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Abstract This paper addresses the problem of the numerical computation of
generalized Mittag–Leffler functions with two parameters, with applications in
fractional calculus. The inversion of their Laplace transform is an effective tool
in this direction; however, the choice of the integration contour is crucial. Here
parabolic contours are investigated and combined with quadrature rules for
the numerical integration. An in–depth error analysis is carried out to select
suitable contour’s parameters, depending on the parameters of the Mittag–
Leffler function, in order to achieve any fixed accuracy. We present numerical
experiments to validate theoretical results and some computational issues are
discussed.
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1 Introduction

The Mittag–Leffler (ML) function was introduced, at the beginning of the last
century, by the Swedish mathematician Magnus Gösta Mittag–Leffler in the
context of summing divergent series. The formal definition

Eα(z) =

∞
∑

k=0

zk

Γ (αk + 1)
(1)
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holds for complex z’s and α’s with ℜ(α) > 0. Shortly after its introduction
this definition was broadened with a second complex parameter β, ℜ(β) > 0,
according to the expression

Eα,β(z) =

∞
∑

k=0

zk

Γ (αk + β)
. (2)

However, essentially in the last two decades ML functions have come into
prominence thanks to the vast potential of their applications in modeling sys-
tems from physics, biology, engineering and many other fields.

A fundamental application area is the fractional calculus, as widely dis-
cussed in some cornerstone books [4,15,19,21,26], since ML functions play a
key role in the solution of fractional order problems (e.g., see [3,8,32]).

Recent developments in the solution of fractional differential equations
(FDEs) involve a generalization of Mittag–Leffler functions, namely

eα,β(t;λ) = tβ−1Eα,β(−tαλ), (3)

where t is the independent variable, while λ, α and β are fixed (usually real)
parameters. We will refer to eα,β as the generalized Mittag–Leffler function.

Several and important results have been given for the ML functions (2)
and recently also for (3) (e.g., see [12,18,19,22,26,28]), although important
aspects still deserve a deep comprehension. In particular, the case α = β = 1
corresponds to the exponential function and the case eα,1(t; 1) is discussed
in–depth in [11,20].

In several applications the evaluation of the generalized ML function eα,β
is requested for matrix arguments. This topic has been extensively discussed
in recent works and we just cite, among the others, [7,5,23,24,35]. Very often
the attention is in the computation, in a fast way, of the action of this matrix
function on a vector. An example is given by the following system of linear
FDEs

y(α)(t) +Ay(t) = b, y(0) = y0,

where y(t) is a vector–valued function, y(α)(t) its fractional derivative of order
0 < α < 1 according to the Caputo’s definition and A, b and y0 respectively
matrix and vectors of compatible size; the solution of this problem can be
expressed as y(t) = eα,1(t;A)y0 + eα,α+1(t;A)b [4,19,26]. We note that in
several and important applications the size of the system is very large.

In the case in which the input b is not constant but varies with respect to
the time t or it is a function of the state y(t), the application of Generalized
Exponential Integrators (GETD) [5] allows to reduce the above problem to
the evaluation of several vectors of the form eα,β(t;A)v for different values of
t and v.

The increasing interest in ML functions and their wide application give
rise to the need of effective strategies for their numerical computation [10,13,
29,27]. Thus the analysis of efficient and accurate numerical methods for (3),
with scalar or matrix arguments, is actually a compelling subject.



Evaluation of generalized Mittag–Leffler functions on the real line 3

In this paper we address this topic by considering a technique based on the
numerical inversion of the Laplace transform combined with standard quadra-
ture rules on a parabolic contour. This approach has been extensively studied
in [35] and is extremely elegant and simple; there are very few parameters to
select and they can be easily and automatically tuned to meet a given accuracy.

Anyway, as we will see later, the procedure described in [35] fails to achieve
good results when β is large enough as compared to α. The fundamental result
of this paper is the description of the explicit dependence of the error on both
parameters α and β; grounding on this result, we are able to select appropriate
parabolic contours to accurately evaluate the generalized ML function (3).

In this paper we focus on the case in which the function argument is a
positive real value or a matrix with the spectrum on the positive real axis; we
outline that these cases have several applications in real–life models.

The structure of the paper is the following: in Section 2 some important
properties of the Laplace transform of eα,β are discussed and the main results
concerning its inversion by integration on parabolic contours are reviewed.
Section 3 is devoted to study the error estimation in the numerical inversion
of the Laplace transform of eα,β and the problem of finding the suitable con-
tour to reach a prescribed tolerance is addressed. Some numerical experiments
are presented in Section 4 to validate theoretical results, both for scalar and
matrix arguments. Finally, in Section 5 we discuss some issues related to the
computational efficiency of the proposed method.

2 On the inversion of the Laplace transform of eα,β(t;λ)

Whilst most of the analytical properties of special functions, such as the gener-
alized ML function investigated in this paper, have been widely studied, their
numerical evaluation is a still challenging task. We refer for instance to one
of the books wholly devoted to this subject [9]. A powerful class of methods
for performing this task is based on the numerical inversion of the Laplace
transform.

