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Abstract

Measurement invariance (MI) is required for validly comparing latent constructs mea-

sured by multiple ordinal self-report items. Non-invariances may occur when disregarding

(group differences in) an acquiescence response style (ARS; an agreeing tendency regard-

less of item content). If non-invariance results solely from neglecting ARS, one should

not worry about scale inequivalences but model the ARS instead. In a simulation study,

we investigated the effect of ARS on MI testing, both when including ARS as a factor

in the measurement model or not. For (semi-) balanced scales, disregarding a large ARS

resulted in non-invariance already at the configural level. This was resolved by including

an ARS factor for all groups. For unbalanced scales, disregarding ARS did not affect MI

testing, and including an ARS factor often resulted in non-convergence. Implications and

recommendations for applied research are discussed.

Keywords: measurement invariance (MI), multiple group categorical confirmatory factor

analysis (MG-CCFA), acquiescence response style (ARS), psychometrics.
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Does acquiescence disagree with measurement invariance testing?

1 Introduction

Social and behavioral scientists are often interested in assessing whether groups of individ-

uals differ regarding latent constructs (e.g., extraversion). These unobservable constructs

are often measured by self-report scales. Commonly, these scales consist of questionnaire

items, where, for each item, respondents rate their level of agreement by selecting one of

a few ordered response options on a Likert scale (e.g., “disagree ”, “neutral ”, “agree ”).

To validly draw conclusions about group differences on latent constructs, scales must

function equivalently across groups. Measurement invariance (MI) testing evaluates the

tenability of this hypothesis by assessing whether the measurement model (MM) of the

psychological construct is equivalent across groups. As an example of an inequivalence,

one may think of differences in item interpretations that may lead one group to sys-

tematically pick lower/higher response options for some items, which can result in un-

der/overestimation of sum-scores (Jeong & Lee, 2019), item means (Jones & Gallo, 2002),

and regression parameters in structural equation models (Guenole & Brown, 2014). Thus,

testing for MI is an essential precursor to investigating group differences (Borsboom, 2006;

Meredith & Teresi, 2006) to avoid building on latent construct differences that are purely

due to measurement discrepancies and thus invalid or “biased”.

Measurement invariance is often tested with a latent variable approach, which models

the relationship between unobserved psychological constructs (i.e., latent variables) and

observable behaviors (i.e., items). Within the latent variable modeling framework, multi-

ple group categorical confirmatory factor analysis (MG-CCFA) and multiple group item

response theory (MG-IRT) are the most popular approaches to evaluate MI for models

with ordinal data (i.e., items with too few response categories to treat them as contin-

uous). Note that while equivalences can be drawn between MG-CCFA and MG-IRT

models (Chang, Hsu, & Tsai, 2017), some differences remain in the way MI is tested

within each of these two approaches (D’Urso, De Roover, Vermunt, & Tijmstra, 2021).

For instance, MG-CCFA primarily focuses on assessing MI at the scale level (i.e., for

the complete set of items measuring a construct), whereas MG-IRT traditionally tests
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MI for each item separately. In this paper, we focus on a MG-CCFA-based MI testing

approach (i.e., scale level) since it is more commonly used in practice (Putnick & Born-

stein, 2016). Specifically, in a MG-CCFA-based MI testing approach, different levels of

MI are assessed in a step-wise procedure. For each step, increasingly restrictive models

are estimated by imposing equality constraints on specific MM parameters. Then, the

fit of the more constrained model to the data is compared to that of the less constrained

one to evaluate whether the equality constraints worsen the model fit significantly, thus

indicating non-invariance of (at least some of) the constrained MM parameters.

Apart from measurement model differences or “non-invariances” such as differential item

interpretations, bias in latent variable comparisons may also arise when responses to

self-report item rating scales are affected by response tendencies or response styles in

some groups but not in others (Cheung & Rensvold, 2000). Acquiescence, or agreeing,

response style (ARS) is a well-known one, which represents a tendency to agree with

items regardless of their content (Paulhus, 1991). Interestingly, various studies have

indicated that different groups of individuals may have a more or less pronounced ARS

depending on their education (Meisenberg & Williams, 2008), age (Weijters, Geuens,

& Schillewaert, 2010), gender (Austin, Deary, & Egan, 2006), length of employment

(Johnson, Kulesa, Cho, & Shavitt, 2005) or culture (Bachman & O’Malley, 1984; Marin,

Gamba, & Marin, 1992). ARS can inflate observed means (Van Vaerenbergh & Thomas,

2013) and affect the measurement model by introducing an additional factor (Billiet

& McClendon, 2000; D’Urso, Tijmstra, Vermunt, & De Roover, 2022) or changing the

strength of the relationships between items and factors (i.e., factor loadings; Ferrando

& Lorenzo-Seva, 2010). To control for ARS, previous research indicated that including

ARS as an additional factor in the MM (Billiet & McClendon, 2000) proved to effectively

reduce bias in MM parameters recovery as well as estimated factor scores (Savalei & Falk,

2014).

Though it is confirmed that not taking ARS into account affects the MM in single group

studies, extensive investigations about the impact of disregarding ARS on MI testing

are currently lacking. Existing studies in the literature have either focused on assessing
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the effect of other RSs on MI, such as extreme response style (ERS; Liu, Harbaugh,

Harring, & Hancock, 2017) and non-effortful responding (NER; Arias, Garrido, Jenaro,

Martínez-Molina, & Arias, 2020; Rios, 2021), or on evaluating the impact of including

an additional ARS factor when assessing MI using empirical data (Welkenhuysen-Gybels,

Billiet, & Cambré, 2003; Aichholzer et al., 2015). In case of empirical data, the "true" MM

is unknown, however. Identifying in which conditions and to what extent ARS distorts

measurement invariance conclusions may give us clues on how to correct for bias in latent

variable score differences that is due to differential response tendencies across groups. For

instance, when the influence of ARS is disregarded, researchers may wrongly conclude that

there is non-invariance. Taking ARS into account when testing for MI likely facilitates

distinguishing non-invariance of the scale itself from (amendable) non-invariance due to

disregarding ARS. Indeed, if non-invariance results from not taking ARS into account,

one needs to correct for the ARS instead of worrying about the scale being inequivalent

across groups. Also, the lack of systematic investigations regarding the effect of ARS on

MI testing under various conditions leaves the following questions unanswered. Firstly,

ARS is often viewed as a weak factor (i.e., with all items having weak to moderate loadings

on this factor; Ferrando, Condon, & Chico, 2004; Danner, Aichholzer, & Rammstedt,

2015), which may be insufficient to result in significant violations of MI (i.e., rejection

of MI). Secondly, measurement non-invariance may be more easily detected in the case

of balanced scales (i.e., scales where content factors are measured by an equal amount

of positively and negatively worded items), since these allow distinguishing the ARS

from the latent variables one wants to measure. The remainder of this paper proceeds

as follows: In Section 2, we elaborate on MG-CCFA, MI testing, and how it may be

affected by ARS. Then, in Section 3, we present a simulation study that evaluates the

effect of ARS on MI both when (i) ARS is disregarded, and (ii) ARS is taken into account

by including ARS as an additional factor in the MM. Finally, in Section 4, we discuss

recommendations based on the simulation study results, limitations of our investigation,

and potential future research directions.
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2 Measurement invariance testing and the potential effects of ARS

In this section, we introduce MG-CCFA, describe the standard MI testing framework

including the identification constraints proposed by Wu and Estabrook (2016) to assess

MI with ordinal data, and discuss the potential effects of ARS on MI testing.

2.1 Multiple group categorical confirmatory factor analysis

Consider having data composed of J items for a group of N subjects, and that a grouping

variable (e.g., nationality) exists to divide the N subjects into G groups. Then, let xj be

the polytomously scored response on item j that can take on C possible values with c

= {0,1,2,...,C -1}. MG-CCFA assumes that each of the C possible observed responses is

obtained from a discretization of a continuous unobserved response variable x∗
j through

a set of threshold parameters τ
(g)
j,c , which indicate the cut-off point for the response cate-

gories (e.g., division between scoring a 1 or a 2) for group g. Note that the first and last

thresholds are defined as τ
(g)
j,0 = -∞ and τ

(g)
j,C = +∞, respectively. Then, formally

xj = c, if τ
(g)
j,c < x∗

j < τ
(g)
j,c+1 c = 0, 1, 2, ..., C − 1. (1)

A factor-analytical model for a vector of latent response variables x∗ = (x∗
1, x∗

2,...,x∗
J) is

obtained as:

x∗ = ν(g) + Λ(g)η(g) + ϵ(g). (2)

where ν(g) is a J-dimensional vector of latent intercepts (i.e., intercepts of the unobserved

response variables in x∗), Λ(g) is a J×Q matrix of factor loadings, η(g) is a Q-dimensional

vector of scores on the Q factors, ϵ(g) is a J-dimensional vector of residuals. Note that

the latent intercepts ν
(g)
j , thresholds τ

(g)
j,c and loadings λ

(g)
j in Λ(g) are group specific, and

that, within each group g, both the factors η and the item-specific residual components

ϵ are mutually independent and normally distributed, with:

η(g) ∼ MV N(κ(g), Φ(g)), and ϵ(g) ∼ MV N(0, Ψ(g)). (3)
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where κ(g) are the group-specific factor means, Φ(g) the group-specific factors variance-

covariance matrix, and Ψ(g) is a diagonal matrix containing the group-specific unique

variances of the items. Further, within each group, the model-implied mean vector µ and

covariance matrix Σ is obtained as:

µ(g) = ν(g) + Λ(g)κ(g), Σ(g) = Λ(g)Φ(g)Λ(g) + Ψ(g). (4)

2.2 Measurement invariance testing procedure

In MG-CCFA, MI is commonly evaluated by testing, for all items, equality of a set

of MM parameters (e.g., loadings) across groups in a step-wise fashion. The starting

point is to identify the MG-CCFA model, which requires: (i) setting the scale for the

latent variable η, (ii) setting the scale for the unobserved response variable x∗
j , and (iii)

aligning the scale of the latent variable η across groups. Note that the latter is necessary

to make the groups comparable. Then, in addition to the identification constraints,

additional equivalence constraints are imposed on MM parameters (e.g., thresholds) in

a step-wise fashion to evaluate their invariance. Therefore, a new, more constrained

model is estimated for each step, and its fit to the data is evaluated to conclude whether

these new constraints significantly worsen the fit. Below, we first discuss the main steps

and identification constraints to test MI for ordinal data following the recommendations

by Wu and Estabrook (2016), summarized in Table 1, and then elaborate on standard

goodness-of-fit criteria that are used to draw MI conclusions.

