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Abstract

This thesis is about the theory of quantum feedback control. In particular,

it focuses on the theory of coherent feedback-a form of quantum feedback in

which no measurements are performed- and how it can be compared with

measurement-based feedback. After introducing the background concepts and

formalisms, the first part of this thesis is concerned with coherent feedback

in the regime of Gaussian quantum systems. We derive a general model for

describing Gaussian coherent feedback, and use this to derive a compact de-

scription of passive, interferometric coherent feedback. The performance of

this model is then evaluated for the task of squeezing a bosonic mode and it

is shown that no setup of this kind is able to generate steady-state squeezing

of a quadrature beyond the ‘3dB bound’. This performance is compared to

the performance of homodyne monitoring which in certain circumstances can

outperform the passive coherent feedback setups. After this, we apply our

model of Gaussian coherent feedback to optomechanical systems. We inves-

tigate the tasks of cooling a mechanical oscillator, generating entanglement

between optical and mechanical modes and generating optical and mechanical

squeezing. Finally, we develop a unified model of coherent and measurement-

based feedback, inspired by collision models and not restricted to Gaussian

states. Within this model, we compare the two feedback methods for the tasks

of generating low entropy steady-states and simulating unitary evolution on

an unknown input state.





Impact Statement

Controlling quantum systems is important for the development of quantum

technologies, such as quantum computers and quantum sensors, which have

recently enjoyed great interest in both academia and industry. A key theme of

this thesis is identifying which kind of quantum feedback is optimal for specific

tasks, which is important, both for experimental implementations of the tasks,

and further theoretical investigations in quantum feedback. In particular, we

detail optimal feedback protocols for key tasks implemented in optomechanical

systems. Optomechanical systems have been investigated for the purpose of

quantum sensing, particularly gravitational sensing, which has applications

in geophysics and astrophysics. They have also been used to test theories of

fundamental physics, such as collapse models. Greater understanding of the

theory of controlling these systems may have an impact on these applications.
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Chapter 1

Introduction

This thesis is concerned with the theory of quantum feedback control in sev-

eral contexts. The following introductory chapter is divided into four sections

which will provide context and background information for the rest of the

thesis. To start with, in Section 1.1, we briefly review the field of quantum

feedback control and introduce the definitions of coherent and measurement-

based feedback control. Then, in Section 1.2, we introduce the covariance

matrix formalism of quantum Gaussian states, which is used in Chapters 2

and 3. In Section 1.3, we introduce the theory of optomechanical systems,

which are the focus of Chapter 3. Finally, in Section 1.4, we review quantum

collision models, which are used heavily in Chapter 4.

1.1 Quantum Feedback

In the classical regime, systems can be controlled through feedback loops.

Classical feedback loops are implemented by performing measurements and

using the results to inform manipulations on the system. The theory of control

through feedback loops in the classical regime has been widely studied [4, 5].

However, classical control theory assumes that performing measurements does

not affect the state of a system. This assumption does not hold in the quantum

regime, meaning that much of classical control theory is not applicable to

quantum systems.

It was therefore necessary to develop a new body of theory to describe



20 Chapter 1. Introduction

feedback control in the quantum regime. Broadly, the feedback control of

quantum systems can be implemented in two different ways. In ‘measurement-

based feedback’ (MF), measurements are performed on a quantum system,

yielding results which are and used to inform manipulations on the system

for the purpose of control. The process of quantum measurement can often

introduce stochasticity in the evolution of a system undergoing measurement.

In contrast, ‘coherent feedback’ (CF) designates a broad class of strategies

where the controller is itself a quantum system. Quantum information flows

from the system to the controller, is processed by the controller, and fed back

into the system without measurements being performed at any stage.

The theory of quantum measurement-based feedback begins with the work

of Belavkin, who first extended ideas from classical control theory to the quan-

tum regime [6, 7]. Coherent feedback has its roots in ‘all-optical feedback’,

where an optical beam output from a cavity is used to modulate the cavity’s

dynamics, without measurements being performed. All-optical feedback was

first introduced by Wiseman and Milburn [8, 9], and was based on earlier work

on ‘cascaded quantum systems’ [10].

Later, Lloyd used the term ‘coherent feedback’ to describe more general

setups involving the use of one quantum system to control another without

measurements being performed [11]. This definition of coherent feedback does

not have an explicit feedback loop structure, and could therefore be considered

closer to ‘open-loop control’ [12]. However, since all coherent feedback can be

considered as open-loop control, some authors argue that this distinction is

unnecessary [13]. Nonetheless, it is important to bear mind which definition

of coherent feedback is being used.

Quantum optics allows this distinction to be disregarded, as the input-

output formalism allows for a clear separation between a system, and the

environmental continuum of modes which is used as a controller [14]. The

input-output formalism describes the system as a set of ‘stationary’ modes and

the environment as a series of travelling modes, known as ‘input modes’ which
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each interact with the system, before being scattered as ‘output modes’. This

distinction allows CF and MF to both be framed as explicit feedback loops.

Coherent feedback can be implemented by feeding the output modes back

into the system, after some transformation. Measurement-based feedback can

be implemented by monitoring the output modes and using the measurement

result to generate a classical continuous signal which can be used to modify

the system Hamiltonian or environmental input at another interface.

Another advantage of quantum optical systems is that they are often

analytically treatable using Gaussian states which evolve linearly. As a result,

CF and MF have been widely studied in the context of quantum optics [8, 9, 12,

15, 16, 17]. Feedback in the linear quantum optical systems, both coherent and

measurement-based, can be treated using the SLH formalism [18, 19] which can

also be used to describe feed forward control, where the controller is assumed

to have access to the source of the noise affecting the system [20].

As previously stated, in quantum optics, it is conventional to implement

MF by monitoring output fields and using the measurement record to generate

a continuous classical signal which is then used to manipulate the feedback

process. It can be shown [12] that the signal produced in this kind of MF

can always be mimicked using direct manipulation of the output fields. This

means one can always find a coherent output of the system which has the

same statistics as the classical measurement signal. Since CF also allows for

quantum signals, consisting of non-commuting operators, the converse is not

always true. As a result, MF controllers (as defined in this way) are a subset

of CF controllers. It is in this sense that CF is often described as superior to

MF (for example, in [16]).

It has been shown that this difference is relevant when considering the per-

formance of MF and CF in achieving several tasks. For example, [17], showed

that CF outperformed MF for cooling quantum oscillators, and [16] showed

that CF could achieve three tasks (back-action evading measurement, genera-

tion of a quantum non-demolition variable, and generation of a decoherence-
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free subspace) which MF could not.

The superiority of CF is also claimed in the different framwork of [11],

which considers the task of swapping the system state for a controller state-a

process which can be performed coherently, but is disrupted if a measurement

is performed. A similar task and framework is considered in [13], and again

CF is found to be quantifiably superior.

At this point, it should be stressed that the superiority of CF is derived

within in a specific model of quantum feedback, and does not mean that all

effects of quantum measurement can be mimicked coherently, which would be a

solution to the measurement problem. Since the measurement process cannot

always be mimicked using coherent evolution, it is interesting to ask whether

there are any cases where measurement is beneficial for quantum control. This

question will be a key theme of this thesis and, in different contexts, is the

focus of both Chapters 2 and 4.

Experimentally, MF has been implemented in a variety of platforms in-

cluding: optomechanical systems [21], single neutral atoms [22], ensembles of

atoms [23], trapped ions [24], superconducting qubits [25], solid state qubits

[26] and cavity QED systems (at microwave and optical frequencies) [27, 28].

Coherent feedback has been implemented in circuit QED setups [29, 30, 31],

quantum optical setups [32], solid state qubits in NV centres [33], optical res-

onators [34], nanomechanics [35], and optomechanical systems [36, 37].

1.2 Quantum Continuous Variables

Since much of the work in this thesis takes place in the regime of Gaussian

quantum mechanics, we will take some time reviewing the theory of quantum

continuous variables and Gaussian states. We will follow the treatment of this

subject presented in [38].

1.2.1 The Canonical Commutation Relations

A system of n bosonic modes can be described using n pairs of self-adjoint

operators, labelled x̂j and p̂j which obey the Canonical Commutation Relation
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(CCR):

[x̂j, p̂k] = iδjkℏ1̂ . (1.1)

For convenience, we will often collect these operators into a 2n-dimensional

vector r̂ = (x̂1, p̂1...x̂n, p̂n)
T. In this vector form, the CCR can be written by

introducing the anti-symmetrized commutator:

[r̂, r̂T] = r̂r̂T − (r̂r̂T)T , (1.2)

where r̂r̂T is taken to be an outer product so that [r̂, r̂T] is a 2n-dimensional

matrix of operators. We will also introduce a 2n × 2n real, anti-symmetric

matrix, known as the symplectic form, which is defined as follows:

Ωn =
n⊕
j

Ω1 where Ω1 =

 0 1

−1 0

 . (1.3)

Often, we will drop the subscript of Ω, letting the context specify the dimen-

sion. We will also use the convention that ℏ = 1. The introduction of Ω allows

the multimode CCR to be written in the compact form:

[r̂, r̂T] = iΩ . (1.4)

1.2.2 Quadratic Hamiltonians

We will use the terms ‘quadratic’ or ‘second-order’ Hamiltonians to refer to

Hamiltonians of continuous variable systems which can be expressed as second-

order polynomials of the canonical operators x̂j and p̂j. Such Hamiltonians can

be written in the following form:

Ĥ =
1

2
r̂THr̂ + dTΩr̂, (1.5)

where Ĥ is the Hamiltonian operator, H is a, 2n × 2n matrix known as the

Hamiltonian matrix, and d is a 2n-dimensional real vector sometimes known



24 Chapter 1. Introduction

as the ‘linear drive’. The factor of Ω is included for reasons which will become

apparent later. The matrix H must be real to ensure that the Hamiltonian

operator is Hermitian. Furthermore, we can assume that H is symmetric,

since any asymmetric components will result in commutator terms which are

proportional to the identity and therefore can be discarded. In what follows

we will also require that the Hamiltonian Ĥ is bounded from below, which

corresponds to the Hamiltonian matrix being positive definite.

1.2.3 The Definition of Gaussian States

Gaussian states are quantum states in continuous variable systems can be de-

fined as the ground and thermal states of quadratic Hamiltonians [38]. Thermal

states have density operators which can be written as:

ρ =
e−βĤ

Tr[e−βĤ ]
, (1.6)

where β is the inverse temperature. All such states for finite β are mixed, but

become pure in the limit of zero temperature, when they correspond to ground

states:

ρ = lim
β→∞

e−βĤ

Tr[e−βĤ ]
. (1.7)

When Ĥ is a quadratic Hamiltonian of the form given in equation (1.5), then

equations (1.6) and (1.7) describe the density operators of Gaussian states.

1.2.4 The Covariance Matrix Formalism

Since the operators corresponding to quantum continuous variables live in an

infinite dimensional Hilbert space, they are often cumbersome to treat an-

alytically or numerically. However, Gaussian states allow for a convenient

parameterisation, as they are completely determined by their first and second

statistical moments [38], which we will now define.

For a quantum state ρ, the expectation value of an observable x̂ is given

by ⟨x̂⟩ = Tr[ρx̂]. We can define the vector of first moments r̄ as the vector of

the expectation values r̄ = Tr[ρ̂r̂] = (⟨x̂1⟩, ⟨p̂1⟩ . . . ⟨x̂n⟩, ⟨p̂n⟩)T.
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The second statistical moments of a state can be described by a real,

symmetric matrix, σ, known as the covariance matrix. It is defined by:

σ = Tr[ρ{(r̂ − r̄), (r̂ − r̄)T}] . (1.8)

In this equation, we are implicitly using the convention that each element of r̄

is multiplied by the identity operator. It is also worth pointing out that some

other work (eg. [39] ) uses the convention that the covariance matrix is half of

what have defined here. Note that using our convention, as shown in equation

(1.8), the diagonal elements of σ will in fact be twice the variance of field

quadratures. To correspond to a physical state, a real 2n × 2n matrix must

be positive definite and obey the Robertson-Schrödinger uncertainty relation

σ + iΩ ≥ 0 [38].

Finding the states of subsystems of multimode states in the covariance

matrix formalism is straightforward. The first moments of any mode are easily

extracted from the total vector of first moments r̄. The covariance matrix for

the i-th mode is given by the the i-th 2 × 2 diagonal block of the overall

covariance matrix. The diagonal 2× 2 blocks of the overall covariance matrix

describe each mode, and the off-diagonal blocks describe correlations between

different modes.

1.2.5 Evolution Under Quadratic Hamiltonians

We will now investigate the Heisenberg picture evolution of the vector r̂ under

a quadratic Hamiltonian of the form given in equation (1.5). The evolution

due to the linear drive and the quadratic part of the Hamiltonian can be

considered separately. Writing the j-th element of the vector r̂ as r̂j, the

linear drive causes the following evolution:

˙̂rj = i[dTΩr̂, r̂j] = i
∑
lm

dlΩlm[r̂m, r̂j] = −
∑
lm

dlΩlmΩmj = dj . (1.9)
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Using the symmetry of H and the anti-symmetry of Ω, the evolution due to

the quadratic part of the Hamiltonian can be written:

˙̂rj = i[
1

2
r̂THr̂, r̂j] =

i

2

∑
lm

[Hlmr̂lr̂m, r̂j] (1.10)

=
i

2

∑
lm

Hlm([r̂l, r̂j]r̂m + r̂l[r̂m, r̂j]) = i
∑
lm

ΩjlHlmr̂m . (1.11)

These equations can be cast in vector form to give the overall evolution

˙̂r = ΩHr̂ + d . (1.12)

For the dimensions of this equation to be correct, we have implicitly assumed

that each element of d is multiplied by the identity operator. Such objects

(real or complex numbers multiplied by the identity operator) are known as

c-numbers. This equation can be re-cast in the covariance matrix formalism

to give the evolution of the first and second statistical moments of a Gaussian

state. The evolution of the first moments follows straightforwardly, by taking

the expectation value of each side of equation (1.12):

˙̄r = ⟨ ˙̂r⟩ = ΩHr̄ + d . (1.13)

The evolution of the covariance matrix can be derived using equation (1.12)

and the product rule. Using the shorthand R̂ = r̂ − r̄, we find:

σ̇ =
d

dt
⟨{R̂, R̂

T
}⟩ = ⟨{R̂, ˙̂RT}⟩+ ⟨{ ˙̂R, R̂

T
}⟩ (1.14)

= ⟨{ΩHR̂, R̂
T
}⟩+ ⟨{R̂, R̂

T
HΩT}⟩ = ΩHσ + σHΩT . (1.15)

Since Gaussian states are entirely characterised by their first and second mo-

ments, the equations above fully characterise their evolution under quadratic

Hamiltonians. However, these equations will not govern open-system or ‘diffu-

sive’ dynamics, which can be treated using the input-ouput formalism, which

we will discuss shortly.
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1.2.6 The Symplectic Group

Let us consider the evolution of the vector r̂, given by equation (1.12). The

solution to this equation is r̂(t) = eΩHtr̂(0)−(ΩH)−1d. Since this characterises

unitary evolution of the operators, it will preserve the CCR. The linear drive d

is a vector of c-numbers, so will not affect the CCR, meaning that the following

holds:

iΩ = [r̂(t), r̂(t)T] = [eΩHtr̂(0), r̂(0)T(eΩHt)T] = eΩHt[r̂(0), r̂(0)T](eΩHt)T

(1.16)

= eΩHt(iΩ)(eΩHt)T . (1.17)

From this we can see that the matrix S = eΩHt preserves the symplectic form

so that Ω = SΩST. Matrices which preserve the symplectic form in this way

are said to belong to the real symplectic group denoted by Sp2n,R for 2n-

dimensional matrices [40]. If we absorb t into the magnitude of H, we can

define the unitary ÛH = ei
1
2
r̂THr̂ generated by a quadratic Hamiltonian and

the related symplectic matrix SH = eΩH , and use them to write the useful

relation

ÛH r̂Û
†
H = SH r̂, . (1.18)

This can be used to derive the following transformations of the statistical

moments under the same Hamiltonian:

r̄ → ⟨ÛH r̂Û
†
H⟩ = SH r̄ , (1.19)

σ → SHσS
T
H . (1.20)

Since evolution under a quadratic Hamiltonian maintains the Gaussian char-

acter of a Gaussian state [41], these transformations will be useful.

Later, we will be concerned with with so-called ‘passive’ operations [41].

These are Gaussian operations which do not change the energy of the system.

The energy of a bosonic mode is proportional to the number of excitations it
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carries, which is given by the number operator N̂ = â†â = 1
2
(x̂2 + p̂2 − 1). Op-

erations which leave the energy unchanged will therefore preserve the quantity∑
i x̂

2
i + p̂2i = r̂Tr̂. This occurs when the symplectic matrix representing the

operation is orthogonal so that SST = STS = 1. This fact will be used later in

the context of passive coherent feedback. Some examples of common symplec-

tic transformations, including passive transformations, are given in Appendix

A.1.

1.2.7 Entanglement of Gaussian States

At later points in this thesis, we will be concerned with quantifying the en-

tanglement between two modes in a Gaussian state. We will do this using

the logarithmic negativity [42], which is an entanglement monotone [43]. A

two-mode Gaussian state will have a 4 × 4 covariance matrix which can be

expressed in terms of its 2× 2 submatrices:

σ =

 σA σAB

σT
AB σB

 . (1.21)

Here, we present a simple expression for the logarithmic negativity in terms

of these 2 × 2 submatrices. The logarithmic negativity for a system of two

single-mode Gaussian states was first derived in [42], though here we present

it using the notation from [38]. The logarthmic negativity EN is given by:

EN = max{0,− log2(ν̃−)} , (1.22)

where

ν̃− =

√
∆̃−

√
∆̃2 − 4Detσ

2
and (1.23)

∆̃ = DetσA +DetσB − 2DetσAB . (1.24)

We will use this expression when calculating the entanglement between the

optical and mechanical modes of an optomechanical system.
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1.2.8 The Input-Output formalism

The input-output formalism is an approach often used in quantum optics to

describe the open-system evolution of bosonic modes coupled to environments

which consist of a continuum of modes, such as the free electromagnetic field

[44]. It can be shown that, under a series of reasonable approximations, the

interaction with such a field can be modelled as a series of instantanous in-

teractions with different modes (known as ‘input modes’) at each time [14].

These hypothetical modes interact once with the system only to be scattered

away, never to interact with the system again. If the environment is a heat

bath, with a continuum of frequencies, its Hamiltonian will take the form

ĤB =

∫ ∞

0

dωωb†(ω)b(ω) , (1.25)

where b(ω) is the annihilation operators for the mode of the field with frequency

ω. These operators satisfy [b(ω), b†(ω′)] = δ(ω − ω′). These annihilation op-

erators are can be written in terms of the environmental quadratures by the

relation b(ω) = 1√
2
(x(ω) + ip(ω)). To treat multiple environmental fields, we

will write ŝ(ω) = (x1(ω), p1(ω), ...xm(ω), pm(ω))
T. For such an environment,

we can define an input field with annihilation operator bin(t) which interacts

with the system at time t and is given by:

bin(t) =
1√
2π

∫ ∞

−∞
dωe−iωtb(ω) , (1.26)

where b(ω) are taken to be evaluated at time t = 0, before they have inter-

acted with the system. The input modes at different times t are completely

uncorrelated, as evidenced by the commutation relation:
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[bin(t), b
†
in(t

′)] =
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ei(ω

′t′−ωt)[b(ω), b†(ω′)] (1.27)

=
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ei(ω

′t′−ωt)δ(ω − ω′) (1.28)

=
1

2π

∫ ∞

−∞
dωeiω(t

′−t) = δ(t− t′) . (1.29)

The standard quadratures can be defined in relation to the input

annihilation operator as bin(t) = 1√
2
(xin(t) + ipin(t)). For m environ-

mental fields, we can define a 2m-dimensional input vector r̂in(t) =

(xin,1(t), pin,1(t), ...xin,m(t), pin,m(t))
T. The elements of this vector satisfy the

CCR, given by:

[r̂in(t), r̂in(t
′)T] = iΩδ(t− t′) . (1.30)

We will now find the statistical moments of the input field r̂in(t). To do this,

we will need to make the assumption that the moments of each environmental

mode are independent of the frequency, which means that the first moments

of r̂in(t) can be taken to be the same as the environment, and the second

moments are delta-correlated in frequency:

⟨{ŝ(ω), ŝ(ω′)T}⟩ = σinδ(ω − ω′) , (1.31)

where σin is the covariance matrix of the environmental models. This means

that the second moments of r̂in(t) will satisfy:

⟨{r̂in(t), r̂in(t
′)T}⟩ = σinδ(t− t′) . (1.32)

The conditions (1.30) and (1.32) enforce ‘white noise’ conditions on the en-

vironment and imply that the environment interacting with the system is

completely uncorrelated with itself at different times. This means that the

evolution of the system under such conditions is Markovian, as we will soon

see.
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A white noise environment can also be framed using infinitesimal incre-

ments known as ‘quantum Wiener processes’ in analogy with classical Wiener

processes. We will briefly review this approach, known as ‘quantum stochas-

tic calculus’. The first step is to consider the input signal integrated over a

time period ∆t, defined as ∆r̂in =
∫ t+∆t

t
r̂in(t

′)dt′. Using equations (1.30) and

(1.32), we can find the commutators and anti-commutators of ∆r̂in:

[∆r̂in(t),∆r̂T
in(t)] = iΩ∆t , (1.33)

⟨{∆r̂in(t),∆r̂in(t
′)T}⟩ = σin∆t . (1.34)

In the infinitesimal limit ∆t → dt, we have ∆r̂in = r̂indt. This allows us to

write the following relations:

[r̂in(t), r̂
T
in(t)](dt)

2 = iΩdt , (1.35)

⟨{r̂in(t), r̂in(t
′)T}⟩(dt)2 = σindt . (1.36)

The infinitesimal operators r̂indt are known as quantum Wiener processes.

When monitored (continuously measured), the resulting signal is described by

a classical Wiener process, [38, 12] as we will see in Section 1.2.11.

1.2.9 Gaussian Diffusive Dynamics

Here, we will present the general evolution equations of a system coupled to a

white noise environment through a quadratic Hamiltonian.

Let C be a 2m × 2n real matrix and let ĤC = r̂T
inCr̂ be the quadratic

coupling Hamiltonian between m input modes and n system modes. If the

system is subject to this Hamiltonian, as well as a Hamiltonian HS = 1
2
r̂THSr̂

acting purely on the system, its evolution, after the environment is traced out,

is given by a modification of equations (1.13) and (1.14). The evolution of the

first and second moments of the system is given by [38]:

˙̄r = Ar̄ + d+ ΩCr̄in , (1.37)
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σ̇ = Aσ + σAT +D , (1.38)

where A and D are respectively known as the drift and diffusion matrices and

are given by

A = ΩHS +
1

2
ΩCΩCT , D = ΩCσinC

TΩT . (1.39)

We will often be concerned about the steady state covariance matrix of a

system, that is, the solution when the left hand side of (1.38) is equal to zero.

In this case, (1.38), takes the form of the Lyapunov equation [45, 46]. The

solution is given by [47]:

σSS =

∫ ∞

0

eAtDeA
Ttdt . (1.40)

The condition for a system to have a steady state is that the drift matrix A

must be ‘Hurwitz’, meaning that the real part of each of its eigenvalues is

negative [45, 47]. This is evident from the integral in equation (1.40), which

would diverge otherwise.

An alternative but equivalent way of capturing the diffusive dynamics of

equations (1.14) and (1.13) is through stochastic Heisenberg evolution equa-

tions known as ‘quantum Langevin equations’. The quantum Langevin equa-

tion for a setup with drift matrix A and coupling matrix C is given by

dr̂ = Ar̂dt+ ddt+ ΩCr̂indt . (1.41)

This equation, combined with the white noise conditions (1.35) and (1.36), is

fully equivalent to the drift-diffusion equations (1.37) and (1.38) for Gaussian

states which are fully characterised by their first and second moments.

The evolution of a system under Gaussian diffusive dynamics can also be

captured through a diffusive master equation, which describes the evolution of

the system density matrix. This master equation can be expressed in terms of

the drift and diffusion matrices. It is derived in [38], but we state it here for
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completeness:

ρ̇ =
∑
jk

[( i
2
ΩA− ΩDΩT

4

)
jk
r̂j r̂kρ+H.C

]
+
[( i
2
ΩA+

ΩDΩT

4

)
jk
r̂jρr̂k +H.C

]
(1.42)

where ‘H.C’ indicates the Hermitian conjugate.

