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Abstract—The upsurge in wireless devices and real-time ser-
vice demands force the move to a higher frequency spectrum.
Millimetre-wave (mmWave) and terahertz (THz) bands combined
with the beamforming technology offer significant perform-
ance enhancements for future wireless networks. Unfortunately,
shrinking cell coverage and severe penetration loss experienced
at higher spectrum render mobility management a critical issue
in high-frequency wireless networks, especially optimizing beam
blockages and frequent handover (HO). Mobility management
challenges have become prevalent in city centres and urban
areas. To address this, we propose a novel mechanism driven
by exploiting wireless signals and on-road surveillance systems
to intelligently predict possible blockages in advance and per-
form timely HO. This paper employs computer vision (CV) to
determine obstacles and users’ location and speed. In addition,
this study introduces a new HO event, called block event (BLK),
defined by the presence of a blocking object and a user moving
towards the blocked area. Moreover, the multivariate regression
technique predicts the remaining time until the user reaches the
blocked area, hence determining best HO decision. Compared
to conventional wireless networks without blockage prediction,
simulation results show that our BLK detection and proactive
HO algorithm achieves 40% improvement in maintaining user
connectivity and the required quality of experience (QoE).

Index Terms—Computer vision, object detection, machine
learning, blockage prediction, proactive handover, mobility man-
agement, mmWave communications, ultra-dense networks.

I. INTRODUCTION

Millimetre-wave (mmWave) and terahertz (THz) technolo-
gies are vital in supporting beyond fifth-generation (B5G) and
sixth-generation (6G) networks. The dependence on new high-
frequency bands is expected to achieve the global connectiv-
ity vision by providing significant enhancements in terms
of multi-Gbit/s throughput, supporting a massive number of
devices, and delivering ultra-low latency and reliable con-
nections [1]. Moreover, the transition towards higher bands
changes the paradigm of future wireless networks to small
coverage cells, and thus, forming the concept of ultra-dense
networks (UDNs) [2]. High-frequency wireless networks are
needed to meet the stringent broadband access demands and
realise various revolutionary applications, such as intelligent
healthcare, holographic telepresence, and autonomous driving.

M. Al-Quraan, A. Khan, L. Mohjazi, A. Centeno, A. Zoha, and
M. A. Imran are with the James Watt School of Engineering,
University of Glasgow, Glasgow, G12 8QQ, UK. (e-mail: {m.alquraan.1,
a.khan.9}@research.gla.ac.uk, {Lina.Mohjazi, Anthony.Centeno,
Ahmed.Zoha, Muhammad.Imran}@glasgow.ac.uk).

Future networks leverage mmWave and THz multiarray
antennas that offer beamforming capabilities, which focus the
power of radio signal towards the receiving device through
line-of-sight (LoS) communication. Beamforming is expected
to be extensively used in next-generation networks owing to
the provision of remarkable features, like high spatial reuse,
increased throughput, boosting capacity, and interference elim-
ination [3]. Despite the outstanding merits offered by such
networks, relying on high-frequency beam-based communic-
ations is more sensitive to the adverse effects of blockage
and penetration losses than those operating at lower frequency
bands. For instance, a link budget undergoes a 20 dB or more
power loss when the connection is blocked by obstacles, such
as human bodies or vehicles [4], [5]. Such a sudden drop in the
received power affects the signal quality and degrades the data
rate of the communication link, making the network unreliable
for time-sensitive applications.

Network densification aims to serve the highly populated
urban areas and meet user demands and traffic capacity.
However, cell coverage shrinkage and the presence of dy-
namic users/obstacles means mobility management in UDN
is far more complex than in legacy networks, resulting in the
recurrence of challenging issues, namely beam blockage and
frequent handover (HO) [6]. HO is a fundamental mechanism
in any wireless network that transfers the ongoing call or
data session from one base station (BS) to another. The 3rd
Generation Partnership Project (3GPP) organisation introduced
several predefined measurement events; if one occurred, HO
must be conducted [7]. Typically, a user equipment (UE)-
assisted network for controlling HO receives a measurement
report from the user with information about the received signal
strength (RSS)/quality of a specific downlink reference signal
from the serving BS (S-BS) and other neighbouring BSs. If the
condition of a specific event is met, the network will trigger
the HO process and negotiations eventuate between the S-BS
and the target BS (T-BS) to complete handing the user to the
new BS, thus guaranteeing user connectivity.

Unlike in 3G/4G networks, mobility management in B5G
networks is accompanied with negative impacts at both user
and network levels. Frequent HOs are leading to more data
transmission delays and throughput loss in the UE as well
as causing increased power consumption and poor network
quality of service (QoS), especially if there is rejection from
the T-BSs due to full resource occupation. This problem
is exacerbated in smart cities due to the highly dynamic



2

environment and the existence of blocking objects that can
shade the serving beam. Selection/reselection of the best beam
is a time-consuming task that will result in additional network
operating costs. Accordingly, beam blockage and frequent HO
are attracting the attention of research bodies in academia and
industry to find new solutions that can improve the reliability
of UDNs.

