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Abstract

The first part of this thesis examines how finite-amplitude, small-scale topography

affects small-amplitude motions in the ocean. The technique of homogenisation is

used to develop an ‘averaged’ system based on the rotating shallow water equa-

tions in the presence of topography with horizontal extent much less than the wave-

lengths of the long waves in question. The extent to which the dispersion relations of

Poincaré, Kelvin and Rossby waves are modified from their flat-bottomed counter-

parts is illuminated, using a range of numerical and analytical techniques. Both ran-

dom and regular periodic arrays of topography are considered, with the special case

of regular cylinders studied in detail, because this case allows for highly accurate

analytical results. We find formulae for the approximate frequency change for all

three wave types, with a particularly simple analytic expression for the Rossby wave

dispersion relation, extending previous results from the quasi-geostrophic regime.

In addition to this, the manner in which trapped topographic Rossby waves affect

the dispersion relations for a finite topography is illuminated.

The second part examines the propagation of atmospheric waves through a

small-scale convective cloud field. The method of homogenisation reveals that

the small-scale clouds act to vertically redistribute the horizontal momentum and

buoyancy profiles of the large-scale flow. Mathematically, this occurs due to the

presence of non-local integral operators involving ‘transilient kernels’ in the ho-

mogenised equations. The dispersion relations are plotted for some of the wave

modes propagating in a mid-latitude β-channel, which show that the cloud field

slows the baroclinic waves, with low-frequency waves most affected.
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Impact statement

Parameterisation is one of the most fundamental concepts in predictive meteorology,

since it allows large-scale numerical weather prediction simulations and general

circulation models to capture the effects of small-scale phenomena in the absence

of a high-resolution grid. These models are used ubiquitously for predicting daily

weather patterns, extreme weather events and climate change across many time-

scales, and are vital to our understanding of the oceans and atmosphere. Perfecting

the manner in which small-scale processes such as convection are parameterised in

these models is therefore of key importance for accurately predicting the weather

and climate in real-time, whilst introducing as few biases as possible.

In this thesis, we use the mathematical method of homogenisation to inves-

tigate multiple-scale phenomena in the oceans and atmosphere with a view to ac-

curately building parameterisations of convection. We assess the consequences of

using parameterisations based on the horizontal average of a quantity across a grid

cell, concluding that they lead to potentially large errors in modelling predictions.

Crucially, our analyses allow us to produce non-heuristic parameterisations of both

wave-topography interactions in the ocean and wave-cloud interactions in the at-

mosphere, which avoid these modelling errors. Our work has implications for the

creation of accurate convective parameterisations in large-scale models, which in

turn has consequences for how we predict not only daily weather occurrences, but

also catastrophic weather and climate events.

The material is presented in a manner so as to highlight the utility of homogeni-

sation as means to parameterise small-scale processes in a geophysical setting, and

to motivate its use in future weather and climate models.
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Padé approximants (i = 0, 1, 2) are shown with green, blue, and

red lines respectively, and the ‘true’ Padé approximants (i = 24)
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Chapter 1

Introduction

Geophysical phenomena occur across a variety of different spatial and temporal

scales. As a consequence, the fluid dynamics associated with the oceans and at-

mosphere can be very difficult to model from a numerical standpoint, since the

discretisation of a model which describes large-scale processes can require a huge

number of grid points in order to fully resolve the small-scale motions. One such

example of where motions spanning multiple scales is of particular relevance is

the phenomenon of convection in the atmosphere. Notably, atmospheric convec-

tion is a highly turbulent process with fluxes of momentum and buoyancy, as well

as thermodynamic variations occurring on spatial scales of less than one kilome-

tre; however, convective clouds also aggregate, and form large, coherent structures

such as hurricanes (Houze, 1993), squall lines (Houze, 1977), mesoscale convective

complexes (North et al., 2015), and superclusters (Mapes and Houze, 1993). Whilst

it is true that the ability of computers to tackle such complex problems has increased

exponentially in the last several decades, there still exist enormous deficits in com-

puting power which must be overcome in order to produce accurate meteorological

models - in particular, global circulation models (GCMs) and numerical weather

prediction (NWP) simulations are often unable to be run efficiently on a grid with

a high enough resolution to resolve cloud structures (Collins et al., 2013). For this

reason, multi-scale modelling has become a very heavily studied topic across the

many disciplines involved with GCMs and NWP simulations, and remains of key

importance in building accurate weather and climate forecasts.
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Since small-scale processes cannot be resolved by the grids used in large-scale

models, meteorologists use a method known as parameterisation to represent these

phenomena. The idea is that instead of trying to resolve the small-scale motions

explicitly, which necessarily requires much finer resolutions, one can include their

effects by approximating their bulk properties at each point on a much coarser grid.

Naturally, the improved efficiency that parameterisation brings to the models comes

at a cost, namely that the small-scale dynamics and cross-scale coupling are only

approximate, and are derived from other simpler (and often heuristic) physics. As

a result, such parameterisations can vary significantly in their utility, and it is not

uncommon that they lead to biases in their predictions (e.g. Pathak et al., 2019;

Hyder et al., 2018; Scaife et al., 2010; Li et al., 2019). Developing parameterisa-

tions which accurately capture small-scale phenomena within large-scale models is

of primary importance to meteorologists since one of the most common source of

errors in weather and climate predictions stem from inaccuracies introduced at the

unresolved scales (Hamill and Whitaker, 2005; Janjić and Cohn, 2006; Zadra et al.,

2018; Bell et al., 2020; Waller et al., 2021).

In this thesis, we investigate the effects of small-scale processes on the prop-

agation of long waves through the ocean and atmosphere using the mathematical

theory of homogenisation. The original work presented here consists of two dis-

tinct geophysical models examining long waves in a rotating reference frame in the

presence of small-scale structures. The first of these, which deals with the shallow

water equations in the presence of a small-scale topography is utilised to highlight

how significant errors are possible when the effects of a sub-grid structure is imple-

mented in a model using a parameterisation based on the mean value of that variable

across a grid cell. Whilst it may be argued that the model itself is more directly rel-

evant to studying ocean waves over a rough-bottomed seabed, the implications of

the study carry across to the atmospheric situation with ease, since many convec-

tive parameterisations are based upon horizontally averaged mass fluxes (see e.g.

Gregory, 2002). Furthermore, the analogy between this problem, and the propaga-

tion of waves in a stratified atmosphere, where the topography represents regions of
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reduced stratification is also discussed.

The second body of original work extends the results to a stratified atmo-

sphere in the presence of small-scale convective circulations driven by localised

heat sources. The method of homogenisation is once again utilised, and the ef-

fects of convection on the propagation of long waves is examined. Importantly, it is

shown how a rigorous asymptotic approach may be used to represent sub-grid scale

convection in large-scale atmospheric models with direct implications for building

accurate parameterisations in the future. The results indicate that small-scale con-

vective clouds act to vertically redistribute the profiles of horizontal momentum and

buoyancy through non-local integral operators, and may be quantified in large-scale

models through the use of transilient kernels.

Homogenisation theory and geophysical fluid dynamics (GFD) come from dif-

ferent ends of the “mathematical spectrum” so to speak, with homogenisation hav-

ing its foundation in functional analysis and the theory of partial differential equa-

tions, and GFD being heavily influenced by physics and the applied sciences. For

this reason, the thesis begins in chapter 2 by introducing the fundamental princi-

ples for each. Firstly, in section 2.1, the theory of homogenisation is introduced

along with some key results and examples. In particular, this section focusses on

homogenising the classical wave equation with a rapidly varying local wave speed.

The main results from GFD which relate to large-scale wave propagation are then

introduced in section 2.2. In chapter 3 the method of homogenisation as a means to

study geophysical wave behaviour is investigated by way of homogenising the ro-

tating shallow water equations in the presence of a small-scale topography. Chapter

4 extends these results to the study of wave propagation in a stratified atmosphere in

the presence of small-scale convective clouds. Finally, in chapter 5, conclusions are

drawn. Much of the overtly technical mathematics is relegated to the appendices,

which may be found at the end of the thesis.
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Chapter 2

Homogenisation & rotating flows -

the basics

This chapter is devoted to introducing the mathematical concepts which underlie

the rest of the thesis. The topics covered fall into two broad categories, namely the

method of homogenisation to which section 2.1 is devoted, and waves in a rotating

fluid, which is discussed in section 2.2.

2.1 The method of homogenisation
The method of homogenisation is an example of a well-established, rigorous math-

ematical theory with motivations which span numerous fields of study within the

physical sciences. In essence, homogenisation is a method of averaging which may

be applied to highly heterogeneous problems - that is, problems which vary on

two (or more) disparate spatial scales. Such problems are often characterised by

partial differential equations with rapidly varying coefficients, which, through the

method of homogenisation are ‘replaced’ by homogeneous (or ‘effective’) coeffi-

cients. These effective coefficients are determined through a multiple-scale analysis

which implicitly couples the small- and large-scales present in the problem, and in

some sense act like averaged properties of the medium which they describe.

Whilst it is true that much of the rigorous mathematical justification for ho-

mogenisation has been developed in the latter half of the 20th century, problems of

this nature date back at least as far as 1892 with Lord Rayleigh’s study of conduction
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through a composite material (Rayleigh, 1892). Since then much attention has been

given to problems of this sort across a wide range of disciplines, including mate-

rial science (e.g. Hassani and Hinton, 1999; Guedes and Kikuchi, 1990; Briane and

Camar-Eddine, 2007; Pastukhova, 2005), optics (e.g. Mottin et al., 2011; McPhe-

dran et al., 1988; Felbacq, 2016) and fluid flow through porous media (Chamsri,

2013; Daly and Roose, 2015) and on the planetary scale (e.g. Mei, 1985; Mei and

Vernescu, 2010; Vanneste, 2000a,b; Benilov, 2000). In many introductory texts, the

method of homogenisation is discussed in the context of elliptic PDEs; however,

as we are ultimately interested in the propagation of waves, it is more relevant for

our interests to introduce the theory as it applies to the hyperbolic wave equation.

Whilst there do exist subtle differences between the elliptic and hyperbolic cases

(and indeed the parabolic case), they will not be relevant to our mathematical treat-

ment. However, the interested reader is referred to Brahim-Otsmane et al. (1992),

Cioranescu and Donato (1999) §12 or Papanicolau et al. (1978) Ch.2 §3 for a more

thorough discussion.

The layout of this chapter is as follows. In section 2.1.1 the problem of ho-

mogenising the classical wave equation is set up, and the main aims of the proce-

dure are outlined. The formal asymptotics are then carried out in section 2.1.1.1 for

the case where the spatial dimension d ≥ 2, and the homogenised equation along

with the cell problem are derived. In section 2.1.1.2 an important property of the

homogenised coefficient is discussed. Finally, in section 2.1.2 an example problem

is given in order to highlight the main points.

2.1.1 The classical wave equation

As an introduction, the canonical problem of homogenising the classical wave equa-

tion is reviewed. Consider the second-order, hyperbolic, initial-boundary value
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problem

∂2
ttφ

ε −∇ · (Aε∇φε) = 0, for (x, t) ∈ Ω× (0, T ),

φε(x, 0) = a(x), for x ∈ Ω, (2.1)

φεt(x, 0) = b(x), for x ∈ Ω,

φε = c(x, t), for (x, t) ∈ ∂Ω× (0, T ),

where the scalar quantity Aε = Aε(x) is uniformly bounded away from zero, and

where Ω ⊂ Rd is an open connected subset of d-dimensional Euclidean space, with

a smooth boundary ∂Ω. The initial data a(x), b(x) and boundary data c(x, t) are

also taken to be uniformly bounded functions. The key characteristic of the system

(2.1) which motivates the method of homogenisation is the dependence of Aε(x),

and φε(x, t) on ε where ε � 1 is a small parameter. Indeed, the coefficient Aε

(which in the context of the wave equation may be identified with the square of the

wave speed) is assumed to be of the form

Aε(x) = A(x,X), (2.2)

where X = x/ε. That is, it depends on two spatial scales - a ‘large’ O(1) scale,

characterised by the variable x, and a ‘small’ O(ε) scale, characterised by the vari-

ableX . Importantly, though these two spatial variables both depend on x, they are

treated as independent from one another due to the large scale-separation between

them in the limit ε → 0. The rigorous justification of this treatment is one of the

canonical problems in homogenisation theory (see, e.g Allaire, 1992; Pavliotis and

Stuart, 2008, Ch. 19).

The general idea behind the method of homogenisation is to replace the

highly heterogeneous quantities Aε(x) and φε(x, t) with corresponding homoge-

neous quantities Aeff(x) and φ̂(x, t), such that in the limit of infinitely small inho-
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mogeneities (ε→ 0), the system (2.1) converges to

∂2
ttφ̂−∇ · (Aeff∇φ̂) = 0, for (x, t) ∈ Ω× (0, T ),

φ̂(x, 0) = a(x), for x ∈ Ω, (2.3)

φ̂t(x, 0) = b(x), for x ∈ Ω,

φ̂ = c(x, t), for (x, t) ∈ ∂Ω× (0, T ).

Importantly, the homogenised problem (2.3) does not explicitly depend on the small

spatial structure, but rather contains the homogenised (or effective) matrix coeffi-

cient Aeff which implicitly couples the small- and large-scales. This coupling is

found by solving an elliptic PDE over the small-scale, which is usually referred to

as the ‘cell problem’. In the following section, we will explicitly derive the ho-

mogenised system (2.3), and its corresponding cell problem in the specific case

where A is assumed to be a periodic function of the small-scale variables. Rigorous

proofs of the convergence of the asymptotic treatment may be found in the literature

(e.g. Colombini and Spagnolo, 1978; Brahim-Otsmane et al., 1992; Francfort and

Murat, 1992; Pavliotis and Stuart, 2008, Ch. 7), however the approach taken here

is somewhat more heuristic and follows roughly the same outline as that of Holmes

(2012) §5 or Allaire (2012) as applied to the Poisson equation.

Note, that the following procedure may be carried out in any dimension d ≥ 2

without any significant change, however the one-dimensional (d = 1) case is treated

somewhat differently, and will be discussed separately.

2.1.1.1 Homogenisation procedure

In this section, the formal homogenisation procedure for the problem (2.1) is car-

ried out. For the sake of simplicity, we take d = 2, since the same procedure is

followed for any higher dimension. The d = 1 case however is different enough to

merit its own treatment, and is addressed separately in the next section. Thus, for

the remainder of this section, x = (x, y) is a two-dimensional vector, and corre-

spondingly,∇ = (∂x, ∂y) is the two-dimensional gradient operator.

First of all, it is important to make some assumptions about the coefficient
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A(x,X). One such assumption which is commonplace in homogenisation theory

is to assume that A is periodic on the small-scale. That is, there exist linearly

independent vectorsX(1)
p ,X

(2)
p such that

A(x,X +X(i)
p ) = A(x,X) for i = 1, 2, (2.4)

for all values of x and X in the domain Ω. Under such an assumption, the domain

adopts a lattice type structure, with each cell in the lattice denoted by Ωp being a

parallelogram. As a result of this, it must be true that knowledge of the small-scale

structure of a quantity across an entire cell, gives the small-scale structure across

the entire domain by extension.

Recalling that x and X are to be treated independently, using the chain rule

allows the gradient operator to be expanded according the the multi-scale formalism

as

∇ −→ ∇x +
1

ε
∇X , (2.5)

where the subscripts denote which variables the gradient operator acts upon. Sub-

stituting this into equation (2.1) leads to

(∇X + ε∇x) · [A(x,X) (∇X + ε∇x)φε] = ε2∂2
ttφ

ε, for x ∈ Ω× (0, T ),

φε(x, 0) = a(x), for x ∈ Ω, (2.6)

φεt(x, 0) = b(x), for x ∈ Ω,

φε = c(x, t), for x ∈ ∂Ω× (0, T ).

Since equations (2.6) contain the small parameter ε, and because the coefficient

A is a periodic function of X , it is reasonable to seek a solution for φε in the form

of a regular perturbation expansion given by

φε(x) = φ0(x,X) + εφ1(x,X) + ε2φ2(x,X) + · · · (2.7)

where each φi (i = 0, 1, 2, . . .) is periodic in X . Substituting this ansatz into (2.6),
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and equating terms at each order in ε, leads to a hierarchy of equations. At O(1),

the leading order PDE is given by

∇X · (A∇Xφ0) = 0, for x ∈ Ω× (0, T ). (2.8)

The general solution to this equation which is bounded over Ω, and which satisfies

the boundary and initial conditions is

φ0 = φ0(x, t), on x ∈ Ω× (0, T ), (2.9)

with

φ0(x, 0) = a(x), for x ∈ Ω,

φ0t(x, 0) = b(x), for x ∈ Ω, (2.10)

φ0 = c(x, t), for x ∈ ∂Ω× (0, T ).

That is, the leading order field is independent of the small-scale variations, and

satisfies the inhomogenenous boundary conditions and initial conditions. The fact

that the only solution satisfying (2.8) is a function of x only, is closely related to

the fact that the only bounded solutions of Laplace’s equation overR2 are constants

- a result known as ‘the maximum principle’ (Pavliotis and Stuart, 2008, §7.2.4;

Holmes, 2012, §5.3.2). Note that these boundary and initial conditions are those

required for the homogenised equations since they are now independent of ε, and

hence from this point forward, only the PDE in (2.6) needs to be considered.

At O(ε), we have

∇X · (A∇Xφ1) = −∇XA · ∇xφ0. (2.11)

This is a linear, elliptic equation which must be solved in order to determine φ1,

where the right-hand side depends on∇xφ0 (a function with spatial dependence on

x only). Furthermore, it suffices to solve φ1 across only the cell, and then to extend
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its solution to the whole domain by periodic extrapolation. Therefore, the general

solution may be written as the linear combination

φ1(x,X, t) = ξ(x,X) · ∇xφ0 + d(x, t), (2.12)

where ξ = (ξ1, ξ2)T is periodic, with components satisfying

∇X · (A∇Xξi) = −∂Xi
A, for i = 1, 2, (2.13)

and where d(x, t) is an arbitrary function which is independent of the small-scale

variables. Equation (2.13) is known as the ‘cell problem’.

Finally, at O(ε2)

∇X · (A∇Xφ2 + A∇xφ1) +∇x · (A∇Xφ1) +∇x · (A∇xφ0) = ∂2
ttφ0. (2.14)

Fortunately, it is not necessary to solve this equation, and instead the periodicity of

the problem on the small-scale may be exploited so that the homogenised system

emerges out of a ‘solvability condition’. For this purpose, a cell-average operator

〈·〉 is introduced, which is defined to act upon a function g(x,X, t) as

〈g〉(x, t) =
1

|Ωp|

∫
Ωp

g(x,X, t) dX, (2.15)

where in two dimensions |Ωp| is the area of the cell. Applying this operator to equa-

tion (2.14) allows some simplifications to be made. Assuming suitable smoothness

properties for A, the divergence theorem may be used to find∫
Ωp

∇X · (A∇Xφ2 + A∇xφ1) dX =∫
∂Ωp

n̂ · (A∇Xφ2 + A∇xφ1) dS = 0,

(2.16)

where the second equality is due to the periodicity of the functions A, φ1, φ2 over

the cell. Furthermore, we recall that from (2.9), φ0 is independent of X , and hence
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〈φ0〉 = φ0. Therefore, the cell-averaged PDE is given by

∇x · [〈A〉∇xφ0 + 〈A∇Xφ1〉] = ∂2
ttφ0. (2.17)

Now, all that is left to do is to use the expression (2.12) to simplify the second term

in the brackets, which yields the homogenised PDE

∂2
ttφ0 −∇ · (Aeff∇φ0) = 0, for (x, t) ∈ Ω× (0, T ), (2.18)

where the 2× 2 matrixAeff is given by

Aeff(x) =

 〈A〉+ 〈A∂X1ξ1〉 〈A∂X1ξ2〉

〈A∂X2ξ1〉 〈A〉+ 〈A∂X2ξ2〉

 . (2.19)

Equation (2.18) combined with the boundary and initial conditions (2.10) retrieves

the system (2.3) where the homogeneous quantity φ̂ is given by φ0.

A special case of this result is found when the cell has fourfold symmetry. In

this situation the off-diagonal terms in (2.19) vanish, and the diagonal elements are

equal, so that

Aeff(x) = c2
eff(x)I, (2.20)

where I is the 2× 2 identity matrix. In this case, the wave equation becomes

∂2
ttφ0 −∇x ·

(
c2

eff∇xφ0

)
= 0, (2.21)

where the quantity ceff(x) is recognisable as the homogenised wave speed.

2.1.1.2 Reuss–Voigt bounds

Now that the homogenised equations have been derived, an important property of

the effective coefficient Aeff is discussed. Often in the theory of homogenisation,

the precise value of the effective coefficient cannot be found explicitly, and math-

ematicians would rather be able to estimate its value by finding upper and lower

bounds. One of the simplest pair of bounds are known as the Reuss–Voigt bounds,
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attributed to (Reuss, 1929) and (Voigt, 1928), and are well known in the literature

(see e.g. Allaire, 2012; Nandakumaran, 2007; Mei and Vernescu, 2010, §5.5).

Let λi for i = 1, 2 be the eigenvalues ofAeff , then they satisfy

〈A−1〉−1 ≤ λi ≤ 〈A〉. (2.22)

The lower (Reuss) bound is the harmonic mean of the coefficient over the cell, and

the upper (Voigt) bound, the arithmetic mean. The proof of this fact comes from

rewriting the effective coefficient as the solution to a variational problem, of which

the cell problem is the Euler-Lagrange equation, and can be found for example in

Allaire (2012). Consequently, the case in which the cell has fourfold symmetry and

Aeff = AeffI leads to

〈A−1〉−1 ≤ Aeff ≤ 〈A〉. (2.23)

The Reuss–Voigt bounds can be each realised in specific situations. Indeed, the only

case in whichAeff = 〈A〉 is the trivial case in whichA is constant with respect to the

small-scale. It is worth emphasising this point, since the most ‘obvious’ approach

to finding an averaged set of equations may well be to simply take the arithmetic

mean of A, whereas this, in fact, is never the ‘correct’ average when there is a

small-scale structure. On the other hand, Aeff = 〈A−1〉−1 is only achieved in the

one-dimensional problem, which will be the focus of the next section.

2.1.1.3 The one-dimensional case

The one-dimensional case leads to an important simplification. Consider now the

one-dimensional counterpart of the system (2.1), so that

∂2φε

∂t2
− ∂

∂x

(
Aε
∂φε

∂x

)
= 0, for (x, t) ∈ (α, β)× (0, T ),

φε(x, 0) = a(x), φεt(x, 0) = b(x), for x ∈ (α, β), (2.24)

φε(α, t) = c1(t), φε(β, t) = c2(t), for t ∈ (0, T ).
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It is again assumed that Aε(x) may be written

Aε(x) = A(x,X), (2.25)

where X = x/ε, and that there exists a constant Xp such that

A(x,X +Xp) = A(x,X), (2.26)

so that A is periodic on the small-scale. The homogenisation procedure broadly

follows that of the previous section, with the resulting homogenised PDE given by

∂2φ0

∂t2
− ∂

∂x

(
Aeff

∂φ0

∂x

)
= 0, for (x, t) ∈ (α, β)× (0, T ). (2.27)

The main difference here, is that the effective coefficient Aeff(x) is simply a scalar

function of the large-scale spatial variable as opposed to a matrix, and is given by

Aeff(x) =

〈
A

(
1 +

∂ξ

∂X

)〉
(2.28)

=
1

Xp

∫ Xp

0

A(x,X)

(
1 +

∂ξ

∂X
(x,X)

)
dX.

The scalar quantity ξ(x,X) is the solution to the one dimensional cell problem

∂

∂X

(
A
∂ξ

∂X

)
= − ∂A

∂X
, for X ∈ (0, Xp), (2.29)

ξ(x, 0) = ξ(x,Xp),

which is exactly solvable.

Integrating (2.29) once with respect to X gives

A(x,X)

(
1 +

∂ξ

∂X

)
= k1(x), (2.30)

where k1(x) is a function of the large-scale variable only. In fact, it can be immedi-
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ately seen that applying the averaging operator to equation (2.30) leads to

k1(x) = Aeff(x). (2.31)

Integrating (2.30) once more, gives

ξ(x,X) = −X + Aeff(x)

∫ X

0

1

A(x, Z)
dZ + k2(x), (2.32)

where k2(x) is another constant of integration, and applying the periodic cell-

boundary conditions, it is deduced that

Aeff(x) = 〈A−1〉−1. (2.33)

That is, the effective coefficient is given by the harmonic mean of A(x), achieving

equality with the lower (Reuss) bound of possible coefficients determined by (2.23).

In deriving this result for the one dimensional case, it was assumed that A is

periodic on the small-scale. However, it may be shown with some extra work that

this requirement can be lifted completely, and that in fact the presence of any small-

scale structure, periodic or not, leads formally to the same result (Holmes, 2012,

§5.2). The process of generalising the result to the non-periodic case requires only

that A(x,X) be finite, and bounded away from zero, and that the cell-averaging

operator 〈·〉 be replaced by the operator 〈·〉∞ which acts upon a function g(x,X) as

〈g〉∞(x) = lim
X→∞

(
1

X

∫ X

0

g(x, Z) dZ

)
. (2.34)

Furthermore, since there is no periodic cell structure to exploit in this case, the

O(ε2) equation must be solved to determine φ2. In the one dimensional case this

is achieved with little difficulty, and the homogenised system (2.27) is retrieved.

We note that for a random coefficient, this result is strictly formal, and applies only

in the long wavelength limit. For shorter wavelengths, scattering and localisation

leads to situations in which waves may propagate only across small portions of the

domain (see e.g. Van Der Baan, 2001; Sheng et al., 1986; Figotin and Klein, 1997;
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Figotin and Gorentsveig, 1998).

2.1.2 An example problem

In order to demonstrate the efficacy of the homogenisation method an example

model problem is investigated. Consider the wave equation (2.1) in a semi-infinite

periodic channel of width π centred on y = 0, and bounded by side walls at

y = −π/2, π/2. It is assumed that the solutions are periodic in time and hence

can be written in the form

φε(x, t) = φ̃ε(x) exp(−iωt), (2.35)

where ω is the wave frequency. It is further assumed that the channel is periodic,

with period 2π in the x-direction, and that the channel walls are equipped with

homogeneous Dirichlet boundary conditions. Thus, the problem is given by

∇ · (Aε∇φε) = −ω2φε, for (x, y) ∈ (0, 2π)× (−π/2, π/2),

φε = 0, on y = −π/2, π/2, (2.36)

φε(0, y) = φε(2π, y), for y ∈ (−π/2, π/2).

Relative to the channel, the periodic cell is a square of side length 2πε, so that the

values the small-scale variables take are confined to the square X ∈ (−π, π) ×

(−π, π). The coefficient A(X), chosen to be independent of the large-scale, is

given by a symmetric Gaussian profile

A(X) = 1− 1

2
exp

(
−1

2
|X|2

)
. (2.37)

It should be noted that A is not strictly smooth across the cell boundary as is for-

mally required, however since the Gaussian decays rapidly as the cell boundary is

approached, it is ‘smooth enough’ for numerical experiments. The quantity ε is

identified as

ε =
Lc
Lx
≡ 1

n
, (2.38)
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where Lc is the cell side length, Lx is the width of the channel, and n is the number

of cells distributed along the length of one period of the channel.

Note, that from the form of (2.37), and the fact that the periodic cell is square in

shape means that the problem has a four-fold symmetry. Furthermore, since A(X)

is independent ofxwe should expect the homogenised PDE to be of the form (2.21),

where the effective wave speed ceff is a constant. Thus, the homogenised system is

given by

c2
eff∇2

xφ0 = −ω2φ0, for (x, y) ∈ (0, 2π)× (−π/2, π/2),

φ0 = 0, on y = −π/2, π/2, (2.39)

φ0(0, y) = φ0(2π, y), for y ∈ (−π/2, π/2).

This is a straightforward eigenvalue problem which can be solved in order to de-

termine the discrete set of eigenvectors φ0,k and corresponding eigenvalues −ω2
k,

where k = (k, l) is the two-dimensional wave vector with k, l both taking integer

values. By first numerically solving the cell problem (2.13) using a Fourier spectral

method (see e.g. Trefethen, 2000, Ch. 3) determining the constant c2
eff , standard

numerical or analytical methods may be implemented to find the set of solutions to

(2.39). In particular, the eigenvalue corresponding to k = (1, 1) is focussed on, and

denoted by −ω2
hom.

Next, the full eigenvalue problem (2.36) is solved numerically. Importantly, the

dependence of the problem on the cell parameter ε allows a discrete set of problems

to be solved. That is, for each value of n = 4, 6, 8, ... the cell-parameter takes

discrete values εn = 1/4, 1/6, 1/8, ... each of which corresponds to a version of

(2.36) where the channel is divided into n2/2 cells. For each of these problems,

the set of eigenvectors and eigenvalues may be found numerically, so that again

focussing on the k = (1, 1) solutions, a sequence of eigenvalues denoted by −ω2
n is

obtained.