1.2.10 Gaussian Measurements

Measurements performed on Gaussian states do not always yield Gaussian

states as outcomes. ‘General-dyne’ measurements [12] are a class of mea-

surements which do, meaning that their effect can be described using the co-

variance matrix formalism. The class of general-dyne measurements includes

homodyne and heterodyne measurements, which are commonly performed ex-

perimentally [39]. A general-dyne measurement is characterised by its covari-

ance matrix σm which, along with the measurement outcome rm, specifies the

post-measurement state of the measured subsystem.

The statistical moments of a general, multimode Gaussian state, with

subsystems A and B can be written:

σ =

 σA σAB

σT
AB σB

 , r̄ =

r̄A

r̄B

 . (1.43)

A measurement performed on subsystem B, with measurement result rm and

covariance matrix σm, leads to the following conditional evolution of subsystem

A [48, 49]:

σA → σA − σAB
1

σA + σm

σT
AB , (1.44)

r̄A → r̄A + σAB
1

σA + σm

(rm − r̄B) . (1.45)

Note that the evolution of σA does not depend on the measurement result.

The second moments evolve deterministically, regardless of the measurement

outcome. The first moments, however evolve stochastically. They depend

on the measurement outcome rm, which follows a Gaussian distribution with
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probability density

p(rm) =
e(rm−r̄B)T(σB+σm)−1(rm−r̄B)

πnB

√
Det(σB + σm)

, (1.46)

where nB is the number of modes in subsystem B [38].

1.2.11 General-dyne Monitoring

When a system interacts with a white noise environment, through a quadratic

Hamiltonian, as described in Sections 1.2.8 and 1.2.9, the interaction can be

described as a series of input modes, interacting once with the system, before

being scattered away. The resulting scattered modes are known as the output

modes, denoted by r̂out(t) and are related to the input modes through the

so-called input-output ‘boundary condition’ [44, 16]:

r̂out(t) + r̂in(t) = −ΩCTr̂(t) , (1.47)

which will be derived in the context of Gaussian coherent feedback later, in

Section 2.1. These output modes, since they have interacted with the system,

become correlated with the system modes. Thus, if these scattered output

modes are measured and the measurement outcome recorded, the evolution of

the system state will be affected. The process of continuously measuring these

scattered modes which have interacted with the system for an infinitesimal

amount of time is known as ‘monitoring’. Analogously to the case of one-

shot measurements described in the previous section, general-dyne monitoring

results in stochastic evolution of the first moments and deterministic evolution

of the second moments. The evolution of the first moments is found by adding

a stochastic term to equation (1.37):

dr̄ = Ar̄dt+ ddt+ ΩCr̄indt+ (E − σB)dw , (1.48)

where E = ΩCσin(σin+σm)
−1/2 and B = CΩ(σin+σm)

−1/2 [38]. The vector

dw is a vector of uncorrelated classical Wiener increments which obey the
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following statistics:

⟨dw⟩ = 0 , ⟨dw, dwT⟩ = 1dt. (1.49)

Note that the averaging process above, denoted by the brackets ⟨⟩ indicate

a classical averaging process, rather than a quantum expectation value. The

evolution of the second moments is given by the following determinstitic Ricatti

equation:

σ̇ = Ãσ + σÃT + D̃ − σBBTσ , (1.50)

where Ã = A+EBT, D̃ = D−EET and E and B are the same as they appear

in the evolution of the first moments. In this thesis, we will primarily

1.3 Optomechanics

Optomechanical systems consist of light modes coupled to massive mechanical

modes. In what follows we will refer to optomechanics mostly in the context

of ‘cavity optomechanics’ [50, 51] (though we note that other implementations

are possible). In this model, the mechanical element acts as a mirror at one

end of the cavity which contains the optical mode. Since the optical mode will

exert radiation pressure on the mechanical element, it can change the length

(and therefore the resonant frequency) of the cavity. The changing frequency

of the cavity then leads to a change in radiation pressure, which leads to

the optical and mechanical modes becoming coupled. This interaction is, in

general, nonlinear. In this section, we will present a linearised version of this

Hamiltonian. We will then present some further approximations and useful

regimes used in our investigations later.

1.3.1 The Optomechanical Hamiltonian

We will consider a single optical mode whose annihilation operator we will

denote â and a single mechanical mode denoted by b̂. The coupling between

the two modes is in general non-linear. However, by assuming that each mode

can be approximated as small fluctuations around a large coherent amplitude,
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a standard procedure [50, 51, 52] allows this Hamiltonian to be ‘linearised’

(approximated as a quadratic Hamiltonian which leads to linear evolution).

This means the Hamiltonian is quadratic in the system quadratures, leading

to linear evolution and allowing the system to be treated using Gaussian states.

We will take this Hamiltonian as our starting point. It takes the form [50, 38]:

ĤOM = ωcâ
†â+ ωmb̂

†b̂+ g(αe−iωLtâ† + α∗eiωLtâ)(b̂+ b̂†) , (1.51)

where ωc and ωm are respectively the resonant frequencies of the cavity, and

the mechanical oscillator. The optomechanical coupling is denoted by g and

we assume that the cavity is being driven by a laser with coherent amplitude

α and frequency ωL. Going into the interaction picture with the the terms

ωcâ
†â+ ωmb̂

†b̂ yields the following interaction Hamiltonian:

Ĥint = g(αe−i∆tâ† + α∗ei∆tâ)(e−iωmtb̂+ eiωmtb̂†) , (1.52)

where ∆ = ωL−ωc is the detuning between the laser driving frequency and the

cavity resonant frequency which can be changed to manipulate the behaviour

of the system. Without loss of generality, we will assume that α is real and

define the linearised coupling strength as G = gα.

1.3.2 The Blue and Red Sideband Regimes

In the investigations presented later, we will be interested in two coupling

strength regimes and two sideband driving regimes. The two coupling regimes

are the ‘weak coupling regime’ whereG≪ ωm and the ‘strong coupling regime’,

where this is not true. The two sideband regimes we are interested in are the

‘red-sideband regime’ where ∆ = −ωm and the blue sideband regime, where

∆ = ωm.

First, we consider red sideband driving in the weak coupling regime. Set-

ting ∆ = −ωm in equation (1.52) yields

H = G(â†b̂+ âb̂† + e−2iωmtâ†b̂† + e2iωmtâb̂) . (1.53)
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The weak coupling regime allows us to make the rotating wave approximation

and discard the terms rotating with e±2iωmt, yielding the time-independent

Hamiltonian:

ĤR = G(â†b̂+ b̂†â) . (1.54)

Notice that this Hamiltonian corresponds to an exchange of excitations be-

tween the optical and mechanical modes. Since the optical mode is higher

frequency than the mechanical mode, it typically has a much lower tempera-

ture, meaning that driving the red sideband acts to cool the mechanical oscil-

lator. This process is known as ‘sideband cooling’ [53, 54] and is one of several

methods used to cool the mechanical oscillator, along with sympathetic cool-

ing [55, 56, 37] and parametric feedback cooling (a form of measurement-based

feedback) [57, 58, 59, 60].

By setting ∆ = ωm in equation (1.52) and applying the rotating wave

approximation, we find the following time-independent expression for the blue

sideband Hamiltonian in the weak coupling regime:

ĤB = G(â†b̂† + âb̂) . (1.55)

This Hamiltonian generates two-mode squeezing which entangles the optical

and mechanical modes.

In the strong coupling regime [61, 62, 63], we are unable to perform the

rotating wave approximation. Instead, we start from equation (1.51) and ‘un-

wind’ the laser driving to obtain:

HStr = −∆â†â+ ωmb̂
†b̂+G(â+ â†)(b̂+ b̂†) . (1.56)

The Hamiltonians for the red and blue sidebands in the strong coupling regime

are found respectively by substituting ∆ = −ωm and ∆ = ωm into equation

(1.56).
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1.4 Quantum Collision Models

Quantum collision models (CMs) are a class of model for quantum open sys-

tems which model system-bath dynmaics as a series of repeated interactions

between a system and an environment, which is modelled as a series of ancillas,

which interact one at a time [64]. They were first introduced in a study of the

relaxation of spins and harmonic oscillators [65] and subsequently, they found

use in the modelling of continuous weak measurements [66, 67]. In this work,

they proved useful, as a weak measurement on the system could be modelled as

a weak interaction with an ancilla, followed by a measurement of that ancilla.

Markovian open system dynamics can easily be modelled using CMs where

the environment is ‘memoryless’ – that is, it interacts once with the system

and never again. However, there is also great interest in using CMs to investi-

gate non-Markovian dynamics, which can be obtained from CMs if one allows

ancillas which have previously interacted with the system interact again, at a

a later time. Such models are known as ‘cascaded collsion models’, and have

been used to derive general non-Markovian master equations [68, 69, 70].

Collision models have found application in studies of quantum optics [71]

and quantum thermodynamics [72]. The study [71] is of particular interest to

us, as it frames the input-output formalism as a CM. CMs can also be realised

experimentally in circuit QED setups [73, 74, 75, 76, 77] and linear optics

[78, 79].

We will now briefly introduce Markovian CMs and their links to the input

output formaism, mostly following the treatments found in [64, 70].

1.4.1 Discrete Collision Models

First, we will examine CMs with discrete timesteps, before taking the con-

tinuous limit. We consider a system S and a series of ancilla systems, all

initialised in the state η which model the environment. The ancilla systems

are labelled with the index n. At the nth timestep, the system will interact

with the nth ancilla before the ancilla is scattered away and does not interact

with the system again (see Figure 1.1).
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S

nn-1 n+2n+1

Figure 1.1: A schematic diagram of a quantum collision model. A system S inter-
acts with a series of ancillas, each initialised in state η.

Let the interaction with the nth ancilla be given by the unitary Un. Apart

from interacting with different ancillas, all Un operators take the same form.

If the inital state of the system is given by ρ0, after one timestep, the system

state will be given by:

ρ1 = TrE1 [U1ρ0 ⊗ ηU †
1 ] , (1.57)

where the partial trace is taken the Hilbert space of the first environmental

ancilla, as denoted by the subscript E1. A single interaction of this kind is

known as a ‘collision’. After n such collisions, the system will be in a state

given by:

ρn = TrEn [Unρn−1 ⊗ ηU †
n] . (1.58)

1.4.2 Continuous-Time Collision Models

Here, we assume that each interaction Un takes an amount of time ∆t. Taking

∆t to be small, we can expand Un as:

Un = e−i(HS+Vn)
∆t
2 ≈ 1− i(HS + Vn)

∆t

2
− 1

2
V 2
n (

∆t

2
)2 , (1.59)
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where HS is the Hamiltonian which generates the internal system dynamics

and Vn is the Hamiltonian which generates the system-environment interaction.

Note that we have expanded to second-order with respect to Vn, but only first-

order in HS, thus we are implicitly assuming that the characteristic frequency

Vn of Vn is much larger than that of HS. This assumption will be physically

justified later in the context of quantum optics and the input-output formalism.

The change in the system density operator over each timestep is given by:

∆ρ = ρn − ρn−1 = TrEn [Unρn−1 ⊗ η]− ρn−1 . (1.60)

Using the expansion (1.59) and again keeping second order ∆t terms only if

they are also second order in Vn we can write this as:

∆ρ =− i[HS, ρn]∆t− iTrEn

(
[Vn, ρn ⊗ η]

)
∆t

+ TrEn

(
Vnρn ⊗ ηVn −

1

2
{V 2

n , ρn ⊗ η}
)
(∆t)2 .

(1.61)

Now, we can define an effective Hamiltonian which acts on the system (also

known a the Lamb shift):

H ′
S = TrEn [Vnη] . (1.62)

We can also recover the Lindblad dissipator:

D[ρ] = TrEn

(
Vnρ⊗ ηVn −

1

2
{V 2

n , ρ⊗ η}
)
∆t . (1.63)

By writing the environmental state as η =
∑

j pj |j⟩ ⟨j| in the basis of its

eigenvectors and using this basis to perform the partial trace, we obtain the

Lindblad dissipator in its familiar form, written in terms of jump operators:

D[ρ] =
∑
jk

(
LjkρL

†
jk −

1

2
{L†

jkLjk, ρ}
)
∆t , (1.64)
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where the jump operators are given by:

Ljk =
√
pk ⟨j|Vn |k⟩ . (1.65)

Using this notation, we can write the discrete evolution of the system as:

∆ρ

∆t
= i[HS +H ′

S, ρ] +D[ρ] , (1.66)

which is a discrete version of the Lindblad master equation. Taking the con-

tinuous limit ∆t→ 0 gives the continuous Lindblad master equation:

dρ

dt
= i[HS +H ′

S, ρ] +D[ρ] . (1.67)

Since our expresssion for the dissipator (1.63) is proportional to ∆t, we might

expect it to vanish in the limit ∆t → 0. However, this can be avoided if we

assume that Vn ∝ 1√
∆t
. As we will see in the next section, this condition is

already implicit in the input-output formalism.

1.4.3 The Input-Output Formalism as a Collision Model

We will now show that the collisional evolution of a system is equivalent to the

evolution of system of bosonic modes interacting with an environment through

an input-output interface. Previously, we have seen that the input-output

formalism models interactions with the environment as a series of interactions

with ‘input modes’ which we have labelled r̂in(t), which interact with the

system at different times t. It should therefore not be surprising that this is

can be captured by a collision model.

Recall that, in the input-output formalism, we assumed that the sys-

tem was coupled to the environment through a Hamiltonian given by V (t) =

r̂TCr̂in(t). This is equivalent to the CM coupling Hamiltonian Vn, as described

in the previous section. The input modes r̂in satisfy the commutation relation
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given in (1.35), which we will repeat here for convenience:

[r̂in(t), r̂
T
in(t)](dt)

2 = iΩdt . (1.68)

Note that this is not a standard CCR, due to presence of the dt and (dt)2

on each side. While r̂in are linearly coupled to the system, they are not

associated with physical field modes, since they do not obey a CCR. We can

define a new vector of operators r̂′
in which are related to r̂in through the

relation r̂′
in

√
dt = r̂indt. These new operators satisfy the CCR:

[r̂′
in(t), r̂

′T
in(t)] = iΩ . (1.69)

Writing the coupling Hamiltonian in terms of r̂′
in, we get: V

√
dt = r̂TCr̂′

in,

which justifies our claim in the previous section that V ∝ 1√
dt
.

We will now demonstrate the equivalence of the two formalisms for a

simple example; that of a single bosonic mode subject to losses through an ex-

change of excitations with a vacuum environment, given by a coupling Hamil-

tonian:

ĤC =
√
γ(p̂x̂in − x̂p̂in) , (1.70)

where γ is the system-environment coupling strength. For simplicity, we will

assume that the Hamiltonian acting on the system is the identity.

First, using the input-output formalism in Gaussian diffusive dynamics,

we can model this interaction using a coupling matrix C =
√
γΩT. The vac-

cuum environment is captured by σin = 1. Using (1.39), we find that this

leads to an evolution characterised by drift and diffusion matrices given by:

A = −1

2
1 and D = γ1 . (1.71)

By plugging these matrices into equation (1.42), we find that this evolution is
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characterised by a master equation given by:

ρ̇ = γâρâ† − γ

2
(ρâ†â+ â†âρ) , (1.72)

where we have used the annihilation operator as defined by â = 1√
2
(x̂ + ip̂).

Now we will show that the same equation can be derived using the collision

model formalism described in Section 1.4.2. First, we will write the coupling

Hamiltonian in terms of the physical field modes r̂′
in, so

Vn =
1√
dt

√
γ(p̂x̂′in − x̂p̂′in). (1.73)

To be completely rigorous, we should write this in terms of a finite increment

∆t and only later take the limit ∆t→ dt. However, here, this distinction does

not make a difference to the final result and makes the calculations lengthier

so for convenience we do not make it here. The reader is referred to [71] for a

more rigorous treatment.

Now, we will use expression (1.73) to find the Lamb shift and the Lindblad

dissipator which characterise the evolution in the CM, as given by (1.67). First,

the Lamb shift Hamiltonian:

H ′
S = TrEn [Vnη] =

√
γ

√
dt
TrEn

[
(p̂x̂′in − x̂p̂′in)1⊗ η

]
=

√
γ

√
dt

[
p̂Tr[x̂′inη]− x̂Tr[p̂′inη]

]
= 0 ,

(1.74)

where we have use the fact that, since η is vacuum state, its first moments will

be zero, so Tr[x̂′inη] = Tr[p̂′inη] = 0. Now, we will use this expression to find

the Lindblad dissipator, as given by (1.63). When Vn is given by (1.73), we

have:

TrEn

(
Vnρ⊗ ηVn

)
(dt) = γ

(
p̂ρp̂Tr[x̂′2inη] + x̂ρx̂Tr[p̂′2inη]

− x̂ρp̂Tr[p̂′inηx̂
′
in]− p̂ρx̂Tr[x̂′inηp̂

′
in]
)
,

(1.75)

When η is a vaccuum state Tr(ηx′2in) = Tr(ηp′2in) =
1
2
and Tr(ηxp) = i

2
. Plugging
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these into (1.75), we obtain:

TrEn

(
Vnρ⊗ ηVn

)
(dt) =

γ

2
(x̂ρx̂+ p̂ρp̂− ix̂ρp̂+ ip̂ρx̂) = γâρâ† . (1.76)

Applying a similar process, we obtain:

TrEn

(
V 2
n ρ⊗ η

)
(dt) =

γ

2
(p̂2 + x̂2 − ip̂x̂+ ix̂p̂)ρ = â†âρ , (1.77)

TrEn

(
ρ⊗ ηV 2

n

)
(dt) =

γ

2
(p̂2 + x̂2 + ip̂x̂− ix̂p̂)ρ = ρâ†â . (1.78)

Since the Lamb shift Hamiltonian is equal to zero, plugging these expressions

into (1.63) completely characterises the evolution. We obtain the expression:

ρ̇ = D[ρ] = γâρâ† − γ

2
(ρâ†â+ â†âρ) , (1.79)

which is identical to the expression we obtained using the input-output for-

malism.

1.5 A Note on the use of Mathematica

Throughout this thesis, Mathematica 12 [80] was used for both numerical and

analytical investigations. When it is used it is explicitly stated. Frequently, it

was used to minimise or maximise figures of merit within certain constraints.

In these cases, the in-built functions ‘FindMinimum’, ‘FindMaximum’, ‘NMin-

imize’ and ‘NMaximise’ were used. ‘FindMinimum’ and ‘FindMaximum’ use

Interior Point Methods [81] to perform the optimisation under constraints [82].

‘NMinimize’ and ‘NMaximise’ use simplex methods [81] in linear cases, and

Nelder-Mead methods [83] in non-linear cases [82].



Chapter 2

A General Model of Gaussian

Coherent Feedback

In this chapter, we will derive a general model of coherent feedback in the

Gaussian regime and investigate some of its implications. In the first section,

we derive an input-output boundary condition for a general quadratic cou-

pling. Then, we investigate what happens when we perform a CP-map on the

some of the output modes, before feeding them back into the system through

the input-output interfaces, creating a CF loop. We then derive the resulting

modifications to the drift and diffusion matrices which govern the evolution of

the system. After this, we investigate passive coherent feedback loops coupled

to a system through rotating wave couplings. We derive a compact way of

describing such loops. Finally, we show such coherent feedback loops do not

allow for squeezing of any quadrature below the so-called ‘3dB limit’ [84]. The

performance of these loops is compared to the squeezing generated by contin-

uous monitoring and we discuss whether this constitutues a fair comparison

between MF and CF. The contents of this chapter along with Figure 2.1 is

partially based on work published in [1].

2.1 The General Input-Output Relation

We will now derive the Langevin evolution equation of Gaussian diffusive dy-

namics (1.41) as well as the input-output boundary condition (1.47). Previ-
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ously we have noted that the input-output formalism treats interactions with

a continuous environment as series of instantaneous interactions with different

input modes at different times. The input mode that interacts at time t is

denoted r̂in(t). For reasons that will become apparent later, we will use a

slightly modified notation for this derivation. We will denote the vector of

operators corresponding to the environmental modes which interact with the

system at time x as ŝx(t). Later, we will identify ŝx(t) as r̂in(x) for t < x,

before it has interacted with the system and as r̂out(x) for t > x, after it has

been scattered from the system.

The Hamiltonian which corresponds to a series of instantaneous interac-

tions through a coupling matrix C is:

Ĥ(t) =

∫
R

r̂TCŝxδ(x− t)dx =

∫
R

r̂iCij(ŝx)jδ(x− t)dx , (2.1)

where we have used Einstein notation for summation over repeated indices.

The Heisenberg evolution of the system variables is given by:

˙̂rk(t) = i[Ĥ(t), r̂k] = i

∫
R

Cij(ŝx)j[r̂i, r̂k]δ(x− t)dx (2.2)

= i

∫
R

Cij(ŝx)jiΩikδ(x− t)dx (2.3)

= −CijΩik(ŝt)j . (2.4)

In vector form, this gives us dr̂
dt

= ΩCŝt(t). The Heisenberg evolution of the

travelling modes is given by:

d(ŝx)k
dt

= i[Ĥ(t), (ŝx)k] = i

∫
R

r̂iCij[(ŝx′)j, (ŝx)k]δ(x
′ − t)dx′ (2.5)

= i

∫
R

r̂iCijiΩjkδ(x− x′)δ(x′ − t)dx′ = −r̂iΩjkCij . (2.6)

In vector form, this is dŝx(t)
dt

= ΩCTr̂(t)δ(x − t). This can be integrated to

obtain:

ŝx(t) = ŝx(0) + ΩCTr̂θ(x− t) , (2.7)
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where θ(t− x) is a step function which takes value 0 when t < x, takes values

1 when t > x and, by convention, takes value 1
2
when t = x. Substituting this

into the evolution equation for r̂ yields the equation:

˙̂r(t) = ΩCŝt(0) +
1

2
ΩCΩCTr̂ . (2.8)

This recovers the familiar generalised quantum Langevin equation, given in

(1.41) if we identify ŝt(0) = r̂in(t). We can also identify ŝt′(t) = −r̂out(t) for

t > t′ to yield the generalised input-output relation:

r̂out(t) + r̂in(t) = −ΩCTr̂(t) . (2.9)

2.2 A General Model of Gaussian Coherent

Feedback

Now that we have derived a general input-output relation we can investigate

what happens when we feed some of the output modes back as input modes,

leading to a coherent feedback loop. Here, we will present the most general,

multimode Gaussian coherent feedback setup and derive the drift and diffusion

matrices which govern the evolution of the system in such a setup. A diagram

of the scheme considered is shown in Figure 2.1.

We will consider set of system modes r̂, which interacts with an arbitrary

number of environmental modes. The interactions with theses modes are split

into two sets a and b, which interact with the system through coupling matrices

matrices Ca and Cb respectively. This corresponds to a coupling Hamiltonian

matrix:

HC =


0 Ca Cb

CT
a 0 0

CT
b 0 0

 , (2.10)

which leads to a coupling Hamiltonian ĤC = 1
2
r̂THC r̂T where r̂T = r̂⊕ r̂in,a⊕

r̂in,b.
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Figure 2.1: The general Gaussian coherent feedback scheme considered in this
chapter. The coherent feedback loop is labelled in red, system modes
are labelled in blue and ancilla modes are black. The symplectic trans-
formation SΦ, made on the ancilla and output modes is here denoted
Z. Since the dimension of a may not be the same as b, we allow for
the possibility that feedback modes need to be discarded before the
rest are fed back into the b interface

Coherent feedback corresponds to setting r̂in,b = Φ(r̂out,a). In words:

the output modes from the a interfaces are subjected to a CP-map Φ before

being fed back into the system through the b interfaces. We note that this

treatment is completely general and does not require that the number of modes

interacting at a and b are the same, since we can always include non-interacting

ancilla modes to ensure the same dimensions on both sides of the equation

r̂in,b = Φ(r̂out,a).

A general Gaussian CP-map can be performed on r̂out,a by performing

a general symplectic operation on r̂out,a, along with ancilla modes which we

will label r̂anc and trace out after the interaction. This can be written as

Φ(r̂out,a) = Tranc[SΦr̂out,a ⊕ r̂anc] where SΦ is the symplectic matrix which

generates the CP-map. We can write:

Φ(r̂out,a) = Er̂out,a + F r̂anc when SΦ =

E F

G H

 . (2.11)
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Since the ancilla modes r̂anc are part of the environment, we assume that they

also satisfy the same white noise conditions that r̂in,a do. At this point it

is important to clarify a slight change in notation. Until now, we have used

the subscript in to refer to any white noise environmental modes which also

happen to be the modes which are the inputs at each interface. However,

coherent feedback involves replacing the environmental input with an input

generated by the output of another interface. To clarify this, in what follows,

we will use the subscript e to indicate environmental white noise modes and

the subscript in to describe whatever modes are input at a given interface. In

our coherent feedback model, this means that r̂in,a = r̂e,a, as the inputs at

the a interfaces are white noise environmental modes. However r̂in,a ̸= r̂e,b, as

the inputs through the b interfaces are not environmental modes, but are the

result of processing r̂out,a.

