0.1 for normalized maximally mutable Laurent polynomials f

with Newt (f) a T -polygon.

Theorem 4.2.3. Let f, g be normalized maximally mutable Laurent polynomials in two variables

such that Newt (f) and Newt (g) are T -polygons, and suppose that πf (t) = πg(t). Then f and g

are mutation equivalent.
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Proof. Let P = Newt (f) and Q = Newt (g). As in the proof of Corollary 4.2.2, (Yf , D) ∼=

(Yfn , D) for some n, and similarly for g. Each of the Looijenga pairs (Yf , D) and (Yg, D) has

two toric models (possibly after passing to a toric blowup)

Yf = Yfn

ȲP ȲPn

Yfm = Yg

ȲPm ȲQ

for some 1 ≤ m,n ≤ 10 and we obtain volume preserving maps ϕ1, ϕ2 : (C×)2 99K (C×)2 with

ϕ∗1(f) = afn+ b and ϕ∗2(g) = a′fm+ b′, where fn, fm are normalised maximally mutable Laurent

polynomials associated to one of the 10 T -polygons in Table 4.1. It follows that πf (t) = πafn+b(t).

We must have b = 0 because both f and fn have zero constant term. Similarly we have

πg(t) = πa′fm(t). Since πf (t) = πg(t) by assumption, we conclude that πafn(t) = πa′fm(t). By

calculating the period sequences of f1, . . . f8, f8′ , f9, one sees that this implies n = m, so Yf = Yg.

This means that ϕ−1
1 ◦ ϕ2 is the birational map induced from the two toric models

Yf = Yg

(C×)2 ⊂ ȲP ȲQ ⊃ (C×)2

Take Y = Yf = Yg, let p the elliptic fibration on Y induced by g and take W = p|Y \D. By

construction we have W |j((C×)2) = a′

a f and W |j′((C×)2) = g. Since

const((af)d)) = adconst(fd)

a look at the period sequences of f1, . . . f9 shows that πafi(t) = πa′fi(t) implies a = a′ = 1 unless

i = 8′ or 9.

If i = 8′, we must have a
a′ = ±1, and the automorphism of (C×)2 defined by (x, y) 7→ (−x,−y)

pulls back f8′ to −f8′ .

If i = 9, we must have a
a′ = ±ω, where ω = e2πi/3, and the automorphism of (C×)2 defined by

(x, y) 7→ (±ωx,±ωy) pulls back f9 to ±ωf9.

This shows that (possibly after precomposing j with such an automorphism) we haveW |j((C×)2) =

f . The same argument as in the proof of Theorem 4.2.1 now shows that f and g are mutation-

equivalent, which completes the proof.
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Figure 4.1: The polygons P1, . . . P8, P8′ , P9 which are representatives for the 10 mutation equiv-
alence classes of T -polygons. The associated unique normalized maximally mutable Laurent
polynomials fi, i = 1, . . . , 8, 8′, 9 are obtained by assigning binomial coefficients to lattice points
on the edges of Pi, 0 to the origin, and the coefficients specified in the figure to the remaining
lattice points. Picture taken from [ACC+16]. Below the period sequences of the fi.
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πf1(t) = e−60t
∞∑
d=0

td
(6d)!

(d!)(2d)!(3d)!
= 1 + 10260t2 + 2021280t3 + 618874020t4 + 184450426560t5 . . .

πf2(t) = e−12t
∞∑
d=0

td
(4d)!

(d!)2(2d)!
= 1 + 276t2 + 6816t3 + 314532t4 + 12853440t5 + 569409360t6 . . .

πf3(t) = e−6t
∞∑
d=0

td
(3d)!

(d!)3
= 1 + 54t2 + 492t3 + 9882t4 + 158760t5 + 2879640t6 . . .

πf4(t) = e−4t
∞∑
d=0

td
(2d)!(2d)!

(d!)4
= 1 + 20t2 + 96t3 + 1188t4 + 10560t5 + 111440t6 . . .

πf5(t) = e−3t
∞∑
l=0

∞∑
m=0

tl+m
(l + 2m)!(l +m)!

(l!)2(m!)3
= 1 + 10t2 + 30t3 + 270t4 + 1560t5 + 11350t6 . . .

πf6(t) =
∞∑
a=0

∞∑
b=0

∞∑
c=0

a+b∑
d=max(a−c,0)

ta+2b+2c+d(a+ 2b+ 2c+ d)!

a!b!c!d!(a+ b− d)!(c+ d− a)!
= 1 + 6t2 + 12t3 + 90t4 + 360t5 . . .

πf7(t) =

∞∑
l=0

∞∑
m=0

l+m∑
n=max(l,m)

tl+m+n(l +m+ n)!

l!m!(l +m− n)!(n− l)!(n−m)!
= 1 + 4t2 + 6t3 + 36t4 + 120t5 . . .

πf8(t) =

∞∑
l=0

∞∑
m=l

tl+2m(l + 2m)!

(l!)2(m− l)!m!
= 1 + 2t2 + 6t3 + 6t4 + 60t5 + 110t6 . . .

πf8′ (t) =

∞∑
l=0

∞∑
m=0

t2l+2m(2l + 2m)!

(l!)2(m!)2
= 1 + 4t2 + 36t4 + 400t6 . . .

πf9(t) =

∞∑
d=0

t3d(3d)!

(d!)3
= 1 + t3 + 6t6 + 90t9 . . .
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Chapter 5

Introduction

Gromov–Witten invariants, roughly speaking, count the number of curves in a projective variety

X that are constrained to pass through various cycles. They play an essential role in mirror

symmetry, and have been the focus of intense activity in symplectic and algebraic geometry over

the last 25 years. Despite this, there are few effective tools for computing the Gromov–Witten

invariants of blow-ups. In this paper we improve the situation somewhat: we determine how

genus-zero Gromov–Witten invariants change when a smooth projective variety X is blown up

in a complete intersection of convex line bundles. In the case where the blow-up X̃ is Fano,

a special case of our result gives closed-form expressions for genus-zero one-point descendant

invariants of X̃ in terms of invariants of X, and hence determines the small J-function of X̃.

Suppose that Z ⊂ X is the zero locus of a regular section of a direct sum of convex (or nef)

line bundles

E = L0 ⊕ · · · ⊕ Lr → X

and that X̃ is the blow-up of X in Z. To determine the genus-zero Gromov–Witten invariants

of X̃, we proceed in two steps. First, we exhibit X̃ as the zero locus of a section of a convex

(or nef) vector bundle on the bundle of Grassmannians Gr(r, E∨) → X: this is Theorem 5.0.1

below. We then establish a version of the Abelian/non-Abelian Correspondence [CFKS08] that

determines the genus-zero Gromov–Witten invariants of such zero loci. This is the Abelian/non-

Abelian Correspondence with bundles, for target spaces that are partial flag bundles – see

Theorem 5.0.2. It builds on and generalises results by Ciocan-Fontanine–Kim–Sabbah [CFKS08,

§6], Brown [Bro14], and Oh [Oh21].

Theorem 5.0.1 (see Proposition 7.3.2 below for a more general result). Let X be a smooth

projective variety, let E = L0 ⊕ · · · ⊕Lr → X be a direct sum of line bundles, and let Z ⊂ X be

the zero locus of a regular section s of E. Let π : Gr(r, E∨) → X be the Grassmann bundle of

91
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subspaces and let S → Gr(r, E∨) be the tautological subbundle. Then the composition

S ↪→ π∗E∨
π∗s∨−−−→ O

defines a regular section of S∨, and the zero locus of this section is the blow-up X̃ = BlZ X.

If the line bundles Li are convex, then the bundle S∨ is also convex. The fact that X̃ is regularly

embedded into Gr(r, E∨) ∼= P(E) (where P(E) is the projective bundle of lines) is well-known

and true for more general blowups, see for example [Ful98, Appendix B8.2] and [Alu10, Lemma

2.1]. However, to apply the Abelian/non-Abelian correpondence, the crucial point is that X̃ is

cut out by a regular section of an explicit representation-theoretic bundle (as defined in (6.2))

on Gr(r, E∨). Although this should be well-known to experts, we have been unable to find a

reference for this.

To apply Theorem 5.0.1 to Gromov–Witten theory, and to state the Abelian/non-Abelian Cor-

respondence, we will use Givental’s formalism [Giv04]. This is a language for working with

Gromov–Witten invariants and operations on them, in terms of linear symplectic geometry. We

give details in §6.3 below, but the key ingredients are, for each smooth projective variety Y , an

infinite-dimensional symplectic vector space HY called the Givental space and a Lagrangian sub-

manifold LY ⊂ HY . Genus-zero Gromov–Witten invariants of Y determine and are determined

by LY .

We will also consider twisted Gromov–Witten invariants [CG07]. These are invariants of a

projective variety Y which depend also on a bundle F → Y and a characteristic class c. For us,

this characteristic class will always be the equivariant Euler class (or total Chern class)

c(V ) =

d∑
k=0

λd−kck(V ) where d is the rank of the vector bundle V . (5.1)

The parameter λ here can be thought of as the generator for the S1-equivariant cohomology of

a point. There is a Lagrangian submanifold LFλ ⊂ HY that encodes genus-zero Euler-twisted

invariants of Y ; the Quantum Riemann–Roch theorem [CG07] implies that

∆Fλ LY = LFλ

where ∆Fλ : HY → HY is a certain linear symplectomorphism. This gives a family of Lagrangian

submanifolds λ 7→ LFλ defined over Q(λ), that is, a meromorphic family of Lagrangian subman-

ifolds parameterised by λ. When F satisfies a positivity condition called convexity, the family

λ 7→ Lλ extends analytically across λ = 0 and the limit LF0 exists. This limiting submanifold
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LF0 ⊂ HY determines genus-zero Gromov–Witten invariants of the subvariety of Y cut out by a

generic section of F [CG07, Coa14]. Theorem 5.0.1 therefore allows us to determine genus-zero

Gromov–Witten invariants of the blow-up X̃, by analyzing the limiting submanifold LS∨0 .

Our second main result, Theorem 5.0.2, applies to the Grassmann bundle Gr(r, E∨) → X

considered in Theorem 5.0.1, and more generally to any partial flag bundle Fl(E)→ X induced

by E. Such a partial flag bundle can be expressed as a GIT quotient A//G, where G is a product

of general linear groups, and so any representation ρ of G on a vector space V induces a vector

bundle V G → Fl(E) with fiber V . See §6.2 for details of the construction. We give an explicit

family of elements of HFl(E),

(t, τ) 7→ IGM(t, τ, z) t ∈ CR for some R, τ ∈ H•(X) (5.2)

defined in terms of genus-zero Gromov–Witten invariants of X and explicit hypergeometric func-

tions, and show that this family, after changing the sign of z, lies on the Lagrangian submanifold

that determines Euler-twisted Gromov–Witten invariants of Fl(E) with respect to V G.

Theorem 5.0.2 (see Definition 7.2.1 and Theorem 7.2.2). For all t ∈ CR and τ ∈ H•(X),

IGM(t, τ,−z) ∈ LV Gλ

Under an ampleness condition – which holds, for example, whenever the blow-up X̃ in Theo-

rem 5.0.1 is Fano – the family (5.2) takes a particularly simple form

IGM(t, τ, z) = z
(
1 + o(z−1)

)
and standard techniques in Givental formalism allow us to determine genus-zero twisted Gromov–

Witten invariants of Fl(E) explicitly: see Corollaries 7.2.4 and 7.2.5. Applying this in the setting

of Theorem 5.0.1, we recover genus-zero Gromov–Witten invariants of the blow-up X̃ by taking

the non-equivariant limit λ→ 0.

The reader who is focussed on blow-ups can stop reading here, jumping to the end of the

Introduction for connections to previous work, §6.2 for basic setup, Corollary 7.2.5 for the key

Gromov–Witten theoretic result, and then to §7.4 for worked examples. In the rest of the Intro-

duction, we explain how Theorem 5.0.2 should be regarded as an instance of the Abelian/non-

Abelian Correspondence [CFKS08].
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The Abelian/non-Abelian Correspondence relates the genus-zero Gromov–Witten theory of

quotients A//G and A//T , where A is a smooth quasiprojective variety equipped with the action

of a reductive Lie group G, and T is its maximal torus. We fix a linearisation of this action

such that the stable and semistable loci coincide and we suppose that the quotients A//G and

A//T are smooth. In our setting the non-Abelian quotient A//G will be a partial flag bundle

or Grassmann bundle over X, and the Abelian quotient A//T will be a bundle of toric varieties

over X, that is, a toric bundle in the sense of Brown [Bro14]. To reformulate the Abelian/non-

Abelian Correspondence of [CFKS08] in terms of Givental’s formalism, however, we pass to the

following more general situation. Let W denote the Weyl group of T in G. A theorem of Martin

(Theorem 6.1.1 below) expresses the cohomology of the non-Abelian quotient H•(A//G) as a

quotient of the Weyl-invariant part of the cohomology of the Abelian quotient H•(A//T )W by

an appropriate ideal, so there is a quotient map

H•(A//T )W → H•(A//G). (5.3)

The Abelian/non-Abelian Correspondence, in the form that we state it below, asserts that this

map also controls the relationship between the quantum cohomology of A//G and A//T .

When comparing the quantum cohomology algebras of A//G and A//T , or when comparing

the Givental spaces of A//G and A//T , we need to account for the fact that there are fewer curve

classes on A//G than there are on A//T . We do this as follows. The Givental space HY discussed

above is defined using cohomology groups H•(Y ; Λ) where Λ is the Novikov ring for Y : see §6.3.

The Novikov ring contains formal linear combinations of terms Qd where d is a curve class on Y .

The quotient map (5.3) induces an isomorphism H2(A//T )W ∼= H2(A//G), and by duality this

gives a map % : NE(A//T )→ NE(A//G) where NE denotes the Mori cone: see Proposition 6.1.4.