Figure 2.1 demonstrates the fundamental result of the homogenisation proce-

dure - the convergence of the solution of (2.36) to that of the homogenised system
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Figure 2.1: The squared frequencies corresponding to wave vector k = (1, 1) calculated
from the eigenvalue problems (2.36) and (2.39). Shown at the discrete points
εn = 1/n for n = 4, 6, 8, 10, 12 are the terms of the sequence ω2

n (black dots),
and at ε = 0, the quantity ω2

hom (black cross). Also shown is a piecewise linear
interpolant (dotted line).

(2.39). Indeed, it is clear that as ε→ 0, the sequence {ω2
n} converges to ω2

hom, albeit

in increasingly small steps as the number of cells is increased. This is a particularly

powerful result as solving the full problem requires a significant amount of comput-

ing power due to the ‘roughness’ of the parameter Aε for small ε. This means that

in order to achieve machine precision for even relatively small values of n, many

grid-points must be used. Furthermore, achieving precise results for greater values

of n than shown becomes increasingly more difficult, as the number of grid-points

needed increases nonlinearly - to find ω2
12 precisely, 200 × 201 grid-points were

used across the channel. In contrast, calculating ω2
hom comes with little computa-

tional difficulty, as the cell problem (2.13) requires relatively few grid-points, with

40× 40 points across the cell proving sufficient for machine precision.
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2.2 Waves in a rotating fluid

The purpose of this section is to introduce some of the fundamental mathematical

and physical principles in geophysical fluid dynamics. Much of the matter presented

here would likely be familiar to the reader with an introductory knowledge of the

subject, and may be found in most standard textbooks (e.g. Vallis, 2006; Gill, 1982;

Pedlosky, 1987; Holton, 2004) in some form. It is, however, worthwhile briefly

reviewing some of this standard theory, since in later chapters more complex and

unfamiliar concepts will be introduced which build closely upon the techniques

given here. In particular, many of the results presented here which pertain to oceans

with a flat seabed will be generalised in chapter 3, where topography is introduced,

and those pertaining to a stratified atmosphere will be generalised in chapter 4.

The goal here is to gain some intuitive and quantitative understanding of large-

scale waves in the ocean and atmosphere. Waves of this sort are a key element

in driving the Earth’s oceanic and atmospheric circulations, as well as in the for-

mation of many weather patterns and oscillations such as the El Niño–Southern

Oscillation and the Madden–Julian Oscillation. Thus, understanding these waves

is a vital component in the study of meteorology, climatology and geophysics, and

facilitates accurate weather and climate predictions over a vast range of time-scales.

In the mid-latitudes, there exist three main waves of interest, namely inertia-gravity,

Rossby and Kelvin waves. Inertia-gravity waves (also known as Poincaré waves in

the case of a single shallow fluid layer) are oscillations caused by the displacement

of a fluid from stable equilibrium where the restoring force is due to a vertical gradi-

ent or discontinuity in buoyancy. This may occur either within a vertically stratified

fluid such as the troposphere, or at the interface of two fluids with different densi-

ties, for example, on the free surface of the ocean which separates the water from

the air. Rossby waves (also known as planetary waves) are a particular type of long

wave which occur as the ocean or atmosphere is disturbed from geostrophic equi-

librium (i.e. when the Coriolis force and pressure gradient are in perfect balance).

The fundamental mechanism for their existence is the rotation of the Earth, and the

Coriolis force which varies with latitude, as well as the conservation of potential
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vorticity. Finally, Kelvin waves occur when the Earth’s rotation balances the Corio-

lis force against a waveguide such as a coastline, along which they propagate in one

direction.

As a precursor to developing a theory for these waves, it is first necessary to in-

troduce some important geophysical concepts, and thus this chapter is organised as

follows. In section 2.2.1 we give the basic equations of motion for an inviscid fluid

in a rotating reference frame, from which we derive the shallow water equations

in section 2.2.2. In section 2.2.2.1, the notion of potential vorticity, as well as its

associated conservation law is discussed. In section 2.2.3, we derive the Boussinesq

equations governing the dynamics of a vertically stratified fluid. The Coriolis force

is then given a more thorough treatment in section 2.2.4, where we introduce the

f -plane and β-plane approximations. In section 2.2.5, the notions of geostrophic

balance and quasi-geostrophy are introduced, and the quasi-geostrophic potential

vorticity equation is derived. Finally, in section 2.2.6, the dispersion relations for

the shallow water Poincaré, Rossby and Kelvin waves in a mid-latitude β-channel

are derived, using both numerical and asymptotic techniques.

2.2.1 Governing equations

The equations governing an incompressible, inviscid, fluid of uniform density in

a rotating frame, and under the influence of gravity are taken as the starting point

for this chapter. From these equations, distinguished limits which apply to both

oceanic and atmospheric systems can be derived. Mathematically, the laws govern-

ing conservation of horizontal momentum, vertical momentum, and mass are given

by

Du

Dt
+ fk × u = −1

ρ
∇p, (2.40)

Dw

Dt
= −1

ρ

∂p

∂z
− g, (2.41)

∇ · u+
∂w

∂z
= 0, (2.42)
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where u = (u, v, 0)T is the horizontal velocity vector, w is the vertical velocity,

p is the pressure, and ρ is the density of the fluid. Here, g is the gravitational

acceleration (taken to be a constant), and f = 2Ω sin θ is the Coriolis parameter,

where Ω is the vertical component of the angular velocity of the Earth, and θ is the

spherical coordinate corresponding to latitude. For consistency with later sections

of the thesis, the gradient operator∇ = (∂x, ∂y, 0) is taken to be only the horizontal

components of the full three dimensional gradient, and thus the material derivative

is written as
D

Dt
=

∂

∂t
+ u · ∇+ w

∂

∂z
. (2.43)

2.2.2 Shallow water equations

The derivation of the shallow water equations is a standard exercise, and can be

found in any geophysical fluid dynamics textbook (see e.g. Vallis, 2006; Gill, 1982;

Pedlosky, 1987). It is however useful to review the result, especially in the case

where the resting ocean depth due to topography is not constant, and so we present a

derivation here based on these sources. Whilst the name implies that these equations

pertain only to the study of the ocean, it is worth noting that the shallow water

equations are also of significant importance when studying the atmosphere. Indeed,

it could be argued that the atmosphere and ocean have more in common than they do

in opposition, since both are in some sense ‘shallow’, and obey the same physical

laws. However, the shallow water equations are of interest only when the vertical

motions in the fluid are small compared to the horizontal motions.

Consider a single, shallow fluid layer with a constant density ρ. By ‘shallow’, it

is meant that the aspect ratio of the layer thickness to the horizontal scale of motions

of interest is small. Since density is taken to be a constant, equations (2.40-2.42)

are a closed system in 4 variables, and under the prescription of appropriate bound-

ary conditions, fully describe the fluid motion. Let η(x, t) describe the free surface

elevation above the resting state (at z = 0), and let h(x) denote the thickness of

the fluid at rest. Importantly, the dependence of the layer thickness on the spatial

variable implies the presence of a varying bottom topography. Boundary conditions

at the free surface z = η(x, t) and bottom boundary z = −h(x) equate the vertical
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velocity of the fluid with the material derivative of the surface - that is to say that

a fluid element at a boundary must remain on the boundary for all time, or equiv-

alently, that the boundary is a streamline. It is further assumed that the pressure at

the free surface is constant, and given by some reference pressure, which may be

taken to be 0. Mathematically, these conditions are summarised by

w =
Dη

Dt
≡ ∂η

∂t
+ u · ∇η, on z = η(x, t), (2.44)

p = 0, on z = η(x, t), (2.45)

w =
D(−h)

Dt
≡ −u · ∇h, on z = −h(x). (2.46)

Letting α = Lz/Lx be the aspect ratio, where Lz, Lx are typical vertical and

horizontal scales in the fluid, an elementary dimensional analysis shows that all

terms on the left-hand side in the vertical momentum equation (2.41) are propor-

tional to α2. Under the shallow water assumption that α � 1, these terms may be

disregarded, leaving only the hydrostatic equation

∂p

∂z
= −gρ. (2.47)

Integrating this between z and η(x, t), and applying the condition (2.45) allows the

pressure to be determined in terms of the surface elevation, which is simply given

by the expression

p(x, z, t) = ρg [η(x, t)− z] . (2.48)

Substituting this into the horizontal momentum equation (2.40) gives the equation

for conservation of momentum in the shallow water system

Du

Dt
+ fk × u = −g∇η, (2.49)

where now the material derivative is simply given by

D

Dt
=

∂

∂t
+ u · ∇ (2.50)
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since the horizontal velocity components are assumed to be independent of z. The

system is then closed by integrating the continuity equation between the bottom

boundary, and the free surface so that

∫ η(x,t)

−h(x)

∇ · u dz = w(x,−h(x), t)− w(x, η(x, t), t) (2.51)

= −∂η
∂t
− u · ∇η − u · ∇h, (2.52)

where the second equality comes from applying the conditions (2.44) and (2.46).

Rearranging this equation, and recalling rules for differentiation under the integra-

tion sign (Flanders, 1973), one immediately recovers the equation

∂η

∂t
+∇ ·

(∫ η

−h
u dz

)
= 0. (2.53)

Again, since u is independent of z, this may be simplified to

∂η

∂t
+∇ · [(η + h)u] = 0, (2.54)

which combined with equation (2.49) completes the derivation of the shallow water

equations.

An important case to consider, is that in which the shallow water equations are

linearised about a state of rest. That is, by writing

u(x, t) = (0, 0)T + u′(x, t), η(x, t) = 0 + η′(x, t), (2.55)

where the primed variables are considered to be small perturbations such that any

products of primed variables are negligible, equations (2.49) and (2.54) simplify to

∂u

∂t
+ fk × u = −g∇η, (2.56)

∂η

∂t
+∇ · (hu) = 0, (2.57)

where the prime notation is immediately dropped for simplicity. These equations,
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namely ‘the linearised, rotating shallow water equations’, are the starting point for

the next chapter in this thesis.

2.2.2.1 Conservation of potential vorticity

The notion of potential vorticity and its associated conservation law was first in-

troduced by Rossby (1936), and since then has become one of the key concepts

in geophysical fluid dynamics. Rossby, building upon a theorem concerning cir-

culation by Bjerknes et al. (1898) (see also Thorpe et al., 2003), realised that in a

shallow fluid layer, the absolute vorticity of a fluid (the vorticity of the fluid relative

to the rotating reference frame plus the vorticity of the Earth) must be proportional

to its depth, and that this constant of proportionality, which was termed ‘the po-

tential vorticity’ (Rossby, 1940) was conserved following fluid trajectories. This

astute observation allows a single equation governing the potential vorticity to be

written, which in many cases allows one to avoid explicit calculations based on the

full equations of motion. Here we derive Rossby’s elegant result for a shallow fluid.

Taking the curl of the shallow water momentum equation (2.49) gives the vor-

ticity equation

Dt(ζ + f) + (ζ + f)∇ · u = 0, (2.58)

where ζ = ∂xv − ∂yu is the vertical component of the relative vorticity of the fluid,

and where we have used the fact that f is independent of t. Next, rewriting the

continuity equation (2.54) in the form

Dt(η + h) + (η + h)∇ · u = 0, (2.59)

allows the two to be combined by eliminating the quantity ∇ · u, to form a single

conservation equation given by

D

Dt

(
ζ + f

η + h

)
= 0. (2.60)

This is known as ‘the potential vorticity equation’, and expresses the fact that the

potential vorticity q = (ζ + f)/(η + h) is conserved following fluid paths. This
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result is of fundamental importance in geophysical fluid dynamics, as it provides

significant constraints on wave propagation in a shallow fluid layer. For instance,

in a layer of constant thickness, any increase / decrease in the Coriolis parameter f

must be accompanied by a decrease / increase in relative vorticity ζ . Likewise, for

a constant f , any increase / decrease in depth of the fluid must be accompanied by

an increase / decrease in ζ - a concept known as ‘vortex stretching’. This constant

trade-off between relative vorticity ζ , Coriolis parameter f and layer thickness h+η

is the driving force behind many large-scale oceanic and atmospheric phenomena,

in particular the propagation of Rossby waves, which will be discussed in more

detail later on in this chapter.

The linearised version of (2.60) is given by

1

h

∂

∂t

(
ζ − fη

h

)
+ u · ∇

(
f

h

)
= 0. (2.61)

This result will be useful in section 2.2.6.2 and later on in chapter 3.

2.2.3 The stratified Boussinesq equations in a rotating frame

The Boussinesq equations are a particularly useful limit of the primitive equations

(2.40–2.42) for studying motions in the ocean and atmosphere which rely on the

background stratification. Importantly, they take account of small density pertur-

bations about the mean profile, and allow one to study the effects of stratification

of the dynamics of a fluid. Here, we outline the basic principles of the Boussinesq

approximation based on textbook derivations which may be found in e.g. Vallis

(2006), Gill (1982), Olbers et al. (2012) etc.

Firstly, we decompose the density into a mean background profile, and small

perturbations as

ρ = ρ0 + ρ(z) + ρ′(x, z, t), (2.62)

where the background density profile consists of a constant ρ0, and small vertical

variations ρ(z). The terms are ordered as

|ρ′| � |ρ| � |ρ0|. (2.63)
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Correspondingly, pressure is decomposed as

p = p0(z) + p(z) + p′(x, z, t), (2.64)

where the background variables are chosen to satisfy the hydrostatic balance rela-

tions
dp0

dz
= −gρ0,

dp

dz
= −gρ. (2.65)

Substitution of these expansions into (2.40) and neglecting density variations gives

the horizontal momentum equation

Du

Dt
+ fk × u = −∇

(
p′

ρ0

)
. (2.66)

In the vertical momentum equation, slightly more work must be done. Here, we

assume that density fluctuations are negligible except when multiplied by the grav-

itational acceleration g (which is a large quantity). This is known as the Boussinesq

approximation. Substituting the expansions into (2.41) and applying the relations

(2.65), we find that to a good approximation

Dw

Dt
= − ∂

∂z

(
p′

ρ0

)
− g ρ

′

ρ0

. (2.67)

Whilst the continuity equation remains unchanged at leading order, a further

equation for ρ′ is needed in order to close the system. Such an equation is found

from the equation of state
Dρ

Dt
= q̇, (2.68)

where q̇ is a source term. Inserting (2.62), and multiplying by −g/ρ0 gives

D

Dt

(
−gρ

′

ρ0

)
− g

ρ0

dρ

dz
w = Q̇, (2.69)

where Q̇ = −gq̇/ρ0. This completes the derivation of the Boussinesq equations.
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Introducing the variables

p =
p′

ρ0

, b = −g ρ
′

ρ0

, (2.70)

(where we are reusing the notation p to represent scaled pressure perturbations), as

well as the ‘buoyancy frequency’

N2 = − g

ρ0

dρ

dz
, (2.71)

(also known as the Brunt–Väisälä frequency) then allows the Boussinesq equations

to be written conveniently as

Du

Dt
+ fk × u = −∇p, (2.72)

Dw

Dt
= −∂p

∂z
+ b, (2.73)

∇ · u+
∂w

∂z
= 0, (2.74)

Db

Dt
+N2w = Q̇. (2.75)

A common limit of these equations arises when vertical motions are assumed to be

small. Under such an assumption, the material derivative of w disappears from the

vertical momentum equation, and we are left with the hydrostatic balance

∂p

∂z
= b. (2.76)

The equations with (2.73) replaced by (2.76) are called the hydrostatic Boussinesq

equations.

2.2.4 Rotational effects

So far, the quantity f , known as the Coriolis parameter has been treated rather am-

biguously, and thus the aim of this subsection is to give a more thorough description

of the Coriolis force, and its contribution to the dynamics of geophysical flows. In

its most general form, the quantity f is given by

f = 2Ω sin θ, (2.77)
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where Ω is the vertical component of the angular velocity of the Earth, and θ is

the spherical coordinate corresponding to latitude. This expression, however, is of

little use when considering Cartesian approximations to the primitive (spherical)

equations of motion such as (2.40-2.42) due to its complicated dependence on spa-

tial coordinates. Thus, it is standard practice to approximate the Coriolis parameter

in such a way that both allows for a simple treatment of rotation in the governing

equations, as well as capturing the relevant effects of the Earth’s rotation.

One such approximation, known as the ‘f -plane’ approximation involves treat-

ing the Coriolis parameter as a constant, say f0 = 2Ω sin θ0, where θ0 is a constant

latitude. This approximation has its uses - in particular when studying flows over

short length scales where the variations with latitude in the Earth’s rotation are neg-

ligible. It can however be severely limiting when studying large-scale geophysical

flows where important dynamics are found in the latitudinal variations in f . More-

over, when studying motions near the equator (where f0 = 0), the dynamics intro-

duced by the rotation of the Earth are found entirely within the latitudinal variations

of f which are absent in the f -plane.

The next most simple approximation which takes account of the latitudinal

variations of f is known as the ‘β-plane’ approximation. By considering small

variations θ′ about a fixed latitude θ0, the Coriolis parameter can be approximated

as

f ≈ 2Ω sin θ0 + 2Ω (θ′ − θ0) cos θ0. (2.78)

This can then be identified with a linear tangent plane approximation for f of the

form

f(y) ≈ f0 + βy, (2.79)

where β = df/dy|θ0 = 2Ωa−1 cos θ0, a is the Earth’s radius, and f0 is given as

before. The β-plane approximation in which f is given by equation (2.79) can

be nicely visualised as a tangent plane touching the Earth’s surface at the latitude

θ0. Throughout the rest of this thesis, the β-plane approximation will be used in

calculations, particularly in the context of mid-latitude β-channels. The important
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consequence of using such an approximation when analysing large-scale wave dy-

namics, is that any poleward deflection of a travelling wave is thus accompanied by

a change in f .

2.2.5 Geostrophic balance and quasi-geostrophy

A defining feature of flows subjected to gravity, and in a rotating reference frame

is their tendency not to adjust to a state of rest, but rather a state of ‘geostrophic

balance’. That is, in the context of shallow water flows, the situation in which the

Coriolis acceleration is balanced by the horizontal pressure gradient. Mathemati-

cally, this is written

fk × u = −g∇η. (2.80)

As it turns out, in the Earth’s mid-latitudes, the atmosphere and ocean are in a con-

stant state of near-geostrophic balance (Phillips, 1963), due to the Coriolis accelera-

tion providing a force to balance the pressure gradient in the fluid, and obscuring the

tendency for a fluid to flow from areas of high pressure to low pressure. Rather, the

geostrophic wind travels along isobars (lines of constant pressure), flowing clock-

wise around areas of high presure, and anticlockwise around areas of low pressure

when f > 0 (Northern Hemisphere). Whilst the geostrophic wind is a reasonable

first approximation over much of the Earth’s surface, the equation (2.80) is only a

diagnostic relationship - that is, since it contains no time derivatives, predictions

about the evolution of the velocity field cannot be made from it alone.

As a thought experiment, one might consider this balance on an f -plane, so

that f ≡ f0 is a constant, and a topography profile with gently sloping bottom. It is

immediately apparent that when in geostrophic balance, the fluid velocity is parallel

to isobaths (lines of constant depth). One could then also imagine a disturbance to

this flow where a fluid column of relative vorticity ζ is slightly perturbed from

its starting position, so as to increase its vertical extent. By the conservation of

potential vorticity equation (2.60), such an increase in depth must be accompanied

by an increase in relative vorticity so as to restore geostrophic balance. Indeed, this

must ultimately lead to oscillatory behaviour about the geostrophic state, involving
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a constant exchange between relative vorticity and fluid depth. This is precisely the

physics which leads to topographic Rossby waves.

Whilst this situation on an f -plane with a sloping topography provides a good

intuitive insight into the dynamical processes at work, and in many cases leads to

useful physical results in the Ocean setting, it is not the most relevant model to

this thesis. However, there is an exact analogy between this case, and the case

with a flat-bottomed ocean in the absence of topography viewed on a β-plane, as

the non-constancy of the Coriolis parameter allows a similar exchange between ζ

and f to take place and drive planetary Rossby waves. The following asymptotic

treatment, based on this intuition, involves examining a low frequency perturbation

about the balanced state, and allows an equation to be derived which governs the

wave dynamics of the disturbance due to the constraint imposed by the potential

vorticity.

2.2.5.1 The quasi-geostrophic potential vorticity equation

We now derive an important limiting case of the shallow water equations which

will be used in chapter 3. Consider the linear equations (2.56) and (2.57) under the

β-plane approximation (2.79), so that

∂u

∂t
+ (f0 + βy)k × u = −g∇η, (2.81)

∂η

∂t
+∇ · (hu) = 0.

It is useful to write these equations in terms of non-dimensional variables (denoted

with an asterisk) using the scalings

u = Uu∗, η =
f0LU

g
η∗, x = Lx∗, t =

1

f0

t∗, h = H0h
∗, (2.82)

where H0 is a typical depth scale, L =
√
gH0/f0 is the Rossby radius - that is,

the length-scale over which the Coriolis force becomes as significant as gravity.

Denoting by Lβ = f0/β the length-scale associated with the planetary vorticity

gradient, and defining the dimensionless parameter b = L/Lβ , equations (2.81)
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become

∂u

∂t
+ (1 + by)k × u = −∇η, (2.83)

∂η

∂t
+∇ · (hu) = 0,

where the asterisk notation is dropped for convenience. Note that the non-

dimensional β effect is considered a small parameter so that b � 1. In order that

geostrophic balance is found at leading order, time is rescaled as T = bt, and the

fluid depth is rewritten as h = 1− bhb so as to include only small O(b) bottom vari-

ations, with hb(x) representing the topography deviations from a uniform depth.

Thus, the equations become

b
∂u

∂T
+ (1 + by)k × u = −∇η, (2.84)

b
∂η

∂T
+∇ · [(1− bhb)u] = 0.

Seeking perturbation expansions of the form

u = u(0) + bu(1) + · · · , η = η(0) + bη(1) + · · · , (2.85)

and balancing terms in the system (2.84) of like order in b, the leading order terms

are found to satisfy the equations of geostrophic balance

k × u(0) = −∇η(0), ∇ · u(0) = 0. (2.86)

It is notable that in non-dimensional form, η(0) acts as a streamfunction for the

leading order velocity fieldu(0), since the velocity components satisfy
(
u(0), v(0)

)
=(

−∂yη(0), ∂xη
(0)
)
.
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The equations at next order are given by

∂u(0)

∂T
+ k × u(1) + yk × u(0) = −∇η(1), (2.87)

∂η(0)

∂T
+∇ · u(1) −∇ ·

(
hbu

(0)
)

= 0. (2.88)

From these equations, and the leading order geostrophic balance, a single equation

in η(0) can be derived. By taking the curl of (2.87), and then substituting (2.88) and

(2.86), one retrieves the equation

∂T
(
∇2η(0) − η(0)

)
+∇⊥η(0) · ∇hb + ∂xη

(0) = 0, (2.89)

where ∇⊥ = k ×∇ is the skew-gradient operator. Equation (2.89) is known as the

‘quasi-geostrophic potential vorticity equation’, and was first derived in this form

by Charney (1948), who performed a systematic scale-analysis of the governing

equations for the atmosphere.

2.2.6 Dispersion in a mid-latitude β-channel

To set the scene for later analyses of shallow water systems, in particular the dynam-

ics of shallow water waves over small-scale topography, it is helpful to first develop

quantitative results for wave dispersion in a mid-latitude channel. The focus of this

section is to introduce the three main large-scale waves found in the mid-latitudes,

namely Poincaré, Kelvin, and Rossby waves, and to calculate their dispersion re-

lations using both a numerical procedure, and an asymptotic approximation. Our

set-up involves considering waves confined to a mid-latitude channel on a β-plane,

centred at y = 0 and bounded by sidewalls at y = ±wc. Indeed, doing so allows

for relatively straightforward and accurate calculation of the wave velocities and

dispersion relations. Furthermore, highly accurate asymptotic approximations can

be derived in the case where the beta parameter is assumed to be small, which acts

as a good starting point for deriving accurate analytical results when a small-scale

topography is introduced in chapter 3. Our approach to the asymptotic calculations

closely follows that of Paldor et al. (2007); Paldor and Sigalov (2008).
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Consider the linear equations (2.56) and (2.57), non-dimensionalised accord-

ing to the scalings (2.82) on a β-plane, and written in component form

∂u

∂t
− (1 + by)v = −∂η

∂x
, (2.90)

∂v

∂t
+ (1 + by)u = −∂η

∂y
, (2.91)

∂η

∂t
+ h

∂u

∂x
+ h

∂v

∂y
= 0. (2.92)

Here, h is assumed to be constant and has thus be taken outside of the horizontal

derivatives. The boundary conditions are those of no normal flow on the channel

walls, which may be written as v(±wc/L) = 0. We deal first with the numerical

calculations of the dispersion relations.

2.2.6.1 Numerical calculations of the wave dispersion relations

In order to calculate solutions of (2.90-2.92) in a β-channel, we must turn our at-

tention towards numerical techniques. Since we are most interested in waves which

are periodic in the x-direction and periodic in time, solutions to (u, v, η) propor-

tional to exp(i(kx−ωt)) are sought, where k is the zonal wavenumber and ω is the

frequency. Therefore, making the substitutions

(u, v, η)→ (u(y), v(y), η(y)) exp(i(kx− ωt)), (2.93)

reduces the equations (2.90–2.92) to a system of ODEs in y, given by

−iωu− (1 + by)v = −ikη, (2.94)

−iωv + (1 + by)u = −∂η
∂y
, (2.95)

−iωη + ikhu+ h
∂v

∂y
= 0. (2.96)

The equations are closed with the boundary conditions v(±1) = 0 so that there can

be no flow through the channel walls. Note that this corresponds to setting wc = L

initially, so that the channel half-width is equal to the Rossby radius. Whilst it is

true that the channel width does affect the solution by determining the quantisation
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of the meridional component of the wavenumber in the channel, the changes caused

by varying wc are of little interest physically to this thesis and so from hereon the

channel width will always be assumed to have walls at y = ±1 (±L in dimensional

form).

The system of ODEs (2.94-2.96) defined on y = [−1, 1] is well suited to a

Chebyshev spectral method in which the y-grid is discretised into N + 1 points

(N = 24 is used) located at the zeros of the Chebyshev polynomial of order N + 1.

Standard techniques (see e.g. Trefethen, 2000) allow the differentiation matrix Dy

to be obtained for the grid, which allows the discretised version of (2.94-2.96) to be

written as a generalised eigenvalue problem of the form

− iωAv +Bv = 0, (2.97)

where v = (u1, · · · , uN+1, v2, · · · vN , η1, · · · , ηN+1)T , and A and B are square

block matrices of size 3N + 1. Note that the discretised v-equation spans only the

interior points of the Chebyshev grid, so that the boundary conditions v(±1) = 0

are satisfied (on the discrete grid these are enforced by setting v1 = vN+1 = 0).

Correspondingly, the matrixB is found by first considering the square block matrix

of size 3N + 3 given by

B =


0 −f ikI

f 0 Dy

ikhI hDy 0

 , (2.98)

where f = diag(1+by1, · · · , 1+byN+1) and I is the identity matrix, and removing

the rows and columns in positions N + 2 and 2N + 2 (we retain the same variable

name B for simplicity). The matrix A can be determined by the same process,

and for the flat-bottomed channel, this matrix simply reduces to the identity matrix

of size 3N + 1. It is however useful to leave equation (2.97) in its generalised

eigenvalue form for ease of generalisation in the later section 3.2.4. The eigenvalues

and eigenvectors solving (2.97) are straightforward to find using standard numerical
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routines.

2.2.6.2 Asymptotic approximations for the wave dispersion rela-

tions

Whilst it is not difficult to solve the discrete equation (2.97) to obtain highly ac-

curate numerical approximations for the wave velocities and frequencies in the

channel, it is arguably a lot more insightful to develop simple expressions to ap-

proximate the solutions. In this section, we analyse equations (2.90-2.92) in the

asymptotic regime b � 1 and find analytical representations of the wave frequen-

cies at leading-order. This asymptotic regime is an appropriate one for the purposes

of studying waves in the mid-latitudes, where typical values of the planetary vor-

ticity gradient are b ≈ 0.005 for the open ocean, and b ≈ 0.05 for the atmosphere.

The analysis closely follows the approach of Paldor et al. (2007) who derive similar

asymptotic expressions for the dispersion relations, and Paldor and Sigalov (2008)

who extend their analysis to next order in b.

To begin the asymptotic analysis, it is first helpful to derive a single equation

for the poleward component of velocity. To do so requires the linearised PV equa-

tion (2.61) which for constant h and written in dimensionless form is given by

∂

∂t

[
ζ − (1 + by)

h
η

]
+ bv = 0, (2.99)

where ζ = ∂xv − ∂yu is the relative vorticity of the fluid. Note that this equation

can also be derived simply by taking ∂x(2.91)− ∂y(2.90) and substituting in (2.92).

