A DOCTORAL SKILL COURSE AT UNIVERSITY COLLEGE LONDON
ESTABLISHED WITH A UCL RESEARCH-LED INITIATIVE AWARD

Course Notes:

UCL OpenFOAM Course 2019

funded by the UCL Doctoral Skills Development Programme

Authors:

Luofeng Huang
Daniela Benites
Shiyu Lyu

Tom Smith
Minghao Li

Yeru Shang
Christian Klettner

Department of Mechanical Engineering
University College London (UCL)

October 2019






Preface

OpenFOAM is an opensource simulation tool originally developed by Jasak et al. [I] and Weller at
al. [2]. Tt has been successfully applied to various research areas, including Engineering, Physics,
Chemistry and Biology. By employing OpenFOAM, we can simulate the desired practical processes
using a computer, followed by the post-processing utility to analyse the results. Pictures and videos
can be generated to assist illustration. As the development of I'T technique, OpenFOAM has become
a powerful skill for a researcher/engineer to grasp.

Compared with other commercial simulation tools, people usually think that OpenFOAM is more
difficult to learn. The main difficulty includes:

e A beginner is not familiar with its operation environment, Linux. It can be very tricky even
trying installing OpenFOAM.

e To understand OpenFOAM codes requires a foundation in Computational Fluid Dynamics
(CFD) and C++.

e Online study materials are not comprehensive, and on-site courses are in scarcity.

Nevertheless, benefited from its open-source nature, every single line of OpenFOAM code is accessi-
ble, which means you are able to see and manipulate what is actually running behind the simulation.
By using OpenFOAM, you will gain a deep understanding on CFD theories and approached, as well
as how these methods are implemented. You are free to conduct any modifications upon the codes,
which allows you to perform innovations.

The UCL OpenFOAM Course was initiated by the Department of Mechanical Engineering, totally
free and registered under UCL doctoral school. It aims to popularise OpenFOAM among research
students and help beginners to get through the initial painful stage dealing with the unfamiliar opera-
tion environment, also an excellent chance to exchange simulation skills and generate collaborations.
In 2019, the course was held during 26-28 June, with our lecturers and 55 students attended. It was
fantastic to see so many conversations getting started, and to feel that our UK/London community
is getting stronger. We received very positive feedback, and more importantly, strong interests from
worldwide users who wanted but could not join us in London.

Thereby, this document is published online to demonstrate what we have taught. We hope this
will be helpful for a wider audience. In Chapter 1-4, we present step-by-step guideline for in-
stalling /using /understanding OpenFOAM; subsequently, our Appendixes provides advanced tutori-
als for various purposes.

Special thanks go to Professor Hrvoje Jasak, the founder of OpenFOAM, for providing invalu-
able supports on the course’s delivery. Now He has also commenced to be a visiting professor
at UCL to facilitate OpenFOAM-based teaching/research. Moreover, the course was inspired by
the OSCFD course being taught by Hakan Nilsson at Chalmers University of Technology, Sweden
(http://www.tfd.chalmers.se/~hani/kurser/0S_CFD/).


http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

Group photo

Professor Hrvoje Jasak is lecturing

II



Contents

[ OpenFOAM basis|
L1 Tostallationl . . . . . . . o o

[L.I.2  OpenFOAM|. . . . . o . o
1.2 OpenFOAM case setup|. . . . . . . . . . o o o o
[1.2.1  Introductory CED| . . . . . . . ...

[1.2.3  Timestep and solver| . . . . .. ... .. ... ...
|1.2.4 Initial and boundary conditions|. . . . . . . . . ... ... L.

L3 Smulationl. - - « o« v v e e e
[2__Ship flow simulation|

2.2 Free-surface modelling| . . . . . .. ..o oo
2.3 Boundary conditions| . . . . . ... oL L
2.4 Mesh around the ship| . . . . . . . .. .

[2.4.2  SnappyHexMesh| . . . . .. .. ... o o o o
P55 Ship resistance] . . . . . . ...

A FIadS I Tonl
4.1  Preparation: stress-analysis| . . . . . . . . . ..o Lo
4.2 Tnstallation(FST)| . . . o o v v v o

4.3 FSlLapproachl . . . . . . . o

4.4.2 Meshl. . . . . .. e
IA.A.;; :i'llll] i!!i(}lﬂ .....................................
4.5 Wave-induced FSI problems| . . . . . .. ... ... oo o
4.5.1  Code development| . . . . . .. ... o

[Reference]

11

0O 1 O UL UL i N = = =



CONTENTS CONTENTS

[Appendixes: advance tutorials| 40
[A Coding tutoriall 41
[B Tutorial: Flow passes a motorbike] 60
|C Tutorial: Flow passes a cylinder| 77
[D Tutorial: Develop a turbulent modell 87
(E_Tutorial: Parallelisation and HPCI 114
[F' Programme of the 2nd UCL OpenFOAM Workshop| 126
|[Reading recommendation| 129
|Acknowledgements| 130

v



Chapter 1

OpenFOAM basis

1.1 Installation

1.1.1 Linux

OpenFOAM can be installed on Linux, macOS and Windows, but Linux has the best compatibility
and covers all the functions of OpenFOAM. Therefore, it is recommended to install Linux to operate
OpenFOAM.

The easiest way to install Linux system is to install a virtual machine on top of your original
operation system (e.g. Windows). An instruction to install a virtual linux system is given as follows
(based on the notes provided by Professor Haakan Nilsson).

1. Download the official version VirtualBox (both Platform Packages and Extension Pack), from
https://www.virtualbox.org/wiki/Downloads. Install it.

2. After installing VirtualBox, start it and:
Create new virtual disk:
Click on New
Name: Ubuntu 18.04 LTS
Operating System: Linux
Version: Ubuntu 64-bit (in case you can only select 32-bit here, see http://www.fixedbyvonnie.
com/2014/11/virtualbox-showing-32-bit-guest-versions-64-bit-host-os/#.WvHgFYgvxPY)
Base memory: 2048MB (minimum 2GB required for 64-bit operating system)

3. Create a virtual hard drive now
VDI
Dynamically allocated
Set a limit on hard drive storage to 50GB
Click on Create
(Settings can be changed later)

4. Download Ubuntu 18.04 from http://releases.ubuntu.com/18.04/,
click 64-bit PC (AMD64) desktop image, then you will get an iso file (1.9GB).

5. Double-click on the virtual disk you just created in VirtualBox. In the pop-up window, click
on the icon ”Choose a virtual optical disk file”, and browse to the Ubuntu iso-file you just
downloaded.

Ubuntu should be initialised in a window named ”Ubuntu 18.04 LTS [Running] Oracle VM
VirtualBox”.
Click on Install Ubuntu and select your specific settings


https://www.virtualbox.org/wiki/Downloads
http://www.fixedbyvonnie.com/2014/11/virtualbox-showing-32-bit-guest-versions-64-bit-host-os/#.WvHgFYgvxPY
http://www.fixedbyvonnie.com/2014/11/virtualbox-showing-32-bit-guest-versions-64-bit-host-os/#.WvHgFYgvxPY
http://releases.ubuntu.com/18.04/

1.1. INSTALLATION CHAPTER 1. OPENFOAM BASIS

It is recommended that you tick: Download updates while installing, and Install third-party
software

Restart when asked (just click on the button that pops up). You may need to press Enter at
some point.

(When it asks you if it should erase the disk, don’t worry - it refers to the virtual disk you
have just created in VirtualBox, not your Windows disk.)

6. After the installation is done. You will enter an Linux Desktop (Ubuntu).

()
F
ﬁ
]
B
a]
%
=

Figure 1.1: Linux desktop of Ubuntu

1.1.2 OpenFOAM

In a Linux system, you are ready to install OpenFOAM. OpenFOAM has different versions, and it
keeps updating. Here we give the example of how to install OpenFOAM-v1806. (most of functions
are the same in different versions)

To install and utilise OpenFOAM, it is essential to use a Terminal. By press ”Ctrl+Alt+T”, a
terminal window will occur, where you can type your commands.

o ubuntu@Ubuntu: ~
ubuntu@ubuntu:~$ [

Figure 1.2: A terminal in Ubuntu

1. In your terminal, copy-paste-enter the following commands (one by one, you may need to enter
your password at some points to give permission). Note the short cuts for copy and paste here
are ”ctrl4-shift+c¢” and ”ctrl+shift+v” respectively.

mkdir $HOME/OpenFOAM

cd $HOME/OpenFOAM

sudo apt install git (Type password and ENTER, then later you need to Y)

git clone https://develop.openfoam.com/Development/OpenFOAM-plus.git (This step
requires a user name and password from your registration. Thus, go to: http://openfoam.


http://openfoam.com/code/repositories.php
http://openfoam.com/code/repositories.php
http://openfoam.com/code/repositories.php

1.1.

INSTALLATION CHAPTER 1. OPENFOAM BASIS

com/code/repositories.php and register an account)

mv OpenFOAM-plus OpenFOAM-v1806

At the following lines you should include the brackets ”(” and ”)”. The commands executed
between the brackets are in a subshell, and after the line you remain in the same directory as
before the command. (cd $HOME/OpenFOAM/OpenFOAM-v1806 && git fetch)

(cd $HOME/OpenF0AM/OpenFO0AM-v1806 && git checkout maintenance-v1806)

(cd OpenFOAM-v1806 && git submodule init)

wget https://sourceforge.net/projects/openfoamplus/files/v1806/ThirdParty-v1806.tgz
md5sum ThirdParty-v1806.tgz #Should give 3c06cb20d08ab564b70£9df5186ec936

tar xvf ThirdParty-v1806.tgz

rm ThirdParty-v1806.tgz

. At this point you have two directories: (a) $HOME/OpenFOAM/0penFOAM-v1806

and (b)$HOME/OpenFOAM/ThirdParty-v1806. The first one contains all the source files to
compile OpenFOAM, and the second one contains instructions on how to compile third-party
packages, if necessary.

We start by installing some required packages:

sudo -i (Type root password for your Ubuntu installation. Makes you root user, so that you
can run apt-get directly and without entering password. The following five lines all start with
”apt-get”. Copy each line separately. You may have to type Y at some point. )

apt-get install build-essential flex bison cmake zliblg-dev libboost-system-dev \
libboost-thread-dev

apt-get install libopenmpi-dev openmpi-bin gnuplot libreadline-dev libncurses-dev libxt-dev
apt-get install qt5-default libqtbxllextras5-dev 1libqtb5helpb5 qtdeclarativeb-dev \
qttoolsb5-dev libqgtwebkit-dev

apt-get install freeglut3-dev libgtbopengl5-dev texinfo

apt-get install libscotch-dev libcgal-dev

exit (Stop being root user)

. We set up an alias for activating the OpenFOAM-v1806 environment:

echo "alias 0Fv1806='. $HOME/OpenFOAM/0OpenFOAM-v1806/etc/bashrc'" >> $HOME/.bashrc
(everytime you open a new terminal and intend to use OpenFOAM, you have to execute com-
mand ”OFv1806” to initialise it.)

. Now we are ready to compile. To make sure that we get the correct environment we close

down the terminal window(s) and open a new one by ”Ctrl+Alt+T”. 0Fv1806

foam

export WM_NCOMPPROCS=4(To use all four cores on my virtual machine while compiling)
./Allumake(This will take several hours. So just do something else and wait it to finish)

. After the compilation of OpenFOAM-v1806, we will install ParaView, which is the post-

processing utility to view/process our computational results.
sudo apt-get install paraview

. Test the installation, open a new terminal:

0Fv1806

mkdir -p $FOAM_RUN

run

cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity .
cd cavity


http://openfoam.com/code/repositories.php
http://openfoam.com/code/repositories.php
http://openfoam.com/code/repositories.php

1.2. OPENFOAM CASE SETUP CHAPTER 1. OPENFOAM BASIS

blockMesh
icoFoam
paraFoam (Click on Apply, a square should appear in the window.)

Congratulations. Your OpenFOAM-v1806 has been set up OK!

1.2 OpenFOAM case setup

Once installed, OpenFOAM files are saved at the directory: OpenFOAM/OpenFOAM-v1806

OpenFOAM-v1806

applications bin doc etc modules
src tutorials wmake Allwmake Buildissues.txt
COPYING README.md

There are many ready-to-use cases stored under the folder ”tutorials”, which are fantastic to start
with. Your own cases can always be modified based on these tutorials, so you should never write a
case from scratch.

Note: when modifying a tutorial, you should first copy it to your own directory, which was created
in the last step of the installation; thus, the original case setting can be preserved.

OpenFOAM-v1806 tutorials

= - —d et -l

basic combustion compressible discreteMethods DNS
il - —d el el
electromagnetics financial finiteArea heatTransfer incompressible
= - et et
10 lagrangian mesh multiphase preProcessing
il - d , ,
resources skr lysi verificati dvali Allclean Allrun

dation

Alltest

Let’s enter a tutorial case to see how a basic OpenFOAM case looks like,
go to: tutorials/incompressible/icoFoam/cavity /cavity

vity cavity

0 constant system



1.2. OPENFOAM CASE SETUP CHAPTER 1. OPENFOAM BASIS

A basic OpenFOAM case consists of three separate directories:

1. The ”0” time folder: the boundary and initial conditions for each of the variables in question,
e.g. pressure, velocity.

2. The ”constant” folder: the properties of the fluid in question, e.g. viscosity, density.

3. The "system” folder: how will we solve the case, including space discretization, time discretiza-
tion, solver (what governing equations to use) and numerical scheme/solution.

1.2.1 Introductory CFD

Before further learning of OpenFOAM, this is a short section to prepare a little CFD knowledge as
background.

The basic idea to solve an OpenFOAM simulation includes two parts, space discretization and time
discretization. Space discretization is to devide a domain of interest into a number of non-overlapping
cells, known as mesh; time discretization is to split a process into a number of timesteps.

When we want to learn a process, we mesh the domain by a number of cells and get the solution of
each single cell, which forms the solution of the whole space domain. This is similar to a film: a single
frame consists of many elements; each element stores its own information, so a higher cell/element)
number means you get a clearer image.

Timestep is simpler. When the time of a process you want to learn is certain, e.g. 10s. 100-timesteps
means you want to solve the results per 0.1s; then 1000-timesteps means 0.01s.

To sum up, increasing cell number or timestep number means solving a simulation with a higher
resolution, while the computational time will increase accordingly.

Then, for a single cell and a timestep, we can solve the governing equations to obtain the parametres
that are of interest, e.g. the Navier-Stokes equations to solve pressure (P) and velocity (v).

V-v=0 (1.1)

9(pv)
ot

+V - (pvv) =V -7=—=Vp+pyg (1.2)

1.2.2 Mesh

The generation of mesh is dictated by a file called blockMeshDict, stored under the system direc-
tory.

Open the blockMeshDict of the cavity tutorial, we can see the content as in the picture below.
(after ”//” are annotations)

vertices 3 2

( ‘
(0.0 0)//0 ” 6
(10 0)//1 ! I
(110)//2
(0 10)//3
(00 0.1)//4
(10 0.1)//5
(110.1)//6
(01 0.1)//7]

)s

y

blocks 1| . 1

( A *
hex (6123456 7) (20 20 1) simpleGrading (1 1 1) 'l 5

);



1.2. OPENFOAM CASE SETUP CHAPTER 1. OPENFOAM BASIS

OpenFOAM always operates in a three-dimensional Cartesian coordinate system. In blockMeshDict,
first we need to define some vertices:

Once the vertices are defined, they are numbered in order (start with 0, so there are 8 points in
total, numbered 0-7).

The vertices 0-7 can form a hexahedron, which is defined in the blocks part, and this is our com-
putational domain.

(20 20 1) means the hexahedron will be meshed with 20 cells in the X direction, 20 cells in the Y
direction and 1 cell in the Z direction (in a two-dimensional problem, we only put one cell in the
inactive direction).

Therefore, this domain will be divided into 20*%20*1 = 400 cells.

The simplegrading (1 1 1) means the sizes of the mesh are uniform on all X Y Z directions.
Changing the value here can make the cell size gradually increase along a direction. For example,
simplegrading (10 1 1) means the length of the last cell is 10 times of that of the first cell along the
X direction.

Every four vertices can form a face, which can be classified in the Boundary part:

boundary
(
movingWall
{
type wall;
faces X
movingWall
(376 2)
); 3 2
}
fixedwalls - T
{ i ]
type wall;
faces
(0 47 3) fixedWalls
(2651) o fixedWalls
(1540) :
)
} )
frontAndBack Yy . |
Ol - m e e -
type empty; . | :
faces T4 5
( .
(0 321) fixedWalls
(4567)
)5
}

1.2.3 Timestep and solver

The system/controlDict codes are shown as follows, in which you can modify the solver, runtime,
time-step size, how often the results are stored, etc..

The name of a OpenFOAM solver ends with Foam, and the prefixion depends on the solver type.
For example:

icoFoam solves the incompressible laminar Navier-Stokes equations using the PISO algorithm;

interFoam is a solver for 2 incompressible fluids;
fsiFoam is used for Fluid-Structure Interaction (FSI) problems;



1.2. OPENFOAM CASE SETUP CHAPTER 1. OPENFOAM BASIS

application icoFoam;//the solver to use|
startFrom startTime;

startTime e;

stopAt endTime; //define the total run time
2ndTime @.5;

deltaT 0.005;//time-step size

ariteControl timeStep;

ariteInterval 20; [//record the results every 20 time steps
purgelrite 0;

ariteFormat ascii;

aritePrecision 6;

ariteCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

1.2.4 Initial and boundary conditions

So far, we introduced the setting of how to solve a case. Now we are going to discuss how to define
a problem physically, which is known as initial condition (IC) and boundary conditions (BC). IC is
straightforward to understand - it defines the initial configurations of a simulation, i.e. what you
want the case to be when t = 0. BC defines how the simulation being pushed forward per timestep.
Open the 0 folder, there are two files called P and U, which defines the IC and BC for presure and
velocity respectively.

Here we use the U file to give an example. As there are three kinds of boundary defined in
blockMeshDict, movingWall, fixedWall and front AndBack. The U file shows the movingWall bound-
ary always have a constant velocity of (1 0 0), and the fixedWall does not have a velocity. ”empty”
BC is usually used on the inactive boundaries of a two-dimensional problem, which can be under-
stand as: no solution is required.

Thus, the case is set up as:

Fluid is initialised as static in a box.

The upper wall of the box start moving towards the right at a velocity of 1 m/s, while the other
walls keep fixed. The moving wall will change the status of the fluid inside, as the fluid has viscosity
(see constant/transportProperties).

If you run the simulation, OpenFOAM will tell you what would happen in such a box.



1.3. SIMULATION CHAPTER 1. OPENFOAM BASIS

dimensions [@1-180600];
//dimensions define the unit of the value.

/f (kg m s K mol A cd)

// So here the unit of the velocity is mi*s-1

internalField wuniferm (6 @ 8): /f/initial value of internalfield (except the boundaries)

boundaryField
{
movingWall
type fixedvalue;
value uniform (1 0 0);
}
fixedWalls
{
type fixedvalue;
value uniform (8 © 0);
1
frontAndBack
type empty;

1.3 Simulation

To run this simulation you need to execute the following steps from your terminal:

1. as mentioned earlier, always copy the case to your user directory before running or modifying,
so as to keep the original file:
cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity $FOAM_RUN
cd $FOAM_RUN/cavity

2. build the mesh:
blockMesh

3. launch the solver:
icoFoam

4. post-processing (OpenFOAM is installed with an opensource post-processing tool - paraview)
paraFoam

5. now you have entered paraview and you can view the computational results (the field of P and
U for each time step)

P -

B A A A A A A A i,

e

Ve N

S ‘—“\\\

VT 7 27N\
NN~

U Magnitude
1.000e+00

48490400

75001

E

/
/
/
/
7
/
s
e
rs

S S

T
o

050001

EU 2
00008400

024004

Pl S
AR NN
AN N NN

20629

|
|
!
!
I
5
f
!
|
/
/
A

A NN NE N

R

\
\
/

43670400

More details please see: https://www.openfoam.com/documentation/tutorial-guide/tutorialse2.
php#x6-60002.1


https://www.openfoam.com/documentation/tutorial-guide/tutorialse2.php#x6-60002.1
https://www.openfoam.com/documentation/tutorial-guide/tutorialse2.php#x6-60002.1

Chapter 2

Ship flow simulation

To study how to simulate ship flow in OpenFOAM, we use a case of DTCHull as an example in this
chapter, which is stored under tutorials/multiPhase/interFoam/ras/DTCHull.

2.1 Case introduction

A schematic diagram of the case is shown in Figure The flow field is a multi-phase field, with
air in the upper part and water in the lower part. The ship model was initialised as floating on the
water surface according to the designed draft, and it is fixed. A constant velocity (U) against the
ship bow was set to the water, so there is a relative velocity between the ship and water. Thus,
the simulation is equivalent to a ship advancing in calm water. To be conformed to an open ocean
environment, the computational domain was modelling as infinite, i.e. no boundary wall was set at
the sides or the bottom. The resistance of the ship is of interest in this work, which is calculated as
the water force against the bow direction.

Figure 2.1: Schematic diagram of the simulation case. The hull is floating on the water surface and subjected
to flowing water of a constant velocity (U).

2.2 Free-surface modelling

As the fluid domain is a two-phase mixture of air and water, the Volume of Fluid (VOF) method [3]
is used to model the free surface. The VOF method introduces a passive scalar «, which denotes the
fractional volume of a cell occupied by a specific phase. In this model, a value of a = 1 corresponds



2.3. BOUNDARY CONDITIONS CHAPTER 2. SHIP FLOW SIMULATION

to a cell full of water and a value of o = 0 indicates a cell full of air. Thus, the free surface, which
is a mix of these two phases, is formed by the cells with 0 < o < 1. The « value was solved by
its transport equation as expressed in Equation and further the local density (p) and viscosity
(1) were determined according to the corresponding «, as Equation and Fluid properties of
both fluids are set in constant/transportProperties.

86*? +V(va)=0 (2.1)
P = QPyater + (1 - a)pair (22)
U= Qliyater + (]— - a)ﬂair (23)

The multi-phase model is defined in system/setFieldDict, as:

defaultFieldvalues

(
volscalarFieldvalue alpha.water 0// default alpha value

s

regions

//set cell values
boxToCell

box (-999 -999 -999) (999 999 0.244);
//two opposite vertexes of the cuboid

fieldvalues

volScalarFieldvalue alpha.water 1

);

3

// Set patch values
boxToFace

box (-999 -999 -999) (999 999 0.244);
fieldvalues

volScalarFieldvalue alpha.water 1
H

3
)

It defines a specific area where v = 1, and the other area defaults a = 0. Here it says the cells of
Z < 0.244 m is water and Z > 0.244 m is air, so the free surface of this case is at Z = 0.244 m.

2.3 Boundary conditions

The BCs of this case is to generate a water flow of steady velocity, which is explained separately as
0/U and 0/P.

U:

e Inlet: fixedValue is a vbasic BC and easy to understand. Here it gives the inlet boundary a
constant speed of (-1.668 0 0) towards the outlet direction.

e QOutlet: outletPhaseMeanVelocity adjusts the velocity for the given phase to achieve the
specified mean thus causing the phase-fraction to adjust according to the mass flow rate. By
applying this boundary condition, the mass flow rate of the water phase in the outlet boundary
is set to equal to the inlet mass rate, so that the water volume in the computational domain
can keep constant. This BC can avoid the waterline continuously increase/decrease, which is
typically used as the outlet condition for a towing-tank ship simulation in order to maintain
the outlet water level as the same as the inlet.

10



2.3. BOUNDARY CONDITIONS CHAPTER 2. SHIP FLOW SIMULATION

o Atmosphere: pressureInletOutletVelocity - here we specific the tangential velocity across
this face to equal (-1.668 0 0).

Umean 1.668;
mUmean -1.668;

dimensions [@1-10000];
internalField uniform ($mUmean @ @);
boundaryField

{

//- Set patchGroups for constraint patches
#includeEtc "caseDicts/setConstraintTypes”

inlet
type fixedvValue;
value SinternalField;
}
outlet
{
type outletPhaseMeanVelocity;
alpha alpha.water;
Umean SUmean;
value SinternalField;
}
atmosphere
type pressureInletOutletVelocity;
tangentialVelocity SinternalField;
value uniform (@ @ 0);
}

e Inlet: fixedFluxPressure is used to set the pressure gradient to be specified by the velocity
boundary condition, so that the fixed water velocity can be matched.

e QOutlet: zeroGradient means the gradient of pressure equals to zero, typically used as outlet
pressure BC.

e Atmosphere: totalPressure calculates the pressure from a specified total pressure p0O and
local velocity U. (Here we define the atmosphere pressure to be 0 pascal)

dimensions [1-1-28000];
internalField uniform 0;

boundaryField

{
/- Set patchGroups for constraint patches
#includeEtc ”caseDicts/settunstkaintTypes"

inlet
{
type fixedFluxPressure;
value SinternalField;
}
outlet
type zeroGradient;
atmosphere
{
type totalPressure;
pe uniform @;
U u;
phi phi;
rho rho;
psi none;
gamma 1;
value SinternalField;
}

11



2.4. MESH AROUND THE SHIP CHAPTER 2. SHIP FLOW SIMULATION

2.4 Mesh around the ship

2.4.1 Local mesh refinement

Sometimes we need high-quality meshes in certain areas of a computational domain. For example, in
this case we want the mesh to be refined around the ship and in the free surface area. OpenFOAM
provides a utility called refineMesh, by which we can specify an area and just refine the mesh inside.
It is controlled by system/refineMeshDict:

set <0;//the area to be refined, defined using topoSet
coordinateSystem global;
globalCoeffs
{ tanl (10 0);//refine in x direction
tan2 (9 1 0);//refine in y direction|
patchLocalCoeffs
patch outside;
tanl (100);
directions ( tanl tan2 );
useHexTopology no;
geometricCut yes;

writeMesh no;

1 "

Here we only refine X and Y directions, since Z direction has already been set to gradually increase
towards waterline in blockMeshDict. refineMesh cuts every grid in the area to be 2 in X direction
and 2 in Y direction, so one grid becomes four grids. If applied to all three directions, refineMesh
will cut one grid into eight. See more on https://openfoamwiki.net/index.php/RefineMesh.