2.2.1 Configural invariance. Configural invariance is usually the first invariance

level tested, where the goal is to test the equivalence of the number of factors and of the

loadings pattern (i.e., which factors are measured by which items) across groups. In this

step, following Wu and Estabrook (2016), the baseline model is identified by fixing, for

all groups, the latent intercepts ν to 0 and variances (i.e., diagonal elements of Σ) to

1, which is commonly known as the delta parameterization (Muthén & Muthén, 2009).

Similarly, the latent factor means κ(g) and variances ϕ(g) (i.e., diagonal elements of Φ(g))

are also fixed to 0 and 1, respectively.
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After specifying and estimating this factor model for all groups, conclusions on configural

invariance are drawn following the examination of goodness-of-fit measures. If supported,

configural equivalence indicates that the shape of the model (i.e., number of factors and

pattern of zero and non-zero loadings) is the same across groups.

2.2.2 Thresholds invariance. If configural invariance holds, the invariance of thresh-

olds is tested next. Here, the baseline model is identified by setting, for all groups, the

latent content factor means κ(g) and variances ϕ(g) to 0 and 1, respectively. Addition-

ally, for the reference group r, the vector of latent intercepts ν(r) and latent response

variable variances in Σ(r) are set to 0 and 1, respectively. On top of these identification

constraints, thresholds τj,c are equated across groups and, after model estimation, the

hypothesis of thresholds invariance is evaluated by evaluating the change in model fit

between the configural model and the thresholds invariant model.

2.2.3 Loadings invariance. If thresholds invariance holds, invariance of loadings is

assessed. To identify the baseline model, for all groups, the latent content factor means

κ(g) are set to 0, while, for the reference group r, the factor variances ϕ(r) are set to 1, the

latent intercepts ν(r) to 0 and variances in Σ(r) to 1. In addition to these identification

constraints, both thresholds τj,c and loadings Λ are constrained to be equal across groups.

Again, the model is estimated and the hypothesis of loadings invariance is evaluated by

assessing the change in model fit between the thresholds invariant model and the loadings

invariant model. Note that, if the hypothesis of thresholds and loadings invariance holds,

factor variances can be validly compared across groups.

2.2.4 Intercepts invariance. Finally, if loadings invariance holds, invariance of la-

tent intercepts is assessed. To identify the baseline model, for the reference group, the

latent content factor means κ(r) and variances ϕ(r) are set to 0 and 1, respectively. Ad-

ditionally, building on the previous equality constraints on thresholds and loadings, the

latent intercepts ν are set to 0 and equated across groups. To assess the hypothesis of

latent intercepts invariance, the model is estimated and its fit is compared to the loadings

invariant model. Following non-rejection of latent intercepts invariance, the factor means

can be validly compared across groups.
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2.2.5 Criteria to assess model fit. Goodness-of-fit indices are commonly used as

criteria to assess the tenability of MI hypotheses. This commonly entails evaluating the

fit of the baseline model (i.e., configural model) and then the change in fit for the more

restrictive models. To aid conclusions on whether the (change in) fit allows to conclude

that a certain level of invariance (e.g., thresholds) holds, various criteria are inspected,

each with its own proposed cut-off value determined via extensive simulation studies.

Classically, only the chi-squared χ2 test was used as a criterion to assess the significance

of change for two nested models (Putnick & Bornstein, 2016) but multiple studies have

shown that relying solely on this statistic is sub-optimal due to it being extremely sensitive

to negligible MM differences in large samples (Bentler, 1990; French & Finch, 2006;

French & Finch, 2008). Therefore, in practice, MI decisions are based on multiple criteria

(Putnick & Bornstein, 2016), and, among them, two of the most commonly used are the

root mean square error of approximation (RMSEA; Browne, Cudeck, et al., 1993) and

the comparative fit index (CFI; Bentler, 1990). Configural invariance is concluded if

RMSEA ≤ .06 and/or CFI is ≥ .95 (Brown, 2015). For the more restrictive models, the

change in fit (e.g., ∆RMSEA) is assessed to conclude whether the additional constraints

worsen the fit significantly. Cheung and Rensvold (2002) suggested to conclude non-

invariance when ∆CFI ≤ -.01, while Chen (2007) recommended ∆RMSEA ≥ .01. Note

that various criteria have been suggested for different fit measures, and we refer the reader

to Svetina, Rutkowski, and Rutkowski (2020) for an overview. Also, while recent research

has indicated that model-specific cut-off values may be generally preferred to evaluate

model fit (McNeish & Wolf, 2021), there are no available guidelines for calculating these

cut-offs for MI testing in ordered-categorical data.

2.3 From single group to multiple groups: the potential effects of (not) cor-

recting for ARS.

In the literature, the bias resulting from disregarding ARS for single-group analyses is

well-known but it is not yet clear to what extent it may generalize to multiple-group

analyses, such as MG-CCFA. Response tendencies, such as ARS, represent sources of
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systematic response bias that may appear as violations of measurement invariance (i.e.,

measurement non-invariance). When ARS affects individuals’ responses in one of the

groups, not taking into account this tendency towards acquiescence likely results in sys-

tematic differences in the responses across groups that are not purely due to the intended-

to-be-measured (i.e., content) factors and, eventually, may lead to the rejection of mea-

surement invariance. For instance, in single group studies, one well-known consequence of

not accounting for ARS is that it may result in an additional factor (Billiet & McClendon,

2000; D’Urso et al., 2022). Therefore, it is reasonable to expect that researchers unaware

of the (potential) influence of ARS would disregard this and reject configural invariance,

which would lead them to conclude that the content factor(s) cannot be validly com-

pared across groups since they (seem to) qualitatively differ. Additionally, single group

studies showed that ARS can bias item (latent) intercepts (Cheung & Rensvold, 2000),

and factor loadings (Ferrando & Lorenzo-Seva, 2010; Savalei & Falk, 2014; D’Urso et al.,

2022). Again, neglecting this agreeing response tendency may result in non-equivalence

(i.e., non-invariance) of intercepts and/or loadings, and lead researchers to conclude that

the MM is non-invariant and, potentially, to allow some parameters to freely vary across

groups (i.e., partial invariance) to reach an acceptable level of invariance before investi-

gating differences in the content factor(s).

Another important aspect to consider is that the performance of psychometric approaches

developed to correct for ARS has not been thoroughly investigated in the context of

MI testing. Savalei and Falk (2014) have discussed some of the main factor-analytical

approaches to correct for ARS, their underlying assumptions and compared their per-

formance for single group analyses through a simulation study. The results have shown

that the classical CFA-based approach (Billiet & McClendon, 2000), where ARS is spec-

ified as an additional factor orthogonal to the content factor(s) with all loadings set to 1

(i.e., the influence of ARS does not vary across items) outperformed the remaining ones1,

1The other approaches discussed by Savalei and Falk (2014) are the Chan and Bentler (1993) approach

and the EFA-based approach (Ferrando et al., 2004). In the former, data must be first mean-centered

within person (i.e., ipsatized). Then, a residual structure must be specified by adding a linear combination
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even when some of its main assumptions (e.g., equal ARS loadings) are violated. Thus,

based on the authors’ results, recommendations, and its straightforward implementation

to MG-CCFA, we will mainly focus on this CFA-based approach in the remainder of

this paper. Specifically, following this CFA-based approach, an additional ARS factor

is added to the MM in all groups and all factor loadings on this additional factor are

fixed to 1, which allows to freely estimate the ARS factor variance for all groups. Then,

between-group differences in the amount of ARS are captured by differences in the ARS

factor means, and within-group differences in the strength of ARS are captured by the

ARS factor variances.

3 Simulation study

To assess the effect of ARS on MI testing, both when including ARS as an additional

factor in the measurement model (MM) and when not including it, we conducted a

simulation study where individual responses in one group were affected by an ARS. Our

goal is to solely focus on whether the bias introduced by disregarding ARS results in

measurement non-invariance, and whether this is rectified by including an additional

ARS factor in the MM for all groups. Therefore, we did not simulate other sources of

non-invariance (e.g., differences in factor loadings). Furthermore, a null scenario was

simulated, where invariance holds and ARS is not at play for both groups, which only

served as a comparison for evaluating the performance of MG-CCFA approaches. Note

that we report these latter results in the Appendix (Tables A1 - A3).

The following 5 factors were manipulated:

• The number of subjects N within each group at 2 levels: 250, 1000;

• The type of scale at 3 levels: balanced, semi-balanced and unbalanced;

• The number of content factors Q at 2 levels: 1, 2;

of the original residual components for each of the ipsatized variables. In the latter, an additional factor

is first extracted, and then a rotation is performed to a partially specified target, which allows to estimate

both content and ARS factor loadings.
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• The scale length (i.e., total number of items) at 2 levels: 12, 24;

• The strength of the ARS factor at 2 levels: medium and large.