Now, by taking −(by/h)∂t(2.90) + (1/h)∂2
tt(2.91)− (1/h)∂2

yt(2.92)− ∂x(2.99), a

single equation for v(x, t) is obtained, given by

∂

∂t

[
1

h

(
∂2v

∂t2
+ (1 + by)2v

)
−∇2v

]
− b∂v

∂x
= 0. (2.100)

Again, choosing the channel sidewalls to be at y = ±1 and seeking solutions which

are periodic in time with frequency ω, and in x with wavenumber k so that

v(x, t)→ v(y) exp (i(kx− ωt)) , (2.101)
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the PDE reduces to the Sturm-Liouville eigenvalue problem

d2v

dy2
+

(
ω2

h
− k2 − bk

ω
− (1 + by)2

h

)
v = 0, v(±1) = 0. (2.102)

This is a standard problem once the eigenvalues {En, n = 1, 2, 3 . . . } are identified

with E(ω, k) = ω2/h − k2 − bk/ω. In general, the {En}, which depend only on

the parameter b, must be calculated numerically as in the previous section, with the

dispersion relations then found from the roots of the cubic

ω2

h
− k2 − bk

ω
= En(b), n = 1, 2, 3 . . . . (2.103)

The roots of (2.103) for each eigenvalue En form three solution branches. The

two roots with greatest magnitude (but which differ in sign) correspond to Poincaré

waves, whilst the final, much smaller root corresponds to a Rossby wave.

Of course, there also exists a trivial solution to (2.102) given by v = 0 every-

where. This solution corresponds to another wave present in the channel, namely

the Kelvin wave. To find the dispersion relation for this wave, we set v = 0 in

equations (2.90) and (2.92), giving

∂u

∂t
= −∂η

∂x
,

∂η

∂t
+ h

∂u

∂x
= 0. (2.104)

Once again seeking periodic solutions for u and η which are proportional to

exp (i(kx− ωt)), it is deduced that the dispersion relation for this particular wave

is given analytically by

ω =
√
hk. (2.105)

When it is assumed that v(y) is not uniformly zero across the channel, then

equation (2.102) must be solved in order to determine the eigenvalues En and hence

the dispersion relations for Poincaré and Rossby waves. Unfortunately, this is not a

straight forward process since for b 6= 0, no analytical solutions to the problem exist

which satisfy the channel boundary conditions. However, as previously pointed out,

the parameter b which quantifies the magnitude of the planetary vorticity gradient
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is typically small in most oceanic and atmospheric settings, and thus allows for a

relatively simple asymptotic treatment of the problem.

Under the assumption that b � 1, the leading-order approximate solutions to

(2.102) corresponding to Poincaré waves are found when the wave frequencies ωP

are of order unity. In this case, the eigenvalues at leading order are

En,P ≡
ω2
P

h
− k2, (2.106)

and the problem reduces to solving the ODE

d2v

dy2
+

(
En,P −

1

h

)
v = 0, v(±1) = 0, (2.107)

which has a simple wave solution given by

vn,P (y) = AP exp

(
iy
√
En,P − 1/h

)
+BP exp

(
−iy
√
En,P − 1/h

)
, (2.108)

where AP and BP are constants. Applying the boundary conditions at y = ±1

leads to the constraint En,P − 1/h = π2n2/4, and hence the dispersion relations for

Poincaré waves at leading order are given by

ωP = ±
√

1 + h(k2 + π2n2/4) +O(b), n = 1, 2, 3 . . . . (2.109)

Rossby wave solutions occur when the wave frequencies ωR are assumed to be

O(b), in which case the leading order terms in the the eigenvalues are given by

En,R ≡ −k2 − bk

ωR
. (2.110)

An identical analysis to the Poincaré wave case leads to the constraintEn,R−1/h =

π2n2/4, and thus the dispersion relations for Rossby waves are given by

ωR = − bkh

1 + h(k2 + π2n2/4)
+O(b2). (2.111)
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It is notable that (2.111) can also be derived from the quasi-geostrophic potential

vorticity equation (2.89) when hb is a constant, and after rescaling time. This is

unsurprising, since in deriving (2.89) the same b� 1 assumption was made, along

with the assumption that ω was of the same order (since we rescaled time with

T = bt). These scalings naturally filter out both Poincaré and Kelvin waves, and

hence only the low-frequency Rossby waves remain.

Figure 2.2 compares the dispersion relations calculated from (2.97) to the an-

alytical expressions (2.105), (2.109) and (2.111) for a flat-bottomed ocean of depth

h = 1, and a relatively large beta parameter b = 0.5. Perhaps surprisingly, the

asymptotic approximations agree well with the numerical results even for such a

large value of b. This fact is particularly pertinent to the next chapter of this thesis

when the bathymetry is allowed to vary, since it is well known (Pedlosky, 1987,

§3.10) that large-scale gradients in the ocean depth result in gradients in the po-

tential vorticity which also support Rossby waves, and hence larger values of b

may be more representative of typical ocean conditions. Note that the numerical

and asymptotic results corresponding to the Kelvin wave are exactly in agreement,

since when v = 0 uniformly across the channel the dispersion relation is found from

the governing equations analytically.
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Figure 2.2: Dispersion relations for the Kelvin wave, and the first three modes (n = 1, 2, 3)
of Poincaré and Rossby waves over a flat bottom of depth h = 1, beta param-
eter b = 0.5, and non-dimensional channel width wc/L = 1. Shown are the
numerical solutions to (2.97) (blue lines), as well as the asymptotic approxi-
mations (2.105), (2.109) and (2.111) (black circles). The top panel shows the
dispersion relations for all three wave types, and the lower panel shows only
the Rossby waves for clarity.
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Chapter 3

The rotating shallow water equations

in the presence of varying

topography

The work in this chapter has appeared in Goldsmith and Esler (2021).

In the previous chapter, the dispersive characteristics of the waves in a flat-

bottomed shallow water β-channel were investigated using both asymptotic and

numerical techniques. Here, the question of how these dispersion relations are mod-

ified in the presence of finite topography, with horizontal scale much smaller than

the wavelength of the waves in question, is addressed in detail using the method of

homogenisation. The aim is to provide some quantitative insight into the extent to

which variable ocean bathymetry can cause wave propagation speeds to differ from

predictions based on the average ocean depth, with a view to providing guidance to

ocean model developers as to the general importance of accurate parameterisation

of bottom roughness, at least as far as accurately representing the propagation of

large-scale waves is concerned.

We aim to connect with and extend two important bodies of work. The first

concerns the non-rotating problem, in which the linear rSWE reduce to the classi-

cal wave equation. Topography enters the problem as a variable local wave speed

c =
√
gh (g gravity, h ocean depth), and to determine the effective speed ceff of
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long waves in the presence of variations in c is a classical problem in the math-

ematics of homogenisation, in its essence equivalent to that first formulated by

Rayleigh (1892) for the heat equation. The technicalities of this were covered in

section 2.1 of this thesis. Modern analysis of homogenisation problems (see e.g.

the reviews of Nandakumaran, 2007; Allaire, 2012; Mei and Vernescu, 2010, §5.5)

reveals that, using 〈·〉 to denote a horizontal average, 〈c−2〉−1 ≤ c2
eff ≤ 〈c2〉, i.e.

for any small-scale bathymetry the square of the effective long wave speed ceff is

bounded below by the harmonic mean of c2 (in the elasticity literature the Reuss

bound) and above by its arithmetic mean (the Voigt bound) (see also §2.1.1.2 for

a discussion). Equivalently, the effective ocean depth Heff ‘felt’ by the long waves

satisfies 〈h−1〉−1 ≤ Heff ≤ 〈h〉. Notably, the lower (harmonic mean or Reuss)

bound is actually attained for propagation over one-dimensional topography (e.g.

Rosales and Papanicolaou, 1983; Hu and Chan, 2005; Van Der Baan, 2001), (see

also Holmes, 2012, for an introductory treatment) meaning that the simple approx-

imation of using the averaged depth 〈h〉 in place of Heff will certainly result in

large modelling errors for waves propagating over steep ocean ridges. For two-

dimensional topography Heff lies somewhere between the two bounds, and one aim

here is to quantify its exact dependence on topographic height and area fraction

for some idealised two-dimensional topographies, in particular arrays of periodic

cylinders for which highly accurate asymptotic solutions exist (e.g. Balagurov and

Kashin, 2001; Godin, 2013). Another key question is how the classical wave equa-

tion analysis is modified by the introduction of rotation, i.e. are Poincaré and Kelvin

waves affected to the same extent as non-rotating gravity waves?

The second key body of work concerns the quasi-geostrophic limit of the

rSWE. Here solutions of the homogenisation problem formulated by Rhines and

Bretherton (1973), applied to both sparse random topographies and (possibly

densely packed) periodic arrays (Vanneste, 2000a,b; Benilov, 2000), give insight

into the extent to which Rossby wave propagation is affected by small-scale topog-

raphy. Compared with the gravity wave case, the physics is relatively complicated,

as the long Rossby waves of interest can interact resonantly with trapped topo-
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graphic Rossby waves attached to each seamount (see e.g. Jansons and Johnson,

1988). In the absence of regularising dissipative processes, such as Ekman friction,

the modified Rossby wave dispersion relations feature singularities at the resonant

frequencies. These quasi-geostrophic results are naturally restricted to topography

satisfying the requirements of quasi-geostrophic scaling, i.e. ocean depth variations

must satisfy |h− 〈h〉|/〈h〉 � 1, and the horizontal scale of the topography must be

sufficiently large that the Rossby number of the motion remains small (see discus-

sion below). The present treatment, in the full rSWE, relaxes these assumptions and

extends the previous results to finite topographies including islands. Not only is an

assessment of the wider validity of the quasi-geostrophic results made possible, but

also a quantitative comparison between the relative effect of the topography on the

different wave types (Rossby, Kelvin and Poincaré) can be made.

It is important to emphasise that the focus here is on waves which are long

relative to the topographic length scale. Other asymptotic regimes of interest in-

volve flow over topography with a shallow gradient or infinitesimal amplitude. In

these cases, the homogenisation technique and related multiple-scale methods can

be adapted to study the behaviour of waves with wavelengths comparable to the

topography, a situation which allows for phenomena such as Bragg resonance be-

tween surface gravity waves and periodic topography (e.g. Mei, 1985; Naciri and

Mei, 1988). Similarly, Bühler and Holmes-Cerfon (2011) and Li and Mei (2014)

have considered the effect of bathymetry on internal tides in a stratified ocean, and

have quantified the damping effect of a random topographic distribution at leading

order in amplitude. As a consequence, the results presented here do not constitute

a complete picture, and shorter waves can be expected to exhibit a distinct and rich

phenomenology.

This chapter is organised as follows. In section 3.1 the method of homogeni-

sation is introduced and applied to the linearised rSWE to obtain the homogenised

governing equations. The coefficients in these governing equations are determined

from the solutions of cell problems defined on the short length scale, which are

formulated explicitly for the rSWE. The quasi-geostrophic and non-rotating lim-
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its of the governing equations and cell problems are then considered, making the

connection to previous results clear. In section 3.2 the case of periodic arrays of

seamounts arranged in a regular square lattice is treated in detail. Particular at-

tention is given to cylindrical seamounts, because the multipole expansion method

of e.g. Balagurov and Kashin (2001) and Godin (2013) can be used in this case

to obtain highly accurate asymptotic solutions to the cell problems, including the

new ‘rotating’ cell problem which arises from the rSWE. The outcome is various

means to determine the topographically induced corrections to the dispersion re-

lations of Kelvin, Poincaré and Rossby waves, including an explicit formula valid

for Rossby waves in the presence of finite amplitude topography, complementing

the quasi-geostrophic results of Benilov (2000) and Vanneste (2000b). In sec-

tion 3.3 the case of well-separated randomly distributed seamounts is considered,

with seamount height, radius and density determined by a prescribed distribution.

Again, the goal is to determine the corrections to the wave dispersion relations. In

section 3.4 conclusions are drawn.

3.1 The non-dimensional equations and multiple

scales approach

Recall the linearised rSWE on a β-plane in an ocean of undisturbed depth h, and

which are non-dimensionalised according to the scalings (2.82)

ut + (1 + by)k × u = −∇η, (3.1)

ηt +∇ · (hu) = 0.

The depth h is assumed to vary on a horizontal scale l due to the presence of topogra-

phy, and in all that follows it is assumed that l� L,Lβ . (Recall also L =
√
gH0/f0

is the Rossby radius, Lβ = f0/β is the length scale associated with the planetary

vorticity gradient and b = L/Lβ is a non-dimensional parameter which is treated as

order unity).

Below, we will also make use of the linear potential vorticity equation (2.61),
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which for a varying topography on a β-plane, and non-dimensionalised as above, is

given by
1

h

∂

∂t

(
ζ − (1 + by)η

h

)
+ u · ∇

(
1 + by

h

)
= 0, (3.2)

where ζ = k · ∇ × u is the relative vorticity.

To exploit the horizontal scale separation between the topography and the

length scales of the waves of interest, a small parameter ε = l/L � 1 can now

be introduced. To permit multiple-scale analysis, the spatial variableX = x/ε can

be defined, which describes spatial variations on the scale of the topography, which

we treat as independent of x as permitted by the concept of two-scale convergence.

In general, the topography h(X,x) can also be allowed to vary on the long length

scale associated with x, as would be useful for example to describe a large-scale

topographic slope covered in small-scale seamounts.

Next, we introduce an average 〈·〉 over the short scales, which can be applied

to any function g(X,x),

〈g〉 =
1

|Ω|

∫
Ω

g(X,x) dX. (3.3)

In the following sections, two main cases will be considered. The first, most

tractable case, is that of a regular periodic lattice of seamounts, in which case Ω

is a single doubly periodic cell (|Ω| denotes its area). The second case is that of ran-

domly distributed topography, in which case Ω can be taken to be a spatial average

over a ‘mesoscale’ region which is (asymptotically) intermediate in size between

the small and large scales. In the asymptotic limit, the number of mountains in the

mesoscale region will tend to infinity, and the mesoscale average will be indepen-

dent of the particular distribution of the topography and will therefore be equivalent

to an ensemble average. The analysis which follows in the rest of this section ap-

plies equally in both regimes. Averaged variables will be denoted below by capitals,

e.g. applying the spatial average to the topography gives

H(x) = 〈h(X,x)〉. (3.4)
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Finally, replacing horizontal derivatives according to the multi-scale formal-

ism, using the chain rule (i.e. ∇ → ε−1∇X +∇x) gives

εut + ε(1 + by)k × u = −∇Xη − ε∇xη, (3.5)

εηt +∇X · (hu) + ε∇x · (hu) = 0.

The equations (3.5) are the starting point for the analysis to follow.

3.1.1 The homogenised equations

The large-scale homogenised equations can be obtained from (3.5) by seeking a

multiple-scale perturbation solution of the form

η(X,x, t; ε) = η0(X,x, t) + εη1(X,x, t) + ... (3.6)

u(X,x, t; ε) = u0(X,x, t) + εu1(X,x, t) + ....

Inserting (3.6) in (3.5) gives, at leading order

∇Xη0 = 0, ∇X · (hu0) = 0. (3.7)

From this we deduce that η0 = Π(x, t) is independent of the small-scale variable

X (i.e. η0 = 〈η0〉 := Π), and that

u0(X,x, t) =
UH +∇⊥Xψ

h
, (3.8)

where∇⊥X ≡ k ×∇X is the skew-gradient operator, and

U(x, t) =
〈u0h〉
〈h〉

is the depth-weighted average velocity. Here ψ(X,x, t) is an unknown scalar func-

tion to be determined.

Next, applying the averaging operator to the multi-scale equations (3.5), after
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multiplying the momentum equation by h, gives, at leading order

Ut + (1 + by)k ×U = −∇xΠ +
〈η1∇Xh〉

H
, (3.9)

Πt +∇x · (HU) = 0.

Equations (3.9) govern the evolution of long waves in the presence of topography,

except that to close the equations it remains necessary to evaluate the correlation

term 〈η1∇Xh〉 in terms of the averaged variables U , Π and H .

To evaluate the correlation term η1 must be determined, and to do so it is nec-

essary to consider the momentum equation of (3.5) at next order. Multiplying by h

and taking the divergence∇X · (·), gives

∇X · (h∇Xη1)− (1 + by)∇2
Xψ = −∇Xh · ∇xΠ. (3.10)

This is an elliptic equation for η1 which involves the other unknown function ψ.

Evidently another equation is needed to close the system, which can be determined

most easily from the PV equation (3.2), which at leading order in ε is

∇X ·
(
∇Xψt
h

)
− (1 + by)∇Xψ · ∇⊥X

(
1

h

)
= (3.11)

−H ((1 + by)U − k ×Ut) · ∇X

(
1

h

)
.

Notice that (3.10) and (3.11) have both been written with terms involving the un-

known ψ and η1 on the left, and ‘source’ terms involving h and the averaged vari-

ables on the right. Before η1 can be found in terms of the sources from (3.10), (3.11)

must first be solved for ψ. The time dependence in (3.11) is an expected feature,

and arises because the rotation adds new physics to the shallow water equations,

namely that topography at any horizontal scale will support the motion of trapped

topographic Rossby waves (Jansons and Johnson, 1988; Longuet-Higgins, 1967).

As discussed in the quasi-geostrophic context by Vanneste (2000b) and Benilov

(2000), these trapped Rossby waves can be excited resonantly by the large-scale

motion.
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In general, because (3.10-3.11) are linear in ψ and η1, the solution for η1 can

be expressed formally using a Green’s function approach, in the form of history

integral over the past state of the system. This approach, broadly following that of

(Vanneste, 2000a), is followed in Appendix C, and results in an integro-differential

equation (C.6) for the time-evolution of the momentum U .

However, our primary interest here is in the impact of the topography on the

dispersion relations of periodic waves, therefore solutions∝ exp (−iωt) will hence-

forth be sought, allowing the substitution ∂t → −iω. It follows that (3.11) becomes

∇X ·
(
∇Xψ

h

)
− i

1 + by

ω
∇Xψ · ∇⊥X

(
1

h

)
= (3.12)

−H
(

i
1 + by

ω
U − k ×U

)
· ∇X

(
1

h

)
,

and the solutions η1 and ψ of (3.10) and (3.12) can be expressed as

η1 = Φ · ∇xΠ +H(1 + by)Ψ(1+by)/ω ·
(

i
1 + by

ω
U − k ×U

)
, (3.13)

ψ = HG ·
(

i
1 + by

ω
U − k ×U

)
.

In (3.13) the vectors Φ = (Φ1,Φ2)T , G = (G1, G2)T and Ψα = (Ψ1,α,Ψ2,α)T are

obtained by solving the cell problems

∇X · (h∇XΦi) = −∂Xi
h, (3.14)

and

∇X · (h∇XΨi,α) = ∇2
XGi,

∇X ·
(
∇XGi

h

)
− iα∇XGi · ∇⊥X

(
1

h

)
= −∂Xi

(
1

h

)
, (3.15)

respectively, where α > 0 is a parameter. Since only η1 appears in the averaged

equations (3.9), the components Gi do not feature explicitly and act more as inter-

mediate variables in the cell problem (3.15). Their dependence on α is therefore
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suppressed for convenience. The cell problems are elliptic equations defined on Ω,

and have unique solutions up to arbitrary functions of the large-scale variables only

(see e.g. §5.3.2 of Holmes, 2012). The arbitrary functions can be ignored since they

do not contribute to the correlation term in (3.9).

It is important to emphasise that the solutions Φ and Ψα of the cell problems

depend only on the details of the topography, not on the waves being studied or on

dynamical parameters such as b. The first cell problem (3.14) is, for reasons to be

explained below, identical to equation (2.13), most commonly arising in classical

two-dimensional homogenisation problems of mathematical physics, such as heat

transfer through heterogeneous media, the study of which dates back to Rayleigh

(1892). The second cell problem (3.15), which is perhaps more accurately described

as a one-parameter family of cell problems parametrised by α, is introduced by the

presence of rotation and the associated topographic Rossby waves. An important

point is that for real α, Ψα = Ψ∗−α, as can be seen by making the substitutions

α→ −α and Gi → G∗i (complex conjugate).

Inserting our expression for η1 from (3.13) leads to

− iω

(
I +

(
1 + by

ω

)2

K(1+by)/ω

)
·U + (1 + by)

(
I + K(1+by)/ω

)
· k ×U =

− (I + D) · ∇xΠ, (3.16)

where I is the identity matrix and the matrices D and Kα are given by

D = − 1

H

 〈Φ1∂X1h〉 〈Φ2∂X1h〉

〈Φ1∂X2h〉 〈Φ2∂X2h〉

 , Kα =

 〈Ψ1,α∂X1h〉 〈Ψ2,α∂X1h〉

〈Ψ1,α∂X2h〉 〈Ψ2,α∂X2h〉

 .

(3.17)

For cell problems with a fourfold rotational symmetry, for example axisymmetric

seamounts arranged in a regular square lattice, these matrices simplify to D = DI

and

Kα =

 K1(α) −iK2(α)

iK2(α) K1(α)

 ,
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for real, scalar functions K1(α) and K2(α), which hereafter we will call the ‘topo-

graphic resonance functions’. The cell-averaged linear rSWE then simplify to

−iω
(

1 +
(

1+by
ω

)2
K1

(
1+by
ω

)
+
(

1+by
ω

)
K2

(
1+by
ω

))
U

+(1 + by)
(
1 +K1

(
1+by
ω

)
+
(

1+by
ω

)
K2

(
1+by
ω

))
k ×U = −(1 +D)∇xΠ,

−iωΠ +∇x · (HU) = 0, (3.18)

where again, we emphasise that D, K1(α) and K2(α) are properties of the topogra-

phy alone.

The system of equations (3.18) can be solved to obtain expressions determin-

ing the dispersion relations of the Poincaré, Kelvin and Rossby waves solutions of

the rSWE on the β-plane. In sections 3.2 and 3.3 below, numerical and analyti-

cal results are presented which illustrate the extent to which different topographies

affect the dispersion relations of these waves. The results of this section have coun-

terparts when Ekman friction is included in the governing equations (see Appendix

B), but for simplicity our main focus here is on the frictionless case. However, as

in the quasi-geostrophic problem (Vanneste, 2000a,b), it is necessary to include a

regularising process such as Ekman friction in order to make physical sense of be-

haviours when there is a resonance between the waves of interest and topographic

Rossby waves on the seamounts. Other dissipative processes, such as eddy diffu-

sivity of momentum, could also play a regularising role. Additionally, nonlinearity

will also likely act to remove the singularity at the resonances as occurs in the theory

of Bragg scattering of water waves (see e.g. the weakly nonlinear analysis of Hara

and Mei, 1987). Here, following Vanneste (2000b), only Ekman friction is consid-

ered and in Appendix B the results above are generalised to include this effect. The

analogue of the equations (3.18) are shown there to be (B.12).

Next, we consider some relevant limits of equations (3.9) and (3.18).

3.1.2 Quasi-geostrophic limit of the homogenised equations

The quasi-geostrophic limit of the homogenised equations (3.9) can be obtained by

considering the joint limit b� 1, in which h = 1− bhb, i.e. deviations from a uni-
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form depth of unity are small, and are described by the rescaled bottom topography

hb(X) (as for the full system, hb can be allowed to depend on x if required). Time

must also be rescaled to the slower timescale T = bt. Expanding

Π = Π(0) + bΠ(1) + b2Π(2) + ..., U = U (0) + bU (1) + b2U (2) + ..., (3.19)

leads to geostrophic balance at leading order −∇xΠ(0) = k × U (0) (equivalently

U (0) = ∇⊥xΠ(0)), and at next order

∂TU
(0) + k ×U (1) + yk ×U (0) = −∇xΠ(1) − 〈η(0)

1 ∇Xhb〉, (3.20)

∂TΠ(0) +∇x ·U (1) = 0.

Applying ∇⊥x · to the momentum equation in (3.20), and using the free surface dis-

placement equation to eliminate ∇x ·U (1), leads to the quasi-geostrophic potential

vorticity equation

∂T
(
∇2

xΠ(0) − Π(0)
)

+ Π(0)
x +∇x · 〈hb∇⊥Xη

(0)
1 〉 = 0. (3.21)

Here, η(0)
1 is determined by the leading-order terms in (3.10) and (3.11) which can

be simplified to

∂T∇2
Xη

(0)
1 −∇Xη

(0)
1 · ∇⊥Xhb = ∇xΠ(0) · ∇⊥Xhb. (3.22)

Equations (3.21) and (3.22) are the homogenised equations of the quasi-

geostrophic system of Vanneste (2000a,b) in the absence of friction, and a gen-

eralised version of equation (2.89) to include small-scale topography. If we seek

solutions ∝ exp (−iΩT ), where Ω = ω/b is the frequency on the slow time scale,

then the solution η(0)
1 is found from the leading-order terms in (3.13) to be

η
(0)
1 =

i

Ω
Ψ̃1/Ω · ∇⊥xΠ. (3.23)

where the vector Ψ̃α = Re (Ψ̃1,α, Ψ̃2,α)T has components which solve the cell
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problem (3.15) at leading-order in b,

∇2
XΨ̃i,α − iα∇XΨ̃i,α · ∇⊥Xhb = −∂Xi

hb. (3.24)

Focussing on symmetric topography, defining K̃(α) = −〈Ψ̃1,α∂X1hb〉 to be the

quasi-geostrophic analogue of K1(α) (the quasi-geostrophic analogue of K2(α)

vanishes), and then substituting Ω = ω/b allows the eigenvalue equation for the

homogenised quasi-geostrophic system to be written as

− iω
(

1 + b2

ω2 K̃
(
b
ω

))
∇2

xΠ(0) + iωΠ(0) + bΠ(0)
x = 0, (3.25)

recovering the result of Vanneste (2000a).

The derivation of (3.21-3.25) above differs from that of Vanneste (2000a) in

a significant way. Here, we have obtained (3.21-3.25) by first deriving the ho-

mogenised equations (3.9) and then taking the quasi-geostrophic limit, correspond-

ing to the following ordering of the small parameters: ε � b � 1. Vanneste, by

contrast, applied the homogenisation procedure to the quasi-geostrophic equations

themselves, consistent with the ordering b � ε � 1. The fact that the same equa-

tions are found in each case gives a clear indication that the result is independent

of the value of the ratio ε/b = lLβ/L
2 (where l is the topography length scale, L

is the Rossby radius and Lβ = f0/β). In fact, independence of ε/b can be shown

more explicitly by a direct asymptotic treatment of (3.5) with ε ∼ b (details given in

Appendix A). In other words, there is no restriction on the topographic length scale

l, beyond the shallow water scaling l � H0, for (3.21-3.22) to hold, a result which

extends that of Vanneste, which covers only the case l� L2/Lβ .
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3.1.3 Non-rotating homogenised equations

To introduce our main results below, it is helpful to first consider (3.9) in the absence

of rotation

Ut = −∇xΠ +
〈η1∇Xh〉

H
, (3.26)

Πt +∇x · (HU) = 0.

where in this case η1 = Φ · ∇xΠ, with Φ = (Φ1,Φ2)T , and Φi is determined by

the cell problem (3.14). In this case, taking the time derivative of the free surface

equation and substituting for Ut results in the wave equation

Πtt = ∇x · (H(I + D) · ∇xΠ) , (3.27)

with D given by (3.17). The result (3.27) shows that, as expected, shallow water

gravity waves obey the wave equation. For symmetric arrays of seamounts with

D = DI , the local gravity wave speed is given by H1/2
eff , where Heff = H(1+D) is

the non-dimensional effective depth (the dimensional units here being
√
gH0). As

discussed in the introduction, functional analysis techniques (e.g. Nandakumaran,

2007; Allaire, 2012; Mei and Vernescu, 2010, §5.5) applied to (3.27) when D =

DI reveals the Reuss–Voigt bounds H̄ ≡ 〈h−1〉−1 ≤ Heff ≤ 〈h〉 ≡ H , with the

lower (harmonic mean or Reuss) bound being attained exactly for propagation over

a one-dimensional topography. In section 3.2 below the two-dimensional case is

discussed in detail for the case of regular periodic arrays of circular cylinders.

3.2 The influence of topography on shallow water

waves: regular arrays of seamounts

3.2.1 The effect of small-scale topography on the dispersion re-

lation: a summary

First of all, a summary of results quantifying the effect of small-scale topography on

the β-channel dispersion relations will be presented and discussed. Details of how
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Figure 3.1: Dispersion relations for Poincaré, Rossby, and Kelvin waves with beta param-
eter b = 0.5, over (black curves) a flat-bottomed ocean of depth H = 0.7135,
and (blue curves) a regular array of cylindrical seamounts with h+ = 1,
h− = 0.1 (i.e. cylinder height ht = h+ − h− = 0.9) covering area frac-
tion A = 1/π. Only the first three branches of Poincaré and Rossby waves are
shown in the upper panel, and the lower panel zooms in to show the Rossby
waves more clearly. The dashed blue curve in the resonant frequency band
shows the Kelvin wave solution in the extended equations when Ekman fric-
tion is present (see text).
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Figure 3.2: The effect of topography on the frequency of various wave types for b = 0.5,
h+ = 1, h− = 1 − ht and cylinder area fraction A. Upper panel: Frequency
change as a function of A for fixed topographic height ht = 0.5. Note that the
curves for the inertial, Poincaré, and Kelvin waves are near indistinguishable.
Lower panel: Frequency change as a function of ht for fixed area fraction A =
1/π. The shading shows the resonant regions for (I) the short Rossby wave,
(II) the long Rossby wave, and (III) the inertial wave (for details see text).
In both panels, curves with open circles show results when Ekman friction is
present. These additional solutions are only plotted within and close to the
relevant resonant regions.