The effect of setting r̂in,b = Φ(r̂out,a)) can be represented by the transfor-

mation: 
r̂

r̂in,a

r̂in,b

 =


1 0 0 0

0 1 0 0

0 0 E F




r̂

r̂e,a

r̂out,a

r̂anc

 . (2.12)

We can use the generalised input-output boundary condition (2.9) to write

r̂out,a in terms of r̂ and r̂e,a. Putting this in matrix form yields:


r̂

r̂e,a

r̂out,a

r̂anc

 =


1 0 0

0 1 0

−ΩCT
a −1 0

0 0 1




r̂

r̂e,a

r̂anc

 . (2.13)

We can combine equations (2.12) and (2.13) to write the inputs at each inter-

face as a transformation of the white noise environmental modes r̂e,a and r̂anc,
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along with the system modes r̂.


r̂

r̂in,a

r̂in,b

 =


1 0 0 0

0 1 0 0

0 0 E F




1 0 0

0 1 0

−ΩCT
a −1 0

0 0 1




r̂

r̂e,a

r̂anc

 = R


r̂

r̂e,a

r̂anc


(2.14)

Since the coupling Hamiltonian couples the system to the environment r̂in,a ⊕

r̂in,b, the effect of coherent feedback is to couple the system to the environment

r̂e,a ⊕ r̂anc through a modified coupling Hamilontian matrix Hcf
C = RTHCR

which has the form

Hcf
C =


−CaΩ

TETCT
b − CbEΩC

T
a Ca − CbE CbF

CT
a − ETCT

b 0 0

FTCT
b 0 0

 . (2.15)

From this, it is clear that, under coherent feedback the system is coupled to the

environment r̂e,a⊕ r̂anc through an effective coupling matrix (Ca−CbE,CbF ).

Additionally, the term −CaΩ
TETCT

b −CbEΩC
T
a appears in the block of Hamil-

tonian matrix corresponding to purely system operators. Depending on the

nature of the couplings involved, coherent feedback can induce interactions

between different system modes (or cause system modes to interact with them-

selves). The effect of this is that the effective system Hamiltonian matrix HS

is modified by the addition of this term.

To summarise this model, we can say that Gaussian coherent feedback

for an arbitrary number of system modes and environmental interactions is

fully characterised by a coupling matrix (Ca − CbE,CbF ), a system Hamil-

tonian matrix HS − CaΩ
TETCT

b − CbEΩC
T
a and the state of the white noise

environment r̂in,a ⊕ r̂anc.

Note that here, we have assumed that the feedback is instantaneous, so

that r̂in,b(t) = Φ(r̂out,a(t)). This means that evolution is Markovian, meaning
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that it can be expressed using a drift-diffusion equation of the form (1.38).

In practice, there will be a small delay in between a mode being output from

one interface and fed back into another, meaning that r̂in,b(t) = Φ(r̂out,a(t −

τ)) for some τ > 0. The assumption that feedback is instantaneous is valid

provided that τ is small compared to the timescale of the system. We will

investigate feedback with non-negligible delays the next chapter, in the context

of optomechanics, but in general its non-Markovianity makes it difficult to treat

analytically.

2.3 Passive Gaussian Coherent Feedback

We will now apply this general model in a more specific setting. In particular,

we will consider a setup with an arbitrary number of system modes, along with

an arbitrary number of input, outputs and ancillas, coupled to a white noise

environment in a thermal state through rotating wave couplings. Furthermore,

we will assume that the in-loop CP-map is passive, meaning that it does not

add any energy to the system. In practice, passive CP-maps are generated

through interferometric components such as beam splitters and phase shifters,

making them amenable to experimental implementation.

Firstly, the assumption that the white noise environment is thermal means

that the covariance matrix takes the form σin = N1 where N = 2N̄+1 and N̄

is the mean number of environmental thermal excitations. At zero temperature

N = 1. Furthermore, the environmental thermal state will have first moments

equal to zero so that r̄in = 0.

‘Rotating-wave’ system-environment couplings are commonly used to de-

scribe optical leakage from a cavity. These couplings are described by a Hamil-

tonian which corresponds to an exchange of excitations between system and

environment. For one system mode and one environmental mode, this Hamil-

tonian is:

ĤC =
√
γ(p̂x̂in − x̂p̂in) , (2.16)

which corresponds to a coupling matrix C =
√
γΩT where γ is the frequency
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which specifies the strength of the coupling.

We will consider a setup with s system modes. The jth system mode

is coupled to lj +mj interfaces, each described by a Hamiltonian of the form

(2.16). The interfaces whose outputs are used for coherent feedback are labelled

lj and the interfaces into which we will feed these outputs are labelled mj.

Using the notation from the previous section, we can write:

Ca =


Kl1 0 0 . . . 0

0 Kl2 0 . . . 0
...

. . .
...

0 . . . 0 . . . Kls

 , (2.17)

Cb =


Km1 0 0 . . . 0

0 Km2 0 . . . 0
...

. . .
...

0 . . . 0 . . . Kms

 , (2.18)

where Ki indicates a 2× 2i dimension matrix of the form
√
γ(ΩT . . .ΩT).

The condition that the in-loop CP-map must be passive means that the

matrix SΦ must be orthogonal. This enforces the following conditions on its

submatrices:

SΦS
T
Φ =

EET + FFT EGT + FHT

GET +HFT GGT +HHT

 =

1 0

0 1

 . (2.19)

In particular, we will make use of the relation EET + FFT = 1. We can use

the symplecticity of SΦ to obtain another condition on its submatrices.

SΦΩS
T
Φ =

EΩET + FΩFT EΩGT + FΩHT

GΩET +HΩFT GΩGT +HΩHT

 =

Ω 0

0 Ω

 . (2.20)

Recall that we are using the convention that the dimensions of Ω are speci-

fied by the context. Again, we will be particularly interested in the equation
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concerning E and F : EΩET + FΩFT = Ω.

We will now state another feature of orthogonal symplectic matrices which

will be useful. If we label the 2× 2 blocks of SΦ as Sjk, then they will all take

the form [38]:

SΦ =


S11 . . . S1n

...
. . .

...

Sn1 . . . Snn

 Sjk =

 xjk yjk

−yjk xjk

 , (2.21)

which is a fact we will use later.

2.3.1 The Diffusion Matrix for Passive Coherent Feed-

back

Now we have described the setup, we will derive the diffusion matrix D of

the system. We will derive D0, the diffusion matrix for a zero temperature

environment with σin = 1, but the results can be easily modified to reflect a

non-zero temperature by multiplying the zero temperature diffusion matrix by

an appropriate value of N . The diffusion matrix is given by:

D = ΩCσinΩC
T . (2.22)

Under coherent feedback, we have C = Ccf = (Ca −CbE,CbF ). Plugging this

in to (2.22), we obtain:

D0 = (ΩCa − ΩCbE)(C
T
a Ω

T − ETCT
b Ω

T) + ΩCbFF
TCT

b Ω
T . (2.23)

Expanding this equation, and using the previously derived condition EET +

FFT = 1 gives:

D0 = Ω(CaC
T
a + CbC

T
b )Ω

T − ΩCaE
TCT

b Ω
T − ΩCbEC

T
a Ω

T . (2.24)
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We now note that CaC
T
a = γ diag(l1, l1 . . . ls, ls) and CbC

T
b = γ diag(m1,m1 . . .ms,ms),

which allows us to write:

Ω(CaC
T
a +CbC

T
b )Ω

T = γ diag(l1+m1, l1+m1 . . . ls+ms, ls+ms) = ∆ . (2.25)

After doing this, our expression for the zero-temperature diffusion matrix be-

comes:

D0 = ∆− ΩCaE
TCT

b Ω
T − ΩCbEC

T
a Ω

T . (2.26)

We will call J = ΩCbEC
T
a Ω

T, allowing us to write:

D0 = ∆− JT − J . (2.27)

Now, we note the form of ΩCa and ΩCb, which are given by:

ΩCa =


ΓT
l1

. . . 0
...

. . .
...

0 . . . ΓT
ls

 = Gl and ΩCb =


ΓT
m1

. . . 0
...

. . .
...

0 . . . ΓT
ms

 = Gm . (2.28)

where Γj is a real 2j × 2 matrix of the form Γj =
√
γ(12, . . . ,12)

T. This

notation can be used to write J = GmEG
T
l . We also note the following easily

verified relationships which we will use later:

ΩCT
b = −GT

m ΩCT
a = −GT

l ΩGmΩ
T = Gm ΩGlΩ

T = Gl . (2.29)

2.3.2 The Drift matrix for Passive Coherent Feedback

Recall that the drift matrix of a system takes form:

A = ΩHS +
1

2
ΩCΩCT . (2.30)

We will take HS to be completely general and will examine the form of the

diffusive part of the drift matrix under passive coherent feedback. We will do
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this by plugging C = Ccf = (Ca − CbE,CbF ) into ΩCΩCT:

ΩCΩCT = (ΩKl − ΩKmE)(ΩK
T
l − ΩETKT

m) + ΩKmFΩF
TKT

m . (2.31)

Expanding this and using the symplectic condition EΩET + FΩFT = Ω, we

obtain:

ΩCΩCT = ΩKlΩK
T
l + ΩKmΩK

T
m − ΩKlΩE

TKT
m − ΩKmEΩK

T
l . (2.32)

Now, we note that ΩKlΩK
T
l + ΩKmΩK

T
m = −GlG

T
l − GmG

T
m = −∆ where

∆ is defined by (2.25) in the previous section. Using the properties of Gm,

we observe that ΩKmEΩK
T
l = −GmEG

T
l = −J . We can also manipulate

ΩKlΩE
TKT

m by inserting 1 = ΩΩT:

ΩKlΩE
TKT

m = GlΩE
TKm = GlΩE

TΩΩTKT
m = GlΩE

TΩGT
m . (2.33)

Now we use (2.21) to write E in terms of its 2× 2 submatrices:

E =


E11 . . . E1p

...
. . .

...

Eq1 . . . Eqp

 where Ejk =

 ejk11 ejk12

−ejk12 ejk11

 . (2.34)

The submatrices of E clearly satisfy ΩEjkΩ
T = Ejk, meaning that:

ΩEΩT =


ΩE11Ω

T . . . ΩE1pΩ
T

...
. . .

...

ΩEq1Ω
T . . . ΩEqpΩ

T

 = E . (2.35)

Using this information, we have that ΩETΩ = −ET, which means that we can

write:

ΩKlΩE
TKT

m = GlΩE
TΩGT

m = −GlE
TGT

m = −JT . (2.36)
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Combining this with our previous results means that we can write:

ΩCΩCT = −∆+ J + JT = −D0 . (2.37)

This means that the drift matrix for any passive coherent feedback protocol

can be written as:

A = ΩHS − 1

2
D0 . (2.38)

2.4 The 3dB Limit

We will now investigate the efficacy of passive coherent feedback for the pur-

poses of stabilising the squeezing of a system quadrature. Recall that squeezing

is the process of reducing noise on one quadrature, and causing a corresponding

increase in another. In this section, we will derive a bound on the steady-state

squeezing achievable for a system mode subject to passive coherent feedback.

We will then demonstrate a simple setup which achieves this bound. Finally,

we will show that this bound can be beaten by performing homodyne moni-

toring on the output quadratures.

The noise on each quadrature is given by the diagonal elements of the

covariance matrix and is therefore lower-bounded by the smallest eigenvalue

of the σ. We will use this fact to find the optimal passive coherent feedback

setup for the production of steady-state squeezing in a single mode system.

Since we are concerned only with properties of the covariance matrix, we

will assume that all first moments and linear terms of the Hamiltonian are equal

to zero. Apart from this, the system Hamiltonian is taken to be a completely

general quadratic Hamiltonian, which takes into account any ‘bare’ system

Hamiltonian, as well as any modifications that come from coherent feedback,

which we observed in equation (2.15).

2.4.1 Deriving the bound

First, we will show that, for passive coherent feedback, ΩD0Ω
T = D0. This

result will be useful later. First we notice that, due to the diagonal form of ∆,
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we have ΩT∆Ω = ∆. Next, using the relationships in (2.29) and inserting the

identity ΩTΩ = 1, we find that:

ΩJΩT = ΩGmEG
T
l Ω

T = ΩGmΩ
TΩEΩTΩGT

l Ω
T = GmΩEΩ

TGT
l . (2.39)

Next, we plug equation (2.35) into (2.39) which gives us ΩJΩT = J . Combining

this with Ω∆ΩT = ∆ yields ΩD0Ω
T = D0 which is the desired result. This

relation holds for any number of system modes. We will now use this fact

to derive a bound on the steady state squeezing for a single mode subject to

passive coherent feedback.

The steady state covariance matrix must satisfy the Lyapunov equation

Aσ∞ + σ∞A
T +D = 0 (2.40)

Let v be the eigenvector corresponding to the largest eigenvalue of σ∞, which

we will label σ1. We have:

σ1 =
−v†Dv

v†(A+ AT)v
. (2.41)

Plugging in A = ΩH − 1
2
D0 and D = ND0 for passive coherent feedback, we

obtain:

σ1 =
Nv†D0v

v†D0v − v†(ΩH +HΩT)v
=

Nδ

δ − α
, (2.42)

where we have labelled δ = v†D0v > 0 and α = v†(ΩH + HΩT)v. Now, we

define the vector w = Ωv which is orthogonal to v, due to the skew-symmetry

of Ω. Since σ∞ is a 2× 2 symmetric matrix, w must also be an eigenvector of

σ∞ with eigenvalue σ2. Applying w to both sides of the Lyapunov equation,

and noting the result we proved earlier that D0 = ΩD0Ω
T
gives:

σ2 =
−v†ΩTDΩv

v†ΩT(A+ AT)Ωv
=

Nv†D0v

v†D0v + v†(ΩH +HΩT)v
=

Nδ

δ + α
(2.43)

Since σ∞ is a positive definite matrix, σ2 > 0, meaning that α > −δ. This
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yields the following bound on σ1:

σ1 =
Nδ

δ − α
>
N

2
>

1

2
. (2.44)

Since the diagonal elements of the covariance matrix are twice the variance of

the quadratures, this means that the variance of the most squeezed quadrature

cannot be reduced below 1
4
. The bound is known as the 3dB limit (since,

in Decibels 10 log10 σ1 = 10 log10 1/2 ≈ 3.01) and is known to affect phase-

insensitive amplifiers [84]. This bound applies to a single mode system subject

to any quadratic Hamiltonian and any passive coherent feedback setup. We

will now give an example of a simple setup, with passive coherent feedback,

originally presented in [38] which reaches this bound.

2.4.2 Simple Coherent Feedback

Consider a single mode system, subject to a squeezing Hamiltonian Ĥ =

ĤS + ĤC , where ĤS = −χ
4
{x̂, p̂} with χ > 0, corresponding to a Hamil-

tonian matrix HS = −χ
2
σx (where σx is the Pauli x-matrix). The mode is

coupled to an environment through two input-ouput interfaces and a coupling

matrix given by C =
√
γ(ΩT,ΩT). We now apply a simple coherent feedback

loop to this setup. The output modes at the first interface are mixed at a

beam splitter with thermal white noise modes with the same temperature as

the other environmental modes. This corresponds to matrices E = η1 and

F =
√
1− η1, where 0 < η < 1 is the degree of mixing. The resulting mode is

then fed back into the second interface. This results in a modified coupling ma-

trix Ccf =
√
γ((1−√

η)ΩT,
√
1− ηΩT). For this setup, the coherent feedback

does not induce any modifications to the system Hamiltonian.

The drift matrix for this setup is A = χ
2
Ωσx−γ(1−

√
η)1 and the diffusion

matrix is D = 2Nγ(1 − √
η)1, where we have assumed that σin = N1. The

steady state covariance matrix of this setup has eigenvalues given by

σ1,2 =
2γ(1−√

η)N

2γ(1−√
η)± χ

. (2.45)
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The smallest eigenvalue, σ1, is minimised by letting
√
η → 1 − χ

2γ
, which

results in a squeezing of σ1 → N
2
. Since 0 ≤ η ≤ 1, this optimal setup can

be achieved for any system parameters satisfying 0 ≤ χ
2γ

≤ 1.As we have seen

in the previous section, this is the limit which bounds any passive coherent

feedback setup, so we can conclude that this loop is optimal.

2.4.3 Comparison with Homodyne Monitoring

Now, we will compare this optimal passive coherent feedback loop with ho-

modyne monitoring of the output fields. We consider a single mode, system

subject to the same Hamiltonian ĤS = −χ
4
{x̂, p̂} with χ > 0 and a single

input-output interface with the same system-environment coupling, given by a

coupling matrix C =
√
γΩT. If the output modes from this interface are mon-

itored, then the system covariance matrix will evolve according to the Riccati

equation (1.50).

Homodyne monitoring of x̂out with efficiency ζ corresponds to σm given

by (see Appendix A.2):

σm = lim
z→0

 z+1−ζ
ζ

0

0
1
z
+1−ζ

ζ

 . (2.46)

We plug this into equation (1.50), along with HS = −χ
2
σx, C =

√
γΩT and

σin = N1 and set the steady state condition that σ̇ = 0. This yields quadratic

equations for σ11 and σ22, the diagonal elements of the steady state σ∞. These

are:

γζ

ζ(N − 1) + 1
σm 2
11 +

(
γ + χ− 2

γζN

ζ(N − 1) + 1

)
σm
11 +

γζN2

ζ(N − 1) + 1
− γN = 0 ,

(2.47)

(γ − χ)σm
22 − γN = 0 . (2.48)

Equation (2.47) has two solutions, but only one corresponds to physical state,

as the other is zero or negative, which is forbidden since σ must be positive
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definite. The solutions are:

σm
11 =

a+
√
a2 + b

2ζ
, σm

22 =
N

1− χ
γ

. (2.49)

for a = [2Nζ − (1 + (N − 1)ζ)(1 + χ
γ
)] and b = 4Nζ(1 − ζ). For this ho-

modyne monitoring scheme to achieve greater steady state squeezing than the

optimal passive coherent feedback scheme, we require σ11 < N/2, which can

be achieved when the detector efficiency satisfies:

ζ ≥ 2 (γ − χ)

2 (γ − χ) +N (2χ− γ)
. (2.50)

However when χ < γ/2, the right hand side of this inequality is greater than

1. This means that, when the squeezing strength is weak compared to γ,

homodyne monitoring does not outperform coherent feedback

2.5 Conclusions

In this chapter, we have presented a general model which completely char-

acterises Gaussian coherent feedback. We then derived a compact way of

describing passive Gaussian coherent feedback. After this, we showed that

the squeezing of a single system mode, coupled to any number of passive CF

loops through rotating-wave couplings could not go below the 3dB limit. We

presented a simple CF protocol which achieves squeezing up to the 3dB limit

and then showed that, for certain regimes and efficiencies, homodyne moni-

toring of the output fields can generate steady-state system squeezing which

outperforms the passive CF setups. It is shown in [85] that homodyne mon-

itoring generates greater steady-state squeezing than any other general-dyne

detections at zero temperature (when N = 1) and is thus optimal. At non-zero

temperatures, homodyne monitoring is still beneficial, but full optimisation of

the measurement-based control protocol requires access to purifications of the

white noise environment, which is unrealistic and we do not consider it here

[86]. However, for a weak squeezing Hamiltonian, homodyne monitoring does
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not outperform the optimal passive CF protocol.

It is reasonable to ask whether the 3dB bound for passive CF derived

here extends to the multimode system case. Optimising the squeezing in a

single mode system is relatively straightforward, since it is just given by the

smallest eigenvalue of the covariance matrix. This will always correspond to

a physical quadrature, since the 2 × 2 covariance matrix will be diagonalised

by an orthogonal matrix, and all 2 × 2 orthogonal matrices are symplectic.

However, this is not the case when the system has more than one mode. The

matrix which diagonalises the multimode covariance matrix may not be sym-

plectic and thus the eigenvalues may not correspond to physical quadratures.

In Appendix B, we give an example of a two-mode passive CF setup whose

eigenvalues can beat the 3dB bound. However, we conjecture that the 3dB

bound may still hold on diagonal elements of the covariance matrix, which

correspond to physical quadratures.

Another question one may ask is whether or not this represents a fair

comparison between MF and CF, since we have restricted CF to only include

passive elements. If CF was allowed access to active in-loop elements, it would

be able to stabilise squeezing below the 3dB bound. We will investigate such

loops in the context of optomechanics in the next chapter. A simple, single-

mode example of such a loop is given in Appendix B as well. It can be argued

that, since coherent feedback should encompass all coherent operations (in-

cluding arbitrary amounts of squeezing) it should always outperform MF, and

indeed the investigations contained within [87, 15] consider in-loop squeez-

ing and find it beneficial for some tasks. This is a reasonable criticism to

make, but we can also make the comparison on practical grounds. Interfer-

metric schemes are fairly straightforward to implement experimentally, as is

homodyne monitoring at high efficiencies (over 0.98), while squeezing is more

difficult to generate [88]. Furthermore, since squeezing is the resource which

we are seeking to optimise, it seems unfair to assume that we already have a

separate source which can generate it. Therefore we believe that, at least in
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practical terms, it is fair to say that in this context MF can outperform CF.



Chapter 3

Optical Coherent Feedback in

Cavity Optomechanics

In this chapter, we will apply our model of Gaussian coherent feedback to

an optomechanical setup. We will consider an optical coherent feedback loop

where the output of the cavity is processed coherently before being fed back

into the cavity. In particular, we will consider three tasks which are of interest

in the context of using optomechanical systems for investigations of fundamen-

tal physics and implementations of quantum technologies. These are: cooling

the mechanical oscillator [89, 90, 91, 92, 93], generating entanglement between

optical and mechanical modes [94, 95, 96], and generating optical and mechan-

ical squeezing [97, 98].

Sideband cooling has itself been considered a form of coherent feedback

[99], though without considering the addition of CF loops. The optomechanical

setup considered here, with explicit loops constructed though input-output in-

terfaces is similar to (though more general than) the setup investigated in [100].

Coherent feedback has also been considered in conjunction with measurement-

based feedback for the task of generating mechanical squeezing [101]. However,

in contrast to our study, [101] assumes direct manipulation of the mechanical

oscillator. Alternative CF approaches not involving optical feedback loops

have been considered using optomechanical arrays [102, 103] and to enhance

optomechanical nonlinearity [104].
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The contents and figures in this chapter are based on work previously

published in [2]. All analytic and numerical work presented in this chapter

is my own. The investigations within this project were suggested by Alessio

Serafini and Matteo Brunelli who also advised regarding parameter regimes

and optomechanical Hamiltonians.

3.1 The Setup

We will model the optomechanical system using Gaussian diffusive dynamics.

In order to do this, we use the linearised Hamiltonian given by (1.52). The

system quadratures are captured in the vector r̂ = (x̂l, p̂l, x̂m, p̂m)
T
where the

subscript l indicates the optical quadratures and m indicates the mechanical

quadratures. Since we are working in Gaussian regime, the state of the system

will be entirely characterised by the first and second statistical moments of the

quadratures. The first moments are given by the vector r̄ = (x̄l, p̄l, x̄m, p̄m)
T
.

The second moments are captured in the 4× 4 covariance matrix σ:

σ =

 σl σlm

σT
lm σm

 , (3.1)

where σl and σm are respectively the 2× 2 covariance matrices of the optical

and mechanical modes. The correlations between the two modes are cap-

tured by σlm. Note that, in this chapter σm is used to denote the mechanical

covariance matrix, unlike in the previous chapter, where it denoted the covari-

ance matrix due to monitoring. In our investigations, the properties we are

concerned with (cooling, squeezing and entanglement) are soley functions of

the covariance matrix σ. Therefore, from now on, we will disregard the first

moments, assuming r̄ = 0.

The optical and mechanical modes will interact with a white noise en-

vironment, through a quadratic Hamiltonian HC = r̂TCr̂in, where the white

noise environment is characterised by the vector of operators r̂in(t) = r̂in,l1(t)⊕

r̂in,l2(t) ⊕ r̂in,m(t) and C is the 4 × 6 coupling matrix. We assume that the
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mechanical mode interacts with one environmental mode r̂in,m and the opti-

cal mode interacts with two environmental modes r̂in,l1 and r̂in,l2, which is

required to form a coherent feedback loop. All input fields are assumed to be

thermal, meaning that their covariance matrices will be proportional to the

identity. The two optical fields will be taken to be at the same temperature,

and the mechanical input field will be at a different, much higher temptera-

ture. The input covariance therefore takes the form σin = Nl14⊕Nm12, where

Nl is the noise on the optical input modes, and Nm ≫ Nl is the noise on the

mechanical input mode.