2.4.2 SnappyHexMesh

As a hull geometry is complex, blockMesh is incapable to build the mesh around the hull. Here
we introduce another OpenFOAM mesh tool snappyHexMesh to generate high-quality grids fitting
around the hull surface. See more in Appendix [B]

There are three main steps in SnappyHexMesh:
1. castellatedMesh

2. snap

3. addLayers

An example is given below to illustrate the process: (details see https://cfd.direct/openfoam/
user-guide/v6-snappyhexmesh/)

This is a geometry in a domain after blockMesh:

BZ4EN

12


https://openfoamwiki.net/index.php/RefineMesh
https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/
https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/

2.4. MESH AROUND THE SHIP CHAPTER 2. SHIP FLOW SIMULATION

castellatedMesh: the edges of the geometry are detected, and then the meshes that intersect with
the edges are refined.

7
===

I
gaEe gREs sy

1T
=k

R

II\r’l

-

In the DTCHull case, the snappyHexMesh is governed by system/snappyHexMeshDict. First of all,

we need to store the geometry file of the hull under constant/triSurface, and it needs to be in
the form of STL.

Load the STL file of the hull and define the hull surface as wall:

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.

// Surfaces are used

// - to specify refinement for any mesh cell intersecting it

// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface

geometry

DTC-scaled.stl

type trisurfaceMesh;
name hull;

patchInfo
{

type wall;

13



2.4. MESH AROUND THE SHIP CHAPTER 2. SHIP FLOW SIMULATION

Now we open the system/snappyHexMeshDict file, where we can define the settings about how to
be refined the mesh around the ship.
Step 1, castellatedMesh:

Step 2, snap:

castellatedMeshControls
{

// Refinement parameters

// If local number of cells is »>= maxLocalCells on any processor
/] switches from from refinement followed by balancing

// (current method) to (weighted) balancing before refinement.
maxLocalCells 100000;

// overall cell limit (approximately). Refinement will stop immediately
// upon reaching this number so a refinement level might not complete.
1/ Note that this is the number of cells before removing the part which
1/ is not 'visible' from the keepPoint. The final number of cells might
1/ actually be a lot less.

maxGlobalCells 2000000;

// The surface refinement loop might spend lots of iterations refining just a
/] few cells. This setting will cause refinement to stop if <= minimumRefine
// are selected for refinement. Note: it will at least do one iteration

// (unless the number of cells to refine is @)

minRefinementCells 0;

/] Number of buffer layers between different levels.

// 1 means normal 2:1 refinement restriction, larger means slower
// refinement.

nCellsBetweenLevels 3;

// Explicit feature edge refinement

/] specifies a level for any cell intersected by its edges.
// This is a featureEdgeMesh, read from constant/triSurface for now.

features
{
file "DTC-scaled.eMesh";
level 0;
3
¥

// surface based refinement

J1

// Specifies two levels for every surface. The first is the minimum level,
1/ every cell intersecting a surface gets refined up to the minimum level.
1/ The second level is the maximum level. Cells that 'see' multiple

1/ intersections where the intersections make an

// angle > resolveFeatureAngle get refined up to the maximum level.

refinementsurfaces
hull
{

// Surface-wise min and max refinement level
level (0 08);

// settings for the snapping.
snapControls

{

//- Number of patch smoothing iterations before finding correspondence
// to surface
nSmoothPatch 3;

//- Relative distance for points to be attracted by surface feature point
// or edge. True distance is this factor times local

// maximum edge length.

I tolerance 4.0;

tolerance 1.0;

//- Number of mesh displacement relaxation iterations.
nSolvelter 100;

//- Maximum number of snapping relaxation iterations. Should stop
// before upon reaching a correct mesh.
nRelaxIter 5;

nFeatureSnapIter 10;

14



2.5. SHIP RESISTANCE CHAPTER 2. SHIP FLOW SIMULATION

Step 3, addLayers:

// settings for the layer addition.

addLayersControls

{
// Are the thickness parameters below relative to the undistorted
/] size of the refined cell outside layer (true) or absolute sizes (false).
relativeSizes true;

// Per final patch (so not geometry!) the layer information

layers
hull
{
nsurfacelLayers 3;
}
}

// Expansion factor for layer mesh
expansionRatio 1.5;

// Wanted thickness of final added cell layer. If multiple layers
[/ is the thickness of the layer furthest away from the wall.

// Relative to undistorted size of cell outside layer.

// See relativeSizes parameter.

finalLayerThickness 8.7;

// Minimum thickness of cell layer. If for any reason layer
[/ cannot be above minThickness do not add layer.

// See relativeSizes parameter.

minThickness 0.25;

The generated mesh around the ship is shown below.

2.5 Ship resistance

Based on the simulation, the fluid force on the ship can be calculated as an integration of surrounding
fluid mesh over the hull surface:

Fn = /(—ﬁn +7-n)dS (2.4)
where P denotes the pressure, 7 = p[VV + (VV)7] is the viscous term.
OpenFOAM uses a functionObject-forces to calculate ship resistance, which is added in the end

of the controlDict file. This functionObject outputs the pressure force and shear force acting on a
specific body after each timestep, and stores the result as a function of time.

15



2.5. SHIP RESISTANCE CHAPTER 2. SHIP FLOW SIMULATION

functions

{

forces

{

type forces;

functionObjectLibs ( "libforces.so" );
patches (hull);

rhoInf 998.8;

rhoMame rho;

UName u;

log on;

outputControl timeStep;
outputInterval 1;

CofR (2.929541 8 0.2);

H

The result of this functionObject is stored under postprocessing/forces/0, where you can find a
data file. Open the file in Excel you can see the forces as a function of time, then the ship resistance
can be calculated as the sum of pressure force and shear force on the X direction.

As the ship is a symmetry geometry, we can only calculated resistance of half the ship (by applying
symmetryPlane boundary condition at Midship), which saves around half of the computational time
(only half mesh required). With this method used, we just need to manually double the resistance
result.

A B C D E F G
1 Forces
2 CofR
3 Time pressure (x y 7) shear (x y )
4 8.93E-04 2.40E+03 2.68E+02 -6.207609e+02 -1.86E+00 -3.38E-03 5.399121e-02)
5 3.11E-03 S5.47E+02 4.94E+03 1.494884e+04) -1.86E+00 5.56E-03 3.587385e-02)
6 8.64E-03 163E+01 2,03E+03 5.161612e+03) -1.85E+00 8.90E-03 2.490339e-02)
7 2.24E-02 -4.37e+01 1.66E+03 3.915681e+03) -1.85E+00 5.71E-03 2.670788e-02)
8 5.65E-02 -3.98E+01 1.68E+03 3.982493e+03) -1.90E+00 -9.44E-04 2.622622e-02)
9 1.06E-01 -3.66E+01 1.70E+03 4.039720e+03) -2.02E+00 -4.48E-03 2.155079e-02)
10 1.56E-01 -3.55E+01 1.70E+03 4.054497e+03) -2.15E+00 -4.69E-03 1.454954e-02)
11 2.06E-01 -3.45E+01 1.70E+03 4.059923e+03) -2.29E+00 -2.86E-03 7.560070e-03)
12 2.56E-01 -3.31E+01 1.70E+03 4.062940e+03) -2.44E+00 9.47E-04 1.421342e-03)
13 3.06E-01 -3.12e+01 1.70E+03 4.063855e+03) -2.59E+00 6.28E-03 -4.685995e-04)
14 3.56E-01 -2.92E+01 1.69E+03 4.061544e+03) -2.75E+00 1.14E-02 -2.5789942-04)
15 4.06E-01 -2.72E401 1.68E+03 4.0565672+03) -2.92E+00 1.60E-02 2.017698e-03)
16 4.56E-01 -2.54E+01 1.67E+03 4.049447e+03) -3.08E+00 1.88E-02 6.423719e-03)
17 5.06E-01 -2.38E+01 1.66E+03 4.041002+03) -3.25E+00 2.01E-02 1.181973e-02)
18 5.56E-01 -2.24E401 1.66E+03 4.031769e+03) -3.42E+00 1.97E-02 1.768184e-02)
19 6.06E-01 -2.10E+01 1.65E+03 4.022407e+03) -3.58E+00 1.77E-02 2.365543e-02)
20 6.56E-01 -1.97e+01 1.65E+03 4.013425e+03) -3.74E400 1.50E-02 2.934392e-02)
21 7.06E-01 -1.856+01 1.65E+03 4.005153e+03) -3.89E+00 1.22E-02 3.480134e-02)
22 7.56E-01 -1.71E+01 1.65E+03 3.997773e+03) -4.04E+00 9.51E-03 4.028272e-02)
23 8.05E-01 -1.57E+01 1.65E+03 3.991510e+03) -4.19E+00 6.97E-03 4.599752e-02)
24 8.55E-01 -1.42E+01 1.65E+03 3.986573e+03) -4.32E+00 3.65E-03 5.226067e-02)
25 9.05E-01 -1.28E+01 1.65E+03 3.982927e+03) -4.46E+00 -1.07E-04 5.815231e-02)
26 9.55E-01 -1.14E+01 1.65E+03 3.980704e+03) -4.59E+00 -4.21E-03 6.353141e-02)
27 1.01E+00 -1.00E+01 1.66E+03 3.979698e+03) -4.72E400 -8.39E-03 6.813555e-02)
28 1.06E+00 -8.63E+00 1.66E+03 3.979827e+03) -4.83E+00 -1.21E-02 7.174886e-02)
29 L11E+00 -7.30E+00 1.66E+03 3.980870e+03) -4.94E+00 -1.54E-02 7.466380e-02)
30 1.16E+00 -6.03E+00 1.67E+03 3.9828072+03) -5.04E+00 -1.84E-02 7.740367e-02)
31 1.20E+00 -4.81E+00 1.67E+03 3.985480e+03) -5.13E+00 -2.11E-02 8.019280e-02)
32 1.25E+00 -3.66E+00 1.68E+03 3.988790e+03) -5.22E+00 -2.33E-02 8.319755e-02)
33 1.30E+00 -2.56E+00 1.68E+03 3.992599e+03) -5.29E+00 -2.53E-02 8.659922e-02)
24 1.35E+00 -1.52E+00 1.68E+03 3.996945e+03) -5.37e+00 -2.74E-02 9.023966e-02)
35 1.40E+00 -5.45E-01 1.69E+03 4.001636e+03) -5.43E+00 -2.95E-02 9.381670e-02)
36 1.45E+00 3.99E-01 1.69E+03 4.006693e+03) -5.45E+00 -3.15E-02 9.703953e-02)
37 1.50E+00 1.29E+00 1.70E+03 4.011995e+03) -5.55E+00 -3.37E-02 9.979226e-02)
38 1.55E+00 2.14E+00 1.70E+03 4.017463e+03) -5.60E+00 -3.59E-02 1.020715e-01)

The ship resistance at six different velocities (velocity can be varied in the 0/U file) was calculated and
plotted in Figure [2.2] as a function of the simulation time. It can be seen that the resistance value
oscillates and the oscillation amplitude reduces over time. When the resistance curve eventually
approaches a steady harmonic state, the computational resistance was taken as the average value of
the crest and trough.

A comparison between the computational results (CFD) and the corresponding experimental data
(Exp.) [ is given in Figure where good agreement can be found. For all the six velocity
conditions, the computational results are slightly smaller than the experimental values and the
deviations are less than 5%. Therefore, it is concluded the applied numerical approach can accurately
predict the total resistance of a ship in open water.

16



2.5. SHIP RESISTANCE CHAPTER 2. SHIP FLOW SIMULATION

50

—U=1.335m/s —U=1.401 nvs U=1.469 nv/s
U=1.535m/s —U=1.602 m/s —U=1.668 m/s

45

40
35
30

25

20

15 I

Total resistance (N)

10 ||

0 20 40 60 80 100
Time (s)

Figure 2.2: Total ship resistance at different velocities (U) over simulation time.

35
—CFD ¢ Exp.

30
(5] <
g
g 25
A7
7
&
-
= 9
o
H

15

1.3 1.4 1.5 1.6 1.7

Speed (m/s)

Figure 2.3: Comparison between computational ship resistance and the corresponding experimental data

M.

17



Chapter 3

Wave simulation

To generate ocean surface waves in a Numerical Wave Tank (NWT), two branches of method are
generally used: (a) mimic a physically wave generator (paddle/piston) in the NWT (b) manually
modify numerical solutions to achieve theoritical wave profiles. In OpenFOAM, there are two mature
NWT tools based on the branch (b), namely: waves2Foam [5] using a relaxation zone method, and
ihFoam [6] using a boundary control method. Both tools are introduced as follows.

3.1 Waves2Foam

3.1.1 Installation

In order to use the waves2Foam toolbox, we need to install it for the current version of OpenFOAM
(based on its manual [7]):

1. Before proceeding with the installation of waves2Foam, we must include the dependencies (or
verify they are already within the Ubuntu environment):

e GNU Scientific Library (GSL) (https://astrointro.wordpress.com/2017/05/17/ installing-
gnu-scientific-library-gsl-in-ubuntu-16-04-and-compiling -codes/) (you should get the lat-
est version)

e Subversion (SVN) (Execute in a terminal: sudo apt install subversion)
e git (Execute in a terminal: sudo apt install git)

e gfortran (Execute in a terminal: sudo apt install gfortran)

2. Download waves2Foam, execute in the terminal:
svn co http://svn.code.sf.net/p/openfoam-extend/svn/trunk/

Breeder_1.6/other/waves2Foam

3. Establish directories for waves2Foam:

cd OpenFO0AM/

cd YOUR USER DIRECTORY (name-v1812)
mkdir -p applications

cd applications

mkdir -p utilities

4. Find the waves2Foan folder in your Downloads (or Home) section, extract and copy it into the
Utilities directory you just created (OpenFOAM/YOUR NAME-v1812/applications/utilities).

5. Compile waves2Foam with your OpenFOAM, open a terminal (take a while to complete):

18



3.1. WAVES2FOAM CHAPTER 3. WAVE SIMULATION

cd OpenFOAM/YOUR NAME-v1812/applications/utilities/waves2Foam
./Allwmake

Now, waves2Foam should have been set up OK. We are ready to try one of the tutorials and verify
that the toolbox is running smoothly. The manual of waves2Foam is available at ResearchGate,
search ”waves2Foam manual”.

To update waves2Foam, use:

cd OpenFOAM/YOUR NAME-v1812/applications/utilities/waves2Foam
svn update
./Allumake

To verify that the toolbox is correctly installed we are going to run a tutorial case, waveFlume.
Further information regarding this and other tutorials available are described in the official manual.
Check that your terminal is still within the waves2Foam folder and execute:

cd tutorials/waveFoam/

cp -r waveFlume waveFlume_Example
cd waveFlume_Example

./Allrun

This tutorial will run for 10 to 20 minutes (if you want, you can reduce the 20 s of simulation
inside the controlDict file) and you can check its progress inside the folderas window. After the
execution of the tutorial finishes, check that the post-processor is working as well, proceed with:
nano foam.foam

An edit file will be opened within the terminal window, type any letters (example XYZ), and save
the file by using CTRL4O, followed by exiting with CTRL+X. A dummy filed was created inside
our tutorial. Then, to open ParaView:

paraview foam.foam &

Click 7 Apply”, select the option of visualisation of alpha.water and click aPlaya button. You will
see the generation of the waves inside the NWT. The red section is the water, whilst the blue one
is the air. By playing the animation of this simulation, we can see that waves have been effectively
generated and propagated in the model.

Next, we will understand the theories behind waves2Foam: how this toolbox generates the free
surface waves, how we build our domain, which is the input data for the waves as to understand
what output results we can get depending on the case.

3.1.2 Numerical Wave Tank

The study case used in this tutorial is the implementation of a two-dimensional Numerical Wave
Tank (NWT), and its dimensions are 25.0 x 0.1 x 1.6 meters (Length x Breadth x Height). The
water level is set at 1.2 meters. For the waves generation the waves are regular and correspond to
the Stokes’ first order wave theory (or Airy’s Wave). The wave height used is 0.1 m, the wave period
2.0 s, whereas the wavelength is 5.5 m.

Theoretical background: relaxation zones

In physics, wave is actually the distribution of the free surface. To model the loads of waves on
a solid body, a desired wave field should be generated in the CFD model, which is known as a
numerical wave tank.

In OpenFOAM, the waves2foam toolkit can be used to model a numerical wave tank. Its installation
instruction and theoretical details can be found in the manual [7].

The waves2foam toolkit uses a technique known as relaxation zone [§] to facilitate the modelling of a
numerical wave tank. Commonly, two relaxation zones are set at the inlet and outlet of the domain,
as the schematic diagram shown in Figure [3.1] These two zones can effectively help generate and
absorb surface waves respectively. A relaxation zone can also be set to other shapes, e.g. cylindrical

19



3.1. WAVES2FOAM CHAPTER 3. WAVE SIMULATION

rather than rectangular.

< _
\\\ almﬂsphere baCk “‘ﬂl]. :
- |
: : 11
L
inlet |
i outlet
i
o |- el El e il _\: ___________ '.,"
seabed "
front wall . -

Figure 3.1: Schematic diagram for the inlet and outlet relaxation zones (grey) in a numerical wave tank [9].)

e

xS

=

local coordinate, £ [m] local coordinate, & [m)]

Figure 3.2: The value of spatial weighting factor, x(§), as a function of local coordinate[9].)

The relaxation zones can be employed to prevent wave reflection from the outlet boundary and
also to prevent internally reflected waves, e.g. the waves reflected by internal structure to influence
the wave generation at the inlet boundary. In the relaxation zone method, a spatial weighting factor
X is introduced as:

el - 1)

x(§) = cap(D) — 1

(3.1)

where £ is the local coordinate in the relaxation zone, which equals to 1 at the outer end and 0 at
the inner end of the relaxation zone, as indicated in Figure The shape factor S can be defined
arbitrarily. Then a local value ¢ is dependent on x as:

¢ = X¢computed + (]- - X)¢target (32)

where ¢iorget is the target solution such as U or «, and ¢computed is the numerically computed value,
obtained from the Navier-Stokes and VOF equations. Thus, the relaxation zone can obtain an ad-
justed ¢ over each timestep, thereby minimizing the interference caused by wave reflection. The tar-
get wave parameters are set according to wave theories through a file named waveProperties. input,
which will be introduced as below.

Based on the theory above, Figure below shows the schematic of this tutorial case: the minimum
lengths of each zone depend on the wave length (L) considered.

20



3.1. WAVES2FOAM CHAPTER 3. WAVE SIMULATION

Figure 3.3: Layout of the NWT using waves2Foam: ZONE I - Inlet Relaxation Zone (Wave Generation);
ZONE II - Section for the analysis; ZONE III - Outlet Relaxation Zone.

Case setup and running

Now, in order to build our tutorial case, we are starting by copying the tutorial waveFlume and
rename it as waveFlume _NWT1:

run
cd ../applications/utilities/waves2foam/tutorials/waveFoam/
cp -r waveFlume waveFlume_NWT1

Mesh

For the mesh generation we are going to use the same option as it was done in the previous cavity
tutorial in 1.2.2, blockMeshDict, which produces a block-structured hexahedral mesh. The only
difference is that our domain here involves the two sections of the NWT: one for the water and the
other for the atmosphere. Below, the vertices show that our NWT has dimensions of 25.0 x 1.6 x
0.1m (the short distance -one-cell- in the z-direction indicates a 2D case), the depth of the tank is
1.2 m. The next sections of the blockMeshDict are the same as explained in section 1.2.2.

convertToMeters 1;

vertices
(
( B-1.200 )
( 25 -1.20 0 )
( 6 0.40 0 )
(25 0.40 0 ) empty frontBack
( 8:-5.28 9:1 ) (01 32)
( 25 -Y:20 6.1 ) (4a57T286)
( & 8.40 8.1 ) )
(25 0O.40 0.1 ) wall fixedPlate
); (
)
blocks Y3
(

hex (61 324576) ( 12506 80 1 ) mergePatchPail’S|
simpleGrading (1 1 1)

) ] )

Waves

For setting up the wave parameters, inside the constant folder, we will open the file called waveProperties. input.
Inside this file we can include the average depth, the wave period, the wave height, the relaxation

zones and the wave theory to be applied (for this case we are using the first order wave theory,

named here firstStokes). In the first part of the inletCoeffs section the parameters of the wave

will be written:

21



3.1.

WAVES2FOAM

CHAPTER 3. WAVE SIMULATION

And in the second part would be the ones for the relaxation zones.

inletCoeffs

{

// Wave type to be used at boundary "inlet" and in relaxation zone "inlet"

waveType

stokesFirst;

// Ramp time of 2 s

Tsoft ]

// Water depth at the boundary and in the relaxation zone

depth

// Wave period
period

1.20;

2.00;

// Phase shift in the wave

phi

0.000000;

// Wave number vector, k.

direction

(1.6 6.0 0.0);

// Wave height

height

8.1;

More information on the

parameters used here can be found in Section 2.7 of the waves2foam manual [7].
// Specifications on the relaxation zone shape and relaxation scheme

Boundary

relaxationZone
{
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;
relaxType INLET;
startX (6 8.0 -1);
endX (5.5 6.8 1);
orientation (1.0 6.0 0.68);
}
1
outletCoeffs
{
waveType potentialcCurrent;
u (6 0 0);
Tsoft 2
relaxationZone
i
relaxationScheme Spatial;
relaxationShape Rectangular;
beachType Empty;
relaxType OUTLET;
startx (z8 B.B -1);
endX (25 8.8 1);
orientation (1.0 6.0 8.8);
i
1

]rf E e lrlr

Conditions

Below are the boundary conditions applied in each patch of the NWT and which are located in the

0.org folder:

Boundary | alphal p-rgh/pd U
inlet waveAlpha zeroGradient | waveVelocity
outlet zeroGradient | zeroGradient | fixedValue
bottom zeroGradient | zeroGradient | fixedValue
atmosphere | inletOutlet totalPressure | pressurelnletOutletVelocity
frontBack empty empty empty

Table 3.1: Boundary Conditions

22



3.1. WAVES2FOAM CHAPTER 3. WAVE SIMULATION

Simulation
Now to run the model we execute the file . /Allrun:

run
cd ../applications/utilities/waves2foam/tutorials/waveFoam/waveFlume_NWT1
./Allrun

We should have new folders of each time step as well as the log files of each application in our
example window as it is shown below.

@ Recent
@ Home — e - ll
0 0.2 0.4 0.6
[ Desktop
[0 Documents i i i i
¥ Downloads 0.8 0.org 1 constant
dJd Music
A Pictures d J B
= system waveGaugesNProb Allrun Foam.foam
@ Videos o
I RubbishBin = = = =
& Network < c C C
log.blockMesh log.setwaveField log. log.subsetMesh
Computer setwaveParameter
s
B connect to Server
log.topoSet log.waveFoam log.

waveGaugesNProb
es

Post-processing: free surface elevation

First we create the dummy file called foam.foam and then open it in Paraview, as in the previous
examples.

Now, we are going to see the results of the wave surface elevation measured at the centre of the
NWT. For this:

1. Select Filters>Alphabetical>Contour option within Paraview, in the “Contour By” drop
window the alphawater field is selected to a value of 0.5 (in the Isosurfaces section) and
click “Apply”.

2. Select the Filters>Alphabetical>Slice option within Paraview. The origin is set to the
middle of the tank at water level: 12.5 x 0.05 x 1.2 and click “Apply”.

3. Select the “Split Horizontal” option on the right hand side of the view window (next to
RenderViewl), select the SpreadSheet View and select one of the points showed for that
Slice.

4. Select Filters>Alphabetical>Plot Selection Over Time and click on the “Apply” button,
which will produce a picture as Figure [3.4]

5. you can also save the file with the extension .csv and open it using Excel.

23



3.2. IHFOAM CHAPTER 3. WAVE SIMULATION

urface Elevation (m)

Figure 3.4: Free Surface Elevation measured at 12.5 m from the wave-maker.

3.2 ihFoam

There is no need to install ihFoam as it is already within OpenFOAM-v1806. Same tutorial case
used with waves2foam will be perfoamed using ihFoam.

Boundary control method

In the technique used in ihFoam, the values of the velocity fields and the free surface elevation are
corrected at each time-step at the inlet patch according to the wave theory applied. This correction
is done by comparing the numerical measured value against the theoretical value, and, depending
on which one is greater, the initial values of U (velocity vector field) and alpha (phase fraction
factor used in the VOF method [3]) in the boundary are corrected. This static boundary wave
generator is combined with active wave absorption, and by thus, dissipation zones are not needed,
and unnecessary water level increase is avoided. The methodology is detailed in [I0; II]. The
pressure is calculated within the numerical model whilst the values of the velocity fields and the free
surface elevation are corrected in the wave generation patch according to the wave theory applied.
The free surface is measured at each time step and compared to the theoretical value, and, depending
which one is greater, corrections are done at the patch and the values of U and alpha are updated
to these corrections.

