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C H E M I S T R Y

An artificial intelligence enabled chemical synthesis 
robot for exploration and optimization of nanomaterials
Yibin Jiang1, Daniel Salley1†, Abhishek Sharma1†, Graham Keenan1,  
Margaret Mullin2, Leroy Cronin1*

We present an autonomous chemical synthesis robot for the exploration, discovery, and optimization of nano-
structures driven by real-time spectroscopic feedback, theory, and machine learning algorithms that control the 
reaction conditions and allow the selective templating of reactions. This approach allows the transfer of materials 
as seeds between cycles of exploration, opening the search space like gene transfer in biology. The open-ended 
exploration of the seed-mediated multistep synthesis of gold nanoparticles (AuNPs) via in-line ultraviolet-visible 
characterization led to the discovery of five categories of nanoparticles by only performing ca. 1000 experiments 
in three hierarchically linked chemical spaces. The platform optimized nanostructures with desired optical properties 
by combining experiments and extinction spectrum simulations to achieve a yield of up to 95%. The synthetic 
procedure is outputted in a universal format using the chemical description language (DL) with analytical data 
to produce a unique digital signature to enable the reproducibility of the synthesis.

INTRODUCTION
Nanomaterials have unique size- and shape-controlled physical and 
chemical properties with applications in areas of medicine (1), elec-
tronics (2), catalysis (3), and quantum technologies (4). Controlling 
the morphology of nanomaterials is crucial for tuning their unique 
characteristics such as optical (5), electrical (6), and magnetic (7) 
properties. Although certain types of nanoparticles such as Au 
nanorods can be reliably fabricated (8), the synthesis of nanomaterials 
often suffers from irreproducibility (9), low yield (10), and poly
dispersity (11). Various bottom-up fabrication methods including 
electrochemical (12), photochemical (13), bio-templated (14), and 
seed-mediated (15) synthesis have been developed to create nano-
materials with desired properties. Despite the availability of various 
synthetic routes, finding optimal conditions for a target nanostructure 
with high shape yield and monodispersity is a huge challenge. This 
is due to the high dimensionality and sensitivity to the synthetic con-
ditions such as reagent concentrations (16), order of reagent addition 
(17), temperature (18), and mixing rate (19). Despite this sensitivity, 
a standard, robust, and unique digital signature that originates from 
both the synthetic procedure and validation of the synthesis is still 
lacking. These problems become more pronounced when multistep 
synthesis (20) is required to achieve the targeted nanostructure.

The development of autonomous precision robotic architectures 
capable of parallel experiments in a closed-loop approach guided by 
machine learning (ML) algorithms can provide a viable path to 
address high dimensionality and sensitivity to synthetic conditions. 
Recently, various autonomous platforms have been developed for 
chemical synthesis (21, 22), product separation (23, 24), and in-line 
characterization (25). It has also been demonstrated to accelerate 
material discovery by combining autonomous platforms with cus-
tomized ML algorithms (24–31). However, recent automation of 
nanomaterials synthesis (32) focuses on user-defined target-specific 

optimization (31, 33) without exploration and can still require manual 
steps (34). A system that unbiasedly performs open-ended explora-
tion and searches for a diversified set of high-performance products 
is still lacking. Quality diversity (QD) algorithms (35) such as novelty 
search with local competition (36) or multidimensional archive of 
phenotypic elites (MAP-Elites) (37) have been applied in several 
areas including real-time decision-making (38), adaptive robotic 
control (39), de novo drug molecule discovery (40), and novel proto-
cell behavior search (41). In contrast to the classic optimization 
algorithms that target a single highest performance solution, QD 
algorithms can find solutions with both diversified behavior and 
high performance, thus suitable to explore the chemical space and 
facilitate the diversity of products.

A crucial requirement for a closed-loop autonomous system is 
the selection of appropriate characterization techniques (32). Various 
characterization techniques such as atomic force microscopy (42), 
scanning electron microscopy (43), transmission electron microscopy 
(TEM) (44), dynamic light scattering (45), and small-angle x-ray 
scattering (46) are widely applied to investigate the morphology of 
nanomaterials. Although electron microscopy can provide detailed 
information on nanostructures, it is still impractical to implement it 
in the closed loop because of its cost and complexity. Considering 
the strong dependence of electromagnetic properties of metallic 
nanoparticles on the morphology and composition, in-line optical 
spectroscopy such as ultraviolet-visible (UV-Vis) and infrared (IR) 
are optimal and practical characterization techniques and thus can 
be used as structural indicators. For open-ended exploration, in-
creasing the diversity of spectral patterns could lead to the discovery 
of nanomaterials with distinct morphologies. The spectroscopic 
features such as peak prominence and broadness can be further 
used to search for synthetic conditions with higher yield and better 
monodispersity.