For the minimum sample size within each group, we followed the recommendations from

previous research, which indicated that for obtaining precise factor loading estimates a

sample size of 250 is sufficient when item communalities are moderate (Fabrigar, We-

gener, MacCallum, & Strahan, 1999; MacCallum, Widaman, Zhang, & Hong, 1999).

Furthermore, we varied (a) the number of factors to simulate both unidimensional and

multidimensional scales, (b) the total number of items to simulate scales that measure

the psychological construct to a varying degree of accuracy, and (c) the type of scale (e.g.,

semi-balanced) to emulate scales that allow disentangling the content factor(s) from the

ARS factor to a different extent (Savalei & Falk, 2014; de la Fuente & Abad, 2020).

In terms of the performance of MI testing, we hypothesize the following: violations of MI

(i.e., non-invariance) will likely be detected when ARS is large and ignored (i.e., not in-

cluded as an additional factor for both groups). Specifically, we expect that, for balanced

and semi-balanced scales, disregarding a large ARS will result in non-invariance at all

levels. For unbalanced scales, violations of MI may not be detected since ARS will likely

affect structural rather than measurement parameters, like the covariance among content

factors in case of a multidimensional scale (D’Urso et al., 2022), or factor variances, espe-

cially in the conditions with unidimensional scales (Ferrando & Lorenzo-Seva, 2010). In

addition, we expect that including the additional ARS factor for both groups will allow

for MI to be established in the case of balanced and semi-balanced scales. Finally, in

the conditions with unbalanced scales, we hypothesize that including an additional ARS

may result in model estimation issues since ARS cannot be easily disentangled from the

content factor(s).

A full-factorial design was used with 2 (number of subjects) x 3 (type of scale) x 2 (number

of content factors) x 2 (number of items) x 2 (strength of ARS) = 48 conditions. For

each condition, 100 replications were generated, resulting in 4,800 data sets.
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3.1 Methods

3.1.1 Data generation. Data were generated from a factor model with one or two

factors and two groups, and the model parameters are displayed in Table 2. To simulate

balanced scales, for the content factor(s), half of the loadings were positive (i.e., indica-

tive items) and the other half were negative (i.e., contra-indicative items), whereas 33%

and none of the loadings were negative for semi-balanced scales and unbalanced scales,

respectively. Note that, for both groups, 0 and 1 were used as generating values for the

content factor(s) means and variances, respectively. As displayed in Table 2, we simulated

ordinal items with 5 categories and the distance between the first threshold of the easiest

and the most difficult item was 2 standard deviations. To avoid estimation issues (e.g.,

non-convergence), we only retained data sets where each category for each item contains

at least a single observation. In the rare cases where, for a specific item, a category was

not observed among the generated scores, we repeated the data generation process until

all response categories were observed.

We sampled the ARS factor scores from a right-censored normal distribution to match

an agreeing tendency closely. Employing this distribution, we only simulated subjects

who did or did not show an ARS (i.e., have a positive or zero factor score on the ARS

dimension) without allowing for scores to represent a disagreeing tendency (i.e., a negative

factor score). For simulating the effect of ARS on the item responses, we used loading

values of .3 and .6 for the medium and large ARS scenario, respectively2. Note that, for

the reference group, the ARS factor scores were simulated to be 0 for all subjects (i.e.,

ARS did not affect the item responses).

2The variance of a right-censored normal distribution is smaller than the identification restrictions

imposed to set a scale for the variance of the ARS factor (i.e., fixing all its loadings to 1). In Table 2

we report the value of the original loadings on the ARS factor multiplied by the standard deviation of

a right-censored normal distribution, which is ≈.583. This results in loadings on the ARS factor of .175

and .350 for medium and large ARS conditions, respectively. Note that these values match those used

in previous studies to simulate ARS factor loadings that can be realistically expected in well-designed

measures (Ferrando & Lorenzo-Seva, 2010; Danner et al., 2015).
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3.1.2 Data Analysis. To simulate the effect of ignoring or including ARS when

testing for MI, we considered two different MMs - and, thus, performed two different

MG-CCFA analyses - for each replication, that is, with or without an additional ARS

factor. For the latter, we used the standard CFA-based approach proposed by Billiet

and McClendon (2000), where an additional ARS factor is specified with all loading on

this factor fixed to 1. Note that no additional constraints are imposed on the content

factor loadings nor on the variance of the ARS factor under this model. To identify the

MG-CCFA models, we followed the Wu and Estabrook (2016) identification constraints

for MI testing described in Section 2 for both the model with and without the ARS factor.

All MG-CCFA models were estimated using diagonally weighted least squares (DWLS),

but the full weight matrix was used to compute the mean-and-variance-adjusted test

statistics (default in lavaan; Rosseel, 2012). DWLS is a two-step estimation procedure,

where the thresholds and polychoric correlation matrices for the groups are estimated in

the first step, and, in the second step, the remaining parameters are estimated using the

polychoric correlation matrices from the previous step.

3.1.3 Outcome measures. After fitting the models, we evaluated both the conver-

gence rate (CR) and the performance of different model fit criteria. For the latter, we

recorded the results obtained from the χ2 test, the root mean square error of approx-

imation (RMSEA; Browne et al., 1993) and the comparative fit index (CFI; Bentler,

1990) and we averaged across replications in a cell of the factorial design. In empirical

practice, decisions about MI results are often dichotomous (i.e., invariant or not). Thus,

we also calculated the false positive rate (FPR) for the different goodness-of-fit criteria,

which is here defined as flagging the scale as non-invariant3. Specifically, configural non-

invariance was concluded if: χ2 test was significant (α = 0.05), RMSEA > .06, CFI <

.95. In addition, since common guidelines suggest to base invariance decisions on dif-

ferent goodness-of-fit indices, we created a combined criterion and concluded configural

3Note that, outside of the null condition, this is not formally a FPR. In fact, only when considering

the ARS factor can we really say that the scale is invariant, whereas disregarding it results in between

the scales.
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invariance if both a significant χ2-difference test and at least one between RMSEA < .06

and CFI > .95 was observed (Putnick & Bornstein, 2016). We compared the fit between

the configural and the thresholds invariant models for thresholds invariance, between the

threshold and loadings invariant models for loadings invariance, and between loadings

and intercepts invariant models for intercepts invariance. For all these comparisons, non-

invariance was concluded if: χ2-difference test was significant (α = 0.05), ∆RMSEA >

.01, ∆CFI < -.01. Finally, for the combined criterion, non-invariance was concluded if

we observed both a significant χ2-difference test and at least one between ∆RMSEA >

.01 and ∆CFI < -.01. Since we deem the results on the values of or differences in the

fit indices to be more informative than these dichotomized results, we only display the

latter in the Appendix (Tables A4 - A7).

3.1.4 Data simulation, softwares and packages. The data were simulated and

analyzed using R (R Core Team, 2013). Specifically, for estimating MG-CCFA models

and obtaining fit measures, we used the R package lavaan (Rosseel, 2012), while for

specifying the MG-CCFA models we used the semTools package (Jorgensen et al., 2016).

3.2 Results

3.2.1 Without ARS factor.

3.2.1.1 Convergence. In the appendix, table ?? displays the convergence results

when ARS is not included as an additional factor (i.e., disregarded). The convergence rate

was always 100% across conditions for all MG-CCFA models and for both unidimensional

and multidimensional scales. Therefore, disregarding the influence of ARS when assessing

different levels of MI does not seem to affect model convergence.

3.2.1.2 MI testing. The average fit measures results obtained when evaluating MI

for unidimensional and multidimensional scales are displayed in Table 3 to 6, respectively.

The results indicate that the ARS strength and the type of scale were the most relevant

design factors affecting the MI testing results. In fact, for both unidimensional and

multidimensional scales, ignoring the influence of ARS deteriorated models fit at all MI

levels, and especially in the conditions with large ARS and balanced or semi-balanced

scales. In these conditions, the RMSEA was often > .10 and the CFI < .90, which, in



ACQUIESCENCE AND MEASUREMENT INVARIANCE 16

empirical practice, are commonly interpreted as “unacceptable” fit values. Note that,

when the influence of ARS was small (i.e., λARS = .175), model fit was often good (i.e.,

RMSEA <.06 and CFI > .95), which is line with previous research indicating that when

loadings on the ARS factor are small (i.e., ≈ .1) ignoring ARS does not seem to strongly

affect the MM parameters recovery (Savalei & Falk, 2014). The fit measure values were

good (i.e., RMSEA < .06 and CFI > .95) in the conditions with unbalanced scales

regardless of the strength of the ARS factor and the MI level tested. Again, these results

partially overlap with previous studies, indicating that the ARS factor gets absorbed

by the content factors for unbalanced scales. Therefore, for unbalanced scales, one may

conclude that MI holds even when one group has a strong agreeing tendency. Bear in

mind that, for these scales, the bias introduced by an ARS does not seem to affect MI

testing results but it may affect factor scores or factor covariances (e.g., see Savalei &

Falk, 2014) for some groups, and thus (potentially) substantive conclusions. Concerning

the dichotomized results (Tables A4 - A5 in the Appendix), almost all the considered

criteria resulted in a close-to-one FPR when testing configural and intercepts invariance

for balanced and semi-balanced scale, whereas for unbalanced scales the FPR was often

close to 0.

3.2.2 With ARS factor.

3.2.2.1 Convergence. Table 7 displays the model convergence results when includ-

ing an additional ARS factor in the MM. Convergence was strongly affected by the type

of scale. In fact, for unbalanced scales, the convergence rate was lower than in the

conditions with (semi-) balanced scales and especially low when testing for configural in-

variance. Therefore, one may often fail to evaluate configural invariance when including

ARS for an unbalanced scale in empirical practice. Note that this is likely caused by

the fact that the ARS factor cannot be distinguished from the content factor(s), which is

corroborated by previous research indicating that, in EFA, including an additional ARS

factor for unbalanced scales may result in factor underextraction (Ferrando & Lorenzo-

Seva, 2010; D’Urso et al., 2022).
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3.2.2.2 MI testing. Tables 8 to 11 display the MI testing results when an addi-

tional ARS factor is included in the MM for unidimensional and multidimensional scales,

respectively. The average fit measures results indicate that, for both unidimensional and

multidimensional scales and for all MI levels tested, including the additional ARS fac-

tor yields good to perfect fit according to all fit measures regardless of the other design

factors. For the dichotomized results (Tables A6 - A7 in the Appendix), almost all the

considered criteria resulted in a close-to-zero FPR when testing MI at all levels.