The ‘bare’ system-environment interactions, before coherent feedback is

added, are modelled using a Hamiltonian corresponding to an exchange of ex-

citations between the system and environment. This corresponds to a coupling

matrix given by:

C =

√
κΩT

√
κΩT 0

0 0
√
ΓmΩ

T ,

 (3.2)

where Ω is the 2× 2 symplectic form, κ is the optical loss rate and Γm is the

mechanical loss rate.

Now, we add a coherent feedback loop, by subjecting the outputs from

r̂out,l1 to a CP-map, before feeding then back into the cavity as r̂in,l2. Using

the result in equation (2.15), the system-environment effective coupling matrix

under coherent feedback becomes:

Ccf =

√
κΩT −

√
κΩTE

√
κΩTF 0

0 0
√
ΓmΩ

T

 , (3.3)

where E and F characterised the in-loop CP-map, as described in Section 2.2.

Coherent feedback also leads to the modification of the system Hamiltonian,

as characterised by equation (2.15). Since the loop only involves the optical

modes, only optical terms will be added to the Hamiltonian. Under coherent
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Figure 3.1: A schematic diagram of the coherent feedback setup considered in
this section. The optical and mechanical modes are labelled â and b̂
respectively. Their respective environmental noise modes are labelled
âin,l1 and b̂inm The coherent feedback loop is shown in red. The in-
loop operation is labelled Z and the ancilla optical modes are labelled
âin,l3.

feedback, the system Hamiltonian undergoes the transformation:

ĤS −→ ĤS +
1

2
r̂T
l Hcf r̂l , (3.4)

where Hcf = κ(ΩTE + ETΩ) and r̂l = (x̂l, p̂l)
T. A schematic diagram of the

optical coherent feedback loop is shown in Figure 3.1.

3.1.1 A Note on Parameter Values and Experimental

Realisation

In this chapter, we will frequently use examples and perform numerical investi-

gations which require giving specific values to the optomechanical parameters.

Reasonable ranges for these parameter values were taken from [50, 105]. These

works surveyed experimental optomechanical systems that were both historical

and state-of-the art. In this sense, the numerical simulations provided here are

plausible; where we find CF to be advantageous, it is plausible that it will also
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be advantageous in practice. However, the parameters from these sources are

from standard cavity optomechanical setups and there have not yet been any

experimental realisations of the kind of CF loops investigated in this chapter.

As a result, there are certain features that may be important in experimental

implementation have not been taken into account here. For example, in some

cases we have assumed that the in-loop losses are completely tunable exper-

imentally and that adding a CF loop does not change any other parameters

of the system. In practice, there may be some unavoidable losses introduced

in the feedback loop and the extra apparatus required to add a CF loop may

have other effects on the system which are not taken into account here.

In units where the mechanical frequency is equal to 1, the parameter

ranges used are:

10−2 < κ < 10; 10−8 < Γm < 10−3; 10−3 < G < 1 .

We also take Nl ≈ 1 and Nm ≈ 100.

3.2 Three Coherent Feedback loops

Different coherent feedback loops correspond to different choices of in-loop CP-

map which result in modifications to the coupling matrix and system Hamil-

tonian. In turn, these changes result in different drift and diffusion matrices

which govern the evolution of the system. We will now characterise three

different types of coherent feedback loops by finding their diffusion matrices,

the Hamiltonian modifications induced by coherent feedback, and the diffusive

parts of their drift matrices. For simplicity, we consider cases which can be

implemented with one feedback mode and one ancilla mode, so that E and F

are 2× 2 real matrices.

3.2.1 Passive Coherent Feedback

First, we will consider passive coherent feedback, as described in Section 2.3.

Recall that passive Gaussian in-loop CP-maps do not add energy to the feed-
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back mode and, from equations (2.19) and (2.20), are characterised by E and

F matrices which must satisfy EET + FFT = 1 and EΩET + FΩFT = Ω.

Thus, E and F take the form:

E =

 a b

−b a

 , F =

 c d

−d c

 , (3.5)

where a2 + b2 + c2 + d2 = 1. The effective coupling matrix under passive

coherent feedback can be obtained by plugging these expressions for E and F

into (3.3). We will call the resulting matrix Cp. This modified coupling matrix

can be used to find the drift and diffusion matrices. The diffusion matrix for

a passive CF setup is given by:

Dp = ΩCpσinC
T
p Ω

T =

κeffNl12 0

0 ΓmNm12

 , (3.6)

where κeff = 2κ(1 − a). We will denote the drift matrix of the system under

passive coherent feedback as Ap = ΩHS + ΩHp +
1
2
ΩCpΩC

T
p where HS is the

system Hamiltonian matrix and Hp is the Hamiltonian matrix corresponding

to additional Hamiltonian terms induced by coherent feedback. Keeping the

system Hamiltonian general, the drift matrix for passive coherent feedback is

characterised by:

Hp =

2κb12 0

0 0

 ,
1

2
ΩCpΩC

T
p =

−κeff

2
12 0

0 −Γm

2
12

 . (3.7)

From these modifications, we can see that there are two effects of passive CF:

a modification of the optical cavity frequency (evidenced in the expression for

Hp), and a change in the effective cavity loss rate. Since cavity loss is usually

a fixed parameter of an experimental setup, the fact that CF provides a way

of tuning it is a promising result. By changing the parameter a (which would

correspond to changing a passive element inside the CF loop), we can change

the effective cavity loss rate κeff . A high value of a (close to 1) corresponds to
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feeding most of the light output at the first interface back into the cavity, which

results in a lower effective loss rate from the cavity. On the other hand, setting

a close to −1 corresponds to the input at the second interface constructively

interfering with the input at the first interface, increasing the cavity loss rate,

up to a maximum of κeff = 4κ (when a = −1). We note the magnitude of a

is limited by the inherent in-loop losses present in the setup. Setting a = ±1

requires a perfect channel with no losses which is not experimentally feasible.

Nonetheless, imperfect CF can still be implemented within the range allowed

and none of our results rely on the case where a = 1.

3.2.2 Loops Containing Squeezing and Losses

Now we consider a loop where the feedback mode is subject to losses, fol-

lowed by squeezing. The E and F matrices for these loops are derived in the

Appendix Section A.1.5. They are given by:

Ez =

ηz 0

0 η
z

 and Fz =

√
1− η2z 0

0

√
1−η2

z

 , (3.8)

where z > 0 is the squeezing parameter (note that z = 1 corresponds to no

in-loop squeezing). The in-loop losses are parameterised by 0 < η < 1. When

η = 0, the feedback mode is entirely replaced by the noise mode before being

squeezed. Values of η close to 1 mean that the in-loop losses are low. Note

that, since squeezing adds energy to the loop, EET + FFT ̸= 1 and the setup

is not passive (unless z = 1 and there is no in-loop squeezing).

We can obtain the effective coupling matrix Cz for this setup by plugging

these matrices into (3.3). The drift matrix for this setup will take the form

Az = ΩHS + ΩHz +
1
2
ΩCzΩC

T

z where Hz captures the system Hamiltonian

modifications and 1
2
ΩCzΩC

T

z captures the effect of diffusive dynamics. These

matrices take the form:

Hz =

σxκη(z − 1
z
) 0

0 0

 , (3.9)
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1

2
ΩCzΩC

T
z =

1
2
κ(η

z
+ ηz − 2)12 0

0 −Γm

2
12

 , (3.10)

where σx is the Pauli x-matrix. The resulting diffusion matrix for this setup

is given by Dz = ΩCzσinC
T
z Ω

T.

Dz =


κNl(1− 2ηz + z2) 0 0

0 κNl(1− 2η
z
+ 1

z2
) 0

0 0 ΓmNm12

 . (3.11)

Thus, adding this kind of feedback changes the diffusive dynamics of the op-

tical mode, as well as adding a squeezing Hamiltonian σxκη(z − 1
z
) to the

optical mode, which squeezes either the x̂l or p̂l quadrature, depending on the

magnitude of the in-loop squeezing z. The addition of squeezing is worth in-

vestigating, as, in several contexts, squeezed light has been shown to improve

performance in optomechanical systems [106, 107, 108, 109, 110, 111].

3.2.3 Loops Containing two-mode squeezing

The third type of loop we consider is one where the feedback mode, along with

the ancilla, is subject to a two-mode squeezing operation before the ancilla is

traced out. This setup without is modelled using E and F matrices given by

(see Section A.1.4 for details)

ET = cosh r12 FT = sinh rσz , (3.12)

where r is the parameter which determines the strength of the two-mode

squeezing operation, and σz is the Pauli z-matrix. We obtain the effective

coupling matrix for this system, by plugging these matrices into (3.3):

CT =

√
κ(1− cosh r)ΩT

√
κ sinh rσx 0

0 0
√
ΓmΩ

T

 . (3.13)
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This leads to diffusion matrix given by:

DT =

κNl(2 cosh
2 r − 2 cosh r)12 0

0 ΓmNm12

 . (3.14)

For this setup, CF does not induce modifications to the system Hamiltonian,

since ΩTET + ET
TΩ = 0. This means that we can write the drift matrix as

AT = ΩHS + 1
2
ΩCTΩC

T
T with

1

2
ΩCTΩC

T
T =

κ(cosh r − 1)12 0

0 −Γm

2
12

 . (3.15)

Note that, since cosh r − 1 ≥ 0, this setup will increase the eigenvalues of the

drift matrix and destabilise the system. This is often undesirable as we are

interested in steady states, which require all eigenvalues of the drift matrix to

have negative real parts. To overcome this problem, we can introduce phase

shifters into the CF loop and define the new E and F matrices given by

ES = −ET and FS = −FT (see Appendices, Section A.1.4). This new setup

leads to drift and diffusion matrices given by:

DS =

κSNS12 0

0 ΓmNm12

 ,
1

2
ΩCSΩC

T
S =

−κS

2
12 0

0 −Γm

2
12

 . (3.16)

where κS = 2κ(1 + cosh r) and NS = Nl cosh r. Thus, these CF loops can be

entirely characterised as increasing the effective cavity loss rate, given by κS

and increasing the noise on the optical mode, as given by Nl.

3.3 Coherent Feedback Enhanced Sideband

Cooling

We now look at the efficacy of these feedback loops for enhancing the cooling

of the mechanical oscillator. As we have previously stated, sideband cooling is

achieved when the cavity is driven with a detuning ∆ = −ωm.
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We will quantify the efficacy of a cooling protocol using the steady-state

entropy of the mechanical mode. Using the normal mode decomposition first

introduced by Williamson [112] and later re-derived more compactly by Simon

et al. [113], we can always write the covariance matrix for a single mode

Gaussian state in the form σ = νSST where S is a symplectic matrix which

satisfies SΩST = Ω and ν is known as the symplectic eigenvalue of σ [41, 40].

All entropies of single-mode Gaussian states are increasing functions of ν [38].

Since DetS = 1, we can write ν =
√
Detσ. Often in our investigations, it

will turn out that the steady states involved are thermal states, with σ ∝ 12.

In this case, the symplectic eigenvalue and the regular eigenvalue of the state

coincide. The symplectic eigenvalue can be converted to the average number

of mechanical excitations using the formula N̄ = ν−1
2

[41].

3.3.1 Passive Coherent Feedback in the Weak coupling

Regime

In the weak coupling regime, sideband cooling is characterised by a Hamilto-

nian given by (1.54). Combining this Hamiltonian with the passive coherent

feedback loop described in Section 3.2.1 yields a diffusion matrix given by (3.6)

and a drift matrix given by:

A =


−κeff

2
2κb 0 G

−2κb −κeff

2
−G 0

0 G −Γm

2
0

−G 0 0 −Γm

2

 . (3.17)

As detailed in Section 1.2.9, the steady state covariance matrix for the op-

tomechanical system can be found by solving the Lyapunov equation Aσ +

σAT + D = 0, with A given by (3.17) and D given by (3.6). This was done

using the LyapunovSolve function in Mathematica 12 [80], which solves the

Lyapunov equation symbolically. From the steady-state optomechanical co-

variance matrix, the mechanical covariance matrix was extracted, by taking
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the bottom 2× 2 submatrix of the 4× 4 optomechanical matrix (see equation

(3.1)). This method yields a steady state mechanical covariance matrix of the

form σm = σm1 where

σm =
Γmκeff(16b

2κ2 + (Γm + κeff)
2)Nm + 4G2(Γm + κeff)(κeffNl + ΓmNm)

4G2(Γm + κeff)2 + Γmκeff(16b2κ2 + (Γm + κeff)2)
,

(3.18)

(to reduce the risk of typos in this long equation, it was exported to this

document using Mathematica’s TeXForm function. The parameters of the

coherent feedback loop are b and κeff . Since we wish to optimise cooling,

we analytically minimise this equation using Mathematica’s FindMinimum

function, yielding the optimal values of b = 0 and κeff = 2G. Recall from

Section 3.2.1 that κeff = 2κ(1 − a) and the feedback parameter a satisfies

a2 < 1, meaning that κeff can take values in the range 0 < κeff < 4κ. Therefore,

the optimal cooling setup with κeff = 2G can be achieved for any G < 2κ by

setting a = 1 − G
κ
. Since we are working in the weak coupling regime, we

have already assumed that G < κ, therefore we can say that the optimal

cooling is achievable for all weak couplings G < κ. If the optimal feedback

parameters are used, the steady-state mechanical covariance matrix has the

single eigenvalue:

σopt
m =

4G2Nl + Γm(4G+ Γm)Nm

(2G+ Γm)2
. (3.19)

At this point we note that, although κeff = 2G results in the optimal cooling,

this optimal value is at a global minimium, meaning that any feedback loop

which brings κeff closer to the optimal value of 2G will improve the performance

of the cooling. This can be seen by differentiating (3.18) with respect to κeff

in the case where b = 0. Figure 3.2a shows a plot of mechanical excitations

against κeff with the minimum at κeff = 2G (recall that mechanical excitations

are obtained from the mechanical eigenvalue through N̄ = (σm − 1)/2). It is

easy to see in this Figure that any changes to the feedback loop bringing κeff

closer to 2G improve the cooling performance.
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We also investigate the effect of passive CF on the time taken for the

system to relax. This was done by solving the differential equation (1.38)

discretely to find the system covariance matrix at each timestep (see Appendix

Section C.1 for details). We find that, as well as decreasing steady state

temperature, CF also decreases the relaxation time, leading to the steady

state being achieved faster. This is demonstrated in Figure 3.2b where the

mechanical exitations are plotted against time for systems with different CF

setups. It shows that as the effective cavity loss rate is brought closer to

the optimal value of κeff = 2G, the rate of relaxation dramatically increases.

This numerical investigation of the transient dynamics also provided a way

of verifying equation (3.18) for the steady state mechanical excitations under

coherent feedback. Figure 3.2c shows the mechanical excitations over time for

the same systems considered in 3.2b, but with a dashed line indicating the

steady state excitations, as predicted by equation (3.18) which was derived

analytically. It is clear from this figure that both the numerical and analytic

methods give the same result.

3.3.2 Passive Coherent Feedback in the Strong coupling

Regime

Now, we look at cooling with passive feedback in the strong coupling regime.

Recall from (1.39) that the drift matrix for any system is the sum of two com-

ponents: ΩH which characterises the evolution due to the system Hamiltonian,

and 1
2
ΩCΩCT, which characterises the diffusive evolution. The diffusive com-

ponent of the drift matrix for an optomechanical system subject to passive CF

is given by (3.17). The system Hamiltonian matrix H is found by expressing

the system Hamiltonian operator, as given by (1.56) in terms of the system

quadratures and writing it in the form Ĥ = 1
2
r̂THr̂. This is then used to

find ΩH and summed with the diffusive component to give the following drift
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Figure 3.2: (a) Shows the average steady state mechanical excitations against κeff
(in units of mechanical frequency) for a system operating in the weak
coupling, red-sideband regime. The parameters used are κ = 0.1,
Γm = 10−5, G = 10−3, Nl = 1, Nm = 200 (where we have set ωm = 1).
The mechanical temperature is minimized at κeff = 2G = 2×10−3, but
any modification which moves κeff towards this optimal value improves
the steady state cooling. (b) Shows average mechanical excitations
against time for the setups where κeff = 0.1 (no feedback), κeff =
50G = 5× 10−2 and κeff = 2× 10−3 = 2G with Γm = 10−5, G = 10−3,
Nl = 1, Nm = 200. (c) Shows a close-up of Figure 3.2b, with dotted
lines (labelled ‘SS’) showing the steady state mechanical excitations,
as predicted by equation (3.18). (d) Shows steady-state mechanical
excitations N against coupling strength G for a system in the strong
coupling red sideband regime with κ = 0.025, Γm = 10−3, Nl = 1,
Nm = 100. The blue dashed line indicates the steady state cooling
when no feedback is used and the orange solid indicates the steady
state cooling achievable when passive coherent feedback is numerically
optimized for the coupling strength.
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matrix:

A =


−κeff

2
−∆+ 2κb 0 0

∆− 2κb −κeff

2
−2G 0

0 0 −Γm

2
ωm

−2G 0 −ωm −Γm

2

 . (3.20)

The diffusion matrix is unnaffected by the Hamiltonian and will take the form

given in (3.6). For sideband cooling, we set ∆ = −ωm. In the strong coupling

regime, it is no longer possible to find a simple description of the optimal

coherent feedback protocol analytically, and we will investigate numerically,

though first, we will make a few observations about this setup.

First, recall that, in order for sideband driving to be effective, the finesse

of the cavity must be high enough that the sidebands can be resolved. This

means that the cavity loss rate must be much smaller than the mechanical

frequency. Since we are manipulating the cavity loss rate through coherent

feedback, we will take this to mean that κeff < 0.1ωm. By using CF to lower

κeff , coherent feedback can be used to bring a cavity with an otherwise low

finesse into the sideband resolved regime. Alternatively, since the matrix (3.20)

is not always Hurwitz in the red sideband regime, with large values of G, CF

could be used to increase κeff in order to decrease the eigenvalues of A and

stabilise otherwise unstable setups.

Numerically optimising the passive CF setup, we find that cooling is im-

proved most when b = 0 and κeff lies in the range G ⪅ κeff ⪅ 2G. For

couplings G ⪆ 0.05ωm, making κeff this high brings the system out of the

resolved sideband regime, so this protocol cannot be used. Thus, the numeri-

cally optimised protocols end up being a compromise between making κeff high

enough to improve performance, but low enough to stay within the resolved

sideband regime.

Figure 3.2d shows the minimum steady state mechanical excitations

achievable by optimising the passive coherent feedback protocol for a setup

in the strong coupling regime, with the extra condition that κeff < 0.1. We
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find that in the strong coupling regime, passive feedback can still improve

the performance of cooling, though the improvements brought about by CF

decrease as G decreases.

3.3.3 Active Coherent Feedback

We now consider the two types of ‘active’ coherent feedback: coherent feedback

with squeezing and losses and coherent feedback with two-mode squeezing as

described in Sections 3.2.2 and 3.2.3 respectively. These types of CF are con-

sidered to be ‘active’ (as opposed to passive) since they involve some form of

in-loop squeezing. We will investigate whether they can improve the perfor-

mance of a sideband-cooled optomechanical setup.

First, we note that CF with in-loop two mode squeezing will always be

inferior to passive CF, since both allow for the effective cavity loss rate to

be altered, but the two-mode squeezing loop does so with the extra cost of

increasing the noise on the optical mode. Therefore, we will not consider this

type of loop and instead focus on CF loops involving single-mode squeezing

and losses.

The evolution of this kind of setup, in the weak coupling regime will be

governed by a diffusion matrix given by (3.11). The drift matrix is found by

first expressing the system Hamiltonian (1.54) in terms of the system quadra-

tures to obtain the Hamiltonian matrix, then adding the Hamiltonian mod-

ifications given by (3.9). This is used to find ΩH which is then added the

diffusive component, given by (3.10), to give the full drift matrix:

A =


κ(3

2
ηz − 1

2
η
z
− 1) 0 0 G

0 κ(3
2
η
z
− 1

2
ηz − 1) −G 0

0 G −Γm

2
0

−G 0 0 −Γm

2

 . (3.21)

The steady state optomechanical covariance matrix was again found using

Mathematica. It can be found in Appendix C, along with an expression for

the resulting sympletic eigenvalue. The entropy of the steady state of such
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a setup was numerically minimised with respect to the CF parameters η and

z. We find that, for any setup of this kind in the weak coupling regime, the

entropy of the steady state is minimised when z = 1 and η = 1 − G
κ
which

corresponds to the optimal passive setup described in the previous section.

In other words, adding squeezing in this way does not lead to better cooling

of the mechanical oscillator than the passive CF loop. Thus, the addition of

squeezing, which is known to be resource in several other contexts, does not

improve the performance of the setup in this context.

3.3.4 Delayed Coherent Feedback

In the previous sections, we have assumed that all feedback occurs instanta-

neously, meaning that it would lead to Markovian evolution and be treatable

with our general model. Here, we look at the effect of introducing delays into

the feedback loop. Specifically, we will look at the effect of delays on the perfor-

mance of our optimal passive coherent feedback loop with sideband cooling in

the weak coupling regime. A method for treating CF delays in the Schrödinger

picture, by deriving a time-dependent propagator, is presented in [114], but

here we will make use of a method in the Heisenberg picture, presented in [32],

which involves Fourier transforming the Langevin equation.

We will consider the case where the output of interface 1 is mixed at a

beam splitter with an environmental mode r̂in,l3 after a delay of τ before being

immediately fed back into the cavity through interface 2. This means that we

set:

r̂in,l2(t) =ar̂out,l1(t− τ) + cr̂in,l3(t) (3.22)

=a(
√
κr̂l(t− τ)− r̂in,l1(t− τ)) + cr̂in,l3(t) . (3.23)

This results in the following delayed (non-Markovian) Langevin equation for
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the system variables r̂:

˙̂r(t) =Ar̂(t) + aκ

r̂c(t− τ)

0

 (3.24)

+

√
κ(r̂in,l1(t)− ar̂in,l1(t− τ) + cr̂in,l3(t))

√
Γmr̂in,m(t)

 ,

where a and c are the beam splitter paramters, as defined in Section 3.2.1

which satisfy a2 + c2 = 1 (implicitly assuming that b = d = 0) and A is the

drift matrix when no CF is present:

A =

−κ1 G1

G1 −Γm

2
1

 . (3.25)

In order to solve non-Markovian dynamics like these, we will work in the

frequency domain. We define the Fourier transform of an operator ô as

F [ô(t)] = ô(ω) =
1√
2π

∫ +∞

−∞
ô(t)eiωtdt . (3.26)

This allows delays to be treated as complex phases since and F [ô(t − τ)] =

eiωτ ô(ω). We also note that F [ ˙̂r] = −iωr̂(ω). Applying the Fourier transform

to both sides of equation (3.24) yields

− iωr̂(ω) = Ã(ω)r̂(ω) +B(ω)r̂in(ω) , (3.27)

where:

Ã(ω) = (A+ (12 ⊕ 02)aκe
iωτ ) , (3.28)

B(ω) =

√
κ(1− aeiωτ )12

√
κc12 0

0 0
√
Γm12

 , (3.29)

r̂in(ω) =


r̂in,l1(ω)

r̂in,l3(ω)

r̂in,m(ω)

 . (3.30)
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Note that, as we have defined it, the Fourier transform of a Hermitian operator

is not Hermitian, so in order to investigate physical observables, we must

transform back into the time domain. This is done by re-arranging (3.27) to

get

r̂(ω) = [−iω1− Ã(ω)]−1Br̂in(ω) = R(ω)r̂in(ω) . (3.31)

The function R(ω) = [−iω1 − Ã(ω)]−1B is known as the transfer function of

the system and captures the relationship between the system variables and

the input modes. In some contexts (eg. [16]) it can be used to derive control-

theoretic results. However, here we will just use it for the purpose of finding

the time-domain covariance matrix. Applying the Fourier transform to the

standard definition of the covariance matrix, given in equation (1.8), we find:

σ(t) =
1

2π

∫ +∞

−∞
dωdω′⟨{r̂(ω), r̂(ω′)T}⟩e−i(ω+ω′)t . (3.32)

This equation can be solved by Fourier transforming the input-output relations

(1.35) and (1.36) to obtain their frequency-domain forms:

[r̂in(ω), r̂in(ω
′)T] = iΩδ(ω + ω′) , (3.33)

⟨{r̂in(ω), r̂in(ω
′)T}⟩ = σinδ(ω + ω′) . (3.34)

Plugging these relations into (3.32) leads to an expression with delta functions

which can be integrated over, yielding the following expression for the steady-

state covariance matrix of the system

σ(t) =
1

4π

∫ +∞

−∞
dω

[
R(ω)(σin + iΩ)R(−ω)T

+R(−ω)(σin − iΩ)R(ω)T
]
. (3.35)

The resulting expression will not depend on t. The reason for this is that the

Fourier transform only exists for the time-independent solution to the delayed

equation, and will not capture transient dynamics. Though this expression
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is not solvable analytically, we can treat it numerically. As an example, we

use the setup described previously, where κ = 0.1, Γm = 10−5, G = 10−3,

Nl = 1, Nm = 200 and apply the optimal coherent feedback protocol by

setting a = 1 − G
κ
= 0.99. When τ = 0 (no delays) the average steady-state

mechanical excitation number is N̄0 = 0.988. Delays of τ = 1, τ = 2, and

τ = 20 result in steady state mechanical excitation numbers of 1.036, 1.084

and 1.939 respectively. Thus in-loop delays do reduce the performance of the

coherent feedback loops, but only by a small amount when the delays are on

the order of the mechanical oscillation time period. We note that, if the limit

τ −→ ∞, any output modes take an infinite amount of time to pass through

the feedback loop and return to the system. In this limiting case, the system

behaves in the same manner as if no feedback loop was present, and both

interfaces were interacting directly with the white-noise environment.