A. Related Work

Despite numerous benefits gained when shifting operational
frequencies from the lower bands (sub-6GHz) to the higher
bands (mmWave and THz), reliance on mmWave and THz
technologies introduces critical challenges, such as link block-
age and frequent HOs. To this end, many attempts have been
made to provide solutions to address the connectivity issue in
mmWave networks. In [8], the authors count on the geometry
of mmWave channels to predict when and for how much time
an LoS link will be blocked by observing the behaviour of the
neighbouring non-LoS (NLoS) signals. The main idea is that
a connected user will be served by LoS and NLoS links, and
detecting a blockage in one of the NLoS connections can be
exploited to anticipate when the LoS link will be blocked, thus
performing HO proactively. However, such techniques are not
efficient in practical scenarios due to assuming slowly moving
obstacles, highly scattering environment, and NLoS will be
blocked before the LoS links. The work in [9] explores the
use of channel state information of the sub-6GHz channels
and the effect of frequency-dependent diffraction to form
an early warning of possible mmWave signal blockages in
hybrid communication systems. Motivated by the fact that
the diffraction angle decreases as the frequency increases, the
diffracted sub-6GHz signals reach a certain signal strength
threshold earlier than the mmWave signals. This work relies
on simulations to validate the proposed method, while the
authors did not measure the sub-6GHz and mmWave diffrac-
tion in reality to identify a significant difference. Similarly,
the work in [10] predicts mmWave beam blockages based
on diffraction fringe characteristics on mmWave and sub-
6GHz signals. When a user approaches a blocking object, the
received power fluctuates with the increasing amplitude. This
phenomenon is observed earlier on sub-6GHz than mmWave
signals. Therefore, mmWave beam blockages can be expected
by noting the fluctuating patterns of the sub-6GHz signals.
However, employing both frequency bands increases the cost
and the complexity of the wireless network.

Liu and Xiao [11] followed a different mechanism to
predict beam blockage in heterogeneous mmWave networks
by observing the previous beamforming vectors and their
fingerprints. The cloud radio access network (C-RAN) is
used to maintain a fingerprinting database that can be used
to predict possible future blockages and apply the needed
countermeasures in advance. The drawback of this mechan-
ism is that it takes a long time to build the fingerprinting
database table that also needs to be updated frequently and
therefore, it is not suitable for dynamic environments. The
study in [12] proposes a joint communication and sensing
framework for near real-time extended reality (XR) systems.

Narrow beams blockage is a challenge in such systems, so the
inherent sensing capabilities of THz frequencies are exploited
to extract environmental sensing parameters and form a high-
resolution indoor situational awareness map. This map is then
used to localise the users, assess the beam blockages, and
determine the availability of LoS links between the users
and the serving units. Nevertheless, this solution is suitable
for indoor environments that are relatively less complex than
outdoor environments.

Subsequently, learning-based approaches have exploited
various ML techniques to optimise the operations of high-
frequency networks. In the interest of maintaining seamless
connectivity and fulfilling the required QoS for mobile users,
the work in [13] presents a proactive mobility management
scheme. This work comprises a resource reservation and
prediction scheme, which uses neural network (NN) to predict
the average channel quality and the connected BSs for each
real-time user, hence reserving the required resources and
guaranteeing the users’ QoS requirements. Besides, a proactive
HO (PHO) scheme, which aims to avoid frequent HOs and
reduce HO latency by relying on the dual connectivity (DC)
mechanism. The DC allows each user to connect with more
than one BS simultaneously to achieve zero HO interruption
time and maintain seamless connectivity. Likewise, the study
in [14] exploits the DC and deep learning (DL) algorithm to
avoid service interruption during HO decisions. A long short-
term memory (LSTM) model is trained to predict the user’s
future movement trends depending on historical trajectory
information to perform efficient HOs. Despite the potential of
eliminating the HO intermittency, the DC technique will add
more operational complexity to the network as well as to user
devices. In addition to incurring more costs, wasting network
resources, and increasing energy consumption. Moreover, mul-
ticonnectivity will not avoid LoS links blockages and service
disconnection. Based on dual band network operation, the
authors in [15] exploit the knowledge of the sub-6GHz uplink
channel to enhance the reliability of the mmWave downlink
channels motivated by the spatial correlation between the two
frequency bands. A DL model is trained using a tuple of sub-
6GHz channel information and blocking status to determine
whether the LoS link is blocked or not. However, this work
would not suit realistic scenarios since it only classifies the
channel status as blocked/unblocked and cannot avoid block-
ages in advance.

The emerging research direction of exploiting computer
vision (CV) for developing wireless communications and tack-
ling complicated problems in UDNs has gained much interest
recently. The consistency between the LoS communication and
the direct camera view is envisioned to play a major role
in future wireless networks. For instance, the study in [16]
leverages camera imagery and DL to tackle the beam blockage
problem in mmWave systems. The proposed technique predicts
the time series of the mmWave received power to several
hundred milliseconds in advance based on the depth images
of the served area, allowing for sufficient time to perform
HO. However, predicting the received power in advance does
not necessarily suit HO decision problems. Furthermore, it
requires large quantities of training datasets and computational



3

resources to prepare a model for accurate prediction. The
authors in [17] utilise the visual sensory information collected
from the served area to train a DL model and predict beam
blockages. RGB images captured by a camera installed on
each BS are labelled with the beam blockage status and used to
train the ResNet18 model to classify images based on blockage
status. However, the proposed technique does not predict in
advance, so service disconnection can not be avoided.

B. Motivation and Contribution
As discussed in the previous section, the studies mentioned

above have different assumptions that limit their applicab-
ility in real practical scenarios. The vision for B5G and
6G networks is to meet the strict requirements of main-
taining high levels of QoS/quality of experience (QoE) and
ensuring user connectivity to realise real-time services and
applications. Therefore, the newly emerging research direction
of exploiting CV to enhance the performance of mmWave
communication systems is envisioned to assist the operation
of such systems, satisfy the stringent demands, and encourage
their widespread. Furthermore, next-generation high-frequency
wireless networks will be prevalent in smart cities where
video surveillance systems are widely available, especially in
crowded areas, the main target of deploying UDNs. Given that
future BSs will be miniaturised and installed on lampposts, the
combination of wireless and vision information is recognised
as an attractive approach to optimise the operation of high-
frequency wireless networks [17], [18]. However, merging CV
in the operation of UDNs is still in its infancy and needs a lot
of research devotion to getting the most out of it.