4 Conclusions

The simulation study assessed the effect of disregarding and including an additional ARS

factor on MI testing when responses in one group are affected by an ARS. The results

showed that not taking a strong ARS into account resulted in wrongly concluding there

is measurement non-invariance for balanced and semi-balanced scales. In fact, for these

scales, model fit heavily deteriorated for all MI levels, and thus one may conclude that the

content factor(s) MM differs across groups while this is purely due to a strong agreeing

tendency in one group. Note that this result is significant for empirical practice, where

researchers that follow the standard CFA-based MI testing approach may conclude that

configural invariance does not hold and try to modify the MM to be able to compare

the groups or, in the most extreme case, refrain from further analyses. In the balanced

and semi-balanced scales conditions, this issue was solved by including, for all groups, an

additional ARS factor with all its loadings fixed to 1, which resulted in concluding that MI

held at all levels. For unbalanced scales, however, disregarding ARS (i.e., not including

ARS as an additional factor) did not affect the MI testing results, which indicated that MI

held at all levels. This latter result partially overlaps with previous research, showing that

ARS gets absorbed by the content factor(s) in unbalanced scales (Ferrando & Lorenzo-

Seva, 2010; D’Urso et al., 2022). Thus, for unbalanced scales, wrongly concluding that MI

holds across groups, even when individual responses in one group are strongly affected by

an ARS, is a realistic scenario that one should take into account. Including an additional

factor to capture ARS is not a solution for unbalanced scales since this often led to
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model non-convergence, especially when testing for configural invariance, likely due to

the indistinguishability of the ARS factor from the content factor(s).

5 Discussion

In psychological science, self-report scales are widely used to compare targeted latent

constructs (e.g., depression) across groups. To draw valid and unbiased conclusions con-

cerning latent construct differences, one must ensure that the self-report scales used to

measure these constructs function equivalently across groups. The latter is often assessed

through measurement invariance (MI) testing, which evaluates the tenability of the hy-

pothesis of measurement model (MM) equivalence. For scales composed of ordinal items,

MI is often tested through multiple group categorical confirmatory factor analysis (MG-

CCFA), which allows evaluating MM parameters’ equivalence across groups in a step-wise

fashion. In addition to the scale itself being inequivalent, non-invariances may emerge

when disregarding the influence of an agreeing response style (ARS), which represents a

tendency to agree with items regardless of their content (Paulhus, 1991). Though it is

known that certain groups may be particularly prone to ARS (i.e., see Van Vaerenbergh

& Thomas, 2013 for a review), and that such response tendency can bias MM parameters

in single group studies (Ferrando & Lorenzo-Seva, 2010), this is the first paper thor-

oughly evaluating the effects of ARS on MI testing. Determining if disregarding ARS can

appear as measurement non-invariance may help to ascertain how to correct for bias in

latent construct differences due to differential response tendencies across groups. In fact,

it is superfluous to look for scale-specific causes of non-invariance if these are entirely

due to ARS. Instead, including an extra factor to model the ARS corrects for the bias.

In this paper, we conducted a simulation study to evaluate in what conditions and to

what extent an ARS affecting the individual responses in one of the groups is detected

as measurement non-invariance, both when disregarding ARS and when including it as

an additional factor in the measurement model (MM) with all its loadings fixed to 1.

One of the more significant findings from this study is that ignoring a large ARS re-

sulted in measurement non-invariance at all levels for balanced and semi-balanced scales,
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which was solved by including an additional factor capturing ARS. Therefore, when using

(semi-) balanced scales, researchers should bear in mind that configural non-invariance

may occur by disregarding a large ARS, and that including an additional ARS factor in

the MM for all groups is an effective way to correct for this. In this way, researchers

can ascertain that there is no need to look for or remedy inequivalences that pertain to

the scale. For unbalanced scales, disregarding an ARS did not affect MI testing results,

and including an additional ARS factor was not advantageous since it often led to model

non-convergence. This is likely due to the fact that, for unbalanced scales, the intended-

to-be-measured (i.e., content) factors cannot be easily distinguished from the ARS factor.

Nevertheless, for these scales, one should not conclude that ignoring an ARS is harmless

because content factor scores and/or correlations may be biased for groups with a large

ARS (Savalei & Falk, 2014; de la Fuente & Abad, 2020; D’Urso et al., 2022), and thus

affect substantive conclusions. Sadly, in practice, the bias due to neglecting an ARS (e.g.,

in factor covariances and factor scores) may not be detected when testing for MI using

unbalanced scales, and the correction proposed by Billiet and McClendon (2000) is not

a solution. Therefore, in settings where ARS could be present, using unbalanced scales

is inherently problematic as they do not allow one to correct for this response tendency.

Taken all together, these results indicate that ARS is a serious threat to MI testing

results and that (semi-)balanced scales should be preferred when suspecting that an ARS

may be at play for specific groups. Balanced or semi-balanced scales may not always

be constructed, however. For instance, negatively worded items often require higher

reading levels or intellectual capacity that cannot be assumed for certain (e.g., clinical)

populations (Chyung, Barkin, & Shamsy, 2018). In these cases, one may consider using

specific “marker” items or scales tailored to measure ARS, but further research is needed

to evaluate the feasibility of this approach in the context of multidimensional scales and

multiple group models (Ferrando, Morales-Vives, & Lorenzo-Seva, 2016). Alternatively,

model non-convergence may be solved by bounded estimation (De Jonckere & Rosseel,

2022), where data-driven upper and lower bounds for model parameters can be specified

prior to estimating the model (e.g., setting the lower bound of the ARS factor variance
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to a non-negative number), is a promising solution that has not yet been evaluated for

MG-CCFA.

Our simulation study is subject to a few limitations that are worth noting. First, ARS

was the only considered source of bias that, when disregarded, yielded us to conclude

that there is non-invariance. However, in practice, it is reasonable to expect that other,

scale-specific sources of non-invariance, such as differential item interpretation, may affect

individual responses in some (or all) groups. In the future, it would be interesting to ex-

tend the current simulation study to evaluate whether non-invariance due to disregarding

an ARS may be disentangled from other non-invariances such as specific factor loading

differences for the content factors. Second, we assumed that ARS was equally affecting

all items (i.e., loadings on the ARS factor were equal across items). This assumption may

not always be realistic in practice, as certain items may be more affected by ARS than

others (Ferrando, Lorenzo-Seva, & Chico, 2003). Savalei and Falk (2014) showed that

the approach of Billiet and McClendon (2000) is robust even when loadings on the ARS

factor differ across items. However, this CFA-based approach can still be limiting (i)

with items that load on more than one factor at the same time (i.e., cross-loadings) and

(ii) when researchers are interested in assessing (between-group differences in) the ARS

factor loadings. To overcome these limitations, one may consider using multiple group

exploratory factor analysis (MG-EFA; Jöreskog, 1970). MG-EFA does not impose an

assumed structure on the factor loadings, and thus can account for cross-loadings. Fur-

thermore, in MG-EFA, one does not need to assume that the influence of ARS is equal

across items (i.e., the loadings on the ARS factor do not need to be constrained to be

1). In fact, by using a (semi-)specified target rotation, one may take the additional ARS

factor into account and estimate its loadings by (fully or) partially specifying (part of)

the rotation target according to a priori expectations on the MM and leave the ARS fac-

tor loadings unspecified (D’Urso et al., 2022). Third, we considered simulation scenarios

with only two groups. MI testing has become increasingly relevant for cross-cultural and

cross-national research, where large data sets with many groups are the norm (Rutkowski

& Svetina, 2017). Hence, future research should evaluate the extent to which disregard-
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ing ARS or not affects MI testing when this agreeing bias influences individual responses

only for a subset of groups or when it gradually differs across all groups. Finally, we

followed a scale-based MI testing framework, but alternative approaches, such as item-

based analyses (e.g., multiple group item response theory; D’Urso et al., 2021), may also

be of interest, especially when the bias caused by an ARS affects some items more than

others or when trying to distinguish ARS from specific differences in the content factor

loadings.

Nevertheless, the present study is the only thorough investigation of the effect of ARS on

MI testing. We showed that correcting for agreeing bias when testing for MI allows to de-

termine that the scale is invariant otherwise. We expect this outcome to be tremendously

valuable in empirical practice as this avoids unnecessary worries about and investigations

of scale non-equivalence (e.g., looking for non-invariant items).
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Table 1

Identification and MI constraints Wu & Estabrook (2016) for MI testing with

MG-CCFA.

MI constraints for MG-CCFA with two groups

Identification constraints MI constraints Model comparison

LV LRV

κ ϕ ν σ2

G1 G2 G1 G2 G1 G2 G1 G2

1 - Configural 0 0 1 1 0 0 1 1

µ(g) = ν(g) + Λ(g)κ(g),

Σ(g) = Λ(g)Φ(g)Λ(g) + Ψ(g),

T (g) = T (g)

2 - Thresholds 0 0 1 1 0 free 1 free

µ(g) = ν(g) + Λ(g)κ(g),

Σ(g) = Λ(g)Φ(g)Λ(g) + Ψ(g),

T (g) = T

2 vs. 1

3 - Loadings 0 0 1 free 0 free 1 free

µ(g) = ν(g) + Λκ(g),

Σ(g) = ΛΦ(g)Λ + Ψ(g),

T (g) = T

3 vs. 2

4 - Intercepts 0 free 1 free 0 0 1 free

µ(g) = ν + Λκ(g),

Σ(g) = ΛΦ(g)Λ + Ψ(g),

T (g) = T

4 vs. 3

Note. LV = Latent variable; LRV = Latent response variable.
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Table 2

Population values for the simulation study.