69

the results are actually obtained, by numerical solution of (3.18), are postponed

to the sections below. Results will be for regular periodic arrays of cylindrical

seamounts, for which the topography is arranged in doubly periodic cells Ω defined

onX ∈ (−π, π]× (−π, π]. The ocean depth is then given by

h(X) =

 h− |X| ≤ R

h+ |X| > R
, (3.28)

i.e. the cylindrical seamounts have radius R, or cover area fraction A = R2/4π,

and have height ht = h+ − h−.

First, to give an idea of the extent of the possible impact of small-scale topogra-

phy, the blue curves in figure 3.1 show how the dispersion relation is changed in the

presence of a rather extreme topography, for which ht = 0.9, i.e. the height of the

cylinders is 90% of the depth of the background ocean (h+ = 1, h− = 0.1), and the

cylinder area fraction is A = 1/π (R = 2). The black curves show the dispersion

relations over a flat bottomed ocean, with a layer thickness given by the average

ocean depth H ≈ 0.7135 (the same numerical calculations performed in section

2.2.6, where h is replaced by H). The main results, summarising the effect of to-

pography on the waves, are as follows: Poincaré waves are slightly slower, typically

by around 20% including near-inertial waves, and Rossby waves are significantly

slower, with their phase speed reduced by around 50%–60%. The Kelvin wave is

slightly faster at small wavenumbers and slower at large wavenumbers, with the two

regimes separated by a band of resonant wavenumbers within which Ekman friction

effects must be considered to obtain physically reasonable results. The dashed blue

curve shows a separate calculation for this region, based on numerical solutions of

the extended equations (B.12), which include Ekman friction.

To illustrate how the results in figure 3.1 depend upon the topographic param-

eters, figure 3.2 shows the relative change in frequency for a set of representative

waves. In the top panel, the frequency change is shown as a function of area fraction

A (note that A < π/4, since A = π/4 corresponds to the cylinders touching), for

the gravest inertial wave (k = 0, n = 1), a representative Poincaré wave (k = 5,
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n = 1), a relatively short Kelvin wave (k = 5, chosen so that it is outside the res-

onant frequency band in figure 3.1), and both short (k = −20) and long (k = −2)

Rossby waves. The topographic height is chosen as ht = 0.5 (lower than for figure

3.1 where ht = 0.9) and the beta parameter as b = 0.5. The results reinforce the

impression from figure 3.1 that Rossby waves are affected much more than Kelvin

or Poincaré waves. In fact, the contrast is even greater for the lower topography,

because, as will be seen below, Rossby wave corrections are driven by resonances

(or near resonances) with topographic Rossby waves on the seamounts, which can

have a large effect even for low topography.

The lower panel shows how the results depend on the topographic height ht.

Curves for the six cases shown in the upper panel are plotted along with three further

curves showing calculations with Ekman friction, which are included in order to

give some indication of the behaviour in the (shaded) resonant regions. (Region

(I) is resonant for the short Rossby wave, region (II) for the long Rossby wave and

region (III) for the inertial wave.) The topography-induced change to the frequency

for both the short and the long Rossby waves is seen to change sign as the resonant

region is traversed, and the Ekman friction calculations give an idea of how the

curves join in practice. The value of the Ekman friction r is chosen in each case

to be close to the minimum required to obtain stable numerical results from (B.12)

across the resonant region. As seen in the previous panel, Rossby waves are slowed

by large-amplitude topography, but here can be seen to be accelerated by small-

amplitude topography. Ekman friction, however, suppresses the acceleration at low

amplitudes, and has comparatively little effect when the topography is large. The

effect on inertial, Poincaré and Kelvin waves is once again relatively small except

at extremely large ht, when the inertial waves experience resonance and are slowed

significantly (when Ekman friction is present).

In summary, all rSWE waves can experience resonance when their frequency

approaches that of the trapped topographic Rossby waves, as has been reported

for quasi-geostrophic Rossby waves by Vanneste (2000a,b) and Benilov (2000).

The details vary by wave type. Rossby waves resonate only with relatively low
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topography, and inertial / Poincaré waves only for very large-amplitude topography.

Kelvin waves will always experience resonance for some wavenumbers, for any

topography supporting trapped waves, because their dispersion relation spans all

frequencies.

Next, the calculations necessary to create figures 3.1 and 3.2 will be explained.

3.2.2 The first cell problem and the effective depth

Before an attempt can be made to solve (3.18), it is necessary to first solve the cell

problems (3.14) and (3.15) defined on the doubly periodic cell Ω. The first of these,

(3.14), is of particular interest because its solution allows the effective depth Heff in

the non-rotating problem to be determined.

For the case of the periodic array of cylindrical seamounts given by (3.28),

(3.14) (dropping the i index as the problem is now identical up to a rotation for

i = 1 and 2) simplifies to

∇2
XΦ+ = 0, and ∇2

XΦ− = 0, (3.29)

where the “+” and “−” indices correspond to parts of the solution in |X| > R, and

|X| < R respectively. The outer solution Φ+ takes periodic boundary conditions

on the edge of Ω. At the cylinder edge, the boundary conditions are

Φ+ = Φ−, (3.30)

h+∂ρΦ
+ − h−∂ρΦ− = − (h+ − h−) cos θ,

on |X| = R, where (ρ, θ) are the usual polar coordinates forX . For further discus-

sion of the cylinder edge boundary conditions see Appendix D.

The cell problem (3.29-3.30) is a canonical problem arising in many areas of

mathematical physics, most classically heat conduction through a two-dimensional

porous medium with cylindrical occlusions (Rayleigh, 1892; Keller, 1963; McPhe-

dran et al., 1988; Balagurov and Kashin, 2001) but also in electrostatics and op-

tics (McPhedran and McKenzie, 1980) and in determining dielectric permittivity
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(Godin, 2013). Our approach to solving (3.29-3.30), closely follows that of Godin

(2013), and is based on a multipole expansion which exploits the rapid conver-

gence of the Laurent series of the Weierstrass zeta function. Details are given in

Appendix E.

Godin’s method (see also Balagurov and Kashin, 2001) results in an infinite

linear system which must be inverted in order to solve for Φ+ and Φ− and thus

obtain Heff exactly. However, it turns out that truncation of the system at very low

order results in a sequence of increasingly accurate Padé approximants to the exact

solution. Moreover, at low order these can be easily evaluated, for example the first

three are given by

H
(0)
eff = h+ (1− 2γA) +O(A5/2),

H
(1)
eff = h+

(
1− γA
1 + γA

)
+O(A9/2), (3.31)

H
(2)
eff = h+

(
1− γA− g4γ

2A4

1 + γA− g4γ2A4

)
+O(A17/2).

Here, A is the cylinder area fraction (in our set-up A = R2/4π) and γ = (h+ −

h−)/(h+ + h−), which hereafter will be termed the ‘topography parameter’, as it

mediates how the topography influences the effective depth. Notice that −1 < γ ≤

1, with γ = 1 corresponding to an island, γ = 0 no topography and γ → −1 a

bottomless pit. For small topography of height hb, γ ≈ hb/2h+. The constant g4 ≈

0.305 is obtained from the multipole expansion described in detail in Appendix E.

Figure 3.3 shows the effective depth Heff for cylinders with height (left)

ht = 0.9 and (right) ht = 0.5, as a function of the cylinder area fraction A. Note

that the maximum possible area fraction is A = π/4, when the cylinders touch, and

Godin’s approach breaks down (Keller, 1963, describes the ‘near-touching’ regime).

In each case Heff (black circles) is obtained by a numerical calculation in which the

linear system is truncated at 24 terms, which is found to be sufficient for conver-

gence to machine precision for all results shown. As anticipated, H̄ ≤ Heff ≤ H ,

i.e. Heff in each case is seen to lie within the Reuss–Voigt bounds (dotted grey

curves). Also plotted are the approximants H(0)
eff , H(1)

eff and H(2)
eff , showing that H(2)

eff
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Figure 3.3: Effective depth Heff (black circles) as a function of cylinder area fraction A in
the cylindrical array problem with h+ = 1, and topographic heights (left) ht ≡
h+ − h− = 0.9 and (right) ht = 0.5. Also plotted are the approximants H(i)

eff

for i = 0, 1, 2 (green line, blue line, red line) and the arithmetic (H)/harmonic
(H̄) mean depths (upper/lower dotted grey curves).

gives an excellent approximation to the numerical result right up until the cylinders

nearly touch. The zeroth-order approximantH(0)
eff is accurate for small area fraction,

but diverges significantly from the numerical solution at larger A, and is is seen to

violate the Reuss bound. This fact is important in assessing the limitations of results

for randomly distributed seamounts in section 3.3, because the sparse seamount ap-

proximation (A � 1) used there turns out to be equivalent to using H
(0)
eff to ap-

proximate Heff . The results (3.31) have been further verified against figure 3 of Hu

and Chan (2005), who plot the refractive index (H/Heff)1/2 for the case of islands

(γ = 1) as a function of area fraction A (see also Mei and Vernescu, 2010, §7.1, for

an analogous result for acoustic waves). Excellent agreement is found (results not

shown).

Finally, note that the difference between the effective depth Heff and the mean

depthH accounts entirely for the differences between the Poincaré and Kelvin wave

dispersion relations at large wavenumber k seen in figure 3.1, because in the large

k limit these waves do not feel rotation.
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3.2.3 The second (rotating) cell problem

In this section the method used to solve the rotating cell problem (3.15), which is a

new feature of the rSWE, is described. Recall that solutions of (3.15) are required

in order to evaluate the topographic resonance functions K1(α), and K2(α) which

appear in (3.18). In the cylindrical seamount case given by (3.28), (3.15) becomes

(dropping the i index, and focussing on the i = 1 problem, which is sufficient due

to symmetry)

∇2
XΨ±α = ∇2

XG
± = 0, (3.32)

with the boundary conditions

Ψ+
α = Ψ−α , ∂θG

+ = ∂θG
−,

h+∂ρΨα − h−∂ρΨα = ∂ρG
+ − ∂ρG−, (3.33)

∂ρG
+

h+

− ∂ρG
−

h−
− iα

R

(
∂θG

+

h+

− ∂θG
−

h−

)
= −

(
1

h+

− 1

h−

)
cos θ,

on |X| = R. Here, the notation closely follows that for the non-rotating problem,

and detailed derivations of the boundary conditions can be found in Appendix D.

Full details of how the multipole expansion method of Godin (2013) is adapted to

solve (3.32-3.33) are given in Appendix E.

Following the method for Heff described above, the topographic resonance

functions K1(α) and K2(α) are obtained from Godin’s method by truncating and

solving infinite linear systems, in which α appears as a parameter. The lowest-order

truncations result in Padé approximants for Ki(α), namely K(0)
i , K(1)

i etc., and ex-

plicit expressions for the leading three are given in (E.8-E.9).

The convergence of the sequences K(i)
1,2(α)→ K1,2(α) is, however, more com-

plicated than forH(i)
eff → Heff discussed above. To illustrate, figure 3.4 shows results

for i = 0, 1, 2 (green/blue/red curves) and i = 24 (black circles). The complexity

is introduced because the approximant functions K(i)
1,2(α) each have i singularities

(for i > 1) in α > 1. In the limit i → ∞, there are evidently an infinite number of

these singularities, meaning that the ‘true’ K1,2(α) cannot be described by rational

functions of α. A similar problem, arising in electrostatics and optics, is analysed
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Figure 3.4: Values of K(i)
1,2(α) plotted as functions of α and A. The low-order Padé ap-

proximants (i = 0, 1, 2) are shown with green, blue, and red lines respectively,
and the ‘true’ Padé approximants (i = 24) are shown with circles. To give an
idea of the convergence, only the main solution branches are plotted for each
curve, e.g. in the first panel the ‘true’K1 has an infinite number of singularities
in 1.2 . α . 1.5, which would be impossible to plot. The topographic height
is fixed at ht = 0.9, and the area fraction, and α are fixed at A = 49/25π, and
α = 1.45 in the top and bottom rows respectively.

in McPhedran and McKenzie (1980). Adapting their results to the present context,

the locations of the singularities αp (in α > 0) are given by the formula

αp =

√
1− λpγ2

(1− λp)γ2
, (3.34)

where λp is the pth eigenvalue of the infinite matrix
(
DETD

)2, given in ap-

pendix E. Further, it follows that the sequence {αp} converges to an essential sin-

gularity at α∞ = limp→∞ αp = γ−1. It turns out that, as is suggested by figure 3.4,
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Figure 3.5: Spatial structure of the first three normal modes of the topographic array, il-
lustrated by contouring GR = Re {ψ}. The cylindrical seamounts have radius
R = 2 (area fraction A = 1/π) and height ht ≡ h+ − h− = 0.9.

all singularities are confined to a narrow range of α, which expands slowly as the

area fraction increases towards its maximum value. The low-order approximants do

a good job away from the resonant band, and as the order increases they capture the

location of the leading singularities with increasing accuracy.

Physically, the singularities in K1,2(α) at α = αp (p ≥ 1) occur due to the

excitation of the normal modes of the topographic Rossby waves which propagate

around the edges of the cylindrical seamounts (Jansons and Johnson, 1988; Benilov,

2000; Vanneste, 2000a; Longuet-Higgins, 1967). That the singularities all occur in

α > 1 is related to the topographic Rossby wave frequencies being bounded above

by the inertial frequency. If a large-scale wave has a frequency which matches

the frequency of one of these normal modes, a resonant excitation will occur which

requires Ekman friction or another form of dissipation to regularise. The structure of

the streamfunction of the first three normal modes is shown in figure 3.5. In practice,

if a small amount of friction is added to the system, the effect of the higher modes

is negligible compared with the first mode, due to the weak correlation between

their fine-scale structure and that of the topography itself. The lower row in figure

3.4 shows how K1,2(α) depend on the area fraction of the topography, for fixed

α = 1.45. The resonant band is seen to be located around A ≈ 0.64.

In summary, the convergence issues with the functions Ki(α) present diffi-

culties for the numerical solution of (3.18). Consequently, solutions of (3.18) are

treated as valid only if no singularities of Ki((1 + by)/ω) are present within the
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computational domain. This condition defines the ‘resonant regions’ in figures 3.1

and 3.2) (or, strictly speaking, the non-resonant regions). Solutions given within the

resonant regions use the extended system (B.12) to include Ekman friction, and are

therefore regularised.

3.2.4 Numerical solution of (3.18)

Once the functions K1(α), K2(α) and D are found to the required accuracy, (3.18)

can be solved numerically. The numerical method used is just a generalisation

of that used in section 2.2.6.1. First, solutions ∝ exp(ikx) are sought for fixed

wavenumber k, reducing the system to a first-order system of ODEs in the y-

variable, defined on the interval [−1, 1]. This system is again suited to a Chebyshev

spectral method (N = 96 is used here), the flat-bottomed eigenvalue problem (2.97)

is retrieved by setting K1(α) = K2(α) = D = 0, and implementing the boundary

conditions V (±1) = 0.

When topography is present the matricesA andB in (2.97) themselves depend

on ω, through the arguments of K1(·) and K2(·), and the method above must be

adapted. The matrices are again determined by removing the rows and columns in

positions N + 2 and 2N + 2 from the block matrices

A(ω) =


I + f 2K1 + fK2 0 0

0 I + f 2K1 + fK2 0

0 0 I

 , (3.35)

B(ω) =


0 −f (I +K1 + fK2) ik(1 +D)I

f (I +K1 + fK2) 0 −(1 +D)Dy

ikHI HDy 0

 ,

(3.36)

where f = diag(1 + by1, · · · , 1 + byN+1), I is the identity matrix, Dy is the

Chebyshev differentiation matrix and now

Ki(ω) = diag

(
Ki

(
1 + by1

ω

)
, · · · , Ki

(
1 + byN+1

ω

))
, (3.37)
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for i = 1, 2. For simplicity, we reuse the matrix variable names after removing the

rows and columns corresponding to the boundary points.

Our approach is to use a fixed-point iteration method, by writing

− iωnA (ωn−1)vn +B (ωn−1)vn = 0, (3.38)

for iteration n, and using the flat-bottomed frequency for the initial guess ω0. The

idea is that repeated solution of (3.38) will lead to the convergence of ωn and vn

to the desired solutions ω and v. While basic, this method works well in the sense

that analogues of all flat-bottomed solutions can be routinely found using around

20 iterations (for near-machine accuracy), even for extreme topographies.

A further constraint on the numerical solutions is that, once ω is known,

Ki((1+by)/ω) must be non-singular throughout the domain y ∈ [−1, 1]. Otherwise

a resonance is evidently present, and the numerical solution of (3.38) does not make

sense, not least because the discrete grid cannot handle singularities. For each sin-

gular point αp of Ki(α), all frequencies in the interval ω ∈ [(1− b)α−1
p , (1 + b)α−1

p ]

will have a singularity somewhere in the domain. The resonant frequency band is

therefore defined to be the union over all p of these intervals. To find meaningful so-

lutions in the resonant frequency band, it is necessary to add finite Ekman friction

to the system and solve the resulting extended equations detailed in Appendix B.

These Ekman friction calculations have been implemented by the same method,

allowing our calculations to be extended into the resonant band.

3.2.5 Approximate formulae for the dispersion relations

Numerical calculation of the dispersion relation using (3.18) is, as described above,

a complicated multi-step process. In practice it is arguably more insightful to

have approximate formulae for the topographic effect, for example analogues of

the b � 1 dispersion relations (2.105), (2.109) and (2.111) for the flat-bottomed

case. It turns out that different approaches to obtain such formulae are necessary

for Poincaré and Kelvin waves versus Rossby waves, and each will be considered

in turn. It is important to emphasise that the limit b � 1 does not equate to the
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quasi-geostrophic limit, which also requires the topography to be O(b), and that the

results in the following two subsections are therefore valid for finite topographies.

3.2.5.1 Poincaré and Kelvin waves

Consider the limit b� 1 in which Poincaré waves and Kelvin waves have frequen-

cies of order unity. (A separate regime in which the Kelvin wave has frequency

O(b) is not considered here.) In the limit b� 1, the Taylor expansion

K1,2

(
1
ω

+ b y
ω

)
= K1,2

(
1
ω

)
+ b y

ω
K ′1,2

(
1
ω

)
+O(b2),

can be used to simplify (3.18), which at leading order in b becomes

−iω
(
1 + 1

ω2K1

(
1
ω

)
+ 1

ω
K2

(
1
ω

))
U+(

1 +K1

(
1
ω

)
+ 1

ω
K2

(
1
ω

))
k ×U = − (1 +D)∇xΠ,

−iωΠ +H∇x ·U = 0, (3.39)

with channel wall boundary conditions V (±1) = 0. Mathematically, the absence of

explicit y-dependence in equation (3.39) simplifies matters compared with (3.18),

and harmonic wave solutions ∝ exp (i (kx+ ly)) can be sought (we take l = nπ/2

for ease of comparison with the results above). The result is the following nonlinear

equation determining the dispersion relation

(
1− ω2

) [
K1

(
1
ω

)2 −
(
ω +K2

(
1
ω

))2
]
−Heff

(
ω2 +K1

(
1
ω

)
+ ωK2

(
1
ω

))
κ2
n = 0,

(3.40)

where κ2
n = k2 + n2π2/4. In general, the solution branches of (3.40) must be

found numerically using a standard root finding method, although, because it is a

single-variable equation, this is evidently much simpler than solving (3.18). For

short waves with ω � 1 (i.e. κn � 1), the resonance functions K1,2(α) can be

approximated by their value at α = 0, and using the fact that K2(0) = 0, the result
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simplifies further to

ω2
P = 1

2

(
1 + κ2

nHeff +K2
0

)
+ 1

2

(
(1 + κ2

nHeff +K2
0)2 + 4K2

0 − 4K0κ
2
nHeff

)1/2

(3.41)

Here, Heff and K0 ≡ K1(0) are constants determined by the topography which, in

the case of regular cylinders, allows for progressively more accurate approximations

to be obtained from (3.31) and (E.8) respectively. For example, the zeroth-order

approximations are Heff = h+(1 − 2γA) and K0 = −2γ2A, which are accurate

for low area fraction A. The result (3.41) can be compared with the flat-bottomed

formula (2.109) with h = H , which is recovered by setting γ = 0 or A = 0.

For the Kelvin wave it suffices to set V = 0 in (3.39) and, following the anal-

ysis of the flat-bottomed case, it follows that

ω2 +K1

(
1
ω

)
+ ωK2

(
1
ω

)
= k2Heff . (3.42)

Once again, this is a nonlinear equation, which must be solved numerically using a

root finding method to obtain the Kelvin wave dispersion relation. The short wave

result (ω � 1) is

ω2
K = k2Heff −K0, (3.43)

which can be compared with (2.105) with h = H .

3.2.5.2 Rossby waves

Rossby waves frequencies are O(b) in the limit b� 1, therefore to obtain approxi-

mate formulae the asymptotic forms of K1(α) and K2(α) are required for α � 1.

For the case of the regular array of cylinders they are

K1 (α) =
c2

α2
+
c4

α4
+ · · · , K2 (α) =

d1

α
+
d3

α3
+ · · · ,

where the sequences of constants {ci} and {di} can be determined to the required

accuracy by expanding the formulae in (E.8) and (E.9). For example, the zeroth-

order approximations to the first coefficients are c2 = 2A and d1 = −2γA.
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Retaining terms in (3.18) up to O(b), it follows that

−iω (1 + c2 + d1)U + (1 + by) (1 + d1)k ×U = − (1 +D)∇xΠ,

−iωΠ +H∇x ·U = 0. (3.44)

The leading-order Rossby wave dispersion relation is then found to be

ωR = − kb (1 + d1)Heff

(1 + d1)2 + (1 + c2 + d1)Heffκ2
n

,

≈ − kbh+ (1− 2γA)

(1− 2γA) + (1 + 2(1− γ)A)κ2
nh+

, (3.45)

where the second expression uses the zeroth-order approximations for Heff , c2 and

d1, which are valid for low area fraction A� 1. The dispersion relation (3.45) can

be compared with its flat-bottomed counterpart (2.111) with h = H .

Some asymptotic dispersion relations are plotted in figure 3.6 for a topography

with relatively large height (ht = 0.9), and area fraction (A = 1/π), and at finite b =

0.5, in order to test the validity of the approximations by comparison with numerical

solutions of (3.18). Because A is relatively large, the second-order approximants

are used for Heff and K1,2. Agreement between the full solution of (3.18) and the

asymptotics is seen to be good, even at this relatively large value of b, and further

tests with lower values of b have confirmed the expected rate of convergence.

3.2.6 Quasi-geostrophic regime

In this section our focus is the quasi-geostrophic regime which, as discussed in

section 3.1.2 above, requires not only b � 1, as in the preceding sections, but also

O(b) topography. Writing ht = bhb, and applying the methods described above to

(3.25) results in the following nonlinear equation for the Rossby wave dispersion

relation for the scaled frequency Ω = ω/b,

Ω +
k

1 + κ2
n

+
κ2
n

Ω(1 + κ2
n)
K̃
(

1
Ω

)
= 0. (3.46)
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Figure 3.6: Frequency plotted against wavenumber for the Kelvin wave, and the first three
modes (n = 1, 2, 3) of the Rossby waves and Poincaré waves for b = 0.5, h+ =
1 and cylinder height ht = h+ − h− = 0.9. Shown here is the full numerical
solution to (3.18) (blue lines), and the leading-order asymptotics (3.40), (3.42)
and (3.45), using the approximants H(2)

eff , K(2)
1,2 (α) (black circles). The left

panel shows the dispersion relations of all three wave types, and the right panel
shows only a close-up of the Rossby waves.

The function K̃(α) is defined using the solution of the quasi-geostrophic cell

problem (3.24), and is the quasi-geostrophic analogue of K1 (K2 → 0 in the

quasi-geostrophic limit). The first three approximants are given by (E.10). Us-

ing the zeroth-order approximant in (3.46) recovers the dispersion relation found in

Vanneste (2000b) and Benilov (2000) for widely separated seamounts. The use of

more accurate approximants for K̃ in (E.10) therefore extends these previous results

to the case of more densely packed regular topography.

It is interesting that the quasi-geostrophic limit where ht = O(b) results in a

qualitatively different formula (3.46) for the Rossby wave dispersion relation com-

pared with the finite topography limit (3.45) where ht = O(1). Specifically, the

quasi-geostrophic formula allows for the possibility of resonant behaviour, while

the finite topography formula involves just a quantitative modification of the flat-

bottomed formula. The explanation is that the finite topography, b � 1 limit ex-

cludes resonance because the long Rossby wave frequency becomes O(b) while the

trapped topographic Rossby waves retain O(1) frequency. In the quasi-geostrophic

limit, by contrast, both the long waves and the trapped waves have O(b) frequency,
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Figure 3.7: Rossby wave frequency against topographic depth for a fixed wavenumber
(k, l) = (−π/2, π/2), b = 0.1 and area fraction 1/π. Shown are the full
numerical solution (black curves), the finite topography approximation calcu-
lated usingK(2)

1,2 (α) (red circles), and the quasi-geostrophic approximation cal-
culated using K̃(2)(α) (blue circles). The shaded region indicates the range
of frequencies which are prohibited by resonance, and the numerical solution
including friction (r = 0.17) is included, joining the two solution regions.

and therefore resonance remains possible.

To investigate the regimes of validity of the quasi-geostrophic and finite to-

pography approximations, figure 3.7 compares the calculated frequencies to those

of the full rSWE, obtained from numerical solutions of (3.18). The comparison is

for b = 0.1, and a topography of regular periodic cylinders across the full range

of topographic heights ht, with cylinder area fraction A = 1/π. In the full system

resonance is found to occur when ht is around 0.04 to 0.06, which can be regu-

larised with e.g. Ekman friction. The quasi-geostrophic formula (3.46) captures

the full dispersion curve behaviour quite accurately close to the resonance, while

the finite topography result (3.45) evidently does not. As the topography ampli-

tude is increased beyond ht ≈ 0.3, however, the quasi-geostrophic approximation

is increasingly inaccurate, and the finite topography result captures the full rSWE

behaviour well. In practice, therefore, each approximation has its own domain of

validity.
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3.3 Randomly distributed seamounts

The regular periodic seamounts covered in the previous section have the advan-

tage that the rSWE dispersion relations can be calculated accurately for arbitrary

seamount height ht and area coverage A. However, with respect to the ocean this

‘regular array’ topography is obviously artificial. In particular, resonance effects

will be unduly amplified, because the topographic Rossby wave at every seamount

(at the same latitude y) has the same frequency. It is evidently worthwhile to com-

pare the results above with those for a randomised topography in which seamount

location, height and radius are governed by a specified distribution. The draw-

back of considering a randomised distribution, as shown previously in the quasi-

geostrophic case (Vanneste, 2000b; Benilov, 2000), is that in order for the problem

to be tractable an assumption of widely separated seamounts must be made, i.e. the

area fraction A � 1. As will be shown, this approximation turns out to be equiv-

alent to using the zeroth-order approximants H(0)
eff , K(0)

i for the effective depth and

topographic resonance functions which, as can be seen in figure 3.3 and figure 3.4,

become inaccurate at finite A.

To examine the effect of randomly distributed seamounts the averaging oper-

ator (3.3) needs careful interpretation. The region Ω = Ω(x) formally becomes a

region centred on x that is asymptotically intermediate in scale between the large

and small length scales. In this asymptotic regime, for a suitable randomly gener-

ated field g in (3.3), the averaged field 〈g〉will be independent of the details of Ω. In

practice, it is not straightforward to make calculations with (3.3) unless the function

g can be linearly decomposed into contributions from each mountain in Ω, i.e. in-

teractions between mountains can be neglected so that (suppressing x-dependency)

g(X) ≈
N∑
i=1

g1(X −Xi, Ri, γi) (3.47)

where Xi is the location of the ith mountain, and g1(X, R, γ) is the contribution

to g from a single seamount of radius R and topography parameter γ at the origin.

Inserting (3.47) into (3.3), and exploiting the fact the region Ω is large, allows the
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joint limit N → ∞, Ω → ∞ to be taken. A number density n(R, γ) can now be

introduced, defined so that the number of seamounts with radius ∈ [R,R+dR) and

topography parameter ∈ [γ, γ+ dγ) in a small area dX is n(R, γ) dR dγ dX . This

allows the sum in (3.47) to be replaced with integrals in (3.3), which can each be

centred on the origin by change of variables so that

〈g〉 =

∫ 1

−1

∫ ∞
0

∫
R2

g1(X, R, γ)n(R, γ) dX dR dγ. (3.48)

Next, consider the averaging operator (3.48) as applied to equation (3.17) to de-

termineHeff for the case of cylindrical topography distributed according to n(R, γ).