Combining the quotient map (5.3) with the map on Novikov rings induced by % gives a map

p : HWA//T → HA//G (5.4)

between the Weyl-invariant part of the Givental space for the Abelian quotient and the Given-

tal space for the non-Abelian quotient. Here, and also below when we discuss Weyl-invariant

functions, we consider the Weyl group W to act on HA//T through the combination of its action

on cohomology classes and its action on the Novikov ring.

We consider now an appropriate twisted Gromov–Witten theory of A//T . For each root ρ

of G, write Lρ → A//T for the line bundle determined by ρ, and let Φ = ⊕ρLρ where the sum

runs over all roots. Consider the Lagrangian submanifold LΦλ that encodes genus-zero twisted
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Gromov–Witten invariants of A//T . The bundle Φ is very far from convex, so one cannot expect

the non-equivariant limit of LΦλ to exist. Nonetheless, the projection along (5.4) of the Weyl-

invariant part of this Lagrangian submanifold does have a non-equivariant limit.

Theorem 5.0.3. (see Corollary 6.5.4) The limit as λ→ 0 of p
(
LΦλ ∩HWA//T

)
exists.

We call this non-equivariant limit the Givental–Martin cone1 LGM ⊂ HA//G.

Conjecture 5.0.4 (The Abelian/non-Abelian Correspondence). LGM = LA//G.

This is a reformulation of [CFKS08, Conjecture 3.7.1]. The analogous statement for twisted

Gromov–Witten invariants is the Abelian/non-Abelian Correspondence with bundles; this is

a reformulation of [CFKS08, Conjecture 6.1.1]. Fix a representation ρ of G, and consider the

vector bundles V G → A//G and V T → A//T induced by ρ. Consider the Lagrangian submanifold

LΦλ⊕V Tµ that encodes genus-zero twisted Gromov–Witten invariants of A//T , where for the twist

by the root bundle Φ we use the equivariant Euler class (5.1) with parameter λ and for the twist

by V T we use the equivariant Euler class with a different parameter µ. As before, the projection

along (5.4) of the Weyl-invariant part of this Lagrangian submanifold has a non-equivariant

limit with respect to λ.

Theorem 5.0.5. (see Theorem 6.5.3) The limit as λ→ 0 of p
(
LΦλ⊕V Tµ ∩H

W
A//T

)
exists.

Let us call this limit the twisted Givental–Martin cone LGM,V Tµ
⊂ HA//G.

Conjecture 5.0.6 (The Abelian/non-Abelian Correspondence with bundles). LGM,V Tµ
= LV Gµ .

As in [CFKS08], the Abelian/non-Abelian Correspondence implies the Abelian/non-Abelian

Correspondence with bundles.

Proposition 5.0.7. Conjectures 5.0.4 and 5.0.6 are equivalent.

Proof. Conjecture 5.0.4 is the special case of Conjecture 5.0.6 where the vector bundles involved

have rank zero. To see that Conjecture 5.0.4 implies Conjecture 5.0.6, observe that the projection

of the Quantum Riemann–Roch operator ∆V Tµ
under the map (5.4) is ∆V Gµ

: see Definition 6.4.3.

Now apply the Quantum Riemann–Roch theorem [CG07].

The following reformulations will also be useful. Given any Weyl-invariant family

t 7→ I(t) ∈ HWA//T of the form I(t) =
∑

d∈NE(A//T )

QdId(t)

1We have not emphasised this point, but the Lagrangian submanifolds LY , LFλ , etc. are in fact cones [Giv04].
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we define its Weyl modification t 7→ Ĩ(t) ∈ HWA//T to be

Ĩ(t) =
∑

d∈NE(A//T )

QdWdId(t)

where Wd is an explicit hypergeometric factor that depends on λ – see (6.14). We prove in

Lemma 6.5.1 below that, for a Weyl-invariant family t 7→ I(t) the image under (5.4) of the Weyl

modification t 7→ p(Ĩ(t)) has a well-defined limit as λ → 0. We call this limit the Givental–

Martin modification of t 7→ I(t) and denote it by t 7→ IGM(t); it is a family of elements of HA//G.

Furthermore, if t 7→ I(t) satisfies the Divisor Equation in the sense of equation (6.9), then:

• if t 7→ I(t) is a family of elements of LA//T then t 7→ IGM(t) is a family of elements on the

Givental–Martin cone LGM; and

• if t 7→ I(t) is a family of elements of the twisted cone LV Tµ then t 7→ IGM(t) is a family of

elements on the twisted Givental–Martin cone LGM,V Tµ
.

The first statement here is Corollary 6.5.5 with F ′ = 0; the second statement is Corollary 6.5.5.

This lets us reformulate the Abelian/non-Abelian Correspondence in more concrete terms.

Conjecture 5.0.8 (a reformulation of Conjecture 5.0.4). Let t 7→ I(t) be a Weyl-invariant family

of elements of LA//T that satisfies the Divisor Equation. Then the Givental–Martin modification

t 7→ IGM(t) is a family of elements of LA//G.

Conjecture 5.0.9 (a reformulation of Conjecture 5.0.6). Let t 7→ I(t) be a Weyl-invariant family

of elements of LV Tµ that satisfies the Divisor Equation. Then the Givental–Martin modification

t 7→ IGM(t) is a family of elements of LV Gµ .

Let us now specialise to the case of partial flag bundles, as in §6.2 and the rest of the

paper, so that A//G is a partial flag bundle Fl(E) → X and A//T is a toric bundle Fl(E)T →

X. Theorem 5.0.10 below establishes the statement of Conjecture 5.0.8 not for an arbitrary

Weyl-invariant family t 7→ I(t) on LA//T , but for a specific such family called the Brown I-

function. As we recall in Theorems 7.1.1 and 7.1.2, Brown and Oh have defined families t 7→

IFl(E)T (t) and t 7→ IFl(E)(t), given in terms of genus-zero Gromov–Witten invariants of X and

explicit hypergeometric functions, and have shown [Bro14, Oh21] that IFl(E)T (t) ∈ LFl(E)T and

IFl(E)(t) ∈ LFl(E).

Theorem 5.0.10 (see Proposition 7.1 for details). The Givental–Martin modification of the

Brown I-function t 7→ IFl(E)T is t 7→ IFl(E)(t).
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The main result of this paper is the analogue of Theorem 5.0.10 for twisted Gromov–Witten

invariants. We define a twisted version t 7→ IV Tµ (t) of the Brown I-function and prove:

Theorem 5.0.11 (see Definition 7.2.1 and Corollary 7.2.2 for details).

1. the twisted Brown I-function t 7→ IV Tµ (t) is a Weyl-invariant family of elements of LV Tµ
that satisfies the Divisor Equation;

2. the Givental–Martin modification t 7→ IGM(t) of this family satisfies IGM(t) ∈ LV Gµ .

This establishes the statement of Conjecture 5.0.9, not for an arbitrary Weyl-invariant fam-

ily, but for the specific such family t 7→ IV Tµ (t). Theorem 5.0.11 follows from the Quantum

Riemann–Roch theorem [CG07] together with the results of Brown [Bro14] and Oh [Oh21],

using a “twisting the I-function” argument as in [CCIT19].

As we will now explain, Theorem 5.0.10 is quite close to a proof of Conjecture 5.0.8 in the

flag bundle case, and similarly Theorem 5.0.11 is close to a proof of Conjecture 5.0.9. We will

discuss only the former, as the latter is very similar. Theorem 5.0.10 implies that

the Givental–Martin modification t 7→ IGM(t) lies in LFl(E) (5.5)

for the family t 7→ I(t) given by the Brown I-function, because the Givental–Martin modification

of the Brown I-function is the Oh I-function t 7→ IFl(E)(t). If Oh’s I-function were a big I-

function, in the sense of [CFK16], then Conjecture 5.0.8 would follow. The special geometric

properties of the Lagrangian submanifold LY described in [Giv04] and [CCIT09, Appendix B],

taking Y = Fl(E), would then imply that any family t 7→ I(t) such that I(t) ∈ LFl(E) can be

written as

I(t) = IFl(E)(τ(t)) +
∑
α

Cα(t, z)z
∂IFl(E)

∂τα
(τ(t)) (5.6)

for some coefficients Cα(t, z) that depend polynomially on z and some change of variables t 7→

τ(t). Furthermore the same geometric properties imply that any family of the form (5.6) satisfies

I(t) ∈ LFl(E). But LGM has the same special geometric properties as LY – it inherits them from

the Weyl-invariant part of LΦλ by projection along (5.4) followed by taking the non-equivariant

limit – and so if t 7→ IFl(E) is a big I-function then any family of elements t 7→ I†(t) on LGM

can be written as

I†(t) = IFl(E)(τ
†(t)) +

∑
α

C†α(t, z)z
∂IFl(E)

∂τα
(τ †(t))

That is, I†(t) can be written in the form (5.6). It follows that I†(t) ∈ LFl(E). Applying this

with I† = IGM from Conjecture 5.0.8 proves that Conjecture; note that we know that the family

t 7→ IGM(t) here lies in LGM by Corollary 6.5.5.
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If the Brown and Oh I-functions were big I-functions then Theorem 5.0.10 would continue

to hold (with the same proof) and Conjecture 5.0.8 would therefore follow. In reality the Brown

and Oh I-functions are only small I-functions, not big I-functions, but Ciocan-Fontanine–Kim

have explained in [CFK16, §5] how to pass from small I-functions to big I-functions, whenever

the target space is the GIT quotient of a vector space. To apply their argument, and hence prove

Conjecture 5.0.8 for partial flag bundles, one would need to check that the Brown I-function

arises from torus localization on an appropriate quasimap graph space [CFKM14, §7.2]. The

analogous result for the Oh I-function is [Oh21, Proposition 5.1].

Webb has proved a ‘big I-function’ version of the Abelian/non-Abelian Correspondence for

target spaces that are GIT quotients of vector spaces [Web21], and this immediately implies

Conjectures 5.0.8 and 5.0.9.

Proposition 5.0.12. Conjecture 5.0.8 holds when A is a vector space and G acts on A via a

representation G 7→ GL(A).

Proof. Combining [Web21, Corollary 6.3.1] with [CFK16, Theorem 3.3] shows that there are

big I-functions t 7→ IA//T (t) and t 7→ IA//G(t) such that IA//T (t) ∈ LA//T and IA//G(t) ∈ LA//G.

Furthermore it is clear from [Web21, equation 62] that the Givental–Martin modification of the

Weyl-invariant part of t 7→ IA//T (t) is t 7→ IA//G(t). Now argue as above.

Connection to Earlier Work

Our formulation of the Abelian/non-Abelian Correspondence very roughly says that, for genus-

zero Gromov–Witten theory, passing from an Abelian quotient A//T to the corresponding non-

Abelian quotient A//G is almost the same as twisting by the non-convex bundle Φ → A//T

defined by the roots of G. This idea goes back to the earliest work on the subject, by Bertram–

Ciocan-Fontanine–Kim, and indeed our Conjecture is very much in the spirit of the discussion

in [BCFK08, §4]. These ideas were given a precise form in [CFKS08], in terms of Frobenius

manifolds and Saito’s period mapping; the main difference with the approach that we take here

is that in [CFKS08] the authors realise the cohomology H•(A//G) as the Weyl-anti-invariant

subalgebra of the cohomology of the Abelian quotient A//T , whereas we realise it as a quotient

of the Weyl-invariant part of H•(A//T ). The latter approach seems to fit better with Givental’s

formalism.

Ruan was the first to realise that there is a close connection between quantum cohomology

(or more generally Gromov–Witten theory) and birational geometry [Rua99], and the change

in Gromov–Witten invariants under blow-up forms an important testing ground for these ideas.

Despite the importance of the topic, however, Gromov–Witten invariants of blow-ups have
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been understood in rather few situations. Early work here focussed on blow-ups in points,

and on exploiting structural properties of quantum cohomology such as the WDVV equations

and Reconstruction Theorems [Gat96, GP98, Gat01]. Subsequent approaches used symplectic

methods pioneered by Li–Ruan [LR01, HLR08, Hu00, Hu01], or the Degeneration Formula

following Maulik–Pandharipande [MP06, HHKQ18, CDW20], or a direct analysis of the moduli

spaces involved and virtual birationality arguments [Man12, Lai09, AW18]. In each case the

aim was to prove ‘birational invariance’: that certain specific Gromov–Witten invariants remain

invariant under blow-up. We take a different approach. Rather than deform the target space, or

study the geometry of moduli spaces of stable maps explicitly, we give an elementary construction

of the blow-up X̃ → X in terms that are compatible with modern tools for computing Gromov–

Witten invariants, and extend these tools so that they cover the cases we need. This idea – of

reworking classical constructions in birational geometry to make them amenable to computations

using Givental formalism – was pioneered in [CCGK16], and indeed Lemma E.1 there gives the

codimension-two case of our Theorem 5.0.1.

Compared to explicit invariance statements

〈π∗φi1 , . . . , π∗φin〉X̃0,n,π!β = 〈φi1 , . . . , φin〉X0,n,β

as in [Lai09, Theorem 1.4], we pay a price for our increased abstraction: the range of invari-

ants for which we can extract closed-form expressions is different (see Corollary 7.2.4) and in

general does not overlap with Lai’s. But we also gain a lot by taking a more structural ap-

proach: our results determine, via a Birkhoff factorization procedure as in [CG07, CFK14],

genus-zero Gromov–Witten invariants of the blow-up X̃ for curves of arbitrary degree (not just

proper transforms of curves in the base) and with a wide range of insertions that can include

gravitational descendant classes. See Remark 7.2.9. Furthermore in general one should not

expect Gromov–Witten invariants to remain invariant under blow-ups. The correct statement –

cf. Ruan’s Crepant Resolution Conjecture [CIT09, CR13, Iri10, Iri09] and its generalisation by

Iritani [Iri20] – is believed to involve analytic continuation of Givental cones, and we hope that

our formulation here will be a step towards this.