In this paper, we propose a novel CV-assisted PHO mech-
anism that combines two modes of information, i.e., wireless
and imagery information, to predict possible beam blockages
in advance and then instructs the network to perform HO in a
time that maximises the overall quality of experience (QoE),
hence optimising the network performance. An object detec-
tion and localisation (ODL) algorithm is adopted to analyse the
RGB images from vision sensors, detect obstacles and users,
and determine their location and speed. Additionally, a simple
NN model is trained using the multivariate regression method
to predict the remaining time until the user is being blocked
by the obstacle. This work introduces a new HO event, called
blocking event (BLK), defined by the existence of a blocking
object and a user moving towards the blocked area. Once a
BLK event is detected, the proposed algorithm determines
the best time to trigger HO and switch the user to another
BS, therefore improving the network’s reliability. The main
contributions of this paper are as follows:

• First, we present a novel solution to the problem of
beam blockage and frequent HOs in next-generation
wireless networks by utilising CV and NN algorithms.
The CV is used to increase the network’s awareness of
the surrounding environment, and the NN model predicts
when a sudden drop in the RSS will happen due to the
existence of stationary obstacles, which is a very common
challenge in high-frequency networks.

• Furthermore, we introduce a new HO event called BLK,
which can be considered in B5G and 6G networks besides

Figure 1: The proposed system model: portion of an UDN including
one macro BS and three SBSs each equipped with an RGB camera.

the standardised events defined by the 3GPP [7]. The
BLK event is defined by detecting the presence of an
obstacle and a user moving toward the blocked area.

• To determine the best point of triggering and completing
HO once the BLK event is detected, this study provides
an analysis on determining the optimal HO trigger point
to keep the user’s QoE at a high level.

• Finally, we validate the accuracy of the proposed frame-
work using state-of-the-art simulation tools. The results
demonstrate the significance of this solution in maintain-
ing seamless connectivity.

C. Organisation

The rest of this paper is organised as follows. Section II
presents the system and channel models adopted to study the
beam blockage problem. Section III describes the schematic
diagram and the proposed framework in detail. In Section IV,
performance evaluation and simulation results are discussed.
Finally, Section V gives concluding remarks.

II. SYSTEM AND CHANNEL MODELS

In this section, we offer a detailed description of the system
and channel models and discuss the scenario under study.

A. System Model

We consider a wireless communication system consisting of
one macro BS and three SBSs1 covering a 90×15m street, as
illustrated in Fig. 1. The system adopts orthogonal frequency
division multiplexing (OFDM) with K subcarriers and cyclic
prefix of length D and operates at 60 GHz [19]. Each SBS
is equipped with a mmWave uniform linear array (ULA)
composed of M antenna elements that enable beamforming
technology to create LoS beams that can achieve high RSS at
a single-antenna user. To reduce cost and power consumption,
this study assumes analog beamforming architecture with M
phase shifters and a single radio frequency (RF) chain [20].
Further, to simplify the network operation, each SBS adopts
a predefined beam codebook F = {fi}Bi=1, where fi ∈ CM×1

1It is important to mention that: (i) extending this proposed framework to
include a larger number of SBSs is straightforward, and (ii) the three SBSs
model is used for simplicity.
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and B is the total number of beams in the codebook. Each
beamforming vector fi can be expressed as:

fi =
1√
M

[
1 ej

2π
λ d sin(θi) . . . ej

2π
λ (M−1)d sin(θi)

]T
, (1)

where 1√
M

is the normalisation factor, d is the inter-element
distance of the antenna array, λ is the wavelength correspond-
ing to the carrier frequency, and θi ∈ { 2πi

B }B−1
i=0 is the steering

angle.
To determine the best beam vector that can achieve max-

imum received power, the mmWave user will send a pilot
message to the SBS that can be used to train the B beams
in order to find the optimal beam f⋆. Once f⋆ is determined,
the received downlink signal at the user’s receiver at the kth
subcarrier is given as follows:

yk = hT
k f

⋆sk + nk, (2)

where h ∈ CM×K represents the mmWave channel between
the SBS and the user, s is the transmitted symbol, and n ∼
N

(
0, σ2

)
is the additive white Gaussian noise (AWGN).

In addition to the ULA, each SBS has a vision sensor (an
RGB camera with a standard definition (SD) resolution) that
captures visual information from the covered area to assist the
operation of the UDN. The vision information is transmitted to
a central server located at the macro BS through 10Gbps point-
to-point mmWave backhaul links [21]. The role of the central
server is to collect, process, and use the visual information to
train an ML model that can proactively predict possible beam
blockages. This paper assumes a simple scenario including a
moving user (vehicle) and a stationary blocking object (bus)
that blocks the LoS communication between the SBS and the
user.

B. Channel Model

This study adopts the geometric mmWave channel model.
The reasons for selecting this model are: i) it captures the
physical properties of the signal propagation, ii) it enables the
direct use of accurate channel simulation tools, such as ray
tracing, the tool selected to generate the wireless data used
to validate this work. The mmWave channel model at the kth
subcarrier can be written as [20]:

hk =

D−1∑
d=0

L∑
ℓ=1

αℓe
−j 2πk

K dp (dTs − τℓ)a (θℓ, ϕℓ) , (3)

where L denotes the number of channel paths, αℓ, τℓ, θℓ, ϕℓ

are the gain, delay, azimuth and elevation angles of the arrival
of path ℓ, respectively. Also, Ts represents the sampling time.