Content factor(s) ARS factor Thresholds

One factor Two factors τ

λ1 λ1 λ2 λARS τ1 τ2 τ3 τ4

X1 0.6 0.6 0 0.175/0.350 -0.250 -0.750 -1.250 -1.750

X2 0.6 0 0.6 0.175/0.350 -0.068 -0.568 -1.068 -1.568

X3 0.6 (-)0.6 0 0.175/0.350 0.114 -0.386 -0.886 -1.386

X4 0.6 0 (-)0.6 0.175/0.350 0.295 -0.205 -0.705 -1.205

X5 0.6 0.6 0 0.175/0.350 0.477 -0.023 -0.523 -1.023

X6 0.6 0 0.6 0.175/0.350 0.659 0.159 -0.341 -0.841

X7 (-)0.6 (-)0.6 0 0.175/0.350 0.841 0.341 -0.159 -0.659

X8 (-)0.6 0 (-)0.6 0.175/0.350 1.023 0.523 0.023 -0.477

X9 (-)0.6 0.6 0 0.175/0.350 1.205 0.705 0.205 -0.295

X10 (-)0.6 0 0.6 0.175/0.350 1.386 0.886 0.386 -0.114

X11 (-)0.6 (-)0.6 0 0.175/0.350 1.568 1.068 0.568 0.068

X12 (-)0.6 0 (-)0.6 0.175/0.350 1.750 1.250 0.750 0.250
Note. Loadings in bold indicates those that were negative for semi-balanced scales. The original ARS

factor loadings values were .3/.6 but here we display the rescaled ARS loadings obtained by multiplying

the original ARS loadings values by the standard deviation of a right-censored normal distribution,

which was used to generate the ARS factor scores.
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Table 3

Average fit value for MI testing approaches when the ARS factor is not included in

unidimensional scales in function of the simulated conditions

Average fit value in MI testing for unidimensional scales without ARS factor

Configural Thresholds

ARS Scale N J χ2 (SD) df RMSEA (SD) CFI (SD) χ2
τ (SD) dfτ RMSEAτ (SD) CFIτ (SD)

0.175

Bal

250
12 131.4 (16.0) 108 0.027 (0.012) 0.990 (0.007) 157.6 (16.9) 132 0.026 (0.010) 0.989 (0.007)

24 587.0 (41.5) 504 0.025 (0.007) 0.988 (0.006) 636.6 (42.1) 552 0.024 (0.006) 0.988 (0.006)

1000
12 202.7 (31.2) 108 0.029 (0.005) 0.990 (0.004) 234.3 (34.4) 132 0.027 (0.005) 0.989 (0.004)

24 861.3 (74.0) 504 0.026 (0.003) 0.987 (0.003) 920.8 (76.0) 552 0.026 (0.003) 0.986 (0.003)

Semi

250
12 129.9 (15.8) 108 0.026 (0.011) 0.991 (0.006) 155.2 (17.4) 132 0.024 (0.011) 0.990 (0.007)

24 581.0 (35.6) 504 0.024 (0.006) 0.989 (0.006) 631.0 (36.5) 552 0.023 (0.006) 0.988 (0.006)

1000
12 186.2 (26.7) 108 0.027 (0.005) 0.992 (0.003) 216.5 (29.3) 132 0.025 (0.005) 0.991 (0.003)

24 852.5 (68.7) 504 0.026 (0.003) 0.987 (0.003) 911.6 (70.9) 552 0.025 (0.003) 0.987 (0.003)

Unbal

250
12 109.7 (12.7) 108 0.010 (0.011) 0.998 (0.003) 133.6 (14.3) 132 0.010 (0.011) 0.998 (0.003)

24 516.8 (22.6) 504 0.009 (0.007) 0.998 (0.002) 565.3 (23.4) 552 0.009 (0.007) 0.998 (0.002)

1000
12 110.0 (14.8) 108 0.005 (0.006) 0.999 (0.001) 134.2 (16.1) 132 0.005 (0.006) 0.999 (0.001)

24 512.8 (28.1) 504 0.004 (0.004) 0.999 (0.001) 560.8 (29.7) 552 0.004 (0.004) 0.999 (0.001)

0.350

Bal

250
12 539.7 (80.1) 108 0.126 (0.012) 0.895 (0.021) 597.4 (87.2) 132 0.118 (0.011) 0.886 (0.023)

24 1863.9 (243.8) 504 0.104 (0.009) 0.875 (0.026) 1952.9 (252.4) 552 0.101 (0.009) 0.871 (0.027)

100
12 1927.0 (170.4) 108 0.130 (0.006) 0.885 (0.013) 2110.4 (186.8) 132 0.122 (0.006) 0.875 (0.014)

24 6523.6 (564.5) 504 0.109 (0.005) 0.861 (0.016) 6806.0 (589.2) 552 0.106 (0.005) 0.855 (0.016)

Semi

250
12 538.1 (107.0) 108 0.126 (0.015) 0.898 (0.027) 594.5 (115.8) 132 0.118 (0.015) 0.890 (0.029)

24 1876.6 (232.0) 504 0.104 (0.009) 0.877 (0.024) 1966.3 (240.6) 552 0.101 (0.009) 0.873 (0.024)

1000
12 1953.5 (211.9) 108 0.131 (0.008) 0.885 (0.015) 2136.3 (232.0) 132 0.123 (0.007) 0.875 (0.016)

24 6497.7 (473.9) 504 0.109 (0.004) 0.860 (0.014) 6779.1 (494.4) 552 0.106 (0.004) 0.855 (0.015)

Unbal

250
12 113.4 (14.1) 108 0.012 (0.013) 0.999 (0.002) 137.3 (15.5) 132 0.012 (0.012) 0.999 (0.002)

24 508.1 (20.0) 504 0.006 (0.007) 0.999 (0.001) 556.0 (20.5) 552 0.006 (0.006) 0.999 (0.001)

1000
12 105.9 (13.0) 108 0.004 (0.005) 1.000 (0.000) 130.5 (14.5) 132 0.004 (0.005) 1.000 (0.000)

24 508.2 (24.4) 504 0.003 (0.004) 1.000 (0.000) 557.5 (26.2) 552 0.003 (0.004) 1.000 (0.000)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items. Values in bold indicate

conditions where the average model fit results were below commonly accepted cut-off values for “good”

fit.
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Table 4

Average fit value for MI testing approaches when the ARS factor is not included in

unidimensional scales in function of the simulated conditions

Average fit value in MI testing for unidimensional scales without ARS factor

Loadings Intercepts

ARS Scale N J χ2
λ (SD) dfλ RMSEAλ (SD) CFIλ (SD) χ2

ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 167.4 (18.3) 143 0.024 (0.011) 0.989 (0.007) 220.8 (32.2) 154 0.040 (0.011) 0.972 (0.014)

24 656.0 (42.6) 575 0.023 (0.007) 0.988 (0.006) 749.4 (62.0) 598 0.031 (0.007) 0.978 (0.009)

1000
12 237.7 (32.8) 143 0.025 (0.005) 0.990 (0.004) 449.4 (56.2) 154 0.044 (0.004) 0.969 (0.006)

24 925.0 (75.0) 575 0.025 (0.003) 0.987 (0.003) 1305.4 (108.0) 598 0.034 (0.003) 0.974 (0.004)

Semi

250
12 166.1 (18.5) 143 0.023 (0.011) 0.990 (0.007) 202.0 (27.1) 154 0.034 (0.011) 0.980 (0.011)

24 651.2 (37.0) 575 0.022 (0.006) 0.989 (0.006) 735.3 (45.3) 598 0.030 (0.005) 0.980 (0.007)

1000
12 221.6 (30.5) 143 0.023 (0.005) 0.992 (0.003) 374.8 (51.5) 154 0.038 (0.004) 0.977 (0.005)

24 915.7 (71.9) 575 0.024 (0.003) 0.987 (0.003) 1294.8 (100.9) 598 0.034 (0.002) 0.974 (0.004)

Unbal

250
12 143.3 (15.3) 143 0.009 (0.010) 0.998 (0.004) 154.8 (16.7) 154 0.009 (0.010) 0.997 (0.004)

24 587.7 (25.0) 575 0.008 (0.008) 0.998 (0.003) 608.8 (24.9) 598 0.007 (0.007) 0.998 (0.003)

1000
12 144.0 (18.3) 143 0.005 (0.006) 0.999 (0.001) 154.0 (19.0) 154 0.004 (0.005) 0.999 (0.001)

24 579.4 (30.4) 575 0.004 (0.004) 0.999 (0.001) 597.5 (33) 598 0.003 (0.003) 1.000 (0.001)

0.350

Bal

250
12 585.4 (85.4) 143 0.111 (0.011) 0.892 (0.022) 711.4 (103.7) 154 0.120 (0.011) 0.864 (0.026)

24 1939.6 (249.7) 575 0.097 (0.009) 0.875 (0.027) 2112.6 (264.2) 598 0.100 (0.009) 0.861 (0.029)

100
12 2032.2 (184.4) 143 0.115 (0.006) 0.881 (0.014) 2600.3 (221.8) 154 0.126 (0.006) 0.846 (0.016)

24 6729.6 (588.4) 575 0.103 (0.005) 0.858 (0.016) 7548.7 (594.0) 598 0.108 (0.005) 0.839 (0.017)