After the first version of this paper appeared on the arXiv, Fenglong You pointed us to

the work [LLW17] in which Lee, Lin, and Wang sketch a construction of blow-ups that is very

similar to Theorem 5.0.1, and use this to compute Gromov–Witten invariants of blow-ups in

complete intersections. The methods they use are different: they rely on a very interesting

extension of the Quantum Lefschetz theorem to certain non-split bundles, which they will prove

in forthcoming work [LLW]. At first sight, their result [LLW17, Theorem 5.1] is both more
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general and less explicit than our results. In fact, we believe neither is true. Their theorem as

stated applies to blow-ups in complete intersections defined by arbitrary line bundles whereas we

require these line bundles to be convex; however, discussions with the authors suggest that both

results apply under the same conditions, and the convexity hypothesis was omitted from [LLW17,

Theorem 5.1] in error. Furthermore, Lee, Lin, and Wang extract genus-zero Gromov–Witten

invariants by combining their generalised Quantum Lefschetz theorem with an inexplicit Birkhoff

factorisation procedure whereas we use the formalism of Givental cones. We believe, though,

that one can rephrase their argument entirely in terms of Givental’s formalism, and after doing

so their results become explicit in exactly the same range as ours. The explicit formulas are

different, however, and it would be interesting to see if one can derive non-trivial identities

from this. Note that Proposition 7.3.2 below is more general than the construction in [LLW17,

Section 5]: the fact that we consider Grassmann bundles rather than projective bundles allows

us to treat blow-ups in certain degeneracy loci. Combining this with the methods in Section 7.4

allows one to compute genus-zero Gromov–Witten invariants of blow-ups in such degeneracy

loci.

One of the most striking features of Givental’s formalism is that relationships between higher-

genus Gromov–Witten invariants of different spaces can often be expressed as the quantisation,

in a precise sense, of the corresponding relationship between the Lagrangian cones that encode

genus-zero invariants [Giv04]. Our version of the Abelian/non-Abelian Correspondence hints,

therefore, at a higher-genus generalisation. It would be very interesting to develop and prove a

higher-genus analog of Conjecture 5.0.4.



Chapter 6

I-functions and Lagrangian cones

6.1 The topology of quotients by a non-Abelian group and its

maximal torus

Let G be a complex reductive group acting on a smooth quasi-projective variety A with polar-

isation given by a linearised ample line bundle L. Let T ⊂ G be a maximal torus. One can

then form the GIT-quotients A//G and A//T . We will assume that the stable and semistable

points with respect to these linearisations coincide, and that all the isotropy groups of the stable

points are trivial; this ensures that the quotients A//G and A//T are smooth projective varieties.

The Abelian/non-Abelian Correspondence [CFKS08] relates the genus zero Gromov–Witten in-

variants of these two quotients. Let As(G), and respectively As(T ), denote the subsets of A

consisting of points that are stable for the action of G, and respectively T . The two geometric

quotients A//G and A//T fit into a diagram

A//T As(G)/T

A//G

q

j

(6.1)

where j is the natural inclusion and π the natural projection.

A representation ρ : G→ GL(V ) induces a vector bundle Vρ on A//G with fiber V . Explicitly,

Vρ = (A× V )//G where G acts as

g : (a, v) 7→ (ag, ρ(g−1)v). (6.2)

We call the bundle Vρ representation-theoretic. Similarly, the restriction ρ|T of the representation

ρ induces a vector bundle VρT over A//T . Note that since T is Abelian, VρT splits as a direct

101
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sum of line bundles, VρT = L1 ⊕ · · · ⊕ Lk These bundles satisfy

j∗VρT
∼= q∗Vρ. (6.3)

When the representation ρ : G → GL(V ) is clear from context, we will suppress it from the

notation, writing V G for Vρ and V T for VρT .

We will now describe the relationship between the cohomology rings of A//G and A//T ,

following [Mar00]. Let W be the Weyl group of G. W acts on A//T and hence on the cohomology

ring H•(A//T ). Restricting the adjoint representation ρ : G→ GL(g) to T , we obtain a splitting

ρ|T = ⊕αρα into 1-dimensional representations, i.e. characters, of T . The set ∆ of characters

appearing in this decomposition is the set of roots of G, and forms a root system. Write Lα for

the line bundle on A//T corresponding to a root α. Fix a set of positive roots Φ+ and define

ω =
∏
α∈Φ+

c1(Lα).

ω is the fundamental anti-invariant class, it satifies w · ω = sgn(w)ω where sgn is the sign

representation of the Weyl group, defined by writing w as a product of k reflections, and declaring

sgn(w) to be ±1 depending on whether k is even or odd.

Theorem 6.1.1 (Martin). There is a natural ring homomorphism

H•(A//G) ∼=
H•(A//T )W

Ann(ω)

under which x ∈ H•(A//G) maps to x̃ ∈ H•(A//T ) if and only if q∗x = j∗x̃.

Theorem 6.1.1 shows that any cohomology class x̃ ∈ H•(A//T )W is a lift of a class x ∈ H•(A//G),

with x̃ unique up to an element of Ann(ω).

Remark 6.1.2. Note that Martin states this theorem with ω replaced by the product over

all roots e. However, it follows from [Kir05, Lemma 7.10] that the annihilators of e and ω on

H∗(A//T )W are the same.

Assumption 6.1.3. Throughout this paper, we will assume that the G-unstable locus A\As(G)

has codimension at least 2.

This implies that elements of H2(A//G) can be lifted uniquely:

Proposition 6.1.4. Pullback via q gives an isomorphism H2(A//G) ∼= H2(A//T )W , and induces

a map % : NE(A//T )→ NE(A//G) where NE denotes the Mori cone.
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Proof. The assumption that A\As(G) has codimension at least 2 implies that As(T )/T\As(G)/T

has codimension at least 2, so j induces an isomorphisms Pic(As(G)/T ) ∼= Pic(As(T )/T ) and

H2(As(G)/T ) ∼= H2(As(T )/T ). Since q∗ always induces an isomorphism between H2(A//G)

and H2(As(G)/T )W [Bor53], the first claim follows. Consequently, the lifting of divisor classes

is unique and can be identified with the pullback map q∗ : Pic(A//G) → Pic(As(G)/T ). By

duality, we obtain a map % : NE(A//T )→ NE(A//G).

Definition 6.1.5. We say that β̃ ∈ NE(A//T ) lifts β ∈ NE(A//G) if %(β̃) = β. Note that any

effective β has finitely many lifts.

6.2 Partial flag varieties and partial flag bundles

Notation

We will now specialise to the case of flag bundles and introduce notation used in the rest of the

paper. Fix once and for all:

• a positive integer n and a sequence of positive integers r1 < · · · < r` < r`+1 = n;

• a vector bundle E → X of rank n on a smooth projective variety X which splits as a direct

sum of line bundles E = L1 ⊕ · · · ⊕ Ln.

We write Fl for the partial flag manifold Fl(r1, . . . , r`;n), and Fl(E) for the partial flag bundle

Fl(r1, . . . , r`;E).

Set N =
∑`

i=1 riri+1 and R = r1 + · · · + r`. It will be convenient to use the indexing

{(1, 1), . . . (1, r1), (2, 1), . . . , (`, r`)} for the set of positive integers smaller or equal than R.

Partial flag varieties and partial flag bundles as GIT quotients

The partial flag manifold Fl arises as a GIT quotient, as follows. Consider CN as the space of

homomorphisms ⊕̀
i=1

Hom (Cri ,Cri+1) . (6.4)

The group G =
∏`
i=1 GLri(C) acts on CN by

(g1, . . . , g`) · (A1, . . . , A`) = (g−1
2 A1g1, . . . , g

−1
` A`−1g`−1, A`g`).

Let ρi : G → GLri(C) be the representation which is the identity on the ith factor and trivial

on all other factors. Choosing the linearisation χ =
⊗`

i=1 det(ρi), we have that CN//χG is the
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partial flag manifold Fl. More generally, the partial flag bundle also arises as a GIT quotient,

of the total space of the bundle of homomorphisms

`−1⊕
i=1

Hom
(
O⊕ri ,O⊕ri+1

)
⊕Hom

(
O⊕r` , E

)
(6.5)

with respect to the same group G and the same linearisation. Fl(E) carries ` tautological

bundles of ranks r1, . . . , r`, which we will denote S1, . . . , S`. These bundles restrict to the usual

tautological bundles on Fl on each fibre. The bundle Si is induced by the representation ρi.

Definition 6.2.1. Let

pi(t) = tri − c1(S∨i )tri−1 + · · ·+ (−1)ricri(S
∨
i )

be the Chern polynomial of S∨i . We denote the roots of pi by Hi,j , 1 ≤ j ≤ ri. The Hi,j

are in general only defined over an appropriate ring extension of H•(Fl(E),C), but symmetric

polynomials in the Hi,j can be expressed in terms of ck(S
∨
i ) and therefore give well-defined

elements of H•(Fl(E),C).

The maximal torus T ⊂ G is isomorphic to (C×)R. Since E is a direct sum of line bundles,

the corresponding Abelian quotient

Fl(E)T := Hom
(
· · ·
)
//χ(C×)R,

where Hom
(
· · ·
)

is the bundle of homomorphisms (6.5), is a fibre bundle over X with general

fibre isomorphic to the toric variety FlT := CN//χ(C×)R. The space Fl(E)T also carries natural

cohomology classes:

Definition 6.2.2. Let ρi,j : (C×)R → GL1(C) be the dual of the one-dimensional representation

of (C×)R given by projection to the (i, j)th factor C× = GL1(C); here we use the indexing of the

set {1, 2, . . . , R} specified in §6.2. We define Li,j ∈ H2(FlT ,C) to be the line bundle on Fl(E)T

induced by ρi,j and denote its first Chern class by H̃i,j . Similarly, we define hi,j to be the first

Chern class of the line bundle on FlT induced by the representation ρi,j . Note that hi,j is the

restriction of H̃i,j to a general fibre FlT of Fl(E)T .

Recall that, for a representation ρ of G, the corresponding vector bundle V T splits as a

direct sum of line bundles F1⊕ · · · ⊕Fk. It is a general fact that if f is a symmetric polynomial

in the c1(Fi), then f can be written as a polynomial in the elementary symmetric polynomials

er(c1(F1), . . . , c1(Fk)), that is, in the Chern classes cr(V
T ). By (6.3) we have that j∗cr(V

T ) =
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q∗cr(V
G), and so replacing any occurrence of cr(V

T ) by cr(V
G) gives an expression g ∈ H•(A//G)

which satisfies q∗g = j∗f . That is, f is a lift of g. Applying this to the dual of the standard

representation ρi of the ith factor of G shows that any polynomial p which is symmetric in each

of the sets H̃i,j for fixed i projects to the same expression in H•(Fl(E)) with any occurrence

of H̃i,j replaced by the corresponding Chern root Hi,j . We have the following standard lemma,

which we will state without proof.

Lemma 6.2.3. Let (C×)R act on CN , arrange the weights for this action in an R × N -

matrix (mi,k) and consider E = L1 ⊕ · · · ⊕ LN
π−→ X a direct sum of line bundles. Form

the associated toric fibration E//(C×)R with general fibre CN//(C×)R and let hi (respectively Hi)

be the first Chern class of the line bundle on CN//(C×)R (respectively on E//(C×)R induced by

the dual of the representation which is standard on the ith factor of (C×)R and trivial on the

other factors. Then

• the Poincaré duals uk of the torus invariant divisors of the toric variety CN//(C×)R are:

uk =
R∑
k=1

mi,khi

• the Poincaré duals Uk of the torus invariant divisors of the total space of the toric fibration

E//(C×)R
π−→ X are:

Uk =
R∑
k=1

mi,kHi + π∗c1(Lk)

When applying Lemma 6.2.3 to our situation (6.5) it will be convenient to define H`+1,j :=

π∗c1(L∨j ). Then the set of torus invariant divisors is

Hi,j −Hi+1,j′ 1 ≤ i ≤ `, 1 ≤ j ≤ ri, 1 ≤ j′ ≤ ri+1

We will also need to know about the ample cone of a toric variety CN//(C×)R. This is most

easily described in terms of the secondary fan, that is, by the wall-and-chamber decomposition

of Pic(CN//(C×)R)⊗R ∼= RR given by the cones spanned by size R−1 subsets of columns of the

weight matrix. The ample cone of CN//(C×)R is then the chamber that contains the stability

condition χ. Moreover, for a subset α ⊂ {1, . . . , N} of size R the cone in the secondary fan

spanned by the classes uk, k ∈ α, contains the stability condition (and therefore also the ample

cone) iff the intersection uα =
⋂
k/∈α uk is nonempty. In this case, Uα =

⋂
k/∈α Uk restricts to a

torus fixed point on every fibre and, since E splits as a direct sum of line bundles, Uα is the

image of a section of the toric fibration π. We denote this section by sα. By construction, the
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torus invariant divisors Uk, k ∈ α, do not meet Uα, so that s∗α(Uk) = 0 for all k ∈ α. For the toric

variety FlT one can easily write down the set of R-dimensional cones containing χ = (1, . . . , 1).

For each index (i, j), choose some j′ ∈ {1, . . . , ri+1}. Then the cone spanned by

hi,j − hi+1,j′ 1 ≤ i < `− 1, 1 ≤ j ≤ ri h`,j , 1 ≤ j ≤ r` (6.6)

contains χ and every cone containing χ is of that form.