Optimal Beam and RSS: The maximum RSS value at any
x location is associated with finding the optimal beamforming
vector f⋆x that can achieve this value. In other words, determ-
ining f⋆x means obtaining the maximum RSS and vice versa.
As a result, these can be mathematically expressed as:

f⋆x = argmax
f∈F

1

K

K∑
k=1

E
[∥∥∥(hk,x)

T
f
∥∥∥2
2

]
, (4)

and

RSSx =
1

K

K∑
k=1

E
[∥∥∥(hk,x)

T
f⋆x

∥∥∥2
2

]
, (5)

where hk,x is the kth subcarrier’s mmWave channel between
the SBS and the user at the location x.

III. PROPOSED CV-ASSISTED PHO FRAMEWORK

The key idea of this work is to anticipate future beam
blockage using CV and NN to perform timely PHO. Beam
blockage prediction is a very challenging task because it
depends on finding the location of a moving user and its
possible sources of blockage in a realistic wireless scenario.
In CV, ODL is used to identify an object’s class and location
coordinates; however, object detection alone is not enough to
determine future blockages that necessitate: first, an efficient
system that can detect the moving users (wireless users) and
the potential source of blockage. The second is extracting
augmented information, including speed, time, and distance
from the blocked area. Guided by the above notions, the beam
blockage prediction is divided into two sub-tasks, (i) ODL,
which is used to determine the types of objects and their
location to calculate their speed, (ii) Using the multivariate
regression model to predict the remaining time until the user
reaches the blocked area based on the information extracted
from the RGB images. Before delving into a detailed discus-
sion of the various components of the proposed framework,
we highlight the assumptions made in this study as follows:

1) We assume the availability of vision sensors integrated
with SBSs. Moreover, the sensors can provide flat RGB
images showing that the width of the street’s upper and
lower pixels are the same.

2) The vision sensors are not affected by the time of the
day (day/night), as well as, the weather conditions.

3) The macro BS has local processing units, where op-
timisation and local decision-making occur. In addition,
the ODL consistently provides high performance in
predicting the objects and determining bounding boxes
within acceptable precision.

4) The wireless user is identified in the image, and the net-
work correctly performs the proactive HO, if necessary,
for that user.

In the worst-case scenario, if the assumptions are not met,
the wireless network will lose the vision assistance in solving
the beam blockage problem and revert to a simple wireless
network without proactive blockage prediction.

A. Schematic Diagram of the Proposed Framework

This study aims to achieve a blockage prediction mech-
anism, such that the network can proactively HO the user
well before it reaches the blocked area. Once a BLK event
is spotted out in the camera’s field of view, the algorithm’s
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main task is to predict the time needed by the user to reach
the shadowed area, denoted as TtoBLK . This time allows
us to determine the best instant to perform HO before the
user reaches that area and undergoes service interruption. Fig.
2 demonstrates the schematic diagram of the proposed tech-
nique. We rely on a heuristic approach since wireless networks
generally serve dynamic and unpredictable environments like
urban areas and smart cities. Moreover, increasing the network
complexity usually leads to NP-hard optimisation problems.
Such problems demand a very high computation time, which is
intolerable and challenges latency-sensitive applications, such
as intelligent transportation systems. Therefore, the nature of
the problem we are looking at motivates the use of heuristic
models [22], [23]. Multivariate regression is used to predict
the TtoBLK by modelling and training a two-hidden layer NN.
Initially, the server will build a complete view of the covered
area (the street) with the exact coordinates and locations of
each SBS. The RGB cameras continuously2 capture images
from the covered area, then every SBS adds its identification
number and timestamp to each image before sending it to
the central server through the mmWave backhaul link. Once
received, the server performs the following tasks:

• First, it uses the ODL algorithm to detect blockages/users
and updates its view. If a BLK event is detected, the
server will move to the next step; otherwise, it will return
to the detection phase.

• Then, the server identifies the user’s exact location and
updates its view, the user’s location information and the
timestamp difference between two consecutive images are
used to determine the user’s speed.

• After that, the location and speed information are stored
for model training/retraining and used to predict the
TtoBLK .

• Finally, if the TtoBLK is greater than the execution time
of the proposed algorithm (Texec), the server will wait
for a specific time and then send a HO trigger event to
the network in order to HO the user to another SBS.
Otherwise, it will return to the detection phase.

The Texec is defined as the time required by the proposed
algorithm to be completed, starting from when the RGB images
are captured until the HO process is completed. It is expressed
in (6) and can be evaluated by the summation of four sub
times: (i) The time required to send two consecutive RGB
images to the central server (TRGB), (ii) the time needed
to perform ODL on the two images (TODL), (iii) regression
model inference time (Tinf ), and (iv) HO implementation time
(THO).

Texec = TRGB + TODL + Tinf + THO. (6)

In addition, we define a new time parameter notated as (Tw),
which is the waiting time after completing the regression
inference and before triggering HO. The value of Tw can
vary based on defining the optimal trigger region, as will be
discussed in Section III-D; however, the maximum value of

2Note that some cameras have a motion detection feature that can be
activated to reduce the amount of vision information sent to the server [24].
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Figure 2: Schematic diagram of our proposed framework.

Tw is given as follows:

Tmax
w = TtoBLK − Texec. (7)

It is noteworthy that the values of all parameters specified
in (6) are fixed, whereas the value of Tw varies based on
the user’s location and speed. Determining the values of
TRGB , TODL, Tinf , and THO depends on the capacity of
the mmWave backhaul links, the type of model used, and the
specifications of the central server. While choosing the value
of Tw is related to defining the optimal HO trigger region
where the algorithm will find out the optimal time to perform
HO.