The first cell problem (3.29-3.30) is greatly simplified compared with the doubly

periodic case, as it need only be solved in R2, using standard polar coordinates.

The solution (Φ+ = γR2 cos θ/ρ, Φ− = γρ cos θ) is equal to the zeroth-order solu-

tion for seamounts in the doubly-periodic domain given in Appendix E.1. In other

words, the zeroth-order small R approximation in the doubly periodic case and the

non-interacting seamount approximation in (3.47) are equivalent. Inserting the so-

lutions into (3.17) gives

Heff = h+

(
1− 2

∫ 1

−1

∫ ∞
0

πR2γ n(R, γ) dR dγ

)
. (3.49)

The expression (3.49) for Heff simplifies further if it is assumed that n(R, γ) is

separable, i.e.

n(R, γ) =
A

a0

pR(R) pγ(γ), (3.50)

where A � 1 is the area fraction covered by seamounts as above, a0 =∫∞
0
πR2pR(R) dR is the average seamount area, pR(R) is the probability density

function of the cylinder radii and pγ(γ) is the probability density function of the

height parameter. In this case

Heff = h+

(
1− 2A

∫ 1

−1

γ pγ(γ) dγ

)
, (3.51)

from which the zeroth-order doubly periodic result in (3.31) is recovered, indepen-
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dently of the choice of pR(R), by setting the heights of all cylinders to be equal, i.e.

pγ(γ) = δ(γ − γ0) for constant γ0.

The topographic resonance functions can be calculated similarly, and the re-

sults are

K1(α) = −
∫ 1

−1

∫ ∞
0

2πR2γ2

1− α2γ2
n(R, γ) dR dγ

(
= −2A

∫ 1

−1

γ2pγ(γ)

1− α2γ2
dγ

)
K2(α) = α

∫ 1

−1

∫ ∞
0

2πR2γ3

1− α2γ2
n(R, γ) dR dγ

(
= 2αA

∫ 1

−1

γ3pγ(γ)

1− α2γ2
dγ

)
.

(3.52)

The terms in brackets show the results for the separable case, which reduce to the

zeroth-order expressions in (E.8-E.9) for seamounts of constant height.

The results (3.49-3.52) allow (3.18) to be solved numerically using the meth-

ods of section 3.2 above. It is also possible to obtain analytical results by exploiting

the smallness of A, employing a regular expansion for the frequency of the form

ω = ω0 + Aω1 +O(A2), (3.53)

and thereby obtaining the leading-order corrections to the dispersion relations (cf.

Vanneste, 2000b, for the quasi-geostrophic case). Here, we present numerical re-

sults for cylindrical seamounts which are uniformly distributed in height, with the

depth over the seamounts in the range hmin < h− < hmax, and with a separable

number density (3.50). This situation corresponds to

pγ(γ) =


(1 + γ+) (1 + γ−)

(γ+ − γ−)

1

(γ + 1)2
γ− < γ < γ+

0 otherwise

, (3.54)

where γ− = (h+− hmax)/(h+ + hmax) and γ+ = (h+− hmin)/(h+ + hmin). Recall

that pR(R) is arbitrary in this set-up, because the results depend only on the area

fraction A.

Figure 3.8 shows results for the distribution (3.54) with hmin = 0.1 and
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Figure 3.8: Dispersion relations for mountains distributed according to (3.54) with hmin =
0.1 and hmax = 0.4. The beta parameter b = 0.5 and area coverage A = 0.1.
Black curves show the flat-bottomed solution and blue curves show the solu-
tion with topography present. The dashed blue curve shows the solution when
friction is present, and is plotted only between the two logarithmic resonances,
indicated by the dotted lines. The left panel shows the dispersion relations of
all three wave types, and the right panel shows only a close-up of the Rossby
waves.

hmax = 0.4, and A = 0.1, which represents a range of tall cylindrical seamounts

which, compared with the scenario shown in figure 3.1 (where A = 1/π), have

a significantly lower area coverage. Qualitatively, the effect of the topography is

similar (although weaker) compared to the constant height case nearly everywhere,

except close to the resonant region for the Kelvin waves. In the Kelvin wave dis-

persion relation, singularities are present at ω = γ± (dimensionally f0γ±). It is

perhaps surprising that the dispersion relation contains any singularities at all when

the heights of the seamounts are distributed, but as shown by Benilov (2000) for

Rossby waves in the quasi-geostrophic case, the integrals in (3.52) result in loga-

rithmic singularities at the endpoints of the distribution at γ±. This translates into

logarithmic singularities in the dispersion relations at ω = γ±, which, much more

than the algebraic singularities which occur when the seamount heights are con-

stant, are smoothly regularised by the addition of relatively weak Ekman friction.

The dashed blue curve shows the solution of the extended system (B.14) with Ek-

man friction parameter r = 0.1.
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3.4 Discussion
The main results of this chapter are summarised in figures 3.1, 3.2 and 3.8, which

shows the extent to which finite-amplitude topography can influence Rossby, Kelvin

and Poincaré wave speeds compared to the flat-bottomed case. Our results have

been presented to illustrate the extent of the error that will necessarily be introduced

in ocean general circulation models, due to using the mean ocean depth in place of

the fully resolved small-scale topography. Clearly, significant errors in Rossby wave

speeds in particular are possible, due either to large-amplitude topography with sig-

nificant area coverage, or due to resonance between the Rossby wave and trapped

topographic Rossby waves over seamounts. How significant the latter effect is in

the ocean (also for Kelvin waves) remains an open question. Certainly the impact

of resonance is reduced, although not removed entirely, by using a distribution of

topographic heights in place of topography with a single height. Another reason

resonance may not be so important in practice is that, as noted in the conclusions

of Vanneste (2000b), in the typical ocean situation the frequency of the trapped to-

pographic Rossby waves will usually be higher than that of the propagating Rossby

waves, meaning the topography will not resonate but will act to slow the Rossby

wave propagation speed. The corrected dispersion relation (3.45), which quantifies

this effect in the finite-amplitude (b � 1) regime, gives a useful insight into its

magnitude.

As a final comment, it is worth emphasising that the value of the results pre-

sented here is not limited to oceanography. The rSWE are used in many other fields,

perhaps most relevantly in atmospheric science, where they provide a valuable re-

duced model describing wave propagation through a stably stratified atmosphere. In

this perspective, the ‘topography’ can represent not physical topography per se, but

small-scale regions of reduced stratification due to the presence of e.g. distributions

of convective clouds. The approach taken here may therefore be of value in quan-

tifying how, for example, equatorial wave speeds are modified by unresolved cloud

fields (see also e.g. Biello and Majda, 2005), with implications for their parametri-

sation.



89

Chapter 4

Wave propagation in a stratified

atmosphere in the presence of

small-scale, convective clouds

In this chapter we investigate how the method of homogenisation may be used to

study the propagation of waves in a stratified atmosphere in the presence of a small-

scale, convective cloud field. Whilst chapter 3 which studies how obstacles may

influence wave propagation in a vertically homogenous, shallow fluid layer has im-

plications and consequences for the atmosphere, a fuller picture of atmospheric

dynamics may be established by considering additional physical phenomena. The

following study focusses on wave propagation in a stably stratified, Boussinesq at-

mosphere (see section 2.2.3 for details).

The multi-scale interaction between long waves and convection has previously

been studied by Biello and Majda (2010, 2005) and Majda and Klein (2003). In

these works, the focus has been on tropical waves interacting with synoptic-scale

convective structures (with horizontal scale ∼ 1500km). In this regime, the struc-

tures of interest are convective, intraseasonal oscillations such as the Madden-Julian

Oscillation. As such, the multi-scale asymptotic procedures focus on the case in

which the structures are hydrostatic and small-scale only in the latitudinal direc-

tion, and enter the large-scale equations through forcing terms as in Gill (1980). In

contrast, we focus on the interaction between long waves and far smaller convec-



90

tive structures (with horizontal scale ∼ 10km) corresponding to cumulus clouds.

Here, axisymmetric ‘cloud-like’ circulations are found as solutions to the non-

linear, non-hydrostatic Boussinesq equations driven by steady, localised heating.

Similar (larger-scale) axisymmetric flows in the atmosphere have been studied by

Wirth (1998); Wirth and Dunkerton (2006); Plumb and Hou (1992) with implica-

tions for the development of monsoons and hurricanes, as well as large-scale merid-

ional circulation. In our set-up, the localised heating is small-scale in all horizontal

directions so that the circulation generated is qualitatively similar to a cumulus type

cloud.

With the flow representing a convective cloud field established, the interac-

tion between large-scale waves and small-scale clouds is investigated through the

method of homogenisation. By linearising the Boussinesq equations about the cloud

field variables, a spatial variable on the scale of the Rossby radius is introduced

(large-scale compared to the cloud scale), and a multiple-scales analysis may be

performed. The outcome of this analysis is a system of homogenised integro-

differential equations, valid on the large-scale, which include terms that capture

the leading-order interaction between the large-scale waves and small-scale cloud

circulations. These new equations do not require the fine grid spacing used in nu-

merical weather simulations in order to capture both small- and large-scale features

of the atmosphere, and provide a non-heuristic parameterisation of convective pro-

cesses.

This study draws a direct link to the previous chapter and the dynamics of the

shallow water equations in the presence of topography. Firstly, it is well known that

modal decompositions of the atmosphere, which is now a standard textbook topic

(see e.g. Gill, 1982, §6.11; Olbers et al., 2012, Ch. 8) and which has origins dating

back as far as Laplace (1776), allows the atmosphere to be represented as individual

modes with horizontal structures governed by the shallow water equations. In an un-

forced atmosphere these modes are decoupled; however, as is seen in our analysis,

the presence of a cloud field introduces extra terms into the modal decomposition

which couples the wave modes to one another. Coupling of modes in this manner
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is seen in the literature in cases where the fluid is considered to propagate over to-

pography (Craig, 1987; Smith and Young, 2002; Kelly et al., 2010; Kelly, 2016;

Garrett and Kunze, 2007). Here, the interaction between a gently sloping seabed

and surface waves in a stratified ocean excites internal waves within the fluid. The

fact that the coupling between wave modes through convection is somewhat anal-

ogous to that caused by topographically induced tidal conversion strengthens the

links between this section and the material discussed in chapter 3.

The manner in which wave modes in our problem are coupled is linked to

another important body of work from the literature, namely the theory of transilient

matrices. Originating in turbulence theory (Stull, 1984; Romps and Kuang, 2011),

transilient matrices are used to model the non-local redistribution in the vertical of a

tracer due to the rapid turbulent rearrangement of fluid parcels. These matrices have

more recently been utilised in the theory of convective transport processes (see e.g.

Cheng et al., 2017), where the rearrangement of fluid parcels from an initial height

to a final height through convective adjustment is determined by a non-local integral

operator. Likewise, in this paper, the effect of a small-scale convective cloud field

on long wave propagation is seen to be a continuous-in-time, non-local, vertical

rearrangement of horizontal momentum and buoyancy profiles. In the continuum

limit, the transilient matrices become integral operators involving transilient kernels

which quantify the non-local rearrangements. One of the main outcomes of this

work is a method by which transilient kernels can be explicitly diagnosed for any

given cloud field for use in NWP simulations - an area of research where the utility

of transilient operators as a means of parameterising turbulence and convection is

already being realised (see e.g. Forster et al., 2007; Kuell and Bott, 2022).

To allow for a straightforward presentation of the key concepts and main qual-

itative results, a number of simplifying assumptions are made. In particular, the

clouds are assumed to be sufficiently well-separated so that the circulations due to

each individual cloud, despite being strongly nonlinear in the cloud core region,

interact only linearly where they overlap. For simplicity, the cloud circulations are

driven by imposed steady heating fields, which represent the release of latent heat of
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condensation in cumulus cloud updrafts. Admittedly, the lack of time dependence in

the cloud circulation is a weak assumption when considered alongside time-scales

associated with long wave propagation. In reality, cumulus clouds evolve over the

diurnal cycle due to local variations in the solar heat flux. There is also an implicit

assumption here that effects due to a dynamically active moisture field will be of

secondary importance. Despite this, a suitable choice of heating field can result in

a plausible cloud circulation with a strong narrow updraft surrounded by a wide re-

gion of subsidence. These two assumptions should be viewed as the weakest points

in our model from a physical standpoint; however, they do act as a good starting

point upon which to build our asymptotic theory, and the development of models

which relax these assumptions is left as a topic for future studies.

The structure of this chapter is as follows. In section 4.1 we derive the equa-

tions governing long wave propagation in the presence of clouds in an incompress-

ible, stratified atmosphere using the method of homogenisation. A detailed review

of wave dynamics in the absence of convection is given in section 4.2, with a partic-

ular emphasis on how the vertical structure of the atmosphere may be decomposed

into barotropic and baroclinic modes. In section 4.3, the results are generalised to

the case in which convective clouds are present. In particular, we show the method

by which the background flow and the cell problems associated with homogenisa-

tion are solved. The modified, averaged equations are then derived with convection

shown to enter the dynamics through terms involving integral operators which are

non-local in the vertical. Finally, in section 4.4 the dispersive characteristics of

waves in a mid-latitude β–channel are investigated with a view to gaining insight

into how atmospheric waves are affected by the presence of a stationary convective

cloud field.
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4.1 Homogenisation of the Boussinesq Equations

We begin with the fully nonlinear, non-hydrostatic Boussinesq equations (2.72-

2.75), which are given by

∂v

∂t
+ fk × v + (v · ∇)v = −∇p+ bk +∇ · (ν∇v) , (4.1)

∇ · v = 0, (4.2)

∂b

∂t
+ (v · ∇) b+N2w = Q̇+∇ · (κ∇b) . (4.3)

The final terms in equations (4.1) and (4.3) parameterise the turbulent diffusion

of momentum and buoyancy with eddy viscosity ν and diffusivity κ respectively.

(These parameterisations are based on a Reynolds averaging procedure, for which

the interested reader is referred to e.g. Bauer et al. (1999); Ting (2016); Pedlosky

(1987) §4.2 for more detail). Throughout this chapter, the vector v = (u, v, w)T

is the full 3-dimensional velocity field, and ∇ = (∂x, ∂y, ∂z) is the 3-dimensional

gradient operator. For generality, we allow N2 = N2(z) to vary with z and note

that the variable Coriolis parameter f = f0 + βy means that the result may apply to

both mid-latitude and equatorial regions depending on the value of f0. In the present

context, Q̇ should be understood as a diabatic heat source parameterising latent heat

release as moisture in the atmosphere condenses (see e.g. Ogura and Phillips, 1962;

Ling and Zhang, 2013; Holton and Hakim, 2013, Ch. 11).

Since we will ultimately be concerned with long wave propagation in the pres-

ence of steady, cumulus convection, it is helpful to non-dimensionalise (4.1–4.3) on

the scale of an individual convective cloud. Assuming that the height and horizontal

extent of a cumulus circulation are of the same order, we take the tropopause height

HT as a typical length scale and N0 as a typical scale for the buoyancy frequency.

We then have N0HT as the velocity scale, N2
0H

2
T as the perturbation pressure scale,

and N2
0HT as the buoyancy scale. Correspondingly, the eddy viscosity ν and dif-

fusivity κ are both scaled as N0H
2
T , and the heating is scaled as N3

0HT . The time

scale T associated with the temporal variable t and the Coriolis parameter f is taken

to be that of the long waves, which is indeed much greater than the time scale N−1
0 .
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Consequently, the equations may be written in non-dimensional form as

ε

(
∂v

∂t
+ fk × v

)
+ (v · ∇)v = −∇p+ bk +∇ · (ν∇v) , (4.4)

∇ · v = 0, (4.5)

ε
∂b

∂t
+ (v · ∇) b+N2w = Q̇+∇ · (κ∇b) , (4.6)

where variable names are retained for the non-dimensional quantities, and where

ε = 1/N0T . In the case where waves are considered in mid-latitudes, we may take

T = f−1
0 as an appropriate time scale. In this case, the non-dimensional Coriolis

parameter becomes f = 1 + εβ̄Y where β̄ = βLR/f0 is the rescaled beta param-

eter, with LR = N0HT/f0 being the Rossby radius of deformation appropriate to

the mid-latitude atmosphere. Using typical values of the buoyancy frequency and

Coriolis parameter for the mid-latitude troposphere (N0 = 10−2s−1, f0 = 10−4s−1)

results in a value of ε ≈ 0.01. Note that here, and throughout, we use capital letters

X = (X, Y, 0)T to denote the horizontal spatial coordinates on the small-scales, re-

serving the lower case notation x = (x, y, 0)T for the large-scales to be introduced

later on.

We are interested in the propagation of long waves in (4.4–4.6) through a

steady background flow
{
v, p, b

}
. This steady flow is defined as the leading-order

solution to (4.4–4.6) in the presence of a specified heating Q̇ which determines the

cloud field. We are also interested in arrays of weakly-interacting clouds - that

is, clouds which are spaced at a great enough distance that the interaction of their

downwelling regions have a negligible effect on the dynamics. Under such assump-

tions, the heating may be expressed as a linear combination of the contributions

from each individual cloud centered at (X(i), Y (i)) as

Q̇ =
∞∑
i=1

Q̇0(r(i), z), (4.7)

where r(i) ≡ |X −X(i)| =
√

(X −X(i))2 + (Y − Y (i))2. In the above decompo-

sition and from hereon, variables subscripted with a 0 indicate the contribution from
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a single cloud centred at the origin. We are then able to assume that the response to

the heating may be expressed similarly, as

v =
∞∑
i=1

v0(r(i), z), p =
∞∑
i=1

p0(r(i), z), b =
∞∑
i=1

b0(r(i), z). (4.8)

Finally, in order to ensure that the effects of turbulence are confined to regions in

and around the clouds, both ν and κ are allowed to vary with distance from the

cloud core, and are assumed to have similar decompositions, so that

ν =
∞∑
i=1

ν0(r(i)), κ =
∞∑
i=1

κ0(r(i)). (4.9)

This is a reasonable assumption from a physical standpoint, since the effects of

turbulence are minimal outside of the atmospheric boundary layer, except for in re-

gions of high convective activity (Holtslag, 2003). The background flow is therefore

found from the ‘cloud circulation problem’ (CCP hereafter), given by

(v0 · ∇)v0 = −∇p0 + b0k +∇ · (ν0∇v0) , (4.10)

∇ · v0 = 0, (4.11)

(v0 · ∇) b0 +N2w0 = Q̇0 +∇ ·
(
κ0∇b0

)
, (4.12)

where the single source Q̇0 = Q̇0(r, z) is centred on the origin. Consequently the

solutions to the CCP (4.10–4.12) are axisymmetric functions, i.e.
{
v0, p0, b0

}
={

v0(r, z), p0(r, z), b0(r, z)
}

.

We are interested in linear waves with horizontal wavelengths at the order of

the Rossby radius LR propagating on the background flow. Therefore, in order to

examine interactions across spatial scales, we introduce the large, horizontal spatial

variable x = εX , with x = (x, y, 0)T and expand the gradient operator according

to the multiple-scales formalism as

∇ → ε∇x +∇, (4.13)
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where ∇x = (∂x, ∂y, 0)T . In conjunction with this, we introduce a horizontal aver-

aging operator over the small scales 〈·〉 as is typical in the method of homogenisa-

tion. For a function g(X) which may be decomposed as in (4.7), this operator acts

as

〈g〉 =
1

|Ω|

∫
Ω

g(X) dX

=
1

|Ω|

∫
Ω

∞∑
i=1

g0

(
|X −X(i)|, θ

)
dX (4.14)

= n〈g0〉0,

where

〈g0〉0 =

∫ ∞
0

∫ 2π

0

g0(r, θ)r dθdr, (4.15)

and n is the number density of clouds per unit area in Ω. Throughout this chapter

we will focus on the situation where the number density is of order ε, in which case

we may write n = εn where n is of order unity. Inserting (4.13) into (4.4–4.6) and

linearising about the background flow using

v → v + δv, p→ p+ δp, b→ b+ δb,

where δ � ε � 1 and un-barred variables now correspond to perturbations about

the background flow, gives

ε

(
∂v

∂t
+ fk × v + (v · ∇x)v

)
+ (v · ∇)v + (v · ∇)v = −ε∇xp−∇p+ bk

+ε2ν∇2
xv + εν∇x · ∇v + ε∇ · (ν∇xv) +∇ · (ν∇v) , (4.16)

ε∇x · v +∇ · v = 0, (4.17)

ε

(
∂b

∂t
+ (v · ∇x) b

)
+ (v · ∇) b+ (v · ∇) b+N2w =

ε2κ∇2
xb+ εκ∇x · ∇b+ ε∇ · (κ∇xb) +∇ · (κ∇b) . (4.18)

We decompose the time dependent, un-barred variables in (4.16–4.18) into
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their averaged parts (denoted by capitals) and fluctuations (denoted with tildes) as

v = U(x, z, t) + εW (x, z, t)k + ṽ(x,X, z, t), (4.19)

p = P (x, z, t) + p̃(x,X, z, t), (4.20)

b = B(x, z, t) + b̃(x,X, z, t). (4.21)

Note here, that the hydrostatic approximation has been made implicitly at this

step, as the averaged vertical velocity appears only at order ε. Correspondingly,

U = (U, V, 0)T constitutes only the averaged horizontal velocity. The fluctuat-

ing components in the above expansions must all have zero horizontal average, i.e.

〈ṽ〉 = 0 and 〈p̃〉 = 〈b̃〉 = 0.

Inserting (4.19–4.21) into equations (4.16–4.18) and applying the averaging

operator, we find at order ε

∂U

∂t
+ fk ×U + n∂z 〈w0ũ0 + w̃0u0〉0 = −∇xP (4.22)

+
{
n〈ν0〉0∂2

zzU + n∂z〈ν0∇ũ0〉0
}
,

∂P

∂z
= B, (4.23)

∇x ·U +
∂W

∂z
= 0, (4.24)

∂B

∂t
+ n∂z

〈
w0b̃0 + w̃0b0

〉
0

+N2W =
{
n〈κ0〉0∂2

zzB + n∂z〈κ0∇b̃0〉0
}
.

(4.25)

The quantities surrounded by curly brackets are the terms introduced through the

presence of turbulence in the system. For our purposes, these are of little interest,

and we take ν0, κ0 � 1 everywhere, since turbulence is assumed to play an in-

significant role at leading order. Therefore, in future calculations, the terms in curly

brackets are omitted. The quantities denoted with a tilde are found from the terms
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in (4.16–4.18) at order O(1), which are

(v0 · ∇) ṽ0 + (ṽ0 · ∇)v0 +∇p̃0 − b̃0k −∇ · (ν0∇ṽ0) = (4.26)

− (U · ∇)v0 − w0∂zU +
{
ν0∂

2
zzU

}
,

∇ · ṽ0 = 0, (4.27)

(v0 · ∇) b̃0 + (ṽ0 · ∇) b0 +N2w̃0 −∇ ·
(
κ0∇b̃0

)
= (4.28)

− (U · ∇) b0 − w0∂zB +
{
κ0∂

2
zzB
}
.

Equations (4.26–4.28), termed the ‘cell problem equations’ (CPE hereafter), are

a linear, elliptic system of partial differential equations which may be inverted to

find ṽ0, p̃0 and b̃0 in terms of the averaged quantities U and B. The terms on the

right-hand side should be viewed as source terms driving the response of the fluid

to the imposed background flow. The terms on the left hand side involving ν0 and

κ0 have an important regularising effect on the system, and must be retained in

order to invert them numerically. On the other hand, the source terms involving

turbulent dissipation are of little importance, since ν0, κ0 � 1. Therefore, in future

calculations the terms in curly brackets will be omitted.

Equations (4.22–4.25) are none other than the linearised, hydrostatic Boussi-

nesq equations with additional correlation terms involving the background flow and

the time-dependent response. These terms are seen to be the divergences of the

vertical momentum and buoyancy fluxes due to the presence of the clouds. In the

absence of clouds, these terms disappear and we are left with a closed system in

U ,W, P and B. Before considering the effect of a cloud field on the propagation of

waves, it is first helpful to review the problem when n = 0, as it provides significant

insight into how more complex dynamics may be understood.

4.2 Vertical mode decomposition for n = 0

Decomposition of the atmosphere into vertical modes is now a standard method

found in mathematical literature. Its origins date back as far as Laplace (1776), and

later was a key idea utilised in the Matsuno-Gill model (Matsuno, 1966; Gill, 1980)
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as a means to study the heat-induced circulation of the atmosphere. Consequently,

much of the mathematics covered in this section may be found in textbooks such as

Gill (1982), §6.11 and Olbers et al. (2012), Ch. 8. It is however worth revisiting

this topic in detail, since many of the ideas will be generalised for our purposes in

later sections.

Before returning to the problem involving the response of the large-scale atmo-

sphere to small-scale clouds, it is first helpful to analyse the problem in the absence

of heating. Importantly, by first considering the situation in which the boundary be-

tween the troposphere and stratosphere is a free surface, we are able to decompose

the averaged variables into vertical modes with horizontal structures obeying equa-

tions analogous to those obeyed by a vertically homogeneous fluid. These modes

may be classified into a barotropic and and a countably infinite set of baroclinic

modes. The free surface view of the tropopause naturally introduces a number of

complex, physical phenomena which are beyond the scope of this work, however

the results are readily adapted to the rigid lid view of the tropopause. Indeed, retain-

ing the free surface dynamics only when considering the barotropic mode allows us

to establish a relatively complete picture of long atmospheric waves, whilst intro-

ducing only minimal errors (Kelly et al., 2010).

4.2.1 Free surface dynamics

Consider the averaged equations (4.22–4.25) in the absence of a cloud field, so that

n = 0. This yields the linearised system

∂U

∂t
+ fk ×U = −∇P, (4.29)

∂P

∂z
= B, (4.30)

∇ ·U +
∂W

∂z
= 0, (4.31)

∂B

∂t
+W = 0, (4.32)

in non-dimensional form, where we have also taken N2(z) = 1 for simplicity (the

case of a varying N2 is dealt with in Appendix F). The domain in this problem
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is taken to be infinite in the horizontal directions, with the vertical spatial variable

z ∈ [0, 1] so that the non-dimensional depth of the fluid is 1. That is, the boundary

between the (flat) ground and the troposphere is at z = 0 and the boundary between

the troposphere and stratosphere (the tropopause) is at z = 1. These equations are

equipped with the boundary conditions

W = 0, at z = 0, (4.33)

W =
∂η

∂t
, at z = 1, (4.34)

corresponding to no normal flow at the ground, and a free surface condition at

z = 1 where η(x, t) = αP (x, 1, t) is the non-dimensional free surface displace-

ment above the resting tropopause, and α = N2
0HT/g (see Olbers et al., 2012,

§5.2.4). Taking values of N0 ≈ 0.01s−1, HT ≈ 104m and g ≈ 10ms−2, appropriate

to the atmosphere gives α ≈ 0.1, which may be considered a small parameter. It

is important to emphasise that the free surface boundary condition is not entirely

physical, but rather a crude model which assumes that the jump in stratification be-

tween the troposphere and stratosphere causes the tropopause to behave in a manner

analogous to the free surface of the ocean, for example.

It is shown in Appendix F that the solutions to (4.29–4.32) may be written as

[U(x, z, t), P (x, z, t)] =
∞∑
n=0

[
Ũn(x, t), P̃n(x, t)

]
φn(z), (4.35)

[W (x, z, t), B(x, z, t)] =
∞∑
n=0

[
W̃n(x, t), B̃n(x, t)

]
Φn(z), (4.36)

where φn(z) and Φn(z) obey
dΦn

dz
= φn, (4.37)
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as well as the Sturm-Liouville problems

d2φn
dz2

+
1

c2
n

φn = 0, (4.38)

dφn
dz

= 0, on z = 0 (4.39)

dφn
dz

+ αφn = 0, on z = 1, (4.40)

and

d2Φn

dz2
+

1

c2
n

Φn = 0, (4.41)

Φn = 0, on z = 0 (4.42)

α
dΦn

dz
=

1

c2
n

Φn, on z = 1. (4.43)

The leading order solutions to this problem are therefore found by setting α = 0,

giving

φn(z) =
√

2 cos(nπz), Φn(z) =

√
2

nπ
sin(nπz), cn =

1

nπ
, (4.44)

for n = 1, 2, 3, ..., where we have identified these solutions with the positive values

of n. Here, the factors of
√

2 arise from imposing the orthogonality condition

∫ 1

0

φm(z)φn(z) dz = δmn, (4.45)

where δmn is the Kronecker delta function.