Semi

250
12 581.3 (111.9) 143 0.110 (0.014) 0.896 (0.028) 664.2 (116.9) 154 0.115 (0.013) 0.879 (0.029)

24 1955.3 (240.5) 575 0.098 (0.009) 0.876 (0.024) 2129.0 (250.8) 598 0.101 (0.008) 0.863 (0.025)

1000
12 2046.6 (225.3) 143 0.115 (0.007) 0.881 (0.016) 2413.6 (248.6) 154 0.121 (0.007) 0.859 (0.017)

24 6702.4 (492.9) 575 0.103 (0.004) 0.857 (0.014) 7517.4 (509.4) 598 0.108 (0.004) 0.839 (0.015)

Unbal

250
12 149.3 (17.6) 143 0.012 (0.012) 0.998 (0.002) 159.0 (18.7) 154 0.011 (0.012) 0.998 (0.002)

24 581.7 (21.9) 575 0.007 (0.007) 0.999 (0.001) 603.9 (22.4) 598 0.006 (0.006) 0.999 (0.001)

1000
12 145.5 (18.1) 143 0.005 (0.006) 1.000 (0.001) 156.3 (18.9) 154 0.005 (0.006) 1.000 (0.001)

24 589.1 (30.4) 575 0.004 (0.004) 1.000 (0.000) 611.7 (34.7) 598 0.004 (0.004) 1.000 (0.000)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items. Values in bold indicate

conditions where the average model fit results were below commonly accepted cut-off values for “good”

fit.
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Table 5

Average fit value for MI testing approaches when the ARS factor is not included in

multidimensional scales in function of the simulated conditions

Average fit value in MI testing for multidimensional scales with ARS factor

Configural Thresholds

ARS Scale N J χ2 (SD) df RMSEA (SD) CFI (SD) χ2
ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 123.4 (17.1) 106 0.023 (0.013) 0.986 (0.011) 148.8 (19.0) 130 0.021 (0.013) 0.985 (0.013)

24 558.2 (32.2) 502 0.020 (0.007) 0.986 (0.008) 608.2 (33.4) 550 0.019 (0.007) 0.985 (0.008)

1000
12 163.4 (22.1) 106 0.023 (0.004) 0.989 (0.004) 192.7 (24.4) 130 0.022 (0.004) 0.988 (0.005)

24 705.0 (58.7) 502 0.020 (0.003) 0.988 (0.004) 761.1 (60.9) 550 0.019 (0.003) 0.987 (0.004)

Semi

250
12 122.4 (14.4) 106 0.022 (0.012) 0.987 (0.010) 147.9 (15.9) 130 0.021 (0.012) 0.986 (0.011)

24 553.3 (32.6) 502 0.019 (0.007) 0.987 (0.008) 602.9 (34.0) 550 0.018 (0.007) 0.987 (0.008)

1000
12 151.2 (22.1) 106 0.020 (0.006) 0.991 (0.004) 179.7 (24.3) 130 0.019 (0.006) 0.991 (0.005)

24 669.5 (35.6) 502 0.018 (0.002) 0.990 (0.002) 723.9 (37.6) 550 0.018 (0.002) 0.990 (0.002)

Unbal

250
12 109.8 (16.2) 106 0.012 (0.013) 0.994 (0.008) 134.2 (17.8) 130 0.011 (0.012) 0.994 (0.009)

24 520.7 (28.2) 502 0.011 (0.008) 0.995 (0.005) 569.3 (29.1) 550 0.010 (0.008) 0.995 (0.006)

1000
12 106.3 (12.9) 106 0.004 (0.005) 0.999 (0.001) 130.7 (14.5) 130 0.004 (0.005) 0.999 (0.002)

24 507.5 (32.0) 502 0.004 (0.004) 0.999 (0.001) 556.0 (33.6) 550 0.004 (0.004) 0.999 (0.001)

0.350

Bal

250
12 392.1 (65.8) 106 0.103 (0.012) 0.866 (0.031) 441.7 (71.9) 130 0.097 (0.011) 0.854 (0.034)

24 1415.5 (175.1) 502 0.085 (0.008) 0.862 (0.026) 1494.6 (181.5) 550 0.083 (0.008) 0.857 (0.027)

100
12 1315.6 (148.4) 106 0.107 (0.007) 0.857 (0.019) 1456.5 (162.8) 130 0.101 (0.006) 0.843 (0.021)

24 4378.3 (357.6) 502 0.088 (0.004) 0.853 (0.014) 4586.4 (372.3) 550 0.086 (0.004) 0.847 (0.014)

Semi

250
12 377.6 (66.3) 106 0.101 (0.012) 0.879 (0.030) 425.2 (71.9) 130 0.095 (0.011) 0.868 (0.033)

24 1382.4 (176.7) 502 0.083 (0.009) 0.872 (0.028) 1459.6 (182.4) 550 0.081 (0.008) 0.868 (0.028)

1000
12 1188.6 (111.9) 106 0.101 (0.005) 0.877 (0.013) 1316.3 (122.7) 130 0.095 (0.005) 0.866 (0.014)

24 4192.1 (371.8) 502 0.086 (0.004) 0.864 (0.014) 4390.7 (387.3) 550 0.083 (0.004) 0.858 (0.015)

Unbal

250
12 110.3 (15.4) 106 0.012 (0.013) 0.998 (0.003) 134.5 (16.7) 130 0.012 (0.012) 0.997 (0.004)

24 515.6 (29.1) 502 0.009 (0.008) 0.998 (0.002) 564.4 (30.0) 550 0.009 (0.008) 0.998 (0.002)

1000
12 114.8 (14.3) 106 0.008 (0.006) 0.999 (0.001) 139.9 (16.4) 130 0.007 (0.006) 0.999 (0.001)

24 531.9 (37.8) 502 0.007 (0.005) 0.999 (0.001) 581.7 (39.9) 550 0.007 (0.005) 0.999 (0.001)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items. Values in bold indicate

conditions where the average model fit results were below commonly accepted cut-off values for “good”

fit
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Table 6

Average fit value for MI testing approaches when the ARS factor is not included in

multidimensional scales in function of the simulated conditions

Average fit value in MI testing for multidimensional scales without ARS factor

Loadings Intercepts

ARS Scale N J χ2
λ (SD) dfλ RMSEAλ (SD) CFIλ (SD) χ2

ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 159.3 (18.3) 140 0.021 (0.012) 0.984 (0.013) 203.4 (25.6) 150 0.036 (0.011) 0.959 (0.020)

24 628.3 (33.4) 572 0.019 (0.007) 0.986 (0.008) 697.4 (36.6) 594 0.026 (0.005) 0.974 (0.009)

1000
12 201.4 (25.8) 140 0.020 (0.004) 0.988 (0.005) 353.2 (48.4) 150 0.037 (0.004) 0.961 (0.009)

24 781.2 (60.6) 572 0.019 (0.003) 0.988 (0.004) 1054.7 (80.7) 594 0.028 (0.003) 0.973 (0.005)

Semi

250
12 158.3 (16.1) 140 0.020 (0.012) 0.985 (0.011) 195.1 (22.7) 150 0.033 (0.010) 0.966 (0.017)

24 624.8 (35.8) 572 0.018 (0.007) 0.987 (0.009) 686.9 (41.2) 594 0.024 (0.006) 0.977 (0.011)

1000
12 191.7 (24.3) 140 0.019 (0.005) 0.990 (0.004) 323.8 (39.0) 150 0.034 (0.004) 0.967 (0.007)

24 747.1 (37.5) 572 0.017 (0.002) 0.990 (0.002) 971.3 (60.7) 594 0.025 (0.002) 0.977 (0.004)

Unbal

250
12 144.3 (18.1) 140 0.011 (0.012) 0.993 (0.009) 154.2 (19.1) 150 0.011 (0.012) 0.993 (0.009)

24 592.1 (31.1) 572 0.010 (0.008) 0.994 (0.006) 612.8 (32.0) 594 0.010 (0.008) 0.994 (0.006)

1000
12 141.1 (16.1) 140 0.005 (0.005) 0.999 (0.002) 150.9 (17.4) 150 0.004 (0.005) 0.999 (0.002)

24 576.3 (34.6) 572 0.004 (0.004) 0.999 (0.001) 596.3 (34.2) 594 0.003 (0.004) 0.999 (0.001)

0.350

Bal

250
12 447.9 (71.7) 140 0.093 (0.011) 0.855 (0.034) 574.9 (81.9) 150 0.106 (0.010) 0.800 (0.039)

24 1501.6 (179.5) 572 0.080 (0.008) 0.860 (0.027) 1686.1 (200.0) 594 0.086 (0.008) 0.835 (0.030)

100
12 1461.1 (162.6) 140 0.097 (0.006) 0.844 (0.021) 1985.9 (204.7) 150 0.111 (0.006) 0.783 (0.027)

24 4584.4 (370.9) 572 0.084 (0.004) 0.848 (0.014) 5392.3 (414.1) 594 0.090 (0.004) 0.818 (0.016)

Semi

250
12 437.7 (71.3) 140 0.092 (0.011) 0.867 (0.032) 538.1 (87.1) 150 0.101 (0.011) 0.827 (0.040)

24 1468.6 (180.1) 572 0.079 (0.008) 0.870 (0.028) 1616.4 (193.9) 594 0.083 (0.008) 0.851 (0.030)

1000
12 1338.0 (122.4) 140 0.092 (0.005) 0.864 (0.014) 1771.5 (145.7) 150 0.104 (0.005) 0.816 (0.017)

24 4402.5 (387.1) 572 0.082 (0.004) 0.858 (0.014) 5084.9 (425.6) 594 0.087 (0.004) 0.834 (0.016)

Unbal

250
12 143.9 (18.2) 140 0.011 (0.012) 0.997 (0.004) 154.0 (18.4) 150 0.011 (0.011) 0.997 (0.004)

24 587.7 (29.8) 572 0.009 (0.008) 0.998 (0.003) 608.3 (29.9) 594 0.009 (0.008) 0.998 (0.003)

1000
12 152.6 (17.8) 140 0.008 (0.006) 0.999 (0.001) 161.4 (18.9) 150 0.007 (0.006) 0.999 (0.001)

24 608.4 (40.7) 572 0.007 (0.005) 0.999 (0.001) 630.0 (40.6) 594 0.007 (0.005) 0.999 (0.001)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items. Values in bold indicate

conditions where the average model fit results were below commonly accepted cut-off values for “good”

fit
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Table 7

Convergence Rate in the ARS scenario for MI testing in function of the simulated

conditions when the ARS factor is included.