Case setup and running

Now, in order to build our tutorial case, we are starting by copying the tutorial waveFlume and
rename it as waveFlume _NWT1:

run
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/waveExampleStokesI waveFlume_NWT2

Mesh

For the mesh generation we are going to use the same option as the previous cases, blockMeshDict,
which produces a block-structured hexahedral mesh. In here, the domain of the NWT is set as
atmosphere only and the water will be included using the setFields application. Below, the vertices
show that our NWT has dimensions of 25.0 x 0.1 x 1.2 m (the short distance -one-cell- in the z-
direction indicates a 2D case). The next sections of the blockMeshDict are the same as explained
in section 1.2.2.

24



3.2. IHFOAM

Now, to set the water depth of the NWT the water volume is initiated using setFields, for this, in

scale 1;

vertices

(
(
(
(
(
(
{
(

) H
blocks

hex (8 1 2 3456 7) (1250 1 88)) simpleGrading (1 1 1)

#

the setFieldsDict we set the water depth to 1.2 m:

Waves

For setting up the wave parameters we open the file waveProperties in the constant folder. Inside
this file we can include the average depth, the wave period, the wave height and the wave theory to

llrj(-nltnl\l-nl".ultnl\ltutnlun*-itnuuuw-&tnltil\l’llrjf
defaultFieldvalues

volScalarFleldvalue alpha.water 8

rH
reglens
. boxToCell
box (& © ©) (25.0 1.0 1.2);
fieldvalues
volScalarFieldvValue alpha.water 1
5 bH

¥

Jf AR AR A AR SRR AR R R AR AR R R A SR AR AR R AR SRR AR AR R h f”

be applied (for this case we are using the first order wave theory, named here StokesI):

TREERESRESEESEEEEEREEEEEEREREEEEEEEE SRR N

inlet

{
alpha alpha.water;
waveModel StokesI;
nPaddle 1i;
waveHeight B.1;
waveAngle 0.8;
rampTime 2.8;

activeAbsorption yes;

wavePerilod 2.8;
1
outlet
il
alpha alpha.water;
waveModel shallowHaterAbsorption;
nPaddle 1;
H

;; R R R e T e T T T e ey ff

Boundary Conditions

Below are the boundary conditions applied in each patch of the NWT and which are located in the

0.org folder:

25

CHAPTER 3. WAVE SIMULATION



3.3. WAVE PASS THROUGH A FIXED PLATE

CHAPTER 3. WAVE SIMULATION

Boundary | alpha.water | p-rgh/pd U
inlet waveAlpha zeroGradient | waveVelocity
outlet zeroGradient | zeroGradient | waveVelocity
bottom zeroGradient | zeroGradient | fixedValue
atmosphere | inletOutlet totalPressure | pressurelnletOutletVelocity
sides empty empty empty

Table 3.2: Boundary Conditions

Simulation
Now to run the model we execute the file . /Allrun:

run
cd waveFlume_NWT2
./Allrun

We should have now the processors employed to run this case (2) as well as the log files of each
application in our example window as it is shown below. To divide the domain into smaller sub-
domains into which the solutions are being solved decrease the total time of simulation, this is called
Parallelisation, which is addressed in another Chapter of these guidelines.

0 o.orig constant postProcessing processaro
~
J J e
processorl system Aliclean Allrun log.blockMesh
| gl = =
L4 S

log.decomposePar log.interFoam log.setFields HWT2_Results0O.csv NWT2_Resultsoo,

sy

Post-processing
Same as in Page 23]

3.3 Wave pass through a fixed plate

The study case used in this tutorial includes a Numerical Wave Tank (NWT) with a fixed vertical
plate located near its mid-section. In the Figure below are shown the dimensions of the plate as
well as the ones of the NWT. As for the characteristics of the regular wave used for the example,
the length is 5.5 m, the height is 0.1 m and the wave period is 2.0 s; the conditions are considered
for intermediate water depth.

AR

1
-

. 0.05x0.50 m o

WATER

(=]

l
\

A

2

A
Y

Figure 3.5: Dimensions of the NWT and fixed vertical plate

For the wave generation at the inlet and wave absorption at the outlet a relaxation zone technique in
waves2Foam is used. The details of the wave generation have been introduced in the former section.
Now, in order to build our example case, we are starting by copying the tutorial waveFlume and
rename it as waveFlume_Example:

26



3.3. WAVE PASS THROUGH A FIXED PLATE CHAPTER 3. WAVE SIMULATION

run
cd ../applications/utilities/waves2foam /tutorials/waveFoam/
cp -r waveFlume waveFlume_Example

Mesh Generation

For the mesh generation of NWT, we are going to use the same option as the one in the former case of
waveFlume NWT1, blockMeshDict, which produces a block-structured hexahedral mesh. The only
difference is that here a patch for an object (a fixed plate) inside the NWT needs to be included.

convertToMeters 1;

vertices

( ( © -1.20 0 ) empty frontBack
( 25 -1.20 0 )
( 0 0.40 0 ) (6 13 2)
( 25 0.40 0 ) (4 57 6)
( 8 -1.20 0.1 ) wall fixedPlate
( 25 -1.20 8.1 ) (
( © 0.40 0.1 ) ) )
(25 0.40 0.1 ) ):

& mergePatchPairs

blocks

( )i

hex (8 1 32 457 6) (1250 88 1 )
simpleGrading (1 1 1)
)

In the case of the fixed object inside the NWT, we are going to create the patch using the topoSetDict
as it is shown below. This file must be in the folder called system. Please download it from the
folder Wave Generation in the Dropbox link shared for the course. In the case of this patch, the
geometry of the object is a rectangle (with the boxToCell selection, but other options are available,
check https://openfoamwiki.net/index.php/TopoSet ). Then, the dimensions of the plate would be
0.05 x 0.50 x 0.1 m. What this will do is to create a void geometry whose sides will be acting as
walls, in the limits we set of the bounding box.

object topoSetDict

Jl ™" "W ® w W E W W R W W W W kW W W W [

actions
(
{

name cl;
type cellSet;
action new;
source boxToCell;
sourcelnfo

box (12.88 -8.35 6.8) (12.85 0.15 @.1);

name ca;

type cellsSet;

action invert;
IH

J vk R R R R bR AR R E R bR

27



3.3. WAVE PASS THROUGH A FIXED PLATE CHAPTER 3. WAVE SIMULATION

Wave Generation For setting up the wave parameters, inside the constant folder, we will open
waveProperties.input file. Inside this file we can include the average depth, the wave period, the
wave height, the relaxation zones dimensions and characteristics and the wave theory applied to its
generation. For this case, we are using the first order wave theory, named here stokesFirst, which is
same as the former waveFlum NWT1 tutorial.

Boundary Conditions In the case of the BCs of the cell faces we must include the created fixedPlate
patch in each one of the files of the 0.org folder, as it is highlighted below:

H Boundary name alphal p-rgh/pd U H
inlet waveAlpha zeroGradient waveVelocity
outlet zeroGradient zeroGradient fixed Value
bottom zeroGradient zeroGradient fixedValue
atmosphere inletOutlet totalPressure pressurelnletOutlet Velocity
frontBack empty empty empty
fixedPlate zeroGradient fixedFluxPressure fixedValue

Simulation First, we need to enter through the window terminal to the folder
waveFlume_Example:

run

cd ../applications/utilities/ waves2foam /tutorials /waveFoam
/waveFlume_Example

gedit Allrun

The text file to execute the simulation of the model will be opened. Below the line of meshing
we are going to include the lines for running the topoSetDict:

runApplication topoSet
runApplication subsetMesh -overwrite c0 -patch fixedPlate

After this, we save and close the file and go back to the window terminal. We execute the command:

./Allrun

We should have new folders of each time step as well the log files of each application in our ex-
ample window as it is shown below.

‘waveFlume_Example

< waves2Foam tutorials waveFoam waveFlume_Example

@ Recent

@ Home J J J
B8 Desktop 0 02 0.4 0.6
[ Documents d J J d
¥ Downloads 0.8 0.0rg 1 constant
dd Music
A Pictures d J =
' Vvideos system wavel:auegsesNProb Allrun foam.foam
@ Rubbish Bin — = — —
& Network c c c c
log.blockMesh log.setWaveField log. log.subsetMesh

Computer setWaveParameter
B connectto Server :

c c

log.toposet log.waveFoam log.
waveGaugesNProb
es

28



3.3. WAVE PASS THROUGH A FIXED PLATE CHAPTER 3. WAVE SIMULATION

Post-Processing
First create the dummy file foam.foam and then open it in Paraview, as in the previous examples.
This is the image you will get:

dlpha.water

=0.000e+00

Now, we are going to see some of the results of the free surface elevation obtained and measured in
the front and rear of the fixed plate (See Page .

alpha.water
-1.000e+00

0.5

20.000+00

0.00

Free Surface Elevation (m)

-0.06 ——Trant

-0.08
Time (5)

29



Chapter 4

Fluid-Structure Interaction

In previous simulations, fluid-induced solid deformation is negligible, and the solid is commonly
assumed as rigid, so we only obtain the solution of the fluid field. However, when considerable solid
deformation occurs, FSI approach is required to solve both fluid and solid mechanics.

4.1 Preparation: stress-analysis

To solve an FSI problem with OpenFOAM, this section will present how to solve solid mechan-
ics in OpenFOAM, as a preparation. The tutorial case we are using is plateHole, stored under
tutorials/stressAnalysis/solidDisplacementFoam/plateHole.

The case conducts the structural analysis of a square plate with a circular hole at its centre. It is
loaded with a uniform traction of o = 10 kPa over its left and right faces

c=10kPa -—1------------—- o =10 kPa
symmetry plane
[
R=05m
=
VB
- g I
| E
' 8
|
4.0 m

According to the symmetry, only one quarter of the plate was taken into calculation, to save com-
putational costs. The mesh and boundary conditions of the case were defined as below.

30



4.1.

PREPARATION: STRESS-ANALYSISHAPTER 4. FLUID-STRUCTURE INTERACTION

8 up 7 up 6
EEEnan
iy left
:ﬁ“::~
g g Wy, right
T I~
g g ® ®
:-.':\\\.
™4 I
SR ’
-—:\:\\
Ny iy N 9
t:t N o o
g
'\h left @
4 o 3
\LA\\\\\(\\
I ERE I
S S L T 10 A igh
JLLLLLRRRR RN RN ® right
AARR LT AR AR NN ] 5 0]
AVIOATAVTTT Ty Ly hole
ANV TV v 2 2
PO TT
LT T 5 n
LI Oy T b 0 ot 1 ! down 2
down
vertices dimensions [61006000];
E? ; g)o) internalField uniform (0 0 0);
200
22 3.737107 0) boundaryField
(0.707107 0.707107 0) {
(0.353553 0.353553 0) left
(220)
Eg~;°;;07 20) ) type symmetryPlane;
(0 10)
(0 0.5 0) right
(0.5 0 0.5) {
(10 0.5) type tractionDisplacement;
(2 0 0.5) traction uniform (10000 0 0);
(2 0.707107 0.5) pressure uniform 0;
(0.707107 0.707107 0.5) value uniform (0 0 0);
(0.353553 0.353553 0.5) }
(22 0.5) down
(0.707107 2 0.5)
(0 2 0.5) {
(0 1 0.5) type symmetryPlane;
(0 0.5 0.5) }
) up
blocks { N N
( type tractionDisplacement;
hex (5 4 9 10 16 15 20 21) (10 10 1) simpleGrading (1 1 1) traction uniforn (0 0 0);
hex (6 1 4 5 11 12 15 16) (10 10 1) simpleGrading (1 1 1) pressure U"}ﬂ’”" 0;
hex (1 2 3 4 12 13 14 15) (20 10 1) simpleGrading (1 1 1) value uniform (0 0 0);
hex (4 3 6 7 15 14 17 18) (20 20 1) simpleGrading (1 1 1) }
hex (9 4 7 8 20 15 18 19) (10 20 1) simpleGrading (1 1 1) hole
) {
type tractionDisplacement;
edges N -
¢ traction uniform (0 0 0);
arc © 5 (0.469846 ©.17101 0) pressure U"?fOFN 03
arc 5 10 (0.17101 0.469846 0) value uniform (0 0 0);
arc 1 4 (0.939693 ©.34202 0) }
arc 4 9 (0.34202 0.939693 0) frontAndBack
arc 11 16 (0.469846 0.17101 0.5)
arc 16 21 (0.17101 0.469846 0.5) .
arc 12 15 (0.939693 0.34202 0.5) type enpty;
arc 15 20 (0.34202 ©.939693 0.5) )
)

The mechanical properties of the
son’s ratio and Young’s modulus.

solid is defined in mechanicalProperties, including density, Pois-

rho//density

{
type uniform;
value 7854;

3

nu//Poisson's rattd
type uniform;
value 0.3;

3

E//Young's modulus
type uniform;
value 2e+11;

3

planesStress yes;//yes for 2D, no for 3D

31



4.2. INSTALLATION(FSI) CHAPTER 4. FLUID-STRUCTURE INTERACTION

The results are presented as the displacement of each cell (D). By varying the Young’s modulus
(E) of the plate, it can be observed (with the filter wrap by vector) that considerable deformation
occurs with a small Young’s modulus applied.

More details please see: https://www.openfoam.com/documentation/tutorial-guide/tutorialse9.
php#x16-830005. 1

D Magnitude
1.378e-01
Ell 11294
—E 0.088102
é632679-8 E:04063267
ES,BASG-OB 3.843e-02

Figure 4.1: Structural response of the plate. Left: E = 2ell Pa; Right: E = 2e5 Pa.

D Magnitude
1.378e-07

—1.1294e7

—8.8102e-8

In the above case, the load on the solid body was applied by boundary conditions, i.e. a specific
traction value was set on the solid boundaries. However, in an FSI problem, the load on the solid
body is usually unknown. We need to solve the fluid field first, get the fluid load on the solid, and
then the solid solver can solve the solid mechanism. In OpenFOAM, such a process can be preformed
via fsiFoam, an opensource FSI solver developed by Tukovic et al. [12 [13]. Next, we will introduce
how to install and use fsiFoam.

4.2 Installation(FSI)

fsiFoam needs to be installed on foam-extend, which is the extended/advanced version of openFOAM
that developed by active contributors. To conduct FSI simulations, this section first provides in-
structions on installing foam-extend and fsiFoam.

4.2.1 foam-extend

foam-extend is a different version to the original openFOAM. First, we need to revise the bashrec file
(the commands that will automatically execute when you open a terminal):

1. open the bashrc file by: go to the home direcotory, ctrl+H to show hiden files, open .bashrc

2. in the file, REMOVE the line for initialising openFOAM

source /opt/openfoamé/etc/bashrc

AND ADD

alias of40='source ../../opt/openfoam4/etc/bashrc'

3. ADD one line under the last line for initialising foam-extend:

alias fed0='source $HOME/foam/foam-extend-4.0/etc/bashrc'’

Thus, when you open a new terminal, type of40 to use openFoam 4.0, type fe40 to use foam-
extend 4.0. Otherwise, these two versions will interrupt each other.

The steps to install foam-extend 4.0 are outlined as below. (based on the notes given by Prof
Hakan Nillson)

1. Install dependences, Open new terminal window and execute the following commands. (line-
by-line, since you have to type your password on the "sudo” lines, and also agree to do the

32


https://www.openfoam.com/documentation/tutorial-guide/tutorialse9.php#x16-830005.1
https://www.openfoam.com/documentation/tutorial-guide/tutorialse9.php#x16-830005.1

4.2. INSTALLATION(FSI) CHAPTER 4. FLUID-STRUCTURE INTERACTION

installations by typing Y)

sudo apt-get install git-core build-essential binutils-dev cmake flex

sudo apt-get install zliblg-dev qt4-dev-tools libqt4-dev libncurses5-dev libiberty-dev
sudo apt-get install libxt-dev rpm mercurial graphviz python python-dev

sudo apt-get install openmpi-bin libopenmpi-dev

sudo apt-get install paraview

2. Download it
mkdir $HOME/foam
cd $HOME/foam
git clone git://git.code.sf.net/p/foam-extend/foam-extend-4.0 foam-extend-4.0

3. Some changes to the installation procedure to save time and disk:
echo "export WM_THIRD_PARTY_USE_BISON_27=1" > etc/prefs.sh
echo "export WM_MPLIB=SYSTEMOPENMPI" >> etc/prefs.sh
echo "export OPENMPI_DIR=/usr" >> etc/prefs.sh
echo "export OPENMPI_BIN_DIR=\$0PENMPI_DIR/bin" >> etc/prefs.sh

4. Complie
source etc/bashrc
./Allvmake.firstInstall (this step takes hours)

5. Make a user derectory
mkdir -p $FOAM_RUN

4.2.2 fsiFoam

1. Download the package (oepn a terminal and use fe40 to initialise foam-extend)
mkdir -p $WM_PROJECT_USER_DIR
cd $WM_PROJECT_USER_DIR
wget https://openfoamwiki.net/images/d/d6/Fsi_40.tar.gz
tar -xzf Fsi_40.tar.gz

2. Compile
cd FluidSolidInteraction/src
./Allwmake

3. Then, before we try running the tutorial cases, we need to fix a few dependencies (note, be-
tween "do” and "done”, the two ”sed” commands are both end with ”item” in the second
line):
cd ..
find run -name options | while read item
do
sed -i -e 's=$(WM_PROJECT_DIR)/applications/solvers/FSI=$(WM_PROJECT_USER_DIR)/
FluidSolidInteraction/src=' $item
sed -i -e 's=$(WM_THIRD_PARTY_DIR)/packages/eigen3=$(WM_PROJECT_USER_DIR)/
FluidSolidInteraction/src/ThirdParty/eigen3=' $item
done

4. Fix some bugs
Open $WM_PROJECT_DIR/src/finiteVolume/finiteVolume/fvSchemes/fvSchemes.C,

33



4.3. FSI APPROACH CHAPTER 4. FLUID-STRUCTURE INTERACTION

uncomment the following lines (they should be commended, when you open the file).

382
383
384
385
386 if
387 (
388

389

390

391

392

393

394 }

if (dict.found("fluxRequired"))

fluxRequired_ = dict.subDict("fluxRequired");

fluxRequired_.found("default")
&& word(fluxRequired_.lookup("default")) != "none"

defaultFluxRequired_ = Switch(fluxRequired_.lookup("default"));

Open $WM_PROJECT_DIR/src/finiteVolume/fvMatrices/fvMatrix/fvMatrix.C, comment the
following lines.

1044 J/if (tpsi_.mesh().schemesDict().fluxRequired(psi_.name()))

1045  // {

1046 J//  FatalErrorIn("fvMatrix<Type>::flux()")

1047 << "flux requested but " << psi_.name()

1048 I/ << " not specified in the fluxRequired sub-dictionary”
1049 " of fvSchemes."

1050 /[<< abort(FatalError);

1051 /11

and do:
cd $WM_PROJECT_DIR/src/finiteVolume
wmake libso

4.3 FSI approach

In fsiFoam, a partitioned algorithm is used to solve the FSI problem, which solves the fluid and
solid mechanism separately and links them together via the fluid-solid interface. In other words,
fsiFoam employs a fluid solver (e.g. icoFoam) to obtain the fluid field, and employs a solid solver
(e.g. solidDisplacementFoam) to solve the solid mechanism. Besides, an FSI scheme is used to link
the fluid solution and solid solution. The process is illustrated as below.

Calculate
new fluid
state
Jpdate the

fluid mesh Calculate

topology
according to

new solid

shape

Update
solid
deformation

34

the fluid
loads on the
solid

Calculate
the stress
and strain of
the solid



4.4. FSI TUTORIAL CHAPTER 4. FLUID-STRUCTURE INTERACTION

4.4 FSI tutorial

Here we use a tutorial to demonstrate how to conduct an FSI simulation. The case is stored under
USER-DIRECTORY/FluidSolidInteraction/run/fsiFoam/beamInCrossFlow
The case consists of an elastic thick plate attached to the bottom surface of a rectangular channel.
The geometry of the spatial domain is given below. An incompressible viscous fluid enters the
channel from the left-hand side with a velocity that gradually increases [13].

4.4.1 Case structure

Since the fluid and solid parts are solved separately, they are defined in two folders. As shown in
the tree diagram below, the FSI case mainly consists of two parts: fluid and solid. Each of them
has its own O, constant and system directory, as a common OpenFOAM case, and the “create-
Zones” and “setBatch” define the fluid/solid interface. The “makeLinks”, “makeSerialLinks” and
“removeSerialLinks” files manage the link between the fluid and solid. The “Allrun” and “Allclean”
files are located in the fluid part, and the “AllrunPar” file is used for parallel computation. During
the process of an FSI simulation, only the fluid part needs to be executed, because the solid part
will be called automatically over each timestep.

[A FSI CASE]
|-- fluid
[-=— |--0
|-— |-- Allclean
|-- |-- Allrun
|--  |-- AllrunPar
|--  |-- constant
|-- |-- createZones
|-- |-- setBatch
|-- |-- system
| -— makeLinks
| -- makeSerialLinks
| -- removeSeriallinks
|-- solid
[-- 0
| -—constant
| -— createZones
| -- setBatch
|-- system

35



4.4. FSI TUTORIAL CHAPTER 4. FLUID-STRUCTURE INTERACTION

4.4.2 Mesh

The mesh of an FSI case also contains two parts, i.e. fluid mesh and solid mesh, defined separately in
their constant/polyMesh/blockMeshDict. The fluid mesh and solid mesh must match each other
through their interface and compose a whole computational domain, as shown in Figure

An interface boundary condition has to be defined in both the fluid and solid mesh. Moreover,
the interface in fluid mesh and the interface in solid mesh have to be at a same location. Through
the interface, the loads of fluid on solid is outputted to the solid solver and converted into the
displacement of the solid surface.

Figure 4.2: Fluid mesh, solid mesh and the integral mesh. (Blue: fluid field; Red: interface; Grey: Solid
field)

4.4.3 Simulation

Running the case with ./Allrun

(If you are using this case for the first time, you need to do:)
sed -i s/tcsh/sh/g *Links

./removeSeriallLinks fluid solid

./makeSeriallinks fluid solid

cd fluid

./Allclean

./Allrun

Use paraview to view the results and it can be seen that obvious deformation of the solid body
has been simulated (upper: t=0s; lower: t=10s).



4.5. WAVE-INDUCED FSI PROBLEMS CHAPTER 4. FLUID-STRUCTURE INTERACTION

U Magnitude
2.286e-01

0.17147

| Hmulm

~0.11431

E:o.057 157
0.000e+00

U Magnitude
2.286e-01

0.17147

o

.11431

o
o
a
~
(&)
~

mf\\\\l\\\‘l\\[\\!\lm

0.000e+00

4.5 Wave-induced FSI problems

Last section introduced how to conduct an FSI simulation via fsiFoam. However, the fsiFoam
package that we can download from public domain has not included a multiphase library, which
means it cannot be used to simulate the FSI problems containing free-surface modelling. In order
to investigate the FSI problems in maritime/ocean field, e.g. [I4], this section will develop the code
of fsiFoam. Specifically, we will compose three solvers: fsiFoam, interDyMFoam and waves2Foam.

4.5.1 Code development

The development route of this work is shown below, where the original FSI package will first be
extended into two-phase (fsiFoam+interDyMFoam) and then be endowed the capability of generating
a target wave field (fsiFoam+interDyMFoam-+waves2Foam).

Enable
free-surface
modelling

Enable
wave
modelling

(a) the deformation of a beam (b) the deformation of a beam (c) the deformation of a beam
induced by single-phase flow induced by two-phase flow induced by wave loads

To extend the FSI package from single-phase to two-phase, essentially it is to build a new free-surface
fluid library beside other existing fluid libraries, e.g. pisoFluid, icoFluid. The fluid libraries of
FSI package are stored under src/fluidSolidInteraction/fluidSolvers/. For this purpose, the
code of interDyMFoam will be transplanted as a new two-phase fluid library under the fluidSolvers
directory, which will be named as “interFluid”.

The coupling of waves2Foam with FSI package is divided into two parts: on the one hand, to build
a new solver that can call both waves2Foam package and FSI package, named waveFsiFoam; on the
other hand, to include necessary wave objects into interFluid,named waveInterFluid.

37



4.5. WAVE-INDUCED FSI PROBLEMS CHAPTER 4. FLUID-STRUCTURE INTERACTION

Detailed steps can be found at [15]:
http://www.tfd.chalmers.se/~hani/kurser/0S_CFD_2017/LuofengHuang/2017_0SCFD_Report_
Luofeng.pdf

4.5.2 Tutorial

Here we provide a tutorial of how to use the developed solver, waveFsiFoam, to run a wave-induced
FSI case: beamInWave.
First of all, we need to modify the case file of “beamInCrossFlow

3

as follows.

Boundary conditions

Compared with the original “beamInCrossFlow” case , the following revises are required under
fluid/0/ :

1. Copy the alphal.org file from the tutorial case “damBreakWithoutObstacle” (within the instal-
lation of foam-extend 4.0), so that the VOF method will divide the domain into two phase.

2. Rename the pressure field from p to pd; Revise its outlet boundary into a zeroGradient condition
and its top boundary into a totalPressure (typically used to model the atmosphere) condition.
3. To generate waves at the inlet boundary, the inlet boundary conditions of volume fraction
alphal.org and velocity U are set as waveAlpha and waveVelocity respectively, which are the
boundary conditions installed with the waves2Foam package.

