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Investigating cognitive effort and its role in  

control over Pavlovian bias 

Hugo Alexander Fleming 

 

Abstract 

Effort is a key determinant of cognitive performance, particularly for processes 

involving cognitive control – without it, performance may be slow, inaccurate or 

biased. Related to this, decreased ability to exert effort has been implicated in the 

symptoms of conditions including depression and anxiety. In this thesis I investigate 

the role of effort in the specific case of control over Pavlovian biases. In the first 

two experimental chapters I examine whether Pavlovian biases are in principle 

modifiable, a necessary precondition for demonstrating that they are also 

controllable. Following a simple programme of behavioural training, participants 

showed reduced influence of Pavlovian biases on behaviour, a result which is 

consistent with increased cognitive control. In the third experimental chapter, I 

present a new task for measuring cognitive effort sensitivity, suitable in particular 

for individual differences research. Subsequently, in the final experimental chapter, 

I use this task to test directly the hypothesis that the strength of Pavlovian bias is 

influenced by effortful cognitive control. I present initial evidence that indeed 

willingness to exert effort and the strength of Pavlovian biases seem to be 

negatively correlated, while effort also seems to be negatively associated with both 

depression and anxiety symptoms. Finally, in a standalone theoretical chapter, I 

discuss the rationale for effort costs, which currently are not well understood; I 

introduce and extend two existing ideas from outside of neuroscience which I think 

may be informative in this regard. Overall this thesis extends our understanding of 

the link between effort and control, suggesting in particular that the expression of 

Pavlovian biases can be framed in terms of effort-based decision-making. 

Additionally, by introducing fresh ideas about the basis of cognitive effort costs, it is 

hoped that this thesis will provide stronger foundations on which experimental 

research on cognitive effort can be built in the future. 
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Impact Statement 

Impact within academia 

The primary scientific significance of this thesis is in advancing and improving our 

understanding of the links between effort and cognitive control. The experimental 

and theoretical chapters of this thesis are intended to be published in scientific 

journals in the near future and in so doing the results contained in them will be 

disseminated for other scientists to read. Indeed it is my intention for these papers 

to be published in open access journals so they will in fact be able to be read by 

anybody, including members of the public.  

 

Chapter 4, in which I present a new task to measure cognitive effort sensitivity, will 

be particularly useful for other researchers as it represents a significant advance in 

our ability to accurately measure individual differences in cognitive effort. This in 

turn opens up a number of new areas of study that were not able to be investigated 

previously due to the lack of tasks with appropriate controls.  

 

Finally, as I mention at the end of Chapter 6, the theoretical ideas I discuss in this 

thesis are novel and somewhat speculative in their current state. I would like over 

the coming years to build collaborations with other researchers, particularly those 

from adjacent fields in mathematics and physics, who would be able to help 

develop these ideas into more specific predictions, which could then be tested 

experimentally. This has the potential to develop into a substantial programme of 

research and, if validated, would have fundamental implications for understanding 

both optimal decision making and the physiological constraints on the brain.  

 

Impact for society generally 

Beyond academia, this thesis is also relevant to society at large. In Chapters 2 and 3 

I show that the strength of Pavlovian biases can be reduced following a programme 

of behavioural training, and I suggest that this has potential as a treatment for 

some of the symptoms of anxiety and depression (in which Pavlovian biases have 

been implicated). There is much more work to be done before this potential can be 
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realised, but if successful then this would be an important step towards tackling the 

cognitive symptoms of common mental health conditions.  

 

More generally, effort is an important feature of many aspects of cognition, 

contributing not just to disease but also to healthy variation in performance. Often 

there are times when we would like to be able to exert more effort than we feel 

able to – in the short to medium term, it is hoped that the work contained in this 

thesis will at least contribute to a better understanding amongst the public of why 

this is the case, and what factors contribute to the decision to exert (to a greater or 

lesser extent) cognitive effort. This impact can be accomplished by my taking 

opportunities to present the results in this thesis to public and non-specialist 

audiences over the coming years. In the longer term the ideas in this thesis could, 

as part of a much larger field of research, eventually contribute to a better 

understanding of how effort can be deliberately regulated and thus how we might 

seek to enhance human cognition. 
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Chapter 1. General Introduction 

 

Effort is a ubiquitous feature of everyday life. Physical effort is perhaps the most 

obvious manifestation – lifting a heavy weight off the ground requires more effort 

than a lighter one, running takes more effort than walking, and throwing a ball as 

far as possible is more effortful than aiming for a shorter distance. In all of these 

cases, ‘effort’ describes the amount of resources that get devoted to a task (e.g. the 

force of muscle contractions), with more effort leading to greater performance, but 

also being accompanied by an aversive sensation, a subjective cost of exerting 

effort. 

 

The same arrangement seems also to hold in cognition – while there are some 

cognitive activities that are entirely automatic and reflexive, most require some 

degree of conscious engagement, the extent of which can be varied.  In colloquial 

terms, we say that we can decide how hard we ‘try’. For example, mental 

arithmetic requires effortful attention, without which you are likely to take longer 

and could also make a mistake; so too does close reading; even everyday problem 

solving, like planning a meal or arranging to see friends, requires some degree of 

effort, without which it is hard to do these activities effectively (as in more severe 

cases of depression or schizophrenia; Perini et al., 2019; Kaneko, 2018). In common 

with the notion of physical effort is the sense that there is some continuous 

resource which can be deployed when carrying out a cognitive task, which is 

necessary in order to achieve desirable outcomes but which is accompanied by an 

unpleasant and aversive sensation that limits the amount of effort one is willing to 

exert. The examples above also highlight the overlap between cognitive effort and 

concepts like conscious attention, working memory and cognitive control. 

 

The chief significance of cognitive effort is that it determines the level of 

performance that can be achieved on a task. If we consider there is a maximum 

potential we could achieve, effort determines the proportion of this that is actually 

expressed. In other words, effort is “the mediating factor between cognitive 
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capacity, on the one hand, and performance on the other” (Shenhav et al., 2017, 

p.101). In this regard, effort is critical to a number of important cognitive processes, 

being associated with more rational reasoning and less use of heuristics (Shah & 

Oppenheimer, 2008; Toplak et al., 2011; Venkatraman et al., 2009), improved 

working memory (Westbrook et al., 2013) and greater facility for flexible task-

switching (Koch et al., 2018). In wider life, although exertion is difficult to test 

rigorously, self-report measures suggest that greater disposition to engage in 

cognitively demanding activities also predicts better academic performance, 

employment status and even IQ score (Cacioppo et al., 1996; Duckworth et al., 

2011; Tangney et al., 2004). Cognitive effort is therefore potentially key to 

understanding why people behave as they do and, moreover, how we might 

intervene to improve cognition. Effort is probably the most promising target for 

enhancing cognition given that, by definition, effort levels are not fixed but instead 

can be manipulated flexibly; in contrast, the cognitive capacity side of the equation 

is likely to be structural and so less easily changed. 

 

Along similar lines, understanding how decisions about exerting effort are made 

will likely be key to understanding the cognitive symptoms of a number of mental 

health and neurological illnesses. For example, increased sensitivity to effort has 

been implicated in symptoms of anhedonia and apathy, which are an important 

feature of both depression and some neurological diseases such as Parkinson’s (see 

Husain & Roiser, 2017, for a review). In schizophrenia impaired cognitive function is 

amongst the most debilitating symptoms (Green, 1996; Green et al., 2000; Tabarés-

Seisdedos et al., 2008) and may be related to increased sensation or effects of 

cognitive effort (Fervaha et al., 2013; Gold et al., 2013; Gold et al., 2015). Finally, 

anxiety entails an increased influence of avoidance biases on behaviour (Krypotos 

et al., 2015; Mkrtchian, Aylward, et al., 2017; Mkrtchian, Roiser et al., 2017; 

Robinson et al., 2013), which can be framed as a question of cognitive effort, in so 

far as optimal responding may require greater control when you are anxious.  
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Focussing on Pavlovian bias and effort 

The latter example of avoidance biases brings us to the particular focus of this 

thesis, namely the role of effort in Pavlovian biases. These biases are fixed 

responses to Pavlovian predictions of reward and punishment, and entail the 

invigoration of action when rewards are anticipated (termed an ‘approach bias’) 

and inhibition when punishments are expected (‘avoidance bias’). Naturally these 

responses are, at least some of the time, suboptimal and will lead to negative 

outcomes (as for example when one needs to remain still in order to gain a reward, 

or interact with a stimulus to prevent a punishment). In these situations, cognitive 

control is thought to be able to regulate the balance between the Pavlovian and 

other action selection systems, by reducing the influence of the Pavlovian system 

on behaviour; this control, in turn, requires effort. Thus there appears to be a 

causal chain from exerting effort to increased cognitive control, to attenuated 

Pavlovian biases and finally to better, more appropriate behaviour (Figure 1.1). The 

role of cognitive control in Pavlovian biases has not, however, been investigated a 

great deal, and the link to effort specifically has not been studied previously at all. 

 

 

 

The studies described in this thesis are therefore aimed at exploring this gap in our 

knowledge with regard to the role of effort in control over Pavlovian biases. This is 

not just important for its own sake but also because Pavlovian biases provide a 

relatively well defined context in which to investigate aspects of effort and control 

that will be relevant to other cognitive processes as well.  

 

Pavlovian Bias Effort Cognitive 
Control 

+ – 

Figure 1.1. The proposed relationship between effort, cognitive control and 
Pavlovian biases. Effort is required to exert greater cognitive control, which in 
turn is able to overcome and reduce the influence of Pavlovian biases. 
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In the remaining sections of this introduction I will present and discuss the existing 

literature on these two issues, cognitive effort and Pavlovian biases, in turn. 

Subsequently, I will introduce the key questions that this thesis is aimed at tackling, 

followed by an overview of the individual chapters and their aims and hypotheses.  

 

1.1 Cognitive effort 

1.1.1 Defining cognitive effort 

Cognitive effort can prove something of an elusive subject so it is helpful at this 

stage to set down precisely how I shall be using the term. If we imagine that we 

have some maximum cognitive capacity available to do work on a task, then 

cognitive effort is the process by which a proportion of this capacity is selected and 

employed. In this sense, as we have noted above, effort is a mediator, and it is the 

combination of capacity and effort (together of course with the inherent difficulty 

of the task) which determine how well some cognitive operation is carried out 

(Figure 1.2).   

 

 

 

Supplemental to this definition, it is important to distinguish effort explicitly from 

some of the concepts often associated, and even conflated, with it. 

 

Performance 

Capacity Effort 

Task Difficulty 

Figure 1.2. Defining cognitive effort. Cognitive effort describes the proportion of 
available cognitive capacity that gets employed on a particular task, and therefore 
contributes to successful performance.   
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In the first place, much of the potential for confusion comes from the fact that, in 

everyday language, effort can mean both how much we ‘try’ and also how aversive 

a particular task is. We talk of ‘giving’ and ‘putting in’ effort to a task, meaning 

devoting some quantity of our available resources to it; on the other hand, if an 

activity is ‘effortful’ we mean it is unpleasant to do. The distinction between these 

two senses of effort is subtle but important. For the avoidance of doubt, the former 

(effort as the amount of cognitive work done) is the sense that shall be employed 

throughout this thesis and where I refer to the latter it will be qualified by the term 

effort costs.  

 

Cognitive effort also needs to be distinguished from several other overlapping, but 

not completely redundant concepts (see Table 1.1). For instance, although the 

effort required by a task frequently covaries with its difficulty, the two are not 

exactly equivalent. The same task can demand very different levels of effort from 

different people – driving for example can be incredibly effortful for a learner but 

relatively easy for an experienced driver. Indeed any experienced driver was of 

course also a learner at some point, so even for one person the effort required by 

the same task can change over time. There is also the phenomenon of ‘flow’, where 

a task that usually requires effort can sometimes be carried out automatically, 

without much conscious awareness (Nakamura & Csikszentmihalyi, 2014). Although 

otherwise beyond the scope of this thesis, the existence of flow suggests that effort 

is not directly linked to objective features of a task like its difficulty; instead, it is a 

subjective phenomenon that is influenced also by other elements of psychology 

including motivation and the learned value of effort (Shenhav et al., 2013). Perhaps 

the best way to sum up the difference is to say that effort as a construct is used to 

account for the remaining variation in performance after having controlled for task 

difficulty.  

 

Second, although effort frequently accompanies attention (to such an extent that 

Kahneman, 1973, conflates the two entirely), a distinction should be drawn 

between them. It is true that, in many ways, both attention and cognitive control 

(see below) capture something of what we mean by effort – namely, increased 
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engagement with a task, and the deployment of greater resources to its 

completion. As both Kaplan and Berman (2010) and Westbrook and Braver (2015) 

note, however, only top-down, volitional attention is experienced as effortful; 

bottom-up attention is not, and we should be careful not to confuse the two.  

 

 

 

Table 1.1. Concepts with which effort is often conflated. 

 

Concept Summary Relevant citations 

Task difficulty Difficulty is a feature of the task 

itself, while effort is psychological 

and subjective. E.g. consider ‘flow’ 

states – the difficulty of a task stays 

the same, but the effort required 

seems to be much reduced.  

 

Nakamura & 

Csikszentmihalyi, 2014; 

Shenhav et al., 2013 

Attention Conscious attention/focus is closely 

aligned with effort; but 

unconscious, bottom-up attention is 

not effortful at all. 

 

Kahneman, 1973; 

Kaplan & Berman 

(2010); Westbrook & 

Braver (2015) 

Cognitive 

Control 

Some have suggested that cognitive 

control and effort are synonymous; 

‘control’, however, entails a 

stronger commitment to particular 

cognitive mechanisms, whereas 

effort is broader and refers to any 

deployment of flexible cognitive 

resources. Control may be regarded 

as a specific implementation of 

effort. 

Shenhav et al., 2013; 

Shenhav et al., 2017; 

Westbrook & Braver, 

2015 
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This brings us finally to the notion of cognitive control (that is, the set of volitional, 

internally-directed processes which manage the resources of the brain). It is control 

processes which have been most closely associated with effort in the recent 

literature (Botvinick, 2007; Kool et al, 2010; Shenhav et al., 2013, 2017). Again, 

however, effort is not exactly synonymous with control, at least in part because, 

conceptually, the term cognitive control refers specifically to the balance between 

automatic and non-automatic cognitive processing, and entails a set of mechanisms 

involving monitoring and interacting with cognitive signals; effort, on the other 

hand, is a broader term connoting the deployment of cognitive resources more 

generally. Thus we might say that effort is expressed or implemented through 

cognitive control (Shenhav, 2017; Westbrook & Braver, 2015). Nevertheless we 

should acknowledge that, of all the concepts related to effort, cognitive control is 

probably the one that is most strongly related. I return to this issue in Section 1.2.5 

below.  

 

1.1.2 Measuring cognitive effort 

Although, as I have said, it is important to distinguish between effort and effort 

costs, the latter are in fact what most cognitive effort measures focus on. This is 

partly due to expedience – effort costs are relatively overt and easy to measure 

compared with trying to infer effort from performance – and partly because effort 

costs and effort-based decision-making answer directly the question of why people 

behave as they do. All else being equal, effort costs are a demotivator; they 

encourage people to avoid exertion. This has been recognised scientifically for over 

a century, with Thorndike writing that “feelings of fatigue… serve as a sign to us to 

stop working long before our actual ability to work has suffered any important 

decrease” (quoted in Kurzban et al., 2013, p.665). In the 1940s, Hull stated as one 

of his ‘Principles of Behaviour’ that animals seek to minimise their work or exertion 

(Hull, 1943). More recently, this principle has provided the basis of modern 

methods of assessing cognitive effort, which focus on the economic decision-

making aspect, the choice to exert effort (or not) rather than the performance of 

effort itself. 
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Most cognitive effort measures fall within the broad category of ‘demand selection 

tasks’. These are tasks in which participants have a free choice whether to engage 

in some effortful activity or do something else. In the earliest examples of these 

tasks, participants simply chose between low-effort tasks and high-effort tasks with 

no specific incentives. For example they may have had to choose between task 

switching with different frequencies of switching, or making judgements based on 

information held in working memory versus simple perceptual judgements (Kool et 

al., 2010; Kool & Botvinick, 2014). These foundational studies were the first 

experimental test of Hull’s principle stated above – they established that 

participants do systematically avoid tasks that demand greater cognitive effort 

when given a free choice (Kool et al., 2010), but can be enticed into selecting the 

higher effort-demanding option when monetary incentives are on offer (Kool & 

Botvinick, 2014).  

 

One issue with these early experiments was that they only described a categorical 

relationship between effort costs and behaviour, namely that people prefer low 

effort to high. Subsequently, tasks were developed that allowed continuous 

measurement of effort costs. For example, Westbrook and Braver (2013, 2015) 

introduced a task paradigm they called ‘Cognitive Effort Discounting’, which titrates 

monetary rewards against different levels of cognitive demand (on the N-back 

working memory task) until they reach an indifference point; this allows the 

experimenter to quantify the subjective costs of cognitive effort. Similarly, Apps et 

al. devised the ‘Rapid Serial Visual Presentation’ (RSVP) task, in which participants 

first learn to perform an effortful task with several different levels, and then in a 

separate phase make a series of choices between a fixed low-effort/low-reward 

baseline option and a variable higher-effort/higher-reward option (Apps et al., 

2015). This allows measurement of the effort discounting function – the way that 

the value of a choice progressively decreases as the offered effort level increases 

(Apps et al., 2015; Chong et al., 2016). Using these and similar tasks, researchers 

have shown for example that effort costs increase with age (Westbrook et al., 

2013), are modulated by dopamine availability (Froböse & Cools, 2018; Westbrook, 

van den Bosch, et al., 2019) and are associated with activity in the dorsal Anterior 
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Cingulate Cortex (Shenhav et al., 2013, 2017), the prefrontal cortex and anterior 

insula (Chong et al., 2017).  

 

Clearly a key component in these tasks is the effortful activity offered, and the 

manipulation of effort within this. There are a number of important design 

considerations in order to avoid potential confounding: for example, as the effort 

level is increased, the duration of a trial needs to be held constant so that the rate 

of reward also does not change; similarly, the difficulty of the task needs to be kept 

the same, so that the probability of success, and therefore of winning reward, is 

consistent. The latter is unfortunately an issue that has not previously been given 

much consideration in cognitive effort tasks, and is particularly a problem where 

these tasks are increasingly being used for individual differences research – if the 

task difficulty is not standardised and participants are not matched for baseline 

cognitive capacity, then differences between participants will be confounded by the 

probability of obtaining reward. Unfortunately, the most frequently used effort 

manipulations, such as levels of the N-back working memory task (Westbrook et al., 

2013), response inhibition on Stroop-like tasks, and frequency of task switching 

(Kool et al., 2010; Kool & Botvinick, 2014) are indeed intrinsically more difficult as 

the effort level increases, because the amount of mnemonic resources has to be 

split between more items (on the N-back), or because there is a prepotent bias to 

be overcome (on the Stroop-like and task switching tasks). One exception to this is 

the RSVP task (Apps et al., 2015), in which the effort manipulation depends on the 

frequency of attention shifting from one stream of alphanumeric characters to 

another – there is no reason to think that attention shifting should intrinsically be 

associated with lower rates of success, so within participants at least there does not 

seem to be a confound. However the difficulty of the task is not standardised across 

participants (indeed Apps et al. found that participants’ success rates during the 

training phase significantly predicted their subsequent choices) so comparisons 

between individuals are likely still to be confounded. There is therefore a clear need 

to devise a new task that addresses the confound of reward probability completely, 

and is therefore suitable for individual differences research – this is a requirement I 

will address in Chapter 4. 
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1.1.3 Theories and perspectives on cognitive effort 

Early attempts to understand the nature of cognitive effort are often traced back to 

Kahneman’s 1973 book ‘Attention and Effort’ which sought to muster over a 

decade’s worth of research in service of the idea that, as the title suggests, effort 

can be directly equated with attention. Kahneman characterised attention as a 

limited capacity resource that is dynamically allocated according to task demands. 

Crucially, this resource is capacity limited at any one time but not depleted over 

time. 

 

An alternative class of theory takes the opposite position on the nature of cognitive 

resources. The idea that tasks consume (metabolic) resources is intuitive and has a 

natural analogy in physical effort. Probably the most prominent example of this 

approach is the Ego Depletion Theory of Baumeister and colleagues, who presented 

declining performance during sustained cognitive exertion as evidence of the 

depletion of some resource, possibly blood glucose (Gailliot & Baumeister, 2007; 

Gailliot et al., 2007). Subsequent mixed results from replications and meta-analyses 

have, however, cast significant doubt over the Ego Depletion Theory specifically 

(Carter & McCullough, 2014; Lurquin et al., 2016) and on theories of resource 

depletion more broadly. Researchers have noted that while active processing no 

doubt requires energy, the difference in the rate of consumption of glucose 

compared with at rest is small (estimated at around 1% by Raichle & Mintun, 2006). 

That is, the so-called ‘resting’ dynamics of the brain are also rather metabolically 

costly (Kurzban, 2010; Kurzban et al., 2013). Preserving glucose supplies seems not 

to provide a rationale for cognitive effort.  

 

Nevertheless, resource theories continue to be considered seriously, not least 

because the idea that cognitive work has metabolic consequences is the basis for 

the BOLD signal and, in turn, the whole field of neuroimaging. Instead what has 

been revised is the claim that effort reflects a global resource depletion. More 

recent theories have instead suggested that local metabolic changes may be 

involved, such as depletion of astrocytic glycogen stores (Christie & Schrater, 2015) 

or the accumulation of amyloid beta protein (Holroyd, 2016); but proposals such as 
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these remain to be seriously tested. Ultimately, metabolic depletion theories offer 

an attractive explanation for cognitive effort, but with a physical resource yet to be 

identified, they remain speculative at this stage.  

 

In contrast, limited processing capacity has become the consensus account in 

recent years, helped no doubt by the success of the neuroeconomic paradigm 

(which implicitly starts from the assumption that resources are not depleted over 

time). Crucially, researchers are now seeking to be more specific about the nature 

and source of effort costs – what is it about cognitive processing that is costly? I will 

briefly summarise the two main perspectives that have been offered so far, both of 

which identify cognitive effort with opportunity costs. 

 

1.1.3.1 Opportunity costs 

Utilising any limited resource entails an opportunity cost, in so far as that resource 

now cannot be used for any other purpose and so other sources of rewards have 

been foregone. Granting that cognitive processes are, ultimately, limited capacity, 

then the brain ought to take account of those opportunity costs when choosing 

how to allocate its processing resources (a principle known as Bounded Optimality). 

This model of effort costs is most often attributed to Kurzban et al. (2013) and 

Shenhav et al. (2013, 2017), with some distinctions between the two. 

 

To borrow an example from Kurzban et al. (2013), one might imagine a participant 

performing a maths problem; with nothing else to do, other than daydream, they 

might not perceive the maths problem to be too effortful. But place their mobile 

phone on the table next to them and the opportunity cost model predicts that the 

maths problem will be perceived as more aversive, because the value of alternative 

options (e.g. the social reward available from responding to messages on their 

phone) has increased. Accordingly this will also be reflected in behaviour, as an 

increased tendency to switch away from the maths problem to the higher utility 

action of browsing one’s phone.  
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The model presented by Kurzban et al. focusses on limited capacity for task-specific 

computations (this distinguishes their proposal from that of Shenhav and 

colleagues). Effort is therefore experienced only to the extent that two different 

tasks draw on overlapping processing resources, thus allowing for unimpaired dual-

task performance under certain circumstances. Kurzban et al. also permit that the 

same set of processing resources may be shared between two different tasks, 

rather than there being a binary choice between processing one task or another. 

Put simply, resources may be split between different tasks provided that the 

marginal utility gained by devoting one unit of processing capacity to an alternative 

task exceeds that lost by reallocating that unit of capacity away from the original 

task. A final consideration is that Kurzban et al. are relatively agnostic about the 

specific economic calculations involved – they suggest that effort costs reflect the 

opportunity cost associated with the next best option only, but it is also possible 

that the cost instead reflects, say, the mean value of all of the available 

alternatives. These are not core assumptions of their model and could be tested 

and clarified by future research.    

 

Shenhav et al. (2013, 2017) independently proposed another opportunity cost 

model of cognitive effort, but in this case aligning effort specifically with cognitive 

control. They suggest that the purpose of control is to prevent or ameliorate cross 

talk between concurrent signals within a particular processing system, which is 

achieved by intervening to favour one signal over the others. Controlled processes 

thus appear to be limited in capacity, though Shenhav et al. (2017) are keen to 

emphasise that this is precisely the purpose of cognitive control and not the result 

of some structural or physical constraint on resources. Having in any case 

established that controlled processing is limited, then according to the principle of 

Bounded Optimality, its allocation ought to be weighted by the relevant 

opportunity costs, reflected in the subjective experience of effort costs.  

 

The model of cognitive effort proposed by Shenhav et al. forms part of a broader 

theory they term the Expected Value of Control (EVC) theory, and it is with this that 

they depart more significantly from the similar proposal of Kurzban et al. (2013). 
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Specifically, they propose that the costs associated with control incorporate not just 

the opportunity cost but also the intensity of control signal required – on the basis 

that computing and implementing a control signal apparently entails greater 

representational complexity compared with uncontrolled or automated processing. 

They do not go into further detail however as to why the magnitude of the control 

signal should be intrinsically costly. The likely answer is that their cognitive control 

model is based upon earlier models of optimal motor control (see Shadmehr & 

Krakauer, 2008, for a review), which also stated that the control signal was 

intrinsically costly; this was not fully justified in the original motor control models, 

however, and has now unfortunately been accepted uncritically in the cognitive 

control literature. These are fundamental issues that I will explore in more depth in 

this thesis as part of the theory-focussed Chapter 6. 

 

1.1.4 Cognitive effort in disease 

Cognitive effort is an important feature of everyday cognition so, as a corollary, we 

might think that it would be implicated in some of the cognitive symptoms of 

mental and neurological illnesses. Perhaps because a thorough study of cognitive 

effort has only begun relatively recently, however, this remains poorly understood 

and to some extent uncharted territory. I will briefly highlight below two potentially 

fruitful areas where cognitive effort may provide a useful perspective, and which I 

will focus on in this thesis. 

 

1.1.4.1 Anhedonia and apathy 

Anhedonia is defined as “a consistently and markedly diminished interest or 

pleasure in almost all daily activities” (Husain & Roiser, 2017, p2). It is one of the 

two core symptoms of Major Depressive Disorder (MDD) cited in the Diagnostic 

and Statistical Manual of Mental Disorders (APA, 2013), along with depressed 

mood, but can also figure in schizophrenia (as a negative symptom), eating 

disorders and substance use disorder (Husain & Roiser, 2017). Apathy is a similar 

construct, referring to a loss of motivation for at least two of: goal-directed 

behaviour, cognitive activity and emotion (Robert et al., 2009); in contrast to 
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anhedonia, which has tended to be a psychiatric symptom, apathy has been 

associated with neurological conditions such as Parkinson’s and Alzheimer’s 

diseases and stroke. An emerging perspective, however, articulated by Husain and 

Roiser (2017), sees these as two overlapping constructs, potentially with some 

common and some distinct underlying mechanisms. 

 

There is accumulating evidence that the trade-off between the costs and rewards of 

physical exertion is skewed in both apathy (Chong et al., 2015; Le Heron et al., 

2018) and anhedonia (Treadway et al., 2013; Valton et al., 2018). Significantly, 

Valton et al. (2018) have taken this further and, using parameters derived from a 

computational model, specifically associated higher anhedonia scores with 

increased sensitivity to physical effort (as opposed to lower sensitivity to rewards, 

which was associated instead with lower mood/anxiety). So far, however, research 

into cognitive effort in disease is less advanced, with little research attempting to 

quantitatively relate cognitive effort to symptom severity. One exception is a study 

by Patzelt et al. (2019), who investigated the associations between effort avoidance 

(on the Demand Selection Task of Kool et al., 2010) and a range of 19 symptom 

scales. However, they found no correlation between effort preferences and either 

depression specifically or transdiagnostic anhedonia or apathy scores. One 

possibility is that this study was not sufficiently sensitive to the putative effort–

anhedonia association (for example due to the categorical nature, noted previously, 

of the Demand Selection Task). This interpretation is supported by results of earlier 

studies which showed that patients with depression were impaired versus healthy 

controls on tasks demanding effortful attention but not automatic, stimulus-driven 

attention (e.g. visual search with one versus multiple distractors (Hammar, 2003; 

Hammar et al., 2003). This suggests that exploring the role of altered cognitive 

effort in depression, in particular by using newer, more sensitive tasks, could be a 

promising avenue for future research. 
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1.1.4.2 Anxiety disorders 

Anxiety constitutes a normal and adaptive set of responses to prolonged, 

unpredictable threat, promoting cautious avoidance behaviour and heightened 

vigilance. When a state of anxiety becomes permanent, generalised or otherwise 

decoupled from genuine threat, however, it can become pathological (Robinson et 

al., 2013). One of the core features of anxiety is avoidance behaviour which, in 

excess, is thought to contribute to the inception and maintenance of pathological 

anxiety because, by avoiding a feared situation, one is unable to learn when the 

true outcome is not as bad as first thought (Krypotos et al., 2015). Conversely, 

addressing avoidance behaviour and so facilitating extinction learning constitutes 

one of the main psychological approaches for treating anxiety (Kaczkurkin & Foa, 

2015).  

 

Recent theoretical and empirical work has suggested that a major factor in 

avoidance behaviour is the negative Pavlovian bias – that is, a tendency to withhold 

or inhibit action when an aversive event is predicted (Boureau & Dayan, 2011; 

Guitart-Masip, Duzel et al., 2014). This Pavlovian bias can account for important 

findings, such as avoidance behaviour in anxiety even when there is no 

instrumental component (i.e. when actions do not affect the presence/absence of 

the stimulus; Krypotos et al., 2014). Additionally, computational modelling studies 

have found that when a contextual stressor (‘threat of shock’) is present, Pavlovian 

bias in patients with anxiety disorders is increased (Mkrtchian, Aylward et al., 2017; 

Mkrtchian, Roiser et al., 2017).  

 

The above discussion raises the prospect that avoidance behaviour in anxiety could 

be framed in terms of cognitive effort: while threat-related biases in anxiety may 

not be a direct result of altered effort processing in itself, patients’ ability to control 

these biases will depend on the extent to which they are able to exert the required 

effort. This hypothesis motivates the first study of this thesis, described in Section 

1.3.1 below. 
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1.1.5 Cognitive Effort: Interim summary  

To summarise what has been reviewed so far, there is widespread agreement that 

cognitive resources are limited and therefore that they ought to be treated as 

costly in order to ensure their efficient use and maximise the rewards available to 

the organism. Whether the constraint on resources reflects metabolic alterations, 

processing capacity or both remains a point of contention; but theories assuming a 

limited capacity and proposing opportunity cost as a key contributor to subjective 

effort have enjoyed success in recent years (Kurzban et al., 2013; Shenhav et al., 

2013, 2017; Westbrook, Cools, & Braver, 2019).  

 

Cognitive effort therefore constitutes a research field with a maturing theoretical 

basis, which raises a number of new and underexplored empirical questions. 

Concerning the nature of effort costs, it is still unclear whether these just reflect 

economic (opportunity) costs or may incorporate intrinsic costs of cognition as well. 

Similarly, what precisely is the relationship between effort and cognitive control – 

are they two sides of the same coin (as Shenhav et al., 2013, 2017 claim) or is effort 

a wider phenomenon involving any use of limited capacity resources (Kurzban et 

al., 2013)? Concerning the role of cognitive effort in disease, much more research 

needs to be done not simply to identify whether effort processing is affected in 

certain disease states, but to link this parametrically with symptom classifications 

and the phenomenology of the disease. Finally, there is a more practical question of 

whether one’s subjective assessment of effort costs can be shifted and, if so, how? 

This would potentially offer a translatable route for treating effort-related 

symptoms of psychiatric and neurological diseases, and also a means of enhancing 

human cognitive performance in healthy individuals.   

 
1.2 Pavlovian bias 

As noted in Section 1.1.4 above, this thesis will in large part focus on the role that 

cognitive effort plays in the ability to exert control over Pavlovian biases. In the 

following section I will give a more detailed overview of what Pavlovian biases are, 
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why they are thought to arise and how they are controlled. Finally I will discuss the 

reasons for thinking that effort and the strength of Pavlovian biases are linked.  

 

1.2.1 Pavlovian and instrumental systems for action selection 

Theories of learning have historically tended to make a distinction between two 

processes, Pavlovian and instrumental learning. The former is said to be concerned 

with stimulus-stimulus learning – for example, in the classic case, Pavlov trained 

dogs to learn that the ringing of a bell preceded the delivery of food. The latter 

process refers to learning action-outcome contingencies (Dickinson & Balleine, 

2002) – for example, that pressing a button causes a light to switch on. There is 

however a wealth of evidence indicating that the two systems are not as distinct as 

often portrayed and in fact overlap and interact with one another significantly 

(Guitart-Masip, Duzel et al., 2014). In particular, it should be emphasised that the 

Pavlovian system is involved in more than just predictive learning alone, 

contributing also to action selection through the generation of conditioned 

(Pavlovian) responses – indeed these responses are the only way that Pavlovian 

learning is outwardly manifested (Dayan & Balleine, 2002; Dayan et al., 2006). 

Pavlovian responses are relatively fixed and are thought to be innate; broadly 

speaking, they invigorate action and promote approach towards reward-associated 

(appetitive) cues, and inhibit action in order to avoid contact with punishment-

associated (aversive) cues (Dayan & Balleine, 2002). It is widely accepted that these 

responses are adaptive, at least on an evolutionary scale, yet as we shall see there 

are specific situations in which they fail.  

 

The potential for conflict between these two action selection systems, Pavlovian 

and instrumental, has been recognised for many decades. An early report of what 

has since come to be called Pavlovian-Instrumental Transfer (PIT) was provided by 

Estes and Skinner (1941): they found that the rate of instrumental lever-pressing by 

rats was reduced when a tone, which had previously been associated with 

punishment, was played at the same time; conversely, lever pressing increased if 

the tone had been associated with food reward (Estes, 1943). A starker example is 

given by an experiment conducted by Hershberger (1986), who trained chickens 
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first to learn that food was present in a particular cup; then, once the association 

had been acquired, placed the chickens and the cup on two treadmills set up such 

that, as the chicken approached the cup, the cup would move away from them at 

twice their speed; conversely if they moved away from the cup, it would be 

transported towards them at twice their speed. Hershberger found that the 

chickens were unable to learn that they needed to set off away from the direction 

of the cup in order to win the food reward – they were unable to overcome their 

prepotent Pavlovian approach response. 

 

The reason for results such as these can be understood by considering action 

selection as a problem of optimal control. An optimal action is one that leads to the 

maximum possible reward and minimum possible punishment over the long term. 

There is really only one way to achieve this: one has to know and take account of 

the contingency between each action and its consequences, in order to select the 

action that will lead to the best outcome. In other words, one needs to know the 

instrumental value of an action; without this, one is more or less in the dark about 

the outcome to be expected following any particular action.  

 

This is precisely the case with the Pavlovian system, which generates fixed 

responses to predictions of reward or punishment. One way of framing this is to say 

that the Pavlovian system implicitly encodes the belief that there is a positive 

contingency between approaching appetitive stimuli and reward, or avoiding 

aversive stimuli and preventing punishment (Guitart-Masip, Duzel et al., 2014). 

Because of this, the Pavlovian system is not guaranteed to be optimal even if 

Pavlovian learning is complete. This in turn can lead to conflict between the 

Pavlovian and the instrumental systems. 

 

It is however only relatively recently that tasks have been developed to separate 

the effects of required action and valence on behaviour. One of these, featured 

prominently throughout this thesis, is called the Orthogonal Go/No-Go task 

(Guitart-Masip et al., 2011). It is so-called because it allows the required response 

to a stimulus (go or no-go) and the outcome valence (reward or punishment) to be 
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varied independently. This gives rise to four distinct trial types (see Table 1.2): go to 

win reward, go to avoid punishment, no-go to win reward, no-go to avoid 

punishment. In two of these (go to win reward and no-go to avoid punishment) the 

Pavlovian and instrumental systems favour the same responses; in the other two 

(go to avoid punishment and no-go to win reward) they are in conflict. This is 

manifested in lower accuracy for the trial types where there is conflict. A related 

observation, not as frequently remarked upon, is that we nevertheless do not see 

perfect inaccuracy for the go to avoid punishment/no-go to win reward trial types, 

which is what we would expect if Pavlovian biases were the only influence on 

behaviour. The fact that participants can learn these trials to some degree suggests 

that the brain is running both the Pavlovian and instrumental systems in parallel, 

and both are simultaneously able to affect behaviour.  

 

 

This naturally raises the question of why the brain would go to the trouble of using 

both systems at once – why is there this semi-redundancy? It is often remarked 

that the Pavlovian system is computationally cheaper than the instrumental system 

(e.g. Swart et al., 2017, p.2), but this is not really advantageous if the instrumental 

systems are still kept running; and if the instrumental systems are available then 

why permit the possibility of systematic errors due to the Pavlovian system? I will 

return to these questions in Section 1.2.4, after first reviewing some of the 

proposed neural and other cognitive correlates of the Pavlovian and instrumental 

systems. 

 

 
Table 1.2. The four trial types of the Orthogonal Go/No-Go Task. Squares shaded 
dark are those for which the Pavlovian and instrumental systems produce 
conflicting responses.  

 Reward Punishment 
Go Go to Win Reward Go to Avoid Punishment 

No-Go No-Go to Win Reward No-Go to Avoid 
Punishment 
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1.2.2 Neural mechanisms of Pavlovian and instrumental systems 

Although in this thesis I will not be directly investigating the neural correlates of 

Pavlovian biases, it is worthwhile to briefly review this literature for two reasons: 

firstly, the primary evidence for the involvement of cognitive control in Pavlovian 

biases comes from studies of brain activity (fMRI and EEG); secondly, the lack of 

clarity in this literature perhaps indicates that we need to develop a better 

cognitive understanding of Pavlovian biases on which brain studies can then be 

based.   

 

Using the Orthogonal Go/No-Go Task, and other tasks like it, a growing number of 

studies have contributed to a more complex assessment of the role of particular 

brain regions in Pavlovian and instrumental action selection. For example, areas in 

the ventral striatum and amygdala had previously been associated with the 

Pavlovian system, and in the dorsal striatum with the instrumental system 

(Liljeholm & Doherty, 2012). In rodents, ablation of the nucleus accumbens (NAcc) 

core has been found to abolish appetitive PIT (Cardinal et al., 2002), while in human 

fMRI studies, NAcc and amygdala BOLD activity was found to be positively 

correlated with the strength of the appetitive PIT effect (Talmi et al., 2008; Prévost 

et al., 2012). However, because these studies relied exclusively on appetitive PIT, 

they were not able to disambiguate the action and valence components fully, and 

therefore it is also possible that these results could be explained by the NAcc 

signalling action (go) value. Accordingly, subsequent studies with the Orthogonal 

Go/No-Go Task have reported that ventral striatum BOLD signal during the 

anticipatory phase of a trial (i.e. prior to the response being performed) tracked the 

action value and not the state value (Guitart-Masip et al., 2011, Guitart-Masip et 

al., 2012).  

 

As a result of these findings, Guitart-Masip, Duzel et al. (2014) have proposed an 

alternative view of the Pavlovian and instrumental systems, according to which 

they are not completely segregated in the brain but instead may both be related to 

the direct (‘go’) and indirect (‘no-go’) pathways within the striatum. In order then 

to account for performance of the Pavlovian-instrumental conflict trial types (they 
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single out no-go to win in particular), they propose the involvement of a top-down 

frontal controller, dependent on dopamine, which downweights the strength of 

Pavlovian representations in the striatum relative to the instrumental 

representations (through some as yet unidentified mechanism; Guitart-Masip, 

Duzel et al., 2014; Guitart-Masip, Economides et al., 2014).  

 

There is indeed relatively good evidence for situating control over Pavlovian biases 

in the frontal cortices. A consistent result in fMRI studies has been that activity in 

the inferior frontal gyrus (IFG) is inversely correlated with the strength of Pavlovian 

bias (Ahn et al., 2013; Guitart-Masip et al., 2012; Gershman et al., 2021). One 

especially important study found that frontal theta-band EEG activity was 

associated with trial-by-trial changes in the strength of Pavlovian biases (Cavanagh 

et al., 2013); complementing the fMRI studies, this gives a much more fine-grained 

assessment that directly links frontal activity with dynamic changes in the strength 

of Pavlovian biases. Interestingly, another study reproduced this result when 

monetary rewards were used, but found that if social reward and punishment was 

used instead, it was frontal alpha band activity that was associated with (reduction 

in) Pavlovian bias instead (Thompson & Westwater, 2017). 

 

In summary, these results paint a picture in which the Pavlovian and instrumental 

systems seem to be located in and around the basal ganglia, possibly overlapping 

with the direct and indirect pathways. As with much of our understanding of this 

part of the brain, however, the details are still not entirely clear, which maybe 

suggests that our theoretical understanding of these process does not perfectly 

match the computations that are actually being carried out. That said, the results 

that are consistent and straightforward to interpret are those relating to cognitive 

control over Pavlovian biases: this control is frontal in origin, modulated by 

dopamine and able to influence action selection on a trial-by-trial timescale. In the 

empirical chapters of this thesis I will explore the issue of control over Pavlovian 

biases in greater detail. 
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1.2.3 Pavlovian biases and mental health 

Dayan and Huys (2008) have suggested that a core characteristic of affective 

disorders (both anxiety and depression) might be enhanced Pavlovian avoidance 

biases. Subsequently this prediction has been mostly borne out, certainly for 

anxiety. Mkrtchian et al. examined in two studies performance on the Orthogonal 

Go/No-Go Task while participants underwent an anxiety induction involving the 

threat of an electric shock. In the first study, participants were all healthy and did 

not have any preexisting mental health symptoms (Mkrtchian, Roiser et al., 2017), 

while in the second study, a sample of participants with anxiety and depression 

symptoms was compared against a healthy control group (Mkrtchian, Aylward et 

al., 2017). In both studies, participants showed enhanced Pavlovian avoidance 

biases when under threat of shock, compared with a ‘safe’ comparison condition; in 

addition to this, participants with anxiety or depression symptoms showed greater 

overall Pavlovian avoidance biases and a greater increase in this bias when under 

threat of shock, compared to the healthy controls. Finally, in a third study, 

Peterburs et al. (2022) also found that social anxiety symptoms were associated 

with enhanced Pavlovian avoidance bias. Together, these studies provide clear 

evidence that even state anxiety is associated with greater aversive Pavlovian 

biases, and that this connection is potentiated in the case of pathological, trait 

anxiety. 