3.4 Coherent Feedback Enhanced Optome-

chanical Entanglement

Now, we will investigate the ability of CF to enhance the steady-state entan-

glement of the optical and mechanical modes, which can be induced by driving

the blue sideband with detuning ∆ = ωm. We will confine our investigation

to the weak coupling regime since the blue sideband in the strong coupling

regime is almost always unstable.

Even in the weak coupling regime, the blue sideband is often unstable (ie.

has negative eigenvalues of the drift matrix) and as a result does not reach

a steady state. This suggests two possible applications of CF. The first is

enhancing steady state entanglement of stable blue sideband setups and the

second is stabilising setups that would otherwise be unstable. Our figure of

merit for this section will be the logarithmic negativity, which will be deter-

mined using equation (1.22), with system A representing the optical mode and

system B representing the mechanical mode.
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3.4.1 Passive Coherent Feedback

Passive CF has the ability to tune the effective cavity loss rate κeff and ma-

nipulate the optical cavity frequency. In a preliminary investigation, we found

that tuning the optical cavity frequency had no beneficial effect on optome-

chanical entanglement, so for the remainder of this section, we focus on the

effect of tuning of κeff .

Blue sideband driving in the weak coupling regime with passive coherent

feedback is characterised by the drift matrix:

Ablue =

−κeff

2
12 −Gσx

−Gσx −Γm

2
12

 , (3.36)

which comes from combining the diffusive elements found in Section 3.2.1 and

writing the blue sideband Hamiltonian (1.55) in terms of a Hamiltonian matrix.

The diffusion matrix for this setup will be given by (3.6). Recall that, for the

system to be stable, (3.36) must have negative real parts for all eigenvalues.

The eigenvalues of (3.36) are given by:

λ =
1

4

(
− Γm − κeff ±

√
16G2 + Γ2

m − 2Γmκeff + κ2eff
)
. (3.37)

In order for the setup to be stable, the cavity loss rate must satisfy the condition

κeff > 4G2/Γm. Through the use of CF, we can tune the effective cavity loss

rate within the range 0 < κeff < 4κ. This means that we can use CF to stabilise

unstable blue sideband systems by increasing κeff . However, for systems with

κeff < G2/Γm, the cavity loss rate is too low for the system to be stabilised

using this method.

Now, we look at the ability of CF to increase the entanglement generated

by a stable setup. We investigated this problem numerically and found that

entanglement was often maximised when κeff was as small as it could be with-

out violating the stability criterion. This is done by setting κeff = 4G2/Γm + ϵ

where ϵ > 0 is a small real number. As an example, take the system charac-
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Figure 3.3: (a) Shows the maximum steady state logarthmic negativity achievable
for three setups at different values of κeff in a blue-sideband driven
setup in the weak coupling regime. The plot is shown for three different
setups, each with Γm = 10−3, Nl = 1, Nm = 100, but with different
values of the coupling G. (b) Shows the maximum achievable steady
state logarthmic negativity against in-loop squeezing z for three setups,
each with κ = 0.1, Γm = 10−3, Nl = 1, Nm = 100 and different values
of G.

terised by G = 4.5×10−3, Γm = 10−3 and κ = 0.1. This setup is stable and, at

steady state, the system has a logarithmic negativity of EN = 0.01166. Apply-

ing the optimal passive CF protcol yields a steady state logarithmic negativity

of EN = 0.0138. This increase small in absolute terms, and both logarithmic

negativities are too small to be of practical use. However, in relative terms, it

does represent a modest increase.

A plot of stable logarithmic negativity against κeff for three setups (in-

cluding the one described above) is shown in Figure 3.3a. If the system is not

stable for a particular value of κeff , then EN is recorded as 0. We find that,

for the weaker couplings (G = 4 × 10−3 and G = 2.5 × 10−3), the optimal

protocol does not involve setting κeff to the minimum stable value. Instead,

it is optimal for κeff to be higher than 4G2/Γm. Nonetheless, we find that for

all three setups, tuning κeff can have some small but positive effect on EN .

The sudden vertical jumps in EN exhibited by the setups with G = 0.004 and

G = 0.0045 occur at the points when κeff becomes large enough to stabilise

the system.
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3.4.2 Coherent Feedback with Squeezing and Losses

Now, we investigate the effect of CF with squeezing and losses (as described in

Section 3.2.2) on steady-state entanglement. The presence of in-loop squeezing

adds energy to the system and increases the eigenvalues, destabilising the

system. Thus, such feedback loops will be worse at stabilising unstable setups

than passive CF. We will therefore restrict our investigation to look at the

enhancement of entanglement, rather than stabilisation.

A blue-sideband driven system subject to such a CF loop is governed by

a drift matrix given by:

A =


κ(3

2
ηz − 1

2
η
z
− 1) 0 0 −G

0 κ(3
2
η
z
− 1

2
ηz − 1) −G 0

0 −G −Γm

2
0

−G 0 0 −Γm

2

 , (3.38)

which is obtained by combining the diffusive elements from active CF given

(3.10), the Hamiltonian modifications given by (3.9) and the blue sideband

Hamiltonian given by (1.55).The diffusion matrix is given by (3.11). We can

optimise the steady-state entanglement of this setup numerically with respect

to the feedback parameters η and z. We find that the logarithmic negativity of

the system peaks when z = 1, i.e., when there is no in-loop squeezing. In this

case, the feedback loop simply reduces to a passive loop, as considered in the

previous section. A plot of optimal steady state logarithmic negativity against

in-loop squeezing is shown in Figure 3.3b for three setups. Note that, in each

case, EN peaks when z = 1 and there is no in-loop squeezing. Thus, we can

conclude that in-loop squeezing for the purpose of entanglement does not add

any additional benefits beyond what is achievable through passive CF.
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3.5 Coherent Feedback for Optical and Me-

chanical Squeezing

In this section, we will investigate whether adding squeezing in the CF loop can

be used to generate steady state optical and mechanical squeezing. Mechanical

squeezing, in particular is of interest for using optomechanical systems for

sensing and metrology. Since active CF of the kind described in Section 3.2.2

adds squeezing inside the loop, we will consider this kind of CF, combined

with red sideband driving.

First, we note that this kind of setup can stabilise optical squeezing. Fig-

ure 3.4a shows the smallest eigenvalue of the steady state of the optical mode

against the in-loop losses parameter η. This is considered for two setups, one

with squeezing parameter z equal to one (which generates no in-loop squeezing

and is therefore passive) and the other with in-loop squeezing characterised by

z = 1.3. The passive loop, with z = 1 generates steady states with optical

eigenvalues σl ≥ 1, which are thermal, not squeezed. The active loop on the

other hand can stabilise squeezing for all values of the beam splitter parameter

below η = 0.59. Above η = 0.59, the system becomes unstable and no steady

state exists. We note that adding in-loop squeezing allows for the optical

eigenvalue to squeezed below the 3dB limit. We now ask whether the steady

states for these setups also have mechanical squeezing. Figure 3.4b shows the

smallest steady-state mechanical eigenvalues for both of the feedback loops

discussed previously. First, we note that neither passive nor active feedback

loops generate any steady-state mechanical squeezing, as all mechanical eigen-

values are greater than the vaccuum noise characterised by σm = 1. We find

that the presence of in-loop squeezing can reduce the noise on the mechanical

quadratures, compared to the case where there is no feedback. Furthermore,

the active loop with squeezing can outperform the passive loop for equivalent

values of the beam splitter parameter η (note that the beam splitter parame-

ter η is equivalent to the passive CF parameter a). However, since the active

setup is unstable for η > 0.59, the passive loop is superior in this regime. This
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Figure 3.4: (a) Shows the smallest steady state optical eigenvalue against beam
splitter parameter η for a passive loop (with z = 1) and active feeback
loop (with z = 1.3). The setup considered is in the weak coupling,
red sideband regime an has κ = 0.1, G = 10−3, Γm = 10−5, Nl = 1,
Nm = 100 in units where ωm = 1. (b) Shows the smallest steady
state mechanical eigenvalue against beam splitter parameter η for two
different in-loop squeezings. The setup considered is in the red side-
band, weak coupling regime and has κ = 0.1, G = 10−3, Γm = 10−5,
Nl = 1, Nm = 100. The values for z = 1.3 are only shown in the
range 0 < η < 0.6388 where the setup is stable. (c) Shows the smallest
steady state mechanical eigenvalue against beam splitter parameter η
for a passive loop (with z = 1) and an active loop with z = 1.5. The
setup is in the strong coupling, red sideband regime and has κ = 0.05,
G = 0.2, Γm = 10−4, Nl = 1, Nm = 100. The setup with z = 1.5 is
stable for η < 0.924.
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regime is important, since it contains the optimal passive loop, achieved by

setting η = 1 − G
κ
when z = 1. It turns out that this optimal passive loop

results in lower steady state noise on a quadrature than any active feedback

loop.

In further numerical investigation, we could identify no CF loop that

would push the noise of a mechanical quadrature below the vacuum level.

Thus, we tentatively conclude that CF is not useful for generating mechanical

squeezing.

3.6 Conclusions

We have investigated the effect of optical coherent feedback for the purpose

of enhancing several figures of merit in the setting of cavity optomechanics.To

do this, we choose three types of optical coherent feedback loops: passive,

interferometric coherent feedback, along with feedback involving squeezing and

losses and feedback involving two-mode squeezing. The effect of these loops

was characterised by drift and diffusion matrices of governing the Gaussian

evolution of the system.

We found that the steady-state cooling of the mechanical oscillator in the

red sideband regime was greatly enhanced by passive CF in both the weak

and strong coupling regimes, both in terms of lowering the number of steady

state mechanical excitations and decreasing the time taken for the system to

relax to the steady state. We also analytically derived the optimal passive CF

protocol in the weak coupling regime. Furthermore, we found that the active

CF loops could not outperform the optimal passive loop. Additionally, we

quantified the performance of the optimal passive CF protocol in the presence

of non-zero in-loop delays and found that the resulting reduction in cooling

power was small.

In the blue sideband regime, we found that passive CF is capable of in-

creasing the steady state optomechanical entanglement, and stabilising setups

that would otherwise be unstable. We numerically optimised these setups and
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found that CF could give modest increases in performance, but the steady-

state logarithmic negativity was small in absolute terms. Again, the active

feedback loops were found to be unhelpful in this context.

Adding in-loop squeezing was found to generate steady-state squeezing of

the optical mode, but we could not identify any CF loop which would gen-

erate steady-state squeezing of the mechanical mode. This can be contrasted

to measurement-based protocols for generating mechanical squeezing such as

those found in [115, 116, 117, 105, 118]. With the exception of generating

optical squeezing, the addition of active elements into the feedback loop was

detrimental to the performance for all the tasks we considered. Since active

elements add energy to the system, they also increase the noise and destabilise

the setup. This drawback repeatedly outweighed any benefits that might have

otherwise been gained from active feedback. This is surprising, since, in other

contexts, squeezed light has been found to be beneficial for optomechanical

systems [106, 107, 108, 109, 110, 111].

Most of the benefits of CF came from the passive case. In particular, the

ability of passive CF to adjust the cavity loss rate proved useful in several

contexts. This feature is interesting, since the cavity loss rate, along with the

cavity frequency, is normally assumed to be a fixed parameter of the setup, but

passive CF allows these features to be modified by changing interferometric

elements in the feedback loop.



Chapter 4

A Unified Collision Model of

Quantum Feedback

In the previous chapters, we have described coherent feedback in the regime

of Gaussian continuous variables. We restricted our investigations to setups

where the system was a set of bosonic modes and the environment could be

treated using the input-output formalism. In this chapter, we will relax these

restrictions to obtain a more general framework for describing coherent feed-

back, inspired by collision models (CMs). By analogy, we will derive a similar,

general model to describe measurement-based feedback and compare for sev-

eral archetypal tasks. Control tasks can be broadly split into two groups. The

first group, known as ‘state control’ tasks, are concerned with preparing the

system into a state with particular properties. The second group are known

as ‘operator control’ tasks, and are concerned with simulating unitary evolu-

tion, without advance knowledge of the input state. As an example of state

control, we will consider the task of minimising the steady state entropy of

a system subject to noise. For operator control, we consider first the task

of implementing a bit-flip on an unknown, pure qubit input state. We also

investigate whether our setups can achieve ‘complete operator controllability’

(that is, being able to generate any unitary evolution) in the limit of weak

system-controller coupling.

We will do this first in the discrete regime, before taking the continuous-
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time limit. The contents of this chapter are based on the work in an unpub-

lished manuscript [3], which is currently in preparation for publication.

4.1 A Discrete Collision Model of Quantum

Feedback

Our Gaussian CF model consists of the following three stages. First, the system

interacts with the noise environment through a quadratic Hamiltonian. Next,

the scattered output modes, and any ancillas are subject to another quadratic

Hamiltonian which generates a symplectic transformation (such as squeezing,

beam splitting, etc.). Finally, the transformed environmental modes interact

once again with the system through another quadratic Hamiltonian. After the

second interaction, the scattered modes do not interact again, and a new set

of modes are incident at the system interfaces. Note that not all white noise

inputs to the system will have outputs which are available for CF, generated

by inacessable dynamics (such as the noise on the mechanical mode in the

previous section).

This process can be generalised to describe a CF loop for quantum systems

and controllers of arbitrary dimension. This general model is described by the

following steps:

1. The controller is initialised to the default environmental state η.

2. A CP-map, representing the noise generated by inaccessible dynamics,

is applied to the system.

3. The system and controller interact through a fixed unitary U1

4. A unitary is applied to the controller only. The unitary is chosen from

the set {Vj} which, in practice, will be determined by experimental spec-

ifications.

5. The system and controller then interact again through unitary U2.
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This model, we argue, fits the specification of coherent quantum feedback. In

step 3, quantum information is exchanged between system and controller. In

step 4, the information extracted from the system is processed coherently. In

step 5, the result of this coherent processesing is fed back into the system.

Some treatments, such as [11] and [13], will combine steps 3-5 as one

step and characterise any unitary interaction between system and controller

as coherent feedback. While this approach is valid, we believe that the extra

restrictions we place on the form of the unitary interaction give the model an

explicit ‘feedback loop’ structure, which is lacking in the alternative defini-

tion. This structure also fits the way that coherent feedback is implemented in

quantum optics: in practice, the interactions between a controller and system

and limited by the form of the coupling at the input-output interfaces. This

is mimicked in our model by the fixed interaction unitaries U1 and U2.

By describing the CF loop in terms of a flow of quantum information, as

we have just done, an equivalent model of MF suggests itself. In this model,

instead of being processed coherently, the quantum information extracted co-

herently is measured and then processed, using the in-loop unitaries. Thus,

measurement-based feedback can be described by replacing step 3 in the above

protocol with the following modified step:

3′ The controller is measured using a non-demolition measurement. In prac-

tice, the type of measurement will be determined by experimental speci-

fications. Then, depending on the measurement outcome, a unitary from

the set {Vj} is applied to the controller.

An important feature of our model of MF is that it involves non-demolition

measurements (also known as ‘non-destructive measurements’). This means

that we assume that the purified, post-measurement state is available for fur-

ther processing and is not destroyed by the measurement. Non-demolition

measurements are assumed in some models of MF (such as [11]), but most

of the quantum-optical investigations assume that measurements are destruc-

tive, which is the case in practice for most setups involving the monitoring of
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ρinS E

U1 U2

ρoutS

η ??

Figure 4.1: A schematic circuit diagram for our model of quantum feedback. Note
that the model can apply to any type of system, not just qubits.

output fields [12, 16]. When measurements are destructive, it means that the

post-measurement state is not available for further processing–the process of

measurement assumed to have ‘destroyed’ the state. When destructive mea-

surements are involved, MF is implemented by using the measurement signal

to inform manipulations on the system, rather than the post-measurement

state itself.

A schematic quantum circuit for this model of feedback is shown in Figure

4.1. In this figure, the in-loop process is marked by a box labelled ‘??’. To

model CF, this can be replaced by a unitary, and to model MF, this box can

be replaced by a measurement, followed by a unitary.

Note that, we only allow for unitary operations inside the CF loop, and

do not allow for more general non-unitary operations, as represented by CP-

maps. However, when we restrict to in-loop unitary operations in CF and

measurement plus unitary operations in MF, we are not ruling out the possi-

bility of more complex in-loop CP-maps since all CP-maps can represented as

unitary operations on a larger Hilbert space [119]. However, a key feature of

this model is that the in-loop unitary operations available to MF and CF are

the same. This allows us to isolate the effect of performing a measurement and

determine whether or not that measurement is useful for a particular task.

For most MF setups, the output will depend on the measurement result,

which is stochastic. This presents us with two approaches to MF. The first,

which we will call ‘filtered’ or ‘conditional’ MF, is to keep track of the mea-

surement record [12]. This will result in stochastic dynamics. For a POVM

characterised by Kraus operators {Kj}, a single iteration of the filtered MF
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protocol will result in an ouput which depends on the particular measurement

outcome, which we will label µ. This output will be given by:

ρout,µS =
1

Nµ

Tr[U2VµKµU1E(ρinS )⊗ ηU †
1K

†
µV

†
µU

†
2 ] , (4.1)

where Nµ is a normalisation factor and Vµ is the feedback unitary applied

to the controller as a result of measurement outcome µ. Note that equation

(4.1) can be thought of as a discrete version of the stochastic master equation

[12], albeit with specific restrictions on the form of the system-environment

interaction. Alternatively, we can consider ‘unfiltered’ MF, which we will also

refer to as ‘unconditional’ or ‘averaged’ MF. In this approach, we average over

the measurement results. The advantage of averaged feedback is that it can be

treated as a CP-map, whose outcome is deterministic, since we have averaged

over the stochasticity. The output of a single iteration of averaged MF does

not depend on the measurement outcome, and is given by:

ρoutS =
∑
i

Tr[U2ViKiU1E(ρinS )⊗ ηU †
1K

†
i V

†
i U

†
2 ] . (4.2)

4.1.1 The Limit of Weak Measurement

A nice feature of this model is that coherent feedback can be framed as mea-

surement feedback in the limit of weak measurements, and in this sense, the

two feedback methods can be viewed as different ends of a spectrum.

To demonstrate this, we use the observation, noted in [13], that the Kraus

operators defining a POVM {Kj}, can be written using the polar decomposi-

tion as Kj = UjPj, where Uj is a unitary matrix, and Pj is a positive semidefi-

nite matrix. Notice that, since
∑

j K
†
jKj = 1, then we must have

∑
j P

†
j Pj = 1

as well. This means that we can view Pj a POVM as well. Thus, any POVM

can be characterised as a ‘bare’ measurement, (characterised by {Pj}) followed

by a unitary transformation Uj, which depends on the measurement outcome.

The properties of Pj determine the strength of the measurement. For

example, if all Pj are rank-one projectors, then the POVM has equivalent
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strength to a projective measurement and has the power to reduce the entropy

of a mixed state to a pure state. On the other hand, if Pj are all proportional

to the identity, the POVM will have no power of entropy reduction and will

reduce to a unitary channel. In-between cases of weak but non-negligible

measurement are captured by other types of Pj matrices. In this sense, CF

can be viewed as a case of MF for a POVM where all Pj are proportional to

the identity. We will explore this idea more concretely in a later section.

4.1.2 A Toy Model

In this chapter, we will investigate several control tasks within this framework,

and use them to compare the performance of CF and MF. To do this, we will

present a simple toy model within this framework, which includes all important

features of the model while still being analytically tractable in most cases.

In this toy model, the system and environment are both taken to be d-

dimensional systems. The noise on the system is taken to be the depolarising

map, whose action is characterised by:

E(ρ) = λρ+ (1− λ)
1

d
1 , (4.3)

where 0 < λ < 1 is the parameter which characterises the strength of the noise.

Both U1 and U2 will be taken to be the partial swap, which takes the form:

Us = cos θ1− i sin θŜ , (4.4)

where Ŝ is the full swap unitary and θ is the parameter which determines the

strength of the interaction. For compactness, we will often write c = cos θ

and s = sin θ. The in-loop unitaries {Vj} which are allowed for CF and MF

will be any single qudit unitaries. In addition, MF will be allowed rank-

one projective measurements to be performed in-loop (though we will explore

weaker measurements as a proof of concept in Section 4.3.3).

Finally, we will consider a wide range of initial controller states. We will

refer to the case when η = 1
d
1 as the ‘high temperature’ or ‘noisy controller’
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case, and the case when η is a pure state will be referred to as the ‘low tem-

perature’ or ‘clean’ controller.

4.2 Quantum Feedback for Cooling

In this section, we will compare CF and MF for the task of cooling the system.

Our figure of merit will be the steady-state entropy of the system. The steady

state is a system state ρss which, when put through one iteration of the pro-

tocol, is unchanged. The steady state will be reached by repeated application

of the protocol to any state.

4.2.1 Coherent Feedback Cooling at High Temperature

In this section, we consider the efficacy of the toy model of CF, presented in

the previous section, for the task of minimising the steady state entropy. We

will look at the ‘high temperature’ case, where the controller is initialised in

the maximally mixed state η = 1
d
1. It is fairly straightforward to show that the

only possible steady state for CF, regardless of the in-loop unitary chosen, is

the maximally mixed state. We will do this by showing that a single iteration

of the CF protocol cannot reduce the entropy of the system input.

In what follows, the subscript T will be used to denote the system and

controller, jointly considered as a whole, and the subscript S will be used to

denote the system on its own. We will use ηin to denote the initial state of the

controller. For a generic system input ρinS , the von Neumann entropy of the

total input state ρinS ⊗ ηin is given by [119]:

Sin
T = S(ρinS ⊗ η) = S(ρinS ) + S(ηin) . (4.5)

After the application of the depolarising map, the system is still in a separable

state and the total entropy is:

ST = S(E(ρinS )) + S(ηin) . (4.6)

Now, we note the important fact that, for CF, the rest of the protocol is entirely
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described by unitary operations, which leave the total entropy unchanged,

meaning that we can write:

Sout
T = ST = S(E(ρinS )) + S(ηin) . (4.7)

If we call the system output state ρoutS , and the controller output state ηout, we

can use the subadditivy of entropy [119] to obtain the following bound:

S(ρoutS ) ≥ Sout
T − S(ηout) = S(E(ρinS ))−∆S(η) . (4.8)

where ∆S(η) = S(ηout) − S(ηin) is the change in entropy of the controller.

However, in the high-temperature case we are considering here, ηin is maxi-

mally mixed so the maximum value of ∆S(ηin) is 0. This gives us the bound

on the entropy of the output:

S(ρoutS ) ≥ S(E(ρinS )) ≥ S(ρinS ) . (4.9)

The entropy of the system output state can never be lower than the entropy of

the input. Furthermore, the input and output entropies are only equal when

S(E(ρinS )) = S(ρinS ) which is only true when ρinS is maximally mixed. This

means that the only steady state that can be achieved by coherent feedback is

the maximally mixed state.

4.2.2 Conditional Measurement-based Feedback at

High Temperature

Here, we will consider a MF protocol in our toy model where the measurement

outcome is recorded and the system evolves stochastically. In general, the

stochastitcity of such ‘filtered’ protocols means that they do not have a steady

state. Nonetheless, we can investigate their ability to reduce entropy. In what

follows, we will denote the action of the initial depolarising map using the

notation ρN = E(ρin) = λρin + 1−λ
d
1. After the interaction through the first

partial swap, the controller will be measured in the basis {|i⟩} and a unitary
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Vi will be applied to the controller, depending on the measurement outcome.