For alphal.org
inlet
{
type waveAlpha;
refValue uniform O;
refGrad uniform O;
valueFraction uniform 1;
value uniform O;

For U
inlet
{
type waveVelocity;
refValue uniform ( 0 0 0 );
refGradient uniform ( 0 0 0 );
valueFraction uniform 1;
value uniform ( 0 0 0 );

Constant

Compared with the original “beamInCrossFlow” case, the following revises are required under
fluid/constant/ :

1. In fluidProperties, set the “fluidslover” as waveInterFluid (this step calls the new fluid library
developed in this study), also change the following “fluidcoeffs” value into waveInterFluidCoeffs.
2. Replace the transportProperties file by that of the tutorial case “damBreakWithoutObsta-
cle”.

3. Copy waveProperties.input from the toturial case “waveFlume”, as well as the g file and
RASproperties file. Adjust the “sealevel” and other wave parameters according to the geometry.

38


http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2017/LuofengHuang/2017_OSCFD_Report_Luofeng.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2017/LuofengHuang/2017_OSCFD_Report_Luofeng.pdf

4.5. WAVE-INDUCED FSI PROBLEMS CHAPTER 4. FLUID-STRUCTURE INTERACTION

System and Allrun

Compared with the original “beamInCrossFlow” case, the following revises are required under
fluid/system/ :

1. In controlDict, change the “application” value into waveFsiFoam (this step calls the developed
new solver) and comment the previous object functions.

2. Replace the fvSchemes file and fvSolution file by those of the tutorial case “damBreakWith-
outObstacle”, and revise the pressure field of the two files from p to pd.

To run the case by the command “./Allrun”, the fluid/Allrun file needs to be revised as be-
low:

o Allrun:line 21-30

cd fluid
cp O/alphal.org O/alphal

runApplication setWaveParameters
runApplication setWaveField
runApplication $application

B ommm e end-of-file

The utility setWaveParameters is a pre-processing utility, which computes all the necessary wave
parameters based on physical meaningful properties, e.g. setWaveParametes converts information
on water depth and wave period into a wave number for first order Stokes wave theory. In this step,
it will load the constant/waveProperties.input and output the processed data into a new file,
constant/waveProperties .

The utility setWaveField is used to set the initial conditions according to a user defined wave the-
ory, which is defined by the keyword “initializationName” in the file waveProperties.input (see
Section 2.3).

The last step calls the solver waveFsiFoam, as defined by “getAppapplication” in f1luid/controlDict.
Thus, the new solver waveFsiFoam will solve the case.

Figure 4.3: The interaction of the beam with incoming waves: when the beam is hit by a wave crest, it
deforms forward (above); when the beam is hit by a wave trough, it deforms backward (below).

39



Reference

[1]

Jasak H, Jemcov A, Tukovic Z, et al. OpenFOAM: A C++ library for complex physics simu-
lations. In: International workshop on coupled methods in numerical dynamics. vol. 1000. IUC
Dubrovnik, Croatia; 2007. p. 1-20.

Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum
mechanics using object-oriented techniques. Computers in physics. 1998;12(6):620-631.

Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries.
Journal of computational physics. 1981;39(1):201-225.

Moctar Oe, Shigunov V, Zorn T. Duisburg Test Case: Post-panamax container ship for bench-
marking. Ship Technology Research. 2012;59(3):50—-64.

Jacobsen NG, Fuhrman DR, Fredsge J. A Wave Generation Toolbox for the Open-Source
CFD Library: OpenFoam®. International Journal for Numerical Methods in Fluids.
2012;70(9):1073-1088.

Higuera P, Lara JL, Losada IJ. Realistic wave generation and active wave absorption for
Navier—Stokes models: Application to OpenFOAM@®). Coastal Engineering. 2013;71:102-118.

Jacobsen N. waves2Foam Manual. Deltares, The Netherlands. 2017;.

Mayer S, Garapon A, Sgrensen LS. A fractional step method for unsteady free-surface flow
with applications to non-linear wave dynamics. International Journal for Numerical Methods
in Fluids. 1998;28(2):293-315.

Bruinsma N. Validation and application of a fully nonlinear numerical wave tank (Master
Thesis, TU Delft). 2016;.

Higuera P, Lara JL, Losada IJ. Three-dimensional interaction of waves and porous coastal
structures using OpenFOAM@®). Part I: formulation and validation. Coastal Engineering.
2014;83:243—-258.

Higuera P, Lara JL, Losada IJ. Three-dimensional interaction of waves and porous coastal
structures using OpenFOAM®). Part II: Application. Coastal Engineering. 2014;83:259-270.

Tukovic Z, Cardiff P, Karac A, Jasak H, Ivankovic A. OpenFOAM library for fluid structure
interaction. In: 9th OpenFOAM Workshop. vol. 2014; 2014. .

Tukovic Z, Karac A, Cardiff P, Jasak H, Ivankovic A. OpenFOAM finite volume solver for
fluid-solid interaction. Tractions of FAMENA. 2018;.

Huang L, Ren K, Li M, Tukovi¢ Z, Cardiff P, Thomas G. Fluid-structure interaction of a large
ice sheet in waves. Ocean Engineering. 2019;182:102-111.

Huang L. An opensource solver for wave-induced FSI problems. In Proceedings of CFD with-
OpenSource Software; 2018.

40



Appendix A

Coding tutorial

41



Chapter 1

Basic Coding and
Compilation

OpenFOAM is written in the object-oriented C++ language. Users of C++
will be familiar with many concepts such as inheritance and polymorphism,
concepts which are used extensively in OpenFOAM to reduce code duplication
and improve efficiency.

However, much of the core functionality of C++ has been overloaded in Open-
FOAM to allow for the code to be written in a more mathematical way. We
shall see many examples of this over the course of this introduction.

OpenFOAM uses the compiler wmake which is similar to cmake. wmake
comes as part of OpenFOAM and it is highly recommended that this is used
for all functions, utilities and libraries to avoid any errors in compilation and
interpretation.

In this chapter, the basic elements of programming and compilation are intro-
duced. This is done through a number of examples which introduce some of
the different data types and member functions that can be used.

1.1 A Simple Example

The first example introduces some of the basic concepts using the C standard
library. We shall write a simple program, compile it using wmake, and then
execute it.



1.1.1 A Simple Example with C++
The program take 2 inputs, performs some simple arithmetic and then display
the outputs the terminal. Firstly, create a new folder in the working directory:

$ mkdir examplel
$ cd examplel

now open a text editor to write the code for examplel.C. This is shown below:

1j¢include <iostream> // header file that contains input/output functionality
2

3 int main() // declare main function

44

5 using namespace std;

6

7 int a=5; // declare an integer

B double pi=3.141593; // declare a double

9

16 cout << "Some basic arithmetic... \n";

11 cout << a << " + " << pl << " = " << @a+pl << "\i

12 cout =< a << " * " =< pi << = " << a*pi << "\n"

13

14 return 8; // main was declared as an integer so return a dummy integer value at the end
15

16 }

Figure 1.1: Code for example 1

To compile the code, it is necessary to create a directory called Make which
must contain 2 files, files and options. OpenFOAM has created a function
that will do this for us:

$ wmakeFilesAndOptions

This creates the necessary folder and files and pre-populates them. files con-
tains the list of programs to compile and also contains the destination for the
compiled code. options contains information about dependencies. Before we
compile the code, make the following change to files:

1]

2 examplel.C

3

4 EXE = $(FOAM_USER_APPBIN)/examplel

Figure 1.2: Contents of Make/files for example 1

This makes sure that the code we create is stored in a different place to the
OpenFOAM source code.

Execute the code by typing the name into the prompt:

$ examplel



1.1.2 A Simple Example Using OpenFOAM

We will now consider the same example, but using a different set of class
definitions. Standard object types such as int and double are now replaced
with label and scalar, which are OpenFOAM classes.

Make a new folder, called example2. Go into this folder and create the
following code, called example2.C.

1#include "10streams.H" // header file for OpenFOAM I/0 streaming
2

3|using namespace Foam;

4

5/int main()

6/{

7 label a=5; // label is the OpenFOAM version of integer

8 scalar pi=3.141593; // similar to double

9

16 // Info is similar to cout, but also works in parallel applications
11 Info << "Some basic arithmetic. =< endl;

12 Info << a =< ! << pi =< << a+pi << endl;

13 Info << a =< : << pl << = << a*pi << endl;

14

15 return 0;

16|}

Figure 1.3: Code for example 2

Run the wmakeFilesAndOptions and change the location of the executable
to FOAM_USER_APPBIN as before. Compile the code.

Running this, we note that it is exactly the same as the previous example.
However, there are significant benefits to using OpenFOAM’s core classes in-
stead of those from the C standard library. In particular, we shall see in the
next section that by using the OpenFOAM class definitions we are able to
perform vector and tensor algebra and calculus in a more intuitive manner.

1.2 OpenFOAM Core Classes

1.2.1 Vectors and Tensors

In the previous section, the two classes label and scalar were introduced as
alternatives to int and double. By using OpenFOAM’s core classes, it is pos-
sible to perform vector and tensor algebra in a more intuitive, mathematical
way. Both the vector and tensor classes are only valid for 3 dimensional data,
and are primarily for data of the type ¢; = ¢;(z, vy, 2).

The following code includes a number of examples that show how this can be
used.

To begin with, create a new folder called example3 and create the code below



and compile using the steps described previously.

1} e "I0streams.H

2|4 fieldTypes H" // header file containing vector, tensor, etc.
3

4 using namespace Foam;

5

6/int main()

7q

8

9 scalar a=5.2; // define a scalar

16 vector m(1, 2, 3); // define a 3x1 vector

11 vector n(@8.5, 8.25, 1);

12 tensor P(1, 2, 3, 4, 5, 6, 7, 8, 9); // define a 3x3 tensor
13

14 Info << "vector multiplied by a scalar:" << endl;

15 Info << a << """ <= m << " = " << a*m << endl;

16

17 Info =< "sum of 2 vectors: " =< endl;

18 Info <« m << " + cc n << " = << m+n << endl;

19

20 Info =< "dot product of 2 vectors:™ << endl;

21 Info << m =< & << n << " <= (m & n) =< endl;
22

23 Info =< “Tensor times a vector:" << endl;

24 Info =< P << <cc << " =" << (P & m) << endl;
25

26 return 8;

27

28}

Figure 1.4: Code for example 3

Note the use of brackets when combined with the & operator. This is necessary
because in C+-+ the << operator takes precedence over the & operator.

Compile this code and execute.

1.2.2 Lists and Fields

For storing and processing large vectors or arrays of data, we use the List
class. This is actually a template class, and it inherits different functionality
depending on the class of data that make up the list. For example, we might
have a list of n scalars, which would simply be a n x 1 list of scalar values.
Or, we might have a list of velocity vectors of the form:

(ula U1, wl)
(u2,v2, wa)

(um Un, wn)

Let’s consider an example of how the List class can be used. The following
example produces a finite sequence and stores the results of each iteration in
a list. As well as using the basic class, we shall also make use of some of the
class member functions. The code will be used to evaluate:



o0

1
2n

n=0

=2 (1.1)

Because the sum is over an infinite n, we shall introduce a convergence criterion
to stop the calculation once a certain level of convergence has been reached.
This also provides the opportunity to introduce two of the member functions
for the class, namely size and last.

Begin by creating a new folder, called example4 and write out the code below
in a text file with the same name. Then follow the compilation steps from the
previous examples, remembering to change the compilation location in files.

1Finclude "I0streams.H"
2 #include "List.H" // need to include header file for List
#include <math.h=>
4
5 using namespace Foam;
6
7int main()
84
a
16 List<scalar> mylList(1l); // declare a list with 1 scalar value
11 myList[B] = 1; // set the first value equal to 1
12 scalar total = mylList[@];
13 scalar convergenceCriterion = 1E-5;
14 scalar convergenceValue = 1;
15 label n = 1;
16 scalar exponent = -1;
17
18 while (convergenceValue > convergenceCriterion)
19 {
20 scalar newValue = pow((pow(2,n)),exponent); // calculate new value
21 mylList.append(newValue); // increases the list length by one and adds the newValue
22 total += mylList.last(); // compound assignment, same as total = total +
mylList.last()
23 n = n+l;
24
25 convergenceValue = myList[myList.size() - 2] - myList.last(); // check convergence
26 // N.B. in C++, indexing of lists, vectors, etc. starts at 8, not 1!
27
28 }
29
30 Info =< "mylList = " << mylList =< endl;
31 Info << "Sum = " << total << endl;
32
33 return 0;
34}

Figure 1.5: Code for example 4

An extension of the List class is Field. Field inherits all of the functionality
of List, but it also includes field algebra. We shall see examples of this in the
next chapter.



Chapter 2

Creating Utilities and Data
Access

One of the most important elements of programming within OpenFOAM is
data access. We need this to read information about the mesh and to access
field data. In this chapter, we are going to create a utility to calculate the
volume ratios of neighbouring cells within a mesh. High volume ratios can
lead errors and instabilities in simulations, particularly for LES and DNS.

The example introduces a number of important concepts, including the tem-
plate for developing an application, accessing data and the use a number of
member functions for different class types.

2.1 Creating a New Application or Utility

To begin, we are going to use an OpenFOAM utlity that creates a template
for the application:

$ foamNewApp volumeRatioCheck

This creates a new directory and populates it with a template code and the
Make directory. Go into this directory and compile the code to check there
are no errors.



— |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

3

4 \\ / 0 peration | Website: https://openfoam.org

5 W/ A nd | Copyright (C) 2019 OpenFOAM Foundation

6 W M anipulation |

L T
8 License

9 This file is part of OpenFOAM.

10

11 OpenFOAM is free software: you can redistribute it and/or medify it
12 under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.

15

16 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.

20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
23

24 Application

25 volumeRatioCheck
26

27 Description

30

31 #include "fvCFD.H"

32
33;;‘--00-*0‘.*i’."kﬂ"l'-’l’*#"‘k-“--i#tt‘-."{
34

35 int main(int argc, char *argvl[])

36 {

37 #include "setRootCase.H"

38 #include “"createTime.H"

39

40 ,l",‘“ L . ® % * " & % L * * = - * * = * » = * = = @ * ® ® @ * & @ * O = ‘.(‘!
41

42 Info<< nl << “"ExecutionTime = * <= runTime.elapsedCpuTime() << * s*
43 << " ClockTime = " << runTime.elapsedClockTime() << ~©

44 << nl << endl;

45

16 Info<< "End\n" =< endl;

47

48 return 0;

49}

Figure 2.1: Template code for volumeRatioCheck

2.2 Volume Ratio Check

The first line of code, shown in figure 2.1, adds a header file fvCFD.H. This
header actually contains a number of other header files, which is done to
reduce code duplication, save time and make the code easier to read. We can
see which header files are contained in this by looking at the source code,
shown in figure 2.2.

The code shown in the following figures is split into 3 sections. The first
contains a number of header files that are necessary for the code to run. A
number of access functions are also used to access the necessary mesh data.

The second part, see figure 2.4, contains the loop that calculates the volume



#ifndef wCFD_H
#define fwCFD_H

#include "parRun.H"

#include "Time.H"

#include "fvMesh.H"

#include "fvc.H"

#include "fvMatrices.H"

#include "fvm.H"

#include "linear.H"

#include "uniformDimensionedFields.H"

#include "calculatedFvPatchFields.H"

#include "extrapolatedCalculatedFvPatchFields.H"
#include "fixedValueFvPatchFields.H"

#include "zeroGradientFvPatchFields.H"

#include "fixedFluxPressureFvPatchScalarField.H"
#include "constrainHbyA.H"

#include "constrainPressure.H"

#include "adjustPhi._H"

#include "findRefCell.H"

#include "IOMRFZonelList.H"

#include "constants.H"

#include "0Sspecific.H"
#include "arglist.H"
#include "timeSelector.H"

#ifndef namespaceFoam
#define namespaceFoam

using namespace Foam;
#endif

#endif

Figure 2.2: Code for fvCFD.H

ratio of each cell with it’s neighbours. These are stored in a list using the
append function, which was introduced earlier.

The third part of the code prints the maximum volume ratio to the screen,
together with the run-time of the application.

Modify the template code using the figures above, recompile and check there
are no compilation errors.

We are now ready to test the utility to see how it works. To do this, copy the
pitzDaily tutorial into your working directory and run the blockMesh utility
to create the mesh:

$ run

$ cp -r FOAM_TUTORIALS /incompressible/simpleFoam /pitzDaily .
$ cd pitzDaily

$ blockMesh

$ volumeRatioCheck

The utility runs and returns the largest volume ratio to the screen.

10



31 #include "fvCFD.H" // contains lots of other header files

32
33{}-4-.‘l*..‘z.ﬁ‘t-mn&-*-&.t-*-li-t.tl&l*-&-,,f
34

35 int main(int argc, char ®argv[]) // allows for a number of input arguments

36 {

37 #include "setRootCase.H"

38 #include "createTime.H" // creates time information

39

49 R o e = S e R I S S S s e i Sk S R AN
41

42 // This header allows us to access mesh information

43 #include “createMesh.H"

44

45 // Access function tells us number of mesh elements

46 const scalar ¢ = mesh.C{).size();

47 Info << "Number of cells = " << ¢ =< endl;

48

49 // obtain neighbour cells for all cells
50 const labellistList& neighbour = mesh.cellCells();

51
52 List<scalar> ratios{8); // declare an empty scalar list
53 scalar volumeRatio = 0;

Figure 2.3: Code for volumeRatioCheck (lines 31-53)

55|  forAll(neighbour, celli)

56 {
57

58 // for each cell, obtain neighbour cells

59 List<label> n = neighbour[celli]

60

61 // calculate the volume ratio of the cell with its neighbour cells
62 const scalar cellVolume = mesh.V()[celli];

63

64 // for each neighbour cell, calculate volume ratio

65 forAll(n, i)

66 {

67 label neighbourIndex = n[i];

68 scalar neighbourVolume = mesh.V()[neighbourIndex];
69

70 // want volume ratio to be greater than 1

71 if (neighbourVolume >= cellVolume)

72 {

73 volumeRatio = neighbourVolume/cellVolume;

74 }

5 else if (neighbourVolume < cellVolume)

76 i

77 volumeRatio = cellVolume/neighbourVolume;

78 }

79

8e // update list

81 ratios.append(volumeRatio);

82

83 }

84

85 }

Figure 2.4: Code for volumeRatioCheck (lines 55-85)

For this example, the utility runs quickly but that may not be the case for
meshes with more elements. If you try to run to the utility for a larger mesh,
you will find that it takes significantly longer to run. The reason for this can be
found on line 81 of the code. The append member function for the list class,
whilst convenient, is very inefficient. This is because the function actually
creates a new list with n+1 elements and then copies the old list into it before
adding the new data. Thus, as the list size increases, more and more data

11



87 Info =< "Maximum volume ratio = " << max(ratios) << endl;

88

89 // By default, OpenFOAM puts in this piece of code which prints the
96 // run-time to the screen

91 Info<< nl << "ExecutionTime = << runTime.elapsedCpuTime() << " s
92 << ClockTime " << runTime.elapsedClockTime() <<

93 << nl << endl;

94

a5 Info<< "End\n" << endl;

96

97 return 8;

98}

Figure 2.5: Code for volumeRatioCheck (lines 87-98)

has to be copied from the old list to the new one, which becomes increasingly
expensive.

To get around this problem, it is better to allocate the memory beforehand.
The simplest way to do this is simply to declare a list that will be large
enough to contain all of the necessary values. We can do this by making use
of a different class constructor for list, which allows us to specify a size and
populate it with zeros. This particular constructor requires two inputs, which
must be of type label and scalar. The figures below, 2.6 and 2.7 show how we
can modify the code to make use of this.

52 label len = 18*mesh.C().size();

53 scalar initial = B;

54 List<scalar> ratios(len, initial); // allocate memory for list
55 label counter = 8;

Figure 2.6: Code modification for volumeRatioCheck (lines 52-55)

We can then assign the value from each iteration to the correct location in the
list:

83 // update list
84 ratios[counter] = volumeRatio;
85 counter += 1; // compound assigment

Figure 2.7: Code modification for volumeRatioCheck (lines 83-85)

Reompile the code and re-run the application in the pitzDaily directory.

2.3 Creating a Dictionary for Data Input

In many cases, we want to supply utilities and applications with information to
tell them how to run and what to calculate. One way of doing this is through
a dictionary. This is simply a text file that contains a number of inputs that
can be read by the code.

To illustrate this, we shall introduce a maximum volume ratio criterion to our
application. As well as calculating the maximum ratio, the code will also tell

12



us how many cell volume ratios exceed a certain criterion. This criterion will
be set by the user by way of a dictionary.

The new code for the application is shown in figures 2.8, 2.9 and 2.10.

31 #include "TvCFD.H" // contains lots of other header files

32

33 ,I"j" * - ¥ = ¥ - * = * - L * - - & * * . W - * = + - L * . * » * * L - % ’l(f
34

35 int main(int argc, char *argv[]) // allows for a number of input arguments
36 {

37 #include "setRootCase.H"

38 #include “"createTime.H" // creates time information

33 Jl KR R B ko m ok m ok o® ok W R R R K R K % K ® Ok W K K K ¥ K K K K K K K K Jy
41

42 #include “createMesh.H”

43

44

45 // Create I0 object using information from dictionary

46 I0dictionary volumeRatioDictionary

47 (

48 I0object

49

50 "volumeRatioDictionary”, // name of file/object

51 runTime.system(), // file lives in system directory

52 mesh, // associate with mesh

53 I0object::MUST_READ, // read file

54 I0object::NO_WRITE // code does not modify anything

55

56 15

57

58 // Access function tells us number of mesh elements

59 const scalar ¢ = mesh.C().size();

60 Info << "Number of cells = * =< ¢ << endl;

61

62 // obtain neighbour cells for all cells
63 const labellistList& neighbour = mesh.cellCells();

64

65 label len = 10*mesh.C().size();

66 scalar initial = 8;

67 List<scalar> ratios(len, initial),; // allocate memory for list

68 label counter = 8;

69 scalar volumeRatio = 8;

78

FI label nFail = 6; // declare counter for number of cells that exceed criterion
72

73 // read in criterion from diction

74 scalar maxRatio(readScalar(volumeRatioDictionary.lookup(“maxRatio"))};
75

Figure 2.8: New code volumeRatioCheck (lines 31-75)

Lines 46 to 56 now contain the definition for the I/O (input/output) object of
class IOdictionary. Line 74 reads in the specific information from the dictio-
nary using both the lookup function and the readScalar function.

An additional if statement is now used to check if a cell volume ratio exceeds
the criterion. A counter is used to determine the total number of failed cases.
This is then printed to the screen.

Compile this new code as before.

In order to run the code, we now need to create a dictionary called volumeR-
atioDictionary. This needs to go in the system directory. This is shown in

13



76 forAll(neighbour, celli)

77 {
78
79 // for each cell, obtain neighbour cells
80 List<label>= n = neighbour[celli];
81
82 // calculate the volume ratio of the cell with its neighbour cells
83 const scalar cellVolume = mesh.V()[celli];
84
85 // for each neighbour cell, calculate volume ratio
86 forAll(n, i)
a7 {
88 label neighbourIndex = n[i],;
89 scalar neighbourVolume = mesh.V()[neighbourIndex];
9a
91 // want volume ratio to be greater than 1
92 if (neighbourVolume >= cellVolume)
93 {
94 volumeRatio = neighbourVolume/cellVolume;
a5
96 else if (neighbourVolume < cellVolume)
97 {
98 volumeRatio = cellVolume/neighbourVolume;
99 -
160
181 // check if ratio exceeds criterion
102 if (volumeRatio > maxRatio)
103
104 nFail += 1; // increase fail counter by 1
185 }
166
107 // update list
108 ratios[counter] = volumeRatio;
169 counter += 1; // compound assigment
110
111 }
112
113 }
Figure 2.9: New code volumeRatioCheck (lines 76-113)
115 Info <= “Maximum volume ratio = “ << max(ratios) =< endl;
116 Info << "Number of cell volume ratios exceeding " << maxRatio << " = " << nFail <<
endl;

117 // By default, OpenFOAM puts in this piece of code which prints the
118 // run-time to the screen

119 Info=< nl =< "ExecutionTime = " << runTime.elapsedCpuTime() =< " s"
126 << " ClockTime = " << runTime.elapsedClockTime() << " s"

121 << nl << endl;

122

123 Info<< "End\n" << endl;

124

125 return 8;

126/}

127

Figure 2.10: New code volumeRatioCheck (lines 115-127)

figure 2.11.

14



|
ield | OpenFOAM: The Open Source CFD Toolbox

3 A £ E

4 XX b 0 peration | Website: https://openfoam.org
5 WS A nd | Version: 6

6| W/ M anipulation |

A e e i e e e e e e e e */
8 FoamFile

9q

18 version 2.8:

11 format ascii;

12 class dictionary;

13 location "constant";

14 object volumeRatioDict;

15|}

16.{’;‘&&&.‘*&‘k‘*tk‘mmk‘*&ll*tt‘&t““‘tt&l‘/,
17

18 maxRatio 28;

19

20[/) FHEREFEIEERARAREESERAAAESEEREARRESBARARR SR ERER SRR RS ESERRAR RN RSN f )

Figure 2.11: Dictionary for volumeCheckDict

15



Chapter 3

Solver Development

OpenFOAM has a large number of solvers for a wide range of applications,
but there may be times when you wish to add something to an existing solver,
or implement a new one based on new research. In this chapter, we are going
to add a scalar transport equation for temperature to the icoFoam solver,
which is models an unsteady incompressible laminar flow.