These wave modes are known as baroclinic modes, since the eigenvalues c−2
n

quantify the vertical density variations within the fluid confined between two un-

moving boundaries. They do not constitute a complete picture of atmospheric dy-

namics, however. Indeed, it is readily seen that at leading order there is a trivial

solution of (4.38–4.40) satisfying (4.45) given by

φ0(z) = 1,
1

cn
= 0. (4.46)
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Whilst the approximate value of φ0 = 1 is sufficient for our purposes, the ap-

proximation of the eigenvalue implies that c0 is infinite. Therefore, a higher order

approximation must be made. This is achieved after multiplying (4.38) by φn, and

integrating by parts to find an approximation for the eigenvalues which is correct up

to order α2. Thus, we have

c2
n =

∫ 1

0
φ2
n dz

αφn(1)2 +
∫ 1

0

(
dφn
dz

)2
dz
, (4.47)

which after inserting the value of φ0 = 1 yields c0 = 1/
√
α. This wave mode

is known as the barotropic mode since the eigenvalue in this case quantifies the

vertical free surface displacement rather than the internal variations in stratification.

The analogue of condition (4.45) for the Φn functions is slightly more compli-

cated, and is found as in Kelly (2016) by multiplying (4.41) by Φm and integrating.

Thus we have

0 =

∫ 1

0

Φm
d2Φn

dz2
+

1

c2
n

ΦmΦn dz (4.48)

=

∫ 1

0

d

dz

(
Φm

dΦn

dz

)
− dΦm

dz

dΦn

dz
+

1

c2
n

ΦmΦn dz (4.49)

=
1

αc2
n

Φm(1)Φn(1)−
∫ 1

0

φmφn dz +
1

c2
n

∫ 1

0

ΦmΦn dz, (4.50)

where in the last line we have used (4.37) and the boundary condition (4.43). Using

(4.45), we may write the condition for Φn as

∫ 1

0

Φm(z)Φn(z) dz = cmcnδmn −
1

α
Φm(1)Φn(1), (4.51)

where we note that interchanging cm and cn has no effect on the result. This is of

course not an orthogonality condition, but rather an integral property of the basis

functions. Collectively, we will refer to (4.45) and (4.51) as integral properties of

the basis functions, even though the first is in fact a true orthogonality condition.

Finally, we recall (as is shown in Appendix F) that the horizontal structure of
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each mode in the decomposition obeys the shallow water equations

∂Ũn

∂t
+ fk × Ũn = −∇P̃n, (4.52)

∂P̃n
∂t

+ c2
n∇ · Ũn = 0. (4.53)

4.2.2 Rigid lid dynamics

In the previous section we dealt with an atmosphere obeying a free surface boundary

condition at z = 1. We now consider the case where the free surface is replaced with

a rigid lid condition - that is, W = 0 at z = 1. Under this assumption, the boundary

conditions (4.40) and (4.43) are replaced with dφn/dz = 0 and Φn = 0 at z = 1

respectively. In the free surface approximation, the baroclinic modes were found

at O(1) in the α � 1 regime to a good accuracy, and so they remain unchanged

at leading order under the rigid lid boundary conditions. Consequently, the leading

order approximations to the wave speed cn = 1/nπ and the relation φn = dΦn/dz

still applies for n = 1, 2, 3....

The barotropic mode, (the eigenvalue of which is found at order α under the

free surface approximation) cannot be captured using rigid lid boundary conditions,

since now 1/c0 = 0 is an exact eigenvalue. Similarly, φ0 = dΦ0/dz must not apply,

since Φ0 would not be able to satisfy the boundary conditions if it were a linear

function of z. Therefore, under the rigid lid approximation, it is conventional to

replace c0 with the free surface analogue c0 = 1/
√
α and to take Φ0 = 0, satisfying

the boundary conditions, a posteriori. This approach is an approximation correct at

leading order in α for all modes. The integral properties in this case become

∫ 1

0

φm(z)φn(z) dz = δmn, (4.54)∫ 1

0

Φm(z)Φn(z) dz = cmcnδmn, (4.55)

where the latter condition only applies when m and n are not both zero. In prac-

tice, when applying the convention of using the post hoc barotropic wave speed,

we perform all calculations using the free surface integral property for Φn (4.51),
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and use the rigid lid approximations for the basis functions afterwards, omitting

the boundary terms in (4.51). This allows us to retain an approximation for the

barotropic mode with a finite wave speed, with only small errors introduced (Kelly

et al., 2010; Kelly, 2016). We re-emphasise that this is not equivalent to applying

(4.55) at every step, since the m = n = 0 case cannot be dealt with properly. In the

following sections, we will be concerned with the rigid lid boundary conditions and

so will use this convention.

4.3 The effect of clouds on the large-scale dynamics

Our analysis so far has shown that in the absence of a cloud field, the equations

governing long waves in a stratified atmosphere may be decomposed into vertical

modes, with a horizontal structure obeying a system of shallow water equations with

a mode-dependent equivalent wave speed. In this section, the analysis is generalised

to understand how these waves are modified in the presence of a cloud field. To

achieve this, the correlation terms in (4.22–4.25) must be fully determined in order

to close the system of averaged equations in terms of the large-scale variables at

leading order. This involves solving two additional systems of equations, namely

the CCP (4.10–4.12) in the presence of a specified diabatic heating profile, and the

CPE (4.26–4.28) determining the time-dependent response.

In the present set-up, the CCP and CPE are defined on a domain which extends

to +∞ in the radial direction. Consequently, appropriate decay conditions must

be imposed on their solutions as r → ∞. A key step common to the numerical

implementation of both the CCP and CPE which follows, is to truncate the domain

in the radial direction at a value r = rout and replace the decay conditions with

appropriate boundary conditions on r = rout. Since the solutions to the CCP and

CPE are assumed to decay away from the origin, rout should be chosen so that

they do not depend sensitively on its value - that is, the solutions do not change

significantly as rout is increased.

Following the domain truncation, a further simplifying assumption may be

made about the eddy diffusion coefficients. That is, the radial dependence of ν0 and
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κ0 are assumed to be piecewise constant, taking a finite value in the region r ≤ rout,

and 0 in r > rout. This allows us to take ν0 and κ0 as constants in the solutions to

the CCP and CPE which follow, whilst maintaining the physical requirement that

the effects of turbulent diffusion are localised around individual clouds. The values

of ν0 = κ0 = 0.05 are used for the rest of the chapter.

4.3.1 Solution of the CCP

Consider equations (4.10–4.12) where Q̇0(r, z) is a known, axisymmetric function.

Under this assumption, and the lack of rotation in the CCP, it follows that the com-

ponents of the velocity vector are independent of the azimuthal coordinate θ, and

that the azimuthal component of velocity is identically zero. The background flow

may therefore be expressed as

v0 = ur0(r, z)er + w0(r, z)k, (4.56)

where ur0 is the radial component of velocity, and er and k are the cylindrical polar

coordinate basis vectors in the radial and vertical directions respectively. Since the

flow is incompressible, it can be described completely in terms of a streamfunction

ψ0 satisfying

ur0 = −1

r

∂ψ0

∂z
, w0 =

1

r

∂ψ0

∂r
, (4.57)

so that the continuity equation (4.11) is automatically satisfied. Note that we retain

the overline and subscript 0 notation here for clarity when referring to solutions of

the CCP. Introducing the azimuthal component of vorticity ζ0 which is defined as

ζ0 =
∂w0

∂r
− ∂ur0

∂z
, (4.58)
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the governing equations may be expressed in streamfunction-vorticity form as

J
(
ψ0, ζ0/r

)
− ∂b0

∂r
= ν0

(
∇2ζ0 −

ζ0

r2

)
, (4.59)

ζ0 =
1

r

(
∂2ψ0

∂r2
− 1

r

∂ψ0

∂r
+
∂2ψ0

∂z2

)
, (4.60)

1

r
J
(
ψ0, b0

)
+
N2

r

∂ψ0

∂r
= Q̇0 + κ0∇2b0. (4.61)

Here, J is the Jacobian operator, which acts on functions c(r, z), d(r, z), as

J (c, d) = ∂rc∂zd − ∂zc∂rd. The above problem is a nonlinear system of equa-

tions in the three variables ψ0, ζ0, b0 which must be solved in the domain (r, z) ∈

(0, rout) × (0, 1) subject to appropriate boundary conditions on r = 0, rout and

z = 0, 1.

In the presence of a rigid lid at z = 1, the boundary conditions for a closed

circulation are

ψ0 = ζ0 = b0 = 0, on z = 0, 1, (4.62)

ψ0 = ζ0 = ∂rb0 = 0, on r = 0, (4.63)

ψ0 = ζ0 = b0 = 0, on r = rout. (4.64)

It is also helpful (though not strictly necessary) to impose the condition

∫ 1

0

∫ rout

0

Q̇0 rdrdz = 0, (4.65)

so that there is no source or sink of buoyancy in the system. This is not a strict

condition in order to make the system solvable, however in the limit that turbulent

diffusion becomes negligible it is needed to ensure that a steady state solution ex-

ists. We retain it so that the turbulent terms in the system act primarily to ensure

the system is well posed, and not in order to disperse excess buoyancy. This may

also be enforced through requiring that 〈Q̇0〉0 = 0, which can be imposed through

our choice of Q̇0 with little difficulty. The following section covers the numerical

solution of equations (4.59–4.61) subject to the boundary conditions (4.62–4.64).
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4.3.1.1 Numerical solutions to the CCP

The nonlinear system (4.59–4.61) is solved using an iterative procedure based on

the quasi-linearisation method (see e.g. Motsa et al., 2014; Muzara et al., 2018).

We begin by assuming there exist sequences of approximants for ψ0, ζ0, b0, with

the mth iterates denoted by ψ
(m)

0 , ζ
(m)

0 , b
(m)

0 , such that

{
ψ

(m)

0 , ζ
(m)

0 , b
(m)

0

}
→
{
ψ0, ζ0, b0

}
as m→∞. (4.66)

The method is based on approximating the nonlinear terms at the (m+1)th iteration

in the CCP as

J
(
c(m+1), d(m+1)

)
≈ J

(
c(m+1), d(m)

)
+ J

(
c(m), d(m+1)

)
− J

(
c(m), d(m)

)
,

(4.67)

where for generality, we have used arbitrary sequences c(m), d(m). Therefore, the

(m + 1)th iteration is found in terms of the mth iterate (which is assumed known)

from the solution to the linear system

J
(
ψ

(m+1)

0 , ζ
(m)

0 /r
)

+ J
(
ψ

(m)

0 , ζ
(m+1)

0 /r
)
− ∂b

(m+1)

0

∂r
(4.68)

= ν0

(
∇2ζ

(m+1)

0 − ζ
(m+1)

0

r2

)
− J

(
ψ

(m)

0 , ζ
(m)

0 /r
)
,

ζ
(m+1)

0 =
1

r

(
∂2ψ

(m+1)

0

∂r2
− 1

r

∂ψ
(m+1)

0

∂r
+
∂2ψ

(m+1)

0

∂z2

)
, (4.69)

1

r
J
(
ψ

(m+1)

0 , b
(m)

0

)
+

1

r
J
(
ψ

(m)

0 , b
(m+1)

0

)
+
N2

r

∂ψ
(m+1)
0

∂r
(4.70)

= Q̇0 + κ0∇2b
(m+1)

0 − 1

r
J
(
ψ

(m)

0 , b
(m)

0

)
.

Note that this system of equations is linear in the unknown (m+ 1)th iterates, since

at each step the mth iterates are known quantities. The 0th iterate is taken to be the

solution to the original linear system (i.e. the solution to (4.59–4.61) in the absence

of the nonlinear terms). This linear solution is most easily found numerically using

the following spectral discretisation method; however, it is also possible to solve it
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Figure 4.1: Numerical solutions to (4.59–4.61) for the specified heat distribution given in
(4.71) and ν0 = κ0 = 0.05. The streamlines of ψ0 are shown as closed, grey
curves, and the contours of the total buoyancy btot = b0 + z are shown as
black curves. The heat distribution is shown using colour, with red and blue
representing regions of heating and cooling respectively. Arrows are included
showing the direction of cloud circulation.

analytically using integral transforms.

With the problem now specified on a finite domain (r, z) ∈ [0, rout] × [0, 1],

equations (4.68–4.70) are discretised using a Chebyshev collocation method, using

Nr = 31 points in the radial, and Nz = 81 points in the vertical directions. The

boundary conditions (4.62–4.64) are implemented in this formulation by altering the

outer rows and columns in each block of the resulting block matrix (details omitted),

and it is found that using rout = 5 is sufficient to approximate the decay conditions.

Discussions about the numerical convergence of the Chebyshev collocation method

are postponed until section 4.3.3.3.

Figure 4.1 shows the solutions to the numerical procedure solving (4.59–4.61)

for the heat distribution given by

Q̇0(r, z) = 12e−5(r2+z)(1− 5r2)
√
z(1− z). (4.71)

As previously stated, the numerical parameters used are Nr = 31, Nz = 81 and

rout = 5, with machine precision achieved after 5 iterations. The solutions appear

to capture the basic features of the circulation surrounding a convecting cumulus

cloud - that is, the circulation occupies the full height of the troposphere, with a

narrow, localised updraft region at r = 0, and a much broader and less intense sub-
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sidence away from the cloud core. For typical values of the dimensional buoyancy

frequency N0 = 0.01s−1, and tropopause height HT = 104m, the maximum hor-

izontal and vertical velocities of the fluid are approximately wmax ≈ 10ms−1 and

umax ≈ 5ms−1, broadly consistent with measurements of cumulus convection. The

buoyancy perturbations are localised near to the heat source, and have a maximum

dimensional value of approximately 0.65ms−2. Note also that using the maximum

horizontal velocity as a reference, and recalling that the local horizontal scale of

motion in the cloud is given by Lc = HT ≈ 104m, the local Rossby number is

given by Ro = umax/Lcf0 ≈ 5, indicating that the lack of rotation present in the

equations governing the CCP is justified.

Another important quantity in this cloud model is the vertical gradient in total

buoyancy, which is given in non-dimensional form as

N2
tot(r, z) ≡ ∂zbtot(r, z) = 1 + ∂zb0(r, z). (4.72)

Whereas in a quiescent atmosphere, a stably stratified fluid must have N2 > 0

everywhere, in our model it is required that N2
tot > 0 so that instabilities caused

by heavy air rising above light air do not occur. Another important aspect of deep

convection is that the vertical gradient in the total buoyancy is significantly reduced

in the cloud core compared with the background atmosphere. Contours of N2
tot are

shown in figure 4.2 which reflect this fact.

4.3.2 Solutions to the CPE

With the CCP solved, the only undetermined quantities in the correlation terms of

(4.22–4.25) are the solutions of the cell problem ũ0, w̃0, b̃0. These are determined

from the CPE (4.26–4.28) and can be expressed in terms of the solutions to the

CCP (calculated in the previous section) and the large-scale variables U and B.

Recalling that the large-scale quantities may be expanded in terms of the complete

vertical basis functions φn(z),Φn(z) for n = 0, 1, 2, ... the cell problem governing
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Figure 4.2: Contours of N2
tot(r, z) for the circulation driven by the heating profile (4.71)

represented using colour.

the response of the fluid to the cloud field (4.26–4.28) may be written as

(v0 · ∇) ṽ0 + (ṽ0 · ∇)v0 +∇p̃0 − b̃0k − ν0∇2ṽ0 =

−
∞∑
j=0

(
Ũj · ∇

)
v0φj −

∞∑
j=0

w0Ũ
′
jΦj, (4.73)

∇ · ṽ0 = 0, (4.74)

(v0 · ∇) b̃0 + (ṽ0 · ∇) b0 +N2w̃0 − κ0∇2b̃0 =

−
∞∑
j=0

(
Ũj · ∇

)
b0φj −

∞∑
j=0

w0B̃
′
jφj. (4.75)

In the above equations we have expanded the terms involving the vertical gradient

of the large-scale horizontal velocity and buoyancy using

∂zU(x, z, t) =
∞∑
j=0

Ũ ′j(x, t)Φj(z), (4.76)

∂zB(x, z, t) =
∞∑
j=0

B̃′j(x, t)φj(z). (4.77)



111

Whilst it is of course possible to carry the differential operator through the sum to

act upon the basis functions in the modal decompositions of U and B, it is con-

venient for presentational purposes to keep track of coefficients in the expansions

of ∂zU and ∂zB explicitly. That is to say, it is more convenient to think of the

coefficients in (4.76) and (4.77) as

U ′j(x, t) =
1

c2
j

[∫ 1

0

∂zU(x, z′, t)Φj(
′z) dz′ +

1

α
∂zU (x, 1, t)Φj(1)

]
, (4.78)

B′j(x, t) =

∫ 1

0

∂zB(x, z′, t)φj(z
′) dz′, (4.79)

rather than their counterparts involving integrals ofU and B (which may indeed be

recovered through integration by parts).

The solutions to the cell problem in the form (4.73–4.75), which are linear

combinations of the basis coefficients Ũj , Ũ ′j and B̃′j , may be expressed as

ṽ0 =
∞∑
j=0

er

[
ûr1,j

(
Ũj · er

)
+ ûr2,j

(
Ũ ′j · er

)
+ ûr3,jB̃

′
j

]
(4.80)

+ eθ

[
ûθ1,j

(
Ũj · eθ

)
+ ûθ2,j

(
Ũ ′j · eθ

)]
+ k

[
ŵ1,j

(
Ũj · er

)
+ ŵ2,j

(
Ũ ′j · er

)
+ ŵ3,jB̃

′
j

]
,

p̃0 =
∞∑
j=0

[
p̂1,j

(
Ũj · er

)
+ p̂2,j

(
Ũ ′j · er

)
+ p̂3,jB̃

′
j

]
, (4.81)

b̃0 =
∞∑
j=0

[
b̂1,j

(
Ũj · er

)
+ b̂2,j

(
Ũ ′j · er

)
+ b̂3,jB̃

′
j

]
, (4.82)

where the variables {ûrk,j, ûθk,j, ŵk,j, p̂k,j, b̂k,j} for k = 1, 2, 3 are determined by

three separate ‘kernel cell problems’ (KCP1, KCP2, KCP3 hereafter). The ad-

vantage of using the ansatz (4.80–4.82) is that the θ dependence of ṽ0, p̃0, b̃0 is

contained entirely within the polar coordinate basis vectors er = (cos θ, sin θ, 0)T

and eθ = (− sin θ, cos θ, 0)T , and so the resulting KCPs are axisymmetric.

KCP1–KCP3 are determined by substituting (4.80–4.82) into equations (4.73–

4.75) and matching the basis coefficients. The problem KCP1 for variables

{ûr1,j, ûθ1,j, ŵ1,j, p̂1,j, b̂1,j} is given by
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1

r
∂zψ0∂rû

r
1,j + ∂r

(
1

r
∂rψ0

)
ûr1,j −

1

r
∂rψ0∂zû

r
1,j + ŵ1,j∂

2
zzψ0 − ∂rp̂1,j (4.83)

+ν0

(
1

r
∂r
(
r∂rû

r
1,j

)
− 2

r2

(
ûr1,j − ûθ1,j

)
+ ∂2

zzû
r
1,j

)
=− φj∂r

(
1

r
∂zψ0

)
,

1

r
∂zψ0∂rû

θ
1,j +

ûθ1,j
r2
∂zψ0 −

1

r
∂rψ0∂zû

θ
1,j −

1

r
p̂1,j (4.84)

+ν0

(
1

r
∂r
(
r∂rû

θ
1,j

)
+

2

r2

(
ûr1,j − ûθ1,j

)
+ ∂2

zzû
r
1,j

)
=− φj

r2
∂zψ0,

∂r

(
1

r
∂rψ0

)
ûr1,j −

1

r
∂zψ0∂rŵ1,j +

1

r
∂rψ0∂zŵ1,j +

ŵ1,j

r
∂2
rzψ0 (4.85)

+∂zp̂1,j − b̂1,j − ν0

(
1

r
∂r (r∂rŵ1,j)− ŵ1,j + ∂2

zzŵ1,j

)
=− φj∂r

(
1

r
∂rψ0

)
,

1

r
∂r
(
rûr1,j

)
−
ûθ1,j
r

+ ∂zŵ1,j =0, (4.86)

ûr1,j∂rb0 + ŵ1,j

(
∂zb0 + 1

)
− 1

r
∂zψ0∂rb̂1,j +

1

r
∂rψ0∂z b̂1,j (4.87)

−κ0

(
1

r
∂r

(
r∂rb̂1,j

)
− 1

r2
b̂1,j + ∂2

zz b̂1,j

)
=− φj∂rb0.

The solutions of (4.83–4.87) are found using a Chebyshev collocation method with

the same numerical parameters as for the CCP. The boundary conditions for this

problem are

∂ûr1,j
∂z

=
∂ûθ1,j
∂z

= ŵ1,j = b̂1,j = 0, at z = 0, 1, (4.88)

∂ûr1,j
∂r

=
∂ûθ1,j
∂r

= ŵ1,j = p̂1,j = b̂1,j = 0, at r = 0, (4.89)

ûr1,j =
∂ûθ1,j
∂r

=
∂ŵ1,j

∂r
= b̂1,j = 0, at r = rout, (4.90)

which, again, are straightforward to implement in the Chebyshev numerical for-

mulation. Figure 4.3 shows contours of the solutions {ûr1,1, ûθ1,1, ŵ1,1, p̂1,1, b̂1,1} to

KCP1 corresponding to the first baroclinic wave mode (j = 1).

The problem KCP2 corresponding to the variables {ûr2,j, ûθ2,j, ŵ2,j, p̂2,j, b̂2,j}

is similar to KCP1, in that only the source terms are different whilst the operator
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Figure 4.3: Contours of the KCP1 solutions {ûr1,1, ûθ1,1, ŵ1,1, p̂1,1, b̂1,1} to (4.83–4.87) with
the boundary conditions (4.88–4.90). The values ν0 = κ0 = 0.05 are used.

acting on the variables remains unchanged. It is given by

1

r
∂zψ0∂rû

r
2,j + ∂r

(
1

r
∂rψ0

)
ûr2,j −

1

r
∂rψ0∂zû

r
2,j + ŵ2,j∂

2
zzψ0 − ∂rp̂2,j (4.91)

+ν0

(
1

r
∂r
(
r∂rû

r
2,j

)
− 2

r2

(
ûr2,j − ûθ2,j

)
+ ∂2

zzû
r
2,j

)
=

Φj

r
∂rψ0,

1

r
∂zψ0∂rû

θ
2,j +

ûθ2,j
r2
∂zψ0 −

1

r
∂rψ0∂zû

θ
2,j −

1

r
p̂2,j (4.92)

+ν0

(
1

r
∂r
(
r∂rû

θ
2,j

)
+

2

r2

(
ûr2,j − ûθ2,j

)
+ ∂2

zzû
r
2,j

)
=

Φj

r
∂rψ0,

∂r

(
1

r
∂rψ0

)
ûr2,j −

1

r
∂zψ0∂rŵ2,j +

1

r
∂rψ0∂zŵ2,j +

ŵ2,j

r
∂2
rzψ0 (4.93)

+∂zp̂2,j − b̂2,j − ν0

(
1

r
∂r (r∂rŵ2,j)− ŵ2,j + ∂2

zzŵ2,j

)
= 0,

1

r
∂r
(
rûr2,j

)
−
ûθ2,j
r

+ ∂zŵ2,j = 0, (4.94)

ûr2,j∂rb0 + ŵ2,j

(
∂zb0 + 1

)
− 1

r
∂zψ0∂rb̂2,j +

1

r
∂rψ0∂z b̂2,j (4.95)

−κ0

(
1

r
∂r

(
r∂rb̂2,j

)
− 1

r2
b̂2,j + ∂2

zz b̂2,j

)
= 0.

The boundary conditions for KCP2 are the same as those for KCP1, and so it is

solved in exactly the same manner. Figure 4.4 shows contours of the solutions
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Figure 4.4: Contours of the KCP2 solutions {ûr2,1, ûθ2,1, ŵ2,1, p̂2,1, b̂2,1} to (4.91–4.95) with
the boundary conditions (4.88–4.90). The values ν0 = κ0 = 0.05 are used.

{ûr2,1, ûθ2,1, ŵ2,1, p̂2,1, b̂2,1} to KCP2 corresponding to the first baroclinic wave mode

(j = 1).

KCP3 is somewhat different to KCP1 and KCP2. Notably, there is no

azimuthal component of velocity and so we are able to rewrite the system in

streamfunction-vorticity form using the definitions

ûr3,j = −1

r

∂ψ̂3,j

∂z
, ŵ3,j =

1

r

∂ψ̂3,j

∂r
, (4.96)

and

ζ̂3,j =
∂ŵ3,j

∂r
−
∂ûr3,j
∂z

. (4.97)

In this formulation, KCP3 may be written in terms of the variables {ψ̂3,j, ζ̂3,j, b̂3,j}
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Figure 4.5: Contours of the solutions {ψ̂3,1, ζ̂3,1, b̂3,1} to (4.98–4.100) with the boundary
conditions (4.62–4.64). The values ν0 = κ0 = 0.05 are used.

as

J

(
ψ0,

ζ̂3,j

r

)
+ J

(
ψ̂3,j,

ζ0

r

)
− ∂rb̂3,j (4.98)

−ν0

(
1

r
∂r

(
r∂rζ̂3,j

)
− ζ̂3,j

r2
+ ∂2

zz ζ̂3,j

)
= 0,

ζ̂3,j −
1

r

(
∂2
rrψ̂3,j −

1

r
∂rψ̂3,j + ∂2

zzψ̂3,j

)
= 0, (4.99)

1

r
J
(
ψ0, b̂3,j

)
+

1

r
J
(
ψ̂3,j, b0

)
+

1

r
∂rψ̂3,j (4.100)

−κ0

(
1

r
∂r

(
r∂rb̂3,j

)
+ ∂2

zz b̂3,j

)
= −φj

r
∂rψ0.

The boundary conditions are the same as (4.62–4.64) used to solve the CCP. Figure

4.5 shows contours of the solutions {ψ̂3,1, ζ̂3,1, b̂3,1} to KCP3 corresponding to the

first baroclinic wave mode (j = 1). The variables {ûr3,j, ŵ3,j, p̂3,j, b̂3,j} in (4.80–

4.82) can be calculated from {ψ̂3,j, ζ̂3,j, b̂3,j} by Chebyshev differentiation, however

it is sufficient to leave them in their current form to calculate the correlation terms

in (4.22–4.25).

4.3.3 The homogenised equations

Having established a numerical method to solve the CCP, as well as a numerical

method to invert KCP1-KCP3, it is now possible to explicitly calculate the form

of the correlation terms in the averaged equations (4.22–4.25). Determining the
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correlation terms leads to the central result of this chapter, namely a system of

integro-differential equations governing the response of the large-scale variables to

any imposed cloud field. We present them here along with a discussion of their

implications, and postpone a formal derivation and numerical calculation of the

correlation terms to later sections.

The response of the large-scale variablesU ,W, P,B to a convective cloud field

is governed by the homogenised equations

∂U

∂t
+ fk ×U + n

∂

∂z
(K1U) = −∇xP + n

∂

∂z

(
K2
∂U

∂z

)
, (4.101)

∂P

∂z
= B, (4.102)

∇x ·U +
∂W

∂z
= 0, (4.103)

∂B

∂t
+W = n

∂

∂z

(
L∂B
∂z

)
, (4.104)

where K1,K2 and L are non-local integral operators, which act on a z-dependent

function G(z) as

K1G =

∫ 1

0

K1(z, z′)G(z′) dz′, K2G =

∫ 1

0

K2(z, z′)G(z′) dz′,

LG =

∫ 1

0

L(z, z′)G(z′) dz′. (4.105)

The integral kernels K1(z, z′), K2(z, z′) and L(z, z′) (the form of which we derive

in the following subsections) are smooth functions which are fully determined by

the cloud field. These kernels bear resemblance to transilient matrices - a concept

which has its origin in the theory of turbulence (Stull, 1984; Romps and Kuang,

2011; Bhamidipati et al., 2020) where the non-local action of the integral operators

quantifies the manner in which small, turbulent eddies transport fluid particles in-

stantaneously over a finite distance. Similar matrices have been used in Cheng et al.

(2017) to model the instantaneous convective adjustment of a moist atmosphere to

a statically stable equilibrium state.

In our problem, the homogenised equations (4.101–4.104) provide insight into
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how a convective cloud field affects the propagation of long waves. The three tran-

silient kernels in this case quantify the vertical redistribution of horizontal momen-

tum and buoyancy due to the large-scale flow interacting with clouds. Importantly,

the non-locality of the operators reflects the fact that convection occurs over a much

shorter time-scale than that upon which the large-scale flow evolves. In this sense,

the integral terms in (4.101–4.104) provide a closure for a time-dependent convec-

tive adjustment problem. It is perhaps unsurprising that transilient kernels arise

naturally in our problem, since thermals and large-scale convective processes are

analogous to large eddies in the atmosphere. Furthermore, convection is a mixing

process and so is expected to have an analogous effect on the atmosphere in many

contexts.