B. Object Detection and Localisation (ODL)

The central server needs to receive at least two consecutive
images (frames) from each SBS to detect the objects’ presence,
position, and speed. Table I lists the most common camera res-
olutions for surveillance applications and the required image
transmission time over 10 Gbps mmWave backhaul links. It
can be noticed from Table I that higher camera resolutions
incur longer transmission times due to the production of
larger image sizes. Since this study considers an SD camera
resolution, TRGB is equal to the transmission time of two SD
images plus 38.5 ms, which is the time difference between
capturing two consecutive RGB images, assuming that each
camera records vision information at 26 fps [25]. Hence, the
time required to transmit these images from the SBS to the
server, TRGB , would be about 40 ms.
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Figure 3: Using ODL to detect objects and determine their locations.
This information is used to determine the speed of the moving object.

Table I: The most common camera resolutions with associated image
transmission times over 10 Gbps links.

Term Resolution Transmission time (ms)
2CIF 704×240 0.4
SD 640×480 0.7

4CIF 704×480 0.8
HD 1280×720 2.2

FHD 1920×1080 5

Once the server receives the visual information, the first
step is to process that information to obtain the location of
the objects. In this work, we adopt a state-of-the-art detection
model, you only look once (YOLO) version 3, which can
provide fast and accurate real-time object detection [26].
Instead of developing and training an object detection model
from scratch, YOLO models can be used directly without the
need for any modification. Furthermore, the main objective
of ODL is to identify if a BLK event exists and determine
the objects’ locations in the pixel scale, then this information
will be converted to the meter scale to find the speed of
the objects. The server will feed the RGB images to the
object detection algorithm, which in its turn detects the objects
within the image by drawing bounding boxes around them and
adding tags showing their categories, as illustrated in Fig. 3.
Moreover, this algorithm will provide the location information
of the objects by determining the coordinates of the upper left
and lower right corners of the bounding boxes. We use this
information to determine the centre of the moving user, as
shown in Fig. 3.

The location information obtained from the YOLOv3 model
is in pixel scale, and to determine the user’s speed, we need
to convert this information into a metric scale. The cameras’
field of view is set to 100 degrees to ensure that the entire
street is covered with minimal overlapping. Since the cameras
capture images in two dimensions only, we assume that the
image is flat and its width is equal to 30m distance3. Therefore,
the following formula can be used to determine the user’s

3Determining image width and height in meter scale can be easily per-
formed in real-world systems by capturing an image from the camera and
measuring the actual image dimensions based on image corners.

displacement in metres:

Travelled distance =
Wm

Wp
×∆d, (8)

where Wm is the image width in meters, Wp is the image
width in pixels, and ∆d = |x1 − x2| is the x-axis user
displacement in the pixel scale, assuming the user is moving
in a straight trajectory, as demonstrated in Fig. 3. For example,
if a camera produces images with a resolution of 640×480,
then every 21 pixels are approximately equal to a distance
of one meter. After evaluating the travelled distance, it is
necessary to determine the associated travel time, which can
be easily measured by exploiting the timestamp information
of each image. Since the camera’s frame rate is 26 fps, the
time difference between two consecutive images will be about
38.5 ms. Now, the following speed formula can be used to
determine the speed of the moving user:

Speed =
Distance

T ime
. (9)

Since the proposed solution depends on the Texec to
determine if we have sufficient time to perform PHO, as
demonstrated in Fig. 2, we need to find out the detection
time of the YOLOv3 model (TODL). Benefiting from the high
performance of multi-access edge computing (MEC) servers,
the TODL can be reduced significantly to tens of ms when
using the MEC server as a central server. Based on the analysis
presented in [26], we assume that the TODL requires 102 ms
for detecting objects in two images.

C. Multivariate Regression: Learning and Prediction

In this section, we will discuss the reasons for selecting ML
techniques to predict the value of TtoBLK and the training and
inferencing processes for the given model. Using analytical
methods can fulfil the task of determining the TtoBLK in
general. However, the main objective of this work is to propose
a flexible, scalable, and transferable framework that can be
employed in complex and dynamic environments. Therefore,
we used a NN model for the following reasons:

1) Analytical solutions generally perform very well in
static systems, where the model’s assumptions do not
change. This study targets high-frequency wireless net-
works, which are highly dynamic and unpredictable.
For instance, predicting TtoBLK greatly depends on the
cameras resolution, which varies in practical wireless
systems and provides diverse data. Machine learning
models learn from problem-specific data to automate the
process of an analytical model and solve the associated
tasks [27]. Therefore, we use neural networks to provide
a more generalised and scalable solution.

2) Given the dynamicity and complexity of the targeted
environment, we need a model that can scale well
under these conditions. NNs are flexible and adapt to
the dynamics of the problem by learning from diverse
data. Moreover, the transfer learning feature allows these
models to be transferable, providing our solution a new
dimension to perform distributed learning.
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2nd hidden layer 
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𝑥
𝑦

𝑠𝑝𝑒𝑒𝑑
(𝑇𝑡𝑜𝐵𝐿𝐾)

Figure 4: A two-hidden layer neural network to perform regression.

Table II: Sample of the training dataset.