By utilising the existing functionality of OpenFOAM and its unique archi-
tecture, implementing this model is surprisingly straightforward and requires
only limited modifications to the existing code.

The temperature will be modelled as a conserved passive scalar. That is, it
will not influence the pressure or velocity of the flow and so is only applicable
to problems where the temperature changes are small. One-way coupling from
momentum to temperature is accounted for through the convection term in
the temperature equation:

T
88—t+v.(UT)_v.DTv:r=o (3.1)

The modified solver will be called icoThermalFoam and its development is
described in the following section.

3.1 icoThermalFoam

Begin by copying the source code for the icoFoam solver to your working
directory

$ run

16



$ cp -r SFOAM_SOLVERS/incompressible/icoFoam icoThermalFoam $ cd
icoThermalFoam

$ wclean

$ mv icoFoam.C icoThermalFoam.C

The wclean function removes the files generated during the compilation that
were copied from the original folder. In the Make/files file, change icoFoam
to icoThermalFoam. This file should now look as shown in figure 3.1.

1 icoThermalFoam.C
2
3/EXE = $(FOAM_USER_APPBIN)/icoThermalFoam

Figure 3.1: files for icoThermalFoam

The icoFoam solver uses the PISO algorithm to solve for the coupled pressure-
velocity field. The main solver file, icoThermalFoam.C, contains the momen-
tum prediction equation followed by the PISO loop. Open the .C file with a
text editor and add the equation as shown in figure 3.2. This should be added
below the PISO loop as it does not form part of the pressure-velocity coupling.

116 // Insert the temperature equation

117 solve

118 (

119 fvm::ddt(T) + fvm::div(phi, T) = fvm::laplacian(DT, T)
126 ):

121

122 runTime.write();

123

124 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() <<
125 << " ClockTime = " << runTime.elapsedClockTime() << " s
126 << nl << endl;

j 4 g 1

128

129 Info=< "End\n" == endl;

138

131 return 0;

132/}

Figure 3.2: Changes to icoThermaFoam.C

We also need to modify the createFields.H header file. This is included
in the main code near to the start and reads in the field data and also the
transport properties. We need to make two changes to this file to include the
temperature field and also the thermal diffusivity, Dr.

22/// Add dimensioned scalar for thermal diffusivity
23 // This will be read from transportProperties in constant
24 dimensionedScalar DT

25 (

26 i ) B

27 transportProperties. lookup{"DT")
28));

Figure 3.3: Inclusion of thermal diffusivity in createFields.H

17



668 // Add a new volume scalar field for T
61 Info<< “Reading field T\n" << endl;
62 volScalarField T

63 (

64 I0object

65 (

bb

67 runTime. timeName(),
Bl mesh,

69 I0object: :MUST_READ,
70 I0cbject::AUTO_WRITE
i1 )%

y i mesh

Figure 3.4: Inclusion of temperature field in createFields.H
3.2 Testing the Solver

We now want to test the solver to check it behaves as expected. This will
be done using the cavityClipped tutorial. Begin by copying this into your
working directory.

$ run

$ cp -r SFOAM_TUTORIALS/incompressible/icoFoam /cavityClipped .
$ cd cavityClipped

$ blockMesh

The cavityClipped tutorial has a horizontal velocity imposed on the top bound-
ary which induces a circulating flow field in the cavity below. We are going to
include a temperature differential on the boundaries where the top boundary
has a higher temperature than the wall boundaries.

Before we run the solver, we must add the initial and boundary conditions for
the temperature and add the thermal diffusivity to the transport properties.
This is shown in figures 3.5 and 3.6.

We also need to add details to the fvSchemes and fvSolution files to tell
OpenFOAM how to discretise and solve the new equation. The changes to
these files are shown in figures 3.7 and 3.8.

Finally, we need to change the control dictionary so that the correct solver
is called. This done by changing icoFoam to icoThermalFoam in the sys-
tem/controlDict file.

Run the solver and load the results in paraview:

$ icoThermalFoam
$ paraFoam

The temperature field now appears alongside the pressure and velocity fields
and so post-processing can be carried out in the usual manner.

18



e e e -\
2 e |

3 \\ / F ield | OpenFDAM: The Open Source CFD Toolbox

4 A\ / 0 peration | Website: https: enfoam. o

5 L5 T 4 A nd | Version: 6

6 \\V/ M anipulation |
e *f
8 FoamFile

9{

10 version 2.8;

11 format ascii;

12 class volScalarField;

13 location “g*;

14 object p:

15}

16]// * * = = % % % & 2 2 5 % K % ¥ & & K X KBS SANKKKEETE X" )

17

18 dimensions [bOo616a6a86];
19

20 internalField uniform 360;

21

22 boundaryField

23 {

24 lid

25 {

26 type fixedValue;
27 value uniform 460;
28

29 fixedWalls

30 {

31 type fixedValue;
32 value uniform 3@@:|
33 }

34 frontAndBack

35 {

36 type empty;

L7

38}

39

48

A1 /) FEFSARERARARARREEREERRRAAAREEEESEEERRRRRAR SRS TR SRR RRR AT ST EERRRR R RN /)

Figure 3.5: Initial and boundary conditions for T in the 0 directory

8 FoamFile
9/{
18 version 2.0;
11 format ascii;
12 class dictionary;
13 location “constant";
14 object transportProperties;
15}

16/// * = * % % 8 8 % £ 3T 3 ¥ K X R X EE ST RS RTHEREEEEE TN KRR JS

17
18nu [02-1688860] 0.81;
19
20DT [02-1006 0] 0.001;
21
22

23|// FEERREEEEEERERE TR R RO R R RO R SR RO O SRR R SRR f

Figure 3.6: Transport properties

28 divSchemes

29 {

30 default none;

31 div(phi,U) Gauss linear;
32 div(phi,T) Gauss linear;
33}

Figure 3.7: Modification of fvSchemes

19



35
36
37
38
39
48

“tumn*

solver
smoother
tolerance
relTol

smoothSolver;
symGaussSeidel;
le-85;

a;

Figure 3.8: Modifications of fvSolution

20



Appendix B

Tutorial: Flow passes a motorbike

60



Chapter 1

Introduction

In this tutorial, we are going to work through the motorbike tutorial to model
the steady-state, incompressible turbulent flow over a motorbike with a rider.

The following elements will be considered:

e Meshing: Creation of initial isotopic block mesh domain followed by the
generation of an unstructured mesh including boundary layer elements
using snappyHexMesh;

e Turbulence modelling: Selection of turbulence model and consideration
of wall functions;

e Boundary and initial conditions;
e Numerical Methods including discretisation schemes and solvers

e Post-processing using function objects and Paraview

The principle parameters of the simulation are:

e Simulation type: steady state, turbulent RANS

e Turbulence: 2-equation k — wSST model with wall functions

Motorbike geometry bounding box is approx 2.0 x 0.8 x 1.3 m

Flow velocity: |U| = 20 ms™*

Kinematic viscosity: v = 1.5 x 107> m?s~!

Characteristic length: L = 0.5 m



e Reynolds number: Re = 6.7 x 10°

Begin by downloading the tutorial files into your working directory.



Chapter 2

Geometry and Meshing

2.1 Domain Generation

To create the mesh around the motorbike, we first need to create the domain,
i.e. the bounding box, that will be meshed. This, together with an isotropic
block mesh are created using the blockMesh utility. This utility, as with
other, has a dictionary located in the system directory that tells it what to do
and how to run. Start by opening the dictionary:

$ gedit system/blockMeshDict
Creating the block mesh is done by typing the utility name into the prompt.
$ blockMesh

By default, the utility will look for a dictionary in the system directory called
blockMeshDict but users can specify other files as well. This is done by

typing:
$ blockMesh -dict nameOfDictionary

This is true of most utilities including topoSet, snappyHexMesh, surface-
FeatureExtract, etc. All have a default dictionary which has the utility
name followed by dict.

2.2 Identifying Features and Edges

The second meshing step uses the surfaceFeatureExtract utility, which can
be used to explicity determine feature edges. This is important for complex



geometries as edges often have to be refined to a higher level that the sur-
rounding mesh. You can open the dictionary for this utility by typing

$ gedit system/surfaceFeatureExtractDict
Run this utility by typing:

$ surfaceFeatureExtract

2.3 Unstructured Grid Generation

The third step is to create the unstructured mesh around the motorbike. To do
this, we are going to use the snappyHexMesh utility, which is OpenFOAM’s
unstructured mesh generator. This consists of three steps:

1. Castellate - inserts geometry and performs refinement of edges, surfaces,
volumetric regions, etc;

2. Snapping - Mesh is snapped to surface. Displacement/smoothing itera-
tions carried out;

3. Layer Addition - Layers at walls. Existing mesh is ”shrunk” back from
wall to allow for layers to be inserted.

The dictionary for snappyHexMesh contains a large number of comments
that explain each step. Open this up:

$ gedit system/snappyHexMeshDict

For the layer insertion, we need to estimate the required distance of the first
grid point from the wall, Ay. For a complex geometry, this is difficult to
do a priori and so it is common to use a flat-plate formula to estimate the
required size and then check this as part of the post-processing. There are
many possible formulas for the prediction of the skin friction. We shall use
the Prandtl 1/7th power law:

0.027
1= Rl (2.1)
The friction velocity can then be determined using
ur = |U[4/Cf/2 (2.2)



This can be used to determine the distance of the first grid point from the
wall using

Ay = (2.3)

For our case, we choose a target y™ = 200, which is consistent with a wall
function approach. Therefore, we have that Ay =~ 3 mm. The isotropic mesh
generated at the start generates cells of size 1 m x 1 m x 1 m and the level of
refinement on the surface is 5-6 levels. Therefore, the average cell length near
the wall, prior to snapping, is approximately 0.02 m. This allows us to set the
require relative cell size for the layer additions. In practice, it is important to
consider the following when creating this type of mesh:

Height of first grid point, (Ay)

e Number of layers to be added (30 or more required for wall-resolved
approaches)

Growth ratio of layers (should ideally be no more than 1.3)

Change in size from boundary layer mesh to outer mesh. This needs to
be as smooth as possible to avoid interpolation errors

It should be noted that due to the time constraints of this course, the geometry
and mesh used in this tutorial do not satisfy these criteria. We shall see this
later on during the post-processing.

We now wish to generate the unstructured mesh. By default, the utility saves
each of the three stages separately and stores them in sequential time directo-
ries. For this tutorial, we don’t want this to happen so we add the following
flag when calling the utility:

$ snappyHexMesh -overwrite

FEach stage of the process is visualised in the following images, showing the
geometry, castellated and snapped meshes.

snappyHexMesh will only add layers where they satisfy the quality criteria
defined in the meshQualityDict located in the system directory. For coarse
meshes and complex geometries, this can lead to the coverage of the layers
being very poor. We can visualise this in Paraview, and this is shown in the
figure below:

It can be seen in figure 2.2 that the layer coverage is quite poor, at around 45%.
This is primarily due to the coarseness of the mesh, but also the coarseness



Figure 2.1: Castellated (left) and snapped (right) Mesh.

Figure 2.2: Layer addition. Surface where layers added shown in red.

of the original geometry. A high quality mesh with good layer coverage for a
geometry of this complexity would require many millions of elements.

2.4 Mesh Quality

It can be difficult to define a “good” mesh in terms of quality. There are
many different metrics that can be applied and generating very high quality
meshes around complex geometries can be very time-consuming. It is therefore
important to understand what the mesh quality metrics are and how they
relate to the mathematics. The required mesh quality also depends on the
type of simulation you are running. For examlpe, methods such as large eddy
simulation are far more sensitive to mesh quality than RANS simulations.



The mesh quality can be assessed using the checkMesh utility. This uses a
number of different criteria to assess the quality of a mesh, and three of the
more important criteria are described here.

2.4.1 Non-orthogonality

The non-orthogonality of a face is determined by the angle made between the
line connecting the 2 nodes either side of the face and and the face normal. This
is illustrated in 2.3. Non-orthogonality primarily affects the diffusion terms
and should be kept as low as possible. The default maximum in OpenFOAM
is Onyo < 65°. Values higher than this are likely to introduce instabilities into
the simulation.

It is important to note that mesh non-orthogonality will not be improved by
isotropic mesh refinement as this does not alter the angles. Instead, modify-
ing the actual design of the mesh will be required, for example by changing
the refinement regions or improving the mesh grading. It is also possible to
“correct” the non-orthogonality through the discretisation scheme. This will
be shown later.

node P

facep,

Ono node E

Nface

Figure 2.3: Face non-orthogonality defined as the angle between ﬁ and

Nface

2.4.2 Skewness

Another common measure of mesh quality is cell skewness. To understand
this, it is important to remember that the finite volume discretisation requires
the interpolation of field data from nodes to faces. If the cell skewness is small
(j 1), then the line between 2 adjacent nodes will pass through the face co-
owned by those 2 nodes. If the skewness is greater than 1, then the line does
not intersect the face. This is demonstrated in figure 2.4



PN does intersect [acey,
= skewness < 1

node N

node P

PE does not intersect facey,
= skewness > 1

Figure 2.4: Illustration of cell skewness

In OpenFOAM, it is recommended that skewness should be below 4. Higher
skewness does not necessariy lead to instabilities but it does reduce the ac-
curacy of the simulation. For unsteady turbulent-resolving simulations (e.g.
LES and DNS), the skewness must be kept as low as possible (ideally less than
1 across the domain).

2.4.3 Aspect Ratio

The aspect ratio is a measure of the squareness of a cell. For a 3D cell of
arbitrary type, it is defined in OpenFOAM as

|57
Oar = Z 6V2/3 (24)
f

For a cube, o4 = 1. High aspect ratio cells make it more difficult for the
matrix equations more difficult to solve and can lead to convergence issues.
Skewness often results from high aspect ration cells, as can be seen in figure
2.4. The default maximum aspect ratio in OpenFOAM is 1000. However, it is
advisable to keep well below the limit, particularly in regions of high pressure
gradients.

10



Chapter 3

Turbulence Modelling

This tutorial uses a RANS approach for the turbulence modelling. Therefore,
all scales of turbulent motion are modelled, as opposed to resolved. There are a
number of turbulence models available in OpenFOAM from simple 1-equation
models up to more complex models.

In this tutorial we shall use the 2 equation k£ — w SST model which is a
popular and well-validated model for this type of flow and is used widely in
both industry and academia.

The model consists of 2 transport equations for the turbulent kinetic energy,
k and the specific turbulent dissipation rate, w.

When using this turbulence model, either a wall-resolved or a wall-modelled
approach can be taken. For the wall-resolved approach, it is necessary to have
a near wall resolution of y* < 1. For higher Reynolds number cases, this
can result either in very high near-wall cell counts, or very high aspect ratios.
Alternatively, wall functions can be used to model the behaviour of the inner-
most part of the boundary layer. When this approach is used, the y™ should
be greater than 30 but less than 300, which places it within the fully turbulent
part of the boundary layer.

In OpenFOAM, the turbulence model is defined in the turbulenceProper-
ties file in the constant directory. The boundary conditions and wall functions
are defined in the relevant files within the 0 directory, which is covered in the
following section.

$ gedit constant/turbulenceProperties

11



Chapter 4

Boundary and Initial
Conditions

In OpenFOAM, all initial and boundary conditions must be explicitly defined.
Users of commercial CFD codes may be familiar with simply defining a ”ve-
locity inlet” or ”pressure outlet” and providing a turbulence intensity. Mathe-
matically, it is necessary to provide boundary conditions for every flow variable
on every boundary. Commercial codes simplify this process by automatically
defining many of the boundary conditions for you, whereas OpenFOAM does
not. Whilst adding to the overall complexity of the problem, this does give the
user far more flexibility and it also aids with trouble-shooting and can help to
identify sources of divergence or lack of convergence, which all CFD users will
experience.

The boundary conditions used in this tutorial are shown 4.1.

P U k w v
inlet zeroGradient fixedValue  fixedValue  fixedValue calculated
outlet fixedValue  inletOutlet inletOutlet inletOutlet  calculated
motorBike zeroGradient fixedValue kgRWall-  omegaWall- nutkWall-
Function Function Function
lowerWall  zeroGradient fixedValue kgRWall-  omegaWall- nutkWall-
Function Function Function
sideWalls, slip slip slip slip calculated

upper Wall

Table 4.1: Boundary condition types for each variable and boundary

We need to define what the values of the turbulent quantities £ and w are at
the boundaries and what their initial values are. A suitable value for k can be
derived from the turbulence intensity:

12



k=S (Ujry (4.1)

The value of omega can be determined from the value of k and from a length-
scale. This can be difficult to know given that turbulence, in reality, exists
over a wide range of scales. For this example, we shall assume that the length-
scale is of the order of 0.5m, which is commensurate with the lengthscales of
the different surfaces that make up the geometry. In practice, simulations of
external aerodynamic flows should not be overly sensitive to this. Using this
lengthscale, the inlet and initial value of omega is

o= (4.2)

where C, = 0.09.

Despite the turbulent viscosity, vy not being solved for, it is necessary to
define it at boundaries in OpenFOAM. For this purpose, we use the calculated
boundary condition which tells OpenFOAM that it will be calculated by the
turbulence model.

The boundary conditions and initial conditions are contained within the 0
directory. For this tutorial, the initial conditions have been placed in a separate
file which is then read into each of the field variable files using the #include
directive. The initial conditions and the boundary conditions file for velocity
are shown below:

L e m e o L T o, e e =\
2| == | |
3] A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
41 N\ /0 peration | Version: plus |
ot N 7/ A nd | Web: www . OpenFOAM. com |
6 | A M anipulation | |
7 A o i e e e e e S 7
8

9 flowVelocity
10 pressure
11 turbulentKE
12 turbulentOmega
13
14 // #=essssrnsnnsnns

Figure 4.1: Initial conditions file

You may notice that, for some boundary conditions, a value is assigned where
the value should actually be calculated, either by the turbulence model or
the wall function. The reason we assign a value is because Paraview needs
something to read in for the 0 time-step. Otherwise, it will give an error
message and may crash. When the solver is run, these dummy values will be
over-written by the appropriate values.

13



A e e e e e e e S T e RS e S R e e S o e e =
2| | 1
3] W\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4] \\ / 0 peration | Version: plus |
S \\ o A nd | Web: www . OpenFOAM. com |
6 | N/ M anipulation | |
s N =/
8 FoamFile

94

10 version 2.9;

11 format ascii;

iz class volVectorField;

13 location “e";

14 object u;

15 }
16’!;“‘!‘.!.‘.l‘.‘.‘l.ltll.“““.tl.““,/
17

18 // copies in the lines from the initial conditions file

19 #include “include/initialConditions™®

20

21// all flow variables are dimensional

22 dimensions [061-106080];

23

24/// This is the initial condition for the flow. The solver will update this as it goes...
25 internalField uniform $flowVelocity;

26

27 boundaryField

28 {

29 inlet

30 {

31 type fixedValue;

32 value $internalField; // $ sign used to reference a value
33 }

34

35 outlet

36 {

37 type inletOutlet;

38 inletValue uniform (6 @ 0);
39 value $internalField;
40 1

41

42 lowerWall

43 {

44 type fixedValue;

45 value uniform $flowVelocity;
46 }

47

48 motorBikeGroup

49 {

58 type fixedValue;

51 value uniform (6 @ 8);
52 }

53

54 upperwWall

55 {

56 type slip;

57

58

59 frontAndBack

6]

bl type slip;

62 1

63}

b4

b5

BG /) *EEFEEERREERSREAIACAERKASAAEEERSERA SRR EERREAREE SR EAR SRR AR SRS ERRARANEAE [ f

Figure 4.2: Boundary conditions file for velocity

14



Chapter 5

Numerical Methods

Now that we have defined the domain, mesh and boundary conditions, it
is necessary to decide how to discretise and solve the equations for mass,
momentum and the turbulence quantities. This is done in 2 files which live in
the system directory, namely fvSchemes and fvSolution.

5.1 Discretisation schemes

OpenFOAM offers a much wider range of discretisation schemes than most
commercial CFD codes. However, it is likely that you will only ever need a
small number of those available.

The discretisation schemes are set in the fvSchemes file in the system direc-
tory. This is split into a number of sub-dictionaries:
e ddtSchemes: Time derivatives

e divSchemes: Divergence terms, including the all-important momentum
convection term

e gradSchemes: Schemes for gradient terms

e laplacianSchemes: Schemes for Laplacian terms

It is possible to define a specific scheme for the discretisation of every term in
every equation, but this is not usually necessary. Instead, it is common to use
assign the same scheme for all terms of the same type.

In this tutorial, the simulation is steady-state and so we use the steadyState
dummy scheme for the time derivatives. The second-order upwind scheme

15



linearUpwind is used for the discretisation of the momentum convection
term and the first-order upwind scheme is used for the turbulent convection
terms. The first-order upwind scheme should generally be avoided due to
it’s poor accuracy and highly dissipative properties. In particular, it should
never be used for the discretisation of the momentum convection term. It’s
dissipative nature does help with stability however, and it can be used at the
start of a simulation to better allow for the flow field to move away from
un-physical initial conditions.

The gradient schemes are set as linear which is the second-order central scheme.
This is also used for the Laplacian terms, although we use the linear cor-
rected scheme here. The correction is to account for the non-orthogonality in
the mesh, which as discussed earlier, affects the diffusion (Laplacian) terms.

5.2 Solvers

The solvers, as defined in fvSolution are responsible for solving the discretised
matrix equations at each time-step.

In this tutorial, The geometric multi-grid solver (GAMG) is used for the pres-
sure equation and smooth solvers are used for the momentum and scalar equa-
tions.

The SIMPLE-Consistent method is used with relaxation factors applied to the
pressure, velocity and turbulent fields to improve the stability of the simula-
tion.

16



Chapter 6

Running the Simulation

The simulation is controlled from the controlDict in the system directory.
This defines what solver is to be used as well as information about the time-
step, write control and any function objects.

We shall record information about the forces using a forceCoeffs function ob-
ject. This is shown in figure 6.1. This will output the forces and coefficients
to a text file for post-processing.

1 ;"\_ eI e — e e e o -1'\
2| = | |
3] W\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4] W\ / 0 peration | Version: plus |
5] W 7/ A nd | Web: www . OpenF0AM. com |
6 | W M anipulation | |
L e e e e R S R e et e e i i
8

9 forceCoeffsl

16 {

11 type forceCoeffs;

12

13 libs ("libforces.so");

14

15 writeControl timeStep;

16 timeInterval 1;

17

18 log yes;

19

20 patches (motorBikeGroup);

21 rho rholnf; // Indicates incompressible

22 rholnf 1; // Redundant for incompressible

23 liftDir (00 1);

24 dragDir (10 0);

25 CofR (6.72 8 8); // Axle midpoint on ground

26 pitchAxis (0 180);

27 magUInf 20;

28 1Ref 1.42; // Wheelbase length

29 Aref 8.75; // Estimated

38

31}

32

33

34| /7 FEEEE RO SRR R KNSR K K O R R AR R R R f

Figure 6.1: Function object for recording force data

17



To run the simulation, type the solver name into the prompt:
$ simpleFoam

To run in parallel, the domain must first be decomposed. The decomposition
is handled by the utilit decomposePar and a dictionary is used to tell the
utility how to carry it out. The scotch algorithm is selected in this tutorial
and the domain will be split into 4 parts. To run the simulation in parallel:

$ decomposcPar
$ mpirun -np 4 simpleFoam -parallel

When the simulation has finished, the domain can then be reconstructed using
the reconstructPar utility:

$ reconstructPar -time latestTime

We can now use Paraview to visualise the results.

000 500 100 150 200 54
U Magnitude

Figure 6.2: Velocity contour plane

18



Appendix C

Tutorial: Flow passes a cylinder

7



Figure 1: A typical von Karman vortex street behind a cylinder where hydrodgen bubbles
were used to highlight the flowfield (unpublished).

1. Introduction

In many engineering applications it is necessary to analyse a stationary or moving
object which is exposed to a uniform or turbulent flow, including automobile and plane
aerodynamics, ship and submarine hydrodynamics, flow past oil riser pipes, flow through
and around cities etc. The case that will be considered is the two-dimensional laminar
flow past a cylinder which exhibits many interesting flow features (see figure 1), that are
also present in more complex applications, including:

e boundary layer formation

e flow separation

e vortex shedding

In this tutorial the learning outcomes are:

e extract the the drag and lift coefficients on the cylinder
e pressure and friction coefficients on a bluff body

e take out velocity data in the flow domain

using the following Openfoam utilities

e forces object

sample

wallGradU

probes



O "
—
D

L

Figure 2: Schematic of the computational domain of width W to investigate the flow past
a cylinder (of diameter D). The inlet boundary condition is u = {Us, 0}. The side walls
have the no flux condition and zero shear condition. The cylinder boundary condition
has the no flux and no-slip conditions (u = 0) applied it.

1.1. Problem statement

A schematic of the problem is shown in figure 2, where a cylinder (diameter D) is placed
20D from the inlet in a domain of width W = 40D. The inlet boundary condition is
u = {u,v} = {Ux, 0}. The side walls have the no flux condition and zero shear condition.
The cylinder boundary condition has the no flux and no-slip conditions (u = 0) applied
it and the normal gradient of the pressure is zero. The non-dimensional number that
controls this physical system is the Reynolds number, Re = U, D/v where v is the
kinematic viscosity. 6 is taken from the front stagnation point.