6.3 Givental’s Formalism

In this section we review Givental’s geometric formalism for Gromov–Witten theory, concentrat-

ing on the genus-zero case. The main reference for this is [Giv04]. Let Y be a smooth projective

variety and consider

HY = H•(Y,Λ)[z, z−1]] =
{ m∑
k=−∞

aiz
i : ai ∈ H•(Y,Λ), m ∈ Z

}

where z is an indeterminate and Λ is the Novikov ring for Y . After picking a basis {φ1, . . . , φN}

for H•(Y ;C) with φ1 = 1 and writing {φ1, . . . , φN} for the Poincaré dual basis, we can write

elements of HY as

m∑
i=0

N∑
α=1

qαi φαz
i +

∞∑
i=0

N∑
α=1

pi,αφ
α(−z)−1−i (6.7)

where qαi , pi,α ∈ Λ. The qαi , pi,α then provide coordinates on HY . The space HY carries a

symplectic form

Ω: HY ⊗HY → Λ

f ⊗ g → Resz=0(f(−z), g(z)) dz

where (·, ·) denotes the Poincaré pairing, extended C[z, z−1]]-linearly to HY . By construction, Ω

is in Darboux form with respect to our coordinates:

Ω =
∑
i

∑
α

dpi,α ∧ dqαi

We fix a Lagrangian polarisation of H as HY = H+⊕H−, where

H+ = H•(Y ; Λ)[z], H− = z−1H•(Y ; Λ)[[z−1]]
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This polarisation HY = H+⊕H− identifies HY with T ∗H+. We now relate this to Gromov–

Witten theory.

Definition 6.3.1. The genus-zero descendant potential is a generating function for genus-zero

Gromov–Witten invariants:

F0
Y =

∞∑
n=0

∑
d∈NE(Y )

Qd

n!
tα1
i1
. . . tαnin 〈φα1ψ

i1 , . . . , φαnψ
in〉0,n,d

Here 〈. . . , 〉0,n,d denotes a degree d genus 0 Gromov–Witten invariant with n insertions, tαi is a

formal variable, NE(Y ) denotes the Mori cone of Y , and Einstein summation is used for repeated

lower and upper indices.

After setting

tαi = qαi + δi1δ
1
α, (6.8)

where δji denotes the Kronecker delta, we obtain a (formal germ of a) function F0
Y : H+ → Λ.

Definition 6.3.2. The Givental cone LY of Y is the graph of the differential of F0
Y : H+ → Λ:

LY =

{
(q,p) ∈ T ∗H+ = H+⊕H− : pi,α =

∂F0
Y

∂qαi

}

Note that LY is Lagrangian by virtue of being the graph of the differential of a function.

Moreover, it has the following special geometric properties [Giv04, CCIT09, CG07]

• L is preserved by scalar multiplication, i.e. it is (the formal germ of) a cone

• the tangent space Tf of LY at f ∈ LY is tangent to L exactly along zTf . This means:

1. zTf ⊂ LY

2. for g ∈ zTf , we have Tg = Tf

3. Tf ∩ LY = zTf

A general point of LY can be written, in view of the dilaton shift (6.8), as

−z +
∞∑
i=0

tαi φαz
i +

∞∑
n=0

∑
d∈NE(Y )

Qd

n!
tα1
i1
. . . tαnin 〈φα1ψ

i1 , . . . , φαnψ
in , φαψ

i〉0,n+1,dφ
α(−z)−i−1

=−z +
∞∑
i=0

tαi φαz
i +

∞∑
n=0

∑
d∈NE(Y )

Qd

n!
tα1
i1
. . . tαnin 〈φα1ψ

i1 , . . . , φαnψ
in ,

φα
−z − ψ

〉0,n+1,dφ
α
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Thus knowing LY is equivalent to knowing all genus-zero Gromov–Witten invariants of Y .

Setting tαk = 0 for all k > 0, we obtain the J-function of Y :

J(τ,−z) = −z + τ +
∞∑
n=0

∑
d∈NE(X)

Qd

n!

〈
τ, . . . τ,

φα
−z − ψ

〉
0,n+1,d

φα

where τ = t10φ1 + . . . tN0 φN ∈ H•(Y ). The J-function is the unique family of elements τ 7→

J(τ,−z) on the Lagrangian cone such that

J(τ,−z) = −z + τ +O(z−1).

We will need a generalisation of all of this to twisted Gromov–Witten invariants [CG07].

Let F be a vector bundle on Y and consider the universal family over the moduli space of stable

maps

C0,n,d Y

Y0,n,d

π

f

Let π! be the pushforward in K-theory. We define

F0,n,d = π!f
∗F = R0π∗f

∗F −R1π∗f
∗F

(the higher derived functors vanish). In general F0,n,d is a class in K-theory and not an honest

vector bundle. This means that in order to evaluate a characteristic class c(·) on F0,n,d we need

c(·) to be multiplicative and invertible. We can then set

c(F0,n,d) = c(R0π∗f
∗F ) ∪ c(R1π∗f

∗F )−1

where c(Riπ∗f
∗F ) is defined using an appropriate locally free resolution.

Definition 6.3.3. Let F be a vector bundle on Y and let c(·) be an invertible multiplicative

characteristic class. We will refer to the pair (F, c) as twisting data. Define (F, c)-twisted

Gromov–Witten invariants as

〈α1ψ
i1
1 , . . . αnψ

in
n 〉

F,c
0,n,d =

∫
[Y0,n,d]vir∩c(F0,n,d)

ev∗1 α1 ∪ · · · ∪ ev∗n αn ∪ ψ
i1
1 ∪ · · · ∪ ψ

in
n

Any multiplicative invertible characteristic class can be written as c(·) = exp(
∑

k≥0 sk chk(·)),

where chk is the kth component of the Chern character and s0, s1, . . . are appropriate coefficients.

So we work with cohomology groups H•(X,Λs), where Λs is the completion of Λ[s0, s1, . . . ] with
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respect to the valuation

v(Qd) =
〈
c1(O(1)), d

〉
, v(sk) = k + 1.

Most of the definitions from before now carry over. We have the twisted Poincaré pairing

(α, β)F,c =
∫
Y c(F ) ∪ α ∪ β which defines the basis φ1, . . . φN dual to our chosen basis 1 =

φ1, . . . , φN for H•(Y ). The Givental space becomes HY = H•(Y,Λs) ⊗ C[z, z−1]] with the

twisted symplectic form

ΩF,c(f(z), g(z)) = Resz=0

(
f(−z), g(z)

)F,c
dz.

This form admits Darboux coordinates as before which give a Lagrangian polarisation of HY .

Then the twisted Lagrangian cone LF,c is defined, via the dilaton shift (6.8), as the graph of the

differential of the generating function F0,F,c
Y for genus zero twisted Gromov–Witten invariants.

Finally, just as before, we can define a twisted J-function:

Definition 6.3.4. Given twisting data (F, c) for Y , the twisted J-function is:

JF,c(τ,−z) = −z + τ +

∞∑
n=0

∑
d∈NE(Y )

Qd

n!

〈
τ, . . . τ,

φα
−z − ψ

〉F,c
0,n+1,d

φα

This is once again characterised as the unique family τ 7→ JF,c(τ,−z) of elements of the twisted

Lagrangian cone of the form

JF,c(τ,−z) = −z + τ +O(z−1)

Note that we can recover the untwisted theory by setting c = 1.

In what follows we take c to be the C×-equivariant Euler class (5.1), which is multiplicative

and invertible. The C×-action here is the canonical C×-action on any vector bundle given by

rescaling the fibres. We write Fλ for the twisting data (F, c), where F is equipped with the

C×-action given by rescaling the fibres with equivariant parameter λ. In this setting, Gromov–

Witten invariants (and the coefficients sk) take values in the fraction field C(λ) of the C×-

equivariant cohomology of a point. Here λ is the hyperplane class on CP∞, so that H•C×({pt}) =

C[λ], and we work over the field C(λ).

Remark 6.3.5. As we have set things up, the twisted cone LFλ is a Lagrangian submanifold of

the symplectic vector space
(
HY ,ΩFλ

)
, so as λ varies both the Lagrangian submanifold and the

ambient symplectic space change. To obtain the picture described in the Introduction, where
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all the Lagrangian submanifolds LFλ lie in a single symplectic vector space
(
HY ,Ω

)
, one can

identify
(
HY ,Ω

)
with

(
HY ,ΩFλ

)
by multiplication by the square root of the equivariant Euler

class of F . See [CG07, §8] for details.

6.4 Twisting the I-function

We will now prove a general result following an argument from [CCIT09]. We say that a family

τ 7→ I(τ) of elements of HY satisfies the Divisor Equation if the parameter domain for τ is a

product U ×H2(Y ) and I(τ) takes the form

I(τ) =
∑

β∈NE(Y )

QβIβ(τ, z)

where

z∇ρIβ =
(
ρ+ 〈ρ, β〉z

)
Iβ for all ρ ∈ H2(Y ). (6.9)

Here ∇ρ is the directional derivative along ρ. Let F ′ be a vector bundle on Y , and consider

any family τ 7→ I(τ) ∈ LF ′µ that satisfies the Divisor Equation. Given another vector bundle F

which splits as a direct sum of line bundles F = F1 ⊕ · · · ⊕ Fk, we explain how to modify the

family τ 7→ I(τ) by introducing explicit hypergeometric factors that depend on F . We prove

that (1) this modified family can be written in terms of the Quantum Riemann-Roch operator

and the original family; and (2) the modified family lies on the twisted Lagrangian cone LFλ⊕F ′µ .

Definition 6.4.1. Define the element G(x, z) ∈ HY by

G(x, z) :=

∞∑
l=0

∞∑
m=0

sl+m−1
Bm
m!

xl

l!
zm−1

where Bm are the Bernoulli numbers and the sk are the coefficients obtained by writing the

C×-equivariant Euler class (5.1) in the form exp
(∑

k≥0 sk chk(·)
)
.

Remark 6.4.2. Most of the discussion in this section is valid for any invertible multiplicative

characteristic class, not just the equivariant Euler class, but we will neither need nor emphasize

this.

Definition 6.4.3. Let F be a vector bundle – not necessarily split – and let fi be the Chern
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roots of F . Define the Quantum Riemann-Roch operator, ∆Fλ : HY → HY as multiplication by

∆Fλ =

k∏
i=1

exp(G(fi, z))

Theorem 6.4.4 ([CG07]). ∆Fλ gives a linear symplectomorphism of (HY ,ΩY ) with (HY ,ΩFλ
Y )

such that

∆Fλ(LY ) = LFλ

Since ∆Fλ ◦∆F ′µ = ∆Fλ⊕F ′µ , it follows immediately that

∆Fλ(LF ′µ) = LFλ⊕F ′µ .

Lemma 6.4.5. Let F be a vector bundle and let f1, . . . , fk be the Chern roots of F . Let

DFλ =
k∏
i=1

exp
(
−G(z∇fi , z)

)
and suppose that τ 7→ I(τ) is a family of elements of LF ′µ. Then τ 7→ DFλ(I(τ)) is also a family

of elements of LF ′µ.

Proof. This follows [CCIT09, Theorem 4.6]. Let h = −z +
∑m

i=0 tiz
i +

∑∞
j=0 pj(−z)−j−1 be a

point on HY . The Lagrangian cone LF ′µ is defined by the equations Ej = 0, j = 0, 1, 2, . . . where

Ej(h) = pj −
∑
n≥0

∑
d∈NE(Y )

Qd

n!
tα1
i1
. . . tαnin 〈φα1ψ

i1 , . . . , φαnψ
in , φαψ

j〉0,n+1,dφ
α

We need to show that Ej(DFλ(I)) = 0. Note that DFλ(I) =
∏k
i=1 exp(−G(z∇fi , z))I depends

on the parameters si. For notational simplicity assume that k = 1, so that

DFλ(I) = exp
(
−G(z∇f , z)

)
I

Set deg si = i+1. We will prove the result by inducting on degree. Note that if s0 = s1 = · · · = 0

then DFλ(I) = I so that Ej(DFλ(I)) = 0. Assume by induction that Ej(DFλ(I)) vanishes up to

degree n in the variables s0, s1, s2, . . . Then

∂

∂si
Ej(DFλ(I)) = dDFλ (I)Ej(z

−1Pi(z∇f , z)DFλ(I))
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where

Pi(z∇f , z) =
i+1∑
m=0

1

m!(i+ 1−m)!
zmBm(z∇f )i+1−m

By induction there exists DFλ(I)′ ∈ LF ′µ such that

∂

∂si
Ej(DFλ(I)) = dDFλ (I)′Ej(z

−1Pi(z∇f , z)DFλ(I)′)

up to degree n. But the right hand side of this expression is zero, since the term in brackets

lies in the tangent space to the Lagrangian cone. Indeed, applying ∇f to DFλ(IY )′ – or to any

family lying on the cone – takes it to the tangent space of the cone at the point. And then

applying z∇f preserves that tangent space.

Corollary 6.4.6. Let τ 7→ I(τ) be a family of elements of LF ′µ. Then τ 7→ ∆Fλ(DFλ(I(τ))) is

a family of elements of LFλ⊕F ′µ.

Proof. This follows immediately by combining 6.4.4 and 6.4.5

Corollary 6.4.6 produces a family of elements on the twisted Lagrangian cone LFλ⊕F ′µ , but in

general it is not obvious whether the nonequivariant limit λ→ 0 of this family exists. However,

in the case when F is split and τ 7→ I(τ) satisfies the Divisor Equation we will show that the

family ∆Fλ(DFλ(I(τ,−z))) is equal to the twisted I-function IF ′µ⊕Fλ given in Definition 6.4.7.

This has an explicit expression, which makes it easy to check whether the nonequivariant limit

exists. We make the following definitions.