It is a well–known result (e.g., see [19,26]) that the Laplace transform of
eα,β(t;λ) is

Fα,β(s;λ) =
sα−β

sα + λ
, ℜ(s) > |λ|1/α;

due to the presence of non integer powers, Fα,β(s;λ) is a multivalued function
and to prevent related problems we define a branch cut along the negative real
semiaxis.

An effective way to compute eα,β(t;λ) is therefore approximating the in-
version Laplace transform formula

eα,β(t;λ) =
1

2πi

∫

C

estFα,β(s;λ)ds; (4)

the contour C is a suitable deformation of the Bromwich line which should be
located as much as possible to the left to keep the factor est at a small size
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but, at the same time, C should not be too close to the singularities of Fα,β to
avoid the blow up of the integrand function.

A fundamental task is therefore the identification of a region in the complex
plane in which Fα,β(s;λ) is analytic. We first note that, unless β ≤ α, a first
singularity of Fα,β(s;λ) is located on the brunch point s = 0. Further feasible
singularities are of the form

s
{k}
α,λ = λ

1
α ei

π+2kπ
α , k ∈ Z

since we assumed λ to be on the positive real semi–axis.
With the above choice of the brunch cut, when 0 < α < 1 none of the

above possibility has the argument in (−π, π] and hence Fα,β(s;λ) has only
the singularity at the origin. When 1 < α < 2 we have to take into account
the two singularities at

s±α,λ = λ
1
α e±i π

α

and, since π
2 < π

α < π, these singularities have negative real part. We sum-
marize the above discussion in the following result and we omit to treat the
case α > 2 (which presents more singularities and raises additional difficulties)
since it is usually of less interest in applications.

Proposition 1 Let 0 < α < 2 and λ > 0. There exists a sector

Σδ,σ =
{

s ∈ C , | arg(s− σ)| < π − δ
}

,

where σ > 0 and 0 ≤ δ ≤ max {0, π(α− 1)/α}, such that Fα,β(s;λ) is analytic
in Σδ,σ.

The numerical evaluation of (4) has been addressed in [6] where, by fol-
lowing ideas in [30], the exponential function was replaced by a rational ap-
proximation. This strategy has the main advantage that it makes possible to
achieve high accuracy with very few nodes. Anyway it has two non negligible
weak points: the first is that the error analysis could be not always sharp since
it is based merely on a conjecture (even if validated by several experimental
results); secondly, since this replacement is equivalent to the integration on a
certain contour, it is not applicable to the case in which the integrand presents
some singularities since we are not sure that the singularities lie on the left of
the contour.

The integration on a well defined contour, such as a parabola or hyperbola,
has been deeply discussed, for instance, in [16,17,33–35]; it usually involves
more evaluations of the Laplace transform to be inverted but it allows to tune
in a fine way the parameters in order to keep singularities at a safe distance
from the contour and, moreover, provides an analytic error estimation.

Because of the presence of some singularities, the opinion of the authors,
based also on numerical tests shown in the following, is that the inversion of
the function Fα,β should be preferably done by methods that, unlike the one
in [30], leave some freedom in moving the contour in a proper way. This aspect
is the main motivation of the analysis in this paper, which actually aims to
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select contours depending on the problem data, in such a way to optimally
solve it.

Given a contour parametrized by a complex function z(u), −∞ < u < ∞,
we can write the integral (4) as

eα,β(t;λ) =
1

2πi

∫ ∞

−∞

ez(u)t
z(u)α−β

z(u)α + λ
z′(u)du . (5)

The approximation by means of the trapezoidal rule on a uniform mesh–
grid uk = kh with step size h gives the approximation

e
[h,N ]
α,β (t;λ) =

h

2πi

N
∑

k=−N

ez(uk)t
z(uk)

α−β

z(uk)α + λ
z′(uk). (6)

The analysis of the error eα,β(t;λ)− e
[h,N ]
α,β (t;λ) can be made by following

the approach in [35]. More generally, given the integral

I =

∫ ∞

−∞

g(u)du,

its infinite and finite trapezoidal approximations are

Ih = h

∞
∑

k=−∞

g(kh), Ih,N = h

N
∑

k=−N

g(kh);

the error I − Ih,N is given by the discretization error DE = I − Ih and the
truncation error TE = Ih − Ih,N . For the truncation error it is sufficient to
assume that g(u) decays rapidly as u → ±∞ in order to approximate TE by
the last term retained in the summation, i.e. TE = O

(

|g(hN)|
)

, N → ∞; on
the contrary, for the discretization error a more involved analysis is necessary.
The main tool is the following theorem which we report here for completeness.