Here, we conceptualized and developed a system for the autonomous 
intelligent exploration, discovery, and optimization of nanomaterials 
(AI-EDISON), which aims for both discovery and reproducible 
multistep synthesis of novel nanomaterials, with their unique digital 
signatures derived from physical properties and synthetic procedures 
(47). The experimental architecture performs parallel synthesis of 
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nanomaterials together with real-time spectroscopic characterization 
and is assisted by ML algorithms and an extinction spectrum simula-
tion engine. AI-EDISON uses state-of-the-art quality-diversity algo-
rithms to explore high-dimensional combinatorial synthetic space 
to perform open-ended exploration and then conducts targeted opti-
mization to search optimal synthetic conditions for nanomaterials 
with finely tuned optical properties. It can be further used to per-
form multistep synthesis of any desired nanoparticles it has found 
with a resource-efficient directed graph strategy coupled with 
real-time characterization. Using the directed graph approach, the 
complete multistep nanoparticle synthesis can be efficiently repre-
sented as a robust digital procedure, avoiding irreproducibility be-
cause of operation errors. With AI-EDISON, we investigated three 
chemical synthetic spaces connected by the seed-mediated synthesis 
of gold nanoparticles (AuNPs), where nanoparticles synthesized from 
the lower-level space were used as seeds in the higher-level space. By 
using UV-Vis spectroscopy as a primary characterization technique, 
we started with the hypothesis that increasing the diversity in the 
spectra could lead to the efficient exploration of the chemical space 
with distinct nanostructures. After exploration, a simulation engine 
was used to create the targets to further optimize the optical properties 
of AuNPs. These linked chemical spaces initialized from a single 
physical seed with intermediate exploration and optimization steps 
at various levels are represented in Fig. 1A.

The overall closed-loop algorithmic scheme used for the discovery 
of nanomaterials consists of two different modes: exploration and 
optimization (Fig. 1B). For each complete closed loop, AI-EDISON 
performs three different steps corresponding to nanoparticle syn-
thesis, UV-Vis characterization and cleaning, and designing new 
experiments using ML algorithms, respectively. In the exploration 
mode, the structural diversity of the nanoparticles is achieved by 

searching for diversity in the behavior space. This behavior diversity 
is derived from the features observed in the UV-Vis spectra, such as 
peak number and position. The fitness, which is a numerical indication 
of the sample’s performance, is evaluated on the basis of peak prom-
inence and broadness that correlate with the yield and monodispersity 
of the nanoparticles. A new batch of experiments is generated from 
previous synthetic conditions leading to higher-performance sam-
ples and diversified features. The process including the three steps 
iterates until the exploration is completed. After the exploration, 
TEM is used as a secondary characterization technique to check the 
morphologies of nanoparticles that have high-performance UV-Vis 
features. In the optimization mode, a target spectrum is defined by 
the extinction spectrum simulation of the nanoparticle with the 
shape derived from electron micrographs. This strategy with the 
extinction spectrum simulation extends the optimization targets to 
nanostructures with features that are not directly available in the 
exploration. Because of the lack of one-to-one mapping between 
UV-Vis spectra and nanostructures, various morphologies could lead 
to similar spectra to the target. Hence, the algorithm considers sim-
ilarity to the target spectrum and the sampling density in the syn-
thetic space to find multiple optimal conditions as solutions to the 
optimization problem.