 

The situation is less clear with regards to depression; indeed, Dayan and Huys 

(2008) are themselves slightly more equivocal in linking Pavlovian avoidance biases 

to depression as well as anxiety. Two studies have looked at this question explicitly 

and reported opposite results. Nord et al. (2018) found that patients with major 

depressive disorder had enhanced aversive bias on a Pavlovian-instrumental 

transfer task, whereas Moutoussis et al. (2018) reported results from the 

Orthogonal Go/No-Go Task in which patients had no difference in Pavlovian 

avoidance bias compared with controls. Part of the reason for the discrepancy 

could of course be due to the difference in task used: Nord et al.’s aversive PIT task 

separates out the Pavlovian and instrumental learning phases from the actual 

transfer phase, while the Orthogonal Go/No-Go task tests acquisition and transfer 
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at the same time. Thus while the two tasks are conceptually equivalent, it is 

nevertheless to be expected that they do not give identical results. Perhaps more 

important though is participants’ medication status – in Nord et al.’s study patients 

were unmedicated, whereas the majority of Moutoussis et al.’s sample were 

prescribed antidepressants. Previous work has established that serotonergic drugs 

affect performance on the Go/No-Go task (Guitart-Masip, Economides et al., 2014), 

so it is very possible that medication status has substantially contributed to the 

differences between the two studies observed here.  

 

Overall, therefore, there is a substantial literature supporting the idea that 

Pavlovian bias is related to symptoms of some mental health conditions, in 

particular anxiety and depression. In the wider context of this thesis, it will be 

important to address these specific associations so that our understanding of 

Pavlovian bias can benefit basic and clinical mental health research. 

 

1.2.4  Pavlovian-instrumental interactions: The purpose of the two systems 

In section 1.2.1 above I posed the question of what purpose the Pavlovian system 

really serves in action selection – why use the Pavlovian system at all if the 

instrumental system is guaranteed to be more accurate? An easy answer to this 

question would be simply to say that it is a vestigial cognitive structure; despite 

now having been superseded by more flexible instrumental systems, it has not yet 

been selected away because it continues to produce appropriate responses most of 

the time. However, this view misses the potential advantages of having both 

systems available. 

 

The key characteristic of instrumental systems—their flexibility and ability to learn 

essentially any response to a stimulus—is also the source of significant costs (see 

Daw & Dayan, 2014 for a full discussion of this issue). For example, the two main 

algorithms for learning instrumental associations are called model-based and 

model-free (or cached). As the name suggests, the former involves learning the full 

network of causal relationships between stimuli, actions, and other stimuli (the 

model). In order to then select an action, one needs to generate simulations from 
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this model, following the different possible causal paths in order to predict what 

the likely outcomes of an action will be. There is therefore a huge, potentially 

infinite, amount of information to be represented and processed, depending on 

how many layers of events one wishes to simulate. The model-free system, on the 

other hand, just entails saving the values of rewards and punishments experienced 

and apportioning them to actions taken previously – the value of an action in a 

particular context is therefore represented explicitly and does not require 

simulation, so the computational costs are not as great as those of the model-based 

system. Nevertheless they are still greater than those of the Pavlovian system, 

because the model-free system involves learning the value of combinations of 

actions and stimuli, rather than stimuli alone, so there is an extra dimension to the 

space of values to be learned.  

 

Boureau and Dayan (2010) suggest that, beyond the computational costs, the 

primary issue with instrumental systems is the amount of training samples 

required. As noted above, the actions generated by the instrumental systems are 

guaranteed to be optimal only when learning is complete; prior to this point, 

because the instrumental systems do not suppose any relationship between actions 

and outcomes a priori, a decision-maker will inevitably have to make mistakes in 

order to learn. The effects of this are two-fold: there is an opportunity cost of 

having to go through the learning process before one can generate the correct 

responses; and there is also a more direct cost of making errors because, in an 

instrumental context, these have the potential to result in harm to the decision-

maker. The Pavlovian system, on the other hand, is quicker to reach the point of 

complete learning, because one only needs to learn the values of stimuli, and not 

actions. It also does not entail potential harm to the decision-maker because 

Pavlovian learning is purely observational and so can be carried out at a distance. 

There is therefore an advantage to possessing both Pavlovian and instrumental 

systems because, although the computational costs overlap, the Pavlovian system 

fills a particular niche in generating approximately correct responses early on in the 

learning process, before the instrumental systems are fully trained. This does 
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however introduce the potential for conflict, which needs to be overcome through 

cognitive control. 

 

1.2.5 Cognitive control, effort and Pavlovian biases 

The regulation of the Pavlovian and instrumental systems by cognitive control 

potentially allows for further optimisation of decision-making, by allowing the brain 

to make best use of these systems when they are advantageous and to scale them 

down when not. For example, the Pavlovian biases might be relied upon initially, 

during the critical early phase when the instrumental systems are not fully trained, 

in order to give the decision-maker a ‘head start’ and avoid too many potentially 

costly mistakes; then, later on, these biases could be selectively downweighted if 

and when they are predicted to lead to errors (perhaps based on detecting conflict 

between the Pavlovian and instrumental responses).  

 

The evidence that cognitive control over Pavlovian biases does indeed take place is, 

however, not as strong as it could be. As reviewed already, a number of studies 

show a clear association between activity in frontal regions of the brain and 

reduced Pavlovian bias, but of course this requires making a backwards inference 

from brain region to function. Direct, cognitive evidence of control over Pavlovian 

biases is otherwise relatively lacking so far. Perhaps the one exception is that 

several studies have shown that the strength of Pavlovian biases is negatively 

associated with the controllability of the outcome (Gershman et al., 2021; Dorfman 

& Gershman, 2019; Csifcsák et al., 2020). This is interesting because it directly links 

control over Pavlovian biases to the Expected Value of Control theory (Shenhav et 

al., 2013). According to EVC, controllability is a key quantity because control is only 

valuable to the extent that it actually effects changes in the outcome; otherwise it 

is just unnecessary exertion. Thus, showing that the strength of Pavlovian biases is 

sensitive to controllability is an important, but insufficient, indication of the 

involvement of control. 

 

In summary, by considering Pavlovian biases in the framework of effort-based 

decision-making, we are able to formulate a hypothesis about why Pavlovian biases 
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are able to influence behaviour and why we do not just rely on the instrumental 

systems at all times: Pavlovian biases are controlled only to the extent that the 

effort required would be worthwhile. This in turn depends on quantities such as the 

value of any incentive for accurate responding, the efficacy of control and the cost 

of control. To prove this hypothesis, more research needs to be done, both to 

directly demonstrate that Pavlovian biases are subject to cognitive control, and to 

link this to effort processing in turn. 

 

1.3 Thesis aims, hypotheses and predictions 

My overall aim in this thesis is to investigate the factors involved in deciding when 

and how much effort to exert on a cognitive task. I specifically focus on the role of 

effort in control over Pavlovian biases because this is a phenomenon in which the 

purpose of control is relatively easy to define and conceptualise – control is 

required to regulate the balance between the Pavlovian and instrumental systems 

and resolve any conflicts that arise. In addition, Pavlovian bias has previously been 

implicated in symptoms of both anxiety and depression, which gives rise to a 

secondary aim of this thesis, to explore the role of effort in symptoms of common 

mental health conditions, specifically anxiety and depression. These are addressed 

in four empirical chapters. 

 

My final aim in this thesis is to contribute to a stronger and more principled 

theoretical understanding of effort costs. Unfortunately this is currently lacking, 

without which much of the good experimental research carried out in recent years 

is built on foundations of unknown quality. By bringing in two new ideas from areas 

outside of neuroscience, I hope to reenergise this discussion. This aim is addressed 

in a single, final theory chapter.  

 

Below I provide an overview of each of the remaining chapters in turn. 
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1.3.1 Chapter 2 

In Chapter Two, we investigated whether participants could learn to overcome the 

deleterious effects of Pavlovian biases on behaviour through a programme of 

behavioural training. This was a blinded, sham-controlled study in which we 

assessed the performance of a sample of healthy participants on the Orthogonal 

Go/No-Go Task before and after a week of practising specifically on the high 

Pavlovian conflict trials. A number of previous studies have found that the strength 

of Pavlovian biases can be modified, for example as a function of acute stress 

(Mkrtchian, Aylward et al., 2017; Mkrtchian, Roiser et al., 2017) or pharmacological 

interventions (Guitart-Masip, Economides et al., 2014). Because Pavlovian biases 

themselves are thought to be fixed, it is generally assumed that changes in their 

strength can be attributed to changes in cognitive control, which in turn is 

dependent on effort. We therefore wanted to see whether we could train 

participants to exert more control over their Pavlovian biases on the Go/No-Go task 

– if so, we hypothesised that this would be because of greater willingness to exert 

effort.  

 

It should be noted that one study has looked at the issue of modifying Pavlovian 

biases through training previously (Ereira et al., 2021). They found that this was 

possible only when using a modified semantic version of the Go/No-Go task (in 

which the stimuli and required actions were contextualised within a wider 

narrative) and not with the original task. We therefore focussed specifically on the 

original task, but using a simpler set of stimuli, so as to test whether Pavlovian 

biases could be controlled at all.  

 

In addition to this we looked at transfer to two other tasks, the Affective Bias Task 

and the Risk-Taking Task, both of which involve cognitive biases that have to be 

overcome in order to perform accurately. Assuming the training worked by 

enhancing participants’ willingness to engage in effortful, controlled behaviour, we 

predicted that those who did the active training would show less biased 

performance on these tasks than those in the sham training group. Finally, we also 

explored the association between Pavlovian biases and both anxiety and depression 
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symptoms – we again predicted that, to the extent that the training was effective, 

this would be reflected in a decrease in symptom scores. 

 

1.3.2 Chapter 3 

In Chapter Three we made some changes to, and then replicated, the Pavlovian bias 

training study reported in Chapter Two. This allowed us to address several 

limitations identified in the earlier study: most notably, we substantially increased 

our sample size so that the experiment was better powered to detect smaller 

effects; we were also able to address a technical problem with the Go/No-Go Task 

which had previously prevented some of the data from being recorded; finally, this 

study was conducted entirely online, which facilitated not just the larger sample 

size but also allowed us to recruit a more diverse range of participants. 

 

Our aims and hypotheses for this study were the same as before. We were looking 

firstly to test whether the active training led to enhanced control over not just the 

Pavlovian biases in the Go/No-Go Task but also the other biases in the Affective 

Bias and Risk-Taking tasks. Secondly we investigated whether there was a 

corresponding reduction in reported depression or anxiety symptoms. 

 

1.3.3 Chapter 4 

In Chapter 3 we had observed a significant change in Pavlovian bias after the active 

training, and we proposed that this was attributable to enhanced cognitive control. 

To explore this further we wanted to look at the role that sensitivity to cognitive 

effort played in exerting control over Pavlovian bias, but before we could do this we 

needed to design a task suitable for measuring effort sensitivity and for making 

individual differences comparisons in particular. The development and assessment 

of this task is described in Chapter 4.  

 

Earlier cognitive effort tasks are susceptible to confounding by probability 

discounting, meaning that the difficulty of the task (and therefore probability of 

obtaining reward) is not adequately controlled or standardised. This is particularly a 
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problem if these tasks are to be used to compare patient groups to healthy 

controls. To resolve these issues we designed a new task, the Number Switching 

Task, in which we aimed to ensure that the rates of success were both held 

constant across the different effort levels and could be standardised across 

participants. In this study we validated that this was indeed the case, while at the 

same time crucially ensuring that the effort manipulation itself was successful in 

that participants treated it as costly and avoided the higher effort levels. Finally we 

also conducted an exploratory analysis to examine the associations between effort 

sensitivity and a number of self-report mental health symptom scales and cognitive 

traits. Broadly, we anticipated increased effort sensitivity would be associated with 

higher scores on the depression and anhedonia scales in particular. The other 

associations were examined on a more exploratory basis. 

 

1.3.4 Chapter 5 

Previously in this Introduction I suggested that the strength of Pavlovian biases can 

be influenced by cognitive control. However, while there have been some studies 

published previously that support this idea, the evidence so far is relatively indirect. 

In this study we therefore sought to investigate and understand specifically the 

cognitive mechanism underlying control over Pavlovian biases. We reasoned that, if 

people are able to exert control over their Pavlovian biases, this should be 

dependent on exerting effort. Specifically, we tested whether individual differences 

in the strength of Pavlovian biases were associated with differences in sensitivity to 

cognitive effort (as measured by the new cognitive effort task, Chapter 4).   

 

Any significant Pavlovian bias–effort sensitivity correlation would also help to 

inform our interpretation of the earlier training studies (described in Chapters 2 

and 3) since, by virtue of being a flexible resource, cognitive effort is probably the 

most likely source of any improvement as a result of the behavioural training. 

Showing that effort sensitivity is associated with Pavlovian bias would help to 

provide further support for this hypothesis. 
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Finally, we also tested the associations between Pavlovian bias and effort 

sensitivity, and symptoms of both anxiety and depression. Previous research 

(Mkrtchian, Aylward et al., 2017) has shown that patients diagnosed with either 

anxiety or depression show greater Pavlovian avoidance biases than healthy 

controls (although note in the former case this was also dependent on the presence 

of ‘threat of shock’, an anxiogenic context). We were therefore interested in the 

extent to which the same association held for continuous symptom scores in a 

healthy sample of participants, and we anticipated seeing a significant correlation. 

Cognitive effort sensitivity, on the other hand, has not been explicitly tested before 

in relation to mental health symptoms (aside from in our own initial study using the 

Number Switching Task, in Chapter 4). Robust associations between physical effort 

sensitivity and depression scores have been reported previously (both in patients 

and in healthy participants) and we therefore anticipated seeing a similar result 

here with regards to cognitive effort; but either way this would be a new result and 

potentially significant with regards to understanding the cognitive aspects of 

anxiety and depression.  

 

1.3.5 Chapter 6 

Chapter 6 is a theory-focussed chapter in which I attempt to address the core 

problem of cognitive effort, namely that we still do not know why effort is costly. In 

this Chapter I put forward two complementary ideas that I hope will advance our 

collective thinking on this topic, one based on a recent attempt in economics to 

improve optimal decision theory (Ergodicity Economics; Peters, 2019), which I 

suggest can also be applied to effort-based decision-making; the other develops an 

idea from computer science called Landauer’s Principle (Landauer 1961), with 

which I will show that there are obligatory energetic costs of attenuating noise in 

the brain that seem to map neatly onto effort costs. Overall I hope that these two 

different, but complementary ideas, will contribute to an enhanced debate with 

regards to the theory and rationale of effort costs. 
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1.3.6 Chapter 7 

In Chapter 7, I present a general discussion of the previous four empirical chapters 

and one theoretical chapter. After briefly revisiting the aims and main results of 

each chapter in turn, I then provide a synthesis of the whole, discussing the overall 

implications of the thesis for understanding the links between effort, cognitive 

control and Pavlovian biases. I acknowledge the limitations of the components of 

this thesis, but then go on to propose further studies which could address these 

issues, as well as advance our understanding of cognitive effort in other respects.  
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Chapter 2. Learning to Overcome Pavlovian Biases 

 

2.1 Abstract 

Pavlovian biases are fixed patterns of responses that involve approaching stimuli 

associated with reward and avoiding those associated with punishment. These 

responses can sometimes conflict with those produced by other action selection 

systems, potentially giving rise to suboptimal behaviour (which may be particularly 

relevant to some of the symptoms of affective disorders like anxiety and 

depression; Dayan & Huys, 2008). It has previously been suggested that, to resolve 

this conflict, the brain is capable of exerting control over the Pavlovian system, 

selectively downweighting it as and when conflict is anticipated or detected 

(Cavanagh et al., 2013). Importantly, however, no-one has actually established 

whether there is behavioural evidence for control – are Pavlovian biases even 

modifiable? In this blinded, sham-controlled study we addressed this question 

through a behavioural training intervention: participants in the active training 

group repeatedly practiced trials of the Orthogonal Go/No-Go Task (Guitart-Masip 

et al., 2011) that evoke high Pavlovian-instrumental conflict. We reasoned that if 

participants could improve their performance on these trials this would indicate 

that it is indeed possible to overcome the influence of the Pavlovian system, at 

least in principle. Unfortunately, however, we found that there was no significant 

training effect, and further interpretation of this null result was hindered by 

limitations of the experiment. We also did not observe any significant transfer 

effects to secondary tasks or anxiety or depression symptom scales. We discuss the 

implications of these results for understanding control over Pavlovian bias, while 

also emphasising that further, improved studies are required to answer our 

questions satisfactorily.  
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2.2 Introduction 

A repeating motif in cognitive research is the observation that people frequently 

behave in ways that seem to be suboptimal. For instance, we often rely on 

heuristics rather than reasoning in full (Shah & Oppenheimber, 2008), we treat 

losses differently to equivalent gains (Mrkva et al., 2019) and we sometimes engage 

in behaviour that we know does not align with our goals (de Wit et al., 2012). A key, 

high-level concern in cognitive neuroscience is to explain why such behaviour takes 

place. 

 

In the context of action selection, an optimal action is that which leads to the best 

possible outcome. Therefore, when selecting an action, an optimal strategy 

requires assessing the contingency between each response option and subsequent 

(rewarding or punishing) outcomes. After taking an action, a decision-maker could 

then update their belief about the effects of that action based on the observed 

result, allowing them to adapt their behaviour to novel or changing environments. 

Although there are different ways of implementing this strategy (discussed below), 

all are grouped under the general heading of ‘Instrumental Learning’, because they 

involve learning about actions and their outcomes (Dickinson & Balleine, 2002). 

 

In reality, decision-making is also affected by systematic biases, such as result from 

Pavlovian responses to stimuli associated with reward or punishment (Dayan & 

Balleine, 2002; Dayan et al., 2006). These responses generally involve invigoration 

of action when rewards are predicted (called an approach bias) and inhibition of 

action in the face of punishment (avoidance bias). Given these responses are innate 

and ubiquitous across species (Cavanagh et al., 2013), it seems likely that they tend 

to be adaptive, at least on an evolutionary scale. On shorter timescales, however, 

there is the problem that the Pavlovian system can sometimes promote actions 

that conflict with those of the instrumental systems, resulting in poor outcomes. 

This can be seen, for example, in the case of the ambush predator that starts its 

chase too early, allowing its prey to escape; or the proverbial rabbit in the 
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headlights, that sees a car advancing towards it at speed, but freezes instead of 

running.  

 

To put this in more concrete terms, consider a Go/No-Go task in which some of the 

stimuli are incentivised by reward and others by punishment (as first described by 

Guitart-Masip, 2011); this leads to four distinct trial types, set out in Table 2.1. A 

consistent finding with this task is that participants are more likely to make an error 

when they have to go to avoid punishment or no-go to win reward, reflecting the 

fact that, on these trial types, the reward/punishment associations of each of the 

stimuli elicit Pavlovian approach/avoidance responses that conflict with the actual 

actions required.  

 

 

 

A natural question arising at this point is why Pavlovian biases are present at all – 

why not rely entirely on the instrumental systems, given these are in principle able 

to learn any set of responses required by a task? The most compelling answer is 

that the advantage of the instrumental systems, their flexibility, also entails 

significant costs (Daw & Dayan, 2014; Boureau & Dayan, 2011). As mentioned 

above there are different implementations of instrumental learning: One involves 

building up a model of the stimulus-action-outcome contingencies in the 

environment (hence this is referred to as model-based learning); The other is 

simpler and just involves caching the rewards and punishments as they are 

experienced and apportioning them to actions taken previously (this is referred to 

 
Table 2.1. The four trial types of the Orthogonal Go/No-Go Task. Squares shaded 
dark are those for which the Pavlovian and instrumental systems produce 
conflicting responses.  

 Reward Punishment 
Go Go to Win Reward Go to Avoid Punishment 

No-Go No-Go to Win Reward No-Go to Avoid 
Punishment 
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as model-free learning). Both forms of instrumental learning are reliant on large 

numbers of training samples, which carries direct costs, if the consequences of 

making a mistake are dangerous, as well as indirect opportunity costs. In addition, 

model-based learning is particularly computationally expensive, because the value 

of each action is only represented implicitly in the model, so a decision-maker has 

to generate simulations to predict each fork on the path from an action to its 

possible consequences. 

 

The Pavlovian system is therefore a valuable adjunct to the instrumental systems, 

especially in novel environments, because it is computationally cheap and requires 

fewer training samples, as it has one less dimension (action) to learn and represent; 

in addition, the training that is required is only observational (not instrumental) so 

the decision-maker does not need to put themselves in harm’s way. The Pavlovian 

system can therefore support decision-making from an earlier point in time, when 

the instrumental systems are still yet to be fully trained (Boureau & Dayan, 2011).  

 

2.2.1 Pavlovian bias and cognitive control 

This answer is still not entirely satisfying, however, because there remains the 

problem that the Pavlovian system will sometimes persistently favour responses 

that are suboptimal, which would seem to counter the benefit of being able to 

make decisions from fewer training samples. One possible solution is to consider 

whether Pavlovian biases are subject to cognitive control; in other words, although 

Pavlovian responses themselves are ‘hard coded’ and immutable, is it possible 

through top-down signals to selectively reduce their influence on behaviour? If so, 

this would allow the brain to make the most of both the Pavlovian and instrumental 

systems, for instance by running the two systems in parallel until such time as 

conflict is anticipated or detected, at which point control signals could intervene to 

inhibit the Pavlovian response (Shenhav et al., 2013). See Figure 2.1 for a high-level 

schematic of this arrangement. 
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This also reframes the issue of Pavlovian bias in terms of effort-based decision-

making; in the wider literature on cognitive control, the decision to exert control is 

typically framed as an economic calculation that involves weighing up the relative 

benefits (and the likelihood of obtaining them) against the costs (Shenhav et al., 

2013, 2017; Westbrook & Braver, 2015). In this sense, the presence of Pavlovian 

biases may reflect not the fixed limits of cognition, but an active choice to accept 

errors in order to maximise net rewards.  

 

Supporting this hypothesis, it has indeed been shown that the balance between 

Pavlovian and instrumental influences on behaviour is not static but seems to be 

regulated dynamically. For example, the strength of Pavlovian biases is decreased 

following L-DOPA administration (Guitart-Masip, Economides et al., 2014) but 

increased by acute stress (Mkrtchian, Aylward et al., 2017; Mkrtchian, Roiser et al., 

2017). One particularly suggestive study found that performance on the Orthogonal 

Go/No-Go Task was best explained by a computational model in which the 

Pavlovian component could be upweighted or downweighted trial by trial in 

Figure 2.1. Schematic of the proposed relationship between the Pavlovian and 
instrumental systems, and cognitive control. A controller monitors the output 
streams of the Pavlovian and instrumental systems for conflict; when conflict is 
detected, this controller can then intervene to downweight the strength of the 
Pavlovian stream. The decision to engage control also depends on other factors 
such as the cost of the control signals required and the estimated efficacy of 
control. 
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proportion to EEG mid-frontal theta power (Cavanagh et al., 2013). This was 

interpreted as indicating the presence of a cognitive control mechanism of a kind 

like that suggested above. Of course, this inference relies upon identifying mid-

frontal theta signals with cognitive control, an assumption that was not directly 

tested within this study. 

 

2.2.2 Can control over Pavlovian biases be increased through training? 

In the present study we decided to take these ideas further and asked whether 

participants can be taught to increase their control over Pavlovian biases through 

training. As outlined above, in this scheme a control system would first have to 

recognise situations of Pavlovian-instrumental conflict, then make an economic 

choice about the value of exerting control or not. We reasoned that participants 

might be able to improve at both stages of this process, i.e. by getting better at 

detecting conflict and also learning that they are able to control their biases 

(enhancing their belief about the efficacy of exerting control; cf. the Expected Value 

of Control (EVC) model, Shenhav et al., 2013, 2017). We suggest that if indeed we 

can show successful training of the ability to overcome Pavlovian biases, this would 

be further evidence of a cognitive control mechanism regulating the Pavlovian 

system. 

 

Moreover, the training could also have potential as a clinical treatment, with the 

aim of enhancing cognitive control in conditions where it otherwise seems to be 

lacking. In depression and anxiety for example, we know that patients are affected 

by cognitive symptoms and in particular may have difficulties with exerting 

cognitive control (Robinson et al., 2013; Grahek et al., 2019). Separately, several 

studies have shown that patients with these conditions also tend to exhibit greater 

Pavlovian biases (Mkrtchian, Aylward et al., 2017; Nord et al., 2018). It seems likely 

that these two findings are linked – that to some extent avoidance behaviour in 

depression and anxiety might result from a reduced tendency to exert control – and 

this in turn might be able to be ameliorated through training. Here, we examined 

this directly by looking at the association between Pavlovian bias (before and after 

the training) and depression and anxiety scores.   
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2.2.3 Hypotheses and expectations for this study 

We had two related aims for this study. First, we set out to test whether control 

over Pavlovian biases can be enhanced through behavioural training. Specifically, 

this training consisted of selectively practicing the conflicting trials of the 

Orthogonal Go/No-Go Task (go to avoid punishment, no-go to win reward). We 

hypothesised that, when tested on the full Orthogonal Go/No-Go Task before and 

after the training, participants who received this training would show a greater 

reduction in Pavlovian bias than participants who did a sham training intervention 

instead (consisting of practice on the non-conflicting go to win and no-go to avoid 

trial types). Important to note is that we tested participants with the same stimuli 

on which they had trained, because at this stage we were primarily looking to prove 

the principle that control is amenable to training. Encouragingly, a previous study 

involving training of a negative facial interpretation bias has shown successful 

results with a similar protocol to ours (Peters et al., 2017), giving promising grounds 

to think we might be able to effect changes in Pavlovian biases as well.  

 

In addition to looking at Pavlovian biases on the Go/No-Go task itself, we also 

included a Risk Taking task (Rutledge et al., 2015) in which these biases have also 

been shown to influence the decision to gamble; we used this task to assess the 

transfer of any training effects to other contexts. 

 

Our second aim was to examine the implications of any change in control for 

symptoms of depression and anxiety. We included both self-report measures of 

symptoms (the Beck Depression Inventory and the State-Trait Anxiety Inventory; 

Beck et al., 1996; Spielberger et al., 1983) and a more targeted cognitive task 

measuring affective bias (Aylward et al., 2020), which has previously been shown to 

be associated with depression in both case-control and continuous designs. If 

training is successful in reducing Pavlovian biases, and the mechanism involves 

enhancing cognitive control, then we expect this would result in reduced affective 

biases too, potentially also accompanied by reduced symptom scores. 
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2.3 Methods 

2.3.1 Preregistration 

This study was preregistered on the Open Science Framework 

(https://osf.io/ax5b4/?view_only=6bac5fafce044b21b1374219484c3ba9). The 

method described below did not deviate from the preregistration. 

 

2.3.2 Participants 

In a pilot study we found that the size of the training effect was approximately  

d = 1.2. To be conservative, we halved this to d = 0.6 and, using α = 5% and power 

of 90% (one-tailed), we calculated in G*Power (Faul et al., 2007) a minimum sample 

size of N=52, which we then rounded up to 60 (30 in each group) to give our target 

sample size. 

 

In total 71 participants were recruited, using a notice posted on the website ‘Call 

for Participants’. All participants reported no history of neurological or psychiatric 

illness, and had not taken part in a study using the Orthogonal Go/No-Go Task with 

our lab before. Of the 71, three did not complete all of the online training sessions 

as required, and eight failed to attend the Follow-up session in the laboratory, 

leaving us with the required 60 participants (30 in each group). 

 

Participants were paid £7.50 for each lab-based session they attended, plus a 

further £5 bonus if they completed all five of the online training sessions. This study 

was approved by the UCL Research Ethics Committee (6198/001) and all 

participants gave written, informed consent prior to taking part. 

 

2.3.3 Procedure 

The study comprised three phases, taking place over eight days. This is shown in 

Figure 2.2. 
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First, participants attended the laboratory to complete a baseline set of cognitive 

tasks – the Orthogonal Go/No-Go Task, the Affective Tone Task, the Risk Taking 

Task, the Beck Depression Inventory and the State-Trait Anxiety Inventory. These 

are described in detail in Section 2.3.4 Measures and Tasks below. At the end of this 

session they were provided with a personalised link to the website Gorilla 

(www.gorilla.sc), where the training then took place.  

 

At the start of this second phase, Gorilla randomly allocated participants to the 

active or sham training groups. The participants however were not told which 

group they were in nor what the training was for. Participants were instructed to 

complete at least five online training sessions over the next six days.  

 

Finally, on the eighth day of the study, participants returned to the laboratory 

where they repeated the same battery of tasks that they had done on the first day 

of testing. 

 

2.3.4 Measures and Tasks 

This section describes the three cognitive tasks and two mental health symptom 

scales that comprised the battery of tests used in both the Baseline and Follow-up 

Testing sessions. In between the two laboratory-based sessions, participants 

completed daily online behavioural training, which is also described at the end of 

this section. 

 

Figure 2.2. The timeline of the study. 
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2.3.4.1 Orthogonal Go/No-Go Task (Guitart-Masip et al., 2012) 

The procedure for this task is set out in Figure 2.3. A trial consisted of three events, 

each displayed for 1000ms with a 250ms inter-stimulus interval: first an initial 

fractal cue was shown in the centre of the screen; then a circle target was displayed 

on either the left- or right-hand side, to which participants chose whether to make 

a key-press response; finally the outcome of their decision was given.  

 

 

 

Figure 2.3.  Procedure for the Orthogonal Go/No-Go Task. Participants were 
shown an initial fractal cue, which indicated whether they should go or no-go 
when the circle target was subsequently shown, and whether they could 
expect to be rewarded or punished (dependent on their performance); The 
target was then shown for participants to respond to; Finally the outcome for 
that trial was displayed. In this case reward is shown in the main sequence 
and examples of the neutral and punishment stimuli are given on the right.   
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The fractal indicated whether participants would have to make or withhold a key-

press response (go or no-go) on that trial. It also specified the possible outcomes 

for that trial, contingent on participants’ responses – these could (for 

correct/incorrect responses respectively) be either reward/no reward or no 

punishment/punishment. This created four distinct trial types, as laid out in Table 

2.2: ‘go to win reward’, ‘go to avoid punishment’, ‘no-go to win reward’ and ‘no-go 

to avoid punishment’. There were likewise four possible fractals, one for each 

response-outcome combination. Participants were not explicitly told their 

associations – they had to work these out through trial and error.  

 

 

Table 2.2. The four trial types of the Orthogonal Go/No-Go Task, with stimuli. 
Note that this builds on Table 2.1, additionally including an example allocation of 
fractals to the different trial types. In the study the fractal allocation was 
randomised at the Baseline testing session. 

 Reward Punishment 

Go 

 

 
 

Go to Win Reward 
 

 

 
 

Go to Avoid Punishment 
 

No-Go 

 

 
 

No-Go to Win Reward 
 

 

 
 

No-Go to Avoid 
Punishment 
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Next, a circle was presented either on the left or right side of the screen, which 

provided the target to which participants could respond using the ‘S’ or ‘L’ keys. 

Participants were instructed that, if they chose to make a response here, they had 

to press the key that was on the same side as the target – otherwise their response 

was classed as incorrect. 

 

Finally, the outcome for that trial was shown, consisting of a happy/neutral/sad 

face and the words ‘+10 points/0 points/-10 points’ for reward/neutral/punishment 

outcomes respectively. These outcomes were probabilistic, such that on 20% of 

‘reward’ trials a correct response in fact led to a neutral outcome, while an 

incorrect response led to reward; similarly on 20% of ‘punishment’ trials a correct 

response led to punishment while an incorrect response avoided it. 

 

After an initial set of practice rounds using a different set of stimuli, the main phase 

of the task consisted of 100 trials, 25 per condition, with the different trial types 

presented in a random order. At the start of the Baseline testing session, the fractal 

allocation was randomised for each participant, who then kept the same allocation 

throughout the rest of the study (i.e. for both the training and Follow-up testing 

sessions).  

 

2.3.4.2 Auditory Affective Bias Task (Aylward et al., 2020) 

In the first phase of this task, participants had to correctly identify a random 

sequence of high (1000Hz) and low (500Hz) tones. Each tone was presented for 

1000ms, during which time participants could press the ‘Z’ or ‘M’ keys to indicate 

whether they thought the tone sounded high or low (the tone-key mapping was 

randomised across participants). If they responded correctly, they were shown a 

message that lasted 750ms stating they had won a (virtual) monetary reward: one 

of the tones was associated with a £4 reward, the other with a £1 reward, with the 

exact mapping between the tones and the reward values again being randomised 

across participants. On the other hand, if participants responded incorrectly (or 

failed to respond in time) they were shown a message stating “Timeout for 
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incorrect [/late] response ”, which lasted 3250ms. This acquisition phase comprised 

20 trials, with 10 low and 10 high tones, presented in random order. 

 

In the second phase of this task, participants were told that, as well as the high and 

low tones that they had practiced on, they would also hear tones at other pitches. 

They were now instructed to respond by indicating whether the tone they heard 

sounded more like the original high tone or low tone. In fact, the new, ambiguous 

tones were always 750Hz (i.e. exactly halfway in-between the originals). For half of 

the trials, this mid-tone was treated as if it were closer to the high tone (and so led 

to the same reward if correctly identified) and on the other half of trials it was 

treated as if it were closer to the low tone. There were 240 trials in this phase of 

the task, with 80 trials each of high, low and ambiguous stimuli, presented in a 

random order. The principle measure of interest was whether participants rated 

the intermediate tone as being closer to the original high- or low-rewarded tones, 

with this quantifying their positive (or negative) affective bias. 

 

2.3.4.3 Risk Taking Task (Rutledge et al., 2015) 

In this economic decision-making task, participants chose between either a certain 

outcome or a 50-50 gamble which might improve their position, but could also 

worsen it. On gain trials, participants chose between a certain gain (20–60 pence) 

and a gamble returning either £0 or a larger gain (determined as a multiple of the 

certain gain amount, between 0.78 and 2.1 times). In loss trials, participants chose 

between a certain loss and a gamble returning either £0 or a larger loss 

(determined by the same multipliers as used for the gain trials). There were 200 

trials in total, 100 gain trials and 100 loss trials, presented in random order. There 

was no time limit for responding, but after the response was made, the unchosen 

options disappeared and, after a delay of 2 seconds, the outcome was shown on 

the screen. There was a 1 second interval between a participant giving their 

response and the start of the next trial. 
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2.3.4.4 Beck Depression Inventory (BDI; Beck et al., 1996) 

The Beck Depression Inventory II is a questionnaire that asks about symptoms 

relevant to depression. It ordinarily contains 21-items, however we opted to 

remove one question that asks about thoughts of suicide due to the safeguarding 

risks this presented. Each item was scored from 0-3, and we report the total score 

across all items.  

 

2.3.4.5 State-Trait Anxiety Inventory (STAI; Spielberger et al., 1983) 

The STAI is a 40-item questionnaire comprising two subscales, one that asks 

questions about feelings of anxiety “in general” (trait) and the other about feelings 

“at this moment” (state). We report the total score for each subscale separately.  

 

2.3.4.6 Pavlovian Bias Training 

Participants were trained on a variant of the same Orthogonal Go/No-Go Task 

described above, but with just a subset of conditions: those in the active training 

group practiced the ‘go to avoid punishment’ and ‘no-go to win reward’ trial types 

only, whilst the sham group were trained on the ‘go to win reward’ and ‘no-go to 

avoid punishment’ trial types only. They trained with the same fractal allocations as 

used for the laboratory testing. Each cue was shown 24 times, for a total of 48 trials 

per training session (in a random order). 

 

The training was administered via an online platform, Gorilla 

(www.gorilla.sc/about). At the end of the first laboratory testing session, 

participants were provided a unique login to the platform, allowing them to 

complete the training remotely, in their own time. They were instructed to 

complete one session per day and a minimum of five sessions overall, before they 

returned to the laboratory for their Follow-up session seven days after the Baseline 

session. To encourage compliance with the training, the Gorilla system sent out an 

automated reminder email to participants each day and, after a training session 

was completed, blocked participants from starting a new session until the next day.  
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2.3.5 Analysis 

Our primary analysis throughout was an ANOVA. The dependent variables for each 

of the tasks are listed below: 

• Orthogonal Go/No-Go Task: accuracy (proportion correct) 

• Affective Bias Task: bias (proportion of responses to the ambiguous trials 

that matched the stimulus shown to the high- or low-reward exemplars). 

Values > 0.5 indicate a positive bias, and < 0.5 refer to a negative bias. 

• Gambling Task: proportion of gambles chosen 

Across all tasks, training condition (active or sham) was the only between-subjects 

independent variable, while timepoint (Baseline vs Follow-up) constituted a within-

subjects variable. The specific ANOVAs carried out were therefore as follows: 

• Orthogonal Go/No-Go Task: training condition X timepoint X action (go vs. 

no-go) X outcome valence (reward vs. punishment) 

• Affective Bias Task: training condition X timepoint 

• Gambling Task: training condition X timepoint X framing (gain vs. loss) 

 

In addition we also assessed performance in the training sessions. Here the 

dependent variable had to be the average accuracy across trial types, because 

participants in different groups completed different trial types. The ANOVA 

therefore contained only training condition X timepoint groups. 

 

Throughout these analyses, we further investigated any significant effects indicated 

by the ANOVAs using post hoc simple effects ANOVAs and t-tests as appropriate.   
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2.4 Results 

2.4.1 Orthogonal Go/No-Go Task 

Unfortunately we were unable to analyse the data for this task due to a technical 

issue that prevented participants’ responses from all being recorded.  

 

2.4.2 Pavlovian Bias Training 

There was a significant interaction between training condition and timepoint on the 

average accuracy during online training, F(4, 232) = 3.9, p = .004, 𝜂!"#$%"&'  = 0.06. 

Participants in the sham training group improved over the course of training (post 

hoc one-way ANOVA: F[4,116] = 11.9, p < .001, 𝜂!"#$%"&'  = 0.29), whereas those who 

did the active training did not (F[4,116] = 0.63, p = .64).  

 

Specifically, those in the sham training group improved between sessions one and 

two only, t(29) = 3.28, p = .01, d = 0.6, with no significant improvement thereafter 

(for the remaining sequential comparisons: p = .50, 1 and 1 respectively, using the 

Bonferroni correction for multiple comparisons).  

 

There was also a significant main effect of timepoint, F(4, 232) = 5.21, p < .001,  

𝜂!"#$%"&'  = 0.08, but no main effect of training condition, p = .20.  

 

Descriptive statistics are provided in Table 2.3 below and results are plotted in 

Figure 2.4. Note that for extra detail we have split the plots by trial type, although 

the analyses reported above were actually conducted on the average accuracy 

across the two trial types completed by each group. 
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Table 2.3. Descriptive statistics for the Pavlovian bias training. 

Training condition Session number Accuracy Mean (SD)  

Sham 

1 0.73 (0.23) 
2 0.82 (0.22) 
3 0.86 (0.20) 
4 0.88 (0.20) 
5 0.88 (0.19) 

Active 

1 0.75 (0.22) 
2 0.79 (0.19) 
3 0.79 (0.20) 
4 0.78 (0.21) 
5 0.75 (0.21) 

Figure 2.4. Performance on the Pavlovian bias training, split by trial type. Average 
accuracy in the active training group did not improve over the course of training, 
whereas accuracy did improve for the sham group. Plots show individual data 
points and distributions (colour) and means±SE (black).  

 



 65 

2.4.3 Affective Bias Task 

One participant in the sham training group was excluded from this analysis as their 

Baseline score did not record. There was no interaction between timepoint and 

group, F(1,57) = 0.72, p = .40, nor were there any significant main effects of 

timepoint or group individually, F(1,57) = 1.22, p = .27, and F(1,57) = 0.70, p = .41 

respectively. Descriptive statistics are given in Table 2.4 and plotted in Figure 2.5. 

 

Finally, we also examined the associations between affective bias (averaged across 

the two sessions) and scores on each of the mental health symptom scales. These 

were not significant: r = –0.24, p = .07 for the correlation with BDI; r = 0.06, p = .64 

for the correlation with state anxiety; and r = –0.22, p = .10 for the correlation with 

trait anxiety.  

 

 

  

 

Table 2.4. Descriptive statistics for the Affective Bias Task. 

 

Training Group Timepoint  Mean bias (SD) 

Active 
Baseline 0.46 (0.18) 

Follow-up 0.50 (0.16) 

Sham 
Baseline 0.45 (0.17) 

Follow-up 0.45 (0.18) 
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2.4.4 Risk Taking Task 

The only significant effect was that of the framing, F(1,58) = 36.1, p < .001,  

𝜂!"#$%"&'  = 0.38, with more gambles being chosen in the gain frame (M = 0.57,  

SD = 0.20) than the loss frame (M = 0.37, SD = 0.21). This result is illustrated in 

Figure 2.6. 

 

All other effects were non-significant, namely: the main effects of timepoint and 

training group, F(1,58) = 0.87, p = .35, and F(1,58) = 2.94,  p = .09 respectively; the 

interactions between training group and timepoint, F(1,58) = 0.05, p = .82, training 

group and framing, F(1,58) = 0.36, p = .55, and timepoint and framing,  

F(1,58) = 2.42, p = .13; and the three-way interaction between training group, 

timepoint and framing, F(1,58) < 0.001, p = .97.  

Figure 2.5. Affective bias before and after training.  Affective bias is 
measured by the proportion of responses matching the ambiguous stimuli 
to the high-reward exemplar (a value of 0.5 is neutral, <0.5 is a negative bias 
and >0.5 is a positive bias). There were no significant differences between 
timepoints or training groups. Plot shows individual data points (left), 
mean±SE (centre) and distributions (right).  
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2.4.5 BDI 

One participant in the sham group was excluded from this analysis as their pre-

training score did not record. There was a significant main effect of timepoint, 

F(1,57) = 6.63, p = .01,  𝜂!"#$%"&'  = 0.10, with mean BDI scores reducing from 5.63  

(SD = 5.09) in the Baseline session to 4.66 (SD = 4.02) in the Follow-up session. This 

result also remained significant (p = .01) if we excluded the outlier (participant with 

Baseline BDI score > 20). 

Figure 2.6. Risk Taking Task: Proportions of gambles chosen. There was a 
significant overall effect of framing – participants gambled more often when 
the gamble was framed by a certain gain as opposed to a loss. Plots show (left 
to right) individual data points, mean±SE and distributions.  
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There was no significant effect of training group, F(1, 57) = 0.61, p = 0.44, nor of the 

interaction between timepoint and group, F(1,57) = 0.13, p = 0.72. These results are 

illustrated in Figure 2.7.  