Theorem 1 ([35]) Let w = u+iv, with u and v real. Suppose g(w) is analytic
in the strip −d < v < c, for some c > 0, d > 0, with g(w) → 0 uniformly as
|w| → ∞ in that strip. Suppose further that for some M+ > 0, M− > 0 the
function g(w) satisfies

∫ ∞

−∞

∣

∣g(u+ ir)
∣

∣du ≤ M+,

∫ ∞

−∞

∣

∣g(u− is)
∣

∣du ≤ M−

for all 0 < r < c, 0 < s < d. Then

∣

∣I − Ih
∣

∣ ≤ DE+ +DE−,

where

DE+ =
M+

e2πc/h − 1
, DE− =

M−

e2πd/h − 1
.
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In [35] parabolic and hyperbolic contours were analyzed and compared for
general functions; for the ML function (1), i.e. for the special case β = 1, the
attention was restricted to the parabolic contour of the form

C : z(u) = µ
(

iu+ 1
)2
, −∞ < u < ∞. (7)

Throughout the paper we will assume µ > 0 to be sure that the parabola
encloses the real negative axis.

For the symmetry of the contour, the coefficients in the sum (6) can be
rearranged in such a way that only half of them are actually computed and
complex arithmetic is halved.

One of the most innovative aspects of the analysis carried out in [35] is
the use of a non–symmetric strip of analyticity. Whilst this is not particularly
revealing from a theoretical point of view, it makes the difference for practical
computation since it allows to select parameters in an optimal way. Indeed,
based on the results in Theorem 1, in [35] it was given the balance of the
components DE+, DE− and TE of the error for the ML function (1) when
using the parabola (7); suitable parameters are thus obtained as

h =
3

N
, µ =

πN

12t
, (8)

where N is chosen such that the error EN = O(e−2πN/3) is proportional to a
given tolerance ε > 0.

Unfortunately, the parameters found in [35] do not always work properly
for the generalized ML function (3). In Figure 1 we show, for λ = 2.5 and
t = 1, the errors obtained by selecting h and µ according to (8) with target
tolerance of ε = 10−8 and ε = 10−11. The evaluations have been performed for
β ∈ {α, 1, α+1, α+2, α+3, α+4} with α = 0.2, 0.5, 0.8. The straight dotted
line represents the target tolerance which is reached only for small values of β
whilst for higher values of β errors greater than the expected ones are obtained.

We observe that the distance between the actual error and the target tol-
erance increases as β increases. Our opinion is that, in the case of the ML
function, some terms with large size have been neglected in the asymptotic
representations of the errors DE+, DE− or TE and some of these terms could
be in some way related to α and β. The main aim of this paper is thus to
bring to light these terms and devise a more accurate error model for the
computation of the ML function.

3 Contours tuning for the generalized ML function

The main reason for the poor performance of the procedure described in Sec-
tion 2 when applied to the generalized ML function (3) is that the constant
M+ in Theorem 1 can assume extremely large values when β is larger than α.
Indeed, as r → 1 the parabola described by z(u+ ir) approaches the negative
real axis and, since the singularity at the origin, the value of g(u + ir) blows
up.
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Fig. 1 Errors for the function eα,β(t;λ) by using classical parameters (8) with target tol-
erance of ε = 10−8 (left) and ε = 10−11 (right).

To prevent this from happening, r should not be allowed to get too close to
1 and should be constrained by a threshold c < 1. In this way the balancing of
the different components of the error would select optimal parameters h and µ

leading to the global error EN = O
(

e−2πNc/
√

1+4c(1+c)
)

. Thus, any tolerance
ε > 0 is reached by using a number of nodes given by

N = −
√

1 + 4c(1 + c)

2πc
log ε. (9)

The threshold c should be selected small enough to guarantee M+ be not
large when compared to e−2πc/h. However, from (9) we infer a direct depen-
dence of the number of nodes N on c: if a too much small value of c is used,
a huge number N of nodes is required, thus impairing the method efficiency.
For this reason it is fundamental to detect an optimal value for the width c of
the strip of analyticity in which M+ is evaluated.

To achieve this goal, we need a deeper analysis of the component DE+ in
the error estimate.

3.1 The case 0 < α < 1

Let us start by first introducing some results which represent a preliminary to
our analysis. In [31] Tricomi introduced the Ψ–function as the second solution
of the confluent hypergeometric differential equation (also called Kummer’s
equation)

z
d2y

dz2
+ (b− z)

dy

dz
− ay = 0.
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The Ψ–function, which very often is referred to as the confluent hyperge-
ometric function of the second kind, possesses for any a and z with positive
real part the following integral representation

Ψ(a, b, z) =
1

Γ (a)

∫ ∞

0

e−zssa−1(1 + s)b−a−1ds. (10)

The use of the Ψ–function allows to describe in a functional analytic way
the dependence of M+ from r in the formula for the discretization error DE+.

Lemma 1 Let a, p > 0 and γ ∈ R. Then
∫ ∞

−∞

e−pu2 (

a+ u2
)γ

du =
√
πaγ+

1
2Ψ
(

1
2 , γ + 3

2 , ap
)

.

Proof First split the integral into the two subintervals (−∞, 0] and [0,∞) and,
after the change of variable s = u2/a, observe that

∫ ∞

−∞

e−pu2 (

a+ u2
)γ

du = aγ+
1
2

∫ ∞

0

s−
1
2 e−aps

(

1 + s
)γ
ds.