RESULTS
AI-EDISON: Autonomous nanomaterials synthesis robot 
and characterization
The core robotic hardware consists of a chemical reaction module 
capable of performing parallel synthesis up to 24 reactors (22). The 
modular architecture uses the rotation of the Geneva wheel, which 
is synchronized with both parallel/sequential liquid dispensing and 

Fig. 1. The closed-loop approach toward exploration and optimization in the seed-mediated synthesis of nanoparticles. (A) A pictorial representation of AuNPs 
from hierarchically linked chemical synthetic spaces in the seed-mediated synthesis. (B) Closed-loop approach for exploration [(i), blue cycle)] and optimization [(ii), red 
cycle], respectively. In the exploration, the UV-Vis features of samples are extracted to evaluate their behavior and performance, respectively. New experiments are de-
signed to increase the spectral diversity and performance of samples. After exploration, TEM is used to reveal the morphologies of the high-performance samples, which 
offers a target spectrum for optimization through an extinction spectrum simulation engine. In the optimization, the UV-Vis spectra of samples are compared to a target 
spectrum and new experiments are designed to search multiple nanostructures with high spectral similarity to it.
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stirring of reagents to conduct the synthesis efficiently. Using a 
combination of high-precision syringe pumps, the control system 
performs liquid handling, mixing, cleaning, dynamic pH control, 
sample extraction/transfer, and in-line spectroscopic analysis. Except 
for spectrometers and light sources, the chemical reaction module 
together with stock solutions is contained in a temperature-controlled 
box for the fine-tuning of the reaction conditions to ensure repro-
ducibility. The module is equipped with a seed extraction system for 
sample storage to run new reactions from the previously synthesized 
nanoparticles. For the discovery of AuNPs, the closed loop incorpo-
rates three steps including (1) parallel seed-mediated synthesis for a 
batch of reaction conditions suggested by algorithms that requires 
liquid dispensing and dynamic pH control, (2) spectroscopic analysis 
of the products together with cleaning steps to prepare for the next 
synthesis, and (3) data analysis involving feature extraction to gen-
erate new reaction conditions using ML algorithms. The complete 
iteration cycle, chemical reaction module, and overall experimental 
platform are shown in Fig. 2. Full details of the platform design, con-
struction, and operations can be found in section S1 and movie S1.

AI-EDISON: Quality-diversity algorithms for 
nanomaterials discovery
The exploration and optimization strategies are used to discover dif-
ferent nanostructures. They are based on the MAP-Elites and global 
search with local sparseness algorithms, respectively (section S2.1). 

In the exploration, AI-EDISON aims to facilitate the diversity in the 
behavior space, which is derived from the UV-Vis spectra of the 
nanoparticles. Inspired by the MAP-Elites algorithm (37), the com-
plete behavior space is discretized into finite intervals called classes. 
Each sampling point corresponding to an experiment is classified, 
and a predefined fitness function is evaluated. The sampling points 
with the highest fitness in each class are defined as elites, which are 
then used as the parents to generate new sampling points via muta-
tion, crossover, and random sampling that are commonly used in 
evolutionary algorithms (fig. S12).

In the context of our exploration, the sampling points represent 
the synthetic conditions, and the spectral wavelength range (400 to 
950 nm) is discretized into multiple intervals. To increase the diver-
sity of the UV-Vis spectra, a set of fitness functions are defined to 
facilitate relative prominences of spectral signals, e.g., to lead to 
spectra with a single dominant peak or two prominent peaks. By 
combining the intervals where dominant UV-Vis peaks are located 
and together with the selected fitness function, the sampling points 
are classified. As a final step, the fitness functions of the sampling 
points are evaluated to select the highest performance sample from 
each class. The selected samples will form the elite set that can be 
used as the parents to create the new synthetic conditions that 
will be further evaluated. The emergence of samples with high 
fitness values in various classes enables the search for nanoparticles 
with both diversified and optimal morphologies. This complete 

Fig. 2. The autonomous nanomaterials discovery platform. (A) Workflow of the closed loop including synthesis, analysis, and design of new experiments by the algo-
rithms. Three steps (1) to (3) are required to establish the closed loop, while the robotic operations included in the steps are labeled from (i) to (iii). (B and C) CAD design 
and the experimental setup of the chemical reaction module driven by the Geneva wheel with units for liquid dispensing, pH control, and solution transfer. (D) Overall 
setup of the autonomous platform with temperature controller, stock solutions, pumps, chemical reaction module, flow cells, light sources, and spectrometers.
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process iterates until the exploration is finished (see more details in 
section S2.1.2).