1.2. Definition of diagnostics
The force on a body is defined as

F:/(pr'r)w*zdS,
s

where S is the surface of the body, p is the pressure, I is the identity matrix, 7 is the
viscous stress tensor and 7 is the normal pointing out of the fluid domain (Batchelor
1957). Note, a bold F' indicates that it is a vector quantity, while the pressure is a scalar
and therefore is not bold.

The mean and root mean square of a time series £(t) are defined as

g B 1 Ts 5/ B 1 Ty B
D -1 /T1 sdt, D~ \/T2 -1 /Tl € — &f2dt. (1.1)

In this work the time series (7 = tUy /D) of interest are the drag and lift coefficient
which are the force coefficients in the streamwise and cross-stream direction, defined as
Fp(r) Fi(r)

o) =1pma Ot = 502 a0

where A is a reference area. The force on a body is composed of a pressure and shear
stress component, therefore it is insightful to also consider the pressure coefficient and



friction coefficient on the surface of the body. The pressure coefficient is defined as

_ P — Poo
Cr = 1/2pU%’

where p, is the free stream pressure. The potential flow solution for the pressure coeffi-
cient on the surface of the cylinder is given by

Cp =2cos(26) — 1,

which provides a point of comparison. The friction coefficient is defined as

TU}
C —_ —
I 12002
where the wall shear stress 7, is
Oug
w = y 1.2
Tw = g (1.2)
where us = —usin € + v cos 8 is the tangential velocity and n is the normal. Therefore,
Ou ou 0
81:1 = —% sm&—l—a—Zcosﬁ. (1.3)

This diagnostic is also of interest as flow separation occurs at 7, = 0.



1.3. Understanding the case files

The following section will go through the important aspects of the all the casefiles in the
three folders ’0’, ’constant’ and ’system’. Additionally, at the end, is a brief description
of the utility "WallGradU’.

1.3.1. 0

u

The inlet is set to u = {Us, 0} where Uy, = 1. The no slip condition is applied to the
cylinder. As two-dimensional simulations are carried out the boundaries 'frontandback’
are set to ’empty’. The top and bottom are taken to be symmetry planes (for these
boundaries the normal and normal gradient of u are set to zero).

b

On the cylinder the boundary condition is that the normal gradient of the pressure is
zero. For the inlet and outlet the pressure is set to the freestream value. Again, as two-
dimensional simulations are carried out the boundaries ’frontandback’ are set to ’empty’.
The top and bottom are taken to be symmetry planes (for these boundaries the normal
and normal gradient of p are set to zero).

1.3.2. constant

RASProperties
The Reynolds averaged stress Model (RASModel) is set to laminar as Re = 100.

transportProperties
The diameter of the cylinder is D = 0.1 and the inlet flow is set to Uy, = 1. Therefore
to have Re = 100, the kinematic viscosity is set to v = 0.001.

blockMesh

The mesh is already present in ’constant’ folder and is defined in the file ’constant/poly-
Mesh/blockMesh’. The no-slip condition on the cylinder surface results in the formation
of a boundary layer adjacent to the cylinder where the flow varies rapidly from zero to
the freestream (in the radial direction). As the Reynolds number in the boundary layer
must be O(1), an estimate of the thickness d can be made:

§ ~ DRe™ V2.

As a rule of thumb it is advised to have ten elements across the boundary layer to resolve
it and so, the above estimate is helpful in determining the smallest element size. This
rapid variation is only in the radial direction, the variation in the azimuthal direction is
more gradual and so the finer resolution is only required in the radial direction.

Note in the ’blockMesh’ file that the cylinder is defined as ’type wall’. This ensures
that it is possible to use the 'wallGradU’ utility later on.



1.3.3. system

controlDict

The standard aspects of the file ’controlDict’ have already been covered in a previous
tutorial. The following code takes out the force on the body (denoted by cylinder in the
blockMesh file). The ’outputInterval” determines how often the force is written to file and
can be varied if long simulations are being carried out. In setting our Reynolds number
the kinematic viscosity was set. Here we see that one needs to define the density puo,
which is set to unity such that ;o = v. The ’CoR’ is the centre of rotation and needs to
be set appropriately for calculating moments on the cylinder.
forces_cylinder_1
{
type forces;
functionObjectLibs ("libforces.so");
outputControl timeStep;
outputInterval 1;

patches (cylinder);

rhoName rhoInf;
pName p;

UName U;

rhoInf 1;
CofR (0 0 0); ;
}

Forces are collated in the files in "postProcessing /forces.ylindery /0/ forces.dat’.The f ormato ftheoutputisthe follo

Time sz pr sz Fum Fyy Fyz Fpora: Fpory Fporz

Pressure Viscous Porous

My, M,y M,, M, M, M,, Mpys Mpgory Mpyor:

Pressure Viscous Porous

The following code takes out the velocity and pressure at all the locations under "pro-
beLocations’ every tenth time step. Care must be taken here as if many points are chosen
and long simulations are run, the data that is collected can be massive.
probesl
{
type probes;
functionObjectLibs ("libsampling.so");
//dictionary probesDict;
writeInterval 10;

region regionO;

probelocations



(1.5 -1 0)
(1.5 1 0)
)

fields

~ a3

It is also possible to use the utility probes as a postprocessing tool by running the
command 'postProcess -func probes’.

sampleDict

The ’sample’ utility (called by printing ’sample’ in the command line in the main
directory) allows one to extract data from the time files. Two different types of data can
be extracted - sets and surfaces. In this tutorial only the latter will be covered. Below
is an extract from the file ’system/sampleDict’, which indicates that the pressure should
be taken out at the cylinder surface.

surfaces

(
cylinder
{

type patch;

patches (cylinder);
b

)3

fields
(

p
)

The files are output in the folder ’postProcessing/surfaces/ TIMES’. The output from
this file

# p FACE_DATA 160
# X y z p
0.0346477 0.0360357 0 O

where the values printed are described on the second line. In this case it is the Cartesian
coordinate of the cell centre (z,y, z) and the pressure at that point.



'wallGradU’

The wallGradU utility (called by printing 'wallGradU’ in the command line in the
main directory) can be used to calculate velocity gradient normal to the surface of the
cylinder. This will only be calculated on surfaces which were defined as 'type wall’ in the
"blockMesh’ file. The files are output in the main directory for that time (i.e. ’0’ etc.). A
section of the output for this

outlet
{
type calculated;
value uniform (0 0 0);
}
cylinder
{
type calculated;
value nonuniform List<vector>
160
(

(-8.82272 8.60517 -2.908e-16)

In this case, there are 160 values of the gradient of the velocity which corresponds to
the number of cells on the cylinder surface. The three values shown are:

ou o o
on’ On’ On’

1.4. Tutorial steps

The impulsively started flow past a cylinder at Re = 100 results in a wake bubble forming
behind the cylinder, which can be seen in figure 3. This will eventually go unstable and
then the flow will proceed into a quasi-steady regime of von Karman vortex shedding,
shown in figure 3.

As the simulation takes some time to run, there are two time files in the directory,
namely ’0’ and "100’. The simulation can therefore be started at 0, to capture the transient
and the quasi-steady state or can be started after 7 = 100 to only analyse the periodic
vortex shedding. This can be controlled in the file ’/system/controlDict’ through the
parameter 'startTime’ and stopAt’. For this tutorial we will only consider the periodic
regime and so the ’startTime’ and ’stopAt’ are set to 100 and 105 respectively. The
choice of end time has been determined by looking at the forces on the cylinder which
shows that a time period of 5 is approximately 15 periods which is sufficiently long for
velocity averaging. Note: for turbulent flows one might require much longer time series
for averaging. The commands to run the code are:
icoFoam
wallGradU
sample

These commands show that we can differentiate between runtime diagnostics and post-
processing diagnostics. In the current case, the runtime diagnostics are (7) the forces on
the cylinder and (i7) the velocity probes, whereas postprocessing diagnostics are cylinder



(b)

Figure 3: Vorticity field at 7 = 15 showing a symmetrical recirculation region (highlighted
by the streamlines) behind the cylinder which results in zero lift. This will eventually go
unstable 7 &~ 50, which result in a von Karman vortex street behind the cylinder, which
can be seen in (b). Vorticity is shown in (a) and (b), ranging from -0.2 (blue) to zero
(green) to 0.2 (yellow).

surface pressure and velocity gradient measurements. To plot out the diagnostics, Mat-
lab is used and the code has been provided in the folder ’Analysis’ to plot out the data.
Forces files are in in the folder ’postProcessing/forces.ylinder1/0/’. Once you have run
the code from 100’ to ’105’, there will be a new folder in here, ’100’, which will have the
force data for that run. Copy/paste the "forces.dat’ file into your ’Analysis/Forces’ folder
and run the following command in Matlab
plot_forces

The file 'wallGradU’ can be found in the time folders in the main directory. Copy-
/paste this into the folder ’Analysis/Cf’. Additionally you will need to copy/paste the
file "postProcessing/surfaces/0/pcylinder.raw’ into ’Analysis/Cf’ and run the following
command in Matlab
c_f_plot

Copy/paste the file 'postProcessing/surfaces/0/pcylinder.raw’ into ’Analysis/Cp’ and
run the following command in Matlab
c_p_plot

Sample outputs for the time series of the drag and lift coefficient are shown in figure
4 and additionally the pressure and friction coefficient are shown in figure 5.

Note: as the probes generate a lot of data, this functionality should be turned off if
the simulation is started from the beginning.

Things to consider in the future:

e Mesh independence study - try varying the size of the mesh in the wake to fully
resolve the shed vortices from the cylinder. Does this affect the drag and lift coefficients?

e Calculate the mean, rms and Strouhal number of the drag and lift coefficients

References

Batchelor, G.K. (1957) An introduction to fluid dynamics. Cambridge University Press.

Dimopoulous, H.G. & Hanratty, T.J. (1968) Velocity gradients at the wall for flow
around a cylinder for Reynolds number between 60 and 360. J. Fluid Mech. 33 303-319.

Homann, F. (1936) Influence of higher viscosity on flow around cylinder. Forsch. Ge-
biete Ingenieur. 17

Rajani, B.N., Kandasamy, A. & Majumdar, S. (2009) Numerical simulation of laminar
flow past a circular cylinder. App. Math. Mod. 33 1228-1247.



1.5 0.5
0.4
0.3
1 0.2
0.1
Q =
O o o
-0.1
0.5

-0.2
-0.3
-0.4

0 . . . . 05 . . . .

0 50 100 150 200 250 0 50 100 150 200 250
tU/D tU/D

Figure 4: Time series of the (a) drag and (b) lift coefficient.

0.5 T T T T T T T T T 1.5

1

06 07 08 09 1 0 0.1 02 03 04 06 07 08 09 1

0 0.1 02 03 04

0.5 0.5

0/m 0/m
Figure 5: Surface profiles of the mean (a) friction and (b) pressure coeflicient. In (a) the
present simulations (black line), the experiments by Dimopoulous & Hanratty (1968)
(o) (Re = 104) and the numerical simulations of Rajani et al. (2009) (red line) are
shown. In (b) the present simulations (black line), the experiments by Homann (1936)
(o) (Re = 107), the numerical simulations of Rajani et al. (2009) (red line) and the
analytical solution for a potential flow (dashed line) are shown. The front stagnation
point is at zero radians.

Williamson, C.H.K. (1996) Vortex dynamics in the cylinder wakes. Ann. Rev. Fluid
Mech. 28 477-539.
Zdravkovich, M. (1997) Flow around circular cylinders. Oxzford Science Publication.



Appendix D

Tutorial: Develop a turbulent
model

87



Chapter 1

Introduction

The main aim of this tutorial is to describe how to implement a new Two-equation Sub-grid Scale
(SGS) model. The new model is claimed by its developer to be self-adaptive and be able to model
turbulence on any arbitrary mesh density, i.e. from Reynolds-averaged Navier-Stokes (RANS) to
Large Eddy Simulation (LES) and even to Direct Numerical Simulation (DNS) [3]. The tutorial also
demonstrates how to implement wall damping function as a warm-up exercise.

The main content is listed below:

1. This tutorial starts with a theoretical background of turbulence modelling, including different
methods of turbulence modelling, the commonly used eddy viscosity model concept and the
Two-equations SGS model being implemented. A tour of the templated turbulence model
library in OpenFOAM 1706 will also be given with focus on most related existing models in
order for the reader to familiarise themselves with these codes.

2. The Chapter 3 will be dedicated to show how exactly the damping function and the new model
are being implemented by a step by step guide.

3. The Chapter 4 will prepare the pitzDaily test case to show the result of this implemented wall
damping function and the new model by using ParaView.

4. The tutorial will end with conclusion and further development.



Chapter 2

Background

2.1 Turbulence Modelling

Computational Fluid Dynamics (CFD) has a indispensable role in engineering application and re-
search activities. It can simulate real flow conditions, heat transfers and other phenomena with a
reasonable accuracy but much lower cost than conducting an experiment. However CFD still has
many bottlenecks, one among which is its capability to model turbulent flow, the most common flow
type in the real engineering situation.

Turbulence, the three-dimensional, random and complex state of a fluid with wide range of length
scales, is one of the most challenging problems in fluid dynamics, yet having great significance in
practical engineering applications. Consequently, numerous scientists have invested a great deal of
effort in the observation, description and understanding of turbulent flows. It was found out that by
applying the conservation of mass, momentum and energy, governing equation of fluid flow can be
derived. If using Newtonian model for viscous stresses, the governing equation will lead to Navier-
Stokes Equations (NSEs) [4]. If NSEs is solved on a spatial grid that is fine enough to solve the
Kolmogorov length scale with time step sizes that sufficiently small to resolve the fastest fluctuation,
all flow characteristics can be captured, including mean flow and turbulence. This method is known
as Direct Numerical Simulation (DNS). But the computational cost of DNS is prohibitably high and
is not used in real engineering applications.

Due to the limitation of computing resources, the attention of early CFD research was on the
mean flow and modeling the effect of turbulence on the mean flow. This lead to a method called
Reynolds-averaged Navier-Stokes (RANS). This method conducts a time or ensemble average on
NSEs and the extra term created due the averaging process is modelled by so-called RANS turbulence
models. RANS has been widely applied in industrial flow computations due to its modest computing
resources requirement and reasonable accuracy. However, it is widely recognised that RANS fails
to provide satisfactory accuracy in flow with separation, reattachment and noise, etc. It is mainly
due to RANS represents all turbulent energy by modelling, whereas turbulence plays an dominant
role in such flow conditions. Here comes the Large Eddy Simulation (LES), it can offer a solution
to balance the high computational cost of DNS and the low accuracy of RANS. LES spatially filters
the NSEs and directly resolves the governing equations for large eddies (larger than filter sizel) and
their turbulent energy, while it uses a Sub-grid Scale (SGS) model to simulate the effect of small
eddies (smaller than filter size) on the mean flow and large eddies. Computing resource requirement
of LES is greater than RANS but is much less than DNS. Thanks to the rapid increase of computing
power, LES has started to be applied on complex geometries.

Recently, hybrid turbulence models which combine RANS and LES characteristics in various
way have attracted lots of research attentions. Detached Eddy Simulation (DES) is one of the
examples. DES uses RANS formula to solve the flow field close to the wall whereas use LES to
solve large (detached) eddies away from the wall. Some other hybrid models solve eddy viscosity

1For implicit LES, filter size is mesh size.



2.2. EDDY VISCOSITY MODEL CHAPTER 2. BACKGROUND

by both RANS and LES and blend them according to certain parameters, normally being mesh
size. Scale-adaptive Simulation (SAS) model, such as k-w SST SAS model invited by Menter and
co-workers [1], adds an extra production term in the w equation which will increase the production
of w when detecting the unsteadiness, thereby decrease the turbulence viscosity in order to provide
RANS with LES content in unsteady regions without any blend factor.

The Two-equation SGS model to be implemented in the tutorial is also claimed to be self adapt-
ing. But unlike k-w SST SAS model which is based on RANS model and resolve more turbulence if
mesh resolution allows to do so, this model is based on SGS model and can resolve as much energy
as possible for any mesh resolution, i.c. it changes characters across RANS, LES and even DNS
depending on flow situation and mesh density [3].

2.2 Eddy Viscosity Model

By far, most of the turbulence models implemented in OpenFOAM are based on eddy viscosity
theory, such as Spalart-Allmaras, k-e series and k-w series RANS models, and Smagorinsky and
k-equation SGS model for LES, including the one being implemented. Therefore, it is crucial to
understand eddy viscosity theory before starting any implementation or modification of this kind of
turbulence models.

By applying a spatial filter of uniform width, A, on incompressible, Newtonian flows with con-
stant thermo-physical properties, one can obtain the governing equations for the Large Eddy Simu-
lation of such a flow as

V-U=0 (2.1a)
o0 _ ] I
W—I—VIUU):—VP—I—V%/(VU—I—VU )—V-T (2.1b)
Where overbar indicates spatial filtering process, U is filtered instantancous velocity (time-
averaged velocity in RANS), p is filtered instantaneous pressure (time-averaged velocity in RANS)
divided by the constant density, v is kinematic viscosity, 7 is the SGS stress tensor (Reynolds stress
in RANS) which has to be modelled to close the system.
It is well known that in the Newton’s law of viscosity for incompressible flow

TNewtonian = 208 = V(VU + VUT) (22)

where S is the rate of deformation of fluid elements. It has been found that the turbulent
stresses increase as the mean rate of deformation increases. Boussinesq hypothesis proposed that
the Reynolds stress in RANS is proportional to the mean rates of deformation. In SGS model, this
theory is interpreted as SGS stresses are proportional to the instantaneous rates of deformation, i.e.

_ 1 — - 1
7=~ + Str(r)] = (VU + VU + Str(n)1 (2.3)

where v; is the SGS eddy viscosity (or turbulence viscosity in RANS) and I is Kronecker Delta.
On dimensional grounds, it is assumable that v; can be expressed as a product of a SGS velocity
scale, ¥, and a SGS length scale, ¢, as

vy = COL (2.4)

where C'is a dimensionless constant.

Therefore, the turbulence model based on Eddy Viscosity theory is to find appropriate equations
for ¥ and ¢ by either algebraic relation or transport equations, and to use them to obtain v4 in order
to close the filtered NSEs.



2.3. INAGI WALL DAMPING FUNCTION CHAPTER 2. BACKGROUND

2.3 Inagi Wall Damping Function

The wall damping function which will be used as a warm-up exercise is proposed by Inagi et al. [2].
It is only applicable to SGS models that contain k-equation. As can be seen in later section that
the standard k-equation SGS model evaluates kinematic eddy viscosity via

Vy = CkA\/ksgs (25)

while wall damping function introduce a parameter F,y into the equation above, i.e.

vy = FwYckA \ ksgs (26)
where
Fay = ! (2.7)
T ARG/ Cr\Frags '
and Cr = 10.0.
2.4 Two-equation SGS model
The new Two-equation SGS model proposed by Perot and Gadebusch [3] reads
Oksgs - :
22 4 V- (ksgsU) =V - [(V + Vt) Vksgs} +aP — 545 (2.8a)
ot Ok
P01 | G (egal) = V- | (104 ) Tengs| + 295 (0P — Curengsl (2.8D)
ot o ksgs

where k4, is the SGS turbulent kinetic energy, €44 is the SGS turbulent kinetic energy dissipation

rate, P = 1,(VU + VUT)VU is the production of SGS turbulent kinetic energy. The parameter
Ceo = (11/6)f + (25/Rer) f?, where Rer = k2, /vesys is the local turbulent Reynolds number and

'sgs

function f = (Rer/30[y/1+ 60/Rer — 1]. The constants in this model are

Ce1 =155, o0 =10; o0.=12 (2.9)
The energy transfer (backscatter) variable, «, is
kage \* [( Bzi 0V ) B
=15¢1-C" | —— t—— ) 4011 2.10
: (ee) |(G55) e
Where the empirically determined constant C* = 0.28, and
—\2 ovE ) ovE:\® ovE: )’
(anig)”  {(aog=)  (a0g) + (a:0)
kr - kr ( . )
is a dimensionless measure of the gradient of resolved turbulent kinetic energy.
The eddy viscosity is then evaluated as
kZ k
=0, —— 2.12
T s (kg + k) (212
where C), = 0.18 and k, = 0.5 x U/2 is the resolved turbulent kinetic energy.
Finally, the SGS stresses are constructed as
— —T 2
T = —(XVt(VU + VU ) + ngQSI (213)

7



2.5. TURBULENCE MODEL LIBRARY CHAPTER 2. BACKGROUND

2.5 Turbulence Model Library

Turbulence model library in OpenFOAM 1706 is a templated library, located at
$FOAM_SRC/TurbulenceModels. The templated Turbulence model class contains many sub-classes.
How is the specific turbulence model selected during the run time is well documented in the lecture
of Prof. Nilsson 2. This section will take reader to a tour from the perspective of specific turbulence
model.

A good practice of implementing new piece of code in OpenFOAM is to firstly find class with a
similar function and then modify the functionality based on it. The model being implemented is a
SGS model but belongs to k-¢ series. A detailed look at the available SGS model at
$FOAM_SRC/TurbulenceModels/turbulenceModels/LES shows the there is no k-¢ based SGS model,
the directory contains only the k-equation SGS model. Whereas k-¢ series model only appears in
$FOAM_SRC/TurbulenceModels/turbulenceModels/RAS which contains RANS models. Therefore,
current model will be a combination of k-equation SGS model and k-¢ RANS model.

2.5.1 The Standard k-¢ Model in OpenFOAM 1706
The standard k-« RANS model implemented in OpenFOAM 1706 reads

ak+v-(k0)=vKu+”t>Vk]+P—e (2.14a)

ot 0L

Os = A 5

& + V- (EU) =V- l:(u + 0‘5) VE:| + E [CElP — 0525] (214b)
vy = C’Lg (2.14c)

where k is the turbulent kinetic energy, ¢ is its dissipation rate. The constants of this model are

C,=009; Co=144; C2=192; o0p,=10; o0.=13 (2.15)

This model is implemented in the directory
$FOAM_SRC/TurbulenceModels/turbulenceModels/RAS/kEpsilon by two files,
i.e. kEpsilon.C and kEpsilon.H. The H file declares the class, any member data and functions,
and the C file contains the detailed implementation of the model as (line 254 to line 295)

// Dissipation equation
tmp<fvScalarMatrix> epsEqn

fvm: :ddt(alpha, rho, epsilon_)
+ fvm::div(alphaRhoPhi, epsilon_)
- fvm::laplacian(alpha*rho*DepsilonEff (), epsilon_)

C1_*alpha()*rho () *G*epsilon_()/k_()
- fvm::SuSp(((2.0/3.0)*C1_ - C3_)*alpha()*rho()*divU, epsilon_)
- fvm::Sp(C2_xalpha()*rho()*epsilon_()/k_(), epsilon_)
+ epsilonSource()
+ fvOptions(alpha, rho, epsilon_)
)5

epsEqn.ref () .relax();

fvOptions.constrain(epsEqn.ref());

epsEqn.ref () .boundaryManipulate (epsilon_.boundaryFieldRef ()) ;
solve (epsEqn) ;

2Link: https://pingpong.chalmers.se/public/courseld/8331/lang-en/publicPage.do?item=3855255



2.5. TURBULENCE MODEL LIBRARY CHAPTER 2. BACKGROUND

fvOptions.correct(epsilon_);
bound (epsilon_, this->epsilonMin_);

// Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn

fvm: :ddt(alpha, rho, k_)
+ fvm::div(alphaRhoPhi, k_)
- fvm::laplacian(alpha*rho*DKEff (), k_)

alpha()*rho () *G
- fvm::SuSp((2.0/3.0)*alpha()*rho () *divU, k_)
- fvm::Sp(alpha()*rho()*epsilon_()/k_(O, k_)
+ kSource()
+ fvOptions(alpha, rho, k_)

kEqn.ref () .relax();
fvOptions.constrain(kEqn.ref());
solve(kEqn) ;
fvOptions.correct(k_);

bound(k_, this->kMin_);

correctNut () ;
And the effective diffusivity for k and ¢ are calculated in H file as (line 161 to line 185)

//- Return the effective diffusivity for k
tmp<volScalarField> DKEff () const

{
return tmp<volScalarField>
(
new volScalarField
(
"DkEff",
(this->nut_/sigmak_ + this->nu())
)
);
}

//- Return the effective diffusivity for epsilon
tmp<volScalarField> DepsilonEff () const

{
return tmp<volScalarField>
(
new volScalarField
(
"DepsilonEff",
(this->nut_/sigmaEps_ + this->nu())
)
);
%

Then the turbulent kinematic viscosity, 14, is evaluated in C file as



2.5. TURBULENCE MODEL LIBRARY CHAPTER 2. BACKGROUND

template<class BasicTurbulenceModel>
void kEpsilon<BasicTurbulenceModel>: :correctNut()

{
this->nut_ = Cmu_x*sqr(k_)/epsilon_;
this->nut_.correctBoundaryConditions();
fv::options::New(this->mesh_).correct(this->nut_);
BasicTurbulenceModel: :correctNut () ;

}

2.5.2 The Standard k-equation SGS Model in OpenFOAM 1706
The standard k-equation SGS model implemented in OpenFOAM 1706 reads

(9]€sgs +V- (ksgsU) —Vv. [(1/ + l/t> Vk'sgs} + P —cyy, (2.16a)
ot Ok
vy = CpA\/ksgs (2.16b)

where k is the SGS turbulent kinetic energy, €545 = C.k3/2 /A is its dissipation rate. The constant
of this model are

Cp =0.094; C.=1048; oy =1.0; (2.17)

This model is implemented in the directory
$FOAM_SRC/TurbulenceModels/turbulenceModels/LES/kEqn by two files,
i.e. kEqn.C and kEqn.H. The H file declares the class, any member data and functions, the C file
contains the detailed implementation of the model as (line 186 to line 205)

tmp<fvScalarMatrix> kEqn

fvm: :ddt (alpha, rho, k_)
+ fvm::div(alphaRhoPhi, k_)
- fvm::laplacian(alpha*rho*DKEff (), k_)

alpha*xrho*G
- fvm: :SuSp((2.0/3.0)*alpha*rho*divU, k_)
- fvm::Sp(this->Ce_xalpha*rho*sqrt(k_)/this->delta(), k_)
+ kSource()
+ fvOptions(alpha, rho, k_)

kEqn.ref () .relax();
fvOptions.constrain(kEqn.ref());
solve(kEqn) ;
fvOptions.correct(k_);

bound (k_, this->kMin_);

correctNut();
And the effective diffusivity for ks, is calculated in H file as (line 152 to line 159)

//- Return the effective diffusivity for k
tmp<volScalarField> DKEff () const
{

return tmp<volScalarField>

10



2.5. TURBULENCE MODEL LIBRARY CHAPTER 2. BACKGROUND

new volScalarField("DKEff", this->nut_ + this->nu())
);
}

Then the turbulent kinematic viscosity, 14, is evaluated in C file as

template<class BasicTurbulenceModel>
void kEqn<BasicTurbulenceModel>: :correctNut ()

{
this->nut_ = Ck_*sqrt(k_)*this->delta();
this->nut_.correctBoundaryConditions() ;
fv::options::New(this->mesh_).correct(this->nut_);
BasicTurbulenceModel: :correctNut () ;

}

It is observed that the k equations for k-equation SGS and k-¢ RANS model are almost the same,
except for the evaluation of €. Therefore, although RANS and LES have fundamentally different
mathematical theory, the unclosed governing equations solved on a computer are identical!® This,
theoretically, indicates there could be an universal model which can solve turbulent energy over
whole spectrum, i.e. across RANS, LES and DNS.