At this point in the protocol, after a measurement outcome labelled by j,

the system and controller will be in the product state ρj ⊗ |ψj⟩ ⟨ψj|, where

|ψj⟩ = Vj |j⟩ and the system density matrix ρj takes the form:

ρj =
1

pj

(1
d
c2ρN + s2η(ρN)jj − isc[|j⟩ ⟨j| , ρN ]

)
, (4.10)

where pj = 1
d
c2 + s2(ρN)jj and (ρN)jj = ⟨j| ρN |j⟩. To derive this, we have

used the fact that TrB[Ŝ, A ⊗ B] = [B,A]. The final system output state is

found by applying a partial swap once more to this state, and tracing out the

controller. This leads to an output state:

ρout,j = TrC [Usρj ⊗ |ψj⟩ ⟨ψj|U †
s ] . (4.11)

We will now derive the conditional MF protocol which minimises the entropy

of ρout,j for an input state which is diagonal in the measurement basis {|j⟩}

(as the maximally mixed state would be). First, we note that, if ρin is di-

agonal in the measurement basis, then so is ρN , and the commutator term

in equation (4.10) will be equal to zero. In this case, ρj will have the same

eigenvectors and eigenvector ordering as ρin (ie. they both have the same vec-

tor corresponding to the largest eigenvalue, the same vector corresponding to

the second largest eigenvalue, etc.). Entropy Power Inequalities (EPIs) have

been studied specifically for expressions of the form (4.11) [120, 121]. Using a

majorisation relation found in [120], we can write the following:

λ(ρout,j) ≺ c2λ(ρj) + (1− c2)λ(|ψj⟩ ⟨ψj|) , (4.12)

where λ(ρ) indicates the ordered spectrum of ρ. The right hand side of this

relation is majorised when |ψj⟩ points along the direction of the eigenvector

of ρj which correpsonds to the largest eigenvalue. The largest eigenvector of

ρj is the same for all j and is equal to the largest eigenvector of ρin. Thus, to
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minimise the output entropy for an input state diagonal in the measurement

basis, |ψj⟩ must be set to the largest eigenvector of ρin, regardless of the

measurement outcome.

4.2.3 Unconditional Measurement-based Feedback at

High Temperatures

Now, we will investigate the performance of unconditional MF, first generally,

then specifically for the optimal conditional protocol identified in the previ-

ous section. After the first system-environment interaction, the system and

controller are prepared in an entangled state given by:

ρT = c2ρN ⊗ η + s2η ⊗ ρN − isc[S, ρN ⊗ η] . (4.13)

Then, a measurement is performed and the unitary Vj is applied to the con-

troller. This process, performed unconditionally, can be viewed as a CP-map

with Kraus operators given by {|ψj⟩ ⟨j|}, where {|j⟩} is the measurement ba-

sis, and |ψj⟩ = Vj |j⟩, as before. This prepares the system and contoller in the

separable state:

ρT =
∑
j

pjρj ⊗ |ψj⟩ ⟨ψj| , (4.14)

where ρj and pj are defined as in equation (4.10). Finally, the system and

controller interact again through the partial swap unitary. After the controller

is traced out, the system output state is:

ρout =
∑
i

pi

(
c2ρi + s2 |ψi⟩ ⟨ψi| − isc[|ψi⟩ ⟨ψi| , ρi]

)
. (4.15)

The optimal conditional protocol from the previous section involves ap-

plying an in-loop unitary to set each measurement result to the same state,

which here we will call |0⟩. This involves setting |ψj⟩ = |0⟩ for all j. Applying

this to equation (4.15) and simplifying yields the following output state:

ρout = c4ρN + s2c2η + s2 |0⟩ ⟨0| − isc3[|0⟩ ⟨0| , ρN ] . (4.16)
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This equation shows the relationship between the output and input states for

a single iteration of our MF protocol. To find the steady state, we will set

ρin = ρout = ρss and solve the equation for ρss. The fact that η = 1
d
1 allows

us to write ρN = λρin + (1 − λ)η. Plugging these expressions into (4.16) and

solving for ρss yields:

ρss =
1

1− c4λ

(
(c4(1− λ) + s2c2)η + s2 |0⟩ ⟨0| − λisc3[|0⟩ ⟨0| , ρss]

)
. (4.17)

The only solution to this equation is diagonal in the |j⟩ basis, containing |0⟩.

This is evident if we act with ⟨j| and |k⟩ from the left and right (for j ̸= k)

and obtain:

⟨j| ρss |k⟩ =
1

1− c4λ
(−λisc3(δj0 ⟨0| ρss |k⟩ − ⟨j| ρss |0⟩ δ0k) . (4.18)

Due to the delta functions, the right hand side of this equation is only nonzero

when either j or k is equal to zero. For j = 0, k ̸= 0, we obtain:

⟨0| ρss |k⟩ =
1

1− c4λ
(−λisc3(⟨0| ρss |k⟩) , (4.19)

whose only solution is when ⟨0| ρss |k⟩ = 0. Thus, we can conclude that ρss

is diagonal in the basis {|j⟩}, and its eigenvalues are obtained by acting on

(4.17) from the left and right with ⟨j| and |j⟩. The largest eigenvalue of ρss is

associated with the eigevector |0⟩ and has the value:

α0 =
1

1− c4λ

(
c4(1− λ) + s2c2

d
+ s2

)
. (4.20)

The remaining d− 1 eigenvalues are degenerate, each with value:

αj =
1

1− c4λ

(
c4(1− λ) + s2c2

d

)
. (4.21)

This means that we can write the steady state for this unconditional MF
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protocol as:

ρss =
1

d

d(1− c2) + c2 − λc4

1− λc4
|0⟩ ⟨0|+

d−1∑
j=1

1

d

c2 − λc4

1− λc4
|j⟩ ⟨j| . (4.22)

The linear entropy for this state is:

SL = 1−
∑
j

α2
j = (1− 1

d
)− (c2 − 1)

2
(d− 1)

d (c4λ− 1)2
. (4.23)

Since this steady state always has lower entropy than the maximally mixed

state (for non-trivial values of c), we can say that unconditional MF outper-

forms all CF protocols in this setup for the task of minimising steady state

entropy.

4.2.4 Coherent Feedback Cooling at Low Temperature

We will consider a setup identical to CF protocol considered in Section 4.2.1,

except that the environment is initialised to a pure state |0⟩ ⟨0|, instead of

a maximally mixed state. We will restrict to the case where d = 2 and both

system and controller are qubits. For this setup, we will find the lowest entropy

steady state achievable through CF which is diagonal in the {|0⟩ , |1⟩} basis.

This will not amount to a total optimisation over all possible CF protocols,

but gives a heuristic reason to believe that the protocol we find is optimal (or

close to it). We express the in-loop unitary as using the general decomposition:

U =

 eiφ1 cosχ eiφ2 sinχ

−e−iφ2 sinχ e−iφ1 cosχ

 . (4.24)

The steady state of this setup will be unchanged by a single iteration of the

feedback loop. This can be expressed as:

ρss = TrC
[
Us(1⊗ U)UsE(ρss)⊗ ηU †

s (1⊗ U†)U †
s

]
. (4.25)
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This was written as a 2×2 matrix equation in Mathematica, expressing all op-

erators in the {|0⟩ , |1⟩} basis. To simplify the search for solutions, we searched

for the steady state diagonal in the {|0⟩ , |1⟩} basis. This was done by setting

ρ01 = ρ10 = 0. This meant that equation (4.25) could be expressed as simulta-

neous equations for ρ00 and ρ11 which were then solved using Mathematica’s

‘Solve’ function, yielding the following solution:

ρss = diag(e1, 1− e1) (4.26)

with

e1 =
−2c4(λ+ 1)p2(q + 1) + 2c2 (p2(λ(q + 2) + q + 1)− λ) + λ− 2λp2 + 1

λ (4c2 (p2 ((c2 − 1) q + c2 − 2) + 1) + 4p2 − 2)− 2
,

(4.27)

where p = cosχ and q = cos 2φ1. The entropy of this state was analytically

minimised using Mathematica’s ‘FindMinimum’ function. The protocol which

minimises the entropy is one in which χ and φ1 are both integer multiples of

π. This is satisfied when the in-loop unitary U is equal to the identity. In this

case the steady state has linear entropy:

SL =
1

2
− 8c4 (c2 − 1)

2(
(1− 2c2)2 λ− 1

)2 . (4.28)

If this CF protocol (applying the identity in-loop) is applied to a setup with a

system and environment of dimension d, and the environment prepared in the

pure state |0⟩, the system steady state will have its largest eigenvalue (with

eigenvector |0⟩) equal to:

β0 =
4 (c2 − 1) c2(d+ λ− 1) + λ− 1

d
(
(1− 2c2)2 λ− 1

) . (4.29)

The other (d− 1) eigenvalues will be degenerate, and take the value:

βj =
(1− 2c2)

2
(λ− 1)

d
(
(1− 2c2)2 λ− 1

) . (4.30)
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For dimension d, this steady state will have linear entropy:

SL = (1− 1

d
)− 16c4 (c2 − 1)

2
(d− 1)

d
(
(1− 2c2)2 λ− 1

)2 . (4.31)

which is always less than the linear entropy of the maximally mixed state.

Note that when c = 1√
2
, β0 = 1 and βj ̸=0 = 0 and the steady state is pure.

This is because, when c = s = 1√
2
, the partial swap is the square root of the

full swap, so applying it twice enacts a full swap, replacing the system mode

with the pure environmental mode. This can be seen since:

UsUs =
1√
2
(1− iŜ)

1√
2
(1− iŜ) =

1

2
(1− 2iŜ − Ŝ2) = −iŜ . (4.32)

For certain couplings, the coherent nature of the CF protocol allows low-

entropy controller states to be swapped with the system state. As we will

see in the next section, this process can be disturbed by the process of mea-

surement.

Before moving on to MF, we will investigate the effect of this CF pro-

tocol when the environment is initialised in an state of arbitrary tempera-

ture. Restricting to qubits, we will write the environmental state as η =

η0 |0⟩ ⟨0|+(1−η0) |1⟩ ⟨1|. Applying the CF protocol where the in-loop unitary

is the identity, we obtain a steady state which is diagonal in the {|0⟩ , |1⟩}

basis, with the eigenvector |0⟩ corresponding to the eigenvalue:

β0 =
4 (c2 − 1) c2(2η0 + λ− 1) + λ− 1

2 (1− 2c2)2 λ− 2
. (4.33)

This qubit steady state has a linear entropy:

SCF =
1

2
− 8c4 (c2 − 1)

2
(1− 2η0)

2(
(1− 2c2)2 λ− 1

)2 . (4.34)
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4.2.5 Measurement-based Feedback at Intermediate

Temperatures

We will now look at the effect of our averaged MF protocol when the envi-

ronment is of an arbitrary temperature. We will consider a qubit system with

a generic environmental input state η which will have an arbitrary tempera-

ture and apply the same MF protocol presented in Section 4.2.3, where the

controller is measured in the {|j⟩} basis, then all measurement outcomes are

mapped to the |0⟩ state. After one iteration of this MF protocol, the output

state is:

ρout = c4ρN + s2c2η + s2 |0⟩ ⟨0| − isc3[|0⟩ ⟨0| , ρN ] . (4.35)

Previously, we assumed that η was maximally mixed, but it need not be.

We will restrict to qubits and choose |0⟩ to point along the direction of the

dominant eigenvector of η, so we can write the controller state of arbitrary

temperature as η = η0 |0⟩ ⟨0|+ (1− η0) |1⟩ ⟨1|. Solving for steady state gives:

ρss =
1

1− c4λ
(c4(1− λ)

1

d
1+ (s2c2η0 + s2) |0⟩ ⟨0|+ s2c2(1− η0) |1⟩ ⟨1|

− iλsc3[|0⟩ ⟨0| , ρss]) .

As before, this state is diagonal in the basis {|j⟩}. It has eigenvalues

α0 =
1

1− c4λ

(
c4(1− λ)

1

2
+ s2c2η0 + s2

)
, (4.36)

α1 =
1

1− c4λ

(
c4(1− λ)

1

2
+ s2c2(1− η0)

)
, (4.37)

corresponding to the eigenvectors |0⟩ and |1⟩ respectively. The linear entropy

of this state is:

SMF =
1

2
− (c2 − 1)

2
(c2(2η0 − 1) + 1)

2

2 (c4λ− 1)2
. (4.38)
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A maximally mixed environment corresponds to η0 = 1/2, which recovers the

expression from earlier. For a pure environment, we set η0 = 1 and we obtain

the following expression:

SMF =
1

2
− (c4 − 1)2

2(c4λ− 1)2
. (4.39)

We will now prove that, even when η0 = 1, and the environment is pure no

unconditional MF protocol of any form can prepare a pure system steady state

when c = 1√
2
. Recall that, for c = 1√

2
and a pure environment CF produces

a pure steady state, so this is an interesting point of comparison. We will

restrict the investigation to qubits. As we have seen before, after projective

measurement in the basis |j⟩ and the action of an in-loop unitary, the system

and controller are prepared in a joint state:

ρT =
∑
j

pjρj ⊗ |ψj⟩ ⟨ψj| , (4.40)

where

ρj =
1

pj

(1
2
c2ρN + s2η(ρN)jj − isc[|j⟩ ⟨j| , ρN ]

)
. (4.41)

The first step of this proof is to show that ρj cannot be pure. This is done

by writing ρj in the basis containing |j⟩ and restricting to the case of interest,

when c = s = 1√
2
. This gives us:

ρ
(1)
S =

1

2

 1 + ρ00 ρ01(1 + i)

ρ10(1− i) 1− ρ00

 , (4.42)

where ρij are the matrix elements of ρN . This matrix has eigenvalues:

λ+/− =
1

2

(
1±

√
ρ200 + 2ρ01ρ10

)
≥ 0 . (4.43)

If this state is pure, its determinant will be equal to 0, which requires√
ρ200 + 2ρ01ρ10 = 1. Since both eigenvalues must be greater than or equal
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zero, ρ200+2ρ01ρ10 ≤ 1. The equality is reached only in the case where ρ00 = 1,

which could only be the case if ρN was pure. However, ρN = E(ρin) where

E is the depolarising map. For any non-trival value of the noise parameter λ

(ie. any case with λ ̸= 1), the depolarising map monotonically increases the

entropy. This means that, regardless of input state, ρN will not be pure. This

fact, combined with the fact we have just shown that ρj cannot be pure unless

ρN is also pure means that we can conclude that ρj are not pure.

After the second system-controller interaction, the controller is traced out

and the output state is given by:

ρout =
∑
i

pi

(
c2ρi + s2 |ψi⟩ ⟨ψi| − isc[|ψi⟩ ⟨ψi| , ρi]

)
=

∑
i

piσi . (4.44)

Applying the same argument that we used to prove that ρj could not be pure,

we can prove that σj cannot be pure. Therefore, since ρout is a classical mixture

of mixed states, it cannot be pure. This means that, in contrast to CF, no

unconditional MF protocol can stabilise a pure steady state in the case where

s = c = 1√
2
.

4.2.6 Comparison at Intermediate Temperature

We will now compare the CF protocol used in Section 4.2.4 (where the in-

loop unitary is the identity) and the MF protocol used in Section 4.2.5 (where

measurement is used to prepare the controller in the |0⟩ state) in the case

where the environment is at an arbitrary temperature. This will be done

by comparing equations (4.38) and (4.34) which give the steady state linear

entropies for these protocols when applied to qubits.

In the MF protocol, the in-loop measurement process results in the con-

troller being prepared in the |0⟩ state. It is optimal to use MF to prepare

the controller in the state corresponding to the largest eigenvalue of the en-

vironmental input. For η0 < 1/2, this corresponds to |0⟩ ⟨0| and for η > 1/2,

this corresponds to |1⟩ ⟨1|. For our comparison, we assume that the optimal

MF protocol is used. The steady state entropy for this protocol, along with
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Figure 4.2: (a) Shows the steady-state linear entropy against the largest eigenvalue
of the environmental stae for MF and CF setups, as given by equations
(4.38) and (4.34) where c = 0.5 and λ = 0.25. (b) Shows the same
expressions for setups with stronger noise and weaker coupling, where
c = 0.9 and λ = 0.5.

steady state CF entropy given by equation (4.34) is plotted in Fig. 4.2 for

different environmental states, as parameterised by η0 and different setups,

parameterised by different values of c and λ.

We find that for the setup with c = 0.5, MF outperforms CF for all

environmental temperatures. For a weaker system-environment interaction,

characterised by c = 0.9 and noise parameter λ = 0.5, we find that MF out-

performs CF for high temperature environments with 0.357 < η0 < 0.764,

but CF outperforms MF at low temperatures characterised by η0 < 0.357

and η0 > 0.764. Broadly, we can make the following observation: for low

temperature environments and weak couplings, the act of measurement dis-

turbs the coherent process which allows for low entropy environmental states

to be transferred to the system, meaning that MF is inferior to CF. However,

with strong couplings and noisy environments, the purification from the act of

measurement compensates for this and leads MF to be superior to CF.

4.3 Quantum Feedback For Operator Control

We will now investigate CF and MF within our toy model for the purpose

of operator control. Recall that ‘operator control’ refers to tasks aimed at

simulating a particular unitary evolution, without knowledge of the input state.
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As as archetypal example, we will consider the task of implementing a bit-flip

on a generic qubit input. We will then investigate the efficacy of MF and CF

for the task of simulating any unitary dynamics in the limit of infinitesimally

weak system-controller coupling. For simplicity, we assume that the system

is not subject to any noise is either case and the controller is initialised to a

generic input state of the form η = η0 |0⟩ ⟨0|+ (1− η0) |1⟩ ⟨1|.

4.3.1 Performing a bit-flip using Coherent Feedback

Here, we consider the performance of an intuitive CF protocol for performing

a bit-flip on the system input state. In this protocol, after the first system-

controller partial swap interaction, the in-loop unitary performed is the Pauli

x-matrix σx. The system and controller then interact again through a partial

swap interaction. For a generic input state of the form:

|ψ⟩ = cos
χ

2
|0⟩+ eiϕ sin

χ

2
|1⟩ , (4.45)

the output density matrix of this protocol is:

ρout =
1

2

 (c4 − s4) cos(χ) + 1 e−iϕ sin(χ)
(
c2 + s2e2iϕ

)
e−iϕ sin(χ)

(
s2 + c2e2iϕ

)
(s4 − c4) cos(χ) + 1

 . (4.46)

This result was obtained by expressing the problem in terms of 2×2 matrices,

and multiplying them in Mathematica. For implementing a bit-flip, the desired

output state is:

|ψX⟩ = σx |ψ⟩ = cos
χ

2
|1⟩+ eiϕ sin

χ

2
|0⟩ . (4.47)

The fidelity of the output state to the desired state is given by:

FCF (χ, ϕ) = ⟨ψX | ρoutS |ψX⟩ =
1

4
(c2

(
cos(2ϕ)− 2 cos(2χ) cos2(ϕ)

)
− 3c2 + 4) .

(4.48)
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Note that this fidelity depends on the input state, as parameterised by χ and

ϕ. Since we wish to evaluate the performance of this protocol on any input,

we will average over the Haar-measure for the input states to obtain a figure

of merit which is independent of χ or ϕ (see eg. [122] for details of the Haar

measure in SU(2) which is used here). This Haar-measure averaged fidelity is

given by:

ACF =
1

4π

∫ π

0

dχ

∫ 2π

0

dϕFCF (χ, ϕ) sin (χ) = 1− 2

3
c2 . (4.49)

We note that the fidelity is an increasing function of the interaction strength.

As c2 −→ 0, the partial swap becomes a full swap, and the fidelity of the bit-flip

becomes perfect. Weaker interactions lead to lower fidelities, to a minimum

of 1/3, when c2 = 1. We will now show that no projective MF protocol can

outperform this CF protocol.

4.3.2 Performing a bit-flip using Projective Measurement-

based Feedback

We will now consider unconditional MF protocols for the same setup as the

previous section: both system and controller are qubits, coupled through

partial swap gates and the controller is initialised in a generic state η =

η0 |0⟩ ⟨0| + (1 − η0) |1⟩ ⟨1|. After the first partial swap, a projective measure-

ment is made on the controller in the {|0⟩ , |1⟩} basis (we will consider more

general POVMs in the next section). After the measurement, if the result

is |0⟩, the unitary U is applied to the controller, and if the result is |1⟩, the

unitary V is applied instead. This process, applied unconditionally, is equiv-

alent to a CP-map acting on the controller with Kraus operators given by

{U |0⟩ ⟨0| , V |1⟩ ⟨1|}. After this CP-map is applied, the system and controller

interact again through the partial swap.

We will now find the Haar-measure averaged output fidelity in the same

way as in the previous section. The in-loop unitaries U will be taken to be

completely general two-qubit unitaries. We will aim to find the optimal values
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of U and V . For a general input given by equation (4.45), the fidelity of the

output to the desired state is FMF = ⟨ψX | ρoutS,MF |ψX⟩. For the sake of space,

this expression is printed in the Appendix Section D.1. This expression was

calculated by expressing the problem in terms of 2×2 matrices in Mathematica.

The Haar measure average was taken using Mathematica’s inbuilt ‘Integrate’

function. After the Haar measure average is taken, we obtain the following

managable expression:

AMF =
1

4π

∫
FMF (χ, ϕ) sin (χ)dχdϕ

=
1

12
(6− 2c4 − s4 cos 2θu − s4 cos 2θv) ,

(4.50)

where we have used the decomposition of 2 × 2 unitary matrices to write

magnitudes of the matrix elements ujk and vjk as

|u00| = cos θu , |u10| = sin θu , |v11| = cos θv , |v01| = sin θv . (4.51)

The equation (4.50) can be analytically optimised with respect to the in-loop

unitary parameters θu and θv. The Haar-measure averaged fidelity (4.50) is

maximised when θu = θv = π
2
. This means that the optimal projective MF

performance is achieved when U = V = σx (up to a phase which does not affect

the output fidelity). Plugging these optimal values into (4.50) and simplifying

yields the maximum averaged output fidelity for projective MF:

AMF =
1

3
(1 + s2) =

2

3
− 1

3
c2 . (4.52)

This fidelity increases as the system-environment interaction increases. How-

ever, for all values of c, this fidelity is lower than the fidelity achieved in an

equivalent setup using coherent feedback, as given by equation (4.49). There-

fore, we can say that CF outperforms all MF protocols involving projective

measurements. We will now investigate whether any POVM, not limited to

projective measurements, can outperform CF for this task.
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4.3.3 Measurement-based Feedback with General POVMs

We will now investigate what happens when we relax the restriction that the

in-loop measurement must be projective, and consider more general in-loop

POVMs. Recall that in Section 4.1.1, we showed that all POVMs can be

represented as a ‘bare’ measurement, characterised by positive semidefinite

Kraus operators Pj, followed by a unitary Uj depending on the measurement

outcome. Since, in MF, we already allow for the action of a unitary depending

on the measurement result, we can absorb Uj into the feedback unitaries.

Additionally, since our final figure of merit is averaged over the Haar measure,

it is therefore unitarily invariant and we can assume that Pj are diagonal in

the {|0⟩ , |1⟩} basis.

Restricting to projective measurements in the previous section is equiv-

alent to requiring that Pj are rank-one projectors. Relaxing this condition

allows us to write the general qubit POVM Kraus operators as:

P0 = a |0⟩ ⟨0|+ b |1⟩ ⟨1| , P1 =
√
1− a2 |0⟩ ⟨0|+

√
1− b2 |1⟩ ⟨1| , (4.53)

for 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. We can recover the case of projective measure-

ment as a limit, when a = 1 and b = 0. Also, note that when a = b, both

elements of the POVM are proportional to the identity. This case corresponds

to no measurements being performed, and it is in this limit that MF becomes

equivalent to CF. Since we will absorb the action of Uj into U and V , the

in-loop process will be captured by a CP-map with elements {UP0, V P1}. The

fidelity of the output of this setup to the desired state can be optimised with

respect to U and V in a similar way to the previous section. Details of this op-

timisation, including full expressions for the fidelity can be found in Appendix

D.2. The optimisation was performed numerically for different values of c. For

every value we investigated, we found that the optimal protocol was achieved

when U = V = σx and a = b. Since the case where a = b corresponds to the

case of coherent feedback, for the values of c we surveyed, we conclude that

CF outperforms all possible MF protocols.
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Applying the protocol where U = V = σx (which is optimal in both CF

and projective MF) to MF characterised by a general POVM leads to the

following output fidelity:

AMF =
1

3

(√
1− a2

√
1− b2s2 + abs2 + 2− c2

)
. (4.54)

This expression can be analytically optimised with respect to a and b and is

maximised when a = b. When a=b, P0 and P1 are proportional to the identity,

so no measurement is performed and the protocol is equivalent to the optimal

CF protocol. We note that any changes which bring the value of a closer to b

(and accordingly weaken the measurement) will also improve the performance

of MF.