 

 

 

2.4.6 STAI 

There were no significant effects on either the state or trait subscales of the STAI. 

For the state subscale, the results were: training group, F(1,58) = 0.38, p = 0.54; 

timepoint, F(1,58) = 3.51, p = .07; timepoint x group interaction, F(1,58) = 1.07,  

p = 0.31. For the trait subscale, the results were: training group, F(1,58) = 3.53,  

p = 0.07; timepoint, F(1,58) = 1.55, p = 0.22; timepoint x group interaction,  

F(1,58) = 0.07, p = 0.80. These are plotted in Figure 2.8. 

 

Figure 2.7. Beck Depression Inventory scores. Scores decreased significantly 
from Baseline to Follow-up, for both training groups. Plot shows individual data 
points (left), mean±SE (centre) and distributions (right).  
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Figure 2.8. State-Trait Anxiety Inventory scores. There were no differences 
between either timepoints or training groups. Plots show individual data 
points (left), mean±SE (centre) and distributions (right).  
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2.5 Discussion 

In this study we examined whether control over Pavlovian bias is amenable to 

behavioural training. Unfortunately, a technical problem with the Orthogonal 

Go/No-Go Task meant we were not able to directly compare performance between 

the Baseline and Follow-up sessions on this task. Over the course of the training 

sessions, however, we found there was no significant improvement in performance. 

We likewise did not observe a significant change between timepoints in affective 

bias, propensity to gamble, or state or trait anxiety. Regarding the Risk Taking Task, 

we did see a main effect of gamble framing across timepoints and groups, 

reproducing results from previous studies (e.g. Rutledge et al., 2015). Finally, we 

observed a significant overall reduction in BDI between the Baseline and Follow-up 

sessions across both groups. 

 

In the Orthogonal Go/No-Go task, the lack of a significant change in performance 

across the training sessions strongly suggests that the training had no effect. If so 

this could indicate that Pavlovian biases are fixed and unable to be changed, which 

in turn suggests that they are not affected by cognitive control. Alternatively, it is 

also possible that Pavlovian biases are variable in principle, but we just did not 

succeed in this particular study. On reflection this is perhaps the more likely given 

the study was powered to detect effects of d = 0.6 or greater (for the Baseline–

Follow-up comparison), which is typically regarded as a moderate-large effect size 

in cognitive science (Dienes, 2008) and means the training could have had a small-

moderate effect that we did not have the power to detect.  

 

In an unexpected result, participants who received the sham training did show an 

improvement over the course of training. This cannot be explained in terms of 

changes in cognitive control, since the sham group practiced only on the trials that 

did not require control. Instead, this result could indicate that participants had not 

fully learned the parameters of the task during the Baseline session; if so, then, 

when the training began, those in the sham group (experiencing only the easier 

trials) would likely have found the task more engaging and so learned more quickly, 
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whereas those in the active group (training with only difficult trials) may have 

experienced more failures and found the training dispiriting. In economic models of 

cognitive control (e.g. EVC, Shenhav et al., 2013), one of the key parameters is 

control efficacy—it makes sense to exert control only when that control is able to 

affect the outcome—which itself is learned from experience. It may be that in this 

case participants in the active group, because they made more frequent mistakes 

and received more negative feedback during training, came to believe that their 

control had low efficacy. 

 

In the absence of a significant active training effect, we expected not to see any 

training effects on the secondary tasks either, and indeed this was the case. There 

was however a small, significant decrease in depression scores common across all 

groups between the Baseline and Follow-up sessions; this probably represents 

either a placebo effect from the training, or an artefact of repeated testing more 

generally. 

 

The lack of correlation between affective bias and depression and anxiety 

symptoms was somewhat surprising. Previous studies looking at these associations, 

however, have either used a case-control design (Aylward et al., 2020), or those 

that have examined continuous symptom scales in the general population have 

done so with much larger sample sizes (Daniel-Watanabe et al., 2022). 

Nevertheless, our measured correlation of r = –0.22 between affective bias and 

depression scores is of similar size to that found by Daniel-Watanabe et al., which is 

encouraging for future research – with greater statistical power we may be able to 

detect a significant association. 

 

2.5.1 Limitations 

The difficulty recording usable response data for the Orthogonal Go/No-Go Task 

was clearly a significant problem, so we decided to repeat this experiment again 

(with some modifications), which will be reported in the next chapter. As well as 

addressing the technical issue, we also judged that the sample size would need to 

be significantly increased – the present study was powered to detect an effect size 
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of d = 0.6, which seemed eminently achievable given our pilot results, yet was too 

large to allow the null result we observed here to be fully interpretable. Given the 

present study points towards the active training having had no effect, any 

replication would need to be powered to detect a smaller effect size so as to allow 

a null result to be more definitive. 

 

In addition, another issue raised in the discussion above was whether all 

participants fully understood the kinds of contingencies they needed to learn prior 

to starting the training. Otherwise, those in the active and sham groups may have 

experienced differing efficacy of control over the outcomes, contributing to 

differences in performance between these two groups (Shenhav et al., 2013, 2017). 

Although it has been difficult to verify whether this was a problem with this study 

specifically, it would nevertheless be useful in future experiments to include 

comprehension checks prior to the commencement of the main phase of this task 

(and indeed, the secondary tasks as well), to eliminate this problem as much as 

possible. 

 

2.5.2 Conclusion 

Interpretation of our results has to be tempered by the acknowledgement that we 

were not able to assess performance on the full Orthogonal Go/No-Go task due to 

the technical issue with this task. Nevertheless, the lack of improvement over the 

course of the online training sessions strongly suggests that the training was not 

successful – indeed, surprisingly, the group receiving the sham training showed a 

significant improvement even while the active group did not. In order to resolve 

some of the limitations raised above and complete this line of work, we undertook 

to repeat this study following some improvements to the design. This is described 

in Chapter 3. 
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Chapter 3. Learning to Overcome Pavlovian Biases:  

Online Replication 

 

3.1 Abstract 

In the previous chapter we investigated whether participants could learn to 

overcome their Pavlovian biases through a regime of behavioural training on the 

Orthogonal Go/No-Go task (Guitart-Masip et al., 2011). We found that they were 

apparently unable to do so, but we also identified several limitations to the study 

that needed to be improved in order to fully interpret and understand this null 

result. In the present chapter we therefore report the results of a replication in 

which, after having made the required changes (in particular, increasing the sample 

size, and therefore statistical power, substantially), we looked again at whether 

participants could reduce the strength of their Pavlovian biases through training. 

This time we found that the training was effective, which we suggest shows that 

people are capable of controlling their Pavlovian biases. As before, however, there 

were no transfer effects either to the secondary tasks or to the depression and 

anxiety symptom scales that were also included. We discuss in more detail the 

possible reasons for the difference with the previous study, as well as more broadly 

what this means for the interaction between control and Pavlovian biases, which 

we frame in terms of effort-based decision-making. 
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3.2 Introduction 

Action selection is thought to be governed by two distinct types of learning system. 

The instrumental system (which can be further broken down into model-based and 

model-free implementations) learns the associations between actions and their 

consequences, and can thereby select an appropriate response that will maximise 

reward or minimise punishment (Dickinson & Balleine, 2002). The second system is 

the Pavlovian system, and although this is primarily concerned with learning the 

contingencies between stimuli, it also drives action: the Pavlovian system tends to 

invigorate responses to stimuli associated with reward (called an approach bias) 

and inhibit those to stimuli associated with punishment (avoidance bias; Dayan & 

Balleine, 2002; Dayan et al., 2006). In other words, the main distinction between 

the two is that the Pavlovian system encodes a fixed set of responses to different 

situations, whereas the instrumental system has to learn its responses from 

scratch, and in so doing is more flexible. 

 

In general, the instrumental and Pavlovian systems support one another – in most 

cases, rewarding stimuli need to be approached and engaged with, whereas 

punishing stimuli should be avoided. Sometimes, however, the Pavlovian system 

can interfere with optimal responding, such as when one needs to take action in a 

potentially dangerous environment or, conversely, ignore immediate rewards. This 

interference is termed Pavlovian-instrumental conflict and, in these cases, the 

approach or avoidance biases introduced by the Pavlovian system can lead to errors 

and suboptimal behaviour (Boureau & Dayan, 2011; Guitart-Masip, Duzel et al., 

2014). 

 

In the previous study (Chapter 2) we introduced the question of whether the 

strength of Pavlovian biases can be modified using behavioural training. Specifically, 

we hypothesised that while the Pavlovian responses themselves are fixed, the 

extent to which they are allowed to influence behaviour is subject to cognitive 

control. If participants can be taught to overcome their Pavlovian biases, this would 

be further evidence that cognitive control is to some extent responsible for their 
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presence (or otherwise) in behaviour. Moreover this would have potentially 

important clinical applications, in particular for understanding and treating anxiety 

and depression, two conditions in which enhanced Pavlovian biases and decreased 

cognitive control are known to feature (Dayan & Huys, 2008).  

 

While the results of the previous study pointed towards there being no effect of 

training, this was not conclusive, principally because the study had not been 

powered to detect small effect sizes and because of a technical problem with one 

of the tasks. Therefore, in the present study, we sought to re-examine the 

Pavlovian bias training using an optimised design. Specifically, we used this 

opportunity to make a number of changes, the largest of which was moving the 

entire study (including recruitment and both Baseline and Follow-Up sessions) 

completely online. Online studies have been a growing feature of cognitive 

research over the past decade, with the recent COVID-19 pandemic (and attendant 

need to conduct research remotely) contributing to their much wider recognition 

and uptake. Online research has a number of advantages over traditional in-person 

studies: the sample sizes that can be obtained are several orders of magnitude 

higher than in the laboratory; the participants themselves are more diverse (both 

more international and with a wider range of ages); and, if experiments are coded 

in languages like HTML and javascript, study materials can be shared between 

researchers much more easily, supporting open science initiatives. 

 

As mentioned in the discussion section of Chapter 2, one of the limitations of the 

earlier study was the fact that the tests had been powered to detect a training 

effect size of d ≥ 0.6. This made it harder to interpret the null result, as we could 

not distinguish between the possibilities that either the training indeed had no 

effect, or that the effect was smaller than d = 0.6 but we lacked sufficient statistical 

power. To resolve this, in the present study we reduced the assumed effect size to 

d ≥ 0.25, allowing us to make a stronger claim about the effect of the training in 

the event of a null result: given that in the previous study (Chapter 2), the standard 

deviation of the corresponding effect between the first and last training sessions 

was 0.18, an effect size of d = 0.25 implies that the active training improves 
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performance 4.5% above the sham training; we suggest that this is a reasonable, 

minimally interesting effect size. This required a sample size of 800 participants (see 

Section 3.3.2 Participants below for the power calculation), a number that would 

have been impractical in the laboratory. 

 

As before, the primary aim of the study was to assess the effect of a regime of 

behavioural training on control over Pavlovian biases. We specifically hypothesised 

that the active training group would show a greater reduction in Pavlovian bias (as 

indicated by both computational and model-agnostic analyses) between Baseline 

and Follow-Up sessions. We also had several secondary hypotheses. We expected 

that, in the Go/No-Go Task, we would see a significant interaction effect between 

required action and valence in the Baseline session, indicating the presence of 

Pavlovian biases. In addition, we predicted that, if the training was successful, we 

would see transfer to the other tasks, in that the active training group would show 

a greater reduction in bias on the Affective Bias task, and in Pavlovian bias on the 

Risk Taking Task, as well as reductions in BDI and STAI scores. 
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3.3 Methods 

3.3.1 Preregistration 

This study was preregistered on the Open Science Framework 

(https://osf.io/7msvw/?view_only=f0f9edee61c94c7e8e1804d1939df68c). 

 

3.3.2 Participants 

Participants were recruited through the online platform Prolific. The study was 

advertised only to participants who met the following inclusion criteria: aged 18-60, 

fluent in English and no history of psychiatric or neurological disorders. Participants 

also had to use a computer – smartphones or tablets were not allowed. 

 

In our preregistration we decided to power this study for an effect size of d = 0.25. 

Following the previous study we anticipated that the true effect of the training may 

be small; we therefore considered d = 0.25 a reasonable effect size that would 

allow us to interpret a non-significant result meaningfully. Assuming 𝛼 = 5% and 

power = 90% (two-tailed), we calculated a required sample size of 676 participants 

(338 per training group). We then rounded this up to a total of 800 participants, to 

allow for attrition and exclusions. Of these, 110 were subsequently excluded, 

leaving 690 participants whose data was included in the final analysis. A detailed 

breakdown of the reasons for exclusion is given in Section 3.3.3.1 below. 

 

3.3.3 Procedure 

The procedure was very similar to that of the earlier Pavlovian Bias Training 

experiment (Chapter 2). On the first day participants completed a Baseline testing 

session in which they completed the Orthogonal Go/No-Go Task (Guitart-Masip et 

al., 2011), an Affective Bias Task (Daniel-Watanabe et al., 2022), the Risk Taking 

Task (Rutledge et al., 2015) and the two self-report symptom scales (the Beck 

Depression Inventory, Beck et al., 1996; and the State-Trait Anxiety Inventory, 

Spielberger et al., 1983). Then, over the subsequent six days participants had to 

complete five online training sessions (with no more than one session per day 
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permitted). Finally, on the eighth day of the study, there was a Follow-Up session 

containing the same battery of tasks as at Baseline.  

 

However, unlike the earlier experiment, all of the sessions in this experiment were 

conducted online. For each session, participants signed up on Prolific and were then 

redirected to Gorilla (www.gorilla.sc) where the study was hosted. Initially (at 

Baseline) the study was available to all participants who met the inclusion criteria; 

for subsequent sessions, links to take part were sent out only to those participants 

who had fully completed the rest of the study up to that point. At the end of each 

session, Gorilla redirected participants back to Prolific via a unique link, which 

allowed us to verify that the participant had completed that session of the 

experiment. Payment for the study was withheld until after the final session, in 

order to incentivise full completion – those who did the full study were paid £15 

(approximately £7.50/hr), while those who dropped out or were excluded part-way 

through received an equivalent amount pro rata.  

 

While the tasks themselves were substantially the same as in the earlier study, 

there were some specific changes which are described in Section 3.3.4.  

 

3.3.3.1 Participant Exclusions 

A detailed schedule of the reasons for exclusion is provided in Table 3.1 and the 

criteria are also described in more detail under the relevant subheading in Section 

3.3.4. All of the reasons for exclusion were preregistered except one, which 

excluded participants who, on the Go/No-Go task, responded on more than 12/80 

trials with keys that were not in the response set (S or L). Participants with such a 

large number of wrong key responses were considered to have either forgotten the 

task instructions or been consistently very careless, in both cases invalidating their 

data. This criterion led to the exclusion of three participants; no other participants 

made close to so many wrong-key responses (the maximum among the other 

participants was 3/80). When excluded, participants’ data was removed from the 

whole experiment. 
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Table 3.1. Schedule of exclusions. GNG=Go/No-Go Task, Aff. Bias=Affective Bias 

Task, STAI=State-Trait Anxiety Inventory. All criteria were preregistered except 

one, the criterion for the Go/No-Go task: ‘> 15% keys pressed not S/L’. See main 

text for details. 

Timepoint Reason 
N 

excluded 

N 

remaining 
    

 

Baseline 

Testing 

  
800 

Did not complete baseline session 11 789 

GNG: go to win reward accuracy < 65% 9 780 

GNG: left/right accuracy < 65% 1 779 

Aff. Bias: unambiguous accuracy < 60% 29 750 

Aff. Bias: no response on > 15% of trials 2 748 

STAI: failed attention check 2 746 

 

Training 
 

Did not complete 5 training sessions 
 

46 
 

700 
 

Follow-Up 

Testing 

Did not complete follow up session 1 699 

GNG: go to win reward accuracy < 65% 2 697 

GNG: wrong-key responses >15% 3 694 

Aff. Bias: unambiguous accuracy < 60% 1 693 

Aff. Bias: no response on > 15% of trials 2 691 

STAI: failed attention check  1 690 
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3.3.4 Measures and Tasks 

3.3.4.1 Orthogonal Go/No-Go Task (Guitart-Masip et al., 2011) 

This task was identical to that used in the earlier study (Chapter 2), with the 

exceptions that: 

• The technical problem that had affected the recording of participants’ 

responses in the previous study was now resolved 

• The instructions and practice rounds were more detailed, and participants 

then had to pass a short, multiple-choice comprehension test (e.g. ‘what 

keyboard keys should you use during the task?’) in order to proceed to the 

main phase  

• The number of trials in the main phase was reduced to 80 (20 trials per 

condition), in order to compensate for the increased length of the 

instructions and keep the length of the Baseline/Follow-Up session to no 

more than an hour 

In our preregistration we set out three exclusion criteria for this task. Participants 

were excluded if: 

• They failed the comprehension test 5 times 

• Their accuracy on the go-to-win trials during the practice phase was less 

than 65% 

• Less than 65% of their go responses matched the same side as the target 

circle 

 

In addition, as noted in Section 3.3.3.1 above, we also had to exclude three 

participants who had made a large number of responses (more than 12 trials out of 

80, i.e. >15%) using keys that were not S or L. These clearly either completely forgot 

or ignored the task instructions, invalidating their data. No other participants made 

nearly so many wrong-key responses (the maximum among the others was 3 trials 

out of 80).  
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3.3.4.2 Visual Affective Bias Task (Daniel-Watanabe et al., 2022) 

This task differed more substantially from that used in the earlier study. We now 

used visual rather than auditory stimuli because in a remote context we can be 

more confident that these are being presented consistently to all participants.  

 

Specifically, rather than high- and low-pitched tones, participants were shown 

large- and small-sized black circles. Structurally it was otherwise identical to the 

earlier task: there was an initial acquisition phase, during which participants 

learned to identify the two example stimuli (each of which was paired with a 

different reward amount); then subsequently, during the main phase, an 

intermediate, ambiguous stimulus was also introduced and participants had to 

decide which of the exemplar stimuli it was most similar to. 

 

The other difference was the number of trials: while the acquisition phase again 

contained 20 trials, as before, the main phase now contained a reduced number of 

trials, 120 in total (40 each of the large, small and intermediate circles)  

 

There were two exclusion criteria for this task which were again preregistered: 

• Participants were excluded if they made no response on >15% of trials 

• They were also excluded if they incorrectly identified >40% of the 

unambiguous stimuli during the main phase of the task 

 

3.3.4.3 Risk Taking Task (Rutledge et al., 2015) 

This task differed from that used in the earlier study in that: 

• A new ‘mixed frame’ trial type was introduced, in which a gain or a loss 

were both possible outcomes of choosing to gamble, while the certain 

option was set at zero (previously only single-valence ‘gain’ or ‘loss’ trials 

had been shown) 

• The number of trials was reduced to 150 in total, 50 of each trial type  

 

There were no exclusion criteria for this task. 
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3.3.4.4 Beck Depression Inventory (BDI; Beck et al., 1996) 

This was unchanged from the earlier study. 

 

3.3.4.5 State-Trait Anxiety Inventory (STAI; Spielberger et al., 1983) 

This was unchanged from the earlier study. However, we did add a catch question 

(“Press the very much so button”) at the end of the questionnaire to detect 

inattentive participants without interfering with the STAI’s psychometrics. 

Participants who failed this question were excluded. 

 

3.3.4.6 Pavlovian Bias Training 

This was unchanged from the earlier study. Participants had six days between the 

Baseline and Follow-Up testing sessions to complete five training sessions (and 

were not able to do more than one session per day). As set out in our 

preregistration, they were excluded if they did not complete the training on 

schedule. 

 

3.3.5 Preregistered Analyses 

To test our primary hypothesis that the training would enhance control over 

Pavlovian biases in the Orthogonal Go/No-Go task, we planned two related 

analyses, one that was model agnostic and another that used computational 

modelling. 

 

3.3.5.1 Model Agnostic Analyses of the Orthogonal Go/No-Go Task 

For the model agnostic analysis, we calculated a measure of Pavlovian bias for each 

participant in each session. This was defined as the sum of the accuracies for the 

two high Pavlovian-instrumental conflict trial types (go to avoid punishment and 

no-go to win reward) minus the sum of the two low conflict trial types (go to win 

reward and no-go to avoid punishment). We then computed a training effect, which 

was the change in this metric between the Baseline and Follow-Up sessions. Finally 

we tested (using an independent samples t-test) whether there was any difference 

in this change between the Active and Sham training groups. 
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We also had a secondary hypothesis for this task: we predicted that, in the Baseline 

session, there would be an interaction effect between required response and 

outcome valence, indicating the presence of Pavlovian biases. We assessed this by 

means of a 2 X 2 repeated measures ANOVA on the accuracy data from the Baseline 

session, followed by four planned paired-samples t-tests comparing accuracy in 

both the go to avoid punishment and no-go to win reward conditions with each of 

the go to win reward and no-go to avoid punishment conditions. 

 

3.3.5.2 Computational modelling of the Orthogonal Go/No-Go Task 

In parallel we also tested our primary hypothesis using a computational modelling 

approach. All models were fitted in Stan (Gabry & Češnovar, 2021) using the 

Variational Bayes method; once fitted, we generated 1000 samples from each 

model, which were then analysed as described below. 

 

The first stage involved identifying the model that best explained the observed 

data. We started with the winning model of Guitart-Masip et al. (2011), which 

describes behaviour on each trial as a function of a Rescorla-Wagner learning 

process with participant-specific reward and punishment sensitivities, a noise 

component, a go bias and a Pavlovian bias – henceforth we refer to this as the 

‘Base’ model. We then extended this model in three increments (see Section 

3.3.5.2.3), gradually adding complexity and examining how this affected the model 

fit. 

 

3.3.5.2.1 Description of the Base model 

In the Base model, each trial was modelled as a two-step process, beginning with 

response generation and then, after the outcome of that action was observed, a 

learning step.  

 

During response generation, the tendency to make a go response depended on the 

difference between the values assigned to the go and no-go options (𝑞() and 

𝑞*)()); on the first trial these were initialised at 0. To this, the participant’s go bias 
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and a Pavlovian component were both added to give the decision weight for 

making a go response on that trial. Specifically, the Pavlovian component contained 

the associative value of the stimulus shown, scaled by a Pavlovian bias parameter. 

The stimulus value was coded such that negative values indicated expected 

punishment, and positive values expected reward – therefore the model generated 

the classic Pavlovian pattern of responses (go to reward, no-go to punishment) 

whenever the Pavlovian bias parameter was positive. These components are set 

out in Equation 3.1 below. 

 

Decision weight 

 

𝑤(𝑠$) = 𝑞()(𝑠$) − 𝑞*)()(𝑠$) 	+ 	𝐺𝑜𝐵𝑖𝑎𝑠+,-./0$ +	𝑃𝑎𝑣𝑏𝑖𝑎𝑠+,-./0$ × 𝑣𝑎𝑙𝑢𝑒(𝑠$) 

(3.1) 

 

Subsequently the decision weight was put through a logistic function (augmented 

by an additional noise component, 𝜉+,-./0$, which shifted 𝑝𝐺𝑜$ towards 0.5) to give 

the probability of making a go response on each trial. Finally a response (go or no-

go) for each trial was generated by sampling from a Bernoulli distribution with this 

probability. This is summarised in Equation 3.2 below. 

 

Response generation 

 

𝑝𝐺𝑜$ = (1 − 𝜉+,-./0$) × 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐@𝑤(𝑠$)A +	𝜉+,-./0$ ×
1
2																						 

(3.2a) 

 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒$ = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐺𝑜$) 

(3.2b) 
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The second set of steps involved updating the learned values of the response that 

had been chosen (𝑞() or 𝑞*)()), as well as the associative value of the stimulus 

shown (𝑣𝑎𝑙𝑢𝑒(𝑠$)). These updates were implemented by Rescorla-Wagner update 

rules, with separate sensitivities to reward and punishment outcomes. This is 

summarised in Equations 3.3 and 3.4 below. 

 

Instrumental Learning 

 

𝑞#/+!)*+/,$23(𝑠$)

= 𝑞#/+!)*+/,$(𝑠$)

+	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$ 	× (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦4"&/*0/,+,-./0$

× 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 −	𝑞#/+!)*+/,$(𝑠$)) 

(3.3) 

 

Pavlovian Learning 

 

𝑣𝑎𝑙𝑢𝑒$23(𝑠$) = 𝑣𝑎𝑙𝑢𝑒$(𝑠$)

+ 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$ × (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦4"&/*0/,+,-./0$

× 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 − 𝑣𝑎𝑙𝑢𝑒$(𝑠$)) 

(3.4) 

  

 

3.3.5.2.2 Choice of priors 

The participant-level parameters were passed through appropriate link functions 

and then given hierarchical (population-level) priors which were determined 

through a process of prior predictive checking. These are set out in Equations 3.5 

and 3.6 and plotted in Figures S3.1–S3.5.  
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Link Functions 

 

															𝜉+,-./0$ = Φ@𝑟𝑎𝑤_𝜉+,-./0$A 

															𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒+,-./0$ = Φ@𝑟𝑎𝑤_𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒+,-./0$A 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦5/6"#7,+,-./0$ = 𝑒#"6_9/*+%$%4%$:!"#$%&,()*+",-  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦;,*%+<=/*$,+,-./0$ = 𝑒#"6_9/*+%$%4%$:.)/0(12"/-,()*+",- 	 

(3.5) 

 

Priors 

 

𝐺𝑜𝐵𝑖𝑎𝑠+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇>)?%"+, 𝜎>)?%"+)				 

𝑃𝑎𝑣𝐵𝑖𝑎𝑠+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇;"4?%"+, 𝜎;"4?%"+)			 

𝑟𝑎𝑤_𝜉+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇@ , 𝜎@A										 

𝑟𝑎𝑤_𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇A5 , 𝜎A5)																																 

	𝑟𝑎𝑤_𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦5/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇5/6"#7_+/*+, 𝜎5/6"#7_+/*+A							 

𝑟𝑎𝑤_𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦;,*%+<=/*$,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇;,*%+<=/*$_+/*+, 𝜎;,*%+<=/*$_+/*+) 

 

																					𝜇>)?%"+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1.5) 																					𝜎>)?%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.8) 

																𝜇;"4?%"+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,2) 																			𝜎;"4?%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.5) 

																														𝜇@ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.5) 																											𝜎@ 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

																										𝜇A5 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1)		 																									𝜎A5 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

													𝜇5/6"#7_9/*+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3)		 								𝜎5/6"#7_9/*+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

				𝜇;,*%+<=/*$_9/*+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3) 	𝜎;,*%+<=/*$_9/*+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

(3.6) 

 

3.3.5.2.3 Other models 

We gradually extended the Base model in three stages: we included distinct 

Pavlovian approach and avoidance biases; we included separate learning rates for 

reward and punishment (but not approach/avoidance biases); finally we included 

both reward/punishment learning rates and approach/avoidance Pavlovian biases 

in the same model. 
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3.3.5.2.4 Modelling of experimental conditions 

The Baseline data was fitted with a single model regardless of participants’ group 

membership, because we know a priori that the active and sham groups were 

identical at Baseline because participants were allocated at random (avoiding the 

so-called Table 1 fallacy). Subsequently, when analysing the data from the Follow-

up Sessions, the model was fitted separately for the two training groups, since at 

that point there could be a difference between groups. Fitting the groups 

separately leads to more accurate and less biased parameter estimates (according 

to parameter-recovery simulations; Valton et al., 2020).  

 

3.3.5.2.5 Assessing the models 

We compared these models using the Widely-Applicable Information Criterion 

(WAIC; Watanabe, 2010), which estimates the leave-one-out predictive accuracy of 

a model; in so doing, WAIC provides both a point estimate and standard error, 

allowing us to quantify our uncertainty. We selected the best performing model 

according to their WAIC values, and then examined the posterior estimates of 

participants’ Pavlovian biases according to this model. Our preregistered analysis, 

as with the model agnostic approach described above, was to compute the change 

in Pavlovian bias between Baseline and Follow-Up for each posterior sample, 

calculate the mean change for each participant and then test (using an independent 

samples t-test) whether there was any difference in this change between the Active 

and Sham training groups. 

 

In addition to this, we also probed the model with several exploratory analyses: 

first we examined the posterior predictions from the model and compared them 

with the empirical data; then, looking at the posterior estimates of the parameters, 

we plotted the population-level parameters and assessed both the changes in these 

parameters following the training and whether there were any group differences in 

these changes.  
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3.3.5.3 Affective Bias Task 

To test our hypothesis for this task, we computed the within-subjects change in 

affective bias (the change in proportion of responses matching the high-reward 

stimulus) and then compared this change across the two training groups using an 

independent samples t-test.  

 

3.3.5.4 Risk Taking Task 

We analysed the proportion of gambles chosen using a 3 X 2 X 2 ANOVA (framing: 

loss vs. mixed vs. gain X timepoint: pre- vs. post-training X training group: active vs. 

sham). Further analyses were conducted on an exploratory basis. 

 

3.3.5.5 Computing environment and packages 

Analyses were conducted in R version 3.5.3 (R Core Team, 2019). We used the R 

package ‘rstatix’ (0.6.0; Kassambara, 2021) to conduct the frequentist statistics and 

the Bayesian models were fitted in Stan using CmdStanR (0.3.0, Gabry & Češnovar, 

2021).  
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3.4 Results 

3.4.1 Orthogonal Go/No-Go Task 

3.4.1.1 Preregistered model agnostic analyses 

Beginning with the data for just the Baseline session (Figure 3.1, left panel), we see 

as expected there was a significant action by valence interaction, F(1, 689) = 709,  

p < .001, 𝜂!"#$%"&'  = 0.51, indicating the presence of Pavlovian biases. Specifically, 

accuracy on the ‘go to win reward’ trials was greater than on the ‘go to avoid 

punishment’ trials, t(689) = 18.4, p < .001, d = 0.70; conversely accuracy on the ‘no-

go to win reward’ trials was lower than on the ‘no-go to avoid punishment’ trials, 

t(689) = 23.9, p < .001, d = 0.91. We also observed significant main effects of action, 

F(1, 689) = 1680, p < .001, 𝜂!"#$%"&'  = 0.71, and valence, F(1, 689) = 97.3, p < .001, 

𝜂!"#$%"&'  = 0.12. Accuracy was higher when participants were required to make a go 

response (M = 0.76, SD = 0.17) compared with no-go (M = 0.40, SD = 0.25), 

indicating the presence of an overall ‘go bias’; and it was also higher when the 

incentive involved avoiding punishment (M =  0.61, SD = 0.15) as opposed to 

gaining reward (M = 0.55, SD = 0.36).  

 

In the Follow-Up session (also plotted in Figure 3.1, right panel), there appears to 

be a clear difference between the active and sham groups. We tested this by 

looking at the change in the model agnostic measure of Pavlovian bias (details of 

which were given in Section 3.3.5.2 above); by this measure, the active and sham 

groups differed significantly in the change in Pavlovian bias experienced,  

t(685) = 11.9, p < .001, d = 0.91. Specifically, Pavlovian bias in the active group 

decreased after training, t(344) = 9.90, p < .001, d = 0.53, whereas in the sham 

group it increased after the training, t(344) = 6.86, p < .001, d = 0.37. Descriptive 

statistics are given in Table 3.2 and plotted in Figure 3.2.  
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Table 3.2 Model agnostic Pavlovian bias measure in each condition. 

 

Training condition Timepoint 
Pavlovian Bias  

Mean (SD) 

Sham 
Baseline 0.40 (0.39) 

Follow-Up 0.12 (0.48) 

Active 
Baseline 0.40 (0.40) 

Follow-Up 0.58 (0.38) 

Figure 3.1. Performance on the Orthogonal Go/No-Go Task. Plot shows the 
average accuracy in each condition. Both groups were closely matched at 
Baseline and show clear signs of Pavlovian bias (*** shows significant ANOVA 
interaction, p < .001). At Follow-up, Pavlovian biases were decreased in the 
active training group and increased in the sham group (see Figure 2 for explicit 
test of change in Pavlovian bias).  
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3.4.2 Pavlovian Bias Training 

3.4.2.1 Exploratory analysis 

Descriptive statistics for performance across the training sessions are given in Table 

3.3 and plotted in Figure 3.3. There was a significant interaction between training 

condition and timepoint on the mean accuracy per session during training,  

F(4, 2752) = 63.0, p < .001, 𝜂!"#$%"&'  = 0.08. Specifically, whilst both training groups 

significantly improved their accuracy over the course of training, the active group 

improved by a greater amount: the average improvement from the first to the fifth 

training sessions for the active training group was 0.16 (SD = 0.18), and for the 

sham group was 0.05 (SD = 0.09), t(491) = 9.91, p < .001, d = 0.76.   

 

Figure 3.2. The model agnostic measure of Pavlovian bias. Participants in the 
active training group showed decreased bias after training, whereas those in 
the sham group showed increased bias. Plot shows the individual data points, 
mean±SE and distribution for each timepoint and training condition. 
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Regarding the sequential differences between training sessions, the active training 

group improved significantly between each of the first, second, third and fourth 

sessions (p < .001, d = 0.61; p < .001, d = 0.36; p < .001, d = 0.27 respectively), but 

not between the fourth and fifth sessions (p = .08; tests were Bonferroni-corrected 

for multiple comparisons). By contrast the sham group improved significantly only 

between the first, second and third sessions (p < .001, d = 0.50; p = .01, d = 0.17 

respectively) and not between the third, fourth and fifth sessions (p = .50 and .55).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3. Mean accuracy across each of the five training sessions. Both 

groups improved significantly over the course of the training. 

Training condition Session number Mean (SD) accuracy 

Sham 

1 0.93 (0.08) 

2 0.96 (0.04) 

3 0.97 (0.04) 

4 0.98 (0.03) 

5 0.98 (0.03) 

Active 

1 0.69 (0.21) 

2 0.78 (0.21) 

3 0.82 (0.20) 

4 0.85 (0.20) 

5 0.86 (0.20) 
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3.4.3 Computational modelling of the Orthogonal Go/No-Go Task 

3.4.3.1 Preregistered analysis 

Next we fitted a number of computational models to the Orthogonal Go/No-Go 

Task data and examined the results. The models themselves were described in 

Section 3.3.5.2 above. 

 

First the models were compared on the basis of their WAIC values. Figure 3.4 shows 

the estimated difference in WAIC (and standard error of this difference) between 

the best performing model and each model in turn. We found that the best model 

constituted the Base model plus two learning rates (for reward and punishment); 

the distance to the second best model is 3.8 times its standard error, so we can be 

reasonably confident that this model has better out-of-sample predictive accuracy 

than the other models considered. 

Figure 3.3. Performance on the Pavlovian bias training, split by trial type. 
Average accuracy in both groups improved over the course of training, but 
the improvement was greater in the active compared with the sham group. 
Plots show individual data points and distributions (colour) and means±SE 
(black).  



 94 

  

 

 

 

 

Next we examined the trial-wise posterior predictions from the winning model. 

These are plotted in Figure 3.5, along with the empirical data for comparison. We 

see that the model generates predictions that are mostly well matched to the 

empirical data, including the greater variability in participants’ performance on the 

no-go to win reward trials (to compare with the distributions of mean accuracy in 

Figure 3.1). However, it also seems that the model overstates slightly the accuracy 

in the high Pavlovian conflict trials – in the go to avoid punishment trials in 

particular, the predicted mean is consistently above the observed mean. This 

indicates that the model may have underestimated the strength of the Pavlovian 

biases slightly. 

Figure 3.4. Model comparison results for the Orthogonal Go/No-Go Task. 
Plots show the difference in WAIC (and SE of this difference) between the 
best performing model, indicated by the vertical dotted line, and each of the 
models in turn. The best model by nearly four standard errors of difference 
constituted the Base model plus two learning rates (for reward and 
punishment). 
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The final stage in our analysis of the model was to examine the posterior estimates 

of the parameters. First we conducted our preregistered analysis, which involved 

testing the difference between groups in the mean change of the participant-level 

Pavlovian bias parameters. These are plotted in Figure 3.6. As predicted, we found 

there were large differences between groups in the effect of training on Pavlovian 

bias, t(552) = 41.9, p < .001, d = 3.19. Specifically, those who received the active 

training showed a substantial decrease in Pavlovian bias (M = 0.85, SD = 0.33;  

t(344) = 48.6, p < .001, d = 2.62) whereas those in the sham group did not  

(M = 0.00, SD = 0.19; t(344) = 0.33, p = .74, d = 0.02).  

 

 

 

Figure 3.5. Posterior predictions from the winning model (Base model plus 2 
learning rates). Plots show the mean (black line) and 50/80/95% highest density 
continuous intervals (HDCI) for the posterior predictions, as well as the empirical 
data (blue line) for comparison. 
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3.4.3.2 Exploratory computational modelling 

We then examined the posterior distributions of the population-level parameters. 

These are plotted in Figure 3.7a, and appear to show substantial training effects in 

every parameter. To test this more rigorously we computed the changes between 

sessions for each parameter, and also the differences in these changes between the 

active and sham groups, allowing us to infer whether any training effects present 

differed between groups. These are also plotted in Figures 3.7b and 3.7c 

respectively. 

 

In line with our hypotheses, we found that the Pavlovian bias parameter decreased 

substantially after training in the active group only – from a value of approximately 

0.82 at Baseline it was reduced to nearly zero at Follow-up. In the sham group the 

Figure 3.6. Participant-level estimates of the Pavlovian bias parameters, 
according to the winning model (Base plus two learning rates). The reduction 
in Pavlovian bias was significantly greater in the active training group 
compared with the sham group. Each plot shows the mean bias for each 
participant (i.e. averaging across samples) and the overall mean±SE. 
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95% HDCI of the change before and after training overlaps zero, suggesting 

Pavlovian biases remained the same in this group. 

 

The go bias decreased fairly substantially after training in both the sham and active 

groups, from log-odds of approximately 1.8 at Baseline to 1.25 and 1.1 respectively 

(see Figure 3.7a; these changes imply a decrease in the probability of making a go 

response from 86% to 78% and 75% respectively after training). Figure 3.7b 

confirms that the go bias decreased by more in the active group, as the 95% HDCI 

for the difference in the two changes does not overlap zero.  

 

There was a substantial difference between groups in the change in the noise 

parameter – in Figure 3.7a we see that noise decreased after training in the sham 

group and increased in the active group. This difference is confirmed by Figure 3.7b, 

which shows a clear, positive difference between the two groups. This may reflect 

the fact that not all participants in the active group responded to the training, 

which the model accommodated by increasing the noise.  

 

In the remaining parameters—reward sensitivity, punishment sensitivity, reward 

learning rate and punishment learning rate—there were varying patterns of 

differences between the active and sham groups. The sham group consistently 

showed slight increases after training in all four of these parameters (note that in 

Figure 3.7a the 95% HDCIs for the changes in punishment sensitivity and reward 

learning rate do not overlap zero). In contrast, the active group showed substantial 

decreases in reward sensitivity and punishment learning rates, and increases in 

punishment sensitivity and reward learning rates. The plots in Figure 3.7b confirm 

that the two groups differed in the changes in all four of these parameters.  
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Interpreting these changes depends on first understanding the pattern of these 

parameters at Baseline: initially we see that reward sensitivity is relatively high and 

reward learning rate low; whereas punishment sensitivity is lower and punishment 

learning rate high. Together these values produce the slow, steady increase in 

accuracy seen in the no-go to win reward condition and the faster learning but low 

asymptote seen in the no-go to avoid punishment condition (see Figure 3.5; the 

same effects are less obvious in the go conditions because accuracy there is already 

saturated by the go bias). As a result of the training, the active group’s accuracy in 

the no-go to win reward and no-go to avoid punishment conditions now follow 

much more similar trajectories, so the parameters in the model have shifted 

accordingly, such that the reward and punishment sensitivities and learning rates 

are now much closer to one another. In the sham condition, on the other hand, 

there was no obvious training effect in the observed data other than generally 

slightly improved performance across the board, and so the sensitivity and learning 

rate parameters have simply shifted upwards slightly.  

 

3.4.4 Affective Bias Task 

3.4.4.1 Preregistered analysis 

There was no significant difference in the change in affective bias between the two 

training groups, t(683) = 0.11, p = .91. The affective bias in each of the conditions is 

plotted in Figure 3.8. 

 

3.4.4.2 Exploratory analyses 

A 2 X 2 (training condition x timepoint) ANOVA was conducted on the affective bias 

scores, and revealed a significant main effect of timepoint only, F(1, 688) = 9.90,  

p = .002, 𝜂!"#$%"&' 	=	0.01. In the baseline session, participants on average showed a 

negative affective bias (the proportion of responses that equated the ambiguous 

stimulus to the high-reward exemplar was 0.39, SD = 0.16) but after training this 

bias became less negative (the proportion of ‘high’ responses increased to 0.41,  

SD = 0.19). The other effects—the main effect of training condition and the 



 100 

condition X timepoint interaction—were both non-significant, p = 0.74 and 0.91 

respectively. 

 

Finally we also examined the associations between affective bias (averaged across 

the two sessions) and scores on each of the mental health symptom scales. None of 

these correlations were significant (BDI: p = .33; STAI-state: p = .71; STAI-trait:  

p = .35). 

 

 

 

3.4.5 Risk Taking Task 

The proportion of gambles chosen in each condition is plotted in Figure 3.9. There 

was a significant interaction between gamble frame and timepoint,  

F(2, 1376) = 10.6, p < .001, 𝜂!"#$%"&'  = 0.02, with the proportion of gambles chosen 

reducing after training in the mixed and loss gamble frames only, t(689) = 2.55,  

p = .01, d = 0.1, and t(689) = 5.84, p < .001, d = 0.22 respectively; in the gain frame 

Figure 3.8. Affective bias before and after training. Affective bias is measured 
by the proportion of  responses matching the ambiguous stimuli to the high-
reward exemplar (a value of 0.5 is neutral, <0.5 is a negative bias and >0.5 is a 
positive bias). There was a  significant main effect of timepoint only –  the 
negative affective bias decreased significantly (moved closer to 0.5) after 
training. Plot shows individual data points (left), mean±SE (centre) and 
distributions (right).  
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there was no change in gambling rates between the Baseline and Follow-Up 

sessions, t(689) = 0.12, p = .91. Full descriptive statistics are given in Table 3.4. 

 

In addition there was a significant main effect of framing, F(2, 1376) = 1030,  

p < .001, 𝜂!"#$%"&'  = 0.60; participants chose to gamble significantly more often 

during the gain (M = 0.69, SD = 0.24) versus the mixed frame trials (M = 0.48,  

SD = 0.24), t(1379) = 31.2, p < .001, d = 0.84, which in turn was significantly more 

often than in the loss frame trials (M = 0.25, SD = 0.23), t(1379) = 32.9, p < .001,  

d = 0.89. Finally, there was also a significant main effect of timepoint,  

F(1, 688) = 16.2, p < .001,	𝜂!"#$%"&'  = 0.02, with the overall proportion of gambles 

chosen decreasing from 0.48 (SD = 0.28) at Baseline to 0.46 (SD = 0.32) at Follow-

Up.  

 

The remaining effects – the main effect of training group, the interactions between 

training group and timepoint, training group and framing, and between training 

group, timepoint and framing – were all non-significant (p = .82, .87, .52 and .70 

respectively). 

 

In a further analysis, we also examined the correlation at Baseline between the 

rates of gambling in the gain and loss frames and the Pavlovian biases. There was a 

significant correlation between Pavlovian bias and gambling in the loss frame,  

r = 0.08, t(688) = 2.15, p = .03, but not between bias and gambling in the gain 

frame, r = 0.01, t(688) = 0.22, p = .82.  
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Table 3.4. Risk Taking Task: Proportion of gambles chosen in each 

combination of framing and timepoint. 

Gamble framing Timepoint 

Proportion of gambles 

chosen 

Mean (SD) 

Gain 
Baseline 0.69 (0.23) 

Follow-Up 0.69 (0.26) 

Mixed 
Baseline 0.49 (0.22) 

Follow-Up 0.47 (0.26) 

Loss 
Baseline 0.27 (0.22) 

Follow-Up 0.23 (0.24) 

Figure 3.9. Risk Taking Task: Proportions of gambles chosen. Participants 
chose to gamble less often in the Follow-up session, but only in the mixed 
and loss frames. In addition, overall the rates of gambling were higher in the 
gain frame compared with the mixed frame, which in turn was higher than in 
the loss frame. Plots show  (left to right) individual data points, mean±SE 
and distributions. *** p < .001  
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3.4.6 BDI 

There was a significant main effect of timepoint, F(1, 687) = 5.32, p = .02,  

𝜂!"#$%"&'  = 0.01; average depression score decreased from 9.07 (SD = 8.19) to 8.69 

(SD = 8.44) between the Baseline and Follow-Up sessions. However, the main effect 

of training condition and the training condition x timepoint interaction were both 

non-significant, p = .78 and .42 respectively. The BDI scores in each condition are 

plotted in Figure 3.10. 

 

We also investigated whether there was any correlation between the change in BDI 

score and the change in the model-derived Pavlovian bias parameter. This was, 

however, non-significant, r = –0.02, t(688) = 0.41, p = .68.  

 

 

3.4.7 STAI 

There were no significant effects on either the state or trait subscales of the STAI. 

For the state subscale, the results were: training group, F(1, 688) = 0.04, p = .84; 

timepoint, F(1, 688) = 0.35, p = .56; timepoint x group interaction, F(1, 688) = 0.26, 

p = .26. For the trait subscale, the results were: training group, F(1, 688) = 0.40,  

Figure 3.10. Beck Depression Inventory scores. Scores decreased significantly 
from Baseline to Follow-up, for both training groups. Plot shows (left to right) 
individual data points, mean±SE and distributions. * p < .05 
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p = .53; timepoint, F(1, 688) = 1.85, p = .17; timepoint x group interaction,  

F(1, 688) = 0.56, p = .46. The STAI scores in each condition are plotted in  

Figure 3.11. 

 

We also investigated the correlations between the change in the STAI scores and 

the change in the model-derived Pavlovian bias parameters. However, these were 

both non-significant: for state anxiety, r = 0.02, t(688) = 0.58, p = .56; and for trait 

anxiety, r = –0.02, t(688) = 0.40, p = .69. 

  

Figure 3.11. State-Trait Anxiety Inventory scores. There were no differences 
between either timepoints or training groups. Plots show (left to right) 
individual data points, mean±SE and distributions.  
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3.5 Discussion 

In this preregistered study we examined whether control over Pavlovian biases 

could be enhanced through a regime of behavioural training. Once a day for five 

days, participants in the active training group practiced the high Pavlovian conflict 

trials of the Orthogonal Go/No-Go Task, while those in the sham training group 

practiced the low conflict trials. We found strong converging evidence from both 

model-agnostic measures and computational modelling that, compared with the 

sham training group, participants in the active group had reduced Pavlovian biases. 

This indicates not just that the training had worked as predicted but also, more 

broadly, that Pavlovian biases are subject to cognitive control and that the decision 

to engage control is to some extent malleable and able to be trained.  

 

These results are tempered by the finding that there were no significant differences 

between training groups in any of our secondary measures. This suggests that the 

apparent enhancement of cognitive control seen in the Go/No-Go Task was not 

transferred to other tasks or contexts. Nevertheless, in exploratory analyses we did 

observe several significant effects common to both groups: there was a significant 

overall reduction in both negative affective bias and depression symptoms between 

timepoints, the latter matching a result seen in the previous study (Chapter 2); 

there was also a significant difference in risk-taking as a function of both timepoint 

and gamble framing. This reproduces the main result seen previously with this task 

(Rutledge et al., 2015) and demonstrates that the task manipulation itself worked 

as intended, although it was not sensitive to the training group participants were in. 

 

The training effect we observed in the Orthogonal Go/No-Go Task was not just 

significant but also large (for the model-agnostic between-groups comparison it 

was d = 0.91, while the computational model estimated that the value of the 

Pavlovian bias parameter had been reduced all the way to zero), suggesting the 

active training was extremely effective. Reinforcing this, we observed that while 

both groups improved in performance over the course of the training sessions 

themselves, the active group improved more consistently and by a greater amount.  
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These results are of course difficult to integrate with those of the previous chapter, 

in which it seemed the training effect was either absent or relatively small. For the 

most part the two versions of the experiment (lab-based and online) were identical. 

However, there were several important differences which may have caused the 

discrepancy between the studies. First, the present study was conducted entirely 

online, and so it could be that the population we sampled from were different in 

some important way from those recruited for the lab-based study – they may have 

been more diligent in doing the tasks, for example. In support of this we note that 

in the previous iteration approximately 15% of participants had to be excluded for 

not doing all of the sessions, while in the current experiment this figure was just 

5%. Second, in the present study we added a comprehension check before the start 

of the main phase of the Go/No-Go Task, as well as a number of attention checks 

elsewhere – this improved the quality of the data in this version of the experiment 

by allowing us to filter out participants who did not understand the instructions or, 

worse, responded at random. Finally, the current study had a much larger sample 

size. Although in the previous chapter’s discussion we noted concerns about the 

possibility that the earlier study was underpowered, that was not the case with the 

current study. Thus, overall, we suggest that we can be more confident in the 

results of the later version of the experiment, and specifically in the conclusion that 

the training was effective.  

 

3.5.1. Go/No-Go modelling: further interpretation and limitations 

There were several aspects of the computational modelling which were 

unanticipated or otherwise worthy of more substantial discussion. First, it was 

surprising that the best performing model was found to be the ‘Base plus two 

learning rates’ model, as a previous study with the same task had found that the 

best performing model included separate Pavlovian approach/avoidance biases as 

well (Mkrtchian, Aylward et al., 2017). There are three main differences between 

that study and our own which may explain this discrepancy. The choice of model 

comparison measure could have been a factor – Mkrtchian, Aylward et al. 

compared their models using the Bayesian Information Criterion, which is known to 

penalise model flexibility less than WAIC (McElreath, 2016). Second, Mkrtchian, 
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Aylward et al.’s experiment included a state anxiety manipulation (threat of electric 

shock), which may have potentiated the avoidance bias in particular; in addition, 

they included both healthy participants and patients with anxiety disorders in their 

study, and subsequently found that the patients had increased Pavlovian 

avoidance, but not approach, biases. Thus it may be that the need to distinguish 

between the approach and avoidance forms of Pavlovian bias reflects a particular 

feature of anxiety, and in healthy participants the difference between these two 

biases is not so critical. 

 

In any case we should be careful not to overinterpret the results of the model 

comparison, particularly when making inferences about the underlying cognitive 

mechanism. Although we found here that WAIC clearly favoured the Base plus two 

learning rates model, this does not necessarily mean that the approach and 

avoidance biases are processed identically in the brain (see e.g. Guitart Masip et al., 

2011, and Boureau & Dayan, 2011) – only that it was not necessary in this case to 

model them separately in order to make accurate predictions.  

 

Regarding the posterior predictive plot (Figure 3.4), we noted in the results section 

above that the model has mostly captured the empirical data well, but seems to 

have slightly overestimated accuracy in the high Pavlovian conflict (go to avoid 

punishment and no-go to win reward) trial types at Baseline. It is difficult to 

attribute this to any single feature of the model because the parameters interact in 

complex ways; however one important aspect especially for the go to avoid 

punishment condition may be the contribution of the go bias. The population-level 

go bias of 1.8, together with the noise value of –0.7, translates to a 77% probability 

of making a go response (see calculation in section 3.6.2), which incidentally is the 

same as the predicted accuracy in this condition. This suggests that the model may 

be accounting for performance in this condition using just the go bias and noise 

parameters alone, i.e. without allowing instrumental learning or Pavlovian biases to 

have any significant influence. Whatever the precise reason for this, if the model 

overestimated the accuracy for these high Pavlovian conflict trial types then it may 

in turn have underestimated both the strength of Pavlovian bias at Baseline and 
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therefore also the size of the training effect. While this has not impeded our ability 

to detect the training effect in this particular study, it does mean we need to be 

cautious about the precise size of the training effect obtained from the model.  

 

In addition, the model highlights an interesting feature of the data for the no-go to 

win reward condition. At Baseline, in the observed data and the model predictions, 

there is both a modal trajectory which is steady at 15-20% accuracy and a long tail 

extending to higher levels of accuracy over time. This suggests that most 

participants were simply not able to learn this condition at all, but a minority of 

them did learn and improved over the course of the session. At Follow-Up, on the 

other hand, in the active group the model assigns most of its probability density to 

a trajectory that starts at approximately 25% and then after 20 trials shows a rapid 

phase of learning, resulting in an accuracy of around 75% for the remainder of the 

session. Re-examining the observed accuracy distribution for this condition in 

Figure 3.1, we see that there is both a main peak at around 70% accuracy and a 

smaller peak at 15%. This bimodality was perhaps too small to detect when looking 

at Figure 3.1 by itself, but taken together with the results from the model suggests 

there may be two distinct subgroups of participants within the active group: a 

majority who responded to the training and so showed rapid learning in the Follow-

up session, and a minority who did not improve at all.  

 

Given that our model was not written to distinguish explicitly between responders 

and non-responders, it is encouraging that it was still able to detect and highlight 

this pattern of effects. Nevertheless an important consequence is that the 

population-level training effect estimated by our model is the mean of a bimodal 

distribution and does not fully characterise either subgroup of participants. For our 

purposes this is not a problem as we are primarily interested in the average effect 

of the training, but in the future it may be interesting to consider models in which 

this bimodality is represented in the structure of the model, for example by 

including another level of hierarchy, or adding a mixture component. Not only 

would this permit better measurement of the training effect within each subgroup, 



 109 

but it would also allow estimation of the proportion of participants who respond to 

the training.  

 

3.5.2. Secondary measures: the lack of transfer effect 

Although it is widely acknowledged that it is often difficult to elicit transfer effects 

with cognitive or behavioural interventions, it is nevertheless remarkable that there 

was no effect of training allocation on any of the secondary measures here, given 

the size of the effect seen on the Go/No-Go task. In the introduction to the 

previous chapter, we suggested that control over Pavlovian biases could be located 

within a broader framework of economic decision-making; that the exertion of 

control depends on an assessment of the possible rewards and costs, as well as the 

efficacy of control, all of which has to be learned (Shenhav et al., 2013). The finding 

that we were able to train control within the Go/No-Go task itself but that this did 

not transfer to the other tasks suggests that whatever participants learned over the 

course of the training was stimulus specific. In other words, rather than improving 

their ability to detect and manage cognitive biases in general, participants instead 

learned to identify and respond to specific stimuli by exerting greater control. This 

of course brings into focus a broader question as to what extent the decision to 

exert control is explained by stable, trait-like factors, or by the stimuli themselves 

and one’s beliefs about them.  

 

We would emphasise, however, that our primary aim with this study was proof of 

concept, as a result of which we opted to train and test participants on the same 

set of stimuli, with just one stimulus per trial type. Having shown that this is in 

principle possible, it may be worthwhile to investigate in a future study whether a 

modified training regime, such as one in which transfer to different stimuli and 

contexts is deliberately emphasised, is more effective. 

 

3.5.3. Secondary measures: other effects 

Although there were no significant effects of the training groups on the secondary 

measures, we did observe a number of significant effects of timepoint: affective 
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bias decreased between the Baseline and Follow-Up sessions, in the Risk Taking 

Task there was a significant reduction in gambling (specifically in the mixed and loss 

frames), and there was also a decrease in depression symptoms, the latter 

reproducing a result we saw in the earlier study (Chapter 2). It is possible these 

results represent a general effect of engaging in a programme of training, perhaps 

because there is an inherent reward in diligently sticking to a task and improving 

over time. Equally likely is that they were driven by some aspect of repeat testing – 

for example, on the Affective Bias task participants may have realised by the 

Follow-Up session that the intermediate circle was in fact exactly halfway between 

the two exemplars, or on the BDI participants’ responses may have been affected 

by the fact that they were closer to receiving the reward for the study. 

 

The final effect observed in these secondary measures was the main effect of 

framing on the Risk Taking Task, which was a relatively large effect at  

𝜂!"#$%"&'  = 0.60. It has previously been established that this is a result of Pavlovian 

approach and avoidance biases operating in the gain and loss frames respectively 

(Rutledge et al., 2015), and it is encouraging that we were able to reproduce this 

result. 

 

3.5.4 Future directions 

We have already highlighted above the difficulties with achieving transfer effects to 

other cognitive tasks or domains, and consequently the need in future studies for 

the training programme to explicitly incorporate different stimuli and contexts. This 

will be particularly important if, as we hope, behavioural training of cognitive 

control might eventually be developed into a treatment for cognitive symptoms in 

conditions like anxiety and depression.   

 

The issue of transfer to other tasks raises another question, however, which is 

whether participants really learned to enhance their control over Pavlovian biases, 

or whether instead they learned something more specific about the particular 

stimuli they trained and were tested on. Although we have framed our arguments, 
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in this and the previous chapter, in terms of cognitive control over Pavlovian biases, 

there is a need for more research to examine the relationship between these two 

processes directly. In the remaining empirical chapters of this thesis we will explore 

this line of study, asking to what extent differences in willingness to exert control 

explain the strength of Pavlovian biases. We hope to show that the ability to 

overcome Pavlovian biases is critically dependent on the extent to which one is 

sensitive to cognitive effort. Since effort is by definition a flexible resource it would 

seem to be a likely mediator of the training effect we found in the current study. 

Finding a relationship between Pavlovian bias and sensitivity to effort would thus 

allow us to interpret the results in this chapter with greater certainty. In order to 

investigate this link, we first needed to design a suitable measure of cognitive effort 

sensitivity, which is the subject of the following chapter. 

 

3.5.5 Conclusions 

In this study we have shown that it is possible to reduce the influence of Pavlovian 

biases on behaviour through a regime of behavioural training. This is consistent 

with the idea that there is a cognitive control mechanism operating on Pavlovian 

biases, which was enhanced by the training. Moreover the training could have 

important clinical applications with the aim of enhancing cognitive control, if 

developed further. While this has to be tempered by recognition of the fact that we 

did not see transfer of enhanced cognitive control to the other secondary measures 

in this study, it is nevertheless noteworthy that we were able to achieve changes in 

the influence of Pavlovian biases at all. With modifications to the training to focus 

on the issue of transfer to other stimuli and contexts, future studies may be able to 

progress this method even further. In addition, more work is needed to directly 

investigate the links between the strength of Pavlovian biases and participants’ 

willingness to exert control – this question is addressed by the remaining two 

empirical chapters of this thesis. 
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3.6 Appendix 

3.6.1. Prior distributions for the Go/No-Go Models 

 

 

 

 

 

Figure S3.1. Prior predictions for the go bias parameters, with distributions 
𝜇>)?%"+ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1.5), 𝜎>)?%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0,1.5) and 
𝐺𝑜𝐵𝑖𝑎𝑠+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇>)?%"+ , 𝜎>)?%"+). (a) and (b) show the analytical 
distributions of the population mean and standard deviation; (c) shows the 
prior prediction for the participant-level go bias (log-odds), and (d) the 
implied go bias probability. 

Figure S3.2. Prior predictions for the Pavlovian bias parameters, with 
distributions 𝜇;"4?%"+ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,2), 𝜎;"4?%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.5) and 
𝑃𝑎𝑣𝐵𝑖𝑎𝑠+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇;"4?%"+ , 𝜎;"4?%"+). (a) and (b) show the 
analytical distributions of the population mean and standard deviation; (c) 
shows the prior prediction for the participant-level Pavlovian bias 
(dimensionless). 



 113 

 

 

 

 

 

 

Figure S3.3. Prior predictions for the noise parameters, with distributions 
𝜇@ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.5), 𝜎@ 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) and 
𝜉+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇@ , 𝜎@A. (a) and (b) show the analytical distributions of 
the population mean and standard deviation; (c) shows the prior prediction 
for the participant-level noise parameter (in probits), and (d) the implied 
noise proportion. 

Figure S3.4. Prior predictions for the outcome sensitivity parameters, with 
distributions 𝜇+/*+%$%4%$: 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3), 𝜎+/*+%$%4%$: 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 
and 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇+/*+%$%4%$: , 𝜎+/*+%$%4%$:A. (a) and (b) 
show the analytical distributions of the population mean and standard 
deviation; (c) shows the prior prediction for the participant-level outcome 
sensitivity parameters, and (d) the implied maximum possible instrumental 
accuracy (asymptote of learning). 
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3.6.2. Calculation of the initial Go probability 

 

The population mean Go bias = 1.8 (log-odds). As a probability this equals 0.858.  

The population mean noise = – 0.7 (probits). As a probability this equals 0.242.  

Overall initial pGo: 0.858 × (1 − 0.242) + 0.5 × 0.242 = 0.77 

 

 

 

 

  

Figure S3.5. Prior predictions for the learning rate parameters, with 
distributions 𝜇A5 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1), 𝜎A5 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) and 
𝐿𝑅+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇A5 , 𝜎A5). (a) and (b) show the analytical distributions 
of the population mean and standard deviation; (c) shows the prior 
prediction for the participant-level learning rate parameters (in probits), 
and (d) the implied maximum possible learning rate (relative to the 
outcome sensitivity). 
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Chapter 4. Measuring Cognitive Effort Without Difficulty 

 

4.1 Abstract 

An important finding in the cognitive effort literature has been that sensitivity to 

the costs of effort varies between individuals, suggesting that some people find 

effort more aversive than others. It has been suggested this may explain individual 

differences in other aspects of cognition. We are particularly interested in a 

possible link to control over Pavlovian biases. However, there is a significant 

problem with existing measures of cognitive effort which is impeding this line of 

research, namely the confounding of effort and difficulty. This means that 

behaviour thought to reveal effort costs could equally be explained by cognitive 

capacity, which influences the frequency of success and thereby the chance of 

obtaining reward. To address this issue we introduce a new test, the Number 

Switching Task (NST), specially designed such that difficulty will be unaffected by 

the effort manipulation and can easily be standardised across participants. In a 

large, online sample we show that these criteria are met successfully and reproduce 

classic effort discounting results with the NST. We also demonstrate the use of 

computational modelling with this task, producing behavioural parameters which 

can then be associated with other measures, and report a preliminary association 

with the Need for Cognition scale. We believe this task will be an important tool for 

studying associations between individual differences in effort sensitivity and other 

cognitive functions in the future.  
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4.2 Introduction 

Cognitive effort, our ability to vary the depth of our engagement with a cognitive 

task, influences a raft of fundamental cognitive processes including attention 

(Kahneman, 1973), working memory (Westbrook et al., 2013), cognitive control 

(Braver, 2012; Shenhav et al., 2013) and cognitive biases in decision-making (Ortega 

et al., 2015; Toplak et al., 2011). Consequently, there is substantial interest in both 

measuring cognitive effort and understanding the factors that determine when and 

how much effort is exerted in different situations. Unfortunately, cognitive effort is 

challenging to study for the very same reason – because it is so entangled with 

other processes, there is considerable potential for confounding, and attempts to 

measure cognitive effort must therefore be careful to isolate effort from other 

factors that may influence performance. 

 

One particular problem—the conflation of effort and difficulty—has not to our 

knowledge been addressed. Current methods for studying cognitive effort involve 

assessing participants’ preferences for different cognitive tasks: avoidance of more 

demanding tasks is interpreted as evidence of underlying effort costs, and these are 

quantified by examining how participants trade off the demand against rewards (a 

phenomenon termed effort discounting; see Westbrook & Braver, 2015). However, 

more demanding tasks may also have lower rates of success, and therefore of 

obtaining reward, giving rise to another form of discounting (this time by the 

probability of reward) that would cause avoidance of the more demanding tasks in 

exactly the same way.  

 

Consider for example the N-back working memory task, which is frequently used in 

studies of cognitive effort (see e.g. Westbrook, Kester & Braver, 2013). Higher levels 

of the N-back feel more effortful, but they are also intrinsically more difficult to 

perform accurately, because with more items to hold in memory, the maximum 

precision with which each item can be maintained is lower (Bays et al., 2009). If we 

observe discounting of the value of the task as the N-back level increases, it is 

impossible to say to what extent this is due to the greater effort required or the 
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lower probability of completing a trial successfully and gaining reward. Similar 

arguments can be made for other effort manipulations, such as response conflict 

tasks (e.g. McGuire & Botvinick, 2010; Schmidt et al., 2012). In order to dissociate 

these processes, it is essential that measures of cognitive effort hold difficulty 

constant when manipulating task demand. 

 

It is important too that the difficulty of the task can be standardised across 

participants, as is usual in tasks manipulating physical effort (Chong et al., 2016; 

Husain & Roiser, 2017). Differences in cognitive abilities (including both cognitive 

capacity in a general sense and task-specific competencies) mean that the same 

task may be more or less difficult for different participants. This introduces further 

potential for confounding and renders comparison between individuals difficult. In 

order to conduct individual differences research, particularly in conditions such as 

depression and schizophrenia (in which cognitive impairment is a core symptom; 

Mesholam-Gately et al., 2009; Rock et al., 2014), we need to ensure that all 

participants are being tested at the same level of relative difficulty. 

 

4.2.1 A new cognitive effort measure – the Number Switching Task 

The purpose of the present study was to develop a task that distinguishes cognitive 

effort from difficulty. Specifically, we targeted two main criteria: the manipulation 

of effort demand should not affect the probability of success; and it should be 

possible to standardise the task difficulty by reference to each participant’s baseline 

ability. Two further considerations were that the task should have several levels of 

effort demand, so that we can examine parametric responses to the manipulation 

across a reasonable dynamic range, and also that it should be optimised for use 

online, where it is possible to obtain much larger sample sizes more practically than 

through in-person testing.  

 

We developed the Number Switching Task (NST), which involves categorising each 

digit in a nine-digit sequence as either even or odd. The frequency of switching 

between odd and even influences the effort level, but should not affect the intrinsic 

difficulty of the task, because it is only the order, not the content, of the trials that 
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changes. Additionally, we can control the difficulty on the NST by calibrating the 

time participants have available to complete each sequence, allowing us to 

standardise the task across participants. 

 

The primary aim of this paper was to validate the NST by testing the prediction that 

the effort manipulation will elicit the classic effort discounting effect without 

affecting the difficulty as measured by the rate of success. We also present some 

secondary analyses including computational modelling and an assessment of 

preliminary associations with cognitive traits relevant to depression and anhedonia.  
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4.3 Methods 

4.3.1 Preregistration 

This study was preregistered on the Open Science Framework 

(doi:10.17605/OSF.IO/8Y7P9). There were no deviations from this plan.  

 

4.3.2 Participants 

Participants were recruited through the online platform Prolific. The study was 

advertised only to participants who met the following inclusion criteria: aged 18-60, 

fluent in English, no history of a diagnosed psychiatric or neurological disorder, and 

did not take part in an earlier study in this series of experiments. Participants also 

had to use a computer – smartphones or tablets were not allowed. 

 

In our preregistration we calculated a minimum required sample size of 259 

participants in order to detect an effect of at least r = 0.2 with 90% power and  

alpha = .05 (two-tailed). To allow for withdrawals and exclusions, we initially 

recruited a larger sample, of whom 306 completed the whole study. Of these, three 

were excluded because they refreshed the web page part way through; nine were 

excluded because they repeatedly failed the familiarisation phase of the effort task; 

and four were excluded because they failed attention checks in the questionnaires. 

This left 290 participants with data included in the final analysis.  

 

4.3.3 Procedure 

From Prolific, participants were automatically directed to another website, Gorilla 

(www.gorilla.sc/), where the study was hosted. There they completed the Cognitive 

Effort Task, followed by eight questionnaires. At the end of the study, they were 

redirected back to Prolific via a unique URL, which allowed them to prove they had 

completed all the tasks; if instead they returned to Prolific manually (without this 

URL), their data was flagged and we checked whether they had actually completed 

all the tasks or not. On average, the entire study took approximately 45 minutes, 

from signing up to returning to Prolific, and participants were paid a flat rate of £5 
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plus a performance bonus of 1 pence per 3 points won on the effort task (on 

average participants won around £1.50 in bonuses). 

 

4.3.3.1 The Number Switching Task 

The structure of the task is shown in Figure 4.1. On each trial, participants were 

offered a reward (3, 6, 9 or 12 points, corresponding to 1, 2, 3 or 4p of real money, 

respectively) to complete an effortful task with a specified level of demand. If they 

accepted this challenge they had to complete the task successfully to win the 

reward; if they rejected it, they avoided performing the task, but won no points 

and, after a timeout of 2500ms, proceeded to the next offer.  

 

The effortful task itself was to categorise the digits, in a random sequence of the 

numbers one to nine, as either odd or even. The subjective effort of this task scales 

with the frequency of switching between odd and even digits, allowing us to define 

four levels of demand: the lowest level, referred to in the task as 20%, contained 

either 1 or 2 switches; the next level (40%) 3 or 4 switches; the 60% level 5 or 6 

switches; and the highest level, 80%, had 7 or 8 switches. On any given trial, the 

precise number of switches was determined at random to prevent the sequences 

becoming predictable.   

 

Participants responded ‘odd’ or ‘even’ using the ‘f’ and ‘j’ keys (counterbalanced 

across participants). While the individual categorisations were self-paced, meaning 

the next digit did not appear on the screen until a response had been made to the 

current item, there was a time limit for completing the overall sequence. A trial was 

marked as ‘correct’ only if the sequence was finished within this limit and with no 

more than one wrong response. ‘Incorrect’ sequences were not rewarded. 

 

Importantly, this allowed us to standardise the difficulty across participants: by 

calibrating the allowed time based on performance during an earlier familiarisation 

phase, we ensured that all participants had similar success rates on the task. 
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Phases of the task  

Prior to embarking on the full task, participants progressed through several rounds 

of instructions and practice, followed by a longer familiarisation phase. This latter 

phase was important as it was used to calibrate the time limit for the sequences in 

the main phase of the task. It comprised 32 trials of just the odd/even 

categorisation task (i.e. without any offers of reward) – four trials of each of the 

eight possible numbers of switches, in a random order. In this phase there was no 

time limit, but participants were instructed to respond as quickly as possible while 

still trying to complete each sequence correctly.  

 

To progress through the familiarisation phase to the main task, participants had to 

achieve at least 50% correct responses on the most difficult 8-switch trials; if they 

failed more than 50% of these trials they were given one opportunity to repeat this 

stage; if they failed again they were excluded. 

 

For participants who passed the familiarisation phase, we calculated their time 

allowed for the main phase sequences as the median time to complete the hardest, 

8-switch trials plus 500ms. During piloting we observed that this provided a good 

balance between providing sufficient time pressure to elicit the effort effects while 

ensuring that the task was possible within the maximum completion time for all 

participants.   

 

Finally, participants completed the main phase of the task, which comprised a total 

of 80 trials – five trials of each of the 16 possible offer combinations, in a random 

order.  
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4.3.3.2 Questionnaire measures 

Following the NST, participants completed a number of questionnaires. In all cases, 

participants gave their responses by moving a horizontal slider (which defaulted to 

the centre).  

 

Figure 4.1. Number Switching Task trial structure. Participants chose 
whether or not to perform an effortful task depending on the points and 
effort level offered. If they accepted the offer, they were shown a random 
sequence of the digits 1-9 and had to indicate (by pressing the ‘f’ or ‘j’ keys) 
whether each of the digits was even or odd. Sequences with more frequent 
switching between odd and even were more effortful. To win the points on 
offer, participants had to categorise at least 8 of the 9 digits correctly and 
complete the sequence within the allowed time (which was calibrated to 
each individual). In the above figure, the ‘alternative outcomes’ show 
screens that participants saw if they passed an offer, or if they failed the 
trial owing to too many errors or timing out.  
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NASA Task Load Index. The NASA Task Load Index (Hart & Staveland, 1988), 

henceforth referred to as the ‘Subjective Task Load’, assesses subjective workload 

on six subscales: mental demand, physical demand, temporal demand, 

performance, effort and frustration. For each subscale and, in our case, for each 

level of effort, participants were asked to rate their experience of the task on a 21-

point scale from ‘very low’ to ‘very high’. The six subscales were presented in the 

same order as above, within which the questions about the different effort levels 

were randomised. We report participants’ scores on each subscale for each effort 

level separately. 

 

Cognitive Complaints Inventory. The Cognitive Complaints Inventory (Iverson & 

Lam, 2013) is a six-item questionnaire in which participants rate their problems 

with concentration, memory and thinking skills, on a four-point scale from 0 (not at 

all) to 3 (very much). We report total scores (where higher scores indicate more 

cognitive complaints). 

 

We appended a catch question (“Select ‘very much’ for this question”) to this 

questionnaire to identify participants who were not paying attention. We placed 

this at the end to avoid interfering with the psychometric properties of the 

questionnaire itself. 

 

Fatigue Severity Scale. The Fatigue Severity Scale (Krupp et al., 1989) is a nine-item 

questionnaire in which participants rate their experience of fatigue and the impact 

fatigue has on their daily activities, on a scale from 1 to 7. We report total scores 

(where higher scores indicate more fatigue). 

 

International Physical Activity Questionnaire Short Form. The International Physical 

Activity Questionnaire Short Form (IPAQ-SF; Lee et al., 2011) is a seven-item scale 

that measures self-assessed physical activity over the previous seven days. 

Participants are asked on how many days and on average for how long each day 

they spent engaged in vigorous activity, moderate activity, walking and sitting. 

These estimates are weighted by their estimated metabolic requirements and 
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summed to generate an overall score (termed ‘MET-minutes’, a way of expressing 

activity relative to a resting metabolic rate), as follows: 

• If necessary, bouts of activity are truncated at a maximum of three hours.  

• Walking MET-minutes per week = 3.3 * walking minutes * walking days 

• Moderate MET-minutes per week = 4 * moderate minutes * moderate days 

• Vigorous MET-minutes per week = 8 * vigorous minutes * vigorous days 

• Total MET-minutes per week = Walking Met-minutes + Moderate Met-

minutes + Vigorous Met-minutes 

 

Need for Cognition Scale (6-item version). The six-item Need for Cognition Scale 

(Coelho et al., 2018) measures the extent to which participants enjoy engaging in 

difficult cognitive activity. Participants rate each of six statements from 1 (not 

characteristic of themselves) to 5 (characteristic). We report participants’ total 

scores (where higher scores indicate greater enjoyment of cognitively demanding 

activity). 

 

We added another catch question to the end of this questionnaire.  

 

Temporal Experience of Pleasure Scale. The Temporal Experience of Pleasure Scale 

(TEPS; Gard et al., 2006) is an 18-item scale with two subscales: a 10-item 

anticipatory pleasure scale and an 8-item consummatory scale. Each item consists 

of a statement (e.g. “The smell of freshly cut grass is enjoyable to me”) which 

participants rate on a 6-point scale from ‘very false for me’ to ‘very true for me’. 

We report total scores (where higher scores indicate greater disposition to 

experience of pleasure or, equivalently, lower anhedonia). 

 

Zung Depression Scale. The Zung Depression Scale (Zung, 1965) is a 20-item 

questionnaire in which participants respond to a series of statements about how 

they might feel on a 4-point scale from ‘a little of the time’ to ‘most of the time’. 

We report total scores (where higher scores indicate more depressive symptoms). 
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4.3.4 Statistical Analyses 

4.3.4.1 Preregistered analyses 

The main dependent variable on the NST was the proportion of offers accepted for 

each combination of reward and effort level. We also recorded participants’ 

accuracy and completion times for the odd/even categorisation task – these were 

of course conditional on participants accepting the offer in the first place and, in 

the case of the completion times, completing the sequence within the time allowed 

and with no more than one mistake allowed. 

 

Our primary analysis was a multilevel (mixed effects) ANOVA. This was used 

because multilevel ANOVAs can accommodate unbalanced designs, which arise in 

this task because participants could choose to accept or reject trials at will, 

resulting in secondary measures (success rate and completion time) with different 

numbers of trials from each participant. These ANOVAs contained fixed effects of 

reward and effort and their interaction, and varying intercepts across participants. 

  

For analysis of the Subjective Task Load questionnaire, six multilevel ANOVAs were 

constructed, one for each of the constituent scales of the index, using a fixed effect 

of effort level and varying intercepts across subjects. 

 

Throughout these analyses, we further investigated any significant effects indicated 

by the ANOVAs using post hoc simple effects ANOVAs and paired-samples t-tests as 

appropriate. Note that, unlike the multilevel ANOVAs, the t-tests require complete 

cases. This results in differing degrees of freedom across analyses, as some 

participants had to be excluded from specific post hoc analyses of success rates or 

completion times if they had not completed any trials at a particular reward or 

effort level. 
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4.3.4.2 Exploratory analyses 

Computational Modelling 

We considered eight models (listed in Table 4.1), all variations on a logistic 

regression. The characteristic mathematical form of these models is provided in 

Equation 4.1: 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7,+,-./0$𝑟𝑒𝑤𝑎𝑟𝑑$#%"&
+ 𝛽/BB)#$,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&) 

(4.1) 

 

where 𝑦+,-./0$,$#%"& 	 ∈ {0,1} is the choice of a particular subject on a particular trial 

to accept or reject the challenge. The underlying probability of accepting an 

challenge, 𝑝+,-./0$,$#%"&, is then calculated as a logistic function of a linear 

combination of a number of parameters, typically including an intercept, 𝛼, and one 

or more effects of reward and effort, 𝛽#/6"#7  and 𝛽/BB)#$ respectively.  

 

 

 

Table 4.1. Specification of models fitted to the Number Switching Task.  

 Intercept Linear 

Reward 

Linear Effort Quadratic 

Effort 

1    (Fixed)      (Fixed)          (Fixed)      

2 (Varying)    

3  (Varying)      (Fixed)          (Fixed)      

4  (Varying)  (Varying)  (Varying)  

5      (Fixed)          (Fixed)          (Fixed)          (Fixed)     

6  (Varying)      (Fixed)          (Fixed)          (Fixed)     

7  (Varying)  (Varying)  (Varying)  (Varying) 

8  (Varying)  (Varying)   (Varying) 
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Equation 4.1 represents Model 4 – all of the other models can be constructed by 

modifying one or more components of this model. For example, here, the intercept 

and effects vary across subjects; however, as noted in Table 4.1, in some models 

these parameters were fixed instead, meaning all subjects took the same value.  

 

The subject-level parameters were all given hierarchical priors which were 

determined through a process of prior predictive checking. Details are given in the 

Appendix, Section 4.7. 

 

We standardised the values of the predictors (the reward and effort levels), for 

computational and arithmetical simplicity. Note that this affects the interpretation 

of absolute parameter values from the model. 

 

The models were fitted using Markov Chain Monte Carlo sampling in Stan (Stan 

Development Team, 2021). The model was run across four chains each with 1000 

iterations. Subsequent to fitting, we carried out the recommended standard 

diagnostics (Betancourt, 2018) and found no issues.  

 

Structural Equation Modelling 

We used confirmatory factor analysis (CFA) to fit several potential factor structures 

to the questionnaire data. We identified the best-fitting structure and inserted this 

into a structural equation model (SEM), with which we sought to predict the 

behavioural parameters estimated for each subject (intercept, reward and effort 

sensitivity) from their cognitive trait scores. 

 

4.3.4.3 Computing environment and packages 

Analyses were conducted in R version 3.5.3 (R Core Team, 2019). We used the R 

package ‘lme4’ (1.1-21; Bates et al., 2015) to fit the multilevel ANOVAs and ‘rstatix’ 

(0.6.0; Kassambara, 2020) to conduct the post hoc tests. Bayesian models were 

fitted in Stan using CmdStanR (0.3.0, Gabry & Češnovar, 2021). SEM was conducted 

in Lavaan (Rosseel, 2012). 
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4.4 Results 

4.4.1 Preregistered Analyses 

4.4.1.1 Number Switching Task 

4.4.1.1.1 Proportion of Offers Accepted 

The proportions of offers accepted at each level of reward and effort are plotted in 

Figure 4.2. These show a significant reward-by-effort interaction, F(1, 4347) = 30.8, 

p < .001, η2partial = .04, consistent with participants treating the effort level as an 

economic cost. Specifically, the value of a reward was progressively discounted as 

the effort required to obtain it increased, but this discounting was shallower when 

the reward offered was greater. Despite this flattening as reward increased, the 

effort effect was still significant at every reward level in post hoc ANOVAs (all  

ps < .001). The main effects of reward and effort were also both significant, 

F(1,4347) = 108, p < .001, and F(1,4347) = 84.4, p < .001 respectively. Full 

descriptive statistics are provided in Table S4.1. 

 

Figure 4.2. Number Switching Task: proportion of offers accepted. Plot 
shows the mean, standard error and distribution of the proportion of offers 
accepted for each combination of reward and effort level. There is a clear 
effort discounting effect which becomes shallower as the reward level 
increases. Plots show (left to right) mean, SE and distributions. 
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4.4.1.1.2 Success Rate 

The success rate for each level of reward and effort is plotted in Figure 4.3. The only 

statistically significant effect was that of reward, F(1, 4024) = 68.1, p < .001,  

η2partial = 0.08, with participants more likely to complete the sequence correctly as 

the offered reward increased (Table 4.2), consistent with higher rewards being 

more motivating. Post hoc t-tests indicated that this was driven primarily by the 

increase in success rates between the 3 and 6 point reward levels, t(272) = 3.01,  

p = .008, d = 0.18, while the differences between 6 and 9 points, and 9 and 12 

points did not achieve significance after Bonferonni-adjusting for multiple 

comparisons (ps = .10 and .07, and, ds = 0.13 and 0.14, respectively). Full 

descriptive statistics are provided in Table S4.2. 

 

The effort level had no significant effect on the success rate, F(1, 4024) = 2.18,  

p = .14, and the reward-by-effort interaction was also non-significant,  

F(1, 4024) = 0.380, p = .54. 

 

Importantly, the success rate varied relatively little across participants (overall 

mean = 0.90, SD = 0.11), suggesting the standardisation of difficulty had been 

successful. 

 

Table 4.2. Number Switching Task: Descriptive statistics for the proportion of 

trials completed successfully (across reward levels). 

P(Success) 

Reward (points) N Mean (SD) 

3 273 0.86 (0.18) 

6 273 0.89 (0.12) 

9 273 0.91 (0.10) 

12 273 0.92 (0.10) 

Note. To be marked as correct, sequences had to be completed within the time limit 

and with no more than one error. These data only include complete cases, i.e. where 

participants attempted at least one trial for each level of reward. 
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4.4.1.1.3 Completion Times 

Completion times, expressed as a proportion of each participant’s allowed 

maximum time, are plotted in Figure 4.4. Full descriptive statistics are provided in 

Table S4.3. There were significant main effects of both reward, F(1, 4014) = 10.1,  

p = .002, η2partial = 0.03, and effort, F(1, 4014) = 610, p < .001, η2partial = .52. The 

interaction effect was non-significant, F(1, 4014) = 0.56, p = .45. We further 

investigated the two main effects with three post hoc t-tests for each factor. The  

p-values reported are Bonferroni-adjusted for multiple comparisons.  

 

For the main effect of effort, we observed a non-linear pattern, with completion 

times lengthening progressively as the effort level increased between 20% and 60%, 

before decreasing again slightly for the 80% effort level (see descriptive statistics in 

Figure 4.3. Number Switching Task: proportion of trials completed 
successfully. There was a significant reward effect only, driven specifically 
by the increase between the 3 and 6 points levels. Plot shows the mean, 
standard error and distribution for each combination of reward and effort 
level. Trials were marked as ‘correct’ if they were completed within the 
allowed time, with no more than one error. Plots show (left to right) 
individual data points, mean±SE and distributions. 



 131 

Table 4.3). The contrasts between adjacent effort levels were all significant (20% vs 

40% effort: t(286) = 19.7, p < .001, d = 1.16; 40% vs 60% effort: t(286) = 7.07,  

p < .001, d = 0.42; and 60% vs 80% effort: t(286) = 8.88, p < .001, d = 0.52).  

 

For the main effect of reward, the descriptive statistics (see Table 4.3) suggested 

that completion times decreased slightly with increasing reward level, although the 

post hoc comparisons between adjacent reward levels were all non-significant 

following Bonferroni correction (3 vs 6 points: t(272) = 0.08, p = 1.0; 6 vs 9 points: 

t(272) = 1.11, p = .80; 9 vs 12 points: t(272) = 2.32, p = .06).  

 

 

 

 

 

 

 

Figure 4.4. Number Switching Task: completion time. Figure shows the 
mean, standard error and distribution of the completion times (expressed 
as a proportion of each participant’s allowed time) for each level of reward 
and effort level. Plots show (left to right) individual data points, mean±SE 
and distributions. 
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4.4.1.2 Subjective Task Load 

Participants’ ratings of the subjective demand of each effort level are shown in 

Figure 4.5, with each scale of the index plotted in a separate panel. Participants 

reported that they found each effort level successively more demanding, which was 

confirmed statistically (all ANOVAs indicated a significant effect of effort,  

ps < .0001). Post hoc t-tests of the differences between sequential levels of effort 

are reported in Table 4.4. These comparisons were all significant (after Bonferroni 

correction), except for one: the comparison between ratings of perceived 

performance on the 60% and 80% effort. 

Table 4.3. Number Switching Task: Descriptive statistics for proportional 

completion time (across reward and effort levels). 

Proportional Completion Time 

Reward (points) N Mean (SD) 

3 273 0.84 (0.06) 

6 273 0.84 (0.05) 

9 273 0.84 (0.05) 

12 273 0.83 (0.05) 

   

Effort Level   

20% 287 0.80 (0.07) 

40% 287 0.85 (0.06) 

60% 287 0.86 (0.05) 

80% 287 0.84 (0.05) 

Notes. Times are expressed as a proportion of each participant’s maximum allowed 

completion time.  

These data only include complete cases, i.e. where participants recorded at least one 

trial for each level of reward or points. 
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Figure 4.5. Subjective task load ratings for each effort level. Plots show (from 
left to right within each plot) the individual data points, the means and 
standard errors and the distributions of scores for each of the six scales of 
the index. 
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4.4.2 Exploratory Analyses 

4.4.2.1. Model Comparison 

We started by comparing the eight models using the Widely-Applicable Information 

Criterion (WAIC; Watanabe, 2010). WAIC estimates the out-of-sample predictive 

accuracy of a model, providing both a point estimate and standard error, enabling 

us to quantify uncertainty. 

 

Models 4, 7 and 8 performed substantially better than the other five models, 

suggesting there is a significant benefit of allowing the effects to vary across 

subjects (see Figure 4.6a). Examining these three models by themselves (Figure 

4.6b), we can also estimate with moderate confidence that models 4 and 7 would 

make better out-of-sample predictions than Model 8, which is 2.7 standard errors 

of difference worse. However, models 4 and 7 are probably too close to be 

separated on the basis of their predictions (the difference being just 1.5 standard 

Table 4.4. Subjective Task Load: Post hoc t-tests and standardised effect sizes.  

 Effort Level Comparisons 

 20% vs 40% 40% vs 60% 60% vs 80% 

 t p d t p d t p d 

Mental 

Demand 

10.2 < .001 0.60 10.1 < .001 0.59 5.65 < .001 0.33 

Physical 

Demand 

7.75 < .001 0.46 5.45 < .001 0.32 3.46 .002 0.20 

Temporal 

Demand 

4.50 < .001 0.26 6.26 < .001 0.37 7.15 < .001 0.42 

Performance 2.48 .04 0.15 4.02 < .001 0.24 1.96 0.15 0.12 

Effort 8.38 < .001 0.49 5.03 < .001 0.30 5.52 < .001 0.32 

Frustration 6.13 < .001 0.36 5.05 < .001 0.30 2.93 .01 0.17 

Note. P-values above are corrected for three multiple comparisons within each scale of the 

index. Degrees of freedom are 289 throughout. 
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errors). As a reminder, models 4 and 7 both contained a varying intercept and 

varying linear effects of reward and effort; in addition, Model 7 included a varying 

quadratic effect of effort. 

 

 

 

This similarity in WAIC values implies that the quadratic term in Model 7 yielded no 

improvement in fit that could be distinguished from overfitting. Indeed, the 

posterior parameter estimates for Model 7 (see Figure 4.7) show that the quadratic 

sensitivity parameter both overlaps with zero and is highly colinear with the linear 

parameter. Therefore we did not consider this model further. 

a) 

Figure 4.6. Differences in WAIC relative to the best performing model (Model 
4). Plotted above is (a) the performance of the entire set of models, and (b) 
the performance of just the three best scoring models by themselves. Model 
4, the best performing model, contained a varying intercept and varying 
linear effects of reward and effort; Model 7 contained the same plus a 
varying quadratic effect of effort as well. 

b) 
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Figure 4.7. Posterior distributions of the population-level parameters in 
models 4 and 7. Plotted are (a) the intercept parameters, and (b) the 
reward and effort sensitivity parameters. The vertical line indicates the 
mean of each distribution, and the shaded region the 66% quantile 
interval. The quadratic effort sensitivity parameter (Model 7: 𝜇C,/BB)#$3) 
substantially overlaps 0 and, additionally, there is a very large negative 
correlation between the samples of this and the model 7 linear effort 
parameter, r =  –0.92, p < .001, indicating substantial colinearity. See 
discussion in the paragraph above. 
 

a) 

b) 
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The posterior predictions of Model 4 are plotted in Figure 4.8. First, we see that the 

model predicts that the probability of accepting a challenge will decrease as a 

concave function of effort level and that this decline will be progressively shallower 

at higher levels of offered reward. This means that this model is able to reproduce 

not just the basic discounting of reward by effort, but also the specific shape of the 

discounting curves observed in the data. Second, the models also clearly show 

substantial uncertainty about the exact relationship between the probability of 

accepting a challenge and effort when it comes to predicting individual participant 

behaviour. In other words, the average population-level effect is clear but the 

model implies there is substantial variability between individuals.  

 

 

 

Figure 4.8. Posterior predictions for the model of the Number Switching Task. 
Plots show mean (black line) and posterior quantiles (95%, 80% and 50%) of the 
predicted probability of accepting an offer across each level of reward and 
effort. Also shown is the empirical data for comparison (red diamonds and 
dotted lines) Note that these are predictions for simulated new participants 
and therefore incorporate uncertainty not just about the average effect of the 
manipulations in the population, but also about the behaviour of individual 
participants. 
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Next, we examined the correlation between the participant-level effort sensitivity 

parameters and the probability of success on the task (see Figure 4.9). Importantly, 

this was not significantly different from zero, r(288) = 0.10, p = .09, suggesting 

effort sensitivity was not confounded by probability discounting. 

 

  

 

 

 

 

 

 

Figure 4.9. Relationship between the probability of success and effort 
sensitivity. The correlation was non-significant, implying that effort 
sensitivity is not confounded by probability discounting in this task. 
 
Note 1. Effort sensitivity is coded such that positive values indicate that the 
likelihood of accepting an offer decreases as effort level increases.  
Note 2. The extreme point on the left of the graph corresponds to a 
participant who accepted (and failed) only one trial overall. In a sensitivity 
analysis, removing this participant increased the p-value for the correlation 
from .09 to .14. 
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4.4.2.2 Structural Equation Modelling of the computational parameters and 

questionnaire measures 

The purpose of this final stage of our analysis was to explore any possible 

associations between the traits assessed by our questionnaires and the subject-

level parameters estimated in Model 4 above (viz. the intercept, reward and linear 

effort sensitivity). 

 

First, we used confirmatory factor analysis to compare several possible factor 

structures which were devised a priori. The four structures considered were:  

• One with a distinct latent factor for each questionnaire  

• Another in which the all questions mapped onto a single latent factor, 

equivalent to a ‘P’ factor in psychiatry (Caspi et al., 2013) 

• A structure in which they were grouped by broad cognitive domain 

• Another in which the questionnaires directly relevant to mental health 

symptoms were grouped together 

 

These are shown graphically in Figure 4.10a) – d) below.  

 

We compared the relative accuracy of the fit of each model using three metrics: 

overall log likelihood, Akaike’s Information Criterion and the Bayesian Information 

Criterion. The results are presented in Table 4.5 below. The ‘Full’ structure, with a 

distinct latent factor for each questionnaire, consistently fitted the data best across 

all three measures. 
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Figure 4.10. The four factor structures compared in the confirmatory factor 
analysis. (a) A full factor structure, with a distinct latent factor for each 
questionnaire. (b) A minimal factor structure, with just a single factor onto 
which all the questions loaded, corresponding to a ‘p’-like factor. (c) An 
intermediate structure in which questionnaires were grouped by broad 
cognitive domain. (d) Another intermediate structure, in which the 
questionnaires directly relevant to mental health symptoms were grouped 
together. 

a 

c 

b 

d 
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Table 4.5. Results of model comparison for the confirmatory factor analysis.  

Factor Structure Log Likelihood AIC BIC 

Full structure -27237 54756 55273 

MH symptoms 

grouped 

-27741 55740 56213 

Cognitive domain -27827 55912 56386 

‘P’-like structure -28281 56814 57277 

 

 

 

We then conducted an SEM, using this winning factor structure as the 

measurement model, to predict the subject-level intercept, reward and effort 

sensitivity parameters obtained from Model 4 of the Number Switching Task. We 

found there was a significant positive association between Need for Cognition and 

reward sensitivity (standardised 𝛽 = 0.21, p = .003). All other associations, however, 

were non-significant. Full results from the SEM are provided in Table S4.4. 

 

  



 142 

4.5 Discussion 

We have presented a new task, the NST, for measuring cognitive effort and 

demonstrated that it resolves one of the major shortcomings of existing measures, 

namely the confounding of effort by task difficulty. In our results, obtained from a 

large online sample, participants treated higher effort levels as more costly, despite 

being just as likely to win the offered reward. In other words, we were able to 

manipulate and measure cognitive effort without the problem of probability 

discounting. 

 

A related concern was that we need to be able to standardise the difficulty of the 

task, otherwise comparisons across participants (for example between patient 

groups and healthy controls), may not be valid. In the NST this is achieved by 

tailoring the time allowed for completion of each sequence to participants 

individually. Encouragingly, the success rates were very consistent across 

participants, suggesting the standardisation procedure was successful. 

 

The finding that completion times generally became longer as the effort level 

increased is consistent with these levels requiring more cognitive control (and 

therefore effort; Shenhav et al., 2017), but the small reduction in completion time 

at the highest level was unexpected. The most likely explanation is that half of the 

sequences at this level involved alternating on every digit (i.e. eight switches), 

which, even though participants could not be sure exactly how many switches they 

would be shown, may have permitted them to respond slightly faster. If so, this 

should be straightforward to address – future iterations of this task could use a ten- 

rather than nine-digit sequence, so that sequences which alternate on every digit 

are no longer possible. This would have the further advantage of requiring one digit 

to be shown twice, making it impossible for participants to work out which digits 

remain to be shown.  

 

The Subjective Task Load results show clearly that participants reported finding 

each level of effort progressively more demanding. Curiously, in post hoc tests the 
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only nonsignificant difference was on the performance subscale, between the two 

highest effort levels, which directly matches the behavioural result discussed 

above, that participants performed slightly faster at 80% than 60% effort. That 

participants were sensitive to this detail gives some reassurance that the Subjective 

Task Load results were accurate appraisals. 

 

The remainder of our analyses were exploratory in nature and aimed principally at 

demonstrating how this task can be used for individual differences research. The 

most parsimonious model according to WAIC included linear effects of reward and 

effort which varied across participants. However, we should be clear that this 

model is linear on a log-odds scale only, implying non-linear effort costs on the 

outcome scale, consistent with other work (see Ritz et al., 2021). The model also 

indicated there was substantial variability in effort sensitivity across participants, 

which will be beneficial for individual differences research. 

 

We used SEM to measure the association between several trait measures and the 

participant-level parameters from the behavioural model. The only significant 

association was between Need for Cognition, a construct representing participants’ 

enjoyment of cognitively demanding activity, and reward sensitivity, the extent to 

which participants’ choices changed in line with the offered reward. Possibly this is 

because participants who score higher on Need for Cognition pay more attention to 

the parameters of the task. While the lack of other associations was somewhat 

surprising, we emphasise that these analyses were exploratory, and it has been 

useful to demonstrate how this task can be applied to study symptoms of mental 

health conditions, in this case depression and anhedonia, even in a healthy 

population (in line with a dimensional view of psychiatry; see discussion in Husain & 

Roiser, 2017). Additionally, although the study was powered to detect reasonably 

small associations (r = 0.2) we could have missed weaker effects. 

 

We are optimistic about further opportunities to use the NST in clinical research, 

but clearly more validation will be needed to support this. In addition, more work 

could be done to design more sophisticated models; those presented in this paper 
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represent a starting point, from which natural extensions would be to explicitly 

model the correlations between the sensitivity parameters, or add a lapse 

component that acknowledges that on some trials participants may simply decide 

at random. Numerous other model variations can be devised and built, and would 

be interesting topics of study. 

 

Having devised this new measure of effort sensitivity, our next goal is to apply it to 

the issue of understanding the role of effort in Pavlovian bias. Specifically, we 

suggested in earlier chapters that the ability to overcome Pavlovian bias is 

dependent on exerting cognitive control, which in turn is limited by effort costs. We 

can now investigate this by testing the association between participants’ effort 

sensitivity, as assessed by the NST, and their Pavlovian bias on the Orthogonal 

Go/No-Go Task. We report results of such a study in the following Chapter 5. 

 

In summary, we have presented a new task measuring cognitive effort, which 

resolves a longstanding problem of conflating the effort demanded by a task with 

its difficulty. Not only have we been able to manipulate effort without changing the 

difficulty of the task, but we can additionally standardise the difficulty across 

participants by tailoring the time allowed according to performance at an individual 

level. This is the first cognitive effort task in which such standardisation can be 

achieved and means individual differences research can be carried out without 

concerns around confounding from difficulty or ability.    

 

  



 145 

4.6 Data and code availability 

Code to run the Number Switching Task is deposited in the Gorilla Open Materials 

Repository, https://app.gorilla.sc/openmaterials/328049. All data and analysis 

scripts are provided at the Open Science Foundation repository, 

https://doi.org/10.17605/OSF.IO/X34KN. 
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4.7 Appendix 

4.7.1 Full specification of the computational models 

 

Model 1. Fixed Intercept and Fixed Linear Effects of Reward and Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli(𝑝$#%"&) 

𝑝$#%"& = logistic(𝛼 +	𝛽#/6"#7𝑟𝑒𝑤𝑎𝑟𝑑$#%"& + 𝛽/BB)#$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&) 

𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝛽#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)  

𝛽/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

(S4.1) 

 

Model 2. Varying Intercept 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$A 

𝑝+,-./0$ = logistic(𝛼+,-./0$) 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

(S4.2) 

 

Model 3. Varying Intercept and Fixed Linear Effects of Reward and Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7𝑟𝑒𝑤𝑎𝑟𝑑$#%"& + 𝛽/BB)#$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&) 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)  

𝛽/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

(S4.3) 
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Model 4. Varying Intercept and Varying Linear Effects of Reward and Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7,+,-./0$𝑟𝑒𝑤𝑎𝑟𝑑$#%"&

+ 𝛽/BB)#$,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&) 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽#/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇#/6"#7 , 𝜎#/6"#7) 

𝜇#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎#/6"#7 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽/BB)#$,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇/BB)#$ , 𝜎/BB)#$) 

𝜇/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎/BB)#$	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

(S4.4) 

 

Model 5. Fixed Intercept, Fixed Linear Effect of Reward and Fixed Linear and 

Quadratic Effects of Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli(𝑝$#%"&) 

𝑝$#%"& = logistic(𝛼 +	𝛽#/6"#7𝑟𝑒𝑤𝑎𝑟𝑑$#%"& + 𝛽/BB)#$𝑒𝑓𝑓𝑜𝑟𝑡$#%"& 	

+ 𝛽/BB)#$3𝑒𝑓𝑓𝑜𝑟𝑡$#%"&
') 

𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝛽#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)  

𝛽/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝛽/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

(S4.5) 

 

 

 



 148 

Model 6. Varying Intercept, Fixed Linear Effect of Reward and Fixed Linear and 

Quadratic Effects of Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7𝑟𝑒𝑤𝑎𝑟𝑑$#%"& + 𝛽/BB)#$𝑒𝑓𝑓𝑜𝑟𝑡$#%"& 	

+ 𝛽/BB)#$3𝑒𝑓𝑓𝑜𝑟𝑡$#%"&
') 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)  

𝛽/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝛽/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

(S4.6) 

 

Model 7. Varying Intercept, Varying Linear Effect of Reward and Varying Linear and 

Quadratic Effects of Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7,+,-./0$𝑟𝑒𝑤𝑎𝑟𝑑$#%"&

+ 𝛽/BB)#$,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"& 	+ 𝛽/BB)#$3,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&
') 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽#/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇#/6"#7 , 𝜎#/6"#7) 

𝜇#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎#/6"#7 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽/BB)#$,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇/BB)#$ , 𝜎/BB)#$) 

𝜇/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎/BB)#$	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽/BB)#$3,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇/BB)#$3 , 𝜎/BB)#$3) 
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𝜇/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎/BB)#$3 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

(S4.7) 

 

Model 8. Varying Intercept, Varying Linear Effect of Reward and Varying Quadratic 

Effect of Effort 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7,+,-./0$𝑟𝑒𝑤𝑎𝑟𝑑$#%"&

+ 𝛽/BB)#$3,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&
') 

𝛼+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D) 

𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5) 

𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽#/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇#/6"#7 , 𝜎#/6"#7) 

𝜇#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎#/6"#7 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

𝛽/BB)#$3,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇/BB)#$3 , 𝜎/BB)#$3) 

𝜇/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝜎/BB)#$3 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

(S4.8) 

 

 

4.7.2. Prior Predictive Checks 

Below are plotted the distributions of all of the parameters used in the eight 

models, which are expressed and plotted on the log-odds scale. Additionally we 

include plots of the prior predictive distributions for the probability of accepting an 

offer for an individual subject, 𝑝+,-./0$. These are on the probability scale. Where 

the plots show simulated, rather than analytical, distributions, these represent 

1000 simulations with 100 hypothetical participants in each. In all cases, the shaded 

distributions are 66%, 95% and 100% quantiles. 
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Priors for the intercepts 

Shown below are the prior distributions for the two types of intercept parameters, 

fixed (Figure S4.1) and varying (Figure S4.2) intercepts. In both cases we see that 

the priors chosen represent conservative predictions about the data we would 

expect to observe. Most importantly, a participant’s probability of accepting an 

offer, 𝑝+,-./0$, is constrained to be between 0 and 1. Within that range however 

the prior density is distributed fairly uniformly, save that it drops off below about 

0.2 and above about 0.8. Overall these priors encode beliefs about participants’ 

average acceptance rates that slightly downweight the likelihood of observing the 

most extreme values but otherwise are fairly agnostic. 

 

 

 

Figure S4.1. Prior predictions for the fixed intercept parameter (featured in 
models 1 and 5), with distribution 𝛼	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5).  
(a) shows the analytical distribution of the intercept 𝛼 itself, whilst (b) shows 
the implied  prior predictions for the probability of accepting an offer for an 
individual subject. 
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Priors for the reward/effort effects 

Shown below are the prior distributions for the reward/effort sensitivity 

parameters, for the fixed linear (Figure S4.3) and varying linear (Figure S4.4) cases 

and for the fixed and varying quadratic effort sensitivity parameter (Figure S4.5).  

 

The most important plot for interpreting these priors is in the bottom right of each 

box, labelled b (or d in the case of Figure S4.4). This shows the prior on the effect of 

the reward/effort manipulation on the probability scale. Specifically, this is the 

predicted change in a participant’s probability of accepting the offer when one of 

the manipulations is changed by one level. For example, moving from 3 to 6 points 

(or 6 to 9 points, etc.), while effort is kept constant, or vice versa moving from 80% 

to 60% effort (or 60% to 40% effort, etc.) while reward is kept constant.  

 

Figure S4.2. Prior predictions for the varying intercept parameters (featured 
in models 2, 3, 4, 6, 7 and 8), with distributions 	𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5), 
𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) and 𝛼+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D). 
(a) and (b) show the analytical distributions of, respectively, the population 
level average intercept and the standard deviation of this average; (c) shows 
the distribution of the (subject level) intercepts themselves; and (d) shows 
the implied prior predictions for the probability of accepting an offer for an 
individual subject.  
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In all cases the priors chosen encode conservative beliefs that the effects, if 

present, are expected to be approximately in the range 0 – 0.25, within which, 

because of the rightward skew, smaller effects are considered more likely than 

larger ones.  

 

 

 

 

 

 

 

Figure S4.3. Prior predictions for the fixed linear reward and effort sensitivity 
parameters (featured in models 1, 3, 5 and 6), with distribution 
𝛽	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1).  
(a) shows the analytical distribution of the sensitivity 𝛽 itself, whilst (b) shows 
the implied predictions for the change in probability of accepting an offer as 
the reward or effort changes by one level (e.g. from 3 to 6 points, or 80% to 
60% effort etc.)  
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Figure S4.4. Prior predictions for the varying linear reward and effort 
sensitivity parameters (featured in models 4, 7 and 8), with distributions	
𝜇C 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1),	𝜎C	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2)	and	𝛽+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇C	, 𝜎C). 
(a) and (b) show the analytical distributions of, respectively, the population 
level average sensitivity and the standard deviation of this average; (c) shows 
the distribution of the (subject level) sensitivity parameters themselves; and 
(d) shows the implied predictions for the change in probability of accepting an 
offer as the reward or effort changes by one level (e.g. from 3 to 6 points, or 
80% to 60% effort etc.)  
 

Figure S4.5. Prior predictions for the quadratic effort sensitivity parameters 
with distributions 𝛽/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)	(fixed	effect	in	models	5	and	6)	
and	𝜇/BB)#$3 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1),	𝜎/BB)#$3 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2)		and	
𝛽/BB)#$3 ,+,-./0$ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇/BB)#$3 	, 𝜎/BB)#$3)	(varying	effects	in	models	7	
and	8).	
The	distributions	of	the	sensitivity	parameters	themselves	are	the	same	as	
for	the	linear	parameters	plotted	above,	in	Figure	S3(a)	for	the	fixed	effect,	
and	in	Figure	S4(a,	b	and	c)	for	the	varying	effects.	Below	we	plot	the	
implied predictions for the change in probability of accepting an offer as the 
required effort changes by one level (e.g. from 80% to 60% effort etc.), for (a) a 
fixed parameter, and (b) varying parameters. 
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4.7.3. Supplementary results 

 
Table S4.1. Number Switching Task: Proportion of offers accepted.  

P(accept) 

Reward (points) N Mean (SD) 

3 290 0.64 (0.37) 

6 290 0.84 (0.27) 

9 290 0.93 (0.19) 

12 290 0.97 (0.12) 

   

Effort level   

20% 290 0.88 (0.18) 

40% 290 0.86 (0.19) 

60% 290 0.83 (0.21) 

80% 290 0.80 (0.25) 

   

Reward: Effort   

3: 20% 290 0.72 (0.38) 

3: 40% 290 0.66 (0.39) 

3: 60% 290 0.61 (0.42) 

3: 80% 290 0.58 (0.43) 

6: 20% 290 0.89 (0.25) 

6: 40% 290 0.86 (0.27) 

6: 60% 290 0.83 (0.31) 

6: 80% 290 0.77 (0.35) 

9: 20% 290 0.95 (0.17) 

9: 40% 290 0.94 (0.19) 

9: 60% 290 0.92 (0.22) 

9: 80% 290 0.89 (0.26) 

12: 20% 290 0.97 (0.13) 

12: 40% 290 0.98 (0.11) 
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12: 60% 290 0.96 (0.14) 

12: 80% 290 0.95 (0.17) 

 

 

Table S4.2. Number Switching Task: Proportion of trials completed successfully.  

P(success) 

Reward (points) N Mean (SD) 

3 273 0.86 (0.18) 

6 287 0.89 (0.13) 

9 289 0.91 (0.10) 

12 289 0.92 (0.10) 

   

Effort level   

20% 289 0.92 (0.10) 

40% 288 0.88 (0.12) 

60% 289 0.88 (0.15) 

80% 287 0.92 (0.12) 

   

Reward: Effort   

3: 20% 255 0.90 (0.20) 

3: 40% 247 0.84 (0.26) 

3: 60% 227 0.84 (0.25) 

3: 80% 218 0.87 (0.24) 

6: 20% 280 0.91 (0.16) 

6: 40% 278 0.88 (0.19) 

6: 60% 271 0.86 (0.21) 

6: 80% 263 0.93 (0.17) 

9: 20% 287 0.94 (0.13) 

9: 40% 285 0.88 (0.17) 

9: 60% 281 0.89 (0.18) 

9: 80% 277 0.93 (0.14) 
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12: 20% 288 0.94 (0.11) 

12: 40% 288 0.90 (0.16) 

12: 60% 287 0.91 (0.17) 

12: 80% 285 0.93 (0.13) 

 

 

Table S4.3. Number Switching Task: Completion time.  

Proportional completion time 

Reward (points) N Mean (SD) 

3 273 0.84 (0.06) 

6 286 0.84 (0.05) 

9 289 0.84 (0.05) 

12 289 0.83 (0.05) 

   

Effort level   

20% 289 0.80 (0.07) 

40% 288 0.85 (0.06) 

60% 288 0.86 (0.05) 

80% 287 0.84 (0.05) 

   

Reward: Effort   

3: 20% 255 0.80 (0.08) 

3: 40% 247 0.85 (0.07) 

3: 60% 225 0.86 (0.06) 

3: 80% 216 0.84 (0.06) 

6: 20% 280 0.80 (0.07) 

6: 40% 278 0.85 (0.06) 

6: 60% 268 0.86 (0.06) 

6: 80% 263 0.85 (0.06) 

9: 20% 286 0.80 (0.07) 

9: 40% 285 0.85 (0.06) 
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9: 60% 278 0.86 (0.05) 

9: 80% 277 0.84 (0.05) 

12: 20% 288 0.80 (0.07) 

12: 40% 288 0.84 (0.06) 

12: 60% 287 0.85 (0.06) 

12: 80% 285 0.84 (0.06) 

 

 

Table S4.4. Results of the structural equation model.  

Path 
Standardised 

Coefficient 
z-score p 

Intercept à     

⁃ Age 0.049 0.808 .42 

⁃ Education -0.105 -1.727 .08 

⁃ Cognitive Symptoms -0.004 -0.038 .97 

⁃ Fatigue Symptoms -0.106 -1.269 .20 

⁃ Physical Activity 0.007 0.105 .92 

⁃ Need for Cognition  -0.058 -0.838 .40 

⁃ Experience of Pleasure 0.126 1.634 .10 

⁃ Depression Symptoms 0.058 0.507 .61 

    

Reward sensitivity à    

⁃ Age -0.026 -0.444 .66 

⁃ Education 0.113 1.900 .06 

⁃ Cognitive Symptoms 0.117 1.135 .26 

⁃ Fatigue Symptoms -0.047 -0.576 .57 

⁃ Physical Activity 0.138 1.826 .07 

⁃ Need for Cognition  0.210 3.001 .003** 

⁃ Experience of Pleasure -0.149 -1.948 .05 

⁃ Depression Symptoms 0.004 0.039 .97 
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Effort sensitivity à    

⁃ Age –0.025 0.411 .68 

⁃ Education 0.070 -1.154 .25 

⁃ Cognitive Symptoms 0.019 -0.184 .85 

⁃ Fatigue Symptoms 0.062 -0.762 .45 

⁃ Physical Activity 0.025 -0.358 .72 

⁃ Need for Cognition  –0.128 1.840 .07 

⁃ Experience of Pleasure 0.071 -0.946 .34 

⁃ Depression Symptoms 0.079 -0.701 .48 
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Chapter 5. Does Cognitive Effort Explain Differences  

In Control Over Pavlovian Bias? 

 
5.1 Abstract 

Effort is a key factor in cognitive performance generally, and in particular in the 

ability to engage in careful, controlled processing. One example where control, and 

therefore effort, is required is in overcoming Pavlovian biases (fixed responses that 

promote approach towards reward and avoidance of punishments). In Chapters 2 

and 3 of this thesis we showed that these biases are modifiable, supporting the 

view that the Pavlovian system is subject to control, but to make this connection 

stronger we want also to test whether the strength of Pavlovian biases is 

dependent on effort. If so this would allow us to situate Pavlovian bias within the 

framework of effort-based decision-making, describing the expression of Pavlovian 

biases as the product of a trade-off between the incentives for accurate responding 

and the costs of exerting control. In the present study we therefore investigated 

whether there was any association between the strength of participants’ Pavlovian 

biases, as assessed by the Orthogonal Go/No-Go task, and their sensitivity to 

cognitive effort, measured on the Number Switching Task. The results were 

however somewhat equivocal: there was a significant correlation in our model-

based analyses, but also some issues with model fit that suggest further validation 

work is likely to be required. In secondary, exploratory analyses we also found that 

there was a more reliable significant correlation between cognitive effort sensitivity 

and depression and anxiety symptoms, supporting hypotheses based in the physical 

effort literature that suggest links between effort and these conditions. 
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5.2 Introduction 

The term cognitive effort refers to the proportion of our cognitive capacity that we 

choose to devote to a cognitive task. In everyday life we are all familiar with the 

sense that we can ‘try’ more or less hard at what we do and that this then 

influences the accuracy of performance we achieve (Shenhav et al., 2017, define 

effort as the “mediator” between capacity and performance). The reason we do not 

always exert maximal effort is because effort is accompanied by a subjective, 

aversive sensation believed to reflect the cost of deploying cognitive resources. 

Effort, and sensitivity to these effort costs in particular, is therefore an important 

factor determining cognitive performance and the ability to exert cognitive control 

in particular (Shenhav et al., 2013, 2017).   

 

An example of this is control over Pavlovian biases. Briefly, Pavlovian biases are 

fixed responses to stimuli that predict reward and punishment, specifically 

promoting the invigoration of action when rewards are anticipated (‘approach 

bias’) and the inhibition of action when punishments are predicted (‘avoidance 

bias’; Dayan & Balleine, 2002; Dayan et al., 2006). Clearly this can lead to behaviour 

that is maladaptive in certain circumstances. For example, impulsive behaviour 

resulting from the approach bias may mean one foregoes a larger reward that 

would have been available in the future; likewise, avoidance of stimuli that precede 

a negative event could mean that one misses the opportunity to intervene to 

prevent it from happening. We suggested in Chapters 2 and 3 that cognitive control 

may be capable of downweighting Pavlovian biases when they are likely to be 

inappropriate, in order to favour other responses that will lead to better outcomes. 

At the same time, however, exerting control is dependent on effort. This suggests 

that the strength of Pavlovian biases may depend on the extent to which people are 

willing to exert effort to control them. If this could be demonstrated empirically, it 

would significantly improve our understanding not just of the mechanism 

underlying the expression of Pavlovian biases, but also of the reason for differences 

between people in the strength of their biases.  
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For example, anxiety and depression have previously been found to be associated 

with enhanced Pavlovian avoidance biases (Mkrtchian, Aylward, et al., 2017, and 

Nord et al., 2018 respectively). Separately both conditions have also been linked to 

differences in effort-based decision making (see e.g. Grahek et al., 2019; Robinson 

et al., 2013; Valton et al., 2018). Hence, it is plausible that avoidance biases in 

anxiety and depression may to some extent be attributable to enhanced sensitivity 

to cognitive effort costs (Dayan & Huys, 2008).  

 

In this study we therefore aimed to test the idea that individual differences in the 

strength of Pavlovian biases may be related to differences in willingness to exert 

effort. Thanks to the cognitive effort task we developed previously (the Number 

Switching Task, NST; see Chapter 4), this is now something we can quantify 

explicitly, using a computational model that estimates effort sensitivity (and reward 

and intercept) parameters for each participant. Importantly, this is the first 

cognitive effort task in which the difficulty can be standardised, making 

comparisons between individuals much easier.  

 

Alongside our cognitive effort task, we measured the strength of participants’ 

Pavlovian biases based on their performance on the Orthogonal Go/No-Go Task 

(Guitart-Masip et al., 2011), which was used previously in Chapters 2 and 3. In this 

task, the required action and the outcome valence are manipulated orthogonally to 

give four distinct trial types, in two of which the Pavlovian and instrumental 

systems are aligned and in the other two they are in conflict (see Table 5.1).  

 

 
Table 5.1. The four trial types of the Orthogonal Go/No-Go Task. Squares 
shaded dark are those for which the Pavlovian and instrumental systems 
produce conflicting responses  

 Reward Punishment 
Go Go to Win Reward Go to Avoid Punishment 

No-Go No-Go to Win Reward No-Go to Avoid 
Punishment 
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This task allows us to isolate and measure the Pavlovian biases independently of 

other factors, such as differing sensitivity to reward and punishment. Our primary 

hypothesis in this study was that we would see a significant correlation between 

effort sensitivity on the Number Switching Task and the strength of Pavlovian biases 

on the Go/No-Go Task. 

 

In addition we also wanted to test more explicitly the suggestion above that there 

may be a relationship between both Pavlovian biases and effort sensitivity and 

anxiety and depression symptoms (Dayan & Huys, 2008; Husain & Roiser, 2017). 

We therefore examined the associations between cognitive effort, Pavlovian bias 

and two self-report symptom scales, the Zung Depression Scale (Zung, 1965) and 

the State-Trait Anxiety Scale (Spielberger et al., 1983). 
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5.3 Methods 

5.3.1 Preregistration 

This study was preregistered on the Open Science Framework 

(https://osf.io/khws9/?view_only=b0b3c8e58d3d4b4280a7d7b4b0b7f11e). Note 

that the method below departs from the preregistration in two ways: we added 

another exclusion criterion, to remove participants who frequently responded on 

the Go/No-Go task with keys that were not in the response set (see Section 

5.3.3.1); and we modelled the Number Switching Task and the Go/No-Go Task with 

just the winning models from Chapters 3 and 4 (i.e. rather than doing a full model 

comparison again) to ensure that the modelling results would be directly 

comparable across all chapters. 

 

5.3.2 Participants 

Participants were recruited through the online platform Prolific. The study was 

advertised only to participants who met the following inclusion criteria: aged 18-60, 

fluent in English, no history of psychiatric or neurological disorders, and did not 

take part in the studies reported in Chapters 3 and 4 in this thesis. Participants also 

had to use a computer – smartphones or tablets were not allowed. 

 

In our preregistration we stated that a minimally interesting effect size for the 

correlation between the effort sensitivity and Pavlovian bias measures was r = 0.15. 

This is conventionally regarded as a small effect—it implies that effort sensitivity 

explains only 2.25% of the variance in Pavlovian bias—so we judged that if the true 

effect was in fact smaller than this, it would not be especially meaningful or useful. 

We then computed, using 90% power and 𝛼 = 5%, a minimum required sample size 

of 571 participants, which we increased to 625 participants to allow for attrition 

and exclusions. Ultimately 45 participants were excluded, leaving 580 whose data 

was included in the final analysis. A detailed breakdown of the reasons for exclusion 

is given in Section 5.3.3.1 below. 
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5.3.3 Procedure 

The entire study was completed online. Participants were recruited on Prolific, and 

then redirected to Gorilla, where the study itself was hosted. At the end of the 

study they were redirected back to Prolific again via a unique link, which allowed us 

to verify that they had indeed completed all of the tasks. 

 

Participants completed two behavioural tasks, the online version of the Orthogonal 

Go/No-Go Task (Guitart-Masip et al., 2011) and the Number Switching Task. These 

tasks were as described in previous chapters (Chapter 3 Section 3.3.4.1 and Chapter 

4 Section 4.3.3.1 respectively), except that the Go/No-Go Task now comprised 160 

trials in the main phase, rather than 80. The order in which participants did these 

two tasks was counterbalanced. Following the tasks, participants then completed 

two self-report symptom scales, the Zung Depression Scale (Zung, 1965; described 

in Chapter 4, Section 4.3.3.2) and the State-Trait Anxiety Inventory (Spielberger et 

al., 1983; described in Chapter 2, Section 2.3.4.5).  

 

5.3.3.1 Participant exclusions 

A detailed schedule of the participants excluded at each stage and the reasons for 

exclusion, is given below in Table 5.2. Note that participants who were excluded 

were removed from the entire study, i.e. not just from the individual task. 

 

For the Go/No-Go Task, we set out three exclusion criteria in our preregistration. 

Participants were excluded if: 

• they failed the comprehension test 5 times 

• their accuracy on the go-to-win trials during the practice phase was less 

than 65% 

• less than 65% of their go responses matched the same side as the target 

circle 

 

We also excluded participants for two reasons not included in the preregistration. 

As in Chapter 3, we had to exclude some participants who made a large number of 
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responses (>15%) using keys that were not in the response set (not S or L). We also 

had to exclude participants who refreshed the webpage partway through and 

therefore repeated part of the task.  

 

For the Number Switching Task, we set out one exclusion criterion in our 

preregistration. Participants were excluded if they failed the familiarisation phase 

(completed >50% of the highest effort level trials incorrectly) twice. Again, we also 

had to exclude some participants who refreshed the webpage partway through and 

therefore repeated the task. 

 

Finally, for the STAI we included a catch question (“Press the very much so button”) 

at the end of the questionnaire to detect inattentive participants, but without 

interfering with the questionnaire’s psychometrics. Participants who failed this 

question were excluded. This was also noted in the preregistration. 

 

 

Table 5.2. Schedule of exclusions. GNG=Go/No-Go Task, NST=Number 

Switching Task. All criteria were preregistered except one, the criterion for 

the Go/No-Go task: ‘wrong key responses > 15%’. See main text for details. 

Task Reason 
N 

excluded 

N 

remaining 
    

Go/No-Go 

  
625 

GNG: go to win reward accuracy < 65% 11 614 

GNG: left/right accuracy < 65% 9 605 

GNG: refreshed during main phase 2 603 

GNG: wrong key responses >15% 6 597 

Number 

Switching 

Task 

NST: refreshed during main phase 

NST: failed training phase 

8 

3 

589 

586 

STAI STAI: failed attention check  6 580 
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5.3.4 Statistical analyses 

5.3.4.1. Model agnostic analyses 

For both the Go/No-Go Task and the Number Switching Task, we started by carrying 

out the same model agnostic analyses as in Chapters 3 and 4. For the Go/No-Go 

Task, we ran a 2 X 2 repeated-measures ANOVA with effects of action and outcome 

valence on accuracy. For the Number Switching Task, we carried out three 

multilevel (mixed effects) ANOVAs, with varying intercepts across participants and 

fixed effects of reward, effort and their interaction. These three ANOVAs examined 

the proportion of offers accepted, the success rates and the proportional 

completion times; of these, the ANOVA on the success rates was one that we had 

specifically preregistered and had predicted would not show a significant effort 

effect.  

 

We followed any significant effects on the ANOVAs with post hoc simple effects 

ANOVAs and t-tests where appropriate. Note that the t-tests require complete 

cases and therefore, for the NST, some participants who had not completed any 

trials at a particular reward or effort level had to be excluded from the post hoc 

analyses of success rates or completion times.  

 

Subsequently we then tested our primary hypothesis for this study, which was that 

there would be a significant correlation between the strength of Pavlovian bias and 

effort sensitivity. To test this, we first carried out a model agnostic analysis. For 

each participant, we computed the model agnostic measure of Pavlovian bias (see 

Chapter 3) by summing the accuracy in the two high Pavlovian-instrumental conflict 

trial types (go to avoid punishment and no-go to win reward) minus the sum of the 

two low conflict trial types (go to win reward and no-go to avoid punishment). 

Likewise we computed a model agnostic measure of effort sensitivity (not reported 

previously), which was the difference in the probability of accepting an offer 

between the highest (80%) and lowest (20%) effort levels, for each participant. We 

then calculated the Pearson correlation coefficient between the two, which we 

predicted would be significant.  
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We also examined the correlations between the model agnostic Pavlovian bias and 

effort sensitivity measures and our self-report symptom scales (the Zung 

Depression Scale and the State-Trait Anxiety Scale). 

 

5.3.4.2 Computational modelling 

To test our primary hypothesis about the association between Pavlovian biases and 

effort sensitivity, we also examined the parameters from computational modelling 

of the two tasks. We fitted the winning models from Chapters 3 and 4 to the data 

from the tasks. This was a slight departure from the preregistration, in which we 

had said we would repeat the model comparison process – instead, we decided to 

use the same models so that the analysis reported in this chapter would be directly 

comparable with those in the earlier chapters.  

 

For the Go/No-Go Task this comprised the Base model plus two 

(reward/punishment) learning rates. The model is set out in Equations 5.1–5.5 

below, in which 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒$ denotes the response at time 𝑡 (go or no-go), 𝜉+,-./0$ is 

the amount of noise in participants’ behaviour,	𝑞#/+!)*+/(𝑠$) is the instrumental 

value of making a go or no-go response when stimulus 𝑠 is presented at time 𝑡, and 

𝑣𝑎𝑙𝑢𝑒(𝑠$) is the associative (Pavlovian) value of the stimulus at time 𝑡.  

 

Go/No-Go Model: Response 

 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒$ = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝐺𝑜$) 

𝑝𝐺𝑜$ = (1 − 𝜉+,-./0$) × 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐@𝑤(𝑠$)A +	𝜉+,-./0$ ×
1
2																						 

𝑤(𝑠$) = 𝑞()(𝑠$) − 𝑞*)()(𝑠$) 	+ 	𝐺𝑜𝐵𝑖𝑎𝑠+,-./0$

+	𝑃𝑎𝑣𝑏𝑖𝑎𝑠4"&/*0/,+,-./0$ × 𝑣𝑎𝑙𝑢𝑒(𝑠$) 

(5.1) 
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Go/No-Go Model: Instrumental Learning 

 

𝑞#/+!)*+/,$23(𝑠$)

= 𝑞#/+!)*+/,$(𝑠$)

+	𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$ 	× (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦4"&/*0/,+,-./0$
× 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 −	𝑞#/+!)*+/,$(𝑠$)) 

(5.2) 

 

Go/No-Go Model: Pavlovian Learning 

 

𝑣𝑎𝑙𝑢𝑒$23(𝑠$) = 𝑣𝑎𝑙𝑢𝑒$(𝑠$)

+ 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$ × (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦4"&/*0/,+,-./0$

× 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 − 𝑣𝑎𝑙𝑢𝑒$(𝑠$)) 

 (5.3) 

 

Go/No-Go Model:  Link Functions 

 

															𝜉+,-./0$ = Φ@𝑟𝑎𝑤_𝜉+,-./0$A 

															𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$ = Φ@𝑟𝑎𝑤_𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$A 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦5/6"#7,+,-./0$ = 𝑒#"6_9/*+%$%4%$:!"#$%&,()*+",-  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦;,*%+<=/*$,+,-./0$ = 𝑒#"6_9/*+%$%4%$:.)/0(12"/-,()*+",- 	 

(5.4) 

 

Go/No-Go Model:  Priors 

 

										𝐺𝑜𝐵𝑖𝑎𝑠+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇>)?%"+, 𝜎>)?%"+)				 

										𝑃𝑎𝑣𝐵𝑖𝑎𝑠+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇;"4?%"+, 𝜎;"4?%"+)			 

𝑟𝑎𝑤_𝜉+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇@ , 𝜎@A										 

𝑟𝑎𝑤_𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒4"&/*0/,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇A5 , 𝜎A5)																																													 

	𝑟𝑎𝑤_𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦5/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇5/6"#7_+/*+, 𝜎5/6"#7_+/*+A							 

𝑟𝑎𝑤_𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦;,*%+<=/*$,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇;,*%+<=/*$_+/*+, 𝜎;,*%+<=/*$_+/*+) 
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																					𝜇>)?%"+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1.5) 																					𝜎()-%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.8) 

																𝜇;"4?%"+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,2) 																			𝜎;"4?%"+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(0.5) 

																																					𝜇@ 	~	𝑁𝑜𝑟𝑚𝑎𝑙(−0.5,0.5) 																											𝜎@ 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

																										𝜇A5 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1)		 																									𝜎A5 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

													𝜇5/6"#7_9/*+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3)		 								𝜎5/6"#7_9/*+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

				𝜇;,*%+<=/*$_9/*+	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3) 	𝜎;,*%+<=/*$_9/*+	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 

(5.5) 

 

Number Switching Task model 

For the Number Switching Task we fitted Model 4 from our previous analysis, which 

contained varying intercepts and varying linear effects of reward and effort. This 

model is set out in Equation 5.6 below, where 𝑦+,-./0$,$#%"& 	 ∈ {0,1} is the choice of 

a particular subject on a particular trial to accept or reject the challenge, 𝛼+,-./0$ is 

a participant-level intercept parameter and 𝛽#/6"#7,+,-./0$ and 𝛽/BB)#$,+,-./0$ are 

participant-level reward and effort sensitivities respectively. 

 

 

𝑌+,-./0$,$#%"& 	~	Bernoulli@𝑝+,-./0$,$#%"&A 

𝑝+,-./0$,$#%"& = logistic(𝛼+,-./0$ +	𝛽#/6"#7,+,-./0$𝑟𝑒𝑤𝑎𝑟𝑑$#%"&

+ 𝛽/BB)#$,+,-./0$𝑒𝑓𝑓𝑜𝑟𝑡$#%"&) 

𝛼	+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇D , 𝜎D)									 

		𝜇D 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, 1.5)	 

			𝜎D 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2) 

	𝛽#/6"#7,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇#/6"#7 , 𝜎#/6"#7)	 

	𝜇#/6"#7 	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1)													 

	𝜎#/6"#7 	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2)							 

𝛽/BB)#$,+,-./0$	~	𝑁𝑜𝑟𝑚𝑎𝑙@𝜇/BB)#$ , 𝜎/BB)#$A	 

𝜇/BB)#$	~	𝑁𝑜𝑟𝑚𝑎𝑙(0,1)											 

𝜎/BB)#$	~	𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(2)					 

(5.6) 
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We then continued with the rest of our preregistered analysis: after initial 

diagnostic checks, examination of the models and their posterior predictions, we 

extracted the participant-level Pavlovian bias parameters from the Go/No-Go 

model, and the intercept, effort sensitivity and reward sensitivity parameters from 

the NST model, and computed the mean for each participant. Finally we analysed 

the Pearson correlations between the parameters from the two models. We had 

specifically preregistered only our hypothesis that there would be a significant 

association between the Pavlovian biases and effort sensitivity; the other 

correlations (involving the NST intercept and reward sensitivity) were therefore 

investigated on an exploratory basis.  

    

The final preregistered hypothesis involved examining the associations between the 

Pavlovian bias parameters from the model of the Go/No-Go task and the two 

symptom scales (Zung Depression Scale and State-Trait Anxiety Scale). We 

predicted that there would be significant correlations between Pavlovian biases and 

symptom severity. We also looked at the associations between the other model 

parameters for both tasks and the symptom scales on an exploratory basis. 
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5.4 Results 

5.4.1 Number Switching Task 

5.4.1.1 Model agnostic analyses 

The proportion of offers accepted at each level of reward and effort are plotted in 

Figure 5.1. As expected, these show a significant reward-by-effort interaction,  

F(9, 5211) = 24.5, p < .001, 𝜂'! = 0.04, with participants progressively discounting 

the value of an offer as the effort level increased, but this discounting becoming 

progressively shallower as the reward level increased. Despite this flattening, the 

effort effect was still significant at every reward level in post hoc ANOVAs (all  

ps < .001). The main effects of reward and effort were also both significant,  

F(3,1737) = 343, p < .001, 𝜂'! = 0.37, and F(3,1737) = 100, p < .001,  

𝜂'! = 0.15 respectively. Full descriptive statistics are presented in Table S5.1. 

 

 

Figure 5.1. Number Switching Task: proportion of offers accepted. There is a 
clear effort discounting effect which becomes shallower as the reward level 
increases, replicating the effect seen in Chapter 4. Plot includes the mean, 
standard error and distribution of the proportion of offers accepted for each 
combination of reward and effort level.  
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Next we carried out an ANOVA on the success rates. We found there was a 

significant reward effect, F(1, 8090) = 5.23, p = .02, 𝜂'! = 0.02, with sequential post 

hoc t-tests on the complete cases data showing a significant increase in success 

rates from 3 points to 6 points, t(536) = 3.01, p = .008, d = 0.13, but not between  

6 and 9, or 9 and 12 points (ps = 0.11 and 1 respectively; Bonferroni-adjusted for 

multiple comparisons). Descriptive statistics for this effect are given in Table 5.3.  

 

Both the main effect of effort and the interaction between reward and effort were, 

however, non-significant, p = .30 and .66 respectively. This was in line with our 

preregistered hypothesis that the effort manipulation would not affect the rates of 

success on this task. These results are plotted in Figure 5.2 and full descriptive 

statistics are given in Table S5.2. 

 

 

 

 

 

Table 5.3. Number Switching Task: Descriptive statistics for the proportion of 

trials completed successfully (across reward levels). Note these data only 

include complete cases. 

P(Success) 

Reward (points) N Mean (SD) 

3 536 0.86 (0.19) 

6 536 0.88 (0.14) 

9 536 0.89 (0.13) 

12 536 0.89 (0.13) 
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Finally, we also examined the proportional completion times – these are plotted in 

Figure 5.3. We observed a significant main effect of effort level, F(1, 8060) = 207,  

p < .001, 𝜂'! = 0.46, with the completion times becoming consistently longer as 

effort level increased (all ps < .001, Bonferroni-adjusted for multiple comparisons, 

and ds = 1.2, 0.43, 0.48 respectively). Descriptive statistics for this effect are given 

in Table 5.4. The remaining main effect of reward level and the reward by effort 

interaction were both non-significant, ps = .60 and .31 respectively. Full descriptive 

statistics are given in Table S5.3.  

 

 

Figure 5.2. Number Switching Task: proportion of trials completed 
successfully. There was a significant reward effect only, which again 
replicates the effect seen in Chapter 4. Specifically, success rates increased 
between 3 and 6 points, but not between the other levels. Plot shows the 
mean, standard error and distribution for each combination of reward and 
effort level. Trials were marked as ‘correct’ if they were completed within 
the allowed time, with no more than one error. 
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Table 5.4. Number Switching Task: Descriptive statistics for the 

proportional completion time (across effort levels). Note these data only 

include complete cases. 

P(Success) 

Effort Level N Mean (SD) 

20% 574 0.80 (0.07) 

40% 574 0.84 (0.06) 

60% 574 0.85 (0.06) 

80% 574 0.84 (0.06) 

Figure 5.3. Number Switching Task: completion time. Participants completed 
the trials more slowly as effort level increased (replicating the result from 
Chapter 4), but there was no change with reward level. Plot shows the mean, 
standard error and distribution of the completion times (expressed as a 
proportion of each participant’s allowed time) for each level of reward and 
effort level. 
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5.4.1.2 Computational modelling 

Next we fitted the computational model (see Section 5.3.4.2 above for description) 

to the Number Switching Task data. The posterior predictions of the model are 

plotted in Figure 5.4, alongside the observed data for comparison. The model 

provides a good fit to the data, capturing both the mean pattern of effects and the 

changes in the variability in the distribution of participants well (compare also with 

Figure 5.1, the observed proportion of offers accepted). 

 

 

 

 

 

Figure 5.4. Number Switching Task: Posterior predictions of the proportion of 
offers accepted at each reward and effort level. The solid line shows the 
posterior mean and the shaded regions the highest density continuous 
intervals (95%, 80% and 50%), while the red diamonds and dashed lines show 
the empirical data for comparison. Note that these are predictions for 
simulated new participants and therefore incorporate uncertainty not just 
about the average effect of the manipulations in the population, but also 
about the behaviour of individual participants. 
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5.4.2 Go/No-Go Task 

5.4.2.1 Model agnostic analyses 

As expected, there was a significant action by valence interaction on the accuracy 

for the Go/No-Go Task, F(1, 579) = 621, p < .001, 𝜂'! = 0.52, indicating the presence 

of Pavlovian biases. Specifically, accuracy on ‘go to win reward’ trials was greater 

than ‘go to avoid punishment’, t(579) = 23.6, p < .001, d = 0.98; conversely accuracy 

on the ‘no-go to win reward’ trials was lower than ‘no-go to avoid punishment’, 

t(579) = 20.0, p < .001, d = 0.83. Descriptive statistics are provided in Table 5.5 and 

plotted in Figure 5.5. 

 

We also observed significant main effects of action, F(1, 579) = 771, p < .001,  

𝜂'! = 0.57, and valence, F(1, 579) =49.4, p < .001, 𝜂'! = 0.08. Accuracy was higher 

when participants were required to make a go response (M = 0.75, SD = 0.17) 

compared with no-go (M = 0.43, SD = 0.26), indicating the presence of an overall ‘go 

bias’; and it was also higher when the incentive involved avoiding punishment      

(M =  0.61, SD = 0.15) as opposed to gaining reward (M = 0.57, SD = 0.35). 

 

Table 5.5. Accuracy across each of the four trial types, for the Baseline 

session only. 

 

Trial Type 
Accuracy 

Mean (SD) 

Go to win reward 0.83 (0.18) 

Go to avoid punishment 0.67 (0.29) 

No-go to win reward 0.31 (0.13) 

No-go to avoid punishment 0.55 (0.15) 
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5.4.2.2. Computational modelling 

Next we fitted the reinforcement learning model (described in Section 5.3.4.2 

above) to the Go/No-Go data. The trialwise observed data and posterior predictions 

are plotted in Figure 5.6 below. Although the model roughly captures the trends in 

the data, it appears to be overestimating the probability of a go response 

(especially in the go to avoid punishment condition) and perhaps also 

underestimating the strength of the Pavlovian biases. In line with this, we note 

from the posterior parameter estimates (Figure S5.1) that the population-level go 

bias is estimated at a log-odds of approximately 5 (which equates to a go 

probability of 99%), while the Pavlovian bias parameter is apparently negative,       

at –0.3.  

Figure 5.5. Performance on the Orthogonal Go/No-Go Task. The interaction 
between required action and outcome valence indicates the presence of 
Pavlovian biases, and replicates previous studies (see Chapters 2 and 3, and 
also Guitart-Masip et al., 2011) . Plot shows the individual performance, the 
mean±SE and the distribution for each trial type. (*** p < .001) 
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5.4.3 Correlation between Pavlovian bias and cognitive effort sensitivity  

We found a significant positive correlation between the model-derived effort 

sensitivity and Pavlovian bias parameters, r = 0.12, t(578) = 2.86, p = .004; this is 

plotted in Figure 5.7a. Note that the negative values for the Pavlovian bias 

parameters imply that the probability of making a go response was increased when 

punishment was predicted and decreased when anticipating reward. This is 

however contingent on the values of the other model parameters, and therefore its 

absolute value is not necessarily meaningful in isolation. We discuss this issue in 

more detail in Section 5.5.3. Note also the subgroup of participants in Figure 5.7 

with very similar effort sensitivity parameters, indicated by the vertical lines in the 

plots; we discuss this feature in the following section, 5.4.4. Finally, in contrast to 

the significant model-derived result, we found there was no significant association 

between the model agnostic measures of effort sensitivity and Pavlovian bias,  

r = 0.01, t(578) = 0.19, p = .85; see Figure 5.8.  

Figure 5.6. Go/No-Go Task: Posterior predictions of accuracy across each trial 
type. The black line shows the posterior mean and the shaded regions the 
posterior highest density continuous intervals (95%, 80% and 50%), while the 
red line shows the mean empirical data for comparison. 
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Figure 5.7. Correlations between the model derived measures of Pavlovian 
approach and avoidance biases and the effort sensitivity, reward sensitivity 
and intercept parameters from the Number Switching Task. Plots shows 
correlation lines with 95% confidence intervals. 
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5.4.4 Exploratory correlations between Pavlovian bias and other NST parameters 

We had no specific hypotheses about the other NST model parameters, but in a 

wider exploratory analysis we investigated their associations with Pavlovian bias as 

well. We found that there were no significant correlations either between reward 

sensitivity and Pavlovian bias, r = 0.05, t(578) = 1.29, p = .19, or the intercept 

parameter and Pavlovian bias, r = 0.04, t(578) = 0.92, p = .36. These are plotted in 

Figures 5.7b and 5.7c.  

 

It is clear from looking at these plots that there seems to be a distinct 

subpopulation of participants who were all estimated to have the same parameters 

for the NST model (Figure S5.2 shows the same plot but with this subpopulation 

highlighted). These participants – approximately one third of the total sample – 

were all assigned very high intercepts, indicating they accepted essentially all of the 

offers regardless of reward or effort level (a log-odds of accepting an offer of 9 

equates to a probability of 0.9999). To assess whether this affected the results, we 

conducted a sensitivity analysis in which these participants were removed. This 

change did not affect the significance of any of the tests, but did increase the size of 

Figure 5.8. Correlation between the model agnostic measures of Pavlovian 
bias and effort sensitivity. Plot shows correlation line (r = 0.01, non-
significant) with 95% confidence interval. 
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the Pavlovian bias–effort sensitivity correlation slightly, to r = 0.14, t[391] = 2.84,  

p = .005. 

 

5.4.5 Correlations between effort sensitivity and mental health symptom scales 

There was a significant correlation between the model-derived effort sensitivity 

parameter and trait anxiety, r = 0.09, t(578) = 2.15, p = .03. The other correlations, 

between effort sensitivity and depression scores (r = 0.06, t[578] = 1.53, p = .13), 

and state anxiety (r = 0.05, t[578] = 1.15, p = .25), were however non-significant. 

These are plotted in Figure 5.9 (a, c & e). Regarding the model-agnostic effort 

sensitivity measure, we again found a significant association with trait anxiety,  

r = 0.10, t(578) = 2.53, p = .01, but here there was also a significant correlation with 

depression score, r = 0.09, t(578) = 2.07, p = .04. There was however no significant 

association between model-agnostic effort sensitivity and state anxiety, r = 0.07, 

t(578) = 1.69, p = .09. These are also plotted in Figure 5.9 (b, d & f). 
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5.4.6 Correlations between Pavlovian biases and mental health symptom scales 

In our final preregistered analysis we found no significant correlations between the 

model-derived Pavlovian bias parameter and the depression and anxiety symptom 

scales. For the Zung Depression Scale, the correlation with Pavlovian bias was  

r = 0.03, t(578) = 0.76, p = .45; for state anxiety, it was r = –0.02, t(578) = 0.58,  

p = .56; and for trait anxiety it was r = 0.01, t(578) = 0.12, p = .90. These are plotted 

in Figure 5.10 (a, c & e). 

Figure 5.9. Correlations between the model-derived and model-agnostic 
measures of effort sensitivity, and the Zung depression scores, STAI state 
anxiety scores and the STAI trait anxiety scores. There were significant 
correlations between effort sensitivity and depression (model-agnostic only), 
and between effort sensitivity and trait anxiety (both). 
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In an exploratory analysis we also examined the correlations between the model-

agnostic Pavlovian bias measures and the depression and anxiety symptom scales. 

These were again all non-significant. For the Zung Depression Scale, the association 

with the model agnostic Pavlovian bias measure was r = 0.06, t(578) = 1.38, p = .17; 

for state anxiety it was r = 0.01, t(578) = 0.18, p = .86; and for trait anxiety it was  

r = 0.01, t(578) = 0.30, p = .76. These are also plotted in Figure 5.10 (b, d & f). 

 

  

Figure 5.10. Correlations between the model-derived and model-agnostic 
measures of Pavlovian bias, and the Zung depression scores, STAI state 
anxiety scores and the STAI trait anxiety scores. There were no significant 
correlations. 
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5.5 Discussion 

5.5.1 Primary hypothesis: The Pavlovian bias–effort sensitivity correlation 

In this preregistered study we set out to investigate the association between 

Pavlovian bias and sensitivity to cognitive effort. In line with our primary hypothesis 

we found that there was a significant positive correlation between model-derived 

estimates of effort sensitivity and Pavlovian bias, indicating that participants who 

were more sensitive to cognitive effort had higher, i.e. less negative, Pavlovian 

biases (see further discussion of exactly how this result should be interpreted in 

Section 5.5.3 below). This is important because it is consistent with the suggestion 

that people can control their Pavlovian biases (Cavanagh et al., 2013), and that this 

control is dependent on exerting effort (Shenhav et al., 2017). This gives us a much 

better insight into the cognitive mechanism underlying the expression of Pavlovian 

biases, and in particular suggests we should think of Pavlovian biases in terms of 

effort-based decision-making: the strength of these biases depends not just on the 

Pavlovian learning system itself, but also economic consideration of the costs of 

trying to control and overcome them (Westbrook & Braver, 2015). 

 

A further implication of this result is that the control mechanism must be to some 

extent domain general, in so far as effort sensitivity seems to have influenced 

performance on two tasks, the Go/No-Go Task and the NST. This may appear self-

evident but nevertheless it is significant, in that it suggests that studying how 

Pavlovian biases are controlled may inform our understanding of control over other 

aspects of cognition and performance too. For example, future efforts to address 

the cognitive symptoms of conditions like anxiety and depression may benefit from 

targeting parameters which have effects across multiple cognitive processes, like 

effort sensitivity (Husain & Roiser, 2017). 

 

Finally, this correlation between effort sensitivity and the strength of Pavlovian 

biases may also help to inform interpretation of our earlier study (Chapter 3). In 

that study we trained participants on the high Pavlovian-instrumental conflict trials 

and found that, after training, their Pavlovian biases were reduced compared with a 
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group who did a programme of sham training. A plausible mechanism for this 

training effect is that participants learned that exerting control was worthwhile and 

therefore the expected value of their effort increased (cf. the Expected Value of 

Control theory, Shenhav et al., 2013), in turn meaning they were more willing to 

exert control. 

 

Despite these positive results, we should also strike a note of caution, however, as 

the positive correlation between the effort sensitivity and Pavlovian bias model 

parameters was not replicated by the parallel model agnostic analysis. In theory we 

would expect the computational modelling to be more sensitive, and therefore it is 

not entirely surprising if the two do not agree; nevertheless this discrepancy 

indicates that further investigation is needed at least (see Limitations, Section 5.5.3 

below).  

 

5.5.2 Secondary hypotheses 

In addition to our primary analysis of the relationship between effort sensitivity and 

Pavlovian bias, we also looked at the correlations between Pavlovian bias, the NST 

parameters and the three self-report symptom scales. Contrary to our hypothesis, 

we found that Pavlovian bias was not significantly associated with any of the self-

report scales, whether using the model-derived or model-agnostic measures of 

bias. On the one hand this runs somewhat counter to results from previous studies 

which had found an association between Pavlovian avoidance bias in particular and 

both anxiety (Mkrtchian, Aylward et al., 2017) and depression (Nord et al., 2018); 

on the other, it matches the results of our earlier study reported in Chapter 3, in 

which we also found no correlation. As we also discussed there, two possibly 

significant differences between the previously published studies and our own are 

that we have been testing symptom scores in the healthy population, whereas the 

significant results were found in clinical samples; in addition, Mkrtchian et al. were 

also studying avoidance biases potentiated by threat of shock, a state anxiety 

manipulation. Possibly the enhanced avoidance bias only emerges in people 
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meeting the clinical thresholds for diagnosis and/or in the presence of additional 

stress. 

 

In exploratory tests we nevertheless found that there were significant correlations 

between effort sensitivity and both trait anxiety (consistent across the model-

derived and model-agnostic measures) and also depression symptoms (model-

agnostic only). This is an important result for two reasons: it demonstrates the 

utility of the NST (which had been developed explicitly for this kind of study), 

proving that the task is able to reveal meaningful variation between participants 

that can be related to other aspects of cognition; and more generally it supports 

the idea that effort-based decision-making is an important factor in the symptoms 

of a number of mental health conditions (Husain & Roiser, 2017). This latter point 

gives weight to another argument running through this thesis, that effort (and the 

cognitive mechanisms underlying it) should be a principal target of research aimed 

at treating the cognitive symptoms of conditions like anxiety and depression. 

 

Finally, we also replicated some of the key results from our previous study of the 

Number Switching Task (see Chapter 4), most importantly that there was no 

significant effect of the effort manipulation on rates of success, even with roughly 

double the sample size of the earlier study. This again gives us further confidence in 

the NST by showing that the results reflect genuine effort discounting, without 

confounding by probability discounting.  

 

5.5.3 Limitations 

As noted above, the model-agnostic correlation between Pavlovian bias and effort 

sensitivity was non-significant, contradicting the results from the modelling 

analysis. Perhaps related to this, there were also some issues with the fit of the 

Go/No-Go model, specifically that it systematically overestimated the chances of 

making a go response, which in turn will have affected how well the Pavlovian bias 

parameter was estimated. As the plot of the posterior predictions shows (Figure 

5.6), in the go to win reward and go to avoid punishment conditions, the model 

predicts that accuracy will be stable at around 75-80% from the very beginning of 
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the session, with essentially no effects of learning – this is a consequence of the 

posterior estimates of the mean go bias and mean noise parameters of 5 and –0.2 

respectively, which together give a go probability of 78%. It therefore seems that 

these two parameters are dominating the model and preventing the learning 

processes from having any influence on the outcomes.  

 

The overestimation of the go bias and noise parameters seems in turn to have 

resulted in underestimation of the Pavlovian bias parameter, which was apparently 

not just small but negative. This value seems unreasonable given clear, positive 

Pavlovian bias is evident in the empirical data and model agnostic results (Section 

5.4.2.1). It also complicates the interpretation of the positive effort sensitivity–

Pavlovian bias correlation because it is unclear whether, as effort sensitivity 

increases, Pavlovian biases become stronger (since the value of the parameter is 

higher) or weaker (because the value of the parameter is closer to zero). Of these, 

the former interpretation is probably the more reliable one, because although the 

model has underestimated the Pavlovian bias parameters it is still possible that the 

difference between participants is meaningful, whereas it seems fairly certain that 

the absolute value is not correct. In any case this issue necessarily limits the 

confidence we can have in the effort sensitivity–Pavlovian bias correlation. 

 

The underestimation of the Pavlovian bias parameters is particularly difficult to 

understand, given we can see in Figure 5.6 that the model would produce better 

predictions in three out of the four conditions (all except no-go to win reward) if 

the Pavlovian bias estimates were higher. In the no-go to win reward condition, the 

mode trajectory is below the empirical mean, but there is a long upwards tail, 

reflecting the observation (also noted in Chapter 3) that there is substantial 

variability in how well participants are able to learn this trial type, and possibly even 

a bimodal pattern of responses. This may provide an explanation for the issues 

identified here: the difficulty in fitting the no-go to win trial type may have led the 

model to a peculiar set of parameter estimates that may fit the data in aggregate, 

but is not necessarily cognitively meaningful. Despite these limitations, we decided 

that it was important that the models used in this analysis were directly 
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comparable both with the earlier chapters in this thesis and also with the previously 

published literature, and so we still chose to use the Base plus two learning rates 

model for the Go/No-Go Task here. In future work it would perhaps be useful to 

study the two datasets (from this chapter and from Chapter 3) in parallel (rather 

than in series, as was the case here), in order to try to identify a common model 

that can accommodate both.   

 

5.5.4 Future research 

A priority for the future should be to try to better understand the modelling of the 

Go/No-Go Task; in particular, a concrete step would be to investigate whether new 

model structures, especially those which allow for bimodal distributions (so that 

some participants are able to learn over time and others are not) lead to improved 

model fit. This could be implemented through a mixture modelling approach, for 

example. With both improved understanding of the models that we have, and 

development of more sophisticated models in the future, we should be better 

placed to be more confident in the results of studies like this one. 

 

More broadly, part of the motivation for this study was to demonstrate a link 

between the strength of Pavlovian biases and willingness to exert effort, in order to 

better understand the nature of the training effect we observed in Chapter 3. In 

this study, we were able to identify a possible association (bearing in mind of 

course the issues and caveats mentioned above), but we have not directly tested its 

role in mediating the training effect observed in the earlier study. This would be an 

important subject for a future study, particularly if we look to develop the 

behavioural training idea further with the aim of enhancing cognitive effort more 

generally. 

 

Finally, the positive correlations between effort sensitivity and the depression and 

anxiety symptom scales were results of an exploratory analysis. Further replication 

is therefore needed to strengthen the inferences we can draw from these results. 
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5.5.5 Conclusions 

In this study we identified a potential association between the model-derived 

measures of effort sensitivity and Pavlovian bias, in line with our hypothesis that 

overcoming and reducing the strength of these biases depends on effortful 

cognitive control. We should however be careful not to overstate this point given 

some of the difficulties we identified with the fit of the model – further validation 

of this result is likely to be required. In addition we also observed a number of 

significant associations between cognitive effort sensitivity and depression and 

anxiety symptoms which are more dependable; subject to the need for further 

replication, they are consistent with the emerging view that effort-based decision-

making is an important component in depression and anxiety. Overall, while taking 

our caveats into account, these results are consistent with our hypotheses about 

the links between Pavlovian bias, effort and anxiety and depression symptoms. 
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5.6 Appendix 

5.6.1. Supplementary results 

5.6.1.1 Number Switching Task: Descriptive Statistics 

Table S5.1. Number Switching Task: Proportion of Offers Accepted.  

 

P(accept) 

Reward (points) N Mean (SD) 

3 580 0.66 (0.37) 

6 580 0.84 (0.26) 

9 580 0.93 (0.16) 

12 580 0.98 (0.09) 

   

Effort level   

20% 580 0.89 (0.17) 

40% 580 0.87 (0.18) 

60% 580 0.84 (0.20) 

80% 580 0.80 (0.24) 

   

Reward: Effort   

3: 20% 580 0.73 (0.36) 

3: 40% 580 0.68 (0.39) 

3: 60% 580 0.63 (0.41) 

3: 80% 580 0.58 (0.43) 

6: 20% 580 0.89 (0.25) 

6: 40% 580 0.86 (0.28) 

6: 60% 580 0.84 (0.30) 

6: 80% 580 0.78 (0.34) 

9: 20% 580 0.96 (0.15) 

9: 40% 580 0.95 (0.17) 

9: 60% 580 0.93 (0.19) 
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9: 80% 580 0.89 (0.25) 

12: 20% 580 0.99 (0.07) 

12: 40% 580 0.99 (0.09) 

12: 60% 580 0.97 (0.12) 

12: 80% 580 0.96 (0.16) 

 

 

Table S5.2. Number Switching Task: Proportion of trials completed successfully.  

 

P(success) 

Reward (points) N Mean (SD) 

3 537 0.86 (0.19) 

6 571 0.88 (0.15) 

9 578 0.89 (0.13) 

12 580 0.90 (0.12) 

   

Effort level   

20% 580 0.91 (0.12) 

40% 580 0.86 (0.15) 

60% 580 0.86 (0.17) 

80% 575 0.91 (0.14) 

   

Reward: Effort   

3: 20% 516 0.89 (0.21) 

3: 40% 491 0.83 (0.26) 

3: 60% 463 0.85 (0.24) 

3: 80% 426 0.88 (0.22) 

6: 20% 560 0.91 (0.17) 

6: 40% 550 0.86 (0.20) 

6: 60% 545 0.85 (0.23) 

6: 80% 526 0.91 (0.17) 
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9: 20% 574 0.93 (0.14) 

9: 40% 575 0.87 (0.20) 

9: 60% 571 0.86 (0.20) 

9: 80% 555 0.92 (0.17) 

12: 20% 580 0.92 (0.15) 

12: 40% 578 0.87 (0.19) 

12: 60% 578 0.87 (0.20) 

12: 80% 572 0.92 (0.15) 

 

 

Table S5.3. Number Switching Task: Completion time.  

 

Proportional completion time 

Reward (points) N Mean (SD) 

3 536 0.83 (0.07) 

6 570 0.84 (0.06) 

9 578 0.83 (0.06) 

12 580 0.83 (0.06) 

   

Effort level   

20% 580 0.80 (0.07) 

40% 580 0.85 (0.06) 

60% 579 0.85 (0.06) 

80% 575 0.84 (0.06) 

   

Reward: Effort   

3: 20% 514 0.80 (0.08) 

3: 40% 488 0.85 (0.07) 

3: 60% 459 0.86 (0.07) 

3: 80% 422 0.84 (0.07) 

6: 20% 559 0.80 (0.07) 
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6: 40% 548 0.85 (0.07) 

6: 60% 543 0.85 (0.07) 

6: 80% 525 0.84 (0.06) 

9: 20% 574 0.80 (0.07) 

9: 40% 575 0.84 (0.07) 

9: 60% 571 0.85 (0.06) 

9: 80% 554 0.84 (0.06) 

12: 20% 580 0.80 (0.07) 

12: 40% 577 0.84 (0.06) 

12: 60% 576 0.85 (0.06) 

12: 80% 572 0.84 (0.06) 

 

 

 

 
 
 
5.6.1.2 Go/No-Go Modelling: Population-level parameter estimates 

 

 

 

 

Figure S5.1 Go/No-Go Model: Posterior estimates of the population-level 
mean parameters. Plots show distributions and shaded 50% intervals. 
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5.6.1.3 Pavlovian Bias–Effort Sensitivity Correlation: Sensitivity analysis 

 

 

 

 

 

Figure S5.2. Correlations between the model derived measures of Pavlovian 
approach and avoidance biases and the effort sensitivity, reward sensitivity 
and intercept parameters from the Number Switching Task. Here, a distinct 
subpopulation of non-responders – those with very high intercepts – has 
been identified in red. Plots show correlation line after the non-responders 
are removed, with 95% confidence intervals. There were no changes in the 
significance of any of the correlations, but the size of the effort sensitivity – 
Pavlovian bias correlation increased slightly. 
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Chapter 6. Why Is Effort Costly? 

 

6.1 Abstract 

Effort costs are an attempt to describe a ubiquitous behaviour: people routinely 

make choices that fail to maximise reward. We see this not only in laboratory 

experiments but also in wider life: people often procrastinate and seek to avoid 

important tasks, even those they explicitly value and want to succeed at; equally, 

when they do engage in an activity, they do not necessarily perform to the best of 

their abilities, instead seeming to hold some measure of capacity in reserve. What 

is happening when people fail to perform to the best of their abilities? Why would 

they not try as hard as possible at all times? These questions indicate the central 

motivating problem of cognitive effort – people systematically make choices that 

appear to be suboptimal, in the sense that they do not lead to the maximum 

expected rewards. The orthodox solution to this problem is to introduce the notion 

of effort costs (e.g. Kool & Botvinick, 2010; Shenhav et al., 2013). It is suggested 

that actions and thoughts must have a hidden cost, and that this cost trades off 

with the overt reward. In this sense, it is argued, people’s observed behaviour is not 

maladaptive after all, and is consistent with people making choices that maximise 

their expected net reward (Westbrook & Braver, 2015). However, precisely what is 

costly about cognition, or even action, is not fully known, meaning in a sense the 

central problem identified above has still not been satisfactorily answered. In this 

chapter I will discuss and apply two separate ideas—Ergodicity Economics (Peters, 

2017) and Landauer’s Principle (Landauer, 1961)— originally developed outside of 

neuroscience, which I nevertheless think have significant potential to explain 

apparent cognitive effort costs. On the one hand, Ergodicity Economics suggests 

that a number of effort-like phenomena can be accounted for by optimal decision-

making, without recourse to intrinsic effort costs; on the other hand, Landauer’s 

Principle suggests there is one cost that is obligatory, that of dissipating energy 

whenever information is erased. Together these ideas challenge and extend our 

existing understanding of cognitive effort. 
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6.2 Introduction 

Cognitive effort is a common experience – many day to day cognitive tasks do not 

happen automatically, but instead require some degree of exertion. Colloquially, 

effort refers to ‘how hard we try’, whether we seek to do our best on a task, coast 

through, or anything in between. Shenhav et al. (2017, p. 101) put it more precisely: 

cognitive effort is “the mediating factor between cognitive capacity, on the one 

hand, and performance on the other”.  

 

The defining feature of cognitive effort, which makes it such an intriguing object of 

study, is that we do not always exert ourselves maximally. By definition, the 

presence of a mediator between potential and achieved performance means that 

we are able to choose to operate at a lower level of performance on a task than we 

are capable of, and this seemingly runs counter to the deeply-held assumption that 

humans make decisions in order to maximise expected rewards. The usual solution 

to this problem is to assert that cognitive effort has some hidden cost, which 

increases as a function of effort intensity, making high levels of effort aversive (e.g. 

Manohar et al., 2015; Shenhav et al., 2013). 

 

The idea of effort costs is supported principally by empirical data which has shown 

that people exhibit effort discounting – as a cognitive task becomes more 

demanding, participants treat it as subjectively less valuable (see Westbrook et al., 

2015, and Ritz et al., 2022 for reviews; see also Chapter 4 of this thesis), suggesting 

that rising effort demand is increasingly costly. However, these studies say nothing 

about the source or nature of these costs. This means we do not currently have a 

principled understanding of effort costs – despite a number of potential 

explanations having been put forward, including (amongst others) depletion of 

blood glucose (Gailliot & Baumeister, 2007; Gailliot et al., 2007), opportunity costs 

(Shenhav et al., 2017; Kurzban et al., 2010, 2013), and preventing interference from 

using shared computational resources (Sagiv et al., 2018; Musslick & Cohen, 2021), 

none has made both precise predictions and been supported by strong evidence. 

This is a significant problem as, at present, effort costs are regarded as being both 
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hidden and unconstrained – in computational models of behaviour, they are 

typically coded as free parameters that can take any value. The result is that much 

of the existing cognitive effort literature relies on a circular logic: in order for 

participants’ behaviour to be consistent with maximising expected value we assume 

that there are effort costs; but in order to measure these effort costs we then have 

to assume that participants maximise expected value. There needs instead to be a 

more principled way of determining, or at least constraining, estimates of effort 

costs. 

 

An important further point is that cognitive effort research is increasingly taking 

inspiration from earlier computational work on physical effort. Two recent 

examples include papers from Ritz et al. (2022) and Manohar et al. (2015), both of 

whom present models of cognitive control, derived from optimal motor control 

models, in which they assume without question that costs are a quadratic function 

of the control signal. It should be emphasised, however, that even with regards to 

motor control a normative account of effort costs is still yet to be fully worked out. 

 

There are two main explanations put forward for physical (motor) effort costs: first, 

movement consumes energy, and this increases with the strength of the motor 

signal (Shadmehr & Krakauer, 2008; Walton et al., 2006; Rigoux & Guigon, 2012); 

and second, larger motor signals result in greater movement noise, and specifically 

endpoint variability, which is costly because it increases errors (Harris & Wolpert, 

1998). Neither of these explanations gives a principled rationale for assuming 

specifically quadratic costs, however. Harris and Wolpert, for example, use 

movement endpoint variance (𝜎') as the effort cost, but this is justified on 

empirical grounds only, not theoretical, so they do not address why it is variance 

specifically that is costly. In principle, for instance, endpoint standard deviation (𝜎) 

could also have been considered, implying linear costs of noise. There are thus still 

significant gaps in our understanding of effort costs, particularly in terms of 

identifying the exact biological or computational constraints that give rise to these 

costs. This is the case for both cognitive and physical costs, and we should be 

careful not to assume that the latter is totally understood. 
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In this theory focussed chapter I will be presenting a synthesis of two ideas, drawn 

from fields adjacent to cognitive neuroscience, which I think may help to provide a 

better account of cognitive costs than we have currently. First I will discuss the 

implications of ‘Ergodicity Economics’ (Peters, 2019), a new perspective on optimal 

decision theory, for understanding effort. The key development that Peters and 

colleagues have accomplished is to show that maximising expected value is not 

universally optimal – in fact, quite the opposite, maximising expected value is only 

optimal in one special case (when the change in one’s wealth as a result of a 

decision can be represented by a stationary random variable, i.e. is ergodic). This 

implies that behaviour that is apparently indicative of effort costs could instead be 

explained by the particular reward dynamics of the environment. After providing 

the necessary mathematics to prove this result, I will present some specific 

applications of this framework to topics in cognitive neuroscience. 

 

In the second half of this chapter, I will then describe one source of cognitive costs 

which is obligatory – heat dissipation whenever information is erased from 

memory. This is based on an older idea from computer science called Landauer’s 

Principle (Landauer, 1961), which has nevertheless not (to my knowledge) been 

applied to cognitive effort before. 
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6.3 Ergodicity Economics and cognitive effort costs 

Our concern in this section is whether effort costs are necessary to explain people’s 

observed behaviour. Is it possible to account for people’s failure to maximise 

expected rewards in any other way? More to the point, is there any sense in which 

not maximising expected rewards may in fact be optimal? 

 

To illustrate the ultimate answer to these questions, it is instructive to consider a 

simple example. Imagine you are asked to play a game in which you gamble on a 

random outcome, like a coin flip. Your opponent says they will pay you back your 

stake plus 50% if you call heads or tails correctly, and your stake minus 40% if you 

are wrong. Conventional decision theory suggests that this is an easy choice: if you 

start with, say, £100, the expected outcome is a gain of £51; thus if you choose to 

play you apparently stand to make a positive return compared with the alternative 

of not playing and winning nothing. Yet you may also have the sense that, in the 

real world, this is not a gamble that many people would want to make. 

 

This is not unlike the situation we observe with effort discounting – a participant is 

offered the choice between doing a cognitive task, for which they may win a 

reward, and doing nothing, for which they are certain to win nothing. On the face of 

it this is a straightforward decision, as the expected value of attempting the task 

will always be better than doing nothing – and yet, if the ‘effort demand’ of the task 

is high enough, people often consistently choose the latter. 

 

Table 1 shows the outcome of making the gamble proposed above. Since the 

probabilities of heads and tails are equal and independent over time, we can 

assume that in the long-time limit we will observe an equal number of each. Note 

that when we take this limit the order of the outcomes then does not matter. As 

Table 6.1 shows, despite the fact that every gamble has a positive expected value, 

in the long run you are guaranteed to lose money. It is optimal therefore not to 

 
1 You could also describe the expected outcome as a gain of +5%, but this would also be misleading 
about the value of the decision (though for a slightly different reason than if you computed the 
expected monetary gain).   
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choose to play this game – or, in other words, this is a situation where it is optimal 

to select the option with the lower expected value. 

 

 

In the following section I will discuss a new approach to optimal decision theory 

called Ergodicity Economics, introduced by Ole Peters and colleagues (Peters, 2019; 

Peters & Adamou, 2018), which will allow us to understand this example within a 

more formal mathematical framework. Peters et al. have used these ideas to solve 

a number of well-known problems in economics, such as hyperbolic temporal 

discounting and the St Petersburg Paradox. I will show that their ideas can also be 

usefully applied to cognitive neuroscience and in particular to solving the problem 

of effort. The points I will develop in particular are that:  

1. Maximising expected value is not optimal behaviour in general – there are 

specific circumstances where it is, and others where it can be shown that it 

is optimal to maximise a different quantity. 

2. Utility functions, which in psychology and cognitive neuroscience are 

typically regarded as idiosyncratic biases, in fact have a normative 

interpretation – for different contexts there is a specific utility function 

which is optimal. By extension this means that empirical utility functions can 

be regarded as beliefs about the environment. 

3. Finally, in situations where the optimal utility function is concave, outcome 

noise is costly. Specifically, we can show that this cost has an approximately 

quadratic relationship with effort intensity, thus providing the missing 

justification for Harris and Wolpert’s (1998) choice of endpoint variance in 

their account of motor effort costs, and for quadratic cognitive effort costs 

in other models (Ritz et al., 2022; Manohar et al., 2015). 

Table 6.1. Outcomes you can expect to receive if you accept the gamble 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 

Initial 

wealth 
+50% -40% +50% -40% +50% -40% +50% -40% 

£100 £150 £90 £135 £81 £121 £73 £109 £66 
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6.3.1 Maximising expected value does not guarantee optimal decisions 

Key to developing the example above into a more formal statement about optimal 

decision-making is stating explicitly what the objective of decision-making is and 

understanding exactly how the expected value of a decision relates to this.  

 

Peters et al. start with the axiom that the goal of any economic decision-maker is to 

make choices that grow their wealth at the fastest rate possible (in cognitive 

neuroscience, terms like wealth, rewards etc. need not denote just monetary value 

– but it is convenient to use financial language because of the mathematical 

precision it affords). If one’s wealth is denoted by 𝑤(𝑡), then a decision-maker 

should pick the option that will result in the greatest rate of change of their 

wealth2,  E6
E$

.  

 

In some deterministic cases it may be that the outcome of a decision can be known 

with certainty, in which case maximising E6
E$

 is trivial. In general, however, the 

outcomes of decisions are random variables – you cannot know in advance whether 

a coin will land heads or tails up, just as you also cannot be sure whether putting 

more cognitive effort into a task will lead to greater rewards or not. More precisely, 

we say that the future changes in one’s wealth, 𝛿𝑤, follow a stochastic process (see 

Figure 6.1), and we do not know which realisation of this process we will 

experience. What is therefore needed is to condense the process 𝛿𝑤 into some 

scalar value representing the typical outcome that will be experienced (removing 

the randomness). We accomplish this by calculating an appropriate average of the 

process, with which we are then on firmer footing and can choose whichever 

option results in the better average change in wealth. 

 

 
2 This axiom justifies our use in the gamble example above of expected monetary outcome, rather 
than percentage outcome. We will see later that the percentage outcome would be misleading even 
if it were used. 
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There are two kinds of average of a stochastic process that we might choose to 

take, the time average and the ensemble average. The finite time average (green 

box in Figure 6.1) is the mean of a particular realisation of the process over some 

interval ∆𝑡; if we take the long-time limit ∆𝑡 → ∞, we then get the infinite time 

average (henceforth just called the time average). On the other hand, the finite 

ensemble average (orange box in Figure 6.1) is the mean at a single timepoint 

across some sample 𝑁 of independent, parallel realisations of the process; if we 

likewise take the large-sample limit 𝑁 → ∞ we arrive at the infinite ensemble 

average, also called the expectation. As Peters and Adamou (2018) are keen to 

Figure 6.1. An example of a stochastic process, in this case the changes in 
wealth, 𝛿𝑤, experienced over time. A stochastic process is a collection of 
random variables each associated with a different point in time. Because of 
this randomness, the process can unfold in many different ways over time – 
each of these possible trajectories is called a realisation of the process. There 
are then two different kinds of average we can take: we can average over the 
ensemble of different realisations at a single point in time (the ensemble 
average, or expectation) or we can average over time for a single realisation 
(the time average). Based on a figure in Peters and Adamou (2018, p.11) 

Time average 

Ensemble average 
(expectation) 
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point out, the terminology here is somewhat misleading, as there is nothing about 

the ensemble average which means this is a value we should particularly ‘expect’ to 

see, since in the real world we only ever get to observe a single realisation of any 

stochastic process (indeed this linguistic confusion may be at least partly 

responsible for some of the problems with optimal decision theory that we have 

currently). The gamble suggested above is a good example of a case where, despite 

the expectation being positive, you should actually expect your wealth to decrease 

over time (Figure 6.2). 

 

 

 

 

 

 

 

Figure 6.2. Comparison of the time average (green) and ensemble average 
(orange) trajectories of wealth. Any individual choosing the multiplicative 
gamble introduced at the start of Section 6.3 will, in the long-time limit, 
converge on the time average trajectory and so will experience a decrease in 
their wealth over time; conversely the ensemble average increases over 
time. Thus any decision-maker who bases their choices on the ensemble 
average (expected value) rather than the time average will be misled.  
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This brings us to the heart of Peters and Adamou’s (2018) argument: they assert 

that the primary quantity of interest for a decision-maker should be the time 

average change in wealth, since this describes the average effect of a choice within 

a particular realisation; we do not get to experience multiple parallel realisations of 

the world, so the average across the statistical ensemble is prima facie irrelevant. 

Where it becomes useful, and the reason we talk about maximising expected value 

at all, is because in some cases the expectation and the time average of changes in 

wealth are equal – if so, we say that the change in wealth 𝛿𝑤 is ergodic, and this 

gives us a convenient means of calculating its time average. Specifically, the change 

in wealth 𝛿𝑤 is ergodic if its instances over time are independent realisations of a 

stationary random variable. 

 

Consider a modified version of the coin-toss gamble proposed above, in which the 

outcomes (represented by 𝑧) are not dependent on the stake, but instead take 

absolute values; +£50 and –£40 for example. In this case, the increments of wealth 

𝛿𝑤 are independent and stationary over time, and so are ergodic. Your wealth 

evolves after 𝑇 increments of time according to: 

 

𝑤(𝑡 + 𝑇𝛿𝑡) = 	𝑤(𝑡) +	�𝑧(𝜏)
F

G

 

(6.1) 

 

and therefore the time average change in wealth (indicated by an overbar) is given 

by 

 

𝛿𝑤���� = lim
F→I

	
1
𝑇 @𝑤

(𝑡 + 𝑇𝛿𝑡) − 𝑤(𝑡)A 

= lim
F→I

1
𝑇�𝑧(𝜏)	

F

G

																		 

(6.2) 
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This is identical to the expression for the expected change in wealth (indicated by 

angled brackets), save for the change of dummy variable: 

 	

〈𝛿𝑤〉 = lim
J→I

1
𝑁�𝑧(𝑖)

J

%

	

										= lim
F→I

1
𝑇�𝑧(𝜏)

F

G

 

	
(6.3) 

 

Having established this equality, it is then straightforward to calculate the time 

average 𝛿𝑤���� from the ensemble average, which can be computed as the weighted 

average of each of the 𝐽 different possible outcomes: 

 

𝛿𝑤���� = 	 〈𝛿𝑤〉 = 	�𝑝.𝑧.
.

 

										=
1
2 × 50 +

1
2 × −40 

= £5																			 

(6.4) 

 

By simulating the coin toss gamble using the same process as before (Table 6.2), we 

can see that in this additive case the expected value is indeed a meaningful guide to 

the actual effects of choosing to gamble on one’s wealth. 

 

Table 6.2. Outcomes you can expect to receive if you accept the additive gamble 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 

Initial 

wealth 
+£50 -£40 +£50 -£40 +£50 -£40 +£50 -£40 

£100 £150 £110 £160 £120 £170 £130 £180 £140 
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Returning to the gamble as originally stated, in which the outcomes were expressed 

as a multiple, 𝑟, of the amount staked, we now have a better insight into why the 

expectation was not a useful guide to the actual effect of choosing to gamble: in 

this case the changes in wealth 𝛿𝑤 over time are not stationary, because they 

depend on time indirectly through wealth 𝑤(𝑡).   

 

Specifically, in this version of the gamble, your wealth evolves according to: 

 

𝑤(𝑡 + 𝑇𝛿𝑡) = 	𝑤(𝑡) ∙ 	�𝑟(𝜏)
F

$

 

(6.5) 

 

and therefore the time average of changes in wealth (indicated by an overbar) is 

given by 

 

𝛿𝑤���� = lim
F→I

	
1
𝑇 @𝑤

(𝑡 + 𝑇𝛿𝑡) − 𝑤(𝑡)A 

= lim
F→I

1
𝑇 �𝑤

(𝑡) ∙ 	�𝑟(𝜏)
F

$

−𝑤(𝑡)�																		 

(6.6) 

 

It is immediately clear that there is no longer equality between the time average 

and the expectation, and so the latter cannot be used to compute the former. In 

other words, maximising expected value is not optimal decision-making in this 

example. This is the first key point when trying to understand cognitive effort.  

 

To make the connection to cognitive effort more explicit, consider a typical effort 

discounting task, in which participants choose between engaging in some effortful 

activity or doing nothing. For simplicity we will continue to use the same gains and 

losses as in the gambles above, so participants are endowed with £100 and are 

initially offered +£50 if they complete the effortful activity successfully, –£40 if they 
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make a mistake, and nothing if they choose not to do the effortful activity. 

Ordinarily, if we found that participants systematically chose to avoid doing the 

effortful task (e.g. Kool et al., 2010) we would conclude that this was evidence of 

intrinsic effort costs, because the expected value of the task is positive otherwise. 

But if the reward dynamic was really multiplicative (i.e. the +£50/–£40 incentive 

represented a +50%/–40% change in wealth, because the dynamic either of the 

experiment, or of the ‘real world’ in which the participant was responding, was 

multiplicative) then participants should choose not to do the task because, as we 

have already seen, they would typically lose money. Thus they would show 

behaviour that appears to be effort discounting, but that is not in fact driven by 

effort costs. 

 

6.3.2 Ergodicity transformations and utility functions 

To solve the problem of non-ergodicity, Peters and Adamou suggest applying what 

they call an ergodicity transformation, which is any monotonic function of wealth	

𝑣(𝑤) whose increments 𝛿𝑣(𝑤) are ergodic (independent instances of a stationary 

random variable). They then define what they call the growth rate, 𝑔, which is the 

change in this transformed wealth experienced over some interval of time: 

 

𝑔(∆𝑡) = 	
∆𝑣(𝑤)
∆𝑡  

(6.7) 

 

The (time average) growth rate is then (by design) equal to the expected growth 

rate: 

 

											𝑔̅ = lim
∆$→I

�	
∆𝑣(𝑤)
∆𝑡 � 

=	
𝛿𝑣(𝑤)�������

𝛿𝑡  

					= 	 〈
𝛿𝑣(𝑤)
𝛿𝑡

〉		 

(6.8) 
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The specification that the ergodicity transformation must be monotonic is 

important, because it preserves the order of values. Fundamentally, when making a 

decision, we are only looking to rank the different options available so that we can 

find the one that will typically lead to the biggest change in our wealth – the 

absolute value of the change in our wealth is not necessarily important. Because 

the transformation is monotonic, we know that the outcome of comparing two 

possible choices a and b on our wealth, 𝑤" >	𝑤-, will always give the same result 

as the comparison on our transformed wealth, 𝑣(𝑤") > 	𝑣(𝑤-), even though the 

absolute values are not the same, 𝑤" ≠ 𝑣(𝑤"). We can therefore rely on the time 

average growth rate of transformed wealth,	𝑔̅, to make decisions that are optimal 

according to our decision axiom, even though we do may not know what the time 

average growth rate of wealth itself will be. 

 

To put this in context, consider again the multiplicative gamble, which results in 

wealth given by Equation 6.5. An appropriate ergodicity transformation could be 

the logarithm 

 

𝑣@𝑤(𝑡 + 𝑇𝛿𝑡)A = ln 	�𝑤(𝑡) ∙ 	�𝑟(𝜏)
F

$

� 

(6.9) 

because this results in increments that are independent and stationary over time: 

 

𝛿𝑣(𝑡) = ln𝑤(𝑡 + 𝛿𝑡) − ln𝑤(𝑡) = ln 𝑟(𝑡) 

(6.10) 

 

The time average growth rate is then: 

 

	𝑔̅ = lim
F→I

	
1
𝑇𝛿𝑡 �𝑣@𝑤

(𝑡 + 𝑇𝛿𝑡)A − 𝑣@𝑤(𝑡)A� 

				= lim
F→I

	
1
𝑇𝛿𝑡 ��ln 𝑟(𝜏)	

F

G

�																											 
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			=
〈ln 𝑟〉
𝛿𝑡 																																																											 

=	−0.05																																																									 

(6.11) 

 

Since this is negative, you should anticipate losing money if you choose to take this 

bet. Therefore compared with the null option of doing nothing (with time average 

growth rate equal to zero), gambling is the worse choice. 

 

Decisions represented by other stochastic processes naturally require different 

ergodicity transformations. In the simplest case where outcomes are independent 

over time (which we have already seen in the additive gamble), the change in 

wealth is already ergodic, so the transformation can simply be the identity function, 

i.e. 𝑣(𝑤) = 𝑤. Other more complex cases can also arise: for instance the outcome 

of a choice may combine both additive and multiplicative effects (in which case the 

ergodicity transformation would involve taking a root function of wealth); or the 

outcome may be a fraction, rather than a multiple, of current wealth (in which case 

the transformation is an exponential function). Fortunately, Peters and Adamou 

have produced a more general formulation of their decision theory, able to account 

for essentially arbitrary outcome dynamics, which I will discuss briefly in the 

following section. 

 

For now, however, it may be helpful to summarise concisely what has been 

discussed so far. According to the Ergodicity Economics decision theory (Peters and 

Adamou, 2018; Peters, 2019): 

• Optimal decision-making consists of making choices that maximise the 

growth of one’s wealth over time. The primary quantity of interest for a 

decision-maker is therefore the time average rate of change of wealth, E6
E$
���, 

because this describes what will actually happen to an individual over time 

(as opposed to what will happen to the statistical ensemble of realisations 

of the individual).  



 210 

• However, if the changes in wealth as a result of making a particular decision 

are themselves time-dependent (non-ergodic), then the time average 

change in wealth may not be meaningful. Therefore find the ergodicity 

transformation, 𝑣(𝑤(𝑡)), that removes this time dependence, so that the 

growth rate of this transformed wealth, 	

𝑔(∆𝑡) = 	 ∆4
∆$

, becomes ergodic.  

• Then calculate the time average growth rates, 𝑔̅, either directly by taking 

the long-time limit or by making use of the equality 𝑔̅ = 〈𝑔〉 (the latter 

typically being more convenient).  

• Finally, compare the options and choose whichever has the highest time 

average growth rate, 𝑔̅. 

 

This method has an obvious parallel in Expected Utility Theory (EUT), according to 

which people transform their wealth into utility, then compute the expected 

change in utility under different options and choose whichever is the greatest. The 

key difference, however, is that EUT is an empirical explanation—it aims to 

describe, rather than predict, how people behave, with particular emphasis placed 

on measuring their utility functions—whereas Ergodicity Economics is normative. In 

other words, Ergodicity Economics asserts that there is an optimal ergodicity 

transformation that should be used, which depends on the dynamics of the 

environment, and which can be analytically calculated provided the dynamics are 

invertible. Maximising expected value is optimal only in the specific case where the 

change in wealth you experience is stationary over time and does not depend on 

what you won in the past. In other words one must assume ergodicity which, in the 

real world, is unlikely to be valid. 

 

A corollary, not mentioned by Peters and Adamou but potentially important to 

cognitive neuroscience, is that empirical utility functions can also be interpreted as 

beliefs about the outcome dynamics. If we observe a logarithmic utility function we 

can infer that the participant believes that the changes in wealth they experience 

will be proportional to their current wealth (or more precisely to the amount they 
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are willing to stake). More generally, Peters and Adamou have shown that it is 

possible to calculate the dynamic implied by essentially arbitrary utility functions 

(again provided the function is invertible). This is a powerful tool that allows us to 

go much further than the EUT interpretation of utility functions – quantities like risk 

aversion (or indeed risk seeking) are treated not as idiosyncratic biases but instead 

can be reframed as a belief about the dynamics of the environment. This is the 

second significant conclusion we can draw from the Ergodicity Economics work. 

 

6.3.3 General dynamics and quadratic noise 

In this final set-up section I will briefly set out the Ergodicity Economics framework 

for dealing with arbitrary outcome dynamics. This then provides a platform for 

discussing some of the more important results for the purposes of cognitive 

neuroscience and understanding cognitive effort in particular. 

 

The aim is to model an arbitrary reward process (i.e. not just additive or 

multiplicative) as a type of stochastic differential equation (SDE) called an Itô 

process. Specifically, Peters and Adamou state that this Itô process should be of the 

form 

 

𝑑𝑤 = 𝑎(𝑤)𝑑𝑡 + 𝑏(𝑤)𝑑𝑆 

(6.12) 

 

 

where 𝑑𝑆 is the Wiener increment (randomly distributed noise). 

  

𝑑𝑆	~	𝑁(0, 𝑑𝑡) 

(6.13) 

 

 

This SDE allows us to model different dynamics through the choice of the 

coefficients 𝑎(𝑤) and 𝑏(𝑤).  
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For example an expression for the additive dynamic is obtained by setting 𝑎 = 𝜇 

and 𝑏 = 𝜎. This particular SDE represents Brownian motion. 

 

𝑑𝑤 = 	𝜇𝑑𝑡 + 	𝜎𝑑𝑆 

(6.14) 

 

Similarly the multiplicative dynamic is given by 𝑎 = 𝜇𝑤(𝑡) and 𝑏 = 𝜎𝑤(𝑡), and is 

known as geometric Brownian motion: 

 

𝑑𝑤 = 	𝜇𝑤(𝑡)𝑑𝑡 + 	𝜎𝑤(𝑡)𝑑𝑆 = 𝑤(𝑡)(𝜇𝑑𝑡 + 	𝜎𝑑𝑆) 

 (6.15) 

 

However the real power of this SDE is that it allows us to model arbitrary dynamics. 

For example, 

 

𝑑𝑤 = 𝜇𝑤(𝑡)
3
'𝑑𝑡 + 𝜎𝑤(𝑡)

3
'𝑑𝑆 

(6.16) 

 

encodes a dynamic that interpolates between the additive and multiplicative 

regimes. 

 

To make the connection to the equations in the previous section explicit, note that 

what we have essentially done is invoke the central limit theorem to approximate 

the outcome variables 𝑧 (in the case of the additive dynamic, Equation 6.1) or 𝑟 (in 

the case of the multiplicative dynamic, Equation 6.5) by a normal distribution with 

expected outcome 𝜇 and standard deviation 𝜎. The process for making a decision 

using this SDE is then the same as outlined in the previous section: you solve the 

differential equation, apply an appropriate ergodicity transformation to wealth, 

𝑣(𝑤), then compute the time average growth rate, 𝑔̅. 
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This leads us to the third significant result with regards to understanding effort: 

Peters et al. derive analytical expressions for the additive and multiplicative growth 

rates in terms of 𝜇 and 𝜎 (in the multiplicative case by Taylor-expanding the 

logarithm in 𝑔=���� = 	
〈7 MN6〉
7$

).  

 

𝑔"��� = 	
〈𝑑𝑤〉
𝑑𝑡 = 	𝜇 

(6.17) 

𝑔=���� = 	
〈𝑑 ln𝑤〉
𝑑𝑡 = 	𝜇 −	

1
2 𝜎

' 

(6.18) 

 

What these equations prove is that, if changes in wealth are additive (or are 

believed to be so), outcome noise is irrelevant. However, if changes in wealth are 

(or are believed to be) multiplicative, the time average growth rate depends 

quadratically on noise. Indeed we can be more general than this: whenever the 

outcomes of a particular choice are non-ergodic, the time average growth rate of 

wealth will be affected by noise. If the required ergodicity transformation is 

concave, increasing noise results in a progressively lower growth rate, whereas if it 

is convex, noise increases the growth rate. 

 

This is relevant to understanding effort in two important ways:  

 

First, it provides a rationale for the use of endpoint variance as the cost function in 

physical effort (Harris & Wolpert, 1998), which had up until now been lacking. The 

endpoint of a movement determines the outcome that is received because, 

presumably, if a movement hits the target the reward will be received whereas if it 

misses the reward will be lower or zero (as an aside, the precise relationship 

between endpoint and reward does not matter in this framework, since both 

variables are being approximated with normal distributions). Therefore the time 

average change in wealth is ultimately a function of endpoint variance, provided 
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the reward dynamic is multiplicative. On the other hand, contra Harris and Wolpert, 

in other dynamics the motor cost may depend on some other function of noise.  

 

Second, it implies that outcome noise is a potentially significant confound in 

cognitive effort discounting tasks, since any intended manipulation of effort that 

also affects outcome noise may reduce the time average growth rate in a way that 

looks like effort discounting. Another way to put this that directly answers the 

question posed at the top of Section 6.3 is to say that effort costs are not the only 

explanation for people’s apparent failure to maximise expected rewards – we also 

need to take account of their beliefs about the reward dynamic which, if non-

additive, will mean that outcome noise provides a competing explanation.  

 

For example, consider the N-back working memory task, which is sometimes used 

in cognitive effort tasks (e.g. Westbrook & Braver, 2013). I mentioned in Chapter 4 

that it may be intrinsically more difficult at higher levels, but in addition to this we 

might also be concerned about whether responses, and therefore outcomes, are 

more variable at higher levels too. If so, Equation 6.18 shows that this outcome 

noise would subtract from the growth rate of wealth, constituting another 

confound that could also affect the inferences we draw from these tasks. We 

therefore need at least to be more aware and cautious of these risks when 

conducting cognitive effort experiments. 

 

6.3.4 Specific applications of Ergodicity Economics to optimal control and 

cognitive costs 

In the sections above I have reviewed the Ergodicity Economics framework and how 

it shows that maximising expected value is not universally optimal, and in particular 

that phenomena like effort discounting could result from an economic cost of 

noise. In this final section on Ergodicity Economics, I will now develop these ideas 

further with regards to cognitive neuroscience and costs of control in particular. I 

will focus on three types of control: control over the choice of response, the vigour 

of that response and its precision.  
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6.3.4.1 Control over choice of response 

One of the most fundamental aspects of control is configuring the system for a 

particular task so that it produces optimal responses. In other words, defining in 

advance a mapping between input signals and outputs; for example, on the Stroop 

task this mapping is determined by the instructions – if these say to name the 

colour of the ink, then control is needed to ensure that responses are dictated by 

the colour part of the input signal, and not the semantic information. 

 

A richer example is provided by working memory. Part of the role of control in 

working memory is to configure the mapping between memory inputs (the original 

stimulus) and memory outputs (recalled stimulus) so that we minimise errors (or 

more precisely, the cost of errors) subject to any constraints on memory capacity. 

In this section I will use the Ergodicity Economics framework to derive normative 

recall distributions for working memory under different outcome dynamics. I will 

show that these distributions fit the observed empirical data as well, if not better 

than, existing models which assume that subjective costs are a quadratic function 

of errors. This again means that Ergodicity Economics can provide a competing 

explanation of cognitive control that does not assume subjective costs. 

 

As well as the Ergodicity Economics framework, I will also be making use in this 

section of a branch of Information Theory called Rate-Distortion Theory (Shannon & 

Weaver, 1949); its application to topics in working memory was first discussed by 

Sims (2012 and 2015). My own contribution in this section is in making the 

connection to Ergodicity Economics and specifically in demonstrating a method for 

converting between the two, i.e. for plotting the optimal loss function and working 

memory distribution given a particular reward dynamic.  
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6.3.4.1.1 Rate Distortion Theory – Key Results 

The key parts of Rate-Distortion Theory needed for our present purposes are as 

follows. 

 

A communication channel is defined as the mechanism by which information is 

encoded, transmitted from a sender to a receiver, and then decoded again. 

Furthermore a channel can exist in both space and time, so working memory can be 

understood as a kind of channel in which a message is sent from the present to the 

future. We model this working memory ‘channel’ as a conditional probability 

distribution,	𝑄 = 𝑃(𝑌|𝑋), that recalls a stimulus value 𝑌 given original input 𝑋. We 

treat 𝑋 and 𝑌 as random variables since we are interested in configuring this 

channel in the general case where the stimulus to be remembered is unknown.  

 

 

The capacity of a channel is the maximum amount of information it can convey (i.e. 

as a result of structural constraints). We start by defining the information rate of a 

particular configuration of the channel, 𝐼(𝑄), which is the expected reduction in 

uncertainty about 𝑋 given some observation 𝑌 = 𝑦 (also known as the mutual 

Figure 6.3. A schematic of a communication channel. A channel maps inputs 
to outputs through the conditional distribution 𝑄 = 𝑃(𝑌|𝑋). Usually we 
think of a channel as communicating information from one point in space to 
another, but in our case it can also be used to model memory, which I will 
treat as the communication of information from the present to a point in the 
future.  
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information between 𝑋 and 𝑌). The capacity of a channel is then the maximum 

achievable information rate.  

 

𝐼(𝑄) = 	�𝑞(𝑦|𝑥)𝑝(𝑥) log �
𝑞(𝑦|𝑥)
𝑝(𝑦) � 𝑑𝑥𝑑𝑦 

(6.19) 

 

𝐶 = 	 max
P(R|T)

𝐼(𝑄) 

(6.20) 

 

We can also characterise a channel by its expected loss, or distortion. In the case of 

working memory channel, loss is defined as the cost of recalling 𝑦 when the original 

stimulus value was really 𝑥, ℒ(𝑦, 𝑥). Distortion is then defined as 

 

𝐷ℒ =	�ℒ(𝑦, 𝑥)𝑞(𝑦|𝑥)𝑝(𝑥) 𝑑𝑥𝑑𝑦 

(6.21) 

 

Finally, the goal of Rate Distortion theory—to find the best channel configuration, 

𝑄∗, subject to any constraints on capacity—is satisfied by 

 

𝑄∗ =	argmin
P	∈	P4

𝐷ℒ(𝑄) 

 

𝑄Z = {𝑄: 𝐼(𝑄) ≤ 𝐶} 

(6.22) 

 

Using these equations we can compute the optimal channel configuration for four 

different loss functions and two different channel capacities. The working memory 

response distributions associated with each of these channels are plotted in Figure 

6.4 (reproducing Figure 2 in Sims, 2015). For reference an empirical distribution is 

also plotted in Figure 6.5. 
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Figure 6.4. Optimal working memory response distributions according to 
Rate Distortion Theory. Panel (a) shows four different possible loss functions, 
and (b) shows the associated optimal recall distributions. This are shown as 
error distributions (i.e. response – target value) for ease of plotting. This 
figure reproduces Figure 2 in Sims (2015). 

Figure 6.5. An empirical working memory distribution for comparison with 
Figure 6.4 (data collected by HF). This shows the characteristic von Mises-like 
distribution of recall errors. 
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6.3.4.1.2 Deriving normative working memory distributions 

Loss functions can be of two types: they can be task-defined, meaning the reward 

contingency of the task dictates that a particular loss function is appropriate; or 

they can be empirical, in which case we are simply seeking to measure participants’ 

subjective loss function, typically because we expect them to deviate from the task-

defined function in some way. In the following sections I will restrict the analysis to 

the case seen most often in working memory experiments, where the outcome on 

each trial is linearly related to recall error, i.e. the task-defined loss function should 

be linear3. Sims et al. (2012, 2015) have shown that the empirical loss function 

across a number of previously published studies is nevertheless non-linear, which 

needs somehow to be explained. 

 

As may already have been evident, empirical loss functions as treated by Rate 

Distortion Theory are equivalent to utility in the EUT framework, or the ergodicity 

transformations in Ergodicity Economics, save for the obvious distinction that loss 

refers to a negative change in wealth. I will likewise reinterpret the distortion of a 

channel as the expected (negative) change in transformed wealth, which is 

therefore equal to the time average negative growth rate of wealth. 

 

𝐷ℒ ≡ −
〈𝑑𝑣(𝑤)〉
𝑑𝑡  

					= 	−𝑔̅. 

(6.23) 

 

This makes the connection with Ergodicity Economics clear: maximising the time 

average growth of one’s wealth can be achieved by minimising the distortion of the 

channel, provided the loss function is an ergodicity transformation. We can use this 

knowledge to predict optimal working memory distributions across different 

reward dynamics according to Ergodicity Economics. I will focus on the two 

example cases of additive and multiplicative dynamics. 

 
3 Note this is not a critical assumption – in principle the model could be extended to accommodate 
more complex incentive structures, but this is beyond the scope of this chapter. 
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First, we need to state the incentive structure of the tasks, noting that we have 

restricted ourselves to the case where this is linear. In the additive case (where the 

outcome 𝑧 is the additive change in wealth) and the multiplicative case (where the 

outcome 𝑟 is the multiple on wealth), respectively: 

 

𝑧 ∝ −𝜖 

𝑟 ∝ 1 − 𝜖.  

(6.24) 

 

In both cases there is no change in wealth when error is zero, and as error increases 

the outcome decreases in linear proportion. By choosing an appropriate scale for 𝜖 

we can also define the outcome when error is at its maximum (in this case I will 

scale 𝜖 by 3
[

 so that the loss is normalised between 0 and 1 when error is between 0 

and 𝜋). 

 

Let the loss, ℒ(𝜖), also be defined as the negative change in transformed wealth, 

ℒ(𝜖) ≡ −𝛿𝑣(𝑤). 

 

With these components in place it is then straightforward to show that the optimal 

loss function is linear when the reward dynamic is additive. The required ergodicity 

transformation is just the identity function, 𝑣(𝑤) = 𝑤, and therefore 𝛿𝑣(𝑤) = 𝛿𝑤. 

Substituting 𝛿𝑣(𝑤) = −ℒ(𝜖) and 𝛿𝑤 = 𝑧 = − 3
[
𝜖, we find: 

 

ℒ(𝜖) = 	
1
𝜋 𝜖 

(6.25) 

 

Finding the optimal loss function for the multiplicative dynamic is slightly more 

involved. The required ergodicity transformation is logarithmic, 𝑣(𝑤) = ln𝑤. Then 

the change in transformed wealth is: 
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𝛿𝑣(𝑤) = ln𝑤(𝑡\ + 𝛿𝑡) − ln𝑤(𝑡\) 

= ln
𝑤(𝑡\ + 𝛿𝑡)
𝑤(𝑡\)

 

= ln 𝑟 

(6.26) 

 

Substituting 𝛿𝑣(𝑤) = −ℒ(𝜖) and 𝑟 = 1 − 3
[
𝜖, we find: 

 

ℒ(𝜖) = ln
1

1 − 1
𝜋 𝜖

 

(6.27) 

 

These loss functions, and the response distributions of the optimal channel 

configuration associated with them, are plotted in Figure 6.6 (together with those 

of the cosine loss function as well, for comparison). We can see that the 

distribution in the case of the multiplicative dynamic seems to interpolate between 

those of the additive dynamic (linear loss function) and the cosine loss function. 

Interestingly this matches empirical data reported by Sims (2015), who found that 

participants tend to have sharper recall distributions than he had predicted using a 

cosine loss function. Overall this suggests that cognitive control over the 

configuration of working memory responses could be explained not by quadratic 

costs, as suggested by e.g. Sims (2015) and Ritz et al. (2021), but instead simply by 

participants maximising the growth of their wealth given non-ergodic outcomes. 
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6.3.4.2 Control of signal intensity 

One of the most robust phenomena in cognitive neuroscience and psychology is the 

speed-accuracy trade-off (Heitz 2014; Shmuelof et al., 2012). This refers to the 

observation that, at faster reaction times, accuracy tends to be lower; vice versa, 

maximising accuracy tends to require reaction times that are longer. More 

specifically, this relationship appears to be approximately linear, so that doubling 

the speed of response halves the accuracy (Heitz, 2014).  

Figure 6.6. Optimal working memory response distributions in the Ergodicity 
Economics framework. Panel (a) shows the loss functions (ergodicity 
transformations) for the additive and multiplicative dynamics, as well as a 
cosine loss function for comparison; (b) shows the associated optimal recall 
distributions. The distribution in the multiplicative case seems to interpolate 
between those of the additive dynamic (linear loss function) and the cosine 
loss function. 
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Previously, the speed-accuracy trade-off has been thought to present something of 

a problem, since you can apparently produce the same rate of reward with an 

infinite number of different combinations of speed and accuracy – as a control 

problem, it is described as degenerate (Ritz et al., 2022; Manohar et al., 2015). 

Quadratic effort costs are then typically introduced as a solution to this problem 

because, in introducing a second trade-off that penalises vigour, they create a 

unique, optimum combination of speed and accuracy. 

 

Once again however, this issue only arises if we assume that the change in wealth 

per trial is ergodic. If we do not make the ergodicity assumption, and we allow that 

a person’s ability to access rewards varies over time, for example as a function of 

their current wealth, then the problem of control degeneracy dissolves. Instead, 

there is an optimum level of vigour that results just from maximising the time 

average growth of one’s wealth, and we do not need to invoke effort costs at all.   

 

First, consider a modified version of the SDE for a multiplicative dynamic (geometric 

Brownian motion; Equation 6.15).  

 

𝑑𝑤 = ℓ𝑤(𝜇𝑑𝑡 + 	𝜎𝑑𝑆) 

(6.28) 

 

Peters, 2010, originally derived this equation to solve the problem of how to 

distribute money among different assets in an investment portfolio, where ℓ 

represented the fraction of one’s wealth invested. In the context of cognition, 

however, I suggest ℓ can instead be interpreted as controlling the amount of time 

elapsed (𝑑𝑡) for each increment of reward – in other words the speed or vigour of 

responding.  
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The time average growth rate, analogous to 6.18, can then be calculated: 

 

𝑔=���� = 	 lim∆$→I

∆ ln𝑤
∆𝑡 = 	ℓ𝜇 −	

1
2 ℓ

'𝜎' 

(6.29) 

 

Note that this is similar in form to the equation given in Manohar et al. (2015, p. 

1709 Eq. 1), except that their effort cost term has now been replaced by the 

outcome variance. Thus we can reproduce the same results as existing models, but 

without having to assume the existence of effort costs. In order to produce a 

specifically quadratic dependence on outcome noise we do have to assume that 

people believe the reward dynamic is multiplicative; however, we can relax this 

assumption and assume just that the change in wealth is non-ergodic, and still get 

the same basic result with a different functional dependence on noise. 

 

Finally, the optimal vigour, ℓ)!$ = argmax
ℓ

𝑔=����, can be found by setting 7(2^̂ ^̂ ^
7ℓ

= 0, 

and solving for ℓ: 

 

ℓ)!$ =
𝜇
𝜎' 

(6.30) 

 

These results—the calculation of the time average growth rate and of the optimal 

vigour—are plotted in Figures 6.7a and 6.7b respectively. Here again we see clear 

evidence that what is usually regarded as an indication of the presence of effort 

costs, namely the avoidance of high levels of response vigour, can actually be 

accounted for as a simple consequence of optimal decision-making, taking the non-

ergodicity of the wealth dynamic into account.  
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6.3.4.3 Control of signal precision 

The final aspect of control that I will consider is control over precision. Several 

studies have shown that it is possible to attenuate noise independently of changes 

in response vigour, a phenomenon that Manohar et al. (2015) refer to as “breaking 

the speed-accuracy trade-off”. Because this ability to control noise seems to 

depend on motivation and the amount of reward offered, they suggest that this 

form of control must also come at a cost. The question once again is whether this is 

strictly necessary – can this phenomenon be accounted for without invoking effort 

costs? 

 

Figure 6.7.  The relationships between vigour, expected outcome (𝜇), 
outcome noise (𝜎) and the time-average growth rate of wealth, 𝑔. (a) Both 
low and high levels of vigour lead to low or negative growth rates – instead 
the optimum vigour (the peak of the curve) is intermediate.  (b) The optimal 
vigour decreases as outcome noise increases, but increases with greater 
levels of expected reward.  
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In short, the answer seems to be no. We can show this intuitively by considering 

what happens if we do add another control parameter to allow us to control noise. 

Consider once again equation 6.28. 

 

𝑑𝑤 = ℓ𝑤(𝜇𝑑𝑡 + 	𝜎𝑑𝑆) 

(6.31) 

 

Here response vigour, ℓ, multiplies the mean and noise terms (𝜇𝑑𝑡 and 𝜎𝑑𝑆) 

equally. In order to control noise we would need to add a second control parameter 

(say, 3
_
) which multiplies just the noise term alone. With these two parameters we 

then have full control over the process and no other parameters can be added that 

are not redundant with these two.  

 

𝑑𝑤 = ℓ𝑤(𝜇𝑑𝑡 +	
𝜎
𝑘 𝑑𝑆) 

(6.32) 

 

Computing the new time average growth rate we find: 

 

𝑔=���� = 	ℓ𝜇 −	
ℓ'𝜎'

2𝑘'  

(6.33) 

 

Because 𝑘 is only included in the right hand term, there is no trade-off and the 

function has no maximum – as can be seen in Figure 6.8 below, the time-average 

growth rate approaches a horizontal asymptote at ℓ𝜇 as 𝑘 → ∞, and therefore the 

optimum precision, 𝑘)!$, is infinite. This implies that, on an economic basis, people 

should exert maximum precision at all times; since empirically we see they do not, 

there must be some other reason which, presumably, involves intrinsic costs of 

attenuating noise.  
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In the following section, I will pick up on this suggestion and show that there is 

indeed an obligatory energetic cost of controlling precision in the brain which, to 

my knowledge, has not been discussed previously in relation to cognitive effort. 

  

Figure 6.8. The relationship between precision and the time-average growth 
rate of wealth. Wealth grows more quickly as precision is increased, but 
there is no maximum – the function approaches an asymptote equal to ℓ𝜇 
only in the limit where precision is infinite. This suggests we cannot account 
for effort costs associated with controlling precision within the framework of 
Ergodicity Economics. 
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6.4 Landauer’s principle: A fundamental energetic cost of attenuating 

noise  

A different approach to the question of cognitive effort might start by asking 

whether there are any fundamental, necessary costs involved in operating the 

brain. One answer comes from Landauer’s Principle (1961), which concerns the 

energetic costs of computation. Specifically, the principle states that the erasure of 

𝑛 bits of information necessarily dissipates 𝑛𝑘𝑇ln 2 joules of energy (where 𝑘 is the 

Boltzmann constant and 𝑇 temperature). In essence the principle is a reformulation 

and extension of the Second Law of Thermodynamics, which states that the 

entropy of a closed system cannot decrease. I suggest this may explain several 

features of cognitive effort, namely the fact that the cognitive processes which are 

effortful are invariably those which involve flexibly manipulating information in 

working memory. 

 

Landauer’s argument centres on the issue of logical reversibility, which refers to 

whether the output of a logical operation uniquely determines its inputs (see Figure 

6.9). An operation is logically reversible if there is a one-to-one mapping between 

its input and its output; for example, the negation operation NOT is reversible – if 

the output is TRUE the input must have been FALSE and vice versa. Conversely, an 

operation is logically irreversible if there is a many-to-one mapping between inputs 

and outputs; for example, the conjunction operation AND is irreversible because, 

given the output is true, you cannot know whether the inputs were TRUE-TRUE or 

FALSE-FALSE (and similarly if the output is FALSE). Another way of framing this is to 

say that a logically reversible operation preserves information about the previous 

state of the system (even if just implicitly), whereas during an irreversible operation 

this information is discarded. 
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Landauer’s second point is that information is encoded physically in a computer, in 

the states of its information-bearing degrees of freedom (IBDF; note that the rest of 

the computer and its environment make up the non-information-bearing degrees 

of freedom of the system). For example a bit of information could be encoded in 

the position of a particle, the charge state of a capacitor or, in the brain, the firing 

of a neuron. 

 

The effect of a logically irreversible computation then—in fact, the defining 

feature—is that it reduces the number of logical, and therefore physical, states that 

the IBDF of the system could take. This reduction corresponds to a decrease in 

entropy, which has to be compensated for by an increase in entropy elsewhere 

(such as in the non-IBDF). This is Landauer’s Principle.  

 

Landauer (1961, p. 187) gives the example of an operation called ‘Restore To One’, 

which takes a binary input and, regardless of its value, outputs one (see Figure 

Figure 6.9. The logical (ir)reversibility of computations, in this case negation 
and conjunction. The former is reversible because the mapping of input to 
output is one-to-one; the latter is irreversible because the same mapping is 
many-to-one. 
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6.10). This resets a unit of memory, discarding whatever information it previously 

held. If we imagine performing this operation on an ensemble of bits in thermal 

equilibrium (such that there are initially an equal number of ones and zeros) then 

the number of different states in the ensemble will be reduced from two to one, 

resulting in a reduction in the entropy of the ensemble of 𝑘𝑇ln 2 joules per bit (see 

Equation 6.34). This is the so-called Landauer Limit, the theoretical lower bound of 

energy dissipation for any computer carrying out irreversible operations. 

 

 

 

 

Landauer (1961) runs through a number of other examples, including more complex 

computations, situations where the entropy is computed over time rather than 

over a statistical ensemble, and where the compression of the output state space is 

not completed within a single cycle of computation. In all cases, the same result 

holds. Likewise Bennett (2003) discusses and refutes the main objections that have 

been raised against Landauer’s Principle over the years, including most notably the 

claim that logically irreversible operations might be implemented in a 

thermodynamically reversible way. I refer the reader to these two papers for 

further details. In addition, it should be noted that in recent years significant 

empirical evidence has also been accumulating that validates the Landauer Limit of 

Equation: 
 
∆𝑆 = 𝑆%*!,$ − 𝑆),$!,$  
= 𝑘𝑇ln2 − 𝑘𝑇ln1 

= 𝑘𝑇ln2 
(6.34) 

 

Figure 6.10. Calculating the energy dissipation resulting from the operation 
‘Restore To One’. (left) ‘Restore To One’ maps any input, regardless of its 
value, onto one. In so doing, the number of states that can be occupied 
decreases from two to one (assuming inputs and outputs are binary); (right) 
The calculation of the minimum necessary energy dissipation 
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𝑘𝑇ln 2 joules per bit erased: most notably, Bérut et al. (2012) verified that shifting a 

charged particle trapped in a bistable potential well rightwards, regardless of its 

current position (i.e. carrying out the ‘Restore to One’ operation), dissipates an 

amount of energy that approaches the Landauer limit asymptotically as the 

movement time increases. For a review of this and similar experiments, see Lutz & 

Ciliberto (2015).  

 

6.4.1 Landauer’s Principle in cognition 

In applying Landauer’s Principle to cognition, my contention is that energy 

dissipation as a consequence of discarding information provides a strong rationale 

for cognitive effort costs. In particular I propose that energetic costs are of two 

types: first there are costs like those I have discussed already, that result from 

clearing or otherwise ‘resetting’ memory; second, there are more specific costs of 

removing noise and controlling precision. In this section I will discuss these two 

potential sources of costs in turn.  

 

Three cognitive processes consistently identified as cognitively effortful are task 

switching, response inhibition, and updating the contents of working memory (see 

e.g. Shenhav et al., 2017, and Westbrook & Braver, 2015). All of these, I would 

argue, are instances of ‘Restore To One’ type operations, in the sense that they 

involve clearing part of the contents of working memory and replacing it with new 

information. In task switching for example, performing any controlled, non-

automatic task depends on setting up and maintaining a representation of the rules 

and requirements of the task, known as the task set; task switching, and other 

processes like it (including attention shifting, rule switching and switching between 

different stimulus-response mappings), are then thought to require discarding this 

task set and setting up another one appropriate to the new task (Apps et al., 2015; 

Chiu & Lantis, 2009). This necessarily dissipates energy because the new task set is 

put in place regardless of what was previously held in memory. Likewise when a 

prepotent response is inhibited this means that the information encoded in the 

action signal must be discarded, and so again it gets dissipated to the environment 



 232 

as heat. Intuitively it seems plausible that this loss of energy should constitute a 

cognitive cost which the brain seeks to minimise. 

 

Another cognitive process that appears to be effortful involves removing noise and 

therefore controlling the precision of cognitive signalling (Manohar et al., 2015). It 

is not so straightforward to identify whether there are energetic costs of removing 

noise, however, at least compared with the case where memory is being cleared 

completely. This is in part because there are some subtleties in the reasoning here, 

which will be important when I discuss some of the empirical results below. 

 

In the first place, we are not looking to clear memory entirely, only to remove that 

portion of the signal which is noise. This is like trying to restore an ensemble of bits 

not simply to one, but to whichever value, one or zero, comprised the original 

signal before it was corrupted by noise; the challenge is to find a general operation 

that achieves this without knowing explicitly what the ‘Restore to’ target is (if we 

knew the target with certainty then of course we would already have access to a 

copy of the original signal). Nevertheless, by treating the task of removing noise as 

an example of a ‘Restore’-type computation, it becomes clearer that what we are 

seeking to do is to reduce the entropy of the signal, which must come at an 

energetic cost. 

 

One suggested mechanism by which noise might be attenuated in the brain is by 

averaging across an ensemble of independent neurons and then thresholding the 

result (as in e.g. Manohar et al., 2015). For example, imagine monitoring a simple 

ensemble of three neurons, with firing state represented by 0 or 1, that all encoded 

the same signal originally but have since been corrupted by noise. Assuming order 

does not matter, you could initially observe any of four possible states of the 

ensemble, 111, 110, 100, and 000. If you then take an average across the ensemble 

(and round up/down as appropriate so that the outputs are binary), you will 

observe one of only two possible output states, 111 or 000. The number of possible 

states has reduced by half, corresponding to a dissipation of 𝑘𝑇ln 2 joules. It can be 
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shown that, as the size of the ensemble under consideration grows, the energy 

dissipated increases logarithmically.  

 

Ultimately it is the thresholding operation here which is the cause of the reduction 

in the number of possible states, and it is worth examining this in more detail. We 

can model a neuron very simply as a particle trapped in a bistable potential well 

(see Figure 6.11): when the particle is in the left-hand well the neuron is silent; 

small, subthreshold changes in the neuron’s membrane voltage do not affect the 

neuron’s state, but a sufficiently large depolarisation will trigger sodium channels, 

inducing a transient current to the right that pushes the particle into the second 

well, corresponding to the firing of an action potential; simultaneously the 

sodium/potassium pump polarises the neuron, inducing a constant current that 

pushes the particle to the left.  

 

 

 

 

Polarised 
(OFF) 

Depolarised 
(ON) 

Dissipative current 

Impulse from 
action potential 

Figure 6.11. Modelling the removal of noise on the level of a single neuron. 
The state of the neuron is represented by a particle in a bistable potential 
well with two states, OFF (highly polarised) and ON (depolarised). Noise is 
controlled through the depth of the wells and the strength of the dissipative 
current, which prevent random fluctuations from influencing the state of the 
particle but increase the energy required when a signal is delivered. 
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The leftward current essentially implements a ‘Restore To Zero’ computation, 

resetting the neuron regardless of its current state. This erases any changes in 

membrane potential resulting from thermal noise before they are able to 

accumulate, but comes with two related costs: first, the by now familiar cost of 

erasing information, in the form of heat energy dissipated to the environment; 

secondly, the fact that any input signal to the neuron now needs to be stronger in 

order to overcome the leftward current and push the neuron above the threshold 

potential into the right-hand well. This means that, in order to maintain the neuron 

in the ON state—for example when trying to maintain information precisely in 

memory—we need to constantly supply a force to the particle equal to the force of 

the leftward current.  

 

This arrangement defines a non-equilibrium steady state (NESS), a type of system in 

which there is constant, positive entropy transfer from the system to the 

environment over time. These systems are relatively well-characterised in physics, 

and it is generally possible to compute the entropy production (energy dissipation) 

rate exactly (Cocconi et al., 2020). The calculation is beyond the scope of this 

chapter, but this would be an important result to achieve because it would provide 

exact predictions of the power consumption of the brain when carrying out 

operations such as working memory. These could then be compared with empirical 

evidence of cognitive effort costs to allow us to test relatively directly my 

hypothesis that the former explains the latter. Similar studies have been conducted 

previously in other domains; e.g. Mehta and Schwab (2012) calculated the power 

consumption of a cell that uses energy to precisely measure external ligand 

concentrations, and Tu (2008) did similarly for power consumption of the flagellar 

motor of the E. Coli bacterium. 

 

Finally, demonstrating that there is already some empirical support for the idea of 

intrinsic, energetic cognitive costs, I will briefly mention a study conducted by 

Padamsey et al., 2022. In it, they assessed visual coding precision in mice 

undergoing food restriction, while simultaneously conducting whole-cell recording 

in V1. They found that the neurons of mice that were food-restricted had lower 
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AMPA receptor conductivity (in Figure 6.11, weaker rightwards current), higher 

input resistance (shallower potential wells) and lower resting polarisation (weaker 

leftwards current) compared with mice that had had food ad libitum. We can 

interpret these results as a set of adaptations to the lower energy environment that 

reduce the energy dissipated during the encoding and maintenance of visual 

information, but at a cost of precision – in Figure 6.11, flattening the potential wells 

and reducing the strength of the polarising current reduces the energy dissipated 

during signalling but also means it is easier for thermal fluctuations to push the 

particle from one side to the other. Indeed, Padamsey et al. found exactly this, with 

lower rates of ATP use in mice in the food restriction group, but also lower signal-

to-noise in the neuronal responses and worse behavioural (visual discrimination) 

performance. Thus this directly links control over precision with energetic costs, 

and in particular matches the mechanism suggested in Figure 6.11 above, in which 

noise is removed via a dissipative current which can be up or downregulated 

depending on energy requirements.  

 

In summary, then, I suggest that there are fundamental energetic costs of 

cognition, and that these seem to map directly onto the kinds of processes that are 

traditionally described as effortful, namely task switching, response inhibition, 

working memory updating and maintenance of signal precision. These energetic 

costs are described by Landauer’s Principle which states that there is an 

unavoidable cost of any computation which is logically irreversible, i.e. that discards 

information. This cost refers specifically to heat dissipated to the surrounding 

environment (or more precisely to the system’s non-information-bearing degrees of 

freedom) and it is this that I suggest corresponds to effort costs. 
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6.5 Discussion 

In this chapter I have advanced two conceptually different, but complementary 

ideas: first that a number of phenomena that appear to be evidence of cognitive 

effort costs are not necessarily so – instead, these can be accounted for without 

effort costs, if the per-trial change in wealth experienced by participants is non-

ergodic. The one cost that cannot be accounted for in this way is the cost of 

controlling precision, which dovetails with the second part of this chapter, in which 

I discussed Landauer’s Principle that there is an unavoidable energetic cost of 

computations that discard information from memory. Such computations include 

removing noise, and therefore I suggest that this energetic cost may underlie the 

subjective effort costs associated with control over precision. 

 

The implications of this work as a whole are potentially significant, as there has 

been little progress in recent years on developing a theory of cognitive effort costs. 

In this chapter I have presented a relatively comprehensive account of a number of 

different aspects of subjective effort costs and effort-based decision-making, with 

which we should be in a position to make stronger predictions about behaviour, 

and therefore to better understand one of the key limiting factors in cognition and 

motivation. Even if the ideas presented in this chapter turn out to be incorrect, they 

will at least have introduced a fresh perspective which may help to kindle better 

theories in the future. 

 

6.5.1 Implications and limitations of the Ergodicity Economics account of effort 

costs 

There are a number of more specific implications of the Ergodicity Economics work. 

The core point is that maximising the expected value of one’s choices is not 

universally optimal and depends on whether we can safely assume that the per-trial 

change in wealth is ergodic. If the ergodicity assumption is not satisfied then 

several aspects of motor and cognitive control immediately become possible to 

explain without recourse to intrinsic effort costs: 
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• In motor control, movement endpoint noise is costly because, over time, it 

results in a lower growth rate of wealth. Specifically, if the reward dynamic 

is multiplicative the cost will be proportional to endpoint variance, which 

agrees with the theory of Harris & Wolpert (1998). 

• What appears to be effort discounting—valuing a task less as the effort 

demand increases—can also be explained if the effort manipulation affects 

response (and therefore outcome) noise. As above, in non-ergodic regimes, 

outcome noise subtracts from the growth rate of wealth and is therefore 

costly.   

• By combining Ergodicity Economics and Rate-Distortion Theory we can 

generate normative working memory recall distributions. The distribution 

when the reward dynamic is multiplicative approximately reproduces 

empirical working memory performance (von Mises-like distribution of 

recall error). 

• There is an optimum solution to the speed/accuracy tradeoff, provided the 

reward regime is non-ergodic. In agreement with previous empirical and 

theoretical work (Manohar et al., 2015), this solution is dependent on both 

the expected reward and outcome noise. 

 

Of course the chief limitation of this account is that in most cognitive effort 

experiments the reward dynamic within the task is additive, so that the per-trial 

change in wealth is indeed ergodic. In this case strictly speaking most of the results 

derived above do not apply – optimal decision-making should then consist of simply 

maximising the expected change in wealth. However, there are three ways I would 

respond to this concern. First, we observe that people do behave as if outcome 

noise is costly – for example, empirically people tend to have approximately 

logarithmic utility functions (e.g. Groom & Maddison, 2018), so they at least behave 

as if they anticipate the change in their wealth to be non-ergodic. Second, 

ergodicity is a restrictive assumption that a priori is unlikely to hold very often in 

the real world – as a general rule, do we really expect that people have access to 

the same outcomes regardless of their current wealth, or instead are the outcomes 
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they are able to achieve dependent in some way on what they received in the past? 

Third, and related to the previous point, although we specify what the reward 

dynamic is within the ‘small world’ of an experiment, participants who do our tasks 

of course live within a larger, real world in which the actual reward dynamic they 

experience may be different. Thus participants may use a non-linear ergodicity 

transformation even though we, from the point of view of the experimenter, may 

think they ought to use a linear one. 

 

This in turn tends to shift the interpretation of Ergodicity Economics towards 

treating it as a descriptive theory (i.e. simply measuring how people behave), rather 

than the normative theory it was intended to be (i.e. prescribing how people should 

behave). Ultimately probably the only solution to this is careful experimentation. As 

an example, a study conducted recently by Meder et al. (2019) measured 

participants’ empirical utility functions in different reward dynamics – they found 

that the utility functions themselves were not exact ergodicity transformations (i.e. 

they were not perfectly linear in the additive dynamic and logarithmic in the 

multiplicative dynamic), but nevertheless participants did adjust their utility 

function to the different dynamics, just as one would expect if the utility function is 

really an ergodicity transformation. This supports the idea that participants 

probably do employ ergodicity transformations, but that these take account of not 

just the parameters in the small-world of the experiment but also of other outside 

information as well.  

 

6.5.2 Implications and limitations of applying Landauer’s Principle to effort costs 

The main significance of the section on Landauer’s Principle is that it shows there 

are intrinsic energetic costs of cognition that seem to map fairly neatly onto those 

operations we know are subjectively effortful. More precisely, however, I proposed 

that these costs may reflect energy dissipation as heat. This is a different, and 

somewhat more exact, prediction compared with earlier (failed) attempts to link 

effort with intrinsic metabolic costs like glucose consumption (Gailliot & 

Baumeister, 2007; Gailliot et al., 2007). In particular, although one study mentioned 

above did find a significant relationship between energy consumption at the 
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cellular level and behaviour that looks to be related to effort avoidance (Padamsey 

et al., 2022), it is unclear whether this relationship should be expected to hold on 

the scale of the whole human brain. Instead I think effort costs may reflect the 

need to avoid accumulating too much heat within the brain, either because of the 

direct damage this may cause or because this in turn increases the thermal noise in 

the IBDF which necessitates further noise removal. This is not an area that has been 

well-researched at all so far, but of what has been done it is interesting to note that 

brain temperature fluctuates quite substantially (by 3–4°C), and that it tends to be 

consistently hotter than arterial blood, so that at least part of the function of 

cerebral blood flow may be to cool the brain, not just to supply oxygen and 

nutrients (Kiyatkin, 2019). This implies that the accumulation of heat is at least a 

genuine problem that the brain has to manage and seek to minimise. 

 

Probably the biggest limitation with this idea is that of course the Landauer Limit 

describes only the minimum energy dissipation required; the actual energy 

dissipated could be much more, while at the same time it is true that logically 

reversible operations could also be implemented in a way that is 

thermodynamically irreversible, and therefore dissipates energy. Thus the 

relevance of the Landauer Limit is initially unclear – this is ultimately an empirical 

question which will need to be resolved by measuring real energy dissipation in the 

brain and comparing it with predictions of the theory. Relatedly, I mentioned above 

that there is more detailed mathematical work that could be done to calculate the 

entropy production rate during different cognitive operations. This would be 

especially useful in providing precise predictions of the energy dissipation for 

comparison with empirical data.  

 

6.5.3 Conclusion 

In this chapter I have presented two complementary ideas looking at different 

aspects of cognitive effort costs, and exploring to what extent we can show that 

intrinsic costs do (or do not) exist. On the one hand, Ergodicity Economics suggests 

that a number of phenomena that are usually taken as evidence of intrinsic effort 

can also be accounted for by optimal decision-making in the absence of effort costs, 
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provided the context is (or is believed to be) non-ergodic. On the other hand, 

controlling precision (removing noise) in the brain does necessarily dissipate 

energy, and I suggest that this transfer of heat to the surroundings may be treated 

as an intrinsic effort cost by the brain.   
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Chapter 7. General Discussion 

 

This discussion section will provide a synthesis of the ideas and results presented 

over the course of the four experimental chapters and one theory chapter 

comprising this thesis. After giving a brief summary of the aims, hypotheses and 

results of each chapter, I will then discuss the ways that these relate to the overall 

aims of this thesis, which were to investigate the role of effort in Pavlovian bias, 

and the associations between effort, Pavlovian bias and symptoms of anxiety and 

depression. I will then discuss the implications and limitations of each chapter, 

leading to suggestions for future research. Finally I will end with a concluding 

section, summarising the findings of the thesis and the subsequent main points of 

this general discussion. 

 

7.1 Summary of individual chapter aims and main results 

The overall aim of this thesis was to investigate the relationship between effort and 

control over Pavlovian biases. In particular I was interested in exploring the 

potential mechanistic links between effort, Pavlovian biases and symptoms of 

anxiety and depression, which previous research has suggested are separately all 

associated with one another (Husain & Roiser, 2017; Dayan & Huys, 2008), but 

which have not been considered together before. I started by examining whether, 

through a regime of deliberate behavioural practice, participants could become 

better at overcoming their Pavlovian biases (Chapters 2 and 3). Subsequently, 

having identified that indeed they could, I then sought to test the hypothesis that 

this result was due to a cognitive control mechanism acting on Pavlovian biases. 

Specifically I focussed on the corollary of this hypothesis that the strength of 

Pavlovian biases should depend on one’s willingness to exert effort (because 

cognitive control is dependent on effort; Shenhav et al., 2017). In order to pursue 

this idea I first had to develop a new measure of cognitive effort sensitivity that 

would be more suitable for individual differences research than previously existing 

measures – this became the Number Switching Task (Chapter 4). Then in Chapter 5, 

I set out to test whether there was a relationship between effort sensitivity 
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(quantified using the Number Switching Task) and the strength of Pavlovian biases. 

Following these four empirical chapters, I presented a standalone theory chapter in 

which I attempted to address what I consider to be a significant problem at the core 

of cognitive effort research, namely that we still do not understand why cognitive 

effort appears to be costly (Chapter 6).  

 

7.1.1 Chapter 2 

The aim of Chapter 2 was to see whether the influence of Pavlovian biases on 

behaviour could be altered through a programme of behavioural training. Although 

Pavlovian biases themselves are generally conceived of as fixed responses to 

predictions of reward and punishment (Guitart-Masip et al., 2012), it has been 

suggested that they may be able to be overcome through the action of cognitive 

control. Most of the evidence for this is indirect, however, being based on 

neuroimaging results that show a correlation between frontal brain activity and 

reduced Pavlovian biases. By looking at whether the strength of Pavlovian biases 

could be deliberately changed, I hoped to be able to provide stronger evidence of 

the ability to control Pavlovian biases. I therefore conducted a blinded, sham-

controlled study in which participants were trained specifically on the high-conflict 

trial types of the Orthogonal Go/No-Go task (Guitart-Masip et al., 2011). I 

compared their performance before and after the training to determine whether 

the active training group experienced any changes relative to the sham training 

group.  

 

In addition, the idea of enhancing control is an important ambition in itself, both 

with regards to Pavlovian biases specifically (which have been linked to symptoms 

of mental health conditions like anxiety and depression; Dayan & Huys, 2008) and 

also in other areas of cognition more broadly. I anticipated that any enhancement 

of control on the Orthogonal Go/No-Go Task would also extend to control over 

cognitive bias in the secondary tasks (the Affective Bias task and the Risk Taking 

task; Aylward et al., 2020; Rutledge et al., 2015), as well as reduced symptoms of 

anxiety and depression. 
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On the contrary, however, I found that the active training appeared to have no 

significant effect. Unfortunately the interpretation of this result was hampered 

somewhat by an issue with the full version of the Orthogonal Go/No-Go task that 

prevented participants’ responses being recorded. As a result I was only able to 

consider the change in performance during the five training sessions. I observed 

that the active training group showed no significant improvement over the training, 

which strongly suggests that it had no effect, but of course without the Baseline–

Follow-up comparison we cannot be completely certain. Surprisingly there was a 

significant improvement over the course of training in the sham training group, 

which is superficially quite difficult to explain; however, it seems this effect may 

have been driven by relatively low accuracy in the first training session (which then 

immediately improved by the second session). The most likely explanation 

therefore is that, before the start of the first training session, all participants had to 

some extent forgotten the stimulus associations, but those in the sham group 

recovered quickly because their trials were easier than for those in the active 

group.  

 

As was to be expected given the lack of a significant active training effect, there 

were no significant training group or timepoint effects on either of the secondary 

tasks. There was, however, a significant main effect of gamble framing on the Risk 

Taking Task, replicating a key result from previous studies with this task (Rutledge 

et al., 2015). There were also no training group effects on the anxiety and 

depression symptom scales, though surprisingly there was a small main effect of 

timepoint on depression symptoms, which I suggested in Chapter 2 was either a 

placebo effect or an artefact of repeated testing. 

 

7.1.2 Chapter 3 

This study was aimed at implementing a number of improvements to the previous 

experiment, namely: the study was moved entirely online, allowing us to recruit a 

much larger sample and therefore achieve greater statistical power; the issue with 

the full Go/No-Go task was fixed; I implemented a more comprehensive set of 

instructions, comprehension checks and exclusion criteria; additionally, the 
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Affective Bias task was altered to use visual, rather than auditory, stimuli (Daniel-

Watanabe et al., 2022) – the former being more suitable for online testing. My 

predictions and hypotheses for this study nevertheless remained the same as in 

Chapter 2.  

 

This time I did observe a significant training effect, with participants in the active 

training group showing a greater improvement between Baseline and Follow-up 

than those in the sham training group. This was reinforced by computational 

modelling results which indicated that the Pavlovian bias parameter was reduced 

all the way to zero in participants who completed the active training. Regarding the 

secondary measures, there were still no significant differences between the training 

groups, indicating that the improvement in control over Pavlovian biases did not 

transfer to other domains. However, there was again a significant main effect of 

timepoint on depression symptoms (which reduced after training in both training 

groups, active and sham). Similarly, affective bias became less negative after 

training in both training groups.  

 

7.1.3 Chapter 4 

In this third study I looked to develop a measure of cognitive effort sensitivity able 

to fulfil two main criteria: the difficulty of the task had to be able to be standardised 

across participants; and the manipulation of effort level within the task had to be 

achieved without affecting the probability of success (Chong et al., 2016). Both of 

these conditions related to the need to avoid confounding from probability 

discounting, which is where the value of a choice is affected by the probability of 

obtaining reward from it – even if the offered rewards are held the same, if the 

probability of achieving them is lower, then the expected value will be reduced. 

Probability discounting and effort discounting then become impossible to 

disentangle. My main aims in this study were therefore to explore the new task I 

had designed (the Number Switching Task), verify that it met these criteria and 

investigate a number of potential associations between effort sensitivity and other 

self-report cognitive and behavioural measures. 
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The most important result was that the task did seem to work as anticipated. I 

found clear evidence of effort discounting, while at the same time rates of success 

across the different effort levels were held constant. The standardisation of the task 

was also successful, as I observed relatively little variability in success rates 

between participants. There was a significant effect of effort level on completion 

times, suggesting that, as one might expect, the more demanding levels of the task 

required greater control (Shenhav et al., 2017). Finally with regards to validation, I 

found with the Subjective Task Load measure that participants consistently rated 

the effort levels as being progressively more demanding, except on the dimension 

of performance; here, they correctly reported that performance was unchanged by 

the effort manipulation. This provides further reassurance that the results on the 

Number Switching Task reflected genuine effort discounting and not just 

experimenter demand effects. Finally I then demonstrated the use of a 

computational model of the task for individual differences research, from which I 

extracted participant-level effort sensitivity, reward sensitivity and intercept 

parameters to then be correlated with other measures of interest. There were, 

however, no significant associations with effort sensitivity in this study; the only 

significant relationship was between reward sensitivity and Need for Cognition, a 

construct representing participants’ enjoyment of cognitively demanding activity. 

 

7.1.4 Chapter 5 

In this final empirical chapter, my aim was to investigate further the role, suggested 

in Chapter 3, of cognitive effort in exerting control over Pavlovian biases. My 

specific hypothesis was that overcoming Pavlovian biases may to some extent 

depend on exerting sufficient effort, and therefore differences between people in 

their Pavlovian biases may reflect alterations in effort-based decision-making, such 

as in sensitivity to effort costs. In carrying out this study I made use of the cognitive 

effort task described in the previous chapter. Specifically I looked at whether there 

was any correlation between the decision-making parameters measured by the NST 

and Pavlovian biases measured by the Go/No-Go task. In addition I also examined 

whether there was any relationship between both effort processing and Pavlovian 

biases, and anxiety and depression symptoms.  
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The results of this study were, however, relatively mixed. On the one hand I found 

that there was, as predicted, a significant positive correlation between model-

based measures of effort sensitivity and Pavlovian bias, suggesting that participants 

who were typically more affected by effort costs tended also to show higher 

Pavlovian biases. However, analysis of the model fits suggested there were possibly 

some issues, leading to questions over the extent to which this result can be seen 

as reliable. Moreover the result was not replicated in the model-agnostic analysis, 

so ought to be interpreted with caution. In secondary analyses, I found that there 

was a significant correlation between effort sensitivity and symptoms of trait 

anxiety and depression, which corresponds with earlier work linking effort with 

both of these conditions. On the other hand, I found there was no significant 

correlation between Pavlovian bias and anxiety or depression symptoms – this 

qualifies earlier results which have shown significant associations both in clinical 

samples and in healthy participants undergoing a state anxiety manipulation 

(Mkrtchian, Aylward, et al., 2017; Mkrtchian, Roiser et al., 2017). 

 

7.1.5 Chapter 6 

Chapter 6 was a standalone theory chapter in which I aimed to address what I see 

as the biggest problem with cognitive effort research at the moment, namely that 

we still cannot explain why effort should be costly. My ambition was not necessarily 

to solve this problem outright, but instead to introduce some new ideas from 

outside of neuroscience, which I hope may stimulate future debate and provide 

momentum for research on this issue. Specifically, in this chapter I first showed that 

what appears to be evidence of cognitive costs—effort discounting—can in fact be 

accounted for by optimal decision-making in the absence of any intrinsic costs, 

provided outcomes are (or participants believe them to be) non-ergodic. The classic 

example of this is when rewards are multiplicative: what you gain or lose depends 

on what you already have. The mathematical framework on which this observation 

is based is called Ergodicity Economics (Peters et al., 2019) and from it I have 

demonstrated a number of other specific results. For example, given a 

multiplicative dynamic, effort costs should depend quadratically on outcome 

variance (in the domain of motor control, this now finally explains why physical 
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effort costs are associated with movement endpoint variance; Harris & Wolpert, 

1998). In the domain of working memory, we can recreate the characteristic von 

Mises-like distribution of response errors. Finally it also explains why motor and 

cognitive vigour are costly and why the speed-accuracy trade-off can be “broken” 

by reward (Manohar et al., 2015).  

 

The one cost that does not seem to be accounted for in the Ergodicity Economics 

framework is that of attenuating noise – from an economic standpoint, outcome 

noise is costly and should always be minimised as much as possible. In the second 

part of this chapter I therefore addressed this gap directly, reviewing a second idea, 

Landauer’s Principle (Landauer, 1961), which explains that there are unavoidable 

energetic costs of attenuating noise. Together these two ideas, Ergodicity 

Economics and Landauer’s Principle, seem to provide a more or less comprehensive 

account of effort costs. To what extent this account is found to be correct will of 

course depend on future experimental research. 

 

7.2 Implications 

Together the four empirical chapters of this thesis contribute to an improved 

understanding of the role of effort in control over Pavlovian biases, a link which had 

not been made at all before. In particular these results suggest that we should 

consider Pavlovian biases within the framework of effort-based decision-making. In 

the introduction to this thesis I posed several questions, including: why do 

Pavlovian biases exist, and why do we not rely on the supposedly optimal 

instrumental systems alone? I would now hazard at least a partial answer that, 

when Pavlovian biases affect behaviour, it is because we have made an economic 

decision not to exert control; this decision in turn depends on external quantities 

like the incentive offered for accurate responding, and internal quantities like the 

estimated efficacy of exerting control, and the subjective effort costs of doing so. 

By understanding Pavlovian biases in terms of effort, we are then able to describe 

the calculations and mechanisms that are thought to be involved (see Shenhav et 
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al., 2013, 2017) and therefore also identify a set of targets that we might try to 

manipulate if we were to seek to shift these biases (see Section 7.4 below). 

 

The particular significance of Chapters 2 and 3 was to provide direct evidence that 

Pavlovian biases are flexible and able to be changed. This is an important, implicit 

assumption of the hypothesis that these biases are subject to cognitive control, and 

one that had not been tested previously. Earlier papers had speculated on the 

existence of a cognitive control mechanism that regulates the Pavlovian system, but 

the actual evidence mainly comprised neuroimaging studies which correlate frontal 

brain activity with performance and claim that this reflects cognitive control 

(Cavanagh et al., 2013; Guitart-Masip et al., 2011, 2014). Thus Chapters 2 and 3 

allow us to be more confident in the assertion that Pavlovian biases are in principle 

able to be controlled. Building on this, in Chapters 4 and 5, I then showed that the 

strength of Pavlovian biases is associated with a participant’s willingness to exert 

cognitive effort. If this result is validated and confirmed (note discussion of the 

limitations of this study in Section 7.3 and future research needed in 7.4) it would 

be consistent with the idea that the influence of Pavlovian biases on behaviour is 

affected by control, and that this in turn requires effort. This would also help to 

inform our understanding of the results of Chapter 3, because it is then possible 

that the training worked by altering participants’ willingness to exert control over 

their biases. This would potentially have wider, more significant implications for 

enhancing effort in other domains, but of course further research is needed to 

answer this directly (see Section 7.4). 

 

These results are illustrated in Figure 7.1, which reproduces the proposed scheme 

for the relationship between effort, control and Pavlovian biases shown previously 

in the introduction. Here, though, I have now also highlighted the relevance of 

Chapters 3 and 5 in particular, the sources of the main results of this thesis, 

highlighting how these address the links in the chain between effort and cognitive 

control on the one hand, and subsequently between control and Pavlovian biases 

on the other.  
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7.2.1 New treatments for anxiety and depression symptoms? 

One of the secondary, but still important, implications of the study in Chapter 3 is 

that it suggests that behavioural training might prove a useful approach for trying 

to treat enhanced Pavlovian biases in, for example, anxiety or depression. Naturally 

this training is still a long way off from even pre-clinical research in its current state, 

but it is nevertheless an intervention that may have some promise.  

 

The use of this training as a potential treatment for conditions like anxiety and 

depression of course ultimately depends on it shifting not just Pavlovian biases 

themselves but also, more importantly, symptoms. The failure to see a significant 

active training effect on symptoms in both Chapters 2 and 3 was therefore not 

ideal; in reality, however, the training used here was relatively short and low 

intensity, so this negative result should by no means be regarded as conclusive. 

Indeed SSRIs, which are believed to have a similar effect on symptoms through 

bottom up changes in biases, also take several weeks to impact on mood (Harmer & 

Cowen, 2013), so this result is not entirely unexpected. Likewise, the lack of 

transfer of enhanced cognitive control to the other two tasks (the Affective Bias 

Pavlovian 
Bias Effort Cognitive 

Control 

+ – 

Figure 7.1. The assessed relationship between effort, cognitive control 
and Pavlovian biases. This figure was previously presented in the 
introduction as the proposed relationship between  these quantities; 
now, informed in particular by the results of Chapters 3 and 5, it seems 
that this scheme broadly holds true. 

Chapter 3 Chapter 5 
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Task and the Risk Taking Task) is not fatal – transfer effects are notoriously difficult 

to achieve and, as we will discuss in Section 7.4, if they are a priority in future 

studies then there is scope to alter the training to try to facilitate them.  

 

7.2.2 Improved measurement of cognitive effort 

The new cognitive effort task (Chapter 4) clearly makes a practical contribution to 

cognitive effort research in that it fulfils a need for a task which is designed 

explicitly for individual differences research, particularly research with clinical 

populations whose cognitive capacity may be decreased relative to healthy 

controls. One of the methodological difficulties in studying cognitive effort in these 

populations is that it is difficult to disentangle differences in effort sensitivity from 

differences in the chance of successfully completing the task; in other words, if we 

observe greater effort discounting in patients, say, this may be because they 

experience greater effort costs or because the expected value of the task is lower. 

The new cognitive effort task resolves this issue by allowing the task difficulty to be 

standardised across participants; as such it could potentially be very useful in future 

individual differences and mental health studies.  

 

7.2.3 Theoretical advances 

Finally, the significance of Chapter 6 is naturally somewhat different from that of 

the four empirical chapters. The key motivation was to address a major problem at 

the core of cognitive effort research: although effort costs are an important topic of 

research, with a lot of studies (including in this thesis) based on quantifying them 

and relating them to other aspects of cognition, we do not know why they exist; 

indeed, we do not have a theory which says they necessarily do exist at all. This 

chapter is therefore important first of all in highlighting that this is a problem which 

urgently needs addressing – there is little point in building up a research 

programme that looks at, say, the neural correlates of effort costs or their 

association with other aspects of behaviour and cognition if the foundations 

ultimately turn out to be shaky. Secondly, the ideas presented in Chapter 6 give a 

relatively comprehensive account of possible sources of effort costs which, though 
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it may be superseded in the future, will hopefully have provided some new impetus 

to this topic. 

 

7.3 Limitations of studies 

There were, as I acknowledged in Chapter 2 itself, some major problems with the 

first training study. The most significant of these was of course that we did not have 

usable data for the full Orthogonal Go/No-Go Task. This meant that we had to rely 

on the data from the training sessions themselves to infer that there was no 

improvement in the active training group and, while this was fairly convincing, it 

nevertheless does leave some room for doubt. Besides this, it was also naturally 

rather unsatisfying to be missing data for one of our primary measures. In addition 

to this, the study did not include any explicit comprehension checks or 

performance-based exclusions, so it is possible that the data quality is not as good 

as it could have been. As we saw later in Chapters 3 and 5, when these checks were 

then put in place, some exclusions were necessary; therefore it is feasible that in 

the earlier study some participants may have been included who misunderstood 

the instructions or failed to pay sufficient attention. Finally, the sample size was 

definitely a limiting factor in this study, making it hard to interpret the null result 

with much confidence. The sample size had been determined based on detecting a 

difference in the training effect between the active and sham groups of d = 0.6, 

which I had determined based on results from an earlier pilot study; this was too 

large, however, to allow me to claim that the null training result that we then 

observed was evidence of there being no training effect at all, as opposed to it 

merely being small.  

 

Subsequently these limitations were all addressed in a replicated and improved 

training study, reported in Chapter 3 – the sample size, and therefore statistical 

power, was substantially increased, the issue with the Go/No-Go Task was fixed, 

and comprehension checks and preregistered, performance-based exclusion 

criteria were added. Having then found a significant training effect in this version of 

the study, perhaps the biggest remaining limitation is that we still did not see any 
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transfer either to the secondary tasks (the Affective Bias Task and the Risk Taking 

Task) or to the anxiety and depression symptom measures. Thus while we think the 

best interpretation of these results is that participants were able to exert greater 

cognitive control over their Pavlovian biases following the active training, it is 

interesting that this did not seem to translate to an enhancement of cognitive 

control in general. It may have been that participants learned to predict when 

control would be required based on the appearance of specific stimuli (so-called 

‘proactive control’; Braver, 2012) rather than by learning to better detect response 

conflicts and deploy cognitive control effectively in response (‘reactive control’). If 

so this may limit the usefulness of this training intervention as a tool for enhancing 

cognitive control, since it is generalised control and not task-specific control that 

we would most want to improve. That said we did not optimise the intervention for 

transfer to other contexts, so this is an aspect of the study that future research may 

be able to improve on. 

 

In Chapters 2, 3 and 5 there was consistently no significant correlation between 

Pavlovian bias and anxiety or depression scores, which was somewhat surprising 

given previous research. However this result should not be over-interpreted: the 

previous studies focussed on comparing patients with healthy controls, rather than 

examining correlations with continuous symptoms in the healthy population, and 

moreover the difference between patients and controls depended on a state 

anxiety manipulation (threat of shock). Therefore these earlier studies are not 

exactly comparable with the studies in this thesis, and it may be that, as I suggested 

in Chapter 5, the association between symptoms and Pavlovian bias depends on 

symptoms being sufficiently severe that individuals meet clinical thresholds for 

diagnosis, and/or the presence of additional stress (Mkrtchian, Aylward et al., 

2017). 

 

The development and validation of the Number Switching Task (Chapter 4) was 

largely successful, but two limitations do need to be borne in mind. Firstly, we do 

not have estimates of test-retest reliability currently, meaning we cannot be totally 

confident yet that effort sensitivity, as measured by this task, is a stable cognitive 
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trait. Secondly, the task has so far only been tested with healthy participants, 

despite it being explicitly designed to be suitable for use with clinical populations 

and in particular for making comparison between patients with mental health or 

neurological conditions and healthy controls. There is therefore further work to be 

done before the NST can be considered fully validated. This also relates to one of 

the other apparent limitations with this study, that the effort discounting effect was 

relatively modest – indeed there were some participants who accepted every offer 

regardless of effort level; I would expect, however, that in a clinical sample known 

to have difficulties with cognitive effort, the discounting slope would be much 

steeper. There is therefore clearly an overall balance to be had: the task needs to 

have sufficient dynamic range to be able to work with both populations. Exploring 

this balance and optimising the task will, of course, require further studies to be 

done. 

 

The final experimental study, reported in Chapter 5, had some more substantial 

limitations affecting our confidence in the modelling results. In the Implications 

section above I took at face value the apparent correlation between model-based 

effort sensitivity and Pavlovian bias which, if true, would tally with our hypothesis 

that Pavlovian biases are determined by effort-based decision-making and cognitive 

control. This correlation was, however, derived from a model of the Go/No-Go Task 

which seemed to have some issues with the quality of the fit, as revealed by small 

but systematic errors in the posterior predictions and an unexpected combination 

of posterior parameter estimates. Informal checks as part of the modelling process 

suggested that this was not a result of the specific model chosen; instead there 

seems to have been a deeper problem with fitting the pattern of data seen in 

Chapter 5. More fundamental work, perhaps considering a different set of models, 

may therefore be required. 
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7.4 Directions for future research 

7.4.1 Understanding the effects of training on effort  

The studies reported in this thesis present a number of fruitful avenues for future 

research. Regarding the two training studies (Chapter 3 in particular) I have 

suggested that the significant training effect reflects enhanced cognitive control 

over Pavlovian biases, and the final study (Chapter 5) further indicates that 

Pavlovian biases are related to willingness to exert effort. However, these studies 

do not prove the link conclusively, so there is a need to conduct further follow-up 

studies to try to understand the mechanism of the training effects. For example it is 

possible that the training may have shifted participants’ effort sensitivity (though 

this is perhaps unlikely given the training effect did not generalise to the secondary 

tasks); alternatively participants may have learned that specific stimuli predicted 

the need to exert greater control, and that this control was effective in leading to 

better outcomes. It would therefore be worthwhile to conduct a study in which 

effort sensitivity is assessed before and after training, in order allow us to compare 

these two hypotheses directly. In addition one could also look at varying the 

outcome controllability during the training phase – since participants show greater 

reliance on Pavlovian bias when outcome controllability is lower (Dorfman & 

Gershman, 2019), presumably they would likewise experience less of a training 

effect when practicing on lower controllability trials. If so this would match the 

prediction of the Expected Value of Control theory, that participants should only 

exert control where this is expected to lead to improved outcomes (Shenhav et al., 

2013). Finally, it would also be worthwhile examining changes in some of the neural 

correlates of Pavlovian biases identified in earlier studies, e.g. activity in the IFG (in 

fMRI) or mid-frontal theta power (in EEG; Cavanagh et al., 2013). Although, as I 

have noted, these neural correlates are not proof in themselves of the involvement 

of cognitive control, they nevertheless help to provide converging evidence which 

would be particularly convincing if it could be shown that the successful training is 

associated with changes in the activity in these regions. 
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Of course we also need to address the fact that, in Chapter 5, the apparently 

significant correlation between effort sensitivity and Pavlovian bias is derived from 

a model that is clearly struggling to fit the observed data; this result therefore 

requires further verification before we can give it full credence. Part of the issue is 

that in this thesis I have prioritised continuity of the modelling across previous 

chapters, but it may be that the set of models so far considered are simply not able 

to fit the data well; future work could consider starting from scratch, considering a 

different range of models, but of course there is no guarantee that this will work 

either. Ultimately what may be helpful is a replication study, in order to ascertain 

whether this result is reliable, and indeed whether the model fitting problem 

persists. 

 

7.4.2 Optimising the Pavlovian bias training for transfer effects 

Staying on the topic of the training studies, another extension that was already 

suggested in Section 7.3 above would be to try to optimise the training with the 

goal of achieving transfer to other domains and tasks. As noted above, the training 

programme used in Chapters 2 and 3 was primarily designed simply to prove the 

principle that Pavlovian biases can be trained, and as such participants were trained 

on just one stimulus per condition and tested on the same stimuli. With this in mind 

it is maybe understandable that we did not see transfer effects. The obvious next 

development would therefore be to include multiple stimuli per condition and 

different training and test sets. This would be a much more difficult training regime, 

probably requiring both more sessions and more trials per session in order to see a 

substantial training effect, but is likely to be what is required in order to achieve 

transfer to other tasks. This further research would be especially necessary if the 

training is ultimately to be considered seriously as a potential treatment for 

Pavlovian avoidance biases in anxiety and depression. 

 

Regarding anxiety and depression symptoms specifically, I have already noted that 

one reason we may not have seen significant training effects is because the 

association between these symptoms and Pavlovian bias may depend on the 

presence of an additional stressor. To test this explanation it may therefore be 
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worthwhile including in future studies of the Pavlovian Bias training a modified 

version of the Go/No-Go task in which a state anxiety manipulation, like threat of 

shock (as in Mkrtchian, Aylward et al., 2017) is included. It would be interesting to 

investigate whether there is any interaction between symptoms and response to 

the training – we might predict, for example, that threat of shock will ‘undo’ some 

of the training effect, pulling participants back towards their original Pavlovian bias 

values, particularly for those higher in trait anxiety. 

 

7.4.3 Further validating the cognitive effort task 

As noted above, the Number Switching Task (Chapter 4) was originally designed 

with the intention of its being used with clinical populations, but we so far have not 

validated it with these groups. This will therefore need to be a priority for the 

future; as well as showing that the task continues to avoid confounding by 

probability discounting, these studies will also need to examine the precise 

configuration of the task parameters (such as the calculation of the allowed time 

for each trial). We must ensure that the cognitive effort demand is sufficiently high 

for all participants, especially when testing patients and healthy controls in the 

same experiment.  

 

In addition, it would also be worthwhile measuring the test-retest reliability of the 

metrics derived from the NST – this could potentially be done in one of the studies 

suggested in Section 7.4.1, where the NST is administered at several timepoints 

alongside the Go/No-Go Training. This would allow us to be more confident in the 

task and the idea that we are measuring a stable trait in cognitive effort sensitivity. 

 

7.4.4 Testing the theoretical proposals 

Finally, the theoretical ideas discussed in Chapter 6 obviously present a number of 

promising suggestions for future empirical work. Regarding the Ergodicity 

Economics part of the chapter, it would be interesting to examine whether effort 

costs are affected by changes in the reward dynamic – if my hypothesis is correct, 

and effort costs typically do reflect a cost of outcome noise, then effort sensitivity 
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should increase if the dynamic is shifted from additive towards multiplicative (i.e. 

the required ergodicity transformation becomes increasingly concave). In addition 

to this the theory makes relatively specific predictions about the optimal vigour of a 

response and the shape of the error function of working memory. Again these 

could both be tested with relative ease.  

 

The second part of Chapter 6, which considered the implications of Landauer’s 

Principle for cognitive effort, is less easy to test explicitly – probably the best 

chance of testing this idea is with cellular-level experiments such as that by 

Padamsey et al., 2022. In humans, one could feasibly design an experiment in which 

different incentives were offered for different levels of working memory precision, 

say, in which case my strong prediction is that higher levels of precision would 

consume more energy. However, the key difficulty with a study like this is selecting 

a method to measure energy consumption. Global measures such as blood sugar 

levels are unlikely to be successful (consider the demise of ego-depletion theory; 

Gailliot & Baumeister, 2007; Gailliot et al., 2007; see Kurzban et al., 2013 for a 

review of the evidence against it); perhaps the most promising technique could be 

PET imaging with radiolabelled glucose. Of course, an experiment like this would 

need careful feasibility studies first. More fundamentally, I think there is also still 

work to be done to develop the mathematical foundations of this particular 

hypothesis. Therefore attempts to test this idea experimentally may be easier to 

carry out further in the future, once this theoretical work has been done and we are 

able to make more precise predictions. 

 

7.5 Conclusion 

In this thesis I have investigated cognitive effort and its involvement in exerting 

control and overcoming Pavlovian biases. I have shown that Pavlovian biases are 

indeed not fixed, they can be shifted through a relatively straightforward 

programme of behavioural training, and their influence on behaviour may be 

associated with participants’ sensitivity to cognitive effort costs. Together these 

results suggest we can think about Pavlovian biases in terms of effort-based 
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decision-making and control: people are able to control their Pavlovian biases but 

to do so they must be willing to exert effort; this in turn depends on economic 

factors, including not just the incentives on offer for accurate performance but also 

the efficacy of control and the intrinsic cost of effort.  

 

I had hoped that these results would also relate to symptoms of anxiety and 

depression, in which both enhanced Pavlovian biases and higher effort sensitivity 

have previously been reported. Here, however the results were more mixed. I 

found no associations between the strength of Pavlovian biases and either anxiety 

or depression symptoms in any of the studies we conducted; there were, however, 

significant correlations between effort sensitivity and both trait anxiety and 

depression. This latter result was encouraging and matches our expectations based 

on previous research. On the other hand, future research on the relationship 

between Pavlovian biases and anxiety and depression should take our results into 

account, particularly if, as I hope, the Pavlovian bias training programme is to be 

considered as a potential treatment for some of the symptoms of these conditions.  

 

Overall these results are suggestive, but more work needs to be done to 

conclusively demonstrate the link between Pavlovian biases and effort-based 

decision-making. In particular this might include more training studies looking at 

other factors such as outcome controllability or transfer to control in other 

domains, as well as neuroimaging to test whether the training effect is associated 

with changes in brain activity in regions previously associated with Pavlovian bias 

(like IFG). 

 

Finally, I also included a theory chapter aimed at providing a normative account of 

the existence of effort costs. My express intention with this chapter was not 

necessarily to provide a comprehensive and unassailable explanation. Rather, I 

sought first to highlight some of the problems involved, which have otherwise been 

largely overlooked in the cognitive effort literature, and then to suggest some 

promising new ideas which, it is hoped, may provide a stepping stone to a complete 

solution in the future.  
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In summary, effort is a significant component in cognition, which interacts with 

fundamental processes like the expression of Pavlovian responses and contributes 

to symptoms of several mental health conditions. By studying cognitive effort we 

can begin to understand, and even modify, these other aspects of cognition. There 

remain, however, significant and underappreciated gaps in our theoretical 

knowledge which I have highlighted and sought to address in this thesis. 
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