By using the integral representation (10) it is immediate to see that

∫ ∞

−∞

e−pu2 (

a+ u2
)γ

du = aγ+
1
2Γ ( 12 )Ψ

(

1
2 , γ + 3

2 , ap
)

and the proof now follows after using the equivalence Γ ( 12 ) =
√
π (e.g., see

[25]). ⊓⊔

Theorem 2 Let 0 < r < 1 and let g denote the integrand of (5) for the
contour z defined by (7). Then

∫ ∞

−∞

∣

∣g(u+ ir)
∣

∣du ≤ M(1− r)2(α−β+1)Ψ
(

1
2 , α− β + 2, µt(1− r)2

)

,

where M is a positive constant which does not depend on r.

Proof By evaluating the parabola on w = u+ ir it is immediate to see that

∣

∣z(u+ ir)α−β
∣

∣ = µα−β
(

(1− r)2 + u2
)α−β

,
∣

∣z′(u+ ir)
∣

∣ = 2µ
√

(1− r)2 + u2

and, since
∣

∣ez(u+ir)t
∣

∣ = eµ(1−r)2te−µu2t, we easily obtain

∣

∣g(u+ ir)
∣

∣ = 2eµ(1−r)2tµα−β+1e−µu2t
(

(1− r)2 + u2
)α−β+ 1

2
1

∣

∣z(u+ ir)α + λ
∣

∣

.

Moreover, since for 0 < α < 1 it is z(u+ ir)α+λ 6= 0, we can assume there
exists a positive value M̃ such that

1
∣

∣z(u+ ir)α + λ
∣

∣

≤ M̃
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and, since eµ(1−r)2t ≤ eµt, for M1 = 2eµtµα−β+1M̃ we have

∫ ∞

−∞

∣

∣g(u+ ir)
∣

∣du ≤ M1

∫ ∞

−∞

e−µu2t
(

(1− r)2 + u2
)α−β+ 1

2 du.

We can now apply Lemma 1 for γ = α − β + 1
2 , p = µt and a = (1 − r)2

in order to evaluate the above integral and hence conclude the proof with
M =

√
πM1. ⊓⊔

We are now able to study the role of the parameter c in the error term
DE+ by means of the following result.

Theorem 3 Let 0 < r ≤ c < 1. Then

∫ ∞

−∞

∣

∣g(u+ ir)
∣

∣du ≤











M
(1)
+ if β < α+ 1

M
(2)
+ log(µt(1− c)2) if β = α+ 1

M
(3)
+ (1− c)2(α−β+1) if β > α+ 1

for some positive constant M
(i)
+ , i = 1, 2, 3, which depends on α and β but not

on c.

Proof Theorem 2 states that DE+ can be expressed in terms of the function

fα,β(r;µt) ≡ (1− r)2(α−β+1)Ψ
(

1
2 , α− β + 2, µt(1− r)2

)

;

we thus analyze its behavior as r approaches 1.
The following expansions for the Ψ–function, as z → 0, turn out to be

useful:

Ψ(a, b, z) =















































∞
∑

j=0

u
(1)
j zj + z1−b

∞
∑

j=0

v
(1)
j zj if b 6∈ Z

−b
∑

j=0

u
(2)
j zj + z1−b

∞
∑

j=0

v
(2)
j zj + log(z)z1−b

∞
∑

j=0

w
(2)
j zj if b ∈ Z

−
0

∞
∑

j=0

u
(3)
j zj +

b−1
∑

j=1

v
(3)
j z−j + log(z)

∞
∑

j=0

w
(3)
j zj if b ∈ Z

+

with Z
−
0 ≡ Z

−∪{0} and {u(ℓ)
j }j , {v(ℓ)j }j , {w(ℓ)

j }j some sequences of coefficients
whose explicit formulation can be found in [36].

Indeed, when β < α+1 only positive powers of (1−r) appear in fα,β(r;µt)

and hence its limit as r → 1 is the constant value v
(1)
0 (µt)β−α−1, except for

β = α in which case fα,β(r;µt) tends to v
(3)
1 /(µt).

When β = α + 1 the leading term in fα,β(r;µt) is instead w
(3)
0 log(µt(1 −

r)2).

In the case β > α+1 the leading term in fα,β(r;µt) is u
(1)
0 (1− r)2(α−β+1)

for β − α 6∈ N and u
(2)
0 (1− r)2(α−β+1) for β − α ∈ N. ⊓⊔
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When β < α+ 1 the bound for DE+ does not depend on c and therefore,
in order to maximize the strip of analyticity, the value c = 1 is used, exactly
as in [35].

With β = α + 1, observe that log(µt(1 − c)2) increases in absolute value
for c → 1 but anyway it happens in a very slow way. Therefore in this case we
can consider any value c < 1 and it is preferable to use c quite close to 1 in
order to keep N low (in our experiments we will use c = 0.92).

In the following we thus restrict our attention to the most interesting sit-
uation β > α + 1; in this case the error DE+ of Theorem 1 can be expressed
as

DE+ = O
(

(1− c)2(α−β+1)e−2πc/h
)

, h → 0. (11)

As c approaches 1, the term (1 − c)2(α−β+1) can become extremely large,
especially when β is much larger than α.