In the optimization mode, AI-EDISON searches synthetic con-
ditions to produce samples toward a predefined target spectrum. 
The target spectrum can be the available spectrum from literature 
or the simulated spectrum of an estimated nanostructure from elec-
tron micrographs. The latter strategy uses the structural information 
from exploration and offers more practical targets. Because of the 
lack of a unique linkage between the morphology and UV-Vis spec-
trum, multiple nanostructures sharing similar spectral features can 
be fabricated in the same synthetic space with varied conditions. 
AI-EDISON searches multiple synthetic conditions by considering 
the similarity metric that quantifies the difference between sample 
and target spectra, together with the local sparseness of sampling 
points in the synthetic space. The local sparseness indicates the local 
sampling density and is calculated by estimating the average Euclidean 
distance between the sampling point and its K-nearest neighbors. 
To enable the global search, the fitness function for a sampling 
point is defined by a linear combination of the similarity metric and 
local sparseness. The top N sampling points with the highest fitness 
are selected as parents, and new synthetic conditions are generated 
via mutation, crossover, and random sampling (see more details in 
section S2.1.3).

In silico evaluation of the performance of exploration 
and optimization algorithms
The exploration and optimization algorithms in AI-EDISON were 
benchmarked in a simulated chemical space with calculated spectral 
properties. The simulated space contains parameters describing the 
three-dimensional (3D) solid mimicking the nanoparticle shape, 
metal composition (Au/Ag), and yield (Fig. 3A). The input chemical 
space comprises five parameters (v1, v2, v3, v4, v5), where (v1, v2, v3) 
describes the nanoparticle shape using superellipsoid as the shape 
descriptor, v4 represents relative silver concentration, and v5 describes 
the nanoparticle yield in the presence of octahedral Au-Ag bimetallic 
NPs as by-products (see sections S2.3 and S2.4). The observation 
space of UV-Vis spectra was generated through the extinction spec-
trum simulation. The scheme for the exploration to facilitate the 
UV-Vis diversity and to optimize spectral features is available in 
Fig. 3B. The exploration algorithm demonstrates a very efficient 
discovery of diverse and high-performance samples in the simulated 
chemical space outperforming random search, and the average fitness 
of the highest performance samples from different classes eventually 
reaches 98% to the estimated maximum (Fig. 3C). Full details for 
the benchmark of the exploration are available in section S2.5.

The optimization strategy toward a target spectrum continued 
on the basis of the dataset gathered during exploration. Considering 
the nonuniqueness of the UV-Vis spectra to a specific morphology 
of nanostructure, the optimization is set up to find multiple sam-
pling points corresponding to global and local maxima in the simi-
larity landscape (Fig. 3D). Without setting an explicit target, it is 
unlikely that the exploration algorithm can accidentally find a solu-
tion with similar UV-Vis to the target, as shown in Fig. 3 (E and F). 
Thus, a fitness function is crucial to guide the directive optimization. 
The fitness (F) is defined by the linear combination of the similarity 
metric () and the local sparseness () by F =  + k, where the 
linear coefficient k tunes the weights between enabling similarity to 
the target and sampling in the less explored region. To evaluate 
the performance of the optimization algorithm, the input space was 

first explored for 11 steps, then a target spectrum was assigned, and 
optimization was performed by setting different values of the linear 
coefficient k. The selection of the optimal k value is crucial for the 
efficiency of the optimization, which is shown in Fig. 3F. With the 
lower k values of 0 and 50, the optimization strategy attempted to 
find the global maximum with a high probability of getting trapped in a 
local maximum. With higher values such as k = 100, the optimization 
algorithm found the global maximum efficiently. However, further 
increasing k ≥ 200 led to exploration in the sparsely sampled space 
with a less preference for similarity, causing a decrease in optimiza-
tion efficiency. Furthermore, the local sparseness term encourages 
the search in less sampled input space and helps to target multiple 
local maxima with respect to the similarity metric (fig. S27). The full 
details for the benchmark of the optimization algorithm are avail-
able in section S2.6.

Exploration of chemical spaces of AuNPs using AI-EDISON
With AI-EDISON, three hierarchically linked chemical spaces with 
potential 1023 experiments (see section S3.5) were explored with 
varied synthetic conditions, where diversified morphological features 
emerged in the seed-mediated synthesis. A single exploration step 
consists of 23 reactions unless explicitly mentioned, each of which 
has experimental constraints such as constant total volume, tem-
perature, and synthesis interval. An additional well-defined experi-
ment was performed at each step to verify the stability and precision 
of the control hardware and characterization. Because of different 
observations in UV-Vis spectra in the three chemical spaces, the 
fitness functions and definition of classes were modified accordingly.