Definition 6.4.7. Let τ 7→ I(τ) be a family of elements of LF ′µ . Let F = F1 ⊕ · · · ⊕ Fk be

a direct sum of line bundles, and let fi = c1(Fi). For β ∈ NE(Y ), we define the modification

factor

Mβ(z) =

k∏
i=1

∏〈fi,β〉
m=−∞ λ+ fi +mz∏0
m=−∞ λ+ fi +mz

The associated twisted I-function is

Itw(τ) =
∑

β∈NE(Y )

QβIβ(τ, z) ·Mβ(z)

To relate Mβ(z) to the Quantum Riemann–Roch operator we will need the following Lemma:

Lemma 6.4.8.

Mβ(−z) = ∆Fλ

(
k∏
i=1

exp(−G(fi − 〈fi, β〉z, z))

)
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Proof. Define

s(x) =
∑
k≥0

sk
xk

k!

By [CCIT09, equation 13] we have that

G(x+ z, z) = G(x, z) + s(x) (6.10)

We have that s0 = log(λ) and sk = (−1)k−1(k − 1)!/λk, so we can rewrite

Mβ(z) =

k∏
i=1

∏〈fi,β〉
m=−∞ λ+ fi +mz∏0
m=−∞ λ+ fi +mz

=

k∏
i=1

∏〈fi,β〉
m=−∞ exp[s(fi +mz)]∏0
m=−∞ exp[s(fi +mz)]

and so

Mβ(−z) =

k∏
i=1

exp

 〈fi,β〉∑
m=−∞

s(fi −mz)−
0∑

m=−∞
s(fi −mz))


=

k∏
i=1

exp(G(fi, z)−G(fi − 〈fi, β〉z, z)

where for the second equality we used (6.10).

Proposition 6.4.9. Let τ 7→ I(τ) be a family of elements of LF ′µ that satisfies the Divisor

Equation, and let F = F1 ⊕ · · · ⊕ Fk be a direct sum of line bundles. Then

Itw = ∆Fλ(DFλ(I)). (6.11)

As a consequence, τ 7→ Itw(τ) is a family of elements on the cone LFλ⊕F ′µ.

Proof. Lemma 6.4.8 shows that

Itw(τ) = ∆Fλ

 ∑
β∈NE(Y )

k∏
i=1

exp(−G(fi − 〈fi, β〉z, z))Iβ(τ, z)

 (6.12)

Applying the Divisor Equation, we can rewrite this as

Itw = ∆Fλ(DFλ(I)) (6.13)

as required. The rest is immediate from 6.4.6.

Proposition 6.4.10. If the line bundles Fi are nef, then the nonequivariant limit λ → 0 of

Itw(τ) exists.
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Proof. This is immediate from Definition 6.4.7.

6.5 The Givental–Martin cone

We now restrict to the situation described in the Introduction, where the action of a reductive Lie

group G on a smooth quasiprojective variety A leads to smooth GIT quotients A//G and A//T .

As discussed, the roots of G define a vector bundle Φ = ⊕ρLρ → Y , where Y = A//T , and

we consider twisting data (Φ, c) for Y where c is the C×-equivariant Euler class. We call the

modification factor in this setting the Weyl modification factor, and denote it as

Wβ(z) =
∏
α

∏〈c1(Lα),β〉
m=−∞ c1(Lα) + λ+mz∏0
m=−∞ c1(Lα) + λ+mz

(6.14)

where the product runs over all roots α. For any family τ 7→ I(τ) =
∑

β∈NE(Y )Q
βIβ(τ, z) of

elements of HY , the corresponding twisted I-function is

Itw(τ) =
∑

β∈NE(Y )

QβIβ(τ, z) ·Wβ(z) (6.15)

Since the roots bundle Φ is not convex, in general the non-equivariant limit λ → 0 of Itw will

not exist. Recall from (5.4), however, the map p : HWA//T → HA//G.

Lemma 6.5.1. Suppose that I is Weyl-invariant. Then p◦Itw has a well-defined limit as λ→ 0.

Proof. The map p is given by the composition of the map on Novikov rings induced by

% : NE(A//T )→ NE(A//G)

(see Proposition 6.1.4) with the projection map H•(A//T ;C)W → H•(A//G;C) (see Theo-

rem 6.1.1). Since I(τ) is Weyl-invariant, Itw(τ) is also Weyl invariant and so, after applying %,

the coefficient of each Novikov term Qβ in τ 7→ Itw(τ) lies in H•(A//T ;C)W . The composition

p ◦ Itw is therefore well-defined.

The Weyl modification (6.14) contains many factors

c1(Lα) + λ+mz

−c1(Lα) + λ−mz

which arise by combining the terms involving roots α and −α. Such factors have a well-defined

limit, −1, as λ → 0. Therefore the limit of p ◦ Itw as λ → 0 is well-defined if and only if the
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limit of

p

 ∑
β∈NE(Y )

QβIβ(τ, z) · (−1)ε(β)
∏
α∈Φ+

c1(Lα)± λ+ 〈c1(Lα), β〉z
c1(Lα)∓ λ

 (6.16)

as λ → 0 is well-defined, and the two limits coincide. Here Φ+ is the set of positive roots

of G, and ε(β) =
∑

α∈Φ+〈c1(Lα), β〉; cf. [CFKS08, equation 3.2.1]. The limit λ → 0 of the

denominator terms ∏
α∈Φ+

(
c1(Lα)− λ

)
in (6.16) is the fundamental Weyl-anti-invariant class ω from the discussion before Theorem 6.1.1.

Furthermore

∑
β∈NE(Y )

QβIβ(τ, z) · (−1)ε(β)
∏
α∈Φ+

(
c1(Lα) + λ+ 〈c1(Lα), β〉z

)
has a well-defined limit as λ → 0 which, as it is Weyl-anti-invariant, is divisible by ω. The

quotient here is unique up to an element of Ann(ω), and therefore the projection of the quotient

along Martin’s map H•(A//T ;C)W → H•(A//G;C) is unique. It follows that the limit as λ→ 0

of p ◦ Itw is well-defined.

Definition 6.5.2. Let τ 7→ I(τ) be a Weyl-invariant family of elements of HY and let Itw

denote the twisted I-function as above. We call the nonequivariant limit of τ 7→ p
(
Itw(τ)

)
the

Givental–Martin modification of the family τ 7→ I(τ), and denote it by τ 7→ IGM(τ)

Recall that we have fixed a representation ρ of G on a vector space V , and that this induces

vector bundles V T → A//T and V G → A//G. Since the bundle Φ → A//T is not convex, one

cannot expect the non-equivariant limit of LΦλ⊕V Tµ to exist. Nonetheless, the projection along

(5.4) of the Weyl-invariant part of LΦλ⊕V Tµ does admit a non-equivariant limit.

Theorem 6.5.3. The non-equivariant limit λ→ 0 of p
(
LΦλ⊕V Tµ ∩H

W
A//T

)
exists.

We call this non-equivariant limit the twisted Givental–Martin cone LGM,V Tµ
⊂ HWA//T .

Proof of Theorem 6.5.3. Recall the twisted J-function JV Tµ (τ,−z) from Definition 6.3.4. By [CG07]

a general point

−z + t0 + t1z + · · ·+O(z−1)

on LV Tµ can be written as

JV Tµ
(
τ(t),−z

)
+

N∑
α=1

Cα(t, z)z
∂JV Tµ
∂τα

(
τ(t),−z

)
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for some coefficients Cα(t, z) that depend polynomially on z and some H•(A//T )-valued function

τ(t) of t = (t0, t1, . . .). The Weyl modification τ 7→ Itw(τ) of τ 7→ JV Tµ (τ,−z) satisfies Itw(τ) ≡

JV Tµ (τ,−z) modulo Novikov variables, and Itw(τ) ∈ LΦλ⊕V Tµ by Proposition 6.4.9, so a general

point

−z + t0 + t1z + · · ·+O(z−1) (6.17)

on LΦλ⊕V Tµ can be written as

Itw
(
τ(t)†,−z

)
+

N∑
α=1

Cα(t, z)†z
∂Itw

∂τα
(
τ(t)†,−z

)
for some coefficients Cα(t, z)† that depend polynomially on z and some H•(A//T )-valued func-

tion τ(t)†. Since the twisted J-function is Weyl-invariant, so is Itw(τ), and thus if (6.17) is

Weyl-invariant then we may take Cα(t, z)† to be such that
∑

αCα(t, z)†φα is Weyl-invariant.

Projecting along (5.4) we see that a general point

−z + t0 + t1z + · · ·+O(z−1) (6.18)

on p
(
LΦλ⊕V Tµ ∩H

W
A//T

)
can be written as

p ◦ Itw
(
τ(t)‡,−z

)
+

N∑
α=1

Cα(t, z)‡z
∂(p ◦ Itw)

∂τα
(
τ(t)‡,−z

)
for some coefficients Cα(t, z)‡ that depend polynomially on z and some H•(A//T )-valued func-

tion τ(t)‡. Furthermore, since p ◦ Itw(τ) has a well-defined non-equivariant limit IGM(τ),

we see that Cα(t, z)‡ also admits a non-equivariant limit. Hence a general point (6.18) on

p
(
LΦλ⊕V Tµ ∩H

W
A//T

)
has a well-defined limit as λ→ 0.

Corollary 6.5.4. The non-equivariant limit λ→ 0 of p
(
LΦλ ∩HWA//T

)
exists.

We call this non-equivariant limit the Givental–Martin cone LGM ⊂ HWA//T .

Proof. Take the vector bundle V T in Theorem 6.5.3 to have rank zero.

Corollary 6.5.5. If τ 7→ I(τ) is a Weyl-invariant family of elements of LV Tµ that satisfies

the Divisor Equation (6.9) then the Givental–Martin modification τ 7→ IGM(τ) is a family of

elements of LGM,V Tµ

Proof. Proposition 6.4.9 implies that τ 7→ Itw(τ,−z) is a family of elements on LΦλ⊕V Tµ . Project-

ing along (5.4) and taking the limit λ→ 0, which exists by Lemma 6.5.1, proves the result.
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This completes the results required to state the Abelian/non-Abelian Correspondence (Con-

jectures 5.0.4 and 5.0.8) and the Abelian/non-Abelian Correspondence with bundles (Conjec-

tures 5.0.6 and 5.0.9).
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Chapter 7

The Abelian/non-Abelian

Correspondence

7.1 The Work of Brown and Oh

In this section we will review results by Brown [Bro14] and Oh [Oh21], and situate their work

in terms of the Abelian/non-Abelian Correspondence (Conjecture 5.0.8). In particular, we show

that the Givental–Martin modification of the Brown I-function is the Oh I-function. We freely

use the notation introduced in Section 6.2.

Let X be a smooth projective variety. We will decompose the J-function of X, defined

in §6.3, into contributions from different degrees:

JX(τ, z) =
∑

D∈NE(X)

JDX (τ, z)QD. (7.1)

Recall that we have a direct sum of line bundles E = L1 ⊕ · · · ⊕ Ln
π−→ X, and that Fl(E) =

Fl(r1, . . . , r`, E) = A//G is the partial flag bundle associated to E. As in §6.2, we form the

toric fibration Fl(E)T = A//T with general fibre CN//(C×)R. We denote both projection maps

Fl(E) → X and Fl(E)T → X by π. For the sake of clarity, we will denote homology and

cohomology classes on Fl(E)T with a tilde and classes on Fl(E) without. Recall the cohomology

classes H̃`+1,j = −π∗c1(Lj) on Fl(E)T , and H`+1,j = −π∗c1(Lj) on Fl(E). For a fixed homology

class β̃ on Fl(E)T define d`+1,j = 〈−π∗c1(Lj), β̃〉, and for a fixed homology class β on Fl(E)

define d`+1,j = 〈−π∗c1(Lj), β〉. We use the indexing of the set {1, . . . , R} defined in Section 6.2,

and denote the components of a vector d ∈ ZR by di,j . Similarly, we denote components of a

vector d ∈ Z` by di.

In [Oh21], the author proves that a certain generating function, the I-function of Fl(E), lies

119
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on the Lagrangian cone for Fl(E).

Theorem 7.1.1. Let τ ∈ H•(X), t =
∑

i tic1(S∨i ), and define the I-function of Fl(E) to be

IFl(E)(t, τ, z) =

e
t
z

∑
β∈NE(Fl(E))

Qβe〈β,t〉π∗Jπ∗βX (τ, z)
∑

d∈ZR :
∀i

∑
j di,j=〈β,c1(S∨i )〉

∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞Hi,j −Hi+1,j′ +mz∏di,j−di+1,j′

m=−∞ Hi,j −Hi+1,j′ +mz

×
∏̀
i=1

∏
j 6=j′

∏di,j−di,j′
m=−∞ Hi,j −Hi,j′ +mz∏0
m=−∞Hi,j −Hi,j′ +mz

Then IFl(E)(t, τ,−z) ∈ LFl(E) for all t and τ .

In [Bro14], the author proves an analogous result for the corresponding Abelian quotient

Fl(E)T .

Theorem 7.1.2. Let τ ∈ H•(X), t =
∑

i,j ti,jH̃i,j, and define the Brown I-function of Fl(E)T

to be

IFl(E)T (t, τ, z) =

e
t
z

∑
β̃∈H2 Fl(E)T

Qβ̃e〈β̃,t〉π∗Jπ∗β̃X (τ, z)
∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞ H̃i,j − H̃i+1,j′ +mz∏〈β̃,H̃i,j−H̃i+1,j′ 〉

m=−∞ H̃i,j − H̃i+1,j′ +mz

Then IFl(E)T (t, τ,−z) ∈ LFl(E)T for all t and τ .

Remark 7.1.3. We have chosen to state Theorem 7.1.2 in a different form than in Brown’s

original paper. The equivalence of the two versions follows from Lemma 7.1.4 below. The classes

Hi,j here were denoted in [Bro14] by Pi, and the classes Hi,j −Hi+1,j′ here were denoted there

by Uk.