The error model described in [35] can thus fail when applied to the two–
parameters ML function (3), as experimentally observed in Section 2. What
we will do in the following is to devise an improved error model which does
not disregard the effects of the term (1 − c)2(α−β+1) on DE+. Therefore, the
optimal parameters will be derived after balancing DE+, as expressed in (11),
with the standard estimates

DE− = O
(

e−π2/(µth2)+2π/h
)

, TE = O
(

eµt(1−(hN)2)
)

provided in [35]. With the only aim of simplifying the algebraic derivations we
introduce the auxiliary real variable γ such that

γπc

h
=

2πc

h
− 2(α− β + 1) log(1− c); (12)

in this way the balancing of the error terms DE+, DE− and TE

−γπc

h
= − π2

µth2
+

2π

h
= µt

(

1− (hN)2
)

(13)

leads to the optimal parameters

h =

√

1 + γc(2 + γc)

N
, µ =

πN

(2 + γc)t
√

1 + γc(2 + γc)
(14)

giving an error EN = O
(

e−γπNc/
√

1+γc(2+γc)
)

(observe that when γ = 2 and
c = 1 the standard parameters (8) are obtained). Thus, an error proportional
to a given tolerance ε > 0 is obtained by selecting a number of nodes N given
by

N = −
√

1 + γc(2 + γc)

γπc
log ε. (15)

For practical use it is preferable to express, thanks to (15), the values of h
and µ in terms of the tolerance ε instead of N according to

h = − γπc

log ε
, µ =

− log ε

γc(2 + γc)t
. (16)
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From (12) and (16) we are able to express the relationship between γ and
c as

c = cα,β,ε(γ) = 1− ε
γ−2

2(α−β+1)γ . (17)

The γ is a free parameter introduced in (12) and the main task now is
to choose a suitable value for it. In order to guarantee that 0 < c < 1, since
β > α+1 and ε can be assumed 0 < ε < 1, any value 0 < γ < 2 can be chosen.

It can be convenient to choose γ ∈ (0, 2) with the aim of minimizing the
computational cost, that is, the nodes number N . At this purpose note that,
after replacing the above expression of c in (15) we are able to express N as a
function of γ, namely N = N(γ; ε, α, β).

The most natural way to choose γ is therefore by minimizing the function
N(γ; ε, α, β) with respect to γ constrained in (0, 2) and we will discuss this
aspect later on.

Remark 1 Very often, the case α = 1
2 and β = 1 is used in literature for testing

the application to ML functions of methods based on the numerical inversion
of the Laplace transform. It is arguable that this is a very special case which
could provide misleading results if not well–analyzed. Indeed, despite the fact
that β > α, and hence a singularity appears at the origin, one obtains excellent
results, usually better than those expected, without having to worry about the
location of the singularity (this phenomena is clearly observable in Figure 1).
Based on the above analysis it is possible to explain this favorable situation.
Indeed, since it is Ψ( 12 ,

3
2 , z) = 1/

√
z (see [36]), the bound

∫ ∞

−∞

∣

∣g(u+ ir)
∣

∣du ≤ M√
µt

holds not only asymptotically (for r → 1), as it in general happens in Theorem
3, but for any value of r. For this reason an excellent performance is achieved
regardless of the choice of a threshold c for the strip of analyticity when α = 1

2
and β = 1.

3.2 The case 1 < α < 2

When 1 < α < 2 a more involved analysis is necessary because of the presence
of the additional singularities s−α,λ = λ

1
α e−π/α and s+α,λ = λ

1
α eπ/α (actually,

the symmetry of the parabolic contour (7) with respect to the real axis slightly
simplifies our analysis since only one of these two singularities, say s+α,λ, needs
to be taken into account).

Two main goals need to be added in the procedure for the parameters
selection: 1) constraining the parabola to encompass the singularity s+α,λ; 2)

taking into account s+α,λ in determining the width c of the strip of analyticity
for the estimation of the error in Theorem 1.

For the first goal, it is elementary, after equating z(u) = s+α,λ, to show that

the parabola intersects s+α,λ when µ = λ
1
α

(

cos π
α + 1

)

/2 and hence, to assure



12 Roberto Garrappa, Marina Popolizio

that the parabola stays in the complex plane at the right of the singularities,
it is necessary to require that

µ > µ̄ =
λ

1
α

2

(

cos π
α + 1

)

. (18)

For the second goal we have to find the maximum value c such that the
parabola given by z(u + ir) does not touch the singularity s+α,λ for any 0 <

r < c. Also in this case it is easy to see that, after equating z(u+ ir) = s+α,λ,
we can determine

c < 1−

√

λ
1
α

2µ

(

cos π
α + 1

)

. (19)

Long and complicated calculations allow to translate this condition into a
minimization problem with nonlinear functional constraints. The solution of
a problem of this kind is very demanding in a method which aims to be sim-
ple and elegant. As we will observe later, it is not necessary to solve exactly
the minimization problem, since a perturbation with respect to the minimum
point will increase the number of grid–points of only few unities. Thus, to re-
duce the complexity we propose an alternative procedure which, although not
optimal, provides satisfactory enough results as we will see later by numerical
experiments.