The boundary conditions for (4.101–4.104) appropriate to an atmosphere with

a rigid lid are

∂zU = 0, W = B = 0, on z = 0, 1. (4.106)

4.3.3.1 Derivation of the homogenised equations (4.101–4.104)

Recall that the solutions to KCP1-KCP3 in the previous section are independent of

θ, and that the θ dependence of (4.80–4.82) is contained entirely within the horizon-

tal basis vectors er = (cos θ, sin θ, 0)T , eθ = (− sin θ, cos θ, 0)T . As a consequence

of this, and from the definition of the averaging operator (4.15), all correlation

terms involving only one multiple of the horizontal basis functions vanish, since

they are proportional to sin θ or cos θ. This results in the momentum correlation

term in (4.22) containing only contributions from the terms in the kernel cell prob-

lems KCP1 and KCP2 (i.e. k = 1, 2), and the buoyancy correlation term in (4.25)

containing only contributions from the kernel cell problem KCP3 (i.e. k = 3).

Substituting (4.80–4.82) into (4.22) and (4.25) allows the correlation terms to be
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written

〈w0ũ0 + w̃0u0〉0 =
∞∑
j=0

K1,j(z)Ũj(x, t) +K2,j(z)Ũ ′j(x, t), (4.107)

〈
w0b̃0 + w̃0b0

〉
0

=
∞∑
j=0

Lj(z)B̃′j(x, t), (4.108)

where

Kk,j(z) = π

∫ ∞
0

∂rψ0

(
ûrk,j + ûθk,j

)
− ∂zψ0ŵk,j dr, (4.109)

Lj(z) = 2π

∫ ∞
0

∂rψ0b̂3,j + b0∂rψ̂3,j dr, (4.110)

for k = 1, 2. In order to express the averaged equations in terms of the height de-

pendent large-scale variables, we first use the integral properties (4.45) and (4.51),

along with the boundary conditions (4.106) to express Ũj , Ũ ′j and B̃′j as

Ũj =

∫ 1

0

U(x, z′, t)φj(z
′) dz′, (4.111)

Ũ ′j =
1

c2
j

∫ 1

0

∂zU(x, z′, t)Φj(z
′) dz′, (4.112)

B̃′j =

∫ 1

0

∂zB(x, z′, t)φj(z
′) dz′. (4.113)

Inserting these expressions into (4.22–4.25), we retrieve the equations(4.101–

4.104), with the transilient kernels defined by

K1(z, z′) =
∞∑
j=0

K1,j(z)φj(z
′), (4.114)

K2(z, z′) = −
∞∑
j=0

1

c2
j

K2,j(z)Φj(z
′), (4.115)

L(z, z′) = −
∞∑
j=0

Lj(z)φj(z
′). (4.116)
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4.3.3.2 Properties of the transilient kernels

Consider the one dimensional non-local transport equation for a tracer with concen-

tration c(z, t), given by

∂tc+

∫ 1

0

K(z, z′)c(z′, t) dz′ = 0, (4.117)

defined on (z, t) ∈ [0, 1] × [0,∞), and where K(z, z′) is a transilient kernel. In

this context, the value of K(z, z′) at a point (z, z′) quantifies the rate at which fluid

parcels at an initial height z′ are transported to a final height z by e.g. a turbulent

eddy (Romps and Kuang, 2011; Stull, 1984; Bhamidipati et al., 2020). Assuming

that c is a conserved quantity, it follows that

∫ 1

0

K(z, z′) dz = 0, (4.118)

which ensures that the net sink of tracer concentration c over all z destinations is

zero. Furthermore, it must also be true that

∫ 1

0

K(z, z′) dz′ = 0, (4.119)

since if c is initially constant in z, the tracer concentration should remain constant

for all time. This property reflects the fact that the eddies may not act to ‘un-mix’

the fluid (Shnirelman, 1993; Wood and Mcintyre, 2009; Shnirelman, 2013).

In our problem, the operators introduced by the presence of convection are seen

to obey property (4.118). This can be shown by taking the integral in z from 0 to 1

of equations (4.101–4.104), after which the contribution of the integral operators is

zero. This reflects the fact that the net sink of horizontal momentum and buoyancy

over all z destinations due to the motions induced by convection is zero. Likewise,

it is also seen that choosing B to have a constant vertical profile leads to the the

integral operator term involving L vanishing. Whilst choosingU to have a constant

vertical profile does cause the term involving K2 to vanish, the same is not true for
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Figure 4.6: Colour plots of the transilient kernels K1(z, z′), K2(z, z′) and L(z, z′) (left to
right). Both z and z′ are discretised using a Chebyshev grid with 81 points, and
the infinite sum is truncated at Ns = 21.

the term involving K1, which can be seen from the fact that

∫ 1

0

∂zK1(z, z′) dz′ = ∂zK1,0(z)φ0(1) 6= 0. (4.120)

This implies that a horizontal momentum profile which is initially constant in z may

develop vertical variations in the presence of a cloud field. Importantly, horizontal

momentum is not transported as a tracer in the homogenised equations (4.101–

4.104), and so no physical laws are violated by this fact.

4.3.3.3 Numerical calculations of the transilient kernels

In order to calculate the transilient kernels in our numerical formulation, the vertical

domain is discretised using a Chebyshev mesh with 81 points in each of z and z′.

Furthermore, the infinite series definitions of the matrices may be approximated by

truncating the sum at some finite number of terms, say Ns. Figure 4.6 shows a

colour plot of the three transilient kernels in our problem using Ns = 20.

The convergence of the matrices as a function of the truncation number Ns is

now investigated. Firstly, we define the truncated matrices as, for example

KNs
1 (z, z′) =

Ns∑
j=0

K1,j(z)φj(z
′), (4.121)
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Figure 4.7: Log-log plot of the step-wise errors in the transilient kernels as a function of
Ns. The parameters Nz = 81, Nr = 31 and rout = 5 are fixed. The dashed
line is a linear approximant to the average error for Ns ≥ 6 calculated using a
least squares regression method, the gradient of which is approximately−2.00.

so that we may then define a step-wise error for the matrix KNs
1 as

ENs
K1

=
‖KNs

1 −KNs−1
1 ‖L2

‖KNs
1 ‖L2

, (4.122)

where ‖ ·‖L2 is the L2-norm. Figure 4.7 shows a log-log plot of the errors ENs
K1

, ENs
K2

and ENs
L as functions of Ns for fixed Nz = 81, Nr = 31 and rout = 5, and where

ENs
K2

and ENs
L are defined analogously to (4.122). The dashed line in the figure is

calculated using a least squares regression method on the average of the three errors

for mode numbers Ns ≥ 6. The gradient of this line is found to be µ ≈ −2.00,

indicating that the errors decay as ENs
K1
, ENs

K2
, ENs

L ∼ 1/N2
s . Importantly, the errors

decrease at an algebraic rate faster than 1/Ns, and therefore may not accumulate at

each step so that the total error diverges as Ns →∞.

To test the convergence of the matrices as functions of both Nr and rout, we

define two further errors as

ENr
K1

=
‖KNr

1 −KNr−2
1 ‖L2

‖KNr
1 ‖L2

, Erout
K1

=
‖Krout

1 −Krout−1
1 ‖L2

‖Krout
1 ‖L2

, (4.123)
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where KNr
1 and Krout

1 are given by (4.121) with Ns = 20. In KNr
1 , the K1,j’s are

calculated using Nr radial Chebyshev points with rout = 5 fixed, and in Krout
1 , the

K1,j’s are calculated using 31 Chebyshev points whilst rout may vary. In both cases

Nz = 81 is fixed.

The top panel of figure 4.8 shows log plots of ENr
K1

, ENr
K2

and ENr
L as func-

tions of Nr. Their decay in the log plot is approximately linear, indicating that

their actual decay rate is exponential and that our numerical method has spectral

accuracy in the radial direction. The dashed line in this panel is calculated using

a least squares regression method based on the average of the three errors, and is

found to have a gradient of approximately −0.22, indicating that the errors decay

as ENr
K1
, ENr

K2
, ENr

L ∼ exp (−0.22Nr).

The bottom panel of figure 4.8 shows log-log plots of Erout
K1

, Erout
K2

and Erout
L

as functions of rout. The errors are seen to decrease rapidly at first (approximately

linearly on the log-log plot, corresponding to an algebraic decay), followed by a

small increase. Importantly, this increase only occurs after the error introduced by

the discretisation of r using 31 Chebyshev points surpasses the error introduced by

truncating the domain at rout. This indicates that the error increase at rout ≈ 5

is due to the grid resolution on the larger domain no longer being fine enough to

resolve the radial structures. It is reasonable however, to conclude that the errors

decay algebraically as rout is increased, assuming that we are able to resolve radial

structures with a fine enough Chebyshev discretisation. The dashed line in this

panel is calculated using a least squares regression method based on the average of

the three errors for rout ≤ 5, and has a gradient of approximately −8.64, indicating

that the errors decay as Erout
K1

, Erout
K2

, Erout
L ∼ r−8.64

out .

Demonstrating the convergence of the transilient kernels as a function of the

number of vertical grid pointsNz is somewhat more challenging since the size of the

discretised matrices increases at each iteration. Instead, we analyse the convergence

of the individual functions K1,j(z), K2,j(z) and Lj(z) in the expansions (4.114–

4.116) by projecting them onto a suitable basis. Since all of the functions vanish on

z = 0, 1 for all j = 0, 1, 2..., we opt to use a Fourier sine series. That is, we expand
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Figure 4.8: Top panel: log plots of ENr
K1

, ENr
K2

and ENr
L as functions of Nr. The parameters

Nz = 81, Ns = 20 and rout = 5 are fixed. The dashed line is a linear approx-
imant to the average error calculated using a least squares regression method,
the gradient of which is approximately −0.22. Bottom panel: log-log plots of
EroutK1

, EroutK2
and EroutL as functions of rout. The parametersNz = 81, Ns = 20

and Nr = 31 are fixed. The dashed line is a linear approximant to the average
error for rout ≤ 5 calculated using a least squares regression method, the gra-
dient of which is approximately −8.64.
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the functions as, for example

K1,j(z) =
∞∑
n=1

aj,n sin(nπz), (4.124)

from which the coefficients can be calculated using the orthogonality of the basis

functions. Now we define

aNz
j = (aj,1, aj,2, ..., aj,10)T , (4.125)

as the vector of the first 10 coefficients, where each entry is calculated numerically

using Nz vertical grid points. This allows us to introduce the stepwise error as

ENz
K1,j

=
‖aNz

j − a
Nz−4
j ‖L2

‖aNz
j ‖L2

, (4.126)

with ENz
K2,j

and ENz
Lj

defined analogously.

Figure 4.9 shows log-log plots of ENz
K1,j

, ENz
K2,j

and ENz
Lj

for j = 1, 2, 3, which

show a clear algebraic decay in the step-wise error. All lines in the plot have a gradi-

ent of approximately −6.35 indicating that the errors decay as ENz
K1,j

, ENz
K2,j

, ENz
Lj
∼

N−6.35
z . This decay is also observed for values of j > 3, and when the number of

coefficients in (4.125) is chosen to be greater than 10 (as long as the basis vectors

can be resolved on the Chebyshev grid with a high enough accuracy).

4.4 Rossby and inertia-gravity wave dispersion rela-

tions in the presence of clouds
The methods of sections 4.3 allow us to calculate the transilient kernels associated

with any specified cloud field. This allows us to address the key scientific ques-

tion: how does the presence of a representative cloud field affect the propagation

of atmospheric Rossby and inertia-gravity waves? Here, we calculate the disper-

sion relations for various wave modes in a mid-latitude β-channel in the presence

of the cloud field shown in figure 4.1, and compare the results to the well-known

dispersion relations in the absence of clouds (n = 0 in equations (4.101–4.104)).
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Figure 4.9: Log-log plots of the errors ENz
K1,j

, ENz
K2,j

and ENz
Lj

for j = 1, 2, 3 (left-right). A
least squares regression analysis shows that all curves in each plot may be ap-
proximated by a linear function with gradient−6.35 (approximants are omitted
from the figures).

We consider a mid-latitude β-channel with sidewalls at y = ±1, corresponding

to a dimensional half-width given by one Rossby radius. The non-dimensional β-

parameter is taken to be β̄ = 0.1, since this corresponds to a dimensional value of

β ∼ 10−11m−1s−1, which is appropriate for the mid-latitude atmosphere.

To pursue this analysis, a representative value of the cloud density n must be

chosen. A value for the scaled number density n = 5 is used here, which in the

parameter set-up for the troposphere (ε ≈ 1/100) corresponds to a number density

of n = 1/20. This denotes a relatively sparse array of clouds - specifically, one

cloud per 20 non-dimensional units of horizontal area so that the average spacing

between clouds is Davg ∼
√

20 ≈ 4.47. (This is verified in the case where the

clouds are arranged using hexagonal packing so that each cloud is equidistant from

all of its neighbours, and the distance between adjacent clouds can be calculated to

be

Dhex =
1

31/4

(
2

n

)1/2

≈ 4.81. (4.127)

Note that hexagonal packing is used only as an intuitive illustration of cloud density,

and that our analysis applies to to randomly distributed cloud fields.) In dimensional

terms, this corresponds to the distance between heat sources being approximately

4.5 times the height of the tropopause (≈ 4.5 × 10km). In terms of the β–channel

set-up used here, this means that on average, approximately 44 clouds may span its

breadth. Importantly, these average spacing distances are sufficiently large to justify
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the approximation in section 4.1 that individual clouds interact only linearly, since

it is clear from figures 4.1 and 4.3–4.5 that the clouds have decayed substantially

when r ∼ Davg/2.

4.4.1 Numerical solution of the homogenised equations

To begin this analysis, a modal decomposition of the homogenised equations

(4.101–4.104) is sought using the expansions (4.35) and (4.36). Particular care

must be taken when determining the coefficients in the modal decomposition of the

integral terms, the details of which are found in Appendix G. The decomposition

into vertical modes of the homogenised equations, after eliminating the variables

W̃j and B̃j , is then found to be

∂tŨj + fk × Ũj + n
∞∑
m=0

(
C̃j,m − D̃j,m

)
Ũm = −∇xP̃j, (4.128)

∂tP̃j + c2
j∇x · Ũj = n

∞∑
m=0

(
cj
cm

)2

Ẽj,mP̃m, (4.129)

for j = 0, 1, 2, ..., where the coefficients C̃j,m, D̃j,m and Ẽj,m are given by

C̃j,m =

∫ 1

0

1

c2
j

K1,m(z)Φj(z) dz, D̃j,m =

∫ 1

0

1

c2
jc

2
m

K2,m(z)Φj(z) dz, (4.130)

Ẽj,m =

∫ 1

0

1

c2
j

Lm(z)φj(z) dz. (4.131)

Seeking plane wave solutions of the form

[
Ũj(x, t), P̃j(x, t)

]
=
[
Ûj(y), P̂j(y)

]
exp (−iωt+ ikx) , (4.132)
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leads to a coupled, linear system of ODEs given by

−in
∞∑
m=0

(
C̃j,m − D̃j,m

)
Ûm + ifV̂j + kP̂j = ωÛj, (4.133)

−ifÛj − in
∞∑
m=0

(
C̃j,m − D̃j,m

)
V̂m +

dP̂j
dy

= ωV̂j, (4.134)

kc2
j Ûj − ic2

j

dV̂j
dy

+ in
∞∑
m=0

(
cj
cm

)2

Ẽj,mP̂m = ωP̂j, (4.135)

with boundary conditions V̂j(±1) = 0 for j = 0, 1, 2, .... The dispersion relations

are then calculated from the eigenvalues ω of this problem.

The infinite system is solved by truncating the number of vertical modes at a

finite number Ns. Here, the calculations are performed for Ns = 10, which since

our method converges rapidly (see figure 4.7), is sufficient to resolve the barotropic,

and first two baroclinic modes in the atmosphere. The cross-channel variable y is

discretised using a Chebyshev grid with 25 points. In this formulation, the discrete

eigenvalue problem takes the form of a diagonal block matrix, with the jth diagonal

block resembling that of the usual shallow water system with wave speed cj; how-

ever, additional off-diagonal blocks due to the correlation terms are also present,

coupling the modes. The eigenvalues are then calculated using the methods dis-

cussed in section 3.2.4.

4.4.2 Dispersion relations

Figures 4.10, 4.11 and 4.12 show the dispersion relations for some of the barotropic

and the first two baroclinic wave modes. In each case, the dispersive characteristics

of the first three cross-channel modes of the inertia-gravity and Rossby waves are

plotted along with the Kelvin wave. The presence of the Kelvin waves in the prob-

lem is just an artefact of the fact that we are solving the problem in a channel. The

Kelvin wave here relies on the presence of the sidewalls. In the mid-latitude tropo-

sphere, there are no equivalent boundaries or waveguides, so they are not physical.

We do however plot these solutions for completeness, and for the sake of com-

parison with the material discussed in chapter 3. The deviation of the calculated
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dispersion relations from those in the absence of clouds is then easily analysed on a

mode-by-mode basis. The results are summarised below.

Firstly, from figure 4.10 we see that all of the barotropic wave modes are almost

entirely unaffected by the presence of convection. Mathematically, this arises from

the fact that integrating the homogenised equations (4.101–4.104) over the vertical

domain causes the terms due to convection to vanish. Small residual effects exist

due to the barotropic waves not being exactly homogeneous in the vertical, and are

present in the numerical calculations due to the error introduced by the rigid lid/free

surface approximations discussed in section 4.2. In summary, the barotropic modes

are unaffected by convection to leading order in the rigid lid approximation.

By contrast, from figure 4.11, the first baroclinic mode is seen to be strongly in-

fluenced by convection. In particular, the inertia-gravity waves and high-frequency

Kelvin waves are relatively unaffected by the clouds, with the dispersion relations

deviating only slightly from their counterparts in a cloud-free atmosphere. On the

other hand, the Rossby waves and low-frequency Kelvin waves are all seen to be sig-

nificantly slowed by convection, with some frequencies being reduced by over half

at small wave numbers compared to their counterparts in a quiescent atmosphere.

Furthermore, the lower order cross-channel modes are more significantly slowed

than the higher order modes, especially at smaller zonal wave numbers, indicating

that for the first baroclinic mode the cross-channel wave number is of significant

importance in determining how waves and clouds interact.

For the second baroclinic mode, it is seen from figure 4.12 that all wave types

are noticeably slowed by the presence of clouds. Once again, we see that the waves

most affected are the low-frequency Kelvin waves and the Rossby waves. How-

ever, in contrast to the first baroclinic mode, it appears that the cross-channel wave

number is no longer an important factor in determining the clouds’ effect on wave

dispersion, since all Rossby modes are slowed by approximately a factor of one

half. Thus it appears that the disparate behaviour between different cross-channel

wave numbers is a peculiarity of the first baroclinic Rossby wave modes only.

Finally, from figure 4.13 we see that for the first two baroclinic modes
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Figure 4.10: Dispersion relations for the barotropic waves. In the top panel the first three
cross-channel inertia-gravity modes are shown (red, green, blue) along with
the Kelvin wave (black), and in the bottom panel the first three Rossby wave
modes are shown. The line plots indicate wave propagation through a cloud-
free atmosphere calculated from (4.52) and (4.53) and the circles indicate the
corresponding waves when clouds are present, calculated from (4.128) and
(4.129). The numerical parameters are β̄ = 0.1 and n = 5, and the wave
speed of the Kelvin wave in the absence of clouds is c0 = 1/

√
α ≈ 3.16.
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Figure 4.11: Same as figure 4.10 but for the first baroclinic mode. The wave speed of the
Kelvin wave in the absence of clouds is c1 = 1/π ≈ 0.32.
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Figure 4.12: Same as figure 4.10 but for the second baroclinic mode. The wave speed of
the Kelvin wave in the absence of clouds is c2 = 1/2π ≈ 0.16.
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Figure 4.13: Plots of Im{ω} for the first and second baroclinic modes (left and right panels
respectively). The first three cross channel modes (red, green, blue) are shown
for the inertia-gravity waves (solid lines) and Rossby waves (dotted lines).
Kelvin waves are omitted from this figure.

Im {ω} < 0 for all ω, indicating that the cloud field acts as a damping mechanism

which stabilises all wave types. The stabilising effect appears to approximately

double between the first and second baroclinic mode, so that the damping primarily

affects higher order baroclinic modes. There appears to be no significant discrep-

ancy in the magnitude of the damping between the inertia-gravity and Rossby waves

of each baroclinic mode.

4.5 Discussion
In this chapter, the method of homogenisation has been used to derive the ho-

mogenised equations (4.101–4.104) governing long wave propagation in the atmo-

sphere in the presence of a convective cloud field. The effect of the clouds on the

propagation of barotropic and baroclinic inertia-gravity, Rossby and Kelvin waves

are illustrated in figures 4.10–4.12, which show that the clouds act to slow the baro-

clinic waves - primarily those of low frequency. Figure 4.13 further shows that the

cloud field acts as a damping mechanism, causing them to decay over time. As

well as giving some insight into how different wave types are affected, the work

presented here highlights a number of other interesting features of the interaction

between convection and atmospheric waves. In particular, it is seen that small-scale

convection acts on long waves through non-local operators involving transilient ker-

nels, and that these operators act to redistribute the large-scale horizontal momen-

tum and buoyancy in the vertical.
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Of course, in the interest of simplifying the presentation, our model is highly

idealised, and does not constitute a complete picture of the atmospheric dynam-

ics associated with convective processes in the atmosphere. In particular, here, the

mechanism driving convection is simply a prescribed diabatic heating profile which

forces the dry Boussinesq equations. In order to produce realistic simulations, moist

dynamics would also need to be included in the equations through a model describ-

ing the bulk cloud microphysics (see e.g. Biello and Majda, 2010). Including a

dynamically active moisture field would complicate the solution of the CCP and

the CPE, but would leave the basic features of the homogenisation problem largely

unchanged. With this in mind, the model discussed here should be viewed as a

motivating example of how homogenisation may be used to reduce the multi-scale

dynamics associated with convectively coupled waves to a system of averaged equa-

tions amenable to numerical computations. Furthermore, when considered along-

side the results of chapter 3, the importance of accurately parameterising convec-

tion in these models through rigorous asymptotic analyses is emphasised, since it

is known that heuristic averaging procedures have the potential to introduce large

modelling errors.

Whilst we have discussed only one asymptotic regime here, a number of other

interesting and dynamically rich regimes may be studied in an analogous manner.

For example, the situation in which clouds are not well-separated would likely in-

troduce a number of other features associated with convectively coupled waves.

Studying such a system would require a more detailed asymptotic analysis whereby

the homogenisation procedure is carried out to a higher order, and thus is left as a

topic for future work. In addition to this, temporal variability within the clouds

on time-scales much shorter than those associated with long wave propagation

may be considered. Coupling the multi-scale analysis of this section with multi-

ple temporal-scale asymptotics would facilitate the study of such variations. Such a

situation would likely lead to dynamics involving resonant behaviour and instabili-

ties, affecting the propagation of long waves governed by the averaged equations at

leading order.
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Chapter 5

Conclusions

In this thesis, the mathematical theory of homogenisation and its applications in the

context of geophysics has been investigated with a particular view towards creat-

ing accurate parameterisations of convection in the atmosphere. Beginning with a

rigorous asymptotic analysis of the classical wave equation with a rapidly varying

local wave speed, as well as a summary of relevant physical concepts, we develop

and demonstrate the utility of homogenisation in two novel geophysical contexts. In

both cases we conclude that significant modelling errors are possible when small-

scale processes are parameterised using averaging procedures based on the mean

variables since doing so avoids taking vital sub-grid scale dynamics into account.

The original work presented here in chapters 3 and 4 consist of two new multiple-

scale systems in a homogeneous and stably stratified atmosphere respectively.

The first of these applies the method of homogenisation to the propagation of

long waves in a rotating shallow water system in the presence of small-scale to-

pography, and is based on the paper by Goldsmith and Esler (2021). Naturally,

this investigation has many applications in the context of oceanography and wave-

topography interactions; however, it is also highly relevant to convective parameter-

isation in the atmosphere. Not only does it serve as a motivating problem exploring

the utility of homogenisation as a tool for building accurate sub-grid scale parame-

terisations, it also has a direct atmospheric analogue whereby the varying sea depth

may be understood as regions of reduced stratification in the atmosphere caused by

convection. In this context, the results indicate that the errors introduced into the



135

problem by using parameterisations based on the mean stratification may be large,

since they fail to capture vital small-scale dynamics caused by resonant interac-

tions with trapped waves. It should also be noted that the rotating shallow water

equations are commonly used in a modified form, known as the ‘thermal rotating

shallow water equations’, to explore problems involving horizontal density and tem-

perature gradients, which are particularly pertinent to studying problems associated

with convective processes in the atmosphere (Zeitlin, 2018, part III). Applying the

method of homogenisation to these equations with a background buoyancy profile

consistent with an array of cumulus clouds may provide a more concrete description

of how clouds affect the propagation of long waves, and could be a topic of future

work in this area. See also the works of Warneford and Dellar (2013); Kurganov

et al. (2020, 2021) for applications of these equations to convective systems.

The second novel body of work, given in chapter 4 extends the method of ho-

mogenisation to investigate the effects of small-scale, localised heat sources on the

propagation of waves though a stratified atmosphere. These sources, assumed to

be well spaced, drive a steady, circulatory background flow which mimics that of

a convective cloud field. The large-scale equations, after linearisation about the

background flow, are then homogenised to give a system of averaged equations

describing the propagation of long waves through the atmosphere, and which ac-

count for the vertical redistributions of momentum and buoyancy profiles caused

by wave-cloud interactions. Such a procedure allows the effects of convection to

be rigorously incorporated into the large-scale equations without the application

of heuristic averaging procedures, which are known from chapter 3 to be capable

of introducing large modelling errors. The model presented here is chosen for its

simplicity, applying as it does to an incompressible, dry atmosphere. This allows

the main focus to be on the homogenisation procedure, with as few technicalities

as possible. However, future work may include generalising the model to include

the effects of advected moisture and temporal variations in the clouds, as well as

accounting for compressibility. Furthermore, the procedure may also be modified

to include the effects of cloud interactions by relaxing the assumption that they are
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well spaced. Such a generalisation would likely involve significantly more work in

order to derive a closed set of averaged equations, but would give a much richer

picture of wave dynamics, especially in regions of extreme convective activity.
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Appendix A

Quasi-geostrophic limit

In section 3.1.2, it was shown that the quasi-geostrophic averaged equation (3.21)

and cell problem (3.22) of Vanneste (2000a,b) emerge from the quasi-geostrophic

limit of equations (3.9), (3.10) and (3.11). This demonstrates that the quasi-

geostrophic result is independent of the value of ε/b, or in other words, whether

the homogenisation procedure, or quasi-geostrophic limit is carried out first, the

same set of equations apply. Here, this fact is shown in a more explicit manner.

Beginning with the rSWE, where time and topography height has been rescaled

appropriately for the quasi-geostrophic regime using T = bt and h = 1 − bhb,

equations (3.1) become

buT + (1 + by)k × u = −∇η, (A.1)

bηT +∇ · [(1− bhb)u] = 0.

In order to analyse the effect of the ratio ε/b, the parameter δ is introduced, and

defined by the relation

b = δε, (A.2)

so that by expanding the gradient operator via the multi-scale formalism, the equa-

tions become

δε2uT + ε(1 + δεy)k × u = −∇Xη − ε∇xη, (A.3)

δε2ηT +∇X · [(1− δεhb)u] + ε∇x · [(1− δεhb)u] = 0.
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The idea is that by treating δ as a quantity of order unity, we can essentially perform

the homogenisation process and quasi-geostrophic limits simultaneously, and by

examining the limits δ → 0 and δ → ∞, determine any dependence of the results

on the ordering of ε and b post-hoc. Thus, seeking solutions of the form (3.6), the

leading-order balance gives

∇X · u0 = 0, ∇Xη0 = 0, (A.4)

which leads to

u0(X,x, t) = U (x, t) +∇⊥Xψ, η0 = Π(x, t), (A.5)

where U = 〈u0〉, and ψ(X,x, t) is a scalar function to be determined.

At O(ε), we have

k × u0 = −∇Xη1 −∇xΠ, (A.6)

∇X · u1 − δ∇X · (hbu0) +∇x · u0 = 0. (A.7)

Substituting the value of u0 from (A.5) into equation (A.6) gives

k ×U −∇Xψ = −∇Xη1 −∇xΠ, (A.8)

from which, two things may be determined. Firstly, averaging over the small-scales

gives the quasi-geostrophic balance of the leading order variables k×U = −∇xΠ.

Secondly, this implies that ψ and η1 differ only by a constant (a function of the

large-scales only), and hence are interchangeable in this context.