Lemma 7.1.4. Writing IFl(E)T =
∑

β̃ I
β̃
Fl(E)T

Qβ̃, any nonzero I β̃ must have β̃ ∈ NE(Fl(E)T ).

Proof. To see this we temporarily adopt the notation of Brown and denote the torus invariant

divisors by Uk, as in Lemma 6.2.3. Then IFl(E)T takes the form

IFl(E)T =
∑

β̃∈H2 Fl(E)T :

π∗β̃∈NE(X)

(. . . )

N∏
k=1

∏0
m=−∞ Uk +mz∏〈β̃,Uk〉
m=−∞ Uk +mz

Let α ⊂ {1, . . . N} be a subset of size R which defines a section of the toric fibration as in
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Section 6.2. We have that

s∗αIFl(E)T = (. . . )
∏
k∈α

∏0
m=−∞(0) +mz∏〈β̃,Uk〉
m=−∞(0) +mz

∏
k/∈α

∏0
m=−∞ s

∗
αUk +mz∏〈β̃,Uk〉

m=−∞ s
∗
αUk +mz

since s∗α(Uk) = 0 if k ∈ α. Therefore, if 〈β̃, Uk〉 < 0 for some k ∈ α, the numerator contains a

term (0) and vanishes. We conclude that any β̃ ∈ H2 Fl(E)T which gives a nonzero contribution

to s∗αIFl(E)T must satisfy the conditions

π∗β̃ ∈ NE(X), 〈β̃, Uk〉 ≥ 0 ∀k ∈ α.

The section sα gives a splitting H2(Fl(E)T ) = H2(X) ⊕ H2(FlT ), via which we may write

β̃ = sα∗D + ι∗d where ι is the inclusion of a fibre. We have

〈β̃, Uk〉 = 〈D, s∗αUk〉+ 〈d, ι∗Uk〉 = 〈d, ι∗Uk〉 ≥ 0

for all k ∈ α. However, the cone in the secondary fan spanned by the line bundles ι∗Uk contains

the ample cone of FlT (see Section 6.2), so this implies d ∈ NE(FlT ). It follows that any β̃ which

gives a nonzero contribution to s∗αIFl(E)T is effective. We now use the Atiyah-Bott localization

formula

IFl(E)T =
∑
α

sα∗

(
s∗αIFl(E)T

eα

)
, where eα =

∏
k/∈α

s∗αUk

where α ranges over the torus fixed point sections of the fibration, to conclude that the same is

true for IFl(E)T .

Lemma 7.1.5. Brown’s I-function satisfies the Divisor Equation. That is,

z∇ρI β̃Fl(E)T
= (ρ+ 〈ρ, β̃〉z)I β̃Fl(E)T

for any ρ ∈ H2(Fl(E)T ).

Proof. Decompose ρ = ρF + π∗ρB into fibre and base part. Basic differentiation and the divisor

equation for JX show that

z∇ρI β̃Fl(E)T
=
(
ρF + 〈ρF , β̃〉z + (π∗ρB + 〈π∗ρB, β̃〉z)

)
et/ze〈β̃,t〉π∗Jπ∗β̃X (τ, z) ·H

where H is a hypergeometric factor with no dependence on t or τ . The right-hand simplifies to

(ρ+ 〈ρ, β̃〉z)I β̃Fl(E)T
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as required.

Lemma 7.1.6. If we restrict t to lie in the Weyl-invariant locus H2(Fl(E)T )W ⊂ H2(Fl(E)T )

then (t, τ) 7→ IFl(E)T (t, τ, z) takes values in H•(Fl(E)T )W .

Proof. This is immediate from the definition of IFl(E)T (t, τ, z), in Theorem 7.1.2.

Proposition 7.1.7. Restrict t to lie in the Weyl-invariant locus H2(Fl(E)T )W ⊂ H2(Fl(E)T )

and consider the Brown I-function (t, τ) 7→ IFl(E)T (t, τ, z). The Givental–Martin modification

IGM(t, τ) of this family is equal to Oh’s I-function IFl(E)(t, τ).

Proof. Lemma 7.1.6 and Lemma 6.5.1 imply that the Givental–Martin modification IGM(t, τ)

exists. We need to compute it. Note that the restrictions to the fibre of the classes H̃i,j form a

basis for H2(FlT ). Since the general fibre FlT of Fl(E)T has vanishing first homology, the Leray–

Hirsch Theorem gives an identification Q[H2(Fl(E)T ,Z)] = Q[H2(X,Z)][q1,1, . . . , q`,r` ] via the

map

Qβ̃ 7→ Qπ∗β̃
∏
i,j

q
〈H̃i,j ,β̃〉
i,j (7.2)

By Lemma 7.1.4, the summation range in the sum defining IFl(E)T is contained in NE(Fl(E)T ).

We can therefore write the corresponding twisted I-function (6.15) as

Itw(t, τ, z) = e
t
z

∑
D∈NE(X)

d∈ZR

QD
∏
i,j

q
di,j
i,j e

t·dπ∗JDX (τ, z)
∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞ H̃i,j − H̃i+1,j′ +mz∏di,j−di+1,j′

m=−∞ H̃i,j − H̃i+1,j′ +mz

×
∏̀
i=1

∏
j 6=j′

∏di,j−di,j′
m=−∞ H̃i,j − H̃i,j′ + λ+mz∏0
m=−∞ H̃i,j − H̃i,j′ + λ+mz

where the ti,j ∈ C, t =
∑`

i=1

∑ri
j=1 ti,jH̃i,j , and t · d =

∑
i,j ti,jdi,j . For the Weyl modification

factor we used the fact that the roots of G are given by ρi,jρ
−1
i,j′ , where the character ρi,j was

defined in section 6.2. By Lemma 7.1.4 the effective summation range for the vector d here is

contained in the set S ⊂ ZR consisting of d such that 〈β̃, H̃i,j〉 = di,j for some β̃ ∈ NE(Fl(E)T ).

We can identify the group ring Q[H2(Fl(E))] with Q[H2(X,Z)][q1, . . . , q`] via the map

Qβ 7→ Qπ∗β
∏
i

q
〈c1(S∨i ),β〉
i (7.3)

Via (7.2) and (7.3) the map on Mori cones % : NE(Fl(E)T )→ NE(Fl(E)) becomes

QD
∏
i,j

q
di,j
i,j 7→ QD

∏
i

q
∑
j di,j

i
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Restricting t to the Weyl-invariant locus H2(Fl(E)T )W corresponds to setting ti,j = ti for all i

and j, which gives et·d = e
∑
i tidi where di =

∑
j di,j . The identification H2(Fl(E)T )W ∼=

H2(Fl(E)) sends
∑

i,j tiH̃i,j to
∑

i tic1(S∨i ), so projecting along (5.4) and taking the limit as

λ = 0 we obtain

e
t
z

∑
D∈NE(X)

δ∈Z`

QD
∏
i

qδii e
t·δπ∗JDX (τ, z)

∑
d∈ZR :

∀i
∑
j di,j=δi

∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞Hi,j −Hi+1,j′ +mz∏di,j−di+1,j′

m=−∞ Hi,j −Hi+1,j′ +mz

×
∏̀
i=1

∏
j 6=j′

∏di,j−di,j′
m=−∞ Hi,j −Hi,j′ +mz∏0
m=−∞Hi,j −Hi,j′ +mz

where now t =
∑

i tic1(S∨i ). The effective summation range here is contained in NE(Fl(E)) by

construction. Using (7.3) again we may rewrite this as

e
t
z

∑
β∈NE(Fl(E))

Qβe〈β,t〉π∗Jπ∗βX (τ, z)
∑

d∈ZR :
∀i

∑
j di,j=〈β,c1(S∨i )〉

∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞Hi,j −Hi+1,j′ +mz∏di,j−di+1,j′

m=−∞ Hi,j −Hi+1,j′ +mz

×
∏̀
i=1

∏
j 6=j′

∏di,j−di,j′
m=−∞ Hi,j −Hi,j′ +mz∏0
m=−∞Hi,j −Hi,j′ +mz

This is IFl(E)(t, τ, z), as required.

Remark 7.1.8. In view of (6.6), we see that the effective summation range in IFl(E) is contained

in the subset of vectors satisfying

di,j ≥ min
j′
di+1,j′ , 1 ≤ i ≤ `, 1 ≤ j ≤ ri

This will prove useful in calculations in Section 7.4.

7.2 The Abelian/non-Abelian Correspondence with bundles

We are now ready to prove Theorem 5.0.2. Recall from the Introduction that we have fixed a

representation ρ : G→ GL(V ) where G =
∏
i GLri(C), and that this determines vector bundles

V G → Fl(E) and V T → Fl(E)T . Since T is Abelian, V T splits as a direct sum of line bundles

V T = F1 ⊕ · · · ⊕ Fk
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The Brown I-function gives a family

(t, τ) 7→ IFl(E)T (t, τ,−z) t ∈ H2(Fl(E)T )W , τ ∈ H•(X)

of elements of HFl(E)T , and Theorem 7.1.2 shows that IFl(E)T (t, τ,−z) ∈ LFl(E)T . Twisting by

(F, c) where c is the C×-equivariant Euler class with parameter µ gives a twisted I-function, as

in Definition 6.4.7, which we denote by

(t, τ) 7→ IV Tµ (t, τ,−z) t ∈ H2(Fl(E)T )W , τ ∈ H•(X)

Applying Proposition 6.4.9 shows that IV Tµ (t, τ,−z) ∈ LV Tµ . Twisting again, by (Φ, c′) where

Φ→ Fl(E)T is the roots bundle from the Introduction and c′ is the C×-equivariant Euler class

with parameter λ gives a twisted I-function, as in Definition 6.4.7, which we denote by

(t, τ) 7→ IΦλ⊕V Tµ (t, τ,−z) t ∈ H2(Fl(E)T )W , τ ∈ H•(X)

Applying Proposition 6.4.9 again shows that IΦλ⊕V Tµ (t, τ,−z) ∈ LΦλ⊕V Tµ . We now project along

(5.4) and take the non-equivariant limit λ → 0, obtaining the Givental–Martin modification

of IV Tµ . This is a family

(t, τ) 7→ IGM(t, τ,−z) t ∈ H2(Fl(E)T )W , τ ∈ H•(X)

of elements of HFl(E). Explicitly:

Definition 7.2.1 (which is a specialisation of Definition 6.5.2 to the situation at hand).

IGM(t, τ, z) =

e
t
z

∑
β∈NE(Fl(E))

Qβe〈β,t〉π∗Jπ∗βX (τ, z)
∑

d∈ZR :
∀i

∑
j di,j=〈β,c1(S∨i )〉

∏̀
i=1

ri∏
j=1

ri+1∏
j′=1

∏0
m=−∞Hi,j −Hi+1,j′ +mz∏di,j−di+1,j′

m=−∞ Hi,j −Hi+1,j′ +mz

×
∏̀
i=1

∏
j 6=j′

∏di,j−di,j′
m=−∞ Hi,j −Hi,j′ +mz∏0
m=−∞Hi,j −Hi,j′ +mz

k∏
s=1

∏fs·d
m=−∞ fs + µ+mz∏0
m=−∞ fs + µ+mz

Here JDX (τ, z) is as in (7.1), fs · d =
∑

i,j fs,i,jdi,j , and fs =
∑

i,j fs,i,jHi,j , where

c1(Fs) =
∑̀
i=1

ri∑
j=1

fs,i,jH̃i,j
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Lemma 6.5.1 shows that this expression is well-defined despite the presence of

ω =
∏
i

∏
j<j′(Hi,j −Hi,j′)

in the denominator. Corollary 6.5.5 shows that IGM(t, τ,−z) ∈ LGM,V Tµ
. Note that IGM(t, τ) is

not the V G-twist of Oh’s I-function IFl(E). Indeed V G need not be a split bundle, so the twist

may not even be defined.

Theorem 7.2.2. Let IGM be as in Definition 7.2.1. Then:

IGM(t, τ,−z) ∈ LV Gµ for all t ∈ H2(Fl(E)T )W , τ ∈ H•(X).

Proof. Before projecting and taking the non-equivariant limit, we have

IΦλ⊕V Tµ = ∆V Tµ

(
DV Tµ

(
IΦλ

))
by Proposition 6.11. Projecting along (5.4) gives

p ◦ IΦλ⊕V Tµ = ∆V Gµ

(
DV Gµ

(
p ◦ IΦλ

))
and taking the limit λ→ 0, which is well-defined by Lemma 6.5.1, gives

IGM = ∆V Gµ

(
DV Gµ

(
IFl(E)

))
by Proposition 7.1. The result now follows from Proposition 6.4.6.

Exactly the same argument proves:

Corollary 7.2.3. Let L → X be a line bundle with first Chern class ρ, and define the vector

bundle F → Fl(E) to be F = V G⊗π∗L. Let IGM be as in Definition 7.2.1, except that the factor

k∏
s=1

∏fs·d
m=−∞ fs + µ+mz∏0
m=−∞ fs + µ+mz

is replaced by
k∏
s=1

∏fs·d+〈ρ,π∗β〉
m=−∞ fs + π∗ρ+ µ+mz∏0
m=−∞ fs + π∗ρ+ µ+mz

Then:

IGM(t, τ,−z) ∈ LFµ for all t ∈ H2(Fl(E)T )W , τ ∈ H•(X).

The following Corollary gives a closed-form expression for genus-zero Gromov–Witten in-

variants of the zero locus of a generic section Z of F in terms of invariants of X.
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Corollary 7.2.4. With notation as in Corollary 7.2.3, let Z be the zero locus of a generic

section of F → Fl(E). Suppose that −KZ is the restriction of an ample class on Fl(E) and that

τ ∈ H2(X). Then

JFµ(t+ τ, z) = e−C(t)/zIGM(t, τ, z)

where

C(t) =
∑
β

nβQ
βe〈β,t〉

for some constants nβ ∈ Q and the sum runs over the finite set

S = {β ∈ NE(Fl(E)) : 〈−KFl(E) − c1(F ), β〉 = 1}

If Z is of Fano index two or more then this set is empty and C(t) ≡ 0. Regardless, if the vector

bundle F is convex then the non-equivariant limit µ→ 0 of JFµ exists and

JZ
(
i∗t+ i∗τ, z

)
= i∗JF0(t+ τ, z)

where i : Z → Fl(E) is the inclusion map.