A first value γ̄ is obtained by minimizing the function N(γ; ε, α, β) (when
β ≤ α + 1 it is simply γ̄ = 2) and a corresponding value c̄ is obtained thanks
to (17). Hence, using (16) the test (18) becomes

γ̄2tc2 + 2γ̄tc+
log ε

µ̄
< 0

and, if it is not fulfilled, a value c satisfying the above inequality, i.e.

c <
1

γ̄

(
√

1− log ε

µ̄t
− 1

)

will replace the previous value of c̄. This new value is accepted if it satisfies
(19), i.e.

(1− ϕγ̄2t)c2 − 2(1 + ϕγ̄t)c+ 1 > 0,

where for shortness we put ϕ = −λ
1
α

(

cos π
α +1

)

/(2 log ε), otherwise c̄ is again
replaced in a proper way. Finally, in order to preserve the same product γ̄c̄,
also γ is updated as γ = γ̄c̄/c.

4 Numerical experiments

To validate the results discussed, from a theoretical point of view, in the pre-
vious sections, we present some numerical experiments.

After selecting a given accuracy ε that we aim to reach, we perform the
computation of the generalized ML function (3) according to the procedure
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described in Section 3 and we show the resulting error and the number N of
grid points (this last information provides an idea on the computational cost
of the algorithm).

As reference solution we use the results provided by the Matlab mlf code
[27]. This is a very accurate and robust code allowing to evaluate the classical
ML function in any region of the complex plane at any prescribed tolerance;
anyway it is not always useful for practical computation since it works very
slowly for relatively small values of α and does not allow to evaluate the
function for matrix arguments. All the experiments are performed by using
Matlab ver. 7.7.

The results in Tables 1 and 2 show that the procedure succeeds in reaching
the requested tolerance ε = 10−8 with a number of grid–points rather small.
Similar results are provided in Tables 3 and 4 where a target accuracy of
ε = 10−11 has been requested.

α β Error N

0.2 0.2 4.95(−9) 9
0.2 1.0 1.49(−9) 9
0.2 1.2 2.06(−10) 10
0.2 2.2 4.12(−10) 10
0.2 3.2 2.82(−11) 11
0.2 4.2 1.24(−12) 12

α β Error N

0.5 0.5 2.63(−9) 9
0.5 1.0 4.24(−10) 9
0.5 1.5 2.11(−10) 10
0.5 2.5 4.63(−10) 10
0.5 3.5 3.16(−11) 11
0.5 4.5 1.37(−12) 12

α β Error N

0.8 0.8 1.09(−9) 9
0.8 1.0 4.98(−10) 9
0.8 1.8 2.03(−10) 10
0.8 2.8 4.84(−10) 10
0.8 3.8 3.37(−11) 11
0.8 4.8 1.47(−12) 12

Table 1 Errors for λ = 2.5 and t = 1.0 after requiring ε = 10−8.

α β Error N

1.2 1.0 8.72(−10) 10
1.2 1.2 7.98(−10) 10
1.2 2.2 1.61(−10) 10
1.2 3.2 4.89(−10) 10
1.2 4.2 3.49(−11) 11
1.2 5.2 1.54(−12) 12

α β Error N

1.5 1.0 8.01(−10) 11
1.5 1.5 6.38(−11) 11
1.5 2.5 2.20(−10) 11
1.5 3.5 6.05(−9) 10
1.5 4.5 3.34(−11) 11
1.5 5.5 1.47(−12) 12

α β Error N

1.8 1.0 2.09(−9) 11
1.8 1.8 1.69(−10) 11
1.8 2.8 1.03(−9) 11
1.8 3.8 7.48(−8) 10
1.8 4.8 3.10(−10) 11
1.8 5.8 1.18(−12) 12

Table 2 Errors for λ = 2.5 and t = 1.0 after requiring ε = 10−8.

We now present some results concerning the matrix case. Our main goal
is to confirm the high level accuracy one can reach by approximating the
generalized ML function by means of the integration on the parabolic contour
with optimally chosen parameters. We consider the problem of approximating
eα,β(t;A)v for a square matrix A and a vector v since, as discussed in the
Introduction, this is a very common problem in applications.

We consider three test matrices: the first one comes from the discretization
of the Laplace operator in 2 dimensions by means of centered finite differences;
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α β Error N

0.2 0.2 1.32(−12) 13
0.2 1.0 3.15(−13) 13
0.2 1.2 2.87(−13) 13
0.2 2.2 7.51(−14) 14
0.2 3.2 4.75(−15) 15
0.2 4.2 3.00(−15) 15

α β Error N

0.5 0.5 6.34(−13) 13
0.5 1.0 8.59(−14) 13
0.5 1.5 2.82(−13) 13
0.5 2.5 8.42(−14) 14
0.5 3.5 4.66(−15) 15
0.5 4.5 3.47(−15) 15

α β Error N

0.8 0.8 2.36(−13) 13
0.8 1.0 1.00(−13) 13
0.8 1.8 2.69(−13) 13
0.8 2.8 8.78(−14) 14
0.8 3.8 5.73(−15) 15
0.8 4.8 3.55(−15) 15

Table 3 Errors for λ = 2.5 and t = 1.0 after requiring ε = 10−11.