Chemical space 1: Seed-mediated synthesis on cuboctahedron 
single crystals
In the first chemical space, exploration of diverse nanostructures was 
performed using a single-crystal cuboctahedron seed (ca. 2 nm), 
which was prepared from the fast reduction of gold (III) chloride 
trihydrate (HAuCl4) using NaBH4 in the presence of hexadecyl-
trimethylammonium bromide (CTAB) (48). The parameters for the 
first chemical space were defined by the volumes of CTAB, silver 
nitrate (AgNO3), HAuCl4, and ascorbic acid while keeping the 
volume of seed solution fixed at 0.5 ml. A total volume of 12 ml was 
introduced as an additional constraint by adding water if required. 
At each exploration step, the sampling points were distributed to 
single- or multiple-peak features based on the analysis of their spectra. 
With peak number, peak positions, and the selection of fitness func-
tions, they were classified into respective classes. On the basis of the 
exploration criteria toward a single dominant and two prominent 
peaks, the set of fitness functions leading to different classes is 
described in section S3.

Starting with random sampling at the first step, the observed 
highest performance samples within various classes with both 
single-peak and multiple-peak features were used as the parents 
to generate new sampling points in synthetic space. The samples 
of classes that did not exist after the initial random sampling can 
be generated by mutation and crossover from the parent set and 
random sampling. The exploration ran for 10 steps with a total of 
230 experiments. During the exploration, the crossover and muta-
tion operations updated the parent set 42 times. Only four events 
(<10%) were observed, where a new elite with higher performance 
or belonging to a previously nonexistent class was generated via 
crossover or mutation from previous parents with different peak 
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numbers to it, indicating relatively weak interactions between 
single- and multiple-peak features. At this stage, electron micrographs 
obtained from the secondary characterization of TEM confirmed 
the presence of Au nanospheres and nanorods. Hence, as an addi-
tional phase, we extended the exploration further by orienting 
toward constrained exploration and exploitation using a new fitness 
function to improve the performance observed in diversified sam-
ples. The new fitness function was selected to primarily increase the 
contribution of a single peak and lower the secondary peak, where 
the absorption from the by-products was considered explicitly. 
Six additional steps were performed with different coefficients in the 
fitness function, which were used among steps of 11 to 14 and 15 and 
16. A total of six distinct AuNPs with synthetic conditions leading 
to high yield and monodispersity were found (Fig. 4, L1-1 to L1-6 

with additional images available in figs. S38 to S43). The exploration 
in this chemical space found symmetry breaking as a key phenomenon 
toward the emergence of observed nanospheres and nanorods.

Chemical space 2: Overgrowth of Au nanorods
In the second chemical space, the sample of Au nanorods (L1-5) 
found from the previous chemical space was selected as seed because 
of its relatively high aspect ratio and the presence of the concave 
features on the surface. Hydroquinone was used as the reductant, 
and the pH of the growth solution was introduced as an additional 
variable. Because of the relatively weak interactions between single- 
and multiple-peak features as observed during the exploration in 
the first chemical space, these features were explored sequentially. 
Starting with multiple-peak features, the exploration was performed 

Fig. 3. Exploration and optimization in the simulated chemical space. (A) Simulated chemical space with various shapes, Au/Ag compositions, and shape yields, with 
their corresponding simulated UV-Vis spectra through discrete-dipole approximation. (B) Investigation of the chemical space with the exploration algorithm from AI-EDISON.  
The class index (from 1 to 10 with an additional class of 0 for nonfeatured samples) is assigned depending on the peak position. The fitness values of the samples are 
evaluated to update the parent set iteratively. (C) Comparison of the performance in both discovering samples of previously unknown classes (top) and increasing the 
fitness of the highest performance samples within various classes (bottom) between the exploration algorithm from AI-EDISON and random search with 16 repeats. After 
200 steps, random search still cannot find samples of all the classes with a standard deviation (SD) of 0.5 among the repeats. The exploration algorithm outperforms the 
final result from random search after 27 steps and can find samples belonging to all classes after 78 steps. (D) Investigation of the chemical space with the optimization 
algorithm from AI-EDISON after exploration. (E) UV-Vis spectra of solutions with the highest similarity after the exploration of 11, 21, 31, and 41 steps, indicating the 
unsuccessful search toward a target purely by exploration. (F) Increase of the similarity metric during the optimization with varied importance of the local sparseness, 
along with exploration strategy. The linear coefficient (k) is changed from 0 to 300.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of G