To conclude, we conjecture that there is no MF protocol involving non-

trivial measurement which can outperform the optimal CF protocol for this

task. However, the performance of the MF protocol can be improved by using

weaker measurements.

4.3.4 Operator Control in the Limit of Weak Interac-

tions

Now we investigate the more general task of simulating any unitary evolution

on a generic system input. We consider this task in our toy model setup

with arbitrary dimension system and controller and no noise present. We will

also take the limit of weak interactions. For the partial swap coupling U θ
s =

cos θ1−i sin θŜ, weak interactions are characterised by taking the infinitesimal

limit θ −→ dθ. Expanding Us and taking this limit yields the expression:

lim
θ−→dθ

U θ
s = 1− idθŜ + o((dθ)2) . (4.55)

Then, for an generic operator UT , to first order in dθ we have:

UsUTUs = UT − idθ{S, UT} . (4.56)
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The effect of one iteration of the CF protocol on the system input state is

ρS −→ TrC [UsUTUsρS ⊗ ηU †
sU

†
TU

†
s ] , (4.57)

where UT = 1⊗ Vj is a unitary which acts only on the controller. Taking the

limit θ −→ dθ and keeping only first-order terms:

ρS −→ TrC
[
UTρS⊗ηU †

T − idθ{S, UT}ρS⊗ηU †
T + idθUTρS⊗η{S†, U †

T}
]
. (4.58)

Using the fact that TrC
(
SA⊗B

)
= BA and the fact that the partial trace is

cyclically invariant over the subspace which is being traced over, we obtain:

TrC [{S, UT}ρS ⊗ ηU †
T ] = VjηV

†
j ρS + ηρS , (4.59)

TrC [UTρS ⊗ η{S†, U †
T}] = ρSVjηV

†
j + ρSη . (4.60)

Thus, we can write the transformation of the system state after one iteration

of the CF protocol in the weak limit as:

ρS −→ ρS + i[ρS, VjηV
†
j ]dθ + i[ρS, η]dθ . (4.61)

To represent unconditional MF in the weak limit, we can simply replace Vj

with a Kraus operator Kj representing the measurement and in-loop unitary

acting on the controller. Due to the linearity of the trace, we can sum over

these Kraus operators to represent unconditional measurement and in this way

we obtain the expression for a single iteration of unconditional MF in the weak

interaction limit:

ρS −→ ρS + i[ρS,Φ(η)]dθ + i[ρS, η]dθ , (4.62)

where Φ(η) =
∑

j KjηK
†
j .

We can interpret the transformations (4.61) and (4.62) as unitary evolu-

tion of the system under simulated Hamiltonians given by ĤCF = η + VjηV
†
j
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and ĤMF = η + Φ(η) for a simulated time period dθ.

By iteratively applying CF in the weak limit, this process can be used to

generate unitary dynamics on the system:

Usim = e−i(η+V1ηV1)dθe−i(η+V2ηV2)dθ . . . e−i(η+VnηVn)dθ . (4.63)

We wish to find out whether any unitary dynamics can be implemented on the

system in this way, by selecting the correct sequence of in-loop unitaries Vj.

Whether or not this is possible depends on the set of possible values of VjηVj.

The requirement for CF to be able to simulate any unitary dynamics, generated

by an arbitrary Hamiltonian, is that the set {η + VjηV
†
j } must generate the

entire space of Hermitian matrices by commutation. This is true for all pairs

of Hermitian matrices except a set of measure zero [123], so it is exceedingly

likely that any non-trivial set {η+VjηV †
j } will be able to simulate any unitary

dynamics on the system. An important exception, however, is the case where

η is the maximally mixed state. In this case, the set {η + VjηV
†
j } will only

contain one element, and coherent feedback will be unable to simulate any

non-trivial unitary dynamics.

The same argument can be used to show that MF can be used to simulate

any unitary dynamics, provided that set of possible in-loop CP-maps Φ is non-

trivial. If the set of in-loop CP-maps is given by {Φj}, then the condition for

MF to be able to simulate any unitary dynamics would be that the set {η +

Φj(η)} can generate the complete set of Hermitian matrices by commutation.

This is again true for any non-trivial set {η +Φj(η)}. An advantage that MF

has over CF in this case is the fact that it can generate non-trivial system

dynamics even when the controller state η is maximally mixed, since η+Φj(η)

will not be proportional to the identity for all Φj.
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4.4 Coherent Feedback in the Continuous

Limit

In the previous sections of this chapter, we have considered coherent feedback

as a discrete process. Now, we will look at what happens when we consider

our general model of CF in continuous limit. This means we will investigate

what happens when the interaction time between system and controller be-

comes instantaneous, as was the case in the optical coherent feedback loops

in previous chapters modelled using the input-output formalism. However,

the investigation contained here will be more general, as we are not limiting

ourselves to Gaussian states.

Our model will be as follows. First, the system in state ρ and controller,

in state η, will interact through the unitary U1, which captures the dynamics

arising from the the Hamiltonian HS, which acts only on the system, and the

coupling Hamiltonian V1. This first interaction lasts for a time period ∆t/2.

Then, a unitary U acts on the controller only, representing the coherent in-loop

process. We assume that this unitary is instantaneous. Finally, the system and

controller interact again through another unitary U2, which is generated by the

coupling Hamiltonian V2 and the system Hamiltonian HS and lasts for a time

period of ∆t/2. The controller is then traced out, and the entire process takes

time ∆t. For simplicity, we have not included system noise from inaccessible

dynamics separately, but we note that this noise could easily be incorporated

into the definition of U1 if necessary.

To ensure that the interaction unitaries are not trivial in the limit ∆t −→ 0,

we now make the assumption that V1 and V2 are proportional to 1/
√

∆t/2.

This assumption is common in collision models [64] and is implicitly present

(and physically justified) in the input-output formalism [71]. This is discussed

in the introduction, in Section 1.4.3, in the context of the input-output for-

malism. Informally, this assumption can be justified by assuming that the

interaction Hamiltonians V1 and V2 are much stronger than the system Hamil-

tonian. More thorough and mathematically formal discussion of this issue
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can be found in [124]. This assumption means that, when ∆t is small, and

we expand U1 and U2, we can expand to second-order in V1 and V2, since

V 2
1 (∆t)

2 will be proportional to ∆t. However, we will assume that the system

Hamiltonian HS does not grow with ∆t. Therefore, we can expand U1 and U2

as:

U1 = e−i(HS+V1)
∆t
2 ≈ 1− i(HS + V1)

∆t

2
− 1

2
V 2
1 (

∆t

2
)2 , (4.64)

U2 = e−i(V2+HS)
∆t
2 ≈ 1− i(V2 +HS)

∆t

2
− 1

2
V 2
2 (

∆t

2
)2 . (4.65)

Throughout one iteration of the CF protocol, the total unitary which acts on

the system and controller is given by UA = U2UU1. Keeping only terms that

are first-order in ∆t ,we can write this as:

UA =U − iU(HS + V1)
∆t

2
− 1

2
UV 2

1 (
∆t

2
)2 − i(V2 +HS)U

∆t

2

− V2UV1(
∆t

2
)2 − 1

2
V 2
2 U(

∆t

2
)2 .

(4.66)

Recall that U and HS are independent of ∆t and V1 and V2 are implicitly

proportional to 1/
√

∆t/2, explaining the presence of the higher-order terms.

The change in the system state ρ after one iteration of the CF loop is given

by:

∆ρ = ρ(t+∆t)− ρ(t) = TrC [UAρ(t)⊗ ηU †
A]− ρ(t) . (4.67)

By plugging in the expansion of UA from (4.66) into (4.67) and again only

keeping the terms first order in ∆t, we obtain the following expression which,

leads to a master equation in the limit ∆t −→ 0:

∆ρ = −i[HS+H
(1)
S +H

(1)
S , ρ]∆t+D1[ρ]∆t+D2[ρ]∆t+C[ρ]∆t+C[ρ]∆t , (4.68)

where H
(1)
S are the Lamb shift Hamiltonians H

(1)
S generated by the interaction

with the controller. They are given by:

H
(1)
S =

1

2
TrC [V1η], H

(2)
S =

1

2
TrC [V2UηU

†] . (4.69)
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D1 is the normal Lindblad dissipator for a system interacting with an envi-

ronmental state η through a coupling Hamiltonian V1. D2 is the Lindblad

dissipator for a system interacting with an environmental state UηU † through

a coupling Hamiltonian V2. These are given by:

D1[ρ] =
1

2
TrC [V1ρ⊗ ηV1 −

1

2
{V 2

1 , ρ⊗ η}]∆t
2
, (4.70)

D2[ρ] =
1

2
TrC [V2ρ⊗ UηU †V2 −

1

2
{V 2

2 , ρ⊗ UηU †}]∆t
2
. (4.71)

Recall that we are assuming that V1 and V2 are proportional to 1/
√
∆t, which

is why we are able to bring the extra ∆t term as part of the definitions of D1,2

without the terms vanishing. The rest of the interaction terms are captured

by the superoperator C:

C[ρ] = 1

2
TrC [V2Uρ⊗ηV1U †+UV1ρ⊗ηU †V2−Uρ⊗ηV1U †V2−V2UV1ρ⊗ηU †]

∆t

2
.

Equation (4.68) is a master equation which characterises the evolution of a sys-

tem subject to coherent feedback in the collisional framework. This equation is

similar to those which describe ‘cascaded collision models’ which describe sys-

tems which undergo multiple collisions with an environment, though here we

explicitly include an instantaneous ‘in-loop’ operation which occurs between

the two interactions [69]. Since the input-output formalism can be framed as

a collision model [71], we expect this master equation to completely subsume

the dynamics of the Gaussian CF loops presented in chapters 2 and 3, and

also allow for modelling of more complex, non-Gaussian CF loops constructed

through the input-output formalism.

4.5 Measurement-based Feedback in the Con-

tinuous Limit

A master equation for collisional measurement-based feedback can be derived

in the same way as the coherent feedback master equation (4.68) with a few
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adjustments. First, we replace the instantaneous in-loop unitary with a Kraus

operator, representing the action of the in-loop projective measurement, fol-

lowed by the action of a unitary acting only on the controller. Again, we will

assume that this in-loop process is instantaneous. We will denote these Kraus

operators using Lj. Secondly, we will represent the stochasticity of the con-

ditional measurement act using Poisson processes dNj for each measurement

outcome. This approach, using stochastic processes and discontinuous evolu-

tion of the system is similar to the ‘quantum jumps’ formalisms used elsewhere

[125, 126, 127]. For each iteration, dNj takes the value 1 for value of j corre-

sponding to the measurement outcome, and 0 for the outcomes that are not

realised. They therefore have the following properties [125]:

[dNi(t)]
2 = dNi(t), dNi(t)dNj(t) = δijdNj(t) . (4.72)

The expectation value for each process depends on the likelihood of the out-

come. Since the measurement process takes place after the system state ρ

and controller state η have interacted through U1, the expectation value of the

measurement outcome corresponding to POVM operator Lj will be:

⟨dNi(t)⟩ = Tr[LjU1ρ⊗ ηU †
1Lj] = pj . (4.73)

By repeating the process used to obtain the CF master equation, and keeping

only terms which are overall first-order in ∆t, we obtain the following evolution
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equation for a system subject to MF in the continuous limit:

ρ(t+∆t) =
∑
j

1

pj
dNj

[
qj
[
ρ(t)− i[HS, ρ]∆t)

]
+ i

∆t

2
TrC

(
Lj[σ, V1]L

†
j

)
+ i

∆t

2
TrC

(
[LjσL

†
j, V2]

)
− 1

2
TrC

(
Lj{σ, V 2

1 }L
†
j

)
(
∆t

2
)2

− 1

2
TrC

(
{LjσL

†
j, V

2
2 }

)
(
∆t

2
)2 + TrC

(
LjV1σV1L

†
j

)
(
∆t

2
)2

+ TrC
(
V2LjσL

†
jV2

)
(
∆t

2
)2 + TrC

(
LjV1σL

†
jV2 + V2LjσV1L

†
j

− LjσV1L
†
jV2 − V2LjV1σL

†
j

)
(
∆t

2
)2

]
,

(4.74)

where qj = Tr[LjηL
†
j] and pj is given by equation (4.73). The unconditional

(and therefore deterministic) evolution is obtained from this equation by re-

placing the Poisson processes by their classical expectation values pj, since

this corresponds to averaging over all trajectories. We have not been able

to identify an experimental implementation which allows for non-demolition

measurements to be performed on a controller and fed back into the system

in the continuous limit, so there may be no practical applications of this MF

master equation. Nonetheless, we present it here for completeness.

4.6 Conclusion

In this section, we present a unified model of coherent and measurement-based

feedback which allows the two to be compared on an equal footing. A key

feature of this model is that, in MF, it allows for non-demolition measurements

to be performed on the controller and fed back into the system. Both CF and

MF in this model have access to the same ancilla states, in-loop unitaries, and

system-controller interactions. The only difference between the two is that, in

MF, a measurement is performed in-loop. This allows us to frame the question

of comparing MF and CF as asking in what circumstances does performing a

measurement act as a resource for a particular task, and in what circumstances

is it a hindrance. We then investigated several control tasks using a toy model

in our framework and compared the performance of MF and CF.
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Investigating the task of generating low steady-state entropy states, we

found that MF outperformed CF when the controller was noisy. When the

controller was ‘clean’ (ie. free from noise, or low temperature), the comparison

became more subtle. While MF still outperformed CF in many cases, there

were some circumstances in which CF was better. This was due to the fact that

performing measurements on the controller disrupted the coherent process of

swapping the low entropy controller state with the system state (akin to the

case investigated in [13]).

When we investigated operator control for the task of implementing a bit-

flip, we showed that CF was superior to all possible MF protocols, due to the

fact that measurement destroys information about the unknown input state.

Performing weaker measurements in the loop leads to the performance of the

MF protocol improving, but not to the point where it outperforms CF.

We then investigated a more general form of operator control, in the limit

of weak interactions. We found that MF and CF had similar capabilities in

most cases, though MF again had an advantage when the controller was noisy.

Finally, using the convention of continuous collision models, we derived

master equations for both MF and CF in the continuous limit. We expect our

CF master equation to be applicable to quantum optical setups with CF loops

implemented through input-output interfaces, though we are unsure if any any

setups exist to implement our MF protocols in the continuous limit. This is

because they require non-demolition measurements to be performed at high

speed and then fed back into the system with negligible delay, which is often

not plausible. As a result, most continuous MF protocols assume destructive

measurements, and involve the measurement signal being used to change the

system Hamiltonian, rather than allowing a direct interaction between the

system and the post-measurement state [12].





Chapter 5

Conclusions

First, we provide a summary of each chapter of the thesis (except the intro-

duction and conclusion). Then, we suggest avenues for future work.

5.1 Summary of the Thesis

In Chapter 2, we introduced a general model of Gaussian coherent feedback

through input-output interfaces. We derived a compact way of describing

passive CF loops. Then, we showed that, for control of a single mode, passive

CF can improve the steady state squeezing of a system quadrature for certain

parameters, but cannot stabilise squeezing of any quadrature to below the

3dB bound. Then, we gave a simple example of such a CF loop, and showed

that, under certain conditions, the 3dB bound could be beaten by homodyne

monitoring of the output fields.

In Chapter 3, we applied our general model of Gaussian CF to a linearised

optomechanical setup. We characterised the effect of three kinds of CF loops

and investigated their ability to enhance the performance of the setup for cool-

ing the mechanical oscillator, generating entanglement between the mechanical

and optical modes, and generating optical and mechanical squeezing. Optimal

CF setups for these tasks were found through analytical and numerical opti-

misation. We found that most of the benefits from CF came from the use of

passive CF to tune the effective cavity loss rate. This allowed for the cooling of

the mechanical oscillator to be greatly enhanced and the optomechanical en-
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tanglement to be enhanced to a small degree. The presence of in-loop delays

was also investigated and found to be slightly detrimental to the performance

of the setup. Interestingly, active in-loop elements, such as squeezing were not

found to be beneficial, except for the task of stabilising optical squeezing.

In Chapter 4, we introduced a general model of CF and MF, inspired by

collision models and created a discrete toy model which we use to compare

MF and CF for different tasks. We investigated the performance of MF and

CF for the task of lowering the steady state entropy of a qudit and found

that, in most cases, MF outperformed CF. In particular, MF proved to be

more powerful when the controller was ‘noisy’ as measurements allowed for

the controller to be purified, but in some circumstances, CF outperformed

MF when the controller was ‘clean’. This was due to the fact that the act

of measurement disturbed the coherent process which transferred low entropy

states from the controller to the system. For the task of implementing a bit-

flip on a system qubit, CF proved to be superior, as measurements destroyed

information about the unknown input state. In the limit of weak interactions,

we found that in most cases, both MF and CF could be used to simulate any

unitary dynamics on the system, but MF was able to do so even when the

controller was maximally mixed, which CF could not. Finally, we took the

continuous time limit of CF and MF to derive master equations for both.

5.2 Future Work

One extension to the work presented in Chapter 2 is to provide more com-

parisons between monitoring and CF for more complex, multimode setups,

or different figures of merit, such as entanglement. Also, our general Gaus-

sian model assumed that CF was instantaneous. Though we used a method

for dealing with delays in a specific case in Chapter 3, we have not adapted

our general model to take into account delays, so this would also be a logical

extension of the work.

Building on Chapter 3, future work may include more investigation into
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the transient dynamics of optomechanical systems, subject to CF, as we have

mostly focused on steady state properties. In particular, we could consider

dynamical modulation of κeff , which has already been found to be beneficial

for mechanical cooling [128]. Dynamical modulation of the cavity loss rate can

be achieved through tuning the free carrier plasma density [129, 130, 131] and

using light absorbers or scatterers in deformable optical cavities [132], though

we speculate that the implementation of the method presented here (using

interferometric optical elements) may prove easier to implement. Also, all of

our work took place in the linear, Gaussian regime, so an obvious extension

would be to consider non-linear optomechanical systems, which would allow us

to consider different CF loops, less approximated optomechanical dynamics,

and a wider range of physical phenomena.

An obvious extension to Chapter 4 is to find concrete experimental setups

and apply our model of feedback to find optimal control protocols for useful

tasks. Of particular interest are experimental setups where collision models

have already shown application. Collisional models of so-called ‘giant atoms’

[73, 74, 75, 76, 77] in circuit QED setups seem particularly promising as an

experimental implementation of our model, as they allow for the ‘atom’ to be

coupled to the same field at two different points. This suggests an analogy

with coherent feedback, which requires a system to be coupled to a controller

twice to form a feedback loop. Collision models have also been implemented

in linear optics [78, 79]. The implementatation in [78] is particularly relevant,

as it demonstrates the realisation of a partial swap interaction, which featured

prominently in Chapter 4, using single-photon systems. Another extension

would be further investigation of the relative benefits of CF and MF in more

complex cases and a more thorough comparison of our model of MF with other

previously established models.





Appendix A

Gaussian Operations

A.1 Symplectic Transformations in Quantum

Optics

Here, we present several symplectic transformations, which correspond to phys-

ical transformations often found in quantum optics. Recall that a transforma-

tion characterised by a symplectic matrix S will transform the system modes

and covariance matrix in the following way:

r̂ −→ Sr̂ σ −→ SσST . (A.1)

A.1.1 Phase Shifter

Phase shifters are an example of a single-mode passive transformation. They

correspond to local rotations in phase space, by an angle ϕ characterised by a

matrix [38, 41]:

Sϕ =

 cosϕ sinϕ

− sinϕ cosϕ

 . (A.2)

A.1.2 Beam Splitter

Beam splitters are passive transformations which mix two modes together,

characterised by an angle θ. When θ = 0, the modes are not mixed at all,

and when θ = π
2
, the modes are completely swapped (and a local phase shift

is added to one mode). Physically, beam splitters to semi-reflective mirrors,



126 Appendix A. Gaussian Operations

which mix two travelling modes. They are characterised by the symplectic

matrix [41]:

Sθ =


cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

 . (A.3)

A.1.3 Single-mode Squeezing

Squeezing is an active transformation on a single mode which reduces the

variance of one quadrature, while increasing the variance of the other. It is

characterised by a parameter z > 0, which specifies which quadrature is being

squeezed and the degree of squeezing. The symplectic matrix for squeezing is

[41]:

Sz =

z 0

0 1
z

 . (A.4)

A.1.4 Two-mode Squeezing

Two-mode squeezing is an active transformation which entangles two modes

and can be generated experimentally using optical parametric amplifiers [133].

The symplectic matrix for two-mode squeezing is characterised by a parameter

r and reads [41]:

Sr =


cosh r 0 sinh r 0

0 cosh r 0 − sinh r

sinh r 0 cosh r 0

0 − sinh r 0 cosh r

 . (A.5)

When this operation is performed inside a CF loop with one feedback mode

and one ancilla as in Section 3.2.3, the E and F matrices are given by the top

2 × 2 submatrices, (as specified in Section 2.2). Therefore E = cosh r1 and

F = σz sinh r, as stated in equations (3.12).

In Section 3.2.3, we also consider a case where phase shifters act on the

feedback mode after two-mode squeezing. Note that, in equation (A.2), when
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ϕ = π, Sϕ = −1. If a phase shifter with this phase acts on feedback mode after

a two-mode squeezer has acted, the net effect will be captured by the matrix:

STot = ((−1)⊕ 1)Sr =

− cosh r1 − sinh rσz

sinh rσz cosh r1

 . (A.6)

If this operation is performed inside the feedback loop, the E and F matrices

are again given by the top 2 × 2 submatrices, which in this case are Es =

− cosh r1 and Fs = − sinh rσz and are used to derived the expressions found

in (3.16).

A.1.5 Losses Followed by Squeezing

In Section 3.2.2, we explored cases where the feedback mode was subject losses

followed by squeezing. We will now derive the symplectic transformation cor-

responding to this operation, and use this to obtain the matrices given in

(3.8).

The term ‘losses’ corresponds physically to leakage ie. interactions of the

mode with some white noise environment. This interaction can be modelled

by a beam splitter, whose symplectic matrix is given by (A.3). Squeezing

on a single mode, while leaving the other unchanged is represented by the

symplectic matrix Sz ⊕ 1, where Sz is given by (A.4). The effect of losses,

followed by squeezing is captured by multiplying these matrices:

STot = (Sz ⊕ 1)Sθ =

 cos θSz sin θSz

− sin θ1 cos θ1

 . (A.7)

Recall that, in Section 2.2, the E and F matrices were derived from the top

two blocks of the in-loop symplectic matrix. If the in-loop symplectic is given

by (A.7) then these matrices will be given by E = cos θSz and F = sin θSz.

Writing these equations in terms of the effiency η = cos θ and
√

1− η2 = sin θ

yields the E and F matrices given in (3.8).
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A.2 Gaussian Measurements

As discussed in Section 1.2.10, general-dyne measurements are characterised

by a covariance matrix σm. Here we will introduce the expressions for σm for

cases that are used in this thesis.

A.2.1 Homodyne Measurements

Homodyne measurements correspond to measurement of a single quadrature.

Ideal homodyning, with unit efficiency is captured by a σm corresponding

to a state in the limit of ‘infinite squeezing’, the squeezed quadrature corre-

sponding to the one being measured [38, 134]. The expressions for homodyne

measurements of the x̂ and p̂ quadratures are, respectively:

σhom,x
m = lim

z−→∞

1
z

0

0 z

 , σhom,p
m = lim

z−→∞

z 0

0 1
z

 . (A.8)

Homodyne measurements with an efficiency of less than 1 can be modelled as

unit efficiency homodyne measurements on output modes subjected to mix-

ing with a vacuum at a beam splitter. For an efficiency η the resulting σm

expression for measurements of the x̂ and p̂ quadratures are, respectively [38]:

σx,η
m = lim

z−→∞

1

η

1
z
+ 1− η 0

0 z + 1− η

 , (A.9)

σp,η
m = lim

z−→∞

1

η

z + 1− η 0

0 1
z
+ 1− η

 . (A.10)
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Coherent Feedback Setups

which beat the 3dB Bound

First, we consider a passive coherent feedback setup for a two-mode system,

as described by our model in chapter 2. We show that, for this example, there

exists a passive coherent feedback setup which generates steady state whose

eigenvalues beat the 3dB bound. Recall that a passive coherent feedback

setup will generate a drift matrix given by A = ΩH − 1
2
D0, where D0 is the

diffusion matrix at zero temperature. For a setup with D0 = 1 and a system

Hamiltonian given by:

H =
1

3


1 0 1 0

0 1 0 −1

1 0 −1 0

0 −1 0 1

 , (B.1)

the drift matrix is Hurwitz and the steady state covariance matrix has a steady

state eigenvalue of 0.48, which is less than the value of 1/2 specified by the

3dB bound.