α β Error N

1.2 1.0 4.32(−14) 14
1.2 1.2 8.40(−14) 14
1.2 2.2 3.24(−14) 14
1.2 3.2 9.11(−14) 14
1.2 4.2 5.66(−15) 15
1.2 5.2 3.70(−15) 15

α β Error N

1.5 1.0 1.13(−12) 14
1.5 1.5 1.62(−12) 14
1.5 2.5 2.11(−13) 14
1.5 3.5 2.40(−12) 14
1.5 4.5 1.11(−14) 15
1.5 5.5 4.01(−15) 15

α β Error N

1.8 1.0 7.25(−13) 15
1.8 1.8 4.02(−13) 15
1.8 2.8 2.06(−13) 15
1.8 3.8 7.31(−11) 14
1.8 4.8 5.89(−14) 15
1.8 5.8 5.98(−15) 15

Table 4 Errors for λ = 2.5 and t = 1.0 after requiring ε = 10−11.

so it is a symmetric positive definite matrix. The second matrix we consider
comes from the discretization of the differential operator

D = − ∂2

∂x2
− ∂2

∂y2
+ 10x

∂

∂x
,

on the square (0, 1)× (0, 1), with homogeneous Dirichlet conditions. The third
matrix comes from the Matlab matrix collection and is the chebspec operator.
For the second case the vector v is taken as the (normalized) discretization of
the function v(x, y) = x(1− x)y(1− y), while in the other cases v is taken as
the normalized unit vector.

The first matrix is symmetric while the latter two are examples of non
symmetric matrices with real eigenvalues. We stress that the hypothesis on
the real nature of the spectrum is not always sufficient to ensure good results,
since high non–normality severely deteriorates the error analysis, as deeply
discussed in [14,34]. However we do not deepen this topic as the matrices we
consider do not fall into this case.

We compare the error of our approach with respect to a reference solution
obtained by combining the Matlab funm function and the mlf function [27]
carried out with a very high accuracy. In all cases the matrix dimension is
400: this dimension is small enough to solve the systems with a direct method
but, at the same time, it is large enough to start feeling the difficulties related
to the Schur factorization in the funm method. We consider α = 0.2, 0.8 and
β = α, α+1, α+2, α+3, for t = 1. The required accuracy is ε = 10−8. Similar
results have been obtained for several other values of α, of the tolerance and
of the matrix dimensions; for this reason we omitted their presentation.
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α β Matrix 1 Matrix 2 Matrix 3 N

0.2 0.2 5.45(−10) 9.23(−11) 3.02(−10) 9
1.2 8.03(−11) 2.15(−10) 1.28(−11) 9
2.2 1.17(−10) 2.16(−10) 2.57(−11) 10
3.2 6.94(−12) 1.06(−10) 1.80(−12) 11

0.8 0.8 1.11(−10) 5.04(−11) 6.03(−11) 9
1.8 1.04(−09) 2.17(−10) 1.28(−11) 10
2.8 5.98(−10) 2.16(−10) 3.04(−11) 10
3.8 2.27(−11) 1.05(−10) 2.12(−12) 11

Table 5 Errors for the matrix examples of dimension 400 after requiring ε = 10−8; t = 1.0.

Results in Table 5 confirm those obtained for the scalar case but they
emphasize the smartness of the approach: it is indeed striking that by simply
solving a dozen systems a very high accuracy is reached.

In analogy with the scalar case, we notice that in spite of the required
accuracy 10−8 we often reach a higher one. However this does not represent
a serious issue since this extra accuracy comes with a value N which is very
small.

As in the scalar case we notice that the number N increases as β gets larger
than α.

These results are very promising and they are encouraging also for appli-
cations of much larger dimensions. In this case the only difference would be
the solver for the linear systems, since iterative techniques would be probably
mandatory. Moreover, the use of preconditioning could help in the case of slow
convergence, even though this subject for complex systems is still an active
research area and we just cite [1,2].

5 Computational efficiency

In this section we discuss some issues related to the efficiency of the procedure
investigated in this paper.

5.1 Minimization of the function N(γ; ε, α, β)

The task of minimizing the function N(γ; ε, α, β), under the constraint 0 <
γ < 2, may appear to be particularly challenging. In our experiments we
have performed it by means of the Matlab function fminbnd which uses an
algorithm based on the golden section search with parabolic interpolation.

As shown in Figure 2, the function N(γ; ε, α, β) features a flat slope in
the neighborhood of its minimum; therefore, it is not necessary to locate the
point of minimum with an extremely high accuracy. We have experienced that
satisfactory results are obtained by using a relatively small tolerance of 10−4

in fminbnd; this choice involves less than a dozen of evaluations of N(γ; ε, α, β)
and the whole process turns out to be computationally cheap.
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Fig. 2 Behavior of N(γ; ε, α, β) with respect to γ for some values of ε, α and β.

Frequently the function eα,β(t;λ) is evaluated with β = α+k for few k ∈ N

and several values of t, as discussed in the next subsection. Since in this case
the function N(γ; ε, α, β) does not depend on α, β and t but just on k, the
point of minimum could be evaluated once for several couples (ε, k) and the
resulting values N tabled and reused for each value of t without repeatedly
performing the minimization of N(γ; ε, α, β).