Proof of Corollary 7.2.4. The statement about Fano index two or more follows immediately

from the Adjunction Formula

KZ =
(
KFl(E) + c1(F )

)∣∣
Z

We need to show that

IGM(t, τ, z) = z + t+ τ + C(t) +O(z−1) (7.4)

Everything else then follows from the characterisation of the twisted J-function just below

Definition 6.3.4, the String Equation

JFµ(τ + a, z) = ea/zJFµ(τ, z) a ∈ H0(Fl(E))

and [Coa14]. To establish (7.4), it will be convenient to set deg(z) = deg(µ) = 1, deg(φ) = k for

φ ∈ H2k(Fl(E)), and deg(Qβ) = 〈−KX , β〉 if β ∈ H2(X). The degree axiom for Gromov–Witten

invariants then shows that Jπ∗βX is homogeneous of degree 〈KX , π∗β〉+ 1. Write

IGM(t, τ, z) = e
t
z

∑
β∈NE(Fl(E))

Qβe〈β,t〉π∗Jπ∗βX (τ, z)× Iβ(z)×Mβ(z)
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where

Mβ(z) =
k∏
s=1

∏fs·d+〈ρ,π∗β〉
m=−∞ fs + π∗ρ+ µ+mz∏0
m=−∞ fs + π∗ρ+ µ+mz

A straightforward calculation shows that

Iβ(z) = z〈KFl(E)−π∗KX ,β〉iβ(z)

Mβ(z) = z〈c1(F ),β〉mβ(z)

where iβ(z),mβ(z) ∈ HFl(E) are homogeneous of degree 0. It follows that π∗Jπ∗βX (τ, z)× Iβ(z)×

Mβ(z) is homogeneous of degree 〈KFl(E) + c1(F ), β〉 + 1 which is nonpositive for β 6= 0 by the

assumptions on −KZ . Since τ ∈ H2(X), any negative contribution to the homogenous degree

must come from a negative power of z, so that π∗Jπ∗βX (τ, z) × Iβ(z) ×Mβ(z) is O(z−1), unless

β = 0 or β ∈ S. In the latter case, the expression has homogeneous degree 0 and is therefore

of the form c0 + c1
z +O(z−2) with ci independent of z and of degree i. Relabeling nβ = c0 and

expanding IGM in powers of z, we obtain

IGM(t, τ, z) =
(
1+tz−1+O(z−2)

)(
π∗J0

X×I0×M0+
(∑
β∈S

nβQ
βe〈β,t〉+O(z−1)

)
+
∑

06=β/∈S

O(z−1)
)

= (z + τ + t+ C(t) +O(z−1))

where C(t) is as claimed. This proves (7.4), and the result follows.

We restate Corollary 7.2.4 in the case where the flag bundle is a Grassmann bundle, i.e ` = 1,

relabelling H1,j = Hj , d1,j = dj and r1 = r. The rest of the notation here is as in §6.2.

Corollary 7.2.5. Let V G → Gr(r, E) be a vector bundle induced by a representation of G, let

L→ X be a line bundle with first Chern class ρ, and let F = V G⊗π∗L. Let Z be the zero locus

of a generic section of F . Suppose that F is convex, that −KGr(E,r) − c1(F ) is ample, and that

τ ∈ H2(Gr(r, E)). Then the non-equivariant limit µ → 0 of the twisted J-function JFµ exists

and satisfies

JZ
(
i∗t+ i∗τ, z

)
= i∗JF0(t+ τ, z)
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where i : Z → Gr(r, E) is the inclusion map. Furthermore

JF0(t+ τ, z) = e
t−C(t)
z

∑
β∈NE(Gr(r,E))

Qβe〈β,t〉π∗Jπ∗βX (τ, z)

∑
d∈Zr :

d1+···+dr=〈β,c1(S∨)〉

(−1)ε(d)
r∏
i=1

n∏
j=1

∏0
m=−∞Hi + π∗c1(Lj) +mz∏di+〈π∗β,c1(Lj)〉

m=−∞ Hi + π∗c1(Lj) +mz

×
∏
i<j

Hi −Hj + (di − dj)z
Hi −Hj

×
k∏
s=1

fs·d+〈ρ,π∗β〉∏
m=1

(
fs + π∗ρ+mz

)
(7.5)

Here the Abelianised bundle V T splits as a direct sum of line bundles F1 ⊕ · · · ⊕ Fk with first

Chern classes that we write as c1(Fs) =
∑r

i=1 fs,iH̃i, J
D
X (τ, z) is as in (7.1), ε(d) =

∑
i<j di−dj,

fs · d =
∑

i fs,idi, fs =
∑

i fs,iHi, and C(t) ∈ H0(Gr(r, E),Λ) is the unique expression such that

the right-hand side of (7.5) has the form z + t+ τ +O(z−1).

Remark 7.2.6. For a more explicit formula for C(t), see Corollary 7.2.4; in particular if Z has

Fano index two or greater then C(t) ≡ 0. By Remark 7.1.8 the summand in (7.5) is zero unless

for each i there exists a j such that di + 〈π∗β, c1(Lj)〉 ≥ 0

Proof of Corollary 7.2.5. We cancelled terms in the Weyl modification factor, as in the proof of

Lemma 6.5.1, and took the non-equivariant limit µ→ 0.

Remark 7.2.7. The relationship between I-functions (or generating functions for genus-zero

quasimap invariants) and J-functions (which are generating functions for genus-zero Gromov–

Witten invariants) is particularly simple in the Fano case [Giv98] [CFK14, §1.4], and for the

same reason Corollary 7.2.4 holds without the restriction τ ∈ H2(X) if Z → X is relatively

Fano1. This never happens for blow-ups X̃ → X, however, and it is hard to construct examples

where Z → X is relatively Fano and the rest of the conditions of Corollary 7.2.4 hold. We do

not know of any such examples.

Remark 7.2.8. Corollary 7.2.4 gives a closed-form expression for the small J-function of Z

– or, equivalently, for one-point gravitional descendant invariants of Z – in the case where

Z is Fano. But in general (that is, without the Fano condition on Z) one can use Birkhoff

factorization, as in [CG07, CFK14] and [CCIT19, §3.8], to compute any twisted genus-zero

gravitional descendant invariant of Fl(E) in terms of genus-zero descendant invariants of X.

The twisting here is with respect to the C×-equivariant Euler class and the vector bundle F .

1That is, if the relative anticanonical bundle −KZ/X is ample.
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Thus Corollary 7.2.4 determines the Lagrangian submanifold LFµ that encodes twisted Gromov–

Witten invariants. Applying [Coa14, Theorem 1.1], we see that Corollary 7.2.4 together with

Birkhoff factorization allows us to compute any genus-zero Gromov–Witten invariant of the zero

locus Z of the form

〈θ1ψ
i1 , . . . , θnψ

in〉0,n,d (7.6)

where all but one of the cohomology classes θi lie in im(i∗) ⊂ H•(Z) and the remaining θi is an

arbitrary element of H•(Z). Here i : Z → Fl(E) is the inclusion map.

Remark 7.2.9. Applying Remark 7.2.8 to the blow-up X̃ → X considered in the introduction,

we see that Corollary 7.2.4 together with Birkhoff factorization allows us to compute arbitrary

invariants of X̃ of the form (7.6) in terms of genus-zero gravitional descendants of X. In this case

im(i∗) ⊂ H•(X̃) contains all classes from H•(X) and also the class of the exceptional divisor.

7.3 The Main Geometric Construction

Let F be a locally free sheaf on a variety X. We denote by F (x) its fibre over x, a vector space

over the residue field κ(x). A morphism ϕ of locally free sheaves induces a linear map on fibres,

denoted by ϕ(x). We make the following definition:

Definition 7.3.1. Let ϕ : Em → Fn a morphism of locally free sheaves of rank m and n

respectively. The k-th degeneracy locus is the subvariety of X defined by

Dk(ϕ) =
{
x ∈ X : rk ϕ(x) ≤ k

}
Note that Dk(ϕ) = X if k ≥ min{m,n}; if k = min{m,n} − 1 we simply call Dk(ϕ) the

degeneracy locus of ϕ.

We have the following results:

• Scheme-theoretically, Dk(ϕ) may be defined as the zero locus of the section ∧kϕ; this

shows that locally the ideal of Dk(ϕ) is defined by the (k + 1)× (k + 1)-minors of ϕ.

• If E∨⊗F is globally generated, then Dk(ϕ) of a generic ϕ is either empty or has expected

codimension (m− k)(n− k), and the singular locus of Dk(ϕ) is contained in Dk−1(ϕ). In

particular, if ϕ is generic and dimX < (m − k + 1)(n − k + 1), then Dk(ϕ) is smooth

[Ott95, Theorem 2.8].

• We may freely assume that m ≥ n in what follows, since we can always replace ϕ with its

dual map whose degeneracy locus is the same.
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The following result is proved along similar lines to [CCGK16, Lemma E.1].

Proposition 7.3.2. Let X be a smooth variety, and ϕ : Em → Fn a generic morphism of locally

free sheaves on X. Suppose that m ≥ n and write r = m−n. Let Y = Dn−1(ϕ) be the degeneracy

locus of ϕ, and assume that ϕ has generically full rank, that Y has the expected codimension

m − n + 1 and that Y is smooth. Let π : Gr(r, E) → X be the Grassmann bundle of E on X,

and let S be the tautological subbundle on Gr(r, E). Then the blow-up BlY (X) of X along Y

is a subvariety of Gr(r, E), cut out as the zero locus of the regular section s ∈ Γ(Hom(S, π∗F ))

defined by the composition

S ↪→ π∗E
π∗ϕ−−→ π∗F

where the first map is the canonical inclusion.

Proof. We write points in Gr(r, E) as (p, V ), where p ∈ X and V is a r-dimensional subspace

of the fibre E(p). At (p, V ), the section s is given by the composition

V ↪→ E(p)
ϕ(p)−−→ F (p)

so s vanishes at (p, V ) if and only if V ⊂ kerϕ(p).

The statement is local on X, so fix a point P ∈ X and a Zariski open neighbourhood

U = Spec(A) with trivialisations E|U ∼= Am, F |U ∼= An. We will show that the equations of

Z(s)∩U and BlU∩Y U agree. Under these identifications ϕ is given by a n×m matrix with entries

in A. Since ϕ has generically maximal rank and Y is nonsingular, after changing trivialization

and shrinking U if necessary, we may assume that ϕ is given by the matrix



x0 . . . xr 0 0 . . . 0

0 . . . 0 1 0 . . . 0

0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 1


Note that the ideal of the minors of this matrix is just I = (x0, . . . xr) and that x0, . . . , xr form

part of a regular system of parameters around P , so we may assume that n = 1,m = r + 1.

Writing yi for the basis of sections of S∨ on Gr(r,Ar+1), we see that Z(s) is given by the equation

x0y0 + · · ·+ xryr = 0
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Under the Plücker isomorphism

Gr(r,Ar+1)→ P(∧rAr+1) ∼= U × Pry0,...,yr

Z(s) maps to the variety cut out by the minors of the matrix

x0 . . . xr

y0 . . . yr


i.e the blowup of Y ∩ U in U .

7.4 Examples

We close by presenting three example computations that use Theorems 5.0.1 and 5.0.2, calcu-

lating genus-zero Gromov–Witten invariants of blow-ups of projective spaces in various high-

codimension complete intersections. Recall, as we will need it below, that if E → X is a vector

bundle of rank n then the anticanonical divisor of Gr(r, E) is

−KGr(r,E) = π∗ (−KX + r(detE)) + n(detS∨) (7.7)

where S → Gr(r, E) is the tautological subbundle. Recall too that the regularised quantum

period of a Fano manifold Z is the generating function

ĜZ(x) = 1 +
∞∑
d=2

d!cdx
d

for genus-zero Gromov–Witten invariants of Z, where

cd =
∑
β

〈θψd−2
1 〉0,1,β for θ ∈ Htop(Z) the class of a volume form

and the sum runs over effective classes β such that 〈β,−KZ〉 = d.

Example 7.4.1. We will compute the regularised quantum period of X̃ = BlY P4 where Y is a

plane conic. Consider the situation as in §6.2 with:

• X = P4

• E = O⊕O⊕O(−1)

• G = GL2(C), T = (C×)2 ⊂ G
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Then A//G is Gr(2, E), and A//T is the P2×P2-bundle P(E)×P4P(E)→ P4. By Proposition 7.3.2

the zero locus X̃ of a section of S∨⊗π∗(O(1)) on Gr(2, E) is the blowup of P4 along the complete

intersection of two hyperplanes and a quadric. We identify the group ring Q[H2(A//T,Z)] with

Q[Q,Q1, Q2], where Q corresponds to the pullback of the hyperplane class of P4 and Qi corre-

sponds to H̃i. Similarly, we identify Q[H2(A//G,Z)] with Q[Q, q], where again Q corresponds to

the pullback of the hyperplane class of P4 and q corresponds to the first Chern class of S∨.

We will need Givental’s formula [Giv96] for the J-function of P4:

JP4(τ, z) = zeτ/z
∞∑
D=0

QDeDτ∏D
m=1(H +mz)5

τ ∈ H2(P4)

In the notation of §6.2, we have ` = 1, r` = r1 = 2, r`+1 = 3. We relabel H̃`,j = H̃j and d`,j = dj .