Next, we consider a single system mode subject to an active CF setup

involving in-loop squeezing and show that it can beat the 3dB bound. Consider
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a loop characterised by:

E =

0 0

0 0

 F =

z 0

0 1/z

 . (B.2)

Note that (minus the extra mechanical mode), this setup can be generated

using loops of the same form as section 3.2.2, containing squeezing and losses,

with η = 0. The system is also subject to a squeezing Hamiltonian with

strength χ = γ. The eigenvalues of the drift matrix in this case are −γ
2
and

−3γ
2
, meaning it is Hurwitz and the system is stable. The steady state for this

setup is:

σ∞ =

1
3
N(1 + z2) 0

0 N(1 + 1
z
)

 . (B.3)

The smallest eigenvalue is squeezed below N/2 when z < 1/
√
2 and below 1/2

when z2 < 3
2N

− 1.
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Appendix to Chapter 3

C.1 Numerically Solving the Drift-diffusion

Equation

To find the transient behaviour of the optomechanical system and generate

figures 3.2b and 3.2c, we solved the drift-diffusion equation (1.38) discretely.

The drift-diffusion equation is:

dσ

dt
= Aσ + σAT +D . (C.1)

This can be written discretely by replacing the infinitesmals dσ and dt with

their discrete counterparts: ∆t and ∆σ = σ(t +∆t)− σ(t). Given an initial

covariance matrix σ(t), the discrete version of the drift-diffusion equation then

gives the covariance matrix at a later time t+∆t:

σ(t+∆t) = σ(t) + ∆t
[
Aσ(t) + σ(t)AT +D

]
. (C.2)

This equation was implemented in Python to find the covariance matrix (and

thus the average mechanical excitations) at each timestep. This discrete ap-

proximation is valid if the timestep ∆t is much smaller than the characteristic

timescales of the system at hand. In our optomechanical systems, the highest

frequencies involved were either the cavity loss rate κ or the mechanical fre-

quency ωm, meaning that the smallest characteristic timescale of the system
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was either 1
κ
or 1

ωm
. When numerically solving equation (C.2), we ensured that

the timesteps involved were smaller than 1
κ
and 1

ωm
by at least a factor of ten.

C.2 Active Coherent Feedback for Cooling

The steady state optomechanical covariance matrix resulting from the dynam-

ics described in Section 3.3.3 is given by:

σ =


σ11 0 0 σ14

0 σ22 σ24 0

0 σ24 σ33 0

σ14 0 0 σ44

 (C.3)

where

σ11 = −z (κNlα (4G2z + κΓmβ + zΓ2
m) + 4G2zΓmNm)

(−zΓm + κη (3z2 − 1)− 2κz) (4G2z + κΓmβ)
, (C.4)

σ14 =
2GκzΓm (zNlα +Nm (η (3z2 − 1)− 2z))

(−zΓm + κη (3z2 − 1)− 2κz) (4G2z + κΓmβ)
, (C.5)

σ22 =
κNlα (4G2z + Γm (zΓm + κη (z2 − 3) + 2κz)) + 4G2z3ΓmNm

z (zΓm + κη (z2 − 3) + 2κz) (4G2z + κΓmγ)
, (C.6)

σ33 =
4G2κNlα + ΓmNm (4G2z2 + κzΓmγ + κ2γ2)

(zΓm + κη (z2 − 3) + 2κz) (4G2z + κΓm (η (z2 − 3) + 2z))
, (C.7)

σ44 = −4G2κz2Nlα + ΓmNm (4G2z2 + κzΓmβ + κ2β2)

(−zΓm + κη (3z2 − 1)− 2κz) (4G2z + κΓmβ)
, (C.8)

α =
(
−2ηz + z2 + 1

)
, β =

(
−3ηz2 + η + 2z

)
, (C.9)

γ =
(
η
(
z2 − 3

)
+ 2z

)
. (C.10)

The symplectic eigenvalue of the mechanical covariance matrix is:

ν =

√
δ (4G2 (κNlα + z2ΓmNm) + κΓmNmγ (zΓm + κη (z2 − 3) + 2κz))

(zΓm + κη (z2 − 3) + 2κz) (zΓm + κβ) (4G2z + κΓmβ) (4G2z + κΓmγ)

(C.11)

δ =
(
4G2κz2Nlα + ΓmNm

(
4G2z2 + κzΓmβ + κ2β2

))
. (C.12)
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Appendix to Chapter 4

D.1 Performing a bit-flip using Projective

Measurement-based Feedback

This Section contains details to supplement Section 4.3.2. The fidelity of the

output state of our MF protocol to the desired state is given by FMF =

⟨ϕXρ
out
S,MF | |ψX⟩. When an input state given by (4.45) is used in MF, this

fidelity is:

FMF =
1

8
e−2iϕ

(
1

2
s2 sin(3ϕ)(cot(3ϕ) + i)

(
2 sin(χ) sin (2θv)

((
2c2 − ics− s2

)
cos(χ)

+ 2c2 + ics+ s2 + s(s+ ic)(2 sin(χ) + sin(2χ)) sin (2θu)

+ s2eiϕ sin(χ) sin (2θv)
((
2c2 + ics− s2

)
cos(χ) + 2c2 − ics+ s2

)
+ 2c2(c+ is) sin2(χ) (c+ is cos (2θv)) + 2c2e4iϕ(c− is) sin2(χ) (c− is cos (2θv))

− 2e2iϕ
(
c4 cos(2χ)− c4 + s2 cos(χ)

(
s2

(
2 cos2

(χ
2

)
cos (2θu) + (cos(χ)− 1) cos (2θv)

)
− 4c2 cos2 (θv)− 4c2s2 − 2s4 + 4s3eiϕ(s− ic) sin

(χ
2

)
cos3

(χ
2

)
sin (2θu)

+ 2cη0s
(
sin(χ)

(
c sin(χ)

(
ic
(
−1 + e4iϕ

)
(cos (2θu) + cos (2θv) + 2)

− s
(
1 + e4iϕ

)
(cos (2θu)− cos (2θv)) + 2se2iϕ (sin (2θu) (c cos(ϕ) + s sin(ϕ))

+ sin (2θv) (s sin(ϕ)− c cos(ϕ)) + seiϕ cos(χ) (− ((c− is) sin(χ) sin (2θu))

− e2iϕ(c+ is) sin(χ) sin (2θu)− 2eiϕ (sin(χ) sin (2θv) (c cos(ϕ) + s sin(ϕ))

+ c (cos (2θu) + cos (2θv) + 2) .
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D.2 Measurement-based feedback with Gen-

eral POVMs

This Section supplements Section 4.3.3. In the MF protocol described in this

Section, the fidelity of the output state to the desired state, before it is averaged

over the Haar measure is given by:

FMF =eiϕ sin(
χ

2
)(cos(

χ

2
)(c(c− is)(

1

2
ceiϕ(c+ is)u10η00u

∗
10 sin(χ)a

2

+
1

2
(1− a2)ceiϕ(c+ is)v10η00v

∗
10 sin(χ)

+ u∗11(−
1

2
ceiϕ(c− is)u11(η00 − 1) sin(χ)b2

− 1

2
iacsu10(−2η00 + cos(χ) + 1)b)

+ v∗11(−
1

2
i
√
1− a2

√
1− b2csv10(−2η00 + cos(χ) + 1)

− 1

2
(1− b2)ceiϕ(c− is)v11(η00 − 1) sin(χ)))

+ i(c− is)s(u∗00(a
2u10(c

2η00 sin
2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
iabeiϕ(c− is)su11(η00 − 1) sin(χ)) + v∗00((1− a2)v10(c

2η00 sin
2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
i
√
1− a2

√
1− b2eiϕ(c− is)sv11(η00 − 1) sin(χ))

+ u∗01(
1

2
u11(η00 − 1)(cos(χ)− 1)b2

+
1

2
a(c+ is)su10(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)b)

+ v∗01(
1

2
(1− b2)v11(η00 − 1)(cos(χ)− 1)

+
1

2

√
1− a2

√
1− b2(c+ is)sv10(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)))

+ (c+ is)(c(
1

2
ceiϕ(c+ is)u00η00u

∗
00 sin(χ)a

2

+
1

2
(1− a2)ceiϕ(c+ is)v00η00v

∗
00 sin(χ)

+ u∗01(−
1

2
ceiϕ(c− is)u01(η00 − 1) sin(χ)b2
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− 1

2
iacsu00(−2η00 + cos(χ) + 1)b)

+ v∗01(−
1

2
i
√
1− a2

√
1− b2csv00(−2η00 + cos(χ) + 1)

− 1

2
(1− b2)ceiϕ(c− is)v01(η00 − 1) sin(χ)))

− is(u∗01(u11(s
2η00 sin

2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))b2 +

1

2
ae−iϕs(ic+ s)u10η00 sin(χ)b)

+ u∗00(
1

2
u10η00(cos(χ) + 1)a2 +

1

2
beiϕs(s− ic)u11η00 sin(χ)a)

+ v∗01((1− b2)v11(s
2η00 sin

2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))

+
1

2

√
1− a2

√
1− b2e−iϕs(ic+ s)v10η00 sin(χ))

+ v∗00(
1

2
(1− a2)v10η00(cos(χ) + 1)

+
1

2

√
1− a2

√
1− b2eiϕs(s− ic)v11η00 sin(χ)))))

+ e−iϕ sin(
χ

2
)((c− is)(c+ is)(u∗01(u01(s

2η00 sin
2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))b2

+
1

2
ae−iϕs(ic+ s)u00η00 sin(χ)b) + u∗00(

1

2
u00η00(cos(χ) + 1)a2

+
1

2
beiϕs(s− ic)u01η00 sin(χ)a) + v∗01((1− b2)v01(s

2η00 sin
2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))

+
1

2

√
1− a2

√
1− b2e−iϕs(ic+ s)v00η00 sin(χ))

+ v∗00(
1

2
(1− a2)v00η00(cos(χ) + 1)

+
1

2

√
1− a2

√
1− b2eiϕs(s− ic)v01η00 sin(χ)))

+ c(c(u∗11(u11(s
2η00 sin

2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))b2 +

1

2
ae−iϕs(ic+ s)u10η00 sin(χ)b)

+ u∗10(
1

2
u10η00(cos(χ) + 1)a2 +

1

2
beiϕs(s− ic)u11η00 sin(χ)a)

+ v∗11((1− b2)v11(s
2η00 sin

2(
χ

2
)− 1

2
c2(η00 − 1)(cos(χ) + 1))
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+
1

2

√
1− a2

√
1− b2e−iϕs(ic+ s)v10η00 sin(χ))

+ v∗10(
1

2
(1− a2)v10η00(cos(χ) + 1)

+
1

2

√
1− a2

√
1− b2eiϕs(s− ic)v11η00 sin(χ)))

− is(
1

2
ceiϕ(c+ is)u00η00u

∗
10 sin(χ)a

2

+
1

2
(1− a2)ceiϕ(c+ is)v00η00v

∗
10 sin(χ)

+ u∗11(−
1

2
ceiϕ(c− is)u01(η00 − 1) sin(χ)b2

− 1

2
iacsu00(−2η00 + cos(χ) + 1)b)

+ v∗11(−
1

2
i
√
1− a2

√
1− b2csv00(−2η00 + cos(χ) + 1)

− 1

2
(1− b2)ceiϕ(c− is)v01(η00 − 1) sin(χ))))

+ is(c(−1

2
ce−iϕ(c+ is)u11(η00 − 1)u∗01 sin(χ)b

2

− 1

2
(1− b2)ce−iϕ(c+ is)v11(η00 − 1)v∗01 sin(χ)

+ u∗00(
1

2
ce−iϕ(c− is)u10η00 sin(χ)a

2

+
1

2
ibcsu11(−2η00 + cos(χ) + 1)a)

+ v∗00(
1

2
i
√
1− a2

√
1− b2csv11(−2η00 + cos(χ) + 1)

+
1

2
(1− a2)ce−iϕ(c− is)v10η00 sin(χ)))− is(u∗00(a

2u00(c
2η00 sin

2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
iabeiϕ(c− is)su01(η00 − 1) sin(χ))

+ v∗00((1− a2)v00(c
2η00 sin

2(
χ

2
)− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
i
√
1− a2

√
1− b2eiϕ(c− is)sv01(η00 − 1) sin(χ))

+ u∗01(
1

2
u01(η00 − 1)(cos(χ)− 1)b2

+
1

2
a(c+ is)su00(η00 − 1)(i cos(ϕ)

+ sin(ϕ)) sin(χ)b) + v∗01(
1

2
(1− b2)v01(η00 − 1)(cos(χ)− 1)

+
1

2

√
1− a2

√
1− b2(c+ is)sv00(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ))))))
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+ cos(
χ

2
)(cos(

χ

2
)((c− is)(c+ is)(u∗10(a

2u10(c
2η00 sin

2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))− 1

2
iabeiϕ(c− is)su11(η00 − 1) sin(χ))

+ v∗10((1− a2)v10(c
2η00 sin

2(
χ

2
)− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
i
√
1− a2

√
1− b2eiϕ(c− is)sv11(η00 − 1) sin(χ))

+ u∗11(
1

2
u11(η00 − 1)(cos(χ)− 1)b2

+
1

2
a(c+ is)su10(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)b)

+ v∗11(
1

2
(1− b2)v11(η00 − 1)(cos(χ)− 1)

+
1

2

√
1− a2

√
1− b2(c+ is)sv10(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)))

+ is(c(
1

2
ceiϕ(c+ is)u00η00u

∗
10 sin(χ)a

2

+
1

2
(1− a2)ceiϕ(c+ is)v00η00v

∗
10 sin(χ)

+ u∗11(−
1

2
ceiϕ(c− is)u01(η00 − 1) sin(χ)b2

− 1

2
iacsu00(−2η00 + cos(χ) + 1)b)

+ v∗11(−
1

2
i
√
1− a2

√
1− b2csv00(−2η00 + cos(χ) + 1)

− 1

2
(1− b2)ceiϕ(c− is)v01(η00 − 1) sin(χ)))

− is(u∗11(u11(s
2η00 sin

2(
χ

2
)− 1

2
c2(η00 − 1)(cos(χ) + 1))b2

+
1

2
ae−iϕs(ic+ s)u10η00 sin(χ)b)

+ u∗10(
1

2
u10η00(cos(χ) + 1)a2

+
1

2
beiϕs(s− ic)u11η00 sin(χ)a) + v∗11((1− b2)v11(s

2η00 sin
2(
χ

2
)

− 1

2
c2(η00 − 1)(cos(χ) + 1))

+
1

2

√
1− a2

√
1− b2e−iϕs(ic+ s)v10η00 sin(χ))

+ v∗10(
1

2
(1− a2)v10η00(cos(χ) + 1)

+
1

2

√
1− a2

√
1− b2eiϕs(s− ic)v11η00 sin(χ))))

+ c(c(u∗00(a
2u00(c

2η00 sin
2(
χ

2
)− 1

2
s2(η00 − 1)(cos(χ) + 1))
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− 1

2
iabeiϕ(c− is)su01(η00 − 1) sin(χ)) + v∗00((1− a2)v00(c

2η00 sin
2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
i
√
1− a2

√
1− b2eiϕ(c− is)sv01(η00 − 1) sin(χ))

+ u∗01(
1

2
u01(η00 − 1)(cos(χ)− 1)b2

+
1

2
a(c+ is)su00(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)b)

+ v∗01(
1

2
(1− b2)v01(η00 − 1)(cos(χ)− 1)

+
1

2

√
1− a2

√
1− b2(c+ is)sv00(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)))

− is(−1

2
ce−iϕ(c+ is)u11(η00 − 1)u∗01 sin(χ)b

2

− 1

2
(1− b2)ce−iϕ(c+ is)v11(η00 − 1)v∗01 sin(χ)

+ u∗00(
1

2
ce−iϕ(c− is)u10η00 sin(χ)a

2

+
1

2
ibcsu11(−2η00 + cos(χ) + 1)a)

+ v∗00(
1

2
i
√
1− a2

√
1− b2csv11(−2η00 + cos(χ) + 1)

+
1

2
(1− a2)ce−iϕ(c− is)v10η00 sin(χ)))))

+ e−iϕ sin(
χ

2
)(c(c− is)(−1

2
ce−iϕ(c+ is)u01(η00 − 1)u∗01 sin(χ)b

2

− 1

2
(1− b2)ce−iϕ(c+ is)v01(η00 − 1)v∗01 sin(χ)

+ u∗00(
1

2
ce−iϕ(c− is)u00η00 sin(χ)a

2

+
1

2
ibcsu01(−2η00 + cos(χ) + 1)a)

+ v∗00(
1

2
i
√
1− a2

√
1− b2csv01(−2η00 + cos(χ) + 1)

+
1

2
(1− a2)ce−iϕ(c− is)v00η00 sin(χ)))

+ i(c− is)s(u∗11(u01(s
2η00 sin

2(
χ

2
)− 1

2
c2(η00 − 1)(cos(χ) + 1))b2

+
1

2
ae−iϕs(ic+ s)u00η00 sin(χ)b)

+ u∗10(
1

2
u00η00(cos(χ) + 1)a2

+
1

2
beiϕs(s− ic)u01η00 sin(χ)a)
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+ v∗11((1− b2)v01(s
2η00 sin

2(
χ

2
)− 1

2
c2(η00 − 1)(cos(χ) + 1))

+
1

2

√
1− a2

√
1− b2e−iϕs(ic+ s)v00η00 sin(χ))

+ v∗10(
1

2
(1− a2)v00η00(cos(χ) + 1)

+
1

2

√
1− a2

√
1− b2eiϕs(s− ic)v01η00 sin(χ)))

+ (c+ is)(c(−1

2
ce−iϕ(c+ is)u11(η00 − 1)u∗11 sin(χ)b

2

− 1

2
(1− b2)ce−iϕ(c+ is)v11(η00 − 1)v∗11 sin(χ)

+ u∗10(
1

2
ce−iϕ(c− is)u10η00 sin(χ)a

2

+
1

2
ibcsu11(−2η00 + cos(χ) + 1)a)

+ v∗10(
1

2
i
√
1− a2

√
1− b2csv11(−2η00 + cos(χ) + 1)

+
1

2
(1− a2)ce−iϕ(c− is)v10η00 sin(χ)))

− is(u∗10(a
2u00(c

2η00 sin
2(
χ

2
)− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
iabeiϕ(c− is)su01(η00 − 1) sin(χ)) + v∗10((1− a2)v00(c

2η00 sin
2(
χ

2
)

− 1

2
s2(η00 − 1)(cos(χ) + 1))

− 1

2
i
√
1− a2

√
1− b2eiϕ(c− is)sv01(η00 − 1) sin(χ))

+ u∗11(
1

2
u01(η00 − 1)(cos(χ)− 1)b2

+
1

2
a(c+ is)su00(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)b)

+ v∗11(
1

2
(1− b2)v01(η00 − 1)(cos(χ)− 1)

+
1

2

√
1− a2

√
1− b2(c+ is)sv00(η00 − 1)(i cos(ϕ) + sin(ϕ)) sin(χ)))))) .
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Averaging over the Haar measure, this yields:

AMF =
1

6

(√
1− a2

√
1− b2c2s2v11v

∗
00 +

√
1− a2

√
1− b2c2s2v00v

∗
11

+
√
1− a2

√
1− b2c2s2v10v

∗
01 +

√
1− a2

√
1− b2c2s2v01v

∗
10

+
√
1− a2

√
1− b2s4v10v

∗
01 +

√
1− a2

√
1− b2s4v01v

∗
10

− 2a2c4η00|v00|2 − 2a2c4η00|v10|2 − 2a2c2η00s
2|v00|2 − 2a2c2s2|v00|2 − 2a2c2η00s

2|v10|2

− 2a2c2s2|v10|2 − a2s4|v00|2 − 2a2s4|v10|2 − bu∗01
(
−as2u10 − 2bu01

(
−η00c2 + 1

))
+ au∗10

(
2au10

(
c2η00 + s2

)
+ bs2u01

)
+ au∗00

(
au00

(
2c4η00 + 2c2(η00 + 1)s2 + s4

)
+ bc2s2u11

)
+ bu∗11

(
ac2s2u00 + bu11

(
−2c4(η00 − 1)− 2c2(η00 − 2)s2 + s4

))
+ 2b2c4η00|v01|2 − 2b2c4|v01|2 + 2b2c4η00|v11|2 − 2b2c4|v11|2 + 2b2c2η00s

2|v01|2

− 4b2c2s2|v01|2 + 2b2c2η00s
2|v11|2 − 4b2c2s2v11v

∗
11 − 2b2s4|v01|2 − b2s4v11v

∗
11 + 2c4η00|v00|2

− 2c4η00v01v
∗
01 + 2c4|v01|2 + 2c4η00v10v

∗
10 − 2c4η00|v11|2 + 2c4v11v

∗
11 + 2c2η00s

2|v00|2

+ 2c2s2v00v
∗
00 − 2c2η00s

2|v01|2 + 4c2s2v01v
∗
01 + 2c2η00s

2|v10|2 + 2c2s2v10v
∗
10 − 2c2η0000s

2|v11|2

+ 4c2s2v11v
∗
11 + s4|v00|2 + 2s4|v01|2 + 2s4|v10|2 + s4|v11|2 ,

(this averaging was done using Mathematica’s inbuilt Integrate function). To

analyse this equation, we use the decomposition of the unitary matrices U and

V :

U =

 eiϕ1u cos θu eiϕ2u sin θu

−e−iϕ2u sin θu e−iϕ1u cos θu

 , V =

 eiϕ1v cos θv eiϕ2v sin θv

−e−iϕ2v sin θv e−iϕ1v cos θv

 .

(D.1)
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When this substitution is made, the Haar-measure averaged fidelity simplifies

to:

AMF =
1

6

((
c2 − 2

) (
a2 + b2 − 2

)
sin2(θv)− sin2(θu)

((
c2 − 2

) (
a2 + b2

)
− 2ab

(
c2 − 1

)
cos(2ϕ2u) + 2

√
1− a2

√
1− b2c2 sin2(θv) cos(2ϕ2v)

+ cos2(θu)
(
−
(
c4 − c2 − 1

) (
a2 + b2

)
− 2ab

(
c2 − 1

)
c2 cos(2ϕ1u)

)
+ cos2(θv)

((
c4 − c2 − 1

) (
a2 + b2 − 2

)
− 2

√
1− a2

√
1− b2c2

(
c2 − 1

)
cos(2ϕ1v)

)
− 2

√
1− a2

√
1− b2 sin2(θv) cos(2ϕ2v) .

(D.2)

This fidelity was analysed numerically for different values of c from c = 0.1 to

c = 0.9 in steps of 0.1. For each value of c, Mathematica’s inbuilt ‘NMaximise’

function was used to maximise this fidelity with respect to the feedback param-

eters a, b, θu, θv, ϕ1u, ϕ2u, ϕ1v, ϕ2v. It was found that, in each case, the fidelity

was maximised when a = b (for any value of a and b), θu = θv = ϕ2u = ϕ2v =
π
2

and any value of ϕ1u and ϕ1v. Recall that, when a = b, the measurement is ‘in-

finitely weak’, so that the MF protocol becomes coherent feedback. Also note

that, these optimal values of the parameters correspond to the case where

U = V = σx. Thus, for the values of c considered, we conclude that CF

outperforms all possible MF protocols.

When we substitute in θu = θv = ϕ2u = ϕ2v = π
2
into equation (D.2), we

obtain the following equation:

A =
1

3

(
−
(
c2
(√

1− a2
√
1− b2 + 1

))
+
√
1− a2

√
1− b2 + a

(
b− bc2

)
+ 2

)
,

(D.3)

which gives the output fidelity of the protocol for any POVM with feedback

unitaries U = V = σx, which, as we have seen, is optimal in both the case of

projective measurements, and the case of fully coherent feedback. Substituting

a = b into (D.3) recovers the CF fidelity derived in Section 4.3.1: ACF = 1−2
3
c2.

Substituing a = 1, b = 0 recovers the case of projective measurement covered

in Section 4.3.2: AMF = 2
3
− 1

3
c2.
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