Finally, at O(ε2), we have

δu0T + k × u1 + δyk × u0 = −∇Xη2 −∇xη1, (A.9)

δΠT +∇X · [u2 − δhbu1] +∇x · u1 − δ∇x · (hbu0) = 0. (A.10)

Applying∇⊥x · to equation (A.9), eliminating∇x ·u1 using (A.10) and then averag-
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ing gives the equation

∂T
(
∇2

xΠ− Π
)

+ Πx +∇x ·
〈
hb∇⊥Xη1

〉
= 0, (A.11)

and likewise applying ∇⊥X · to equation (A.9) and eliminating ∇X · u1 using (A.7)

gives the cell problem

∂T∇2
Xη1 −∇Xη1 · ∇⊥Xhb = ∇xΠ · ∇⊥Xhb. (A.12)

Importantly, the ratio δ cancels from both sides of equations (A.11) and (A.12)

returning the equations derived in section 3.1.2, and thus it is clear that the results

do not depend on the parameter ordering of b and ε.
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Appendix B

Homogenisation of the rSWE in the

presence of Ekman friction

In this section, the analysis of section 2 is repeated for the rSWE with Ekman fric-

tion, which in non-dimensional form are

ut + (1 + by)k × u = −∇η − ru
h
, (B.1)

ηt +∇ · (hu) = 0.

The Ekman friction parameter is given by r = E/f0H0, where E is the dimensional

Ekman drag coefficient. Following the procedure of section 3.1, at leading order

(3.7) is obtained, and the leading order surface displacement Π and velocity u0

can be defined as in the frictionless case. At next order, multiplying the velocity

equation by h and averaging, results in

Ut + (1 + by)k ×U = −∇xΠ− rU
H̄

+
〈η1∇Xh〉

H
+ r

〈
ψ∇⊥X

(
1
h

)〉
H

, (B.2)

Πt +∇x · (HU) = 0,

where H̄ = 〈h−1〉−1 is the harmonic mean of the depth. Compared with (3.9) there

are two extra terms in (B.2), one from the mean drag due to the Ekman friction, and

a second correlation term involving ψ.

The cell problems are then obtained following the methodology of section 3.1.
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The analogue of the first cell problem (3.10) is obtained by multiplying the O(ε)

equation by h and taking the divergence, giving

∇X · (h∇Xη1)− (1 + by)∇2
Xψ − r∇Xψ · ∇⊥X

(
1

h

)
= (B.3)

−∇Xh · ∇xΠ− rHU · ∇X

(
1

h

)
,

The second cell problem determining ψ follows from the potential vorticity equa-

tion, which at leading order in r is given by

∇X ·
(
∇Xψt
h

)
+ r∇X ·

(
∇Xψ

h2

)
− (1 + by)∇Xψ · ∇⊥X

(
1

h

)
=

H (k ×Ut − (1 + by)U) · ∇X

(
1

h

)
+ rHk ×U · ∇X

(
1

h2

)
. (B.4)

Seeking solutions with frequency ω, and exploiting the linearity of (B.3) and (B.4),

leads to

η1 = Φ · ∇xΠ + rHΛ ·U +H(1 + by)Ψ (1+by)
ω

, r
ω

·
(

i
1 + by

ω
U − k ×U

)
+ i

r2H

ω
Σ (1+by)

ω
, r
ω

· k ×U , (B.5)

ψ = HΘ (1+by)
ω

, r
ω

·
(

i
1 + by

ω
U − k ×U

)
+ i

rH

ω
Υ (1+by)

ω
, r
ω

· k ×U ,

where the vectors Φ = (Φ1,Φ2)T , Λ = (Λ1,Λ2)T , Ψα,δ = (Ψ1,α,δ,Ψ2,α,δ)
T , Σα,δ =

(Σ1,α,δ,Σ2,α,δ)
T , Θα,δ = (Θ1,α,δ,Θ2,α,δ)

T and Υα,δ = (Υ1,α,δ,Υ2,α,δ)
T are obtained

by solving

∇X · (h∇XΦi) = −∂Xi
h, (B.6)

∇X · (h∇XΛi) = −∂Xi

(
1

h

)
, (B.7)

and

∇X · (h∇XΨi,α,δ) = ∇2
XΘi,α,δ +

δ

α
∇XΘi,α,δ · ∇⊥X

(
1

h

)
, (B.8)

∇X · (h∇XΣi,α,δ) =
α

δ
∇2

XΥi,α,δ +∇XΥi,α,δ · ∇⊥X
(

1

h

)
, (B.9)
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where,

∇X ·
(
∇XΘi,α,δ

h

)
+ iδ∇X ·

(
∇XΘi,α,δ

h2

)
−iα∇XΘi,α,δ · ∇⊥X

(
1

h

)
= −∂Xi

(
1

h

)
, (B.10)

∇X ·
(
∇XΥi,α,δ

h

)
+ iδ∇X ·

(
∇XΥi,α,δ

h2

)
−iα∇XΥi,α,δ · ∇⊥X

(
1

h

)
= ∂Xi

(
1

h2

)
, (B.11)

and α and δ are complex parameters. The Ekman friction generalisation of (3.18)

therefore requires a pair of two-parameter families of equations to be solved in order

to determine η1 and ψ. Substituting η1 and ψ into equation (B.2), the generalisation

of (3.18) is found to be

− iω

(
I +

(
1+by
ω

)2 K1+by
ω

,
r
ω

+
(

1+by
ω

)
r
ω
M1+by

ω
,
r
ω

)
·U

+ (1 + by)

(
I + K1+by

ω
,
r
ω

+ r
1+by

M1+by
ω

,
r
ω

− i r2

ω(1+by)
N 1+by

ω
,
r
ω

)
· (k ×U) =

− (I + D) · ∇xΠ− r

H̄
(I + E) ·U , (B.12)

with the mass conservation equation for Π unchanged. Here, D and Kα,δ are given

by (3.17) as before, and the new matrices E , Mα,δ and N α,δ have elements

(E)ij = −H̄ 〈Λj∂Xi
h〉 , (Mα,δ)ij =

〈
Θj,α,δ∂

⊥
Xi

(
1

h

)〉
,

and (N α,δ)ij =

〈
Σj,α,δ∂Xi

h+ Υj,α,δ∂
⊥
Xi

(
1

h

)〉
.

(B.13)

As in section 3.1, further simplifications result if it is assumed that the topography

has a fourfold symmetry.

In the event that the topography is sparse and the Ekman friction is weak, i.e.

the topography area fraction A� 1 and Ekman friction parameter r � 1, as in the

case of randomly distributed seamounts covered in section 3.3, then (B.2) can be

greatly simplified by retaining only those terms which are leading order in A and r.
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The result is

Ut + (1 + by)k ×U = −∇xΠ− r

h+

U +
〈η1∇Xh〉

h+

, (B.14)

Πt +∇x · (HU) = 0,

and Ekman friction can be neglected when determining η1, which is given by (3.13).

Equations (B.14) are used to calculate the Ekman friction results presented in sec-

tion 3.3.
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Appendix C

Time-dependent solution for the

homogenised rSWE

Here the full time-dependent solution to the cell-problem (3.11) is given, and used

to obtain the time-dependent generalisation of (3.18), following the approach taken

for the quasi-geostrophic system in Vanneste (2000a). Starting from a state of rest,

the solution to (3.11) is

ψ = H

∫ t

0

R(X,x, t− τ) · ((1 + by)U(x, τ)− k ×Ut(x, τ)) dτ, (C.1)

and hence from equation (3.10), η1 is given by

η1 = Φ(X,x) · ∇xΠ

+H(1 + by)

∫ t

0

S(X,x, t− τ) · ((1 + by)U(x, τ)− k ×Ut(x, τ)) dτ.

(C.2)

Here,R(X,x, t) = (R1, R2)T andS(X,x, t) = (S1, S2)T are periodic, zero-mean

vectors satisfying the cell problems

∇X · (h∇XSi) = ∇2
XRi, (C.3)

∇X ·
(
∇XRit

h

)
− (1 + by)∇XRi · ∇⊥X

(
1

h

)
= −δ(t)∂Xi

(
1

h

)
, (C.4)
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and the initial conditions

R(X,x, 0−) = S(X,x, 0−) = 0, (C.5)

where δ(·) is the Dirac delta function. The cell problem (3.14) satisfied by Φ re-

mains unchanged.

Using the expression (C.2), we can rewrite the momentum equation in (3.9) as

an integro-differential equation

Ut − (1 + by)2

∫ t

0

T (x, t− τ) ·U(x, τ) dτ

+ (1 + by)

((
I + T (x, 0+)

)
· k ×U −

∫ t

0

T t(x, t− τ) · k ×U(x, τ) dτ

)
=

− (I + D) · ∇xΠ, (C.6)

where T is the matrix given by

T (x, t) =

 〈S1∂X1h〉 〈S2∂X1h〉

〈S1∂X2h〉 〈S2∂X2h〉

 ,

and D is defined as before.
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Appendix D

Boundary conditions for

discontinuous topography

In this section, the boundary conditions relating to the cell problems (3.14) and

(3.15) are derived in detail. Suppose that h is discontinuous along a closed curve

C in Ω, then it is necessary to determine the boundary conditions on Φ, Ψα and Gi

along C. Surface displacement must be continuous over C, and hence from (3.13),

Φ+
i = Φ−i , and Ψ+

i,α = Ψ−i,α, (D.1)

and similarly, since the velocity field must be continuous, (3.8) gives

n · ∇⊥XG+
i = n · ∇⊥XG−i , (D.2)

where the +/− superscripts indicate the parts of the solution outside / inside the

curve C, and n is the unit normal vector on C. The remaining boundary conditions

are found from the divergence form of the cell problems

∇X · (h∇XΦi + eih) = 0,

∇X · (h∇XΨi,α −∇XGi) = 0, (D.3)

∇X ·
(
∇XGi

h
+ iα
∇⊥XGi

h
+
ei
h

)
= 0,
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where ei is the ith cartesian basis vector. The arguments of the divergence operator

in each case must be continuous across C, i.e.

[(h∇XΦi + eih) · n]+− = 0,

[(h∇XΨi,α −∇XGi) · n]+− = 0, (D.4)[(
∇XGi

h
+ iα
∇⊥XGi

h
+
ei
h

)
· n
]+

−
= 0.

In the case of the cylindrical topography (3.28), in which C is a circle centred at the

origin with radius R, only the i = 1 problem need be considered due to rotational

symmetry. Dropping the i subscript, and focussing on the i = 1 problem, which is

sufficient to obtain K1(α) and K2(α), the boundary conditions (D.4) become (3.33)

given in the main text.
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Appendix E

The multipole expansion method

Here the multipole method used to solve the cell problems (3.29-3.30) and (3.32-

3.33) in section 3.2 is described. The method closely follows that of Godin (2013)

(see also Balagurov and Kashin, 2001).

First, G± and Ψ±α in (3.32-3.33) are expanded into their real and imaginary

parts G± = G±R + iG±I , and Ψ±α = Ψ±α,R + iΨ±α,I . Next, all real dependent variables

are expanded in a complex power series, for example

Φ− = Re

{
∞∑
m=0

Wmz
m

}
, (E.1a) Φ+ = Re

{
∞∑
m=1

Ymrm(z)

}
, (E.1b)

where z = X1+iX2 is the usual complex variable defined on Ω (recall that the + and

− superscripts refer to solutions in |z| > R and |z| < R respectively). Expansions

for Ψ−α,R, Ψ−α,I , G
−
R and G−I have the same form as (E.1a), with coefficients Am,

Bm, Fm, Gm respectively, whereas Ψ+
α,R, Ψ+

α,I , G
+
R and G+

I have the form of (E.1b)

with coefficients Cm, Dm, Mm, Pm. In general all of the coefficients are complex,

except for m = 0, when they must be real. The sequence of functions {rm(z)} is

given by

r1(z) = ζ(z; Λ)− ζ(π; Λ)
z

π
,

rm(z) =
(−1)m−1

(m− 1)!

dm−1

dzm−1
r1(z), (m > 1)

with r0(z) defined by r′0(z) = r1(z). Here, ζ(z; Λ) is the Weierstrass zeta func-
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tion associated with the lattice Λ = {zk = 2π(kx + iky) |k = (kx, ky) ∈ Z2}.

The advantage of expanding in the functions {rm(z)} is that use can be made of

the Laurent expansion of the Weierstrass zeta functions, which for the rectangular

lattice Λ can be written

ζ(z; Λ) =
1

z
−
∞∑
j=1

q4j z
4j−1,

where

qj =
∑
zk∈Λ∗

1

zjk
,

with the sum over the lattice Λ∗ = Λ\{0}. The sequence {q4j, j = 2, 3, ...} can be

calculated using the recurrence relation

q4j =
3

(4j − 1)2(2j − 3)

2j−2∑
l=2

(4j − 2l − 1)(2l − 1)q2lq4j−2l.

From the above results, and the fact that ζ(π; Λ) = 1
4

(Balagurov and Kashin,

2001), it follows that

r0(z) = log z − z2

8π
−
∞∑
m=1

q4mz
4m

4m
,

r1(z) =
1

z
− z

4π
−
∞∑
m=1

q4mz
4m−1,

r2(z) =
1

z2
+

1

4π
+
∞∑
m=1

(4m− 1)q4mz
4m−2,

rm(z) =
1

zm
+

∞∑
j=[(m+3)/4]

(−1)m
(

4j − 1

m− 1

)
q4jz

4j−m, (m ≥ 3)

from which the outer solutions can be expanded as (for example)

Φ+ = Re

(
Y0 log z +

∞∑
m=1

Ym
zm

+
∞∑
m=0

∞∑
j=0

YjEjmz
m

)
,
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where

Ejm =



0 j = m = 0

−δm2

8π
− Qm

m
j = 0 m ≥ 1

−δj1δm1

4π
+
δj2δm0

4π
+ (−1)j

(
m+ j − 1

j − 1

)
Qj+m j ≥ 1

where δjk is the Kronecker delta, and Qm = qm if m = 4k for integer k and is zero

otherwise.

The boundary conditions for the two cell problems are (3.30) and (3.33) respec-

tively. It is helpful to decompose boundary condition (3.33) into real and imaginary

parts

Ψ+
α,R = Ψ−α,R,

Ψ+
α,I = Ψ−α,I ,

∂θG
+
R = ∂θG

−
R,

∂θG
+
I = ∂θG

−
I , (E.2)

h+∂ρΨ
+
α,R − h−∂ρΨ

−
α,R = ∂ρG

+
R − ∂ρG

−
R,

h+∂ρΨ
+
α,I − h−∂ρΨ

−
α,I = ∂ρG

+
I − ∂ρG

−
I ,

∂ρG
+
R

h+

− ∂ρG
−
R

h−
+
α

R

(
∂θG

+
I

h+

− ∂θG
−
I

h−

)
= −

(
1

h+

− 1

h−

)
cos θ,

∂ρG
+
I

h+

− ∂ρG
−
I

h−
− α

R

(
∂θG

+
R

h+

− ∂θG
−
R

h−

)
= 0,

on |X| = R. To apply the conditions (3.30) and (E.2), note that z = Reiθ on the

boundary. It is helpful to write wm = RmRe (Wm), ym = R−mRe (Ym), am =

RmRe (Am), cm = R−mRe (Cm), bm = −RmIm (Bm), dm = R−mIm (Dm), fm =

RmRe (Fm), mm = R−mRe (Mm), gm = −RmIm (Gm), pm = R−mIm (Pm), and
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it follows that, for m > 1

wm = ym +
∞∑
j=0

Rm+jyjEjm,

am = cm +
∞∑
j=0

Rm+jcjEjm, bm = dm −
∞∑
j=0

Rm+jdjEjm, (E.3)

fm = mm +
∞∑
j=0

Rm+jmjEjm, gm = pm −
∞∑
j=0

Rm+jpjEjm.

and that

ym − γ
∞∑
j=0

Rm+jyjEjm = Rγδm1,

cm − γ
∞∑
j=0

Rm+jcjEjm =
2

h+ + h−
mm, dm + γ

∞∑
j=0

Rm+jdjEjm =
2

h+ + h−
pm,

mm + γ
∞∑
j=0

Rm+jmjEjm + γα

(
pm −

∞∑
j=0

Rm+jpjEjm

)
= −Rγδm1, (E.4)

pm − γ
∞∑
j=0

Rm+jpjEjm + γα

(
mm +

∞∑
j=0

Rm+jmjEjm

)
= 0,

where γ = (h+ − h−)/(h+ + h−). Now, by truncating the series at some finite

value, say m = j = M , a linear system is obtained, which can be written in matrix

form for the first cell problem (3.29-3.30) as

w =
(
I +DETD

)
y,

(
I − γDETD

)
y = γRf , (E.5)

and for the second cell problem (3.32-3.33) as

a =
(
I +DETD

)
c, m = 1

2
(h+ + h−)

(
I − γDETD

)
c,

b =
(
I −DETD

)
d, p = 1

2
(h+ + h−)

(
I + γDETD

)
d, (E.6)(

I + γDETD
)
m+ αγ

(
I −DETD

)
p = −γRf ,(

I − γDETD
)
p+ αγ

(
I +DETD

)
m = 0,
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where f = (1, 0, ..., 0)T ,w = (w1, w2, ..., wM)T (the remaining vectors are defined

analogously),D =diag(R,R2, ..., RM), and E has components Ejm given above.

E.1 Effective depth: small R asymptotics
Now consider the equations pertaining to the effective depth of the fluid, namely

(E.5) in the regime R � 1. It is straightforward in principle to solve the system to

any order in R. For example, retaining terms up to R9 gives

y1 − γ
(
−R

2

4π
y1 − 3R4q4y3 − 7R8q8y7

)
= γR

y3 − γ(−R4q4y1 − 35R8q8y5) = 0

y5 − γ(−21R8q8y3) = 0

y7 − γ(−R8q8y1) = 0

from which the following sequence of Padé approximants for y1 and w1 are easily

found. Retaining only terms up to order R, gives the ‘zeroth’-order approximations

for y1 and w1,

y
(0)
1 = w

(0)
1 = γR,

and likewise, retaining terms involving R3 and R5, give

y
(1)
1 =

γR

1 + γR2/4π
+O(R9), w

(1)
1 =

γR(1−R2/4π)

1 + γR2/4π
+O(R9),

and

y
(2)
1 =

γR

1 + γR2/4π − 3γq2
4R

8
+O(R17),

w
(2)
1 =

γR(1−R2/4π + 3γq2
4R

8)

1 + γR2/4π − 3γ2q2
4R

8
+O(R17).

It is easy to see how this process could be extended up to any order, however, it is

also notable that due to the extremely fast convergence rate for small R (see e.g.

figure 3.3), that for the analytical purposes of section 3.2, the second-order approx-

imant is sufficient. It is also an easy process to implement numerically to find Padé
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approximants at much higher orders, which give results up to machine precision

(here, the 24th approximant is considered the ‘exact’ solution). The effective depth

is then given by

H
(i)
eff = H − R (h+ − h−)w

(i)
1

4π
, (E.7)

which leads directly to the results given in (3.31).

Exactly the same procedure may be followed using equations (E.6) to deter-

mine the Padé approximants for a1 and b1 which are the coefficients needed to cal-

culate the topographic resonance functions K1(α) and K2(α). Omitting the details,

the leading three Padé approximants to K1(α) are

K
(0)
1 (α) = −2γ2A

(
1

1− α2γ2

)
,

K
(1)
1 (α) = −2γ2A

(
1− A

1− α2γ2 + γ2A2 (α2 − 1)

)
, (E.8)

K
(2)
1 (α) = −2γ2A

(
(1− A) (1− α2γ2)− g4γ

2A4 (1− α2)

(1− α2γ2 + g4γ2A4 (α2 − 1))2 + γ2A2 (α2 − 1) (1− α2γ2)

)
,

where g4 = 3q2
4(4π)4 ≈ 0.305. Similarly for K2(α)

K
(0)
2 (α) = 2αγ3A

(
1

1− α2γ2

)
,

K
(1)
2 (α) =

2αγ3A

1− γA

(
1− A2

1− α2γ2 + γ2A2 (α2 − 1)

)
, (E.9)

K
(2)
2 (α) =

2αγ3A

1− γA− g4γ2A4

×
(

(1− A2 − g4A
4) (1− α2γ2) + g4γA

4 ((γ2 − 1)A+ γ(1− g4A
4)(α2 − 1))

(1− α2γ2 + g4γ2A4 (α2 − 1))2 + γ2A2 (α2 − 1) (1− α2γ2)

)
.

Finally, it is also helpful to give the results for the quasi-geostrophic analogue of
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K1(α), obtained from the solution of (3.24) by the same method. These are

K̃(0) (α) = −1
2
h2
bA

(
1

1− 1
4
α2h2

b

)
,

K̃(1) (α) = −1
2
h2
bA

(
1− A

1− 1
4
α2h2

b(1− A)

)
, (E.10)

K̃(2) (α) = −1
2
h2
bA

(
(1− A)

(
1− 1

4
h2
bα

2
)

+ 1
4
g4A

4h2
bα

2(
1− 1

4
α2h2

b + 1
4
g4A4h2

bα
2
)2

+ 1
4
α2h2

bA
2
(
1− 1

4
α2h2

b

)) .
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Appendix F

Vertical mode decomposition for

n = 0

Here, we derive the Sturm-Liouville problems used in section 4.2, from the system

of equations (4.29–4.32), subject to the boundary conditions (4.33) and (4.34). We

are able to eliminate W and B from equations (4.29–4.32) by integration of the

hydrostatic and continuity equations. This gives the relations

P (x, z, t) = P (x, 1, t) +

∫ z

1

B(x, z′, t) dz′, (F.1)

W (x, z, t) = −
∫ z

0

∇ ·U(x, z′′, t) dz′′. (F.2)

Differentiating the first of these with respect to time, and substituting in the free

surface boundary condition and the buoyancy equation (4.32) gives

∂P

∂t
= α−1W (x, 1, t) +

∫ 1

z

N2(z′)W (x, z′, t) dz′. (F.3)

We can then eliminate W to find

∂P

∂t
= −I∇ ·U (F.4)

where the integral operator I is given by

I =
1

α

∫ 1

0

dz′′ +

∫ 1

z

dz′N2(z′)

∫ z′

0

dz′′. (F.5)
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Assuming a separable ansatz for U and P of the form

[U(x, z, t), P (x, z, t)] =
[
Ũ(x, t), P̃ (x, t)

]
φ(z), (F.6)

equation (F.5) yields

∂P̃

∂t
+ λ∇ · Ũ = 0, (F.7)

Iφ = λφ, (F.8)

where λ is some separation constant. Applying d/dz(N−2d/dz) to (F.8) yields the

ODE
d

dz

(
1

N2

dφ

dz

)
= −1

λ
φ. (F.9)

The first boundary condition is then found by differentiating (F.8) once with respect

to z and evaluating the result at z = 0, from which it is found that

dφ

dz
= 0 at z = 0. (F.10)

A second condition at the free surface is found by integrating (F.9) over the entire

vertical extent of the fluid to get

1

N2(1)

dφ

dz
(1)− 1

N2(0)

dφ

dz
(0) = −1

λ

∫ 1

0

φ(z′) dz′, (F.11)

and observing from (F.8) that the right-hand side is equal to −αφ(1). Thus we have

dφ

dz
+ αN2φ = 0 at z = 1. (F.12)

Finally, an observation may be made about the constant λ by multiplying (F.9) by φ

and integrating by parts. This gives

∫ 1

0

1

N2

(
dφ

dz

)2

− 1

λ
φ2 dz = −φ(1)2

α
, (F.13)

which by comparison of signs between the left- and right-hand side implies that the
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integrand may not be positive across the whole vertical domain, and consequently

λ ≡ c2 > 0 must be positive.

Equation (F.9) together with the boundary conditions (F.10) and (F.12) con-

stitute a Sturm-Liouville problem, for which solutions φ = φn(z) exist only for a

discrete, ordered set of eigenvalues c2
n, for n = 0, 1, 2, .... The problem does not

in general have analytic solutions, however when N2 is taken to be a constant (as

is done in the main text) the problem simplifies greatly. The full Sturm-Liouville

problem with N2 = N2(z) is given by

d

dz

(
1

N2

dφn
dz

)
+

1

c2
n

φn = 0, (F.14)

dφn
dz

= 0, on z = 0, (F.15)

dφn
dz

+ αN2φn = 0, on z = 1. (F.16)

In order to complete our understanding of the Boussinesq system in this

regime, it is helpful to understand how the vertical velocity W and buoyancy B

act in this regime. Assuming the separable ansatz

[W (x, z, t), B(x, z, t)] =
[
W̃ (x, t), N2(z)B̃(x, t)

]
Φ(z), (F.17)

it is readily seen from the continuity equation (4.31) that Φ = Φn(z) also has a

modal structure satisfying

dΦn

dz
= φn, for n = 0, 1, 2..., (F.18)

with the boundary conditions Φn(0) = 0. Integrating equation (F.14) from 0 to z

then yields the Sturm-Liouville problem for Φn given by

d2Φn

dz2
+
N2

c2
n

Φn = 0, (F.19)

Φn = 0, on z = 0, (F.20)

α
dΦn

dz
=

1

c2
n

Φn, on z = 1. (F.21)
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Finally, by substituting (F.6) into (4.29) and (F.7), it is seen that the horizontal

structure of each mode in the decomposition satisfies

∂Ũn

∂t
+ fk × Ũn = −∇P̃n, (F.22)

∂P̃n
∂t

+ c2
n∇ · Ũn = 0. (F.23)

That is, the horizontal structure of the nth mode obeys a shallow water equation

with equivalent wave speed given by cn.
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Appendix G

Vertical mode decomposition of the

integral terms in (4.101–4.104)

Here, we provide explicit calculations determining the vertical mode decomposi-

tions of the integral terms in the homogenised equations (4.101–4.104). Before

proceeding, let us emphasise the importance of applying the convention discussed

in section 4.2.2 accurately. That is, we use the free surface integral property and

boundary conditions when manipulating the basis functions, and use the rigid lid

approximations for the basis functions afterwards.

Let us recall the modal expansions of U and B, which are

U =
∞∑
j=0

Ujφj, B =
∞∑
j=0

BjΦj, (G.1)

from which see that

∂zU = −
∞∑
j=0

1

c2
j

UjΦj, ∂zB =
∞∑
j=0

Bjφj, (G.2)

where we have used (4.37) and (4.41). Note that in contrast to (4.76) and (4.77), we

opt to keep the coefficients in terms of Uj and Bj .

Next, using the definitions of the non-local operators (4.3.3), the modal expan-

sions of the transilient kernels (4.114–4.116), and the integral properties (4.45) and



160

(4.51), we calculate

K1U =
∞∑
j=0

K1,j(z)Uj, (G.3)

K2∂zU =
∞∑
j=0

1

c2
j

K2,j(z)

[
Uj +

1

α
∂zU(1)Φj(1)

]
, (G.4)

L∂zB = −
∞∑
j=0

Lj(z)Bj. (G.5)

Now we are able to project the integral terms in the homogenised equations

(4.101–4.104) onto the vertical basis functions. Beginning with the term involving

K1 which, using the integral condition (4.45) we project onto the φj basis, we find

∂z (K1U) =
∞∑
j=0

[∫ 1

0

∂z (K1U)φj dz

]
φj(z), (G.6)

=
∞∑
j=0

[
K1Uφj

∣∣∣
z=1
−K1Uφj

∣∣∣
z=0

+
1

c2
j

∫ 1

0

K1UΦj dz

]
φj(z), (G.7)

=
∞∑
j=0

∞∑
m=0

[
1

c2
j

∫ 1

0

K1,mΦj dz

]
Umφj(z), (G.8)

where in going from the first to second line, we have used integration by parts, and

from the second to third line we have used (G.3) and the fact that K1(z, z′) = 0 for

z = 0, 1.

The same process is used to calculate the modal expansion of the integral term

involving K2, which is found to be

∂z (K2∂zU) =
∞∑
j=0

[∫ 1

0

∂z (K2∂zU)φj dz

]
φj(z), (G.9)

=
∞∑
j=0

[
K2∂zUφj

∣∣∣
z=1
−K2∂zUφj

∣∣∣
z=0

+
1

c2
j

∫ 1

0

K2∂zUΦj dz

]
φj(z), (G.10)

=
∞∑
j=0

∞∑
m=0

[
1

c2
jc

2
m

∫ 1

0

K2,mΦj dz

]
Umφj(z), (G.11)
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where again we have integrated by parts, and used the expansion (G.4) along with

the fact that K2(z, z′) = 0 on z = 0, 1. In the final step, we have also applied the

rigid lid condition Φj(1) = 0.

Finally, the term involving L is treated in much the same manner, except that

we project it onto the Φj basis. Using the integral condition (4.51), we find

∂z (L∂zB) =
∞∑
j=0

1

c2
j

[∫ 1

0

∂z (L∂zB) Φj dz +
1

α
∂z (L∂zB) Φj

∣∣∣
z=1

]
Φj(z),

(G.12)

=
∞∑
j=0

[
L∂zBΦj

∣∣∣
z=1
− L∂zBΦj

∣∣∣
z=0

+
1

α
∂z (L∂zB) Φj

∣∣∣
z=1

−
∫ 1

0

L∂zBφj dz

]
Φj(z), (G.13)

=
∞∑
j=0

∞∑
m=0

1

c2
j

[∫ 1

0

Lmφj dz

]
BmΦj(z), (G.14)

where we have used the expansion (G.5) and the rigid lid condition in the final step.

From these expressions, the values of C̃j,m, D̃j,m and Ẽj,m in (4.130) and (4.131)

are found.
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