lasgow
 on O

ctober 19, 2022



Jiang et al., Sci. Adv. 8, eabo2626 (2022)     7 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 11

toward a single dominant and two comparable peaks by using peak 
position and relative prominences similarly to previous chemical 
space. The exploration ran for 10 steps (a total of 230 reactions) 
excluding single-peak outcomes, and three classes of nanorods 
were found: (i) rods with spherical caps, (ii) rods with rectangular 
caps, and (iii) irregular rods resembling dog bones. The total of 
10 found nanorods of different sizes and belonging to three classes 
are shown in Fig. 4 L2-1 to L2-10 with additional images available in 
figs. S48 to S57.

To increase further diversity in single-peak feature, the explora-
tion of single-peak feature ran for 10 steps initialized with the data 
from the multiple-peak exploration. New single-peak classes were 
defined by discretizing the wavelength of 400 to 600 nm with 25-nm 
interval and 600 to 950 nm with 50-nm interval. Previously, there 
were four classes found from the initial dataset and the total number 
of discovered classes increased to 10 at the end of the exploration. 
With the single-peak feature, the synthetic conditions for three 
additional morphologies of (i) spherical polyhedra, (ii) bicones, and 
(iii) rods with low aspect ratios were found. The spherical polyhedra 
and bicones were transformed into highly monodispersed spheres 
after being aged for 16 hours. See Fig. 4 L2-11 to L2-13 for these 
nanostructures and the respective UV-Vis spectra, with additional 
TEM images available in figs. S58 to S62. The discovery of various 
anisotropic and symmetric nanoparticles seeded from smaller 
nanorods demonstrates the existence of different overgrowth phe-
nomena leading to the emergence of diverse nanostructures.

Chemical space 3: Overgrowth of Au nanospheres
In the third chemical space, the sample of spherical nanoparticles 
(L2-12-2) was selected as the seed because of their high mono-
dispersity and smooth surface. The 5D input chemical space was 
defined by volumes of hexadecyltrimethylammonium chloride (CTAC), 
AgNO3, HAuCl4, ascorbic acid, and hydrochloric acid (HCl). The 
volume of seed solution used was fixed to 0.5 ml, and the total vol-
ume was constrained to 12 ml. The exploration algorithm ran for 
10 steps (231 experiments with 24 from the initial random sampling) 
focusing only on the single-peak feature while sampling points 
leading to multiple peaks were discarded. The classes were defined 
by defining the region between 400 and 550 nm as a single class and 
discretizing 550 to 800 nm with 25-nm interval and 800 to 950 nm 
with 50-nm interval. The algorithm found 11 high-performance 
samples of different classes and found synthetic conditions leading 
to a series of nanostars with sizes ranging between 60 and 95 nm 
and various tip features (see Fig. 4 L3-1 to L3-5 and the correspond-
ing UV-Vis spectra). Additional TEM images of these structures are 
available in section S3.4. The morphology of L3-1 comprises a 
ca. 60-nm core with tiny tips on the surface leading to lower peak 
absorbance (ca. 560 nm). The peak position redshifts with the increase 
in core size as evidenced by the absorbance peaks of UV-Vis spectra 
of nanostars. The algorithmic discovery of the existence of nanostars 
with variable core sizes and tip features with high yield and mono-
dispersity occurred because of the presence of distinct peak ab-
sorbances in the UV-Vis spectra with optimal broadness.

Fig. 4. The exploration to discover uniquely shaped AuNPs in three linked chemical spaces. (A) Electron micrographs of the obtained AuNPs and their synthetic 
trajectories in the seed-mediated synthesis. L1-5 and L2-12-2 were used as the seeds after exploration. The three chemical spaces are indicated by the red, blue, and green 
background. Scale bars, 50 nm (blue) and 100 nm (red), respectively. (B) UV-Vis spectra corresponding to the AuNPs from three chemical spaces. It should be noted that 
L2-11-1, L2-11-2, and L2-12-2 showed very similar UV-Vis spectra. The gray dashed lines indicate the discrete subregions to facilitate the UV-Vis diversity during exploration.
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The successful search of a variety of uniquely shaped AuNPs 
with high yield and monodispersity using AI-EDISON validates the 
initial hypothesis that the structural diversity of nanostructures can 
be achieved by increasing the diversity of the spectra. It also demon-
strates that amplifying UV-Vis features like prominence or broad-
ness can improve the yield and monodispersity of the synthesized 
nanostructures.