We have that H̃`+1,1 = H̃`+1,2 = 0, H̃`+1,3 = π∗H and d`+1,1 = d`+1,2 = 0, d`+1,3 = D. Write

F = S∨ ⊗ π∗O(1). Corollary 7.2.5 and Remark 7.2.6 give

JF0(t, τ, z) = ze
t+τ
z

∞∑
D=0

∞∑
d1=0

∞∑
d2=0

(−1)d1−d2QDqd1+d2eDτe(d1+d2)t
∏2
i=1

∏di+D
m=1 (Hi +H +mz)∏D

m=1(H +mz)5
∏d1
m=1(H1 +mz)2

∏d2
m=1(H2 +mz)2

×
2∏
i=1

∏0
m=−∞(Hi −H +mz)∏di−D
m=−∞(Hi −H +mz)

(H1 −H2 + z(d1 − d2))

H1 −H2

To obtain the quantum period we need to calculate the anticanonical bundle of X̃. Equation

(7.7) and the adjunction formula give

−K
X̃

= 3H + 3 detS∨ − (2H + detS∨) = H + 2 detS∨.

To extract the quantum period from the non-equivariant limit JF0 of the twisted J-function, we

take the component along the unit class 1 ∈ H•(A//G;Q), set z = 1, and set Qβ = x〈β,−KX̃〉.

That is, we set λ = 0, t = 0, τ = 0, z = 1, q = x2, Q = x, and take the component along the

unit class, obtaining

GX̃(x) =

∞∑
n=0

∞∑
l=n+1

∞∑
m=l

(−1)l+m−1xl+2m+2n (l+n)!(l+m)!(l−n−1)!
(l!)5(m!)2(n!)2(n−l)! (n−m)

+

∞∑
l=0

∞∑
m=l

∞∑
n=l

(−1)m+nxl+2m+2n (l+n)!(l+m)!
(l!)5(m!)2(n!)2(n−l)!(m−l)!

(
1 + (n−m)(−2Hn +Hl+n −Hn−l)

)
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Thus the first few terms of the regularized quantum period are:

ĜX̃(x) = 1 + 12x3 + 120x5 + 540x6 + 20160x8 + 33600x9 + 113400x10

+ 2772000x11 + 2425500x12 + · · ·

This strongly suggests that X̃ coincides with the quiver flag zero locus with ID 15 in [Kal19],

although this is not obvious from the constructions.

Example 7.4.2. We will compute the regularised quantum period of X̃ = BlY P6, where Y is

a 3-fold given by the intersection of a hyperplane and two quadric hypersurfaces. Consider the

situation as in §6.2 with:

• X = P6

• E = O⊕O⊕O(1)

• G = GL2(C), T = (C×)2 ⊂ G

Then A//G is Gr(2, E), and A//T is the P2×P2-bundle P(E)×P6P(E)→ P6. By Proposition 7.3.2

the zero locus X̃ of a section of S∨⊗π∗(O(2)) on Gr(2, E) is the blowup of P6 along the complete

intersection of a hyperplane and two quadrics. We identify the group ring Q[H2(A//T,Z)]

here with Q[Q,Q1, Q2], where Q corresponds to the pullback of the hyperplane class of P6

and Qi corresponds to H̃i. Similarly, we identify Q[H2(A//G,Z)] with Q[Q, q], where again Q

corresponds to the pullback of the hyperplane class of P6 and q corresponds to the first Chern

class of S∨.

The J-function of P6 is [Giv96]:

JP6(τ, z) = zeτ/z
∞∑
D=0

QDeDτ∏D
m=1(H +mz)7

τ ∈ H2(P6)

In the notation of §6.2, we have ` = 1, r` = r1 = 2, r`+1 = 3. We relabel H̃`,j = H̃j and d`,j = dj .

We have that H̃`+1,1 = H̃`+1,2 = 0, H̃`+1,3 = −π∗H and d`+1,1 = d`+1,2 = 0, d`+1,3 = −D. Write

F = S∨ ⊗ π∗O(2). Corollary 7.2.5 and Remark 7.2.6 give

JF0(t, τ, z) = ze
t+τ
z

∞∑
D=0

∞∑
d1=−D

∞∑
d2=−D

QDqd1+d2eDτe(d1+d2)t∏D
m=1(H +mz)7

2∏
i=1

∏0
m=−∞(Hi +mz)2∏di
m=−∞(Hi +mz)2

×
2∏
i=1

∏di+2D
m=1 (Hi + 2H +mz)∏di+D
m=1 (Hi +H +mz)

(−1)d1−d2
(H1 −H2 + z(d1 − d2))

H1 −H2
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Again we will need the anticanonical bundle of X̃, which by (7.7) and the adjunction formula is

−K
X̃

= 9H + 3 det(S∗)− (4H + det(S∗)) = 5H + 2 det(S∗).

To extract the quantum period from JF0 , we take the component along the unit class 1 ∈

H•(A//G;Q), set z = 1, and set Qβ = x〈β,−KX̃〉. That is, we set λ = 0, t = 0, τ = 0, z = 1,

q = x2, Q = x5, and take the component along the unit class, obtaining

GX̃(x) =
∞∑
D=0

∞∑
d1=0

∞∑
d2=0

(−1)d1+d2x5D+2d1+2d2 (d1 + 2D)!(d2 + 2D)!

(D!)7(d1!)2(d2!)2(d1 +D)!(d2 +D)!

×
(

1 + (d1 − d2)(−2Hd1 +Hd1+2D −Hd1+D)
)

The first few terms of the regularized quantum period are:

ĜX̃(x) = 1 + 480x5 + 5040x7 + 4082400x10 + 119750400x12 + 681080400x14 + · · ·

Example 7.4.3. We will compute the regularised quantum period of X̃ = BlY P6, where Y is

a quadric surface given by the intersection of 3 generic hyperplanes and a quadric hypersurface.

Consider the situation as in §6.2 with:

• X = P6

• E = O⊕O⊕O⊕O(2)

• G = GL3(C), T = (C×)3 ⊂ G

Then A//G is Gr(3, E), and A//T is P(E) ×P6 P(E) ×P6 P(E) → P6. By Proposition 7.3.2 the

zero locus X̃ of a section of S∨ ⊗ π∗(O(1)) on Gr(3, E) is the blowup of P6 along the complete

intersection of three hyperplanes and a quadric. We identify the group ring Q[H2(A//T,Z)] with

Q[Q,Q1, Q2, Q3], where Q corresponds to the pullback of the hyperplane class of P6 and Qi cor-

responds to H̃i. Similarly, we identify Q[H2(A//G,Z)] with Q[Q, q], where again Q corresponds

to the pullback of the hyperplane class of P6 and q corresponds the first Chern class of S∨.

In the notation of §6.2, we have ` = 1, r` = r1 = 3, r`+1 = 4. We relabel H̃`,j = H̃j and

d`,j = dj . We have that H̃`+1,1 = H̃`+1,2 = H̃`+1,3 = 0, H̃`+1,4 = −π∗2H and d`+1,1 = d`+1,2 =
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d`+1,3 = 0, d`+1,4 = −2D. Write F = S∨ ⊗ π∗O(1). Corollary 7.2.5 and Remark 7.2.6 give

JF0(t, τ, z) = ze
t+τ
z

∞∑
D=0

∞∑
d1=−2D

∞∑
d2=−2D

∞∑
d3=−2D

QDqd1+d2+d3eDτe(d1+d2+d3)t∏D
m=1(H +mz)7

×
3∏
i=1

∏0
m=−∞(Hi +mz)3∏di
m=−∞(Hi +mz)3

3∏
i=1

1∏di+2D
m=1 (Hi + 2H +mz)

3∏
i=1

∏di+D
m=−∞(Hi +H +mz)∏0
m=−∞(Hi +H +mz)

× (H1 −H2 + z(d1 − d2))

H1 −H2

(H1 −H3 + z(d1 − d3))

H1 −H3

(H2 −H3 + z(d2 − d3))

H2 −H3

Arguing as before,

−K
X̃

= 11H + 4 det(S∗)− (3H + det(S∗)) = 8H + 3 det(S∗).

To extract the quantum period from JF0 , we set λ = 0, t = 0, τ = 0, z = 1, q = x3, Q = x8, and

take the component along the unit class. The first few terms of the regularised quantum period

are:

ĜX̃(x) = 1 + 108x3 + 17820x6 + 5040x8 + 5473440x9 + 56364000x11 + 1766526300x12

+ 117076459500x14 + 672012949608x15 + · · ·

Remark 7.4.4. Strictly speaking the use of Theorem 5.0.2 in the examples just presented

was not necessary. Whenever the base space X is a projective space, or more generally a

Fano complete intersection in a toric variety or flag bundle, then one can replace our use of

Theorem 5.0.2 (but not Theorem 5.0.1) by [CFKS08, Corollary 6.3.1]. However there are many

examples that genuinely require both Theorem 5.0.1 and Theorem 5.0.2: for instance when X

is a toric complete intersection but the line bundles that define the center of the blow-up do

not arise by restriction from line bundles on the ambient space. (For a specific such example

one could take X to be the three-dimensional Fano manifold MM3–9: see [CCGK16, §62].) For

notational simplicity we chose to present examples with X = PN , but the approach that we

used applies without change to more general situations.
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pages 472–480. Birkhäuser, Basel, 1995.
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[KNP17] Alexander Kasprzyk, Benjamin Nill, and Thomas Prince. Minimality and

mutation-equivalence of polygons. Forum Math. Sigma, 5:Paper No. e18, 48,

2017.

[Kod66] K. Kodaira. On the structure of compact complex analytic surfaces. II. Amer. J.

Math., 88:682–721, 1966.

[KSC04] János Kollár, Karen E. Smith, and Alessio Corti. Rational and nearly rational

varieties, volume 92 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 2004.

[Lai09] Hsin-Hong Lai. Gromov-Witten invariants of blow-ups along submanifolds with

convex normal bundles. Geom. Topol., 13(1):1–48, 2009.



142 BIBLIOGRAPHY

[LLW] Yuan-Pin Lee, Hui-Wen Lin, and Chin-Lung Wang. A blowup formula in Gromov–

Witten theory. In preparation.

[LLW17] Yuan-Pin Lee, Hui-Wen Lin, and Chin-Lung Wang. Quantum cohomology under

birational maps and transitions. In String-Math 2015, volume 96 of Proc. Sympos.

Pure Math., pages 149–168. Amer. Math. Soc., Providence, RI, 2017.

[LLY02] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. A survey of mirror principle.

In Mirror symmetry, IV (Montreal, QC, 2000), volume 33 of AMS/IP Stud. Adv.

Math., pages 3–10. Amer. Math. Soc., Providence, RI, 2002.

[LR01] An-Min Li and Yongbin Ruan. Symplectic surgery and Gromov-Witten invariants

of Calabi-Yau 3-folds. Invent. Math., 145(1):151–218, 2001.

[Lut21] Wendelin Lutz. A geometric proof of the classification of T -polygons. preprint

arXiv:2112.08246, 2021.

[Man12] Cristina Manolache. Virtual pull-backs. J. Algebraic Geom., 21(2):201–245, 2012.

[Man19] Travis Mandel. Classification of rank 2 cluster varieties. SIGMA Symmetry Inte-

grability Geom. Methods Appl., 15:Paper 042, 32, 2019.

[Mar00] Shaun Martin. Symplectic quotients by a nonabelian group and by its maximal

torus. preprint arXiv:math/0001002, 2000.

[MP06] D. Maulik and R. Pandharipande. A topological view of Gromov-Witten theory.

Topology, 45(5):887–918, 2006.

[Oh21] Jeongseok Oh. Quasimaps to GIT fibre bundles and applications. Forum Math.

Sigma, 9:Paper No. e56, 39, 2021.

[Ott95] G. Ottaviani. Varietà proiettive di codimensione piccola. Ist. nazion. di alta

matematica F. Severi. Aracne, 1995.

[Pri20] Thomas Prince. Cracked polytopes and Fano toric complete intersections.

Manuscripta Math., 163(1-2):165–183, 2020.

[Rua99] Yongbin Ruan. Surgery, quantum cohomology and birational geometry. In North-

ern California Symplectic Geometry Seminar, volume 196 of Amer. Math. Soc.

Transl. Ser. 2, pages 183–198. Amer. Math. Soc., Providence, RI, 1999.



BIBLIOGRAPHY 143

[SS19] Matthias Schütt and Tetsuji Shioda. Mordell-Weil lattices, volume 70 of Ergeb-

nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Sur-

veys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A

Series of Modern Surveys in Mathematics]. Springer, Singapore, 2019.

[Tve15] Ketil Tveiten. Period integrals and mutation, 2015.

[Web21] Rachel Webb. The Abelian–Nonabelian Correspondence for I-Functions. Inter-

national Mathematics Research Notices, 11 2021. rnab305.


	Introduction
	Statement of results

	I A Geometric Proof of the Classification of T-Polygons
	Mutations
	Toric Geometry
	Mutations of polygons
	Mutations of Laurent polynomials
	The surface of a Laurent polynomial

	Looijenga pairs and Laurent polynomials
	Torelli for Looijenga pairs
	The Looijenga pair associated to a Laurent polynomial
	Deformation Families of Looijenga pairs and Lattice Theory

	The classification of T-polygons
	An adapted Sarkisov algorithm
	The classification of T-polygons


	II The Abelian/non-Abelian Correspondence and Gromov–Witten invariants of Blow-ups
	Introduction
	I-functions and Lagrangian cones
	The topology of quotients by a non-Abelian group and its maximal torus
	Partial flag varieties and partial flag bundles
	Givental's Formalism
	Twisting the I-function
	The Givental–Martin cone

	The Abelian/non-Abelian Correspondence
	The Work of Brown and Oh
	The Abelian/non-Abelian Correspondence with bundles
	The Main Geometric Construction
	Examples