68.47 9 1.5 60.00

74.21 10 5 1166.00

81.22 9 10 1284.00

71.88 10.5 12 291.67

75.92 9.5 15 502.67

81.22 10 18 713.33

86.91 11 20 926.50

𝑇𝑡𝑜𝐵𝐿𝐾(𝑚𝑠)𝑆𝑝𝑒𝑒𝑑 (𝑚/𝑠)𝑥 (𝑚) 𝑦 (𝑚)

DL algorithms have achieved breakthroughs in various areas
but at the expense of high computing and energy consumption.
Combining CV with DL to assist the operation of UDNs
will increase the models’ computational complexity, rendering
this fusion inefficient [28]. Since this study depends mainly
on vision information, we carefully select the ML model
that does not require much training time and achieves the
expected results. In the previous section, we discussed using
the pretrained YOLOv3 ODL model, which is off-the-shelf
and can be used directly; thus, no further training is required.
Moreover, to predict the TtoBLK , we select a simple NN model
to conduct multivariate regression, as shown in Fig. 4. The
multivariate regression technique is a statistical approach that
measures the relationship between dependent variables (i.e.,
TtoBLK) with more than one independent variable (i.e., x, y,
speed). Besides, instead of using information-rich RGB images
in model training/inferencing, the proposed technique only
requires extracting the user’s location and speed to be fed into
the NN model. This yields to significant savings in time.

Training Phase: The operations of the proposed re-
gression model include model training and inference; both
require the availability of data samples. For training the
initial model, training datasets are readily generated using
random (x, y) locations confined to our system model’s street
dimensions and using several speed values that reflect the
expected vehicle speed in urban areas. The dependent variable
TtoBLK is calculated by fixing the location of the obstacle
(bus) at an arbitrary location, for example at x = 68.38m
as illustrated in Fig. 1, and using the speed formula given
in (9). Table II shows a small sample of nearly ten thousand
generated data samples that are divided into 70% training,

Figure 5: Multivariate regression model training and validation loss
versus number of epochs.

20% validation, and 10% testing. Adaptive moment estimation
(Adam) is used as an optimiser in the training process.
Moreover, other model hyperparameters, such as the number
of epochs, batch size, metric, and activation function, are set to
E=50, B=20, mean square error (MSE), and linear activation
function, respectively. Fig. 5 shows the training and validation
loss for the model in each epoch. This figure shows the
effectiveness of this model since the training and validation
loss approaches zero as the number of epochs increases. It
is worth mentioning that the number of epochs depends on
the number of data samples used for model training; a small
dataset and a large number of epochs will lead to model
overfitting, which is an unwanted behaviour for predictive
modelling. The coefficient of determination (R squared) metric
is adopted for model performance evaluation to measure the
linear correlation between the predicted and actual values
using the test dataset. The values of R squared range between
0 and 1; 1 is the optimal value that can be achieved. Using
the test dataset, our model achieves 0.9998, which indicates
the superb performance of this model. Finally, based on the
generated dataset and the above mentioned hyperparameters,
the proposed regression model took about 20 seconds to be
trained using typical personal computer resources. However,
using the MEC server, the training time will be less than one
second [29].

Inference Phase: Using the trained regression model,
our framework is now ready to predict TtoBLK for the user
detected in images received from the cameras. After complet-
ing the street view and updating the blockage status, whenever
the server receives RGB images from the SBSs, it will use the
ODL to extract the location and speed of the moving user as
discussed in Sec. III-B. The user’s information is now ready
to be fed to the input layer of the regression model to infer
the remaining time until the user reaches the blocked area.
Furthermore, by using the same MEC server resources, the
value of Tinf is around 1 ms.
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Figure 6: Optimal trigger distance for a user with a speed of 30 mph.

D. Optimal HO Trigger Distance

Once all the parameters like user location, speed, and
TtoBLK are known, the final stage is to determine the optimal
HO trigger location to maintain the user’s QoS/QoE as high
as possible. This is the optimal distance at which the cent-
ral server initiates the HO request after detecting the BLK
event, and performs the PHO with minimum performance
degradation. In this work, we use a threshold distance-based
setup, where the central server determines the optimal trigger
distance using the following equation:

Dopt = Su × Tmax
w , (10)

where Su is the speed of the user, which is already known
from ODL. From equations (7) and (10), the variable trigger
distance D can be inferred as:

D ≤ Su(TtoBLK − Texec), (11)

where Texec is the sum of the four sub times i.e., TRGB is
40 ms, TODL 102 ms and Tinf is 1 ms whereas the THO is
80 ms as will be discussed in the next section. The formula
in (11) can be used to differentiate between early and optimal
HO decisions.

To determine Dopt, we first need to identify the detection
region, which can be defined as the region in which the
proposed algorithm will monitor and detect if a wireless
user is spotted in that zone. The detection region is confined
within two boundaries, i.e. the user detection boundary and the
optimal trigger boundary. This region is followed by the failure
region located between the optimal trigger boundary and the
blocked area, as shown in Fig. 6. The user detection boundary
is where the proposed algorithm begins the detection process
for any BLK event. On the other hand, the optimal trigger
boundary, denoted by Dopt, is the minimum distance from the
blocked area where a successful optimal HO is performed.
For instance, if HO is performed before the optimal trigger
boundary, the user will experience undesirable performance
degradation due to the wireless channel’s path loss. Whereas,
if the HO is performed beyond the optimal trigger boundary,
the user’s LoS link will be blocked by the blocking object due
to insufficient time to execute the PHO algorithm.

Therefore, the algorithm has to select the best Tw value
so the user can be handed over to another SBS at the optimal
point and avoid service disconnection. To successfully perform
HO, the Texec is found to be equals 223 ms as discussed
earlier. The formula in (11) can be used to determine the
best point for performing optimal HO and study the impact of
performing early HOs on system performance. For extensive
analysis, optimal trigger distances based on different speeds

Table III: Optimal trigger distance based on different user speeds.