In the end, the evaluation of the minimum of N(γ; ε, α, β) does not seem
to represent an overshadowing portion of the whole computation.

5.2 Computation of eα,β(t;λ) for t ∈ [t0, t1]

Important applications require the simultaneous computation of eα,β(t;λ) for
several t′s all belonging to a given interval [t0, t1]. This requirement is com-
mon, for example, when dealing with the GETD methods [5] and it actually
represents a crucial point of these techniques. The procedure described above,
based on a parabola, is strictly related to the value t. However, if we look at
the error terms in (13), we see that the term t appears only in DE− and TE.
More precisely, DE− decreases when t gets large, while TE has the opposite
behavior. Thus, to maintain all error terms small in [t0, t1], by following the
ideas in [35], we could replace (13) with

2(α− β + 1) log(1− c)− 2πc

h
= − π2

µt1h2
+

2π

h
= µt0

(

1− (hN)2
)

.

The analysis for the parabola parameters can be done as before, leading to

h =

√

1 + γc̄R(2 + γc̄)

N
, µ =

πN

(2 + γc̄)t1
√

1 + γc̄R(2 + γc̄)

for R = t1/t0, which trivially reduces to the previous case for a single t, by
choosing t = t0 = t1.
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5.3 Optimality of the error model

As shown by the numerical experiments, the error model described in Section
3 succeeds to evaluate our generalized ML function with an accuracy under
any fixed tolerance. Anyway, from the results presented one could get the
feeling that the procedure is not altogether optimal; indeed, the errors actually
obtained are sometimes smaller than requested; usually two or three digits of
extra precision are provided. Obviously this does not constitute a problem
for the reliability of the results; anyway, the extra precision could mean that
the algorithm determines a number N of grid–points greater than strictly
necessary.

We can therefore argue the existence of a set of parameters allowing to
reach the target accuracy with a smaller number of grid–points and hence
saving some computational cost. To closely examine this aspect we observe

Figure 3 where the error log10
∣

∣eα,β(t;λ) − e
[N ]
α,β(t;λ)

∣

∣ obtained for a large set
of parameters h and λ and with a fixed N = 12 has been reported; here the
values α = 0.5, β = 4.5, t = 1.0 and λ = 1.5 have been used. The black cross
locates the couple of parameters (µ, h) as determined in [35] by (8). As already
observed, this selection of parameters provides a poor quality approximation
when β is fairly larger than α as in the example under examination. The white
line denotes the set of (µ, h) obtained from (14) by moving the product γc in
the interval [0, 2]; obviously, when γc = 2, h and µ are the same parameters
estimated by (8); thus, the white line starts just in the position of the black
cross. As the product γc decreases from the value 2, the corresponding param-
eters h and µ generate errors of smaller size. The path of this white line is very
close to the area with the smallest errors, thus indicating that the selection
given by (14) is in the right direction for obtaining the finest results and vali-
dating our error model. Anyway, the procedure described in Section 3 selects
a small range of values indicated by the gray segment laying upon the white
line (to obtain this range we have used the procedure described in Section 3
for several values of ε and selected the entries giving the value N = 12).

As expected, our procedure improves the results in [35] for the generalized
ML function but does not select the best set of parameters in order to minimize
the error with a given number of grid–points: from Figure 3 we deduce that it
is possible to obtain a smaller error, with the same number N = 12 of grid–
points if only we were able to select some other couple (h, µ) of the parameters
by moving on the same white line.

The source for this slight inaccuracy is probably the fact that the error
estimates are asymptotic and hold as N → ∞. Indeed, we have reproduced
the analysis of Figure 3 for larger values of N and we found results more
adherent to the theoretical findings. We omitted to present these results, as
the plots corresponding to larger values of N are harder to be read since the
errors become very close to the machine precision.
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∣
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∣
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for λ = 1.5, t = 1.0 and N = 12.

6 Concluding remarks

The results presented in this paper confirm the effectiveness of the approach
described in [35] when employed for evaluating the generalized ML function
(3). Moreover, the analysis performed in Section 3, validated by numerical
experiments, allows to tune in a fine way the parameters of the method in
order to evaluate eα,β(t;λ) under any target accuracy for any value of α and
β.

Due to its modest computational cost the method appears to be suitable
also for the computation of the eα,β function with matrix arguments, as in the
generalization of exponential integrators to FDEs, a topic which is recently
gaining an increasing attention.

Although parabolic contours are particularly attracting for the simplicity
of their geometry and the elegance of the involved analysis, the sectorial na-
ture of the inverse Laplace transform of the Mittag–Leffler function (as stated
in Proposition 1) could be better exploited by integrating on contours of hy-
perbolic type, thus allowing the approximation of the ML function also for
more general operators. We think that this issue deserves a deeper investiga-
tion which is beyond the scope of the present paper and will be the subject
for future research.
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16. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform
of certain holomorphic mappings. Appl. Numer. Math. 51(2-3), 289–303 (2004)
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