Targeted optimization in the explored chemical space
The exploration algorithm found synthetic conditions of nano
particles with distinct UV-Vis behaviors in a coarse-grained way, 
which can be limited by class intervals without a specific target. To 
efficiently search synthetic conditions toward finely tuned optical 
properties using the previously explored dataset, the optimization 
algorithm with specific targets should be used. Considering the non-
uniqueness of UV-Vis spectra toward a single nanostructure, the 
fitness function is defined by a combination of local sparseness 
and similarity toward the target spectrum. The target spectrum 
can be defined either from a literature report or generated in silico 

after creating a 3D nanostructure derived from electron micro-
graphs, which offers the more practical targets in the chemical 
space. To demonstrate efficient optimization in high-dimensional 
space with multiple possible solutions, two target spectra were gen-
erated in silico in the first and third chemical space (see section S4 
for more details).

In the first case, the existence of Au nanorods was observed in 
chemical space 1 during exploration. The target spectrum was sim-
ulated using a cylindrical Au nanorod with a diameter and length of 
11 and 33 nm, respectively, to precisely control the longitudinal peak. 
After the exploration, although the sample with the highest similarity 
shared the same longitudinal peak position, the presence of a shoulder 
peak around 570 nm indicated the existence of by-products. The 
optimization ran for five steps (115 reactions), and two synthetic 
conditions leading to a smaller by-product peak were obtained 
(fig. S97). They showed similar morphological features of nanorods 
because of the relatively unique transverse and longitudinal UV-Vis 
peaks (figs. S99 and S100). Figure 5A shows the UV-Vis spectra of the 
target, the best solution before optimization, and one of the solutions 

Fig. 5. The optimization toward target spectra from the extinction spectrum simulation of AuNPs. (A) Comparison of the UV-Vis spectra from the simulation of 
target Au nanorods, the most similar sample before optimization, and the optimal solution after optimization. (B and C) Electron micrographs of the best sample before 
optimization with a yield of ca. 57% and the optimal solution after optimization with a yield of ca. 95%. (D) Target UV-Vis spectrum derived from Au octahedra. (E) Com-
parison of the UV-Vis spectra of the simulated Au octahedral target and three solutions after optimization. (F) Comparison of the synthetic conditions of the three solutions 
after the optimization. AA, ascorbic acid. (G to I) Electron micrographs of solutions 1 to 3, which corresponds to octahedral, concave octahedral, and smooth polyhedral 
nanoparticles. Scale bars, 100 nm (B and C and G to I).
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with the higher nanorod yield after optimization. The corresponding 
electron micrographs are shown in Fig. 5 (B and C), indicating the 
increase of shape yield in the solution from 57 to 95%.

In the second case, during the exploration in the third chemical 
space, although only a small portion of Au octahedra was observed 
(fig. S66), the structural features of the sample, as well as L3-1, 
suggested a high propensity toward the emergence of octahedral 
nanoparticles. Hence, an octahedral Au nanostructure with an edge 
length of ca. 57 nm was created, and the target spectrum was simu-
lated (Fig. 5D) accordingly. The spectrum has an intrinsically broad 
peak because of its geometry and is independent of the size distribu-
tion. The presence of this intrinsic broadness decreases the uniqueness 
of UV-Vis toward a specific nanostructure. A variety of nanostruc-
tures including spheres, octahedra, other polyhedral shapes of 
various sizes, and their mixtures can share similar UV-Vis features. 
Hence, it is necessary for the optimization strategy to search for 

multiple solutions well separated in a high-dimensional chemical 
synthetic space, which are likely to correspond to different struc-
tures. The synthetic space for the optimization was selected similar 
to chemical space 3 during exploration except for the concentration 
of HAuCl4, which was halved. This reduction was based on the 
observation that the top five sampling points in the combinatorial 
space with the highest similarity to the target after the exploration 
had a small volume of HAuCl4 (<1.00 ml). The optimization algo-
rithm ran for five steps (115 reactions), and multiple solutions with 
high spectral similarities but distinct synthetic conditions to the 
target were found (Fig. 5, E and F). These synthetic conditions cor-
responded to local maxima in the fitness landscape and resulted in 
different nanostructures including octahedral, concave octahedral, 