Speed (mph) TtoBLK (sec) Tw (sec) Dopt (m)
5 9.85 9.63 21.52
10 4.92 4.70 21.01
15 3.28 3.06 20.52
20 2.46 2.24 20.03
25 1.97 1.75 19.56
30 1.64 1.42 19.04
35 1.40 1.18 18.46

are given in Table III. For example, if a car is detected at
x = 90m and is moving at 30 mph, the optimal trigger
distance to perform PHO is 19.04 m, as shown in Fig. 6.
Once a BLK event is detected, the optimal trigger distance
is calculated using (11). Su is already known, TtoBKL is
obtained using regression analysis, and Texec is also known.
It is possible to perform PHO within the detection region.
However, this early HO will significantly degrade the RSS
value, which is undesirable. Therefore, in our proposed model,
the central server waits for Tmax

w until the user reaches the
optimal distance to complete the PHO request.

E. Proactive Handover Mechanism

THO is one of the key parameters of our algorithm to
determine whether there is enough time to perform HO and
avoid radio links failures. Conventionally, if the user’s link
is disconnected, a sequence of steps precedes reconnecting
the user to the same or another SBS. The steps include
beam failure detection, beam failure recovery, cell search,
and contention-based/free random access [30]. Supposing the
network employs proactive blockage prediction, the first two
steps can be avoided, whereas the cell search can be performed
while the user is still connected to the serving SBS. Therefore,
THO boils down to the latency accompanied by performing
contention-based or contention-free random access. This study
considers contention-based random access, which requires 80
ms according to the 3GPP specifications [30], [31]. Since the
values of all parameters in (6) are determined, the central
server is aware of the time needed to execute the proposed
algorithm, Texec equals 223 ms. If the central server detects
a BLK event in the received RGB images, the server will
predict the time needed until the user reaches the blocked
area (TtoBLK). If TtoBLK is greater than Texec, then our
algorithm has a high probability of successfully triggering and
completing HO. Whereas when TtoBLK is less than Texec, the
time needed to complete the HO process and avoid radio link
failure is insufficient, which means that the user undergoes a
service interruption.

IV. PERFORMANCE EVALUATION AND RESULTS

To investigate the effectiveness of the proposed CV-based
PHO framework, we utilise a publicly available dataset called
vision wireless (ViWi) [32]. The ViWi dataset combines visual
and wireless information generated using Wireless InSite ray-
tracing software and 3D game modelling for mmWave wireless
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(a) (b) (c)

Figure 7: Analysing ViWi information to construct the system model. (a) Locating the origin of the Cartesian coordinates, (b) Using ViWi
information from colocated cameras direct view scenario to model SBS2 in our system model, and (c) ViWi information from colocated
cameras blocked view scenario shows a similar RSS pattern when there is no blockage.

systems. It considers four different scenarios based on the
camera location (collocated and distributed) and the view
(direct and blocked). Furthermore, each data sample represents
4-tuple of user location, RGB image, depth image, and the
wireless channel. The distinctive feature of ViWi is that
it is a parametric, systematic, and scalable data generation
framework that can be used to produce data based on different
scenario requirements. In the performance evaluation, the
focus is to track the strength of the signal received by the
moving user and test the value of the proposed algorithm in
maintaining a good received signal during movement com-
pared to traditional mmWave systems (i.e., without PHO). It
should be noted that, although the considered system is simple
and does not necessarily reflect a practical scenario, the results
obtained from our proposed framework (see Section IV-B)
demonstrate the potential of exploiting vision information to
enhance the reliability of future wireless networks. A more
complex scenario will be considered in our future work.

A. Simulation Setup
In our simulation, we consider a simple environment con-

taining a blocking object located near the SBS1 and a single
user moving at a speed of 30 mph, as illustrated in Fig. 1. The
user is moving from left to right and is served from SBS1 since
the RSS from that BS is higher than other SBSs. Moreover, the
obstacle is static and blocks the LoS communication between
the SBS1 and the user when it reaches the obstacle’s blocked
region. Our system model is different from any of the scenarios
introduced with the ViWi dataset; however, we were able
to produce both visual and wireless data for our model by
merging the two scenarios of collocated cameras, direct and
blocked view. Fig. 7 shows the analysis performed to form our
system model. Initially, we analyse the information provided
in the ViWi dataset to determine the place of origin of the
Cartesian coordinate system, as it is not mentioned in the

𝑅𝑆𝑆𝐼(𝑥) = 

𝑚=0

15

𝑎𝑚𝑥
𝑚

Curve fitted formula:

Coefficients:

𝑎0 3.69140438e-11 𝑎8 -4.79406833e-18

𝑎1 2.38244809e-11 𝑎9 9.59204806e-20

𝑎2 -1.50142337e-11 𝑎10 -1.33887437e-21

𝑎3 4.42903748e-12 𝑎11 1.28057711e-23

𝑎4 -6.95624681e-13 𝑎12 -8.04694410e-26

𝑎5 6.59641831e-14 𝑎13 3.04183473e-28

𝑎6 -4.04638010e-15 𝑎14 -5.62049872e-31

𝑎7 1.67495163e-16 𝑎15 2.23997329e-34

Figure 8: Determining the RSS from SBS2 at trajectory y= 9 using
the curve fitting tool.