Convergence Rate MI testing with ARS factor

1 Content Factor 2 Content Factors

ARS Scale N J Configural Thresholds Loadings Intercepts Configural Thresholds Loadings Intercepts

0.175

Bal

250
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

1000
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

Semi

250
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

1000
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

Unbal

250
12 0.410 0.690 0.990 0.990 0.430 0.760 0.970 0.960

24 0.690 0.780 1 0.980 0.350 0.620 0.890 0.940

1000
12 0.480 0.690 0.970 0.990 0.430 0.790 1 0.990

24 0.600 0.630 1 1 0.400 0.870 0.930 0.950

0.350

Bal

250
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

100
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

Semi

250
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

1000
12 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1

Unbal

250
12 0.410 0.820 0.990 0.990 0.290 0.730 0.860 0.920

24 0.640 0.870 0.990 1 0.170 0.560 0.860 0.830

1000
12 0.420 0.790 1 0.990 0.250 0.780 0.920 0.930

24 0.550 0.720 0.970 1 0.120 0.750 0.850 0.890

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items.
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Table 8

Average fit value for MI testing approaches when the ARS factor is included in

unidimensional scales in function of the simulated conditions

Average fit value in MI testing for unidimensional scales with ARS factor

Configural Thresholds

ARS Scale N J χ2 (SD) df RMSEA (SD) CFI (SD) χ2
ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 109.9 (13.4) 106 0.011 (0.012) 0.997 (0.004) 134.7 (14.1) 130 0.011 (0.011) 0.997 (0.005)

24 515.0 (22.1) 502 0.009 (0.007) 0.997 (0.002) 562.7 (22.4) 550 0.009 (0.007) 0.997 (0.002)

1000
12 106.2 (13.4) 106 0.004 (0.006) 0.999 (0.001) 129.8 (14.8) 130 0.004 (0.005) 0.999 (0.001)

24 507.1 (25.3) 502 0.004 (0.004) 1.000 (0.001) 555.4 (26.5) 550 0.004 (0.003) 1.000 (0.001)

Semi

250
12 111.3 (12.4) 106 0.013 (0.012) 0.997 (0.004) 135.3 (13.6) 130 0.012 (0.011) 0.997 (0.004)

24 514.4 (23.5) 502 0.009 (0.008) 0.998 (0.003) 563.0 (24.7) 550 0.009 (0.007) 0.997 (0.003)

1000
12 106.6 (15.1) 106 0.005 (0.006) 0.999 (0.001) 130.4 (16.7) 130 0.005 (0.006) 0.999 (0.001)

24 510.7 (24.6) 502 0.004 (0.004) 0.999 (0.001) 559.1 (25.0) 550 0.004 (0.003) 0.999 (0.001)

Unbal

250
12 99.1 (12.3) 106 0.005 (0.008) 0.999 (0.002) 118.8 (13.3) 130 0.003 (0.007) 0.999 (0.002)

24 510.5 (24.4) 502 0.008 (0.008) 0.998 (0.002) 548.8 (23.4) 550 0.005 (0.006) 0.999 (0.002)

1000
12 98.8 (15.5) 106 0.003 (0.005) 1.000 (0.001) 121.1 (17.4) 130 0.003 (0.005) 1.000 (0.001)

24 502.9 (29.2) 502 0.003 (0.004) 1.000 (0.001) 542.1 (31.9) 550 0.002 (0.003) 1.000 (0.000)

0.350

Bal

250
12 116.1 (14.8) 106 0.017 (0.013) 0.997 (0.003) 140.2 (16.4) 130 0.015 (0.012) 0.997 (0.003)

24 568.6 (34.6) 502 0.022 (0.007) 0.994 (0.003) 584.2 (27.8) 550 0.014 (0.007) 0.997 (0.002)

100
12 124.5 (18.3) 106 0.011 (0.007) 0.999 (0.001) 147.7 (21.3) 130 0.010 (0.007) 0.999 (0.001)

24 778.6 (81.5) 502 0.023 (0.004) 0.994 (0.002) 696.4 (56.3) 550 0.016 (0.003) 0.997 (0.001)

Semi

250
12 115.3 (15.1) 106 0.016 (0.013) 0.997 (0.003) 137.6 (16.4) 130 0.014 (0.012) 0.997 (0.003)

24 572.8 (37.4) 502 0.023 (0.007) 0.994 (0.004) 584.8 (29.9) 550 0.015 (0.007) 0.997 (0.003)

1000
12 132.7 (23.6) 106 0.014 (0.008) 0.998 (0.001) 154.1 (23.8) 130 0.012 (0.007) 0.998 (0.001)

24 776.7 (66.4) 502 0.023 (0.003) 0.994 (0.002) 695.1 (49.7) 550 0.016 (0.003) 0.997 (0.001)

Unbal

250
12 99.5 (13.6) 106 0.004 (0.009) 1.000 (0.001) 123.7 (15.8) 130 0.005 (0.010) 0.999 (0.001)

24 501.1 (23.4) 502 0.005 (0.006) 0.999 (0.001) 540.8 (21.1) 550 0.003 (0.005) 1.000 (0.001)

1000
12 95.8 (14.5) 106 0.002 (0.004) 1.000 (0.000) 117.8 (15.1) 130 0.002 (0.003) 1.000 (0.000)

24 499.9 (27.6) 502 0.003 (0.003) 1.000 (0.000) 543.3 (25.0) 550 0.002 (0.003) 1.000 (0.000)

Note. ARS = ARS factor loadings ; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items.
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Table 9

Average fit value for MI testing approaches when the ARS factor is included in

unidimensional scales in function of the simulated conditions

Average fit value in MI testing for multidimensional scales without ARS factor

Loadings Intercepts

ARS Scale N J χ2
λ (SD) dfλ RMSEAλ (SD) CFIλ (SD) χ2

ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 146.2 (16.0) 141 0.012 (0.011) 0.996 (0.005) 155.8 (18.6) 151 0.011 (0.012) 0.996 (0.006)

24 586.0 (23.9) 573 0.009 (0.007) 0.997 (0.003) 607.4 (26.4) 595 0.008 (0.007) 0.997 (0.003)

1000
12 142.1 (17.4) 141 0.005 (0.006) 0.999 (0.001) 152.1 (20.4) 151 0.004 (0.006) 0.999 (0.002)

24 578.9 (30.7) 573 0.004 (0.004) 0.999 (0.001) 597.3 (34.0) 595 0.003 (0.004) 0.999 (0.001)

Semi

250
12 147.2 (14.6) 141 0.012 (0.011) 0.996 (0.004) 156.2 (16.2) 151 0.012 (0.011) 0.996 (0.005)

24 586.5 (26.3) 573 0.009 (0.007) 0.997 (0.003) 606.5 (28.0) 595 0.008 (0.007) 0.997 (0.003)

1000
12 141.2 (20.0) 141 0.005 (0.006) 0.999 (0.001) 153.2 (21.5) 151 0.005 (0.006) 0.999 (0.002)

24 581.7 (30.8) 573 0.004 (0.004) 0.999 (0.001) 603.5 (36.8) 595 0.004 (0.004) 0.999 (0.001)

Unbal

250
12 134.9 (14.0) 141 0.005 (0.008) 0.999 (0.003) 141.7 (13.4) 151 0.003 (0.007) 0.999 (0.002)

24 580.2 (24.5) 573 0.007 (0.007) 0.998 (0.002) 594.7 (23.7) 595 0.005 (0.006) 0.999 (0.002)

1000
12 133.1 (17.6) 141 0.003 (0.005) 1.000 (0.001) 140.0 (16.8) 151 0.002 (0.004) 1.000 (0.001)

24 573.7 (30.7) 573 0.003 (0.004) 1.000 (0.001) 583.2 (31.0) 595 0.002 (0.003) 1.000 (0.000)

0.350

Bal

250
12 152.6 (18.2) 141 0.016 (0.012) 0.997 (0.004) 162.0 (18.0) 151 0.015 (0.012) 0.997 (0.003)

24 639.0 (40.5) 573 0.020 (0.008) 0.994 (0.004) 658.8 (39.5) 595 0.020 (0.007) 0.994 (0.003)

100
12 163.7 (22.5) 141 0.011 (0.007) 0.998 (0.001) 172.2 (24.5) 151 0.010 (0.007) 0.999 (0.001)

24 844.6 (83.5) 573 0.021 (0.004) 0.994 (0.002) 852.1 (79.2) 595 0.021 (0.003) 0.994 (0.002)

Semi

250
12 150.9 (17.2) 141 0.015 (0.012) 0.997 (0.003) 160.3 (17.7) 151 0.014 (0.011) 0.997 (0.003)

24 645.9 (40.1) 573 0.022 (0.007) 0.993 (0.004) 663.9 (39.5) 595 0.020 (0.007) 0.994 (0.004)

1000
12 174.3 (27.5) 141 0.014 (0.007) 0.998 (0.002) 182.6 (27.3) 151 0.013 (0.007) 0.998 (0.002)

24 843.8 (69.4) 573 0.022 (0.003) 0.994 (0.002) 851.2 (67.6) 595 0.021 (0.003) 0.994 (0.002)