3subject to the spatial filtering operation is implicit for LES.

11



Chapter 3

Model Implementation

3.1 Warm-up Exercise

The implementation of Inagi wall damping function will be treated as a warm-up exercise before
implementing the new SGS model.

As the Turbulence model classes are templated in OpenFOAM 1706, one has to copy the entire
Turbulence model directory into the user directory rather than only coping certain existing models
as for previous version, such as OpenFOAM 2.3.0. So some preparatory work is needed as below:

of+ // reader may use OF1706+

mkdir -p $FOAM_RUN // make sure having user and run directory
foam

cp -r --parents src/TurbulenceModels $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/src/TurbulenceModels

Find all the Make directories, change the location of compiled files to relevant user directory, and
compile:

find . -name Make
sed -i s/FOAM_LIBBIN/FOAM_USER_LIBBIN/g ./*/Make/files
./Allwmake

Make sure the following three new shared-object files in
$WM_PROJECT _USER_DIR/platforms/linux64GccDPInt320pt/1ib:

libcompressibleTurbulenceModels.so
libincompressibleTurbulenceModels.so
libturbulenceModels.so

Note: The 3 files may also be in 1inux64GccDPInt640pt, depends on how was it built.
Copy the kEqn SGS model and change the class name to kEqnlnagi and conduct all necessary
process to compile:

cd turbulenceModels/LES

cp -r kEgn kEgnInagi

cd kEgnInagi

mv kEqn.H kEgnInagi.H

mv kEgn.C kEgqnlInagi.C

sed -i 's/kEqn/kEqnlnagi/g *

sed -i 's/"OpenFoam Foundation"/"Your Name"/g *

Then open turbulentTransportModels.C:

12



3.2. PREPARATORY WORK CHAPTER 3. MODEL IMPLEMENTATION

cd $WM_PROJECT_USER_DIR/src/TurbulenceModels
vi incompressible/turbulentTransportModels/turbulentTransportModels.C

add the following lines:

#include "kEqnInagi.H"
makeLESModel (kEqnInagi) ;

under the lines for kEqn model:

#include "kEgn.H"
makeLESModel (kEqn) ;

save and close the file, then update Inlnclude directory and compile:

wmakelLnInclude -u ../../../turbulenceModels
./../../../Allumake

Then open kEgqnInagi.C by:
vi turbulenceModels/LES/kEqnInagi/kEqnInagi.C
and replace

this->nut_ = Ck_*sqrt(k_)*this->delta();

with
dimensionedScalar verySmall
(
"verySmall",
dimensionSet (0, 1, -1, 0, 0, 0, 0),
VSMALL
)5

this->nut_ = 10*%Ck_kk_*this->delta()/
(10.0*sqrt(k_) + this->delta()*sqrt(2*magSqr (symm(fvc::grad(this->U_)))) + verySmall);

Then save and close the file, update turbulentTransportModels.C and recompile:

touch incompressible/turbulentTransportModels/turbulentTransportModels.C
./../../../Allumake

So far the Inagi wall damping function has been implemented, its preliminary result will be
shown together with the new SGS model in later Chapter.

3.2 Preparatory Work

Same as the warm-up exercise, some preparatory work is needed before implementing the model:
Copy the kEqn SGS model and change the class name to kEpsilonSAS and conduct all necessary
process to compile:

cd $WM_PROJECT_USER_DIR/src/TurbulenceModels

cd turbulenceModels/LES

cp -r kEqn kEpsilonSAS

cd kEpsilonSAS

mv kEgn.H kEpsilonSAS.H

mv kEgn.C kEpsilonSAS.C

sed -i 's/kEgn/kEpsilonSAS/g *

sed -i 's/"OpenFoam Foundation"/"Your Name"/g *

13



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

Then open turbulentTransportModels.C via:

cd $WM_PROJECT_USER_DIR/src/TurbulenceModels
vi incompressible/turbulentTransportModels/turbulentTransportModels.C

add following lines:

#include "kEpsilonSAS.H"
makeLESModel (kEpsilonSAS) ;

under lines for kEqn model:

#include "kEqn.H"
makeLESModel (kEqn) ;

save and close the file, then update InInclude directory and compile:

wmakelLnInclude ../../../turbulenceModels
./../../../Allumake

Following the preparatory work, the new k-¢ SGS model can now be implemented by adding the
functionality from k-¢ RANS model to the existing k-equation SGS model with extra modifications.

It is a good practice to modify the code by adopting the step-by-step approach, starting from
constants and existing functionality, then gradually reach the complicated functions. Every major
step will be tested on cases before moving to next step. It is the methodology adopted when
implementing the new model. However, it will be lengthy if all the steps are shown here. Therefore
only the differences between kEqn SGS model and the final implementation of k-¢ SGS model are
provided.

3.3 Detailed Implementation

3.3.1 H file
Under // Fields list:

add

volScalarField epsilon_;
volVectorField UMean_;
volScalarField kR_;
volScalarField dimlessGradkR_;
volScalarField alfa_;
volScalarField nutByAlfa_;

under
volScalarField k_;

Under // Model constants list:

replace
dimensionedScalar Ck_;
with

dimensionedScalar Cnu_;
dimensionedScalar Cel_;
dimensionedScalar sigmaK_;
dimensionedScalar sigmaEps_;

14



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

Under // Protected Member Functions list:

add

virtual tmp<fvScalarMatrix> epsilonSource() const;
under

virtual tmp<fvScalarMatrix> kSource() const;

Under // Member Functions list:

replace
//- Return sub-grid dissipation rate
virtual tmp<volScalarField> epsilon() const;
//- Return the effective diffusivity for k
tmp<volScalarField> DKEff() const
{
return tmp<volScalarField>
(
new volScalarField("DKEff", this->nut_ + this->nu())
)3
}
with
//- Return sub-grid dissipation rate
virtual tmp<volScalarField> epsilon() const
{
return epsilon_; // added
}
//- Return the effective diffusivity for k
tmp<volScalarField> DKEff () const
{
return tmp<volScalarField>
(
new volScalarField("DKEff", (nutByAlfa_ + this->nu())/sigmaK_)
)3
}
//- Return the effective diffusivity for epsilon
tmp<volScalarField> DepsilonEff () const
{
return tmp<volScalarField>
(
new volScalarField("DepsilonEff", (this->nutByAlfa_ +
this->nu())/sigmaEps_)
)
}
3.3.2 Cfile

Under // Protected Member Functions list:

within the function of

15



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

template<class BasicTurbulenceModel>
void kEpsilonSAS<BasicTurbulenceModel>::correctNut ()

replace
this->nut_ = Ck_*sqrt(k_)*this->delta();

with
kR_ = 0.5*magSqr(UMean_ - this->U_);
volVectorField gradSqrtkR = fvc::grad(sqrt(kR_));

surfaceVectorField fV = this->mesh_.Sf();

volScalarField surfaceSumX = 0.5%fvc::surfaceSum(mag(fV.component(0)));
volScalarField surfaceSumY = 0.5%fvc::surfaceSum(mag(£fV.component(1)));
volScalarField surfaceSumZ = 0.5%fvc::surfaceSum(mag(fV.component(2)));

volScalarField cv

(
I0object
(
"cv",
this—->runTime_.timeName(),
this->mesh_,
IO0object: :NO_READ,
IO0object: :AUTO_WRITE
),
this->mesh_,
dimensionedScalar("zero",dimVolume,0.0)
);

cv.ref() = this->mesh_.V();

dimensionedScalar surfaceMin

(
"surfaceMin",
dimensionSet (0, 2, 0, 0, 0, 0, 0),
VSMALL

)

dimlessGradkR_ =

(

sqr(cv / (surfaceSumX + surfaceMin) * gradSqrtkR.component(0)) +
sqr(cv / (surfaceSumY + surfaceMin) * gradSqrtkR.component(1)) +
sqr(cv / (surfaceSumZ + surfaceMin) * gradSqrtkR.component(2))

)

/

(kR_ + this—>kMin_);

alfa_ =
1.5%
(
1.0 -
0.28 * sqr(k_ / (k_ + kR_ + this->kMin_)) /
(dimlessGradkR_ + 0.11)
);

16



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

// Calculate sgs nut

nutByAlfa_ = Cnu_xsqr(k_)/(epsilon_+this->epsilonMin_)*
(k_/ (k_+kR_+this->kMin_));

this->nut_ = alfa_*nutByAlfa_;

also add

template<class BasicTurbulenceModel>
tmp<fvScalarMatrix> kEpsilonSAS<BasicTurbulenceModel>::epsilonSource() const

{

return tmp<fvScalarMatrix>

(
new fvScalarMatrix
(
epsilon_,
dimVolume*this->rho_.dimensions () *epsilon_.dimensions ()
/dimTime
)
);
}
under

template<class BasicTurbulenceModel>
tmp<fvScalarMatrix> kEqn<BasicTurbulenceModel>: :kSource() const

{

return tmp<fvScalarMatrix>

(
new fvScalarMatrix
(
k_,
dimVolume*this->rho_.dimensions () *k_.dimensions ()
/dimTime
)

)
}

Within Constructors:

replace
Ck_
(
dimensioned<scalar>::1lookupOrAddToDict
(
llell ,
this->coeffDict_,
0.094
)
)
with
epsilon_
(
IOobject

17



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

(
I0object: :groupName ("epsilon", this->U_.group()),
this->runTime_.timeName (),
this->mesh_,
IO0object: :MUST_READ,
IOobject: :AUTO_WRITE
),
this->mesh_
),
UMean_
(
IO0object
(
I0object: :groupName ("UMean", this->U_.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject: :MUST_READ,
IO0object::NO_WRITE
),
this->mesh_
),
kR_
(
I0object
(
I0object: :groupName ("kR", this->U_.group()),
this->runTime_.timeName(),
this->mesh_,
IO0object: :MUST_READ,
IOobject: :AUTO_WRITE
),
this->mesh_,
dimensionedScalar ("kR",this->k_.dimensions () ,SMALL)
),
dimlessGradkR_
(
I0object
(
"dimlessGradkR",
this->runTime_.timeName (),
this->mesh_,
IO0object::NO_READ,
I0object: :AUTO_WRITE
),
this->mesh_,
dimensionedScalar("dimlessGradkR",dimless,SMALL)
),
alfa_
(

I0object

18



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

(
I0object: :groupName("alfa", this->U_.group()),
this->runTime_.timeName (),
this->mesh_,
IOobject::NO_READ,
IOobject: :AUTO_WRITE
),

this->mesh_,
dimensionedScalar("alfa",dimless,SMALL)

),
nutByAlfa_
(
I0object
(
I0object: :groupName ("nutByAlfa", this->U_.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject::NO_READ,
I0object::AUTO_WRITE
),
this->mesh_,
dimensionedScalar ("nutByAlfa",this->nut_.dimensions () ,SMALL)
),
Cnu_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Cnu",
this->coeffDict_,
0.18
)
),
Cel_
(
dimensioned<scalar>::1lookupOrAddToDict
(
"Cel",
this->coeffDict_,
1.55
)
),
sigmaK_
(
dimensioned<scalar>::lookupOrAddToDict
(
"sigmaK",
this->coeffDict_,
1.0
)
),

19



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

sigmaEps_
(

dimensioned<scalar>::lookupOrAddToDict

(
"sigmaEps",
this->coeffDict_,
1.2

)
Also add

bound(epsilon_, this->epsilonMin_);
under

bound (k_, this->kMin_);
Within the function of

template<class BasicTurbulenceModel>
bool kEqn<BasicTurbulenceModel>: :read()

replace
Ck_.readIfPresent (this->coeffDict());
with

Cnu_.readIfPresent (this->coeffDict());
Cel_.readIfPresent (this->coeffDict());
sigmaK_.readIfPresent (this—->coeffDict());
sigmaEps_.readIfPresent (this->coeffDict());

Remove the function below:

template<class BasicTurbulenceModel>
tmp<volScalarField> kEpsilonSAS<BasicTurbulenceModel>::epsilon() const
{

return tmp<volScalarField>

(
new volScalarField
(
IOobject
(
I0object: :groupName ("epsilon", this->U_.group()),
this->runTime_.timeName(),
this->mesh_,
IOobject: :NO_READ,
IO0object: :NO_WRITE
),
this->Ce_xk () *sqrt (k())/this->delta()
)

)
}

Within the function of:

20



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

template<class BasicTurbulenceModel>
void kEpsilonSAS<BasicTurbulenceModel>: :correct()

add

Info << "This is kEpsilonSAS" << endl;
before

// Local references
Also add

// Calculate Ce2 dynamically

tmp<volScalarField> ReT(sqr(k_)/(this->nu()*(epsilon_+this->epsilonMin_)));
tmp<volScalarField> f(sqrt(sqr(ReT()/30)+ReT()/15)-ReT()/30);
volScalarField Ce2(11/6xf()+25/(ReT()+SMALL)*sqr(£()));

ReT.clear();

f.clear();

volScalarField epsilon(epsilon_ + this->epsilonMin_);
volScalarField k(k_ + this->kMin_); // added

// Dissipation equation // added
tmp<fvScalarMatrix> epsEqn

fvm: :ddt(alpha, rho, epsilon_)
+ fvm::div(alphaRhoPhi, epsilon_)
- fvm::laplacian(alpha*rho*DepsilonEff(), epsilon_)

Cel_xalpha*rho*G*epsilon_/k
- fvm: :SuSp(((2.0/3.0)*Cel_)*alpha*rho*divU, epsilon_)
- fvm::Sp(Ce2*alpha*rho*epsilon_/k, epsilon_)
+ epsilonSource()
+ fvOptions(alpha, rho, epsilon_)

epsEqn.ref () .relax();

fvOptions.constrain(epsEqn.ref());

//epsEqn.ref () .boundaryManipulate(epsilon_.boundaryFieldRef ());
solve (epsEqn) ;

fvOptions.correct(epsilon_);

bound (epsilon_, this->epsilonMin_);

before
tmp<fvScalarMatrix> kEgn
Within the function of
tmp<fvScalarMatrix> kEqn
replace
alpha*rho*G
with

alpha*rhoxG*alfa_

21



3.3. DETAILED IMPLEMENTATION CHAPTER 3. MODEL IMPLEMENTATION

also replace

- fvm::Sp(this->Ce_xalpha*rho*sqrt(k_) /this->delta(), k_)
with

- fvm::Sp(alpha*rho*epsilon_/k, k_)
Then recompile:

cd $WM_PROJECT_USER_DIR/src/TurbulenceModels
touch incompressible/turbulentTransportModels/turbulentTransportModels.C
./Allwmake

22



Chapter 4

Tutorial Setup

This chapter covers the necessary setup needed to get the pitzDaily case running with the Inagi wall
damping function and the new turbulence model. The original case details can be found in following
directories respectively:

$FOAM_TUTORIALS/incompressible/pisoFoam/LES/pitzDaily

As mentioned in Prerequisites, the readers are presumed to have some knowledge on pitzDaily
tutorial cases. So the basic introduction of the case, such as geometry will not be presented here.

4.1 k-equation with Inagi wall damping function

Copy the pitzDaily tutorial to the run directory:

run
rm -r pitzDaily

cp -r $FOAM_TUTORIALS/incompressible/pisoFoam/LES/pitzDaily \
$FOAM_RUN/pitzDailyKInagi

cd $FOAM_RUN/pitzDailyKInagi

The file structure of the pitzDaily case is similar to other OpenFOAM tutorials which con-
tain normal /0, /constant and /system directories. As usual, in /system directory, one can
find controlDict for write and time control, blockMeshDict for mesh setup, fvSchemes for dis-
cretisation method, and fvSolution for solver control. In /constant directory, one can find
transportProperties for viscosity and turbulenceProperties for turbulence models. As the
Wall damping function is hard-coded into the SGS model kEqnInagi, so the damping function can
be applied by directly replacing the SGS model in /constant/turbulenceProperties, i.c.:
replace

LESModel dynamicKEqn;
with
LESModel kEqInagi;
Then, just type following command to run the case:

blockMesh
pisoFoam >& log&

23



4.2. TWO-EQUATION SGS MODEL CHAPTER 4. TUTORIAL SETUP

4.2 Two-equation SGS Model

4.2.1 Getting Started

Same as the case setup for Inagi wall damping function, the pitzDaily tutorial should be copied to
the run directory first:

run
rm -r pitzDaily

cp -r $FOAM_TUTORIALS/incompressible/pisoFoam/LES/pitzDaily \
$FOAM_RUN/pitzDailyKESAS

cd $FOAM_RUN/pitzDailyKESAS

4.2.2 Changes in 0 directory

As this case is only for demonstration, so extra parameters, such as nuTilda and s, which are not
solved in current turbulence model should be removed. However, the U, p, nuSgs and k stay the
same as in existing tutorial.

The new SGS model will solve e-equation which requires epsilon dictionary to be provided in
/0 directory as an initial condition. So copy /0/k to /0/epsilon, then change object from k to
epsilon, and make remaining epsilon file as:

dimensions [02-30000];

internalField uniform 79e-5;

boundaryField
{
inlet
{
type fixedValue;
value uniform 79e-5;
}
outlet
{
type zeroGradient;
}
upperWall
{
type fixedValue;
value uniform O;
}
lowerWall
{
type fixedValue;
value uniform O;
3
frontAndBack
{
type empty;
3
}

24



4.2. TWO-EQUATION SGS MODEL CHAPTER 4. TUTORIAL SETUP

$FOAM_TUTORIALS has pitzDaily case for k-equation SGS model and k-¢ RANS model. The
initial k& value for current case stays the same as the tutorial case for k-equation SGS model. It
is found out that the k value in /0 directory for the SGS model is much smaller than the case for
RANS model. So the ratio of € between the RANS and LES cases is kept as the same ratio of k
between existing RANS and LES cases.

4.2.3 Changes in system directory

In /system/controlDict:
comment out everything except fieldAveragel. Then within the fieldAveragel
only keep mean  on; for U, and turn others off.

In /system/fvSchemes:

add

div(phi,epsilon) Gauss limitedLinear 1;
under

div(phi,k) Gauss limitedLinear 1;

In /system/fvSolution:
replace

"(UlkIB|nuTildals)"
with

"(Ulklepsilon|B|nuTildals)"

4.2.4 Changes in constant directory

Keep the /constant/transportProperties unchanged.

In /constant/turbulenceProperties:

replace

LESModel dynamicKEqn;
with

LESModel kEpsilonSAS;

also replace
delta cubeRootVol;
to

delta vanDriest;

4.2.5 Running the code

Just type following command to run the case:

blockMesh
pisoFoam >& log&

25



4.3. POST-PROCESSING IN PARAVIEW CHAPTER 4. TUTORIAL SETUP

4.3 Post-processing in ParaView

It is reported that the new model can lead to divergence, whereas removing the energy backscatter
term in k-equation can improve the stability. The real cause for divergence is subject to further
investigation. The result shown in the test cases is based on the code which is without the energy
backscatter term in k-equation.

A preliminary comparison between k-equation with Inagi wall damping function, k-¢ SGS model,
k-equation SGS model with cubeRootVol A and conventional k-¢ RANS model is conducted. pitz-
Daily tutorial case located in $FOAM_TUTORIALS is used as the test case.

The inlet velocity are set to be U = 10m/s with turbulence intensity of 2%, 1% and 1% at z, y
and z direction respectively. Initial condition for pressure, p, eddy viscosity, v, k, and € value are
kept as same as in the original tutorial cases. The result are analysed at ¢ = 0.3s.

Fig. 4.1 shows the instantanecous velocity magnitude for all SGS models, with the top one being
the k-equation with Inagi wall damping function, middle one being the new model, and the bottom
one being the k-equation SGS model with cubeRootVol A. The figure indicates that the new model
can produce a ”"LES-like” velocity profile as k-equation SGS model does. In addition, the Inagi wall
damping function shows a different velocity profile from k-equation SGS model with cubeRootVol
A, indicating the modification works.

U Magnitude
10.0

00 50 15,7

- e ' -

Figure 4.1: Instantaneous velocity magnitude for k-equation with Inagi wall damping function (top),
k-e SGS model (middle), and k-equation SGS model with normal A (bottom).

Fig. 4.2 shows the time-averaged velocity magnitude for the three SGS models plus k-¢ RANS
model. It is found that the time-averaged velocity profile of the three SGS models have some
similarities, but different from conventional k-¢ RANS model. However the RANS model cannot
predict the unsteadiness for the current case.



4.3. POST-PROCESSING IN PARAVIEW CHAPTER 4. TUTORIAL SETUP

11.3
l: 10.0

9

— 80 =

6.0 5

-

40 3§

=

20 =
00
Y

b B

Figure 4.2: Time-averaged velocity magnitude for k-equation SGS model with Inagi wall damping
function (top), k- SGS model (second from top), k-equation SGS model with normal A (second
from bottom) and k-e RANS model (bottom).

27



Chapter 5

Conclusion and Future Work

A wall damping function and new k- based Two-equation SGS model have been implemented and
preliminary tested on 2D pitzDaily case. However the preliminary test shows that the new model
can lead to divergence, the stability can be improved by removing the energy backscatter term from
k-equation. The real cause for divergence is subject to further investigation. After removing the
backscatter term, the wall dumping function and the new model are compared with conventional k-
equation SGS model and conventional k-¢ RANS model on the pitzDaily case . The results indicate
that same as the conventional k-equation model, the new model can resolve turbulence and produce
an unsteady solution. In addition the Inagi wall damping function also shows effects on the result
indicating the implementation is working. As expected, the conventional k-¢ RANS model is not
able to capture the unsteadiness.

In terms of the future work, it is important to find out the cause of divergence. Then correspond-
ing improvement will be done followed by extensive tests on channel flow, backward facing step and
other more complicated scenarios.

28



Bibliography

Lars Davidson. “Evaluation of the SST-SAS model: channel flow, asymmetric diffuser and axi-
symmetric hill”. In: (2006).

Masahide Inagaki, Tsuguo Kondoh, and Yasutaka Nagano. “A mixed-time-scale SGS model
with fixed model-parameters for practical LES”. In: 127 (Jan. 2005).

J. Blair Perot and Jason Gadebusch. “A self-adapting turbulence model for flow simulation at
any mesh resolution”. In: Physics of Fluids 19.11 (2007), p. 115105. pDOI: 10.1063/1.2780195.
eprint: https://doi.org/10.1063/1.2780195. URL: https://doi.org/10.1063/1.2780195.

H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The
Finite Volume Method. Pearson Education Limited, 2007. 1SBN: 9780131274983. URL: https:
//books .google.se/books?id=RvBZ-UMpGzIC.

29



Appendix E

Tutorial: Parallelisation and HPC

114



Chapter 1

Parallel running

In order to decrease the time to run a computational simulation, the numerical domain
can be divided into sub-domains, in which the governing equations will be solved for the
fluid pressure and velocity, this is called parallelisation. This procedure is done using
the OpenFOAM tools: decomposePar (for the domain partition in sub-domains) and
reconstrucPar (for building/connecting the whole domain from the sub-domains).

The domain decomposition performed in OpenFOAM is done by breaking the geometrical
and associated fields to smalls sub-domains and assigning each one to a processor. This
option is already available in OpenFOAM for most of the solvers/utilities, but you do need
MPI (message passing interface) library installed (mpirun command) and for this you can
check the Wiki installation site (https://openfoamwiki.net/index.php/Main_Page) of the
programme version you desire to use. The utilities that are not supported to run in parallel
are those used for the parallelisation, such as decomposePar and reconstructPar, and
the mesh generator blockMesh.

1.1 Cores/Processors availability

Before being able to do a parallelised simulation, you need to know how many processors/-
cores you can use or have available in your computer, and for this you type the following
line in the terminal window:

lscpu
You'll see a similar description to the following:

In which you can determine the number of physical cores/processors you can use to de-
compose your case in, which in the current case would be 16 processors. The process of
parallelisation is done by:

1. Decomposing the domain into sub-domains

2. Running the simulation in parallel using openMPI



Architecture:
CPU op-mode (s) :

x86_64
32-bit, 64-bit

Byte Order: Little Endian

kcrpu(s) : 16 | -> Virtual cores available
On-line CPU(s) list: 0-15

ffhread (s) per core: T Physical cores = Cores/s x socket
Core (s) per socket: 8 =8x2=16
ISocket (s) = 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: [}

Model: 63

Model name: Intel (R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
Stepping: 2

CPU MHz: 2120.812

CPU max MHz: 3200.0000

CPU min MHz: 1200.0000

BogoMIPS: 4799.75

Virtualization: VT-x

Lld cache: 32K

11i cache: 32K

L2 cache: 256K

L3 cache: 20480K

NUMA node0 CPU(s): 0-7

NUMA nodel CPU(s): 8-15

captionNumber of processors

3. Reconstructing the whole domain

1.2 Domain decomposition

Now for the domain decomposition using decomposePar command, the file decomposeParDict
within the system folder needs to be set up. The number of processors used in each
direction is defined in this dictionary along with the decomposition method available:
hierarchical, manual, metis, multilevel, none, scotch, simple and structured
(more information of each of the methods can be checked at the OpenFOAM page:
https://www.openfoam.com/documentation/guides/latest /doc/openfoam-guide-parallel.html.
From which the most used are the simple, scotch and hierarchical. According to the
method used, different specifications should be done, an example for these three methods

is later shown in the case study (damBreak tutorial).

The information in each processor folder (processorN) will contain the mesh information,
boundary conditions, initial conditions and solution of each sub-domain (N = 0, 1, 2,...
numberO0fSubdomains\verb).

1.3 Running the case

When you run in parallel, the Al1run file should be modified to include the following line
(<NPROCS> = number0fSubdomains):

mpirun \{np <NPROCS> <application/utility> \{parallel
Or, depending in the foam functions are already directed in the header, you can use:

runParallel $(getApplication)



1.4 Reconstructing the case

Following, to build the whole domain back to have continuous information and solution,
the command reconstrucPar is used. And the results are shown as in the previous case,
per time-step selected for the interval to be written (writeInterval).

1.5 Tutorial case parallel: damBreak

This is a two-dimensional multiphase tutorial case for incompressible fluids (water and
air) available in most of OpenFOAM versions. The dimensions of the domain is of 0.584 x
0.584 meters, in which a water column is “dropped” when the simulation begins, at time t
= 0 (remember all cases in OpenFOAM are dealt as three-dimensional, considering a unit
cell in the z-direction), as seen in the figure below.

0.584 m

water column
0.584 m

0.292 m

i

0.048 m '

e oo -
01461 m 01450 m L0244 m

Figure 1.1: damBreak case geometry (figure taken from
https://cfd.direct /openfoam /user-guide/v6-dambreak /)

The total simulation time is 1s, whilst the time-step, deltaT, is 0.001 s and the writeInterval
is 0.05 s. The solver used for this multiphase case is interFoam. The cell discretisation in
this case is of 46 x 50 x 1 cells in the x, y and z-directions, respectively (cell size of 0.012

x 0.011 x 0.100 m).

Additional relevant setup data, such as boundary and initial conditions, can be checked
following previous material given during the workshop.

Now to do the damBreak (or any case) we must edit or include the decomposeParDict file



in the system folder, first we copy the tutorial case in our run folder by:

run
cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak damBreak_Example
cd damBreak_Example

For this case, the simulation is executed using 1, 2, 4, 8 and 16 processors, and, applying the
simple, hierarchical and scotch decomposition methods, in order to compare the different
execution times the cases take and select the appropriate amount required.

To edit the file, we type the following in the command window:

cd system
nano decomposeParDict

For 8 processors the domain will be sub-divided in 4 pieces in the x-direction and 2 in
the z-direction, whilst for the 16 processors, it is a 4 x 4 system. In the case of the 4
processors, the domain is sub-divided in 2 pieces in the x- and y-directions, as for the 2
processors case it is a 2 x 1 system.

An example of how to set the 8 processors case for the hierarchical, simple and scotch
methods is done below (but for this tutorial we only include the information required for
the hierarchical method):

J/ KK R ok Kk K ok K K kK K K K K Kk K KKk Kk KKk K KKK K KKK KKK S/
numberOfSubdomains 8;
method hierarchical;

hierarchicalCoeffs

{

n (4 2 1);
delta 0.001;
order XVZ;

}

R R T e R e e ST T

Figure 1.2: Hierarchical setup case

Rk kok Rk kok %ok kR ok kok kok Rk kok kok koK kk kok kox kok kx kS

numberofSubdomains 8;

method simple;

simpleCoeffs

{
n (4 2 1); // number of subdomains
delta 0.001; // cell skew factor

}

T T e R B B B B
Figure 1.3: Simple setup case

Now, we need to edit the Allrun file as follows:



T e R e R S R e R S e
numberofSubdomains 8;

method scotch;

A T I

Figure 1.4: Scotch setup case

cd ..
nano Allrun

To the Allrun file we add:

runApplication decomposePar
runParallel $(getApplication)
runApplication reconstructPar

To run Allrun file, we put in the terminal window:
./Allrun

After the run is performed, we should have the following files in our folder (or very similar).

log.blockMesh
Allclean log.decomposePar
Allrun log.interFoam
onstant log.reconstrucPar
foam.foam log.setFields

Figure 1.5: List of Folders and Results

We create the dummy file for Paraview visualisation foam.foam by:
nano foam.foam

Write “XYZ” followed by “CTRL+0” and “CTRL+X” to save it. The visualisation and
post-processing can be done using Paraview, for which the case should be selected to be
the reconstructed one (select Reconstructed Case in the dropdown menu from Case Type
in the Properties window on the left).

paraview foam.foam

The post-processing tools are the same as learned before during the workshop tutorials.
Now, we are going to evaluate the amount of processors that perform better for each
decomposition method (taking the simulation time from the log.interFoan files of each
cases). It can be seen in the table below that with 16 processors, the time taken to run
the cases increases considerably, therefore, using all of them, may not be a good idea for
this specific case.

Refining the mesh by its half it takes longer execution time (around 1600 s). Below is a
comparison of both cases at 0.30 s. As it was seen previously in the workshop, you should
also do a convergence mesh study.



%pelee | 7
Search s Excto cearten) @0
= Properties (foa | (| I & *
"

P
~1.3526+03

1012.1
671.94
331.8

=-8.351e+00

Figure 1.6: Paraview window

Hierarchical ‘ Scotch ‘ Simple
Pr:crn;s;.:rs Clock time (s) Mesh 1 Mesh1l | Mesh2
1 7] 6 6 46x50x1 | 92x100x1
2(2x1) 5 4 4 46x50x1 | 92x100x1
4(2x2) 4 4 4 46x50x1 | 92x100x1
8(ax2) 4 4 4 46x50x1 | 92x100x1
16 (4 x 4) 8 9 (5} 46x50x1 | 92x100x1

Figure 1.7: Simulation time

Figure 1.8: Alpha water view (original and refined cases)



Chapter 2

High Performance Computing
(HPC) usage, based on UCL
Computing Systems

The UCL High Performance Computing (HPC) manages three HPC systems or platforms
available for researchers at UCL, these are Legion, Grace and Myriad, which you can choose
according to your computational requirements (the technical specifications of each of the
clusters can be found here https://wiki.rc.ucl.ac.uk/wiki/RC_Systems). These clusters
run a software stack based upon Red Hat Enterprise Linux 7 and Son of Grid Engine and
can be used by UNIX-like operating system users. Grace for example has more than 684
nodes, each node has 16 cores in total that can be used. The Research Centre (RC) at
UCL are the ones in charge of giving the maintenance and addressing the concerns of the
users and they have drop-in sessions every two Tuesdays at the main campus. The first
step to use the HPC is to require access to the RC department, in which you state the
technical requirements and other specifications related to the research itself. For this, you
need to fill the form available in https://wiki.rc.ucl.ac.uk/wiki/Account_Services.

2.1 Access

Once you have the user access to one of the cluster, you can enter from the terminal
window by typing (the examples given here are for the Grace cluster):

ssh <your_UCL_user_id>@grace.rc.ucl.ac.uk
Or, when requiring the graphic tools available for post-processing (using Paraview)
ssh -X <your_UCL_user_id>@grace.rc.ucl.ac.uk

Other way is to use PuTTY for Windows users and adding Exceed for the graphic util-
ity, which is the way will be presented during the workshop. To access outside UCL you
need to have IS VPN service accessed, and it will allow you to work with all the op-
tions mentioned above (UNIX and Windows). More information on this, can be found in



https://wiki.rc.ucl.ac.uk/wiki/Accessing RC_Systems.

2.2 Modules

There are modules that are already loaded for all the users, which are the basic ones, to
see them you can type this in the HPC terminal window:
module list

[<userid>@login@6 ~]$ module list
Currently Loaded Modulefiles:

1) gcc-1libs/4.9.2 8) screen/4.2.1 15) tmux/2.2

2) cmake/3.2.1 9) gerun 16) mrxvt/e.5.4

3) Flex/2.5:39 10) nano/2.4.2 17) userscripts/1.3.8

4) git/2.10.2 11) nedit/5.6-augl5 18) rcps-core/1.8.0

5) apr/1.5.2 12) dos2unix/7.3 19) compilers/intel/2017/updatel
6) apr-util/1.5.4 13) giflib/5.1.1 20) mpi/intel/2017/updatel/intel
7) subversion/1.8.13 14) emacs/24.5 21) default-modules/2017

Figure 2.1: Modules loaded by default

In which can already be recognised some, that are required for running OpenFOAM, such
as subversion, gerun and mpi, and other known utilities such as nano and nedit. To check
the programmes that are available, we type (in which we obtain a quite large list, in which
OpenFOAM is included):

module available

openfoam/2.3.1/intel-2015-update2
openfoam/2.4.0/intel-2017-updatel
openfoamplus/w1706/gnu-4.9.2
openmxz/3.8.3
p7zip/15.09/gnu-4.9.2
pandoc/1.19.2.1

parallel/20181122

paraview/5.3.0

Figure 2.2: Modules Available (section of the list)
Among the software that are available are openfoam 2.4.0 and openfoamplus v1706. The
platforms are Linux based, therefore similar commands to those learnt in this course can

be used in their terminal windows. In order to know which utilities are required for
OpenFOAM and Paraview, we type:

module show openfoamplus

/shared/ucl/apps/modulefiles/applications/openfoamplus/v1706/gnu-4.9.2: Location

module-whatis Adds OpenFORMplus v1706 to your environment OpenFOAM Version

conflict openfoam

conflict gpenfoamplus

prereq gcc-1ibs

prereq compilers/gnu/4.9.2 Required modules to be i _ z

prereg mpi/openmpi/1.10.1/cnu4 9.2 | loaded for OF to work Additional information for shortcuts

setenv BOOST_ARCH PATH /shared/ucl/apps/openfoamplus/v1706/gnu-4.9.2/ThirdParty-v1706/platforms/linuxédGce/boost_1 64 0
setenv CGAL ARCH PATH /shared/ucl/apps/openfoamplus/v1706/gnu-4.9.2/ThirdParty-v1706/platforms/linuz64Gec/CGAL-4.9.1
setenv FFTW _ARCH PATH /shared/ucl/apps/openfoamplus/v1706/gnu-4.9.2/ThirdParty-v1706/platforms/linuxé4Gee/fftw-3.3.6-pll
e L Y BT ale Y e et = e Sy ) o SR Ay A o7 e s e B g v 912 N e oYY o) S R R ) 22

setenv FOAM APPBIN /shared/ucl/apps/openfoamplus/v1706/gnu-4.9.2/0penFOAM-v1706/platforms/1inux64GeccDPInt320pt/bin

Figure 2.3: Details of openfoamplus module

module show paraview



/shared/ucl/apps/mocdulefiles/applications/paraview/5.3.0:

module-whatis This module adds the ParaView 5.3.0 binaries to your environment. ParaView 1s an open-source,
prereq gcc—libs

preregqg 1lvm/3.9.1

prereqg mesa/13.0.6/gnu-4.9.2

prereq xorg-utils

conflict paraview

prepend-path PATH /shared/ucl/apps/paraview/5.3.0/gnu-4.9.2/ParavView-5.3.0-Qt5-0OpenGL2-MPI-Linux-64bit/bin

Figure 2.4: Details of Paraview module

Now, in order to load these modules (for both programmes) we type:

module unload compilers

module unload mpi

module load gcc-libs

module load compilers/gnu/4.9.2

module load mpi/openmpi/1.10.1/gnu-4.9.2
module load openfoamplus/v1706/gnu-4.9.2
module load 1llvm/3.9.1

module load mesa/13.0.6/gnu-4.9.2

module load xorg-utils

module load paraview/5.3.0

2.3 HPC tutorial case: damBreak

Now, we are copying the case of the damBreak to our system, once you have access
to the HPC, you will have one folder called output, inside another one called Scratch
(which has larger storage, but is not backed up, more information on this can be found
in https://wiki.rc.ucl.ac.uk/wiki/Managing Data_on_RC_Systems), and is in there, where
all your cases are going to be stored (and run).

cd Scratch/output
cp -r /shared/ucl/apps/openfoamplus/v1706/gnu-4.9.2/0penF0AM-v1706/tutorials/multiphase/i
cd damBreak_Example2

In order to process the case (batch processing), we include the file script.sh, as follows:
nano script.sh

And to this empty file we include:

Then, we click “CTRL+0” and “CTRL4+X” to save it.

Now, we change the number of processors in decomposeParDict as follows:

nano damBreak/system/decomposeParDict

Change numberOfSubdomains to 32 and method to scotch. Again, we click “CTRL+0O”



GNU nano 2.4.2

B!/bin/bash -1

#S$ -S /bin/bash

estimated time to run the

#3 -1 h_rt=2:00:0 case (Max wallclock)

#3 -1 mem=1G
) number of processors
L e e (Grace min 32)

#5 -N damBreak name of solution files and
where are they stored (cwd

S in the same folder)

module unload compilers

module unload mpi

module load gcc-libs/4.9.2

module load compilers/gnu/4.9.2

module load mpi/openmpi/1.10.1/gnu-4.9.2
module load openfoamplus/v1706/gnu-4.9.2

(cd damBreak && blockMesh)

(cd damBreak && setFields -dict system/setFieldsDict)
(cd damBreak && decomposePar)

(cd damBreak && gerun interFoam -parallel)

Figure 2.5: Script for HPC Running

and “CTRL+X” to save it. For Grace cluster these are the maximum wallclock times
according to the required processors (https://wiki.rc.ucl.ac.uk/wiki/Resource_Allocation):

Wallclock times

Cores Max wallclock
32-256 48hrs
257-512 24hrs
513-10912 12hrs

Figure 2.6: Wallclock time (Grace Cluster)

Now, to submit the case for the job scheduler, type the command:
gsub script.sh

To check the status of the case, the following is used (12345 represents the number assigned
to the simulation once is submitted):

gstat -f -j 12345
To erase the simulation while in the batch processing, we type:

qdel 12345

10



It is important to know two things, first, that the selection of the cases simulated is not in
order of submission (check job scheduler in https://wiki.rc.ucl.ac.uk/wiki/Legion_Scheduler)
and second, it is very important to select the correct amount of time and processors to run

the simulation because this is an important factor to select the cases to be simulated in the
queue. To get and send data from the personal computer to the HPC you can use the fol-
lowing commands (available in https://wiki.rc.ucl.ac.uk/wiki/Managing_Data_on_RC_Systems):

scp

This will copy a data file from somewhere on your local machine to a specified location on the remote machine.
scp <local_data_file> <remote_user_id>@<remote_hostname>:<remote_path>

This will do the reverse, copying from the remote machine to your local machine. (Run from your local machine).
scp <remote_user_id>@<remote_hostname>:<remote_path><remote_data_file> <local_path>

To copy a whole directory with all its contents, use the -r option:

scp -r <local_directory> <remote_user_id>@<remote_hostname>:<remote_path>

Figure 2.7: Copy-paste commands for interaction HPC-desktop

You can also do changes to the certain solvers/utilities/codes, and compile them normally
as you would do in your personal computer, just verify the location with the module show
option. The information for this section was based on the website of the Research Centre
of UCL: (https://www.ucl.ac.uk/research-it-services/research-computing-platforms).

11



Appendix F

Programme of the 2nd UCL
OpenFOAM Workshop

126



dh

Programme of the 2nd UCL OpenFOAM Workshop

Day 1 (the 26™ of June) - Venue: B40 LT, Darwin Building

9:00 - 9:45 Registration desk opens and audience in seats

9:50 — 10:00 Opening remarks, Luofeng Huang

10:00 - 11:00

Keynote speech:
OpenFOAM, from 1993 towards 2030

You will meet the founder of
OpenFOAM, listening to his

Prof Hrvoje Jasak, principal developer of OpenFOAM

stories and future expectation.

11:00-11:25

Theme speech 1: (Chair — Daniela Benites)
Computational fluid dynamics of multi-body problems

You will know what has driven
OpenFOAM to the position today,

Dr Christian Klettner, UCL teaching fellow

what has been achieved, how are

11:25-11:50

Theme speech 2: (Chair — Shiyu Lyu)
Large Eddy Simulation of a channel with cavities

academia and industry using it.
You will see interesting examples

Dr Yeru Shang, Engineer at Mott MacDonald

of how OpenFOAM simulates our

11:50-12:30

Round-table discussion (Chair — Tom Smith)

real life.

Prof Hrvoje Jasak, Prof Giles Thomas,
Dr Christian Klettner, Dr Yeru Shang.

A round-table discussion will be

12:30—-12:55

Theme speech 3: (Chair — Bojan Igrec)
Hydroelastic interaction between waves and ice

performed, where four experts
will have interesting

Mr Luofeng Huang, UCL PhD

communications around

12:55-13:00

Group Photo

OpenFOAM. You can also ask

13:00-14:30

Networking Lunch

questions of your interests and
trigger their discussion.

Tutorial Session: (Chair — Daniela Benites)

14:30-15:30

OpenFOAM basis

You will learn how OpenFOAM

Dr Rui Song, University of Liverpool

work and its usage in varied

15:30-16:30

Fluid dynamics 1

simulations of fluid.

Dr Christian Klettner, UCL teaching fellow

16:30-17:30

Fluid dynamics 2

You will learn to how to use post-

Mr Tom Smith, UCL PhD

processing to create a digital and

17:30-18:30

Fluid dynamics 3

precise view of fluid in our life,

Dr Yeru Shang, Engineer at Mott MacDonald

e.g. air and water.

Day 2 (the 27" of June) - Venue: Anatomy B15, Medical Sciences and Anatomy

Tutorial Session: (Chair — Morning/Shiyu Lyu, Afternoon/Daniela Benites)

10:00 - 11:30 | Ship hydrodynamics
Mr Luofeng Huang, UCL PhD
11:30-13:00 | Wave modelling
Ms Daniela Benites, UCL PhD
14:00 —15:30 | Fluid-solid Interaction (rigid body)
Mr Shiyu Lyu, UCL PhD
15:30-17:30 | Solid Mechanics and Fluid-solid Interaction

(elastic body)

Mr Minghao Li, Engineer at FsDynamics

Step by step tutorials will be given
to teach the applications of
OpenFOAM in maritime and civil
engineering. You will learn how to
model ship advancement, ocean
waves; how to solve vibration and
deformation of solids, as well as
their interactions with fluid.




Day 3 (the 28" of June) - Venue: G15 Public Cluster, DMS Watson Building

Tutorial Session: (Chair — Morning/Shiyu Lyu, Afternoon/Luofeng Huang)

10:00 - 11:00 Programmingl: basis You will learn how to implement
Mr Tom Smith, UCL PhD extended functions based on

11:30-12:30 Programming2: implement functions OpenFOAM, also how to use high-
Mr Tom Smith, UCL PhD performance computation (HPC)

13:30 — 15:00 Programming3: implement a new solver power to speed up simulations.
Mr Minghao Li, Engineer at FsDynamics ) )

15:00 — 16:00 Turbulence modelling With these advanced skills, you
Mr Tom Smith, UCL PhD will be able to simulate amazing

16:00 —17:30 Parallel simulation and supercomputing turbulence and write your own
Ms Daniela Benites, UCL PhD solver for specific purposes.

*This activity is a Researcher-led Initiative that has been funded by UCL Organisational Development.

Department of Mechanical Engineering

University College London

Local committee:
Luofeng Huang
Daniela Benites
Shiyu Lyu

Tom Smith



Reading recommendations

1. OpenFOAM user guide
http://foam.sourceforge.net/docs/Guides-a4/0OpenF0AMUserGuide-A4.pdf

2. Youtube channel of Jézsef Nagy, excellent tutorial-vedios to begin with:
https://www.youtube.com/channel/UCjdgpuxuAxH9BqheyE82Vvw?&ab_channel=J}C3%B3zsefNagy

3. OpenFOAM tutorials of Victor Pozzobon on Researchgate:
https://www.researchgate.net/project/OpenFOAM-Tutoring

4. Maric, T., Hopken, J. and Mooney, K., 2014. The OpenFOAM technology primer.
(first five chapters provide comprehensive OpenFOAM foundation)

5. Moukalled, F., Mangani, L. and Darwish, M., 2016. The finite volume method in computa-
tional fluid dynamics.
(the theoretical foundation of OpenFOAM)

6. 715 days” OpenFOAM online course: https://wiki.openfoam.com/%223_weeks)22_series|

129


http://foam.sourceforge.net/docs/Guides-a4/OpenFOAMUserGuide-A4.pdf
https://www.youtube.com/channel/UCjdgpuxuAxH9BqheyE82Vvw?&ab_channel=J%C3%B3zsefNagy
https://www.researchgate.net/project/OpenFOAM-Tutoring
https://wiki.openfoam.com/%223_weeks%22_series

Acknowledgements

Leading the way

Professor Hrvoje Jasak (University of Zagreb)
Professor Giles Thomas (University College London)
Prof Hakan Nilsson (Chalmers University of Technology)
Prof Gavin Tabor (University of Exeter)

Dr Zeljko Tukovic (University of Zagreb)

Dr Vuko Vukcevic (University of Zagreb)

Dr Philip Cardiff (University College Dublin)

Logistical supports

Rochelle Rowe (UCL Doctoral Skills Team)
Kasia Bronk (UCL Doctoral Skills Team)

Emillia Brzozowska (UCL Doctoral Skills Team)
Sheetal Saujani (UCL Doctoral Skills Team)
Alexandra Grimova (UCL Mechanical Engineering Financial)
Martina Bertazzon (UCL Mechanical Engineering Financial)
Edward drinkwater (UCL Mechanical Engineering Financial)
Luke Kelly (UCL Mechanical Engineering Logistical)

Fighting together

Dimitris Stagonas (Cranfield University)
Rui Song (The university of Liverpool)
Alberto Alberello (The UUniversity of Adelaide)
Filippo Nelli (The University of Melbourne)
Sasan Tavakoli (The University of Melbourne)
Edward Ransley (University of Plymouth)
Pal Schmitt (Queen’s University Belfast)
Josh Davidson (Budapest University of T&E)
Yuzhu Li (Technical University of Denmark)
Azam Dolatshah (Swinburne University of Technology)
Peiying Sun (University of Sussex)

Bojan Igrec (UCL)

Thomas Peach (UCL)

Christopher Ryan (UCL)

Andrea GL Rosa (UCL)
Christopher-John Cassar (UCL)

Dian Fan (UCL)

Nathaniel Henman (UCL)

Katherine Wang (UCL)

130









	OpenFOAM basis
	Installation
	Linux
	OpenFOAM

	OpenFOAM case setup
	Introductory CFD
	Mesh
	Timestep and solver
	Initial and boundary conditions

	Simulation

	Ship flow simulation
	Case introduction
	Free-surface modelling
	Boundary conditions
	Mesh around the ship
	Local mesh refinement
	SnappyHexMesh

	Ship resistance

	Wave simulation
	Waves2Foam
	Installation
	Numerical Wave Tank

	ihFoam
	Wave pass through a fixed plate

	Fluid-Structure Interaction
	Preparation: stress-analysis
	Installation(FSI)
	foam-extend
	fsiFoam

	FSI approach
	FSI tutorial
	Case structure
	Mesh
	Simulation

	Wave-induced FSI problems
	Code development
	Tutorial


	Reference
	Appendixes: advance tutorials
	Coding tutorial
	Tutorial: Flow passes a motorbike
	Tutorial: Flow passes a cylinder
	Tutorial: Develop a turbulent model
	Tutorial: Parallelisation and HPC
	Programme of the 2nd UCL OpenFOAM Workshop
	Reading recommendation
	Acknowledgements