ViWi dataset. We used the ViWi trajectories (y= 9 to 11) to
identify the location of the origin and other trajectories, as
shown in Fig. 7(a). Then, for each trajectory considered in
ViWi, we plot the RSS against the vehicle location for the
two scenarios, as illustrated in Fig. 7 (b) and (c). From these
figures, we can conclude that each SBS has the same signal
pattern (i.e. bell shape) in any trajectory with the highest signal
strength at the same x-location of the SBS. To model the RSS
of SBS2, we used the information in Fig. 7(b) and applied
curve fitting to generate the mathematical formula. First, we
predict the RSS value for each other trajectory (y= -1 to y=
8) at each user location, and then we used the curve fitting
process to create the mathematical formula that gives the RSS
versus vehicle location (x). Fig. 8 illustrates the generated
mathematical formula and RSS from SBS2 at y=9, which is
the trajectory used in the evaluation. Finally, Python programs
are used to conduct the simulations.
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(a)

(b)

Figure 9: Performance evaluation of the proposed framework. (a) RSS
from SBS1 and SBS2, (b) Using the CV-assisted PHO algorithm to
detect BLK event and trigger PHO.

B. Simulation Results

In what follows, we examine the usefulness of the proposed
algorithm in maintaining physical link connectivity and ensur-
ing a timely and seamless transition from one SBS to another.
The RSS indicator (RSSI) is used as a metric to measure the
quality of the received signals from the nearby SBSs. Fig.
9(a) plots the RSSI received from SBS1 and SBS2 at the
y=9 trajectory along the street. It is noticed that the signal
drops from SBS1 when the user reaches the area behind the
blocking object since the beam undergoes severe attenuation.
In contrast, the signal received from SBS2 does not experience
any interruptions because the LoS path is clear between the
user and the SBS2. In a traditional wireless network (i.e.,
does not employ the PHO algorithm), the vehicle experiences
a connectivity disruption when entering the blocking area.
Such interruption may lead to service drop and the need to
initiate a new connection, which means more delay and poor
QoE, inconsistent with the vision of 5G/6G wireless networks
of providing ultra reliable and low latency communications.
Fig. 9(b) demonstrates the capability of the proposed PHO
algorithm in proactively predicting beam blockages. This fig-
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R
SS
I

Figure 10: The normalised RSSI as function of the user location when
the user speed is fixed at 30 mph.

ure reveals the efficiency of the PHO algorithm in identifying
the BLK event in advance and triggering a timely HO. The
merit of determining the optimal point of triggering HO in our
algorithm is vital to maintain the QoE at high levels and avoid
early HO, which could lead to bad system performance. The
points of triggering HO and HO completion are also shown in
the figure, which illustrates how our algorithm is also QoE-
aware.

Fig. 10 shows the results of the early/optimal HO trigger
distance for the user moving at the speed of 30 mph. The
optimal trigger boundary is the minimum distance where the
central server can perform the successful HO with minimum
performance degradation measured in the percentage drop in
normalised RSSI. In our case, the optimal distance for the user
moving at a speed of 30 mph is found to be around 70 m from
origin. The central server performs HO once a BLK event is
detected, as a result, the resources of the user shift from SBS1
to SBS2. During the HO process, the user will experience a
drop in RSSI due to path loss. For instance, if the central
server performs an early HO i.e., 5 m before the optimal
trigger boundary, there is a power drop of approximately 20
% as shown in Fig. 10. therefore, the optimal trigger distance
provides the trade-off between the PHO success rate and the
drop in RSSI to maintain the seamless connectivity.

Next, we investigate the effectiveness of the PHO algorithm
in improving the reliability of high-frequency wireless net-
works by considering a real-time application sensitive to
service interruption and network latency. We assume a moving
user that is running a video call and consider the mean opinion
score (MOS) as a metric, which is a measurement of the QoE.
MOS is a measure of the media’s overall perceived service
quality based on human judgement and ranges from 1 to 5 (1-
bad, 2-poor, 3-fair, 4-good, 5-excellent) [33]. Fig. 11 shows
the MOS value versus the user location, which is experiencing
different RSS based on the distance from the SBS and the
presence of obstacles. To translate the values of RSS to the
corresponding values of MOS, we adopt the mapping table in



11

Handover completion point

Figure 11: Measuring the QoE with and without PHO.

[34]. From Fig. 11 we notice that without the PHO algorithm,
the user will experience a service interruption when it reaches
the blocked area, and the call quality is dropped by 40% to
the poor MOS region. Call quality will remain poor until the
user drops the serving SBS link and connects to a new SBS.
Whereas, using the PHO technique, our algorithm intelligently
detects the existence of a blockage and countermeasures the
possible signal blockage by triggering HO in advance. There-
fore, maintaining the perceived MOS at the excellent region.
This work enhances the reliability of UDNs that will facilitate
the realisation of future latency-sensitive applications. It is
worth noting that the interest in this research direction is
increasing, and the recent paper [35] has considered a multi-
user scenario, which will also be considered in our subsequent
study.

V. CONCLUSIONS
This paper proposed a novel CV-based PHO framework to

address the challenge of frequent HO and beam blockage in
next-generation wireless networks. The key idea is to raise
the network’s awareness of the surrounding environment by
leveraging visual information and using the CV to predict
BLK events and perform PHO. A pretrained object detection
model, in addition to a multivariate regression model, are used
to predict the obstacle/user location and the time remaining
before the user arrives at the blocked area. Moreover, this
framework is QoE-aware, where we presented an analysis of
the optimal location/time to perform HO while minimising
the drop in QoE. The evaluation results demonstrated that
this framework is able to avoid 40% service reduction and
maintain a high level of perceived QoE. Accordingly, this work
improves the performance of the UDN by making it more
dynamic in interaction with the environment, which is inline
with the vision of achieving low-latency and time-sensitive
applications in B5G and 6G networks.
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