Unbal

250
12 139.5 (16.4) 141 0.007 (0.011) 0.999 (0.002) 144.4 (16.3) 151 0.005 (0.009) 0.999 (0.001)

24 573.4 (22.3) 573 0.005 (0.006) 0.999 (0.001) 591.3 (22.9) 595 0.004 (0.006) 1.000 (0.001)

1000
12 134.1 (15.8) 141 0.003 (0.004) 1.000 (0.000) 140.6 (16.3) 151 0.002 (0.004) 1.000 (0.000)

24 582.1 (28.1) 573 0.004 (0.004) 1.000 (0.000) 597.5 (30.0) 595 0.003 (0.004) 1.000 (0.000)

Note. ARS = ARS factor loadings ; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items.
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Table 10

Average fit value for MI testing approaches when the ARS factor is included in

multidimensional scales in function of the simulated conditions

Average fit value in MI testing for multidimensional scales with ARS factor

Configural Thresholds

ARS Scale N J χ2 (SD) df RMSEA (SD) CFI (SD) χ2
ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 108.2 (15.2) 104 0.013 (0.012) 0.994 (0.008) 132.5 (17.0) 128 0.012 (0.012) 0.993 (0.009)

24 514.7 (26.8) 500 0.010 (0.008) 0.995 (0.005) 562.9 (27.9) 548 0.010 (0.007) 0.995 (0.005)

1000
12 104.2 (14.4) 104 0.005 (0.006) 0.999 (0.002) 127.8 (16.0) 128 0.005 (0.005) 0.999 (0.002)

24 507.0 (30.9) 500 0.004 (0.004) 0.999 (0.001) 555.1 (31.9) 548 0.004 (0.004) 0.999 (0.001)

Semi

250
12 109.4 (13.4) 104 0.013 (0.012) 0.994 (0.008) 134.0 (15.1) 128 0.013 (0.012) 0.993 (0.008)

24 512.1 (29.1) 500 0.009 (0.008) 0.996 (0.006) 560.5 (30.6) 548 0.008 (0.008) 0.995 (0.006)

1000
12 103.9 (14.5) 104 0.005 (0.006) 0.999 (0.002) 128.0 (16.0) 128 0.005 (0.005) 0.999 (0.002)

24 504.9 (27.2) 500 0.004 (0.004) 0.999 (0.001) 552.8 (29.1) 548 0.004 (0.004) 0.999 (0.001)

Unbal

250
12 99.0 (13.0) 104 0.006 (0.009) 0.998 (0.005) 120.5 (12.0) 128 0.004 (0.007) 0.999 (0.003)

24 494.5 (24.1) 500 0.004 (0.006) 0.998 (0.003) 550.3 (22.4) 548 0.006 (0.006) 0.998 (0.003)

1000
12 95.8 (10.2) 104 0.002 (0.003) 1.000 (0.001) 117.9 (11.9) 128 0.001 (0.003) 1.000 (0.001)

24 480.4 (30.3) 500 0.001 (0.003) 1.000 (0.001) 538.8 (31.5) 548 0.002 (0.003) 1.000 (0.001)

0.350

Bal

250
12 113.5 (14.2) 104 0.017 (0.013) 0.995 (0.006) 136.9 (15.0) 128 0.014 (0.012) 0.995 (0.006)

24 539.8 (27.6) 500 0.017 (0.007) 0.994 (0.004) 577.0 (29.3) 548 0.013 (0.008) 0.995 (0.004)

100
12 134.8 (18.5) 104 0.016 (0.006) 0.996 (0.002) 158.1 (20.9) 128 0.014 (0.006) 0.996 (0.002)

24 620.7 (39.9) 500 0.015 (0.003) 0.995 (0.001) 623.9 (39.1) 548 0.011 (0.003) 0.997 (0.001)

Semi

250
12 111.8 (15.7) 104 0.016 (0.013) 0.995 (0.006) 135.2 (17.6) 128 0.014 (0.013) 0.995 (0.006)

24 531.6 (28.7) 500 0.014 (0.008) 0.995 (0.004) 570.6 (28.8) 548 0.011 (0.008) 0.996 (0.004)

1000
12 128.5 (20.4) 104 0.014 (0.007) 0.997 (0.002) 152.7 (20.3) 128 0.013 (0.006) 0.997 (0.002)

24 586.1 (36.3) 500 0.013 (0.003) 0.997 (0.001) 604.8 (34.9) 548 0.010 (0.004) 0.998 (0.001)

Unbal

250
12 93.9 (11.9) 104 0.003 (0.007) 1.000 (0.001) 118.5 (14.0) 128 0.004 (0.007) 0.999 (0.001)

24 494.5 (25.4) 500 0.004 (0.006) 0.999 (0.001) 541.7 (25.0) 548 0.004 (0.006) 0.999 (0.001)

1000
12 98.0 (10.7) 104 0.002 (0.004) 1.000 (0.000) 122.6 (13.7) 128 0.003 (0.004) 1.000 (0.000)

24 474.2 (18.7) 500 0.000 (0.000) 1.000 (0.000) 541.9 (24.6) 548 0.002 (0.003) 1.000 (0.000)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items.
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Table 11

Average fit value for MI testing approaches when the ARS factor is included in

multidimensional scales in function of the simulated conditions

Average fit value in MI testing for multidimensional scales with ARS factor

Loadings Intercepts

ARS Scale N J χ2
λ (SD) dfλ RMSEAλ (SD) CFIλ (SD) χ2

ν (SD) dfν RMSEAν (SD) CFIν (SD)

0.175

Bal

250
12 143.0 (16.4) 138 0.012 (0.011) 0.993 (0.009) 152.7 (16.8) 147 0.012 (0.011) 0.992 (0.009)

24 584.2 (28.3) 570 0.010 (0.007) 0.995 (0.005) 603.8 (27.5) 591 0.009 (0.007) 0.995 (0.005)

1000
12 137.0 (17.3) 138 0.004 (0.005) 0.999 (0.002) 145.6 (17.9) 147 0.004 (0.005) 0.999 (0.002)

24 577.5 (31.2) 570 0.004 (0.004) 0.999 (0.001) 596.3 (32.9) 591 0.004 (0.004) 0.999 (0.001)

Semi

250
12 143.9 (15.5) 138 0.012 (0.011) 0.993 (0.009) 152.2 (17.2) 147 0.012 (0.012) 0.993 (0.009)

24 582.7 (31.7) 570 0.008 (0.008) 0.995 (0.006) 604.3 (33.8) 591 0.008 (0.008) 0.995 (0.007)

1000
12 137.7 (15.7) 138 0.004 (0.005) 0.999 (0.002) 146.6 (16.7) 147 0.004 (0.005) 0.999 (0.002)

24 574.7 (28.8) 570 0.003 (0.004) 0.999 (0.001) 595.0 (29.1) 591 0.003 (0.004) 0.999 (0.001)

Unbal

250
12 135.2 (15.1) 138 0.007 (0.010) 0.997 (0.006) 141.4 (15.8) 147 0.005 (0.009) 0.997 (0.006)

24 575.3 (29.9) 570 0.007 (0.007) 0.997 (0.005) 592.6 (29.0) 591 0.006 (0.007) 0.997 (0.004)

1000
12 130.4 (13.6) 138 0.002 (0.004) 1.000 (0.001) 136.4 (13.8) 147 0.001 (0.003) 1.000 (0.001)

24 558.3 (34.9) 570 0.002 (0.003) 0.999 (0.001) 574.5 (34.9) 591 0.002 (0.003) 1.000 (0.001)

0.350

Bal

250
12 150.1 (15.9) 138 0.016 (0.012) 0.993 (0.007) 158.5 (17.0) 147 0.016 (0.012) 0.993 (0.007)

24 610.5 (31.7) 570 0.016 (0.007) 0.994 (0.004) 630.5 (33.6) 591 0.015 (0.008) 0.994 (0.004)

100
12 178.0 (23.0) 138 0.016 (0.006) 0.995 (0.003) 187.7 (23.7) 147 0.016 (0.006) 0.995 (0.003)

24 696.2 (43.7) 570 0.015 (0.003) 0.995 (0.002) 715.2 (44.8) 591 0.014 (0.003) 0.995 (0.002)

Semi

250
12 147.7 (18.6) 138 0.015 (0.012) 0.994 (0.007) 156.0 (18.0) 147 0.015 (0.012) 0.994 (0.006)

24 601.7 (29.4) 570 0.013 (0.007) 0.995 (0.004) 621.0 (29.5) 591 0.013 (0.007) 0.995 (0.004)

1000
12 168.3 (22.6) 138 0.014 (0.006) 0.997 (0.003) 175.5 (23.3) 147 0.013 (0.006) 0.997 (0.002)

24 656.2 (40.1) 570 0.012 (0.003) 0.997 (0.002) 676.6 (42.4) 591 0.012 (0.003) 0.997 (0.002)

Unbal

250
12 130.8 (16.1) 138 0.005 (0.009) 0.999 (0.002) 138.6 (16.2) 147 0.004 (0.008) 0.999 (0.002)

24 564.6 (24.7) 570 0.004 (0.006) 0.999 (0.001) 582.6 (24.0) 591 0.004 (0.005) 0.999 (0.001)

1000
12 135.3 (15.8) 138 0.004 (0.005) 1.000 (0.001) 140.7 (16.9) 147 0.003 (0.004) 1.000 (0.001)

24 563.8 (31.7) 570 0.002 (0.003) 1.000 (0.000) 583.2 (31.0) 591 0.002 (0.003) 1.000 (0.000)

Note. ARS = ARS factor loadings; N = sample size within each group; Bal = Balanced scale; Semi =

Semi-balanced scale; Unbal = Unbalanced scale; J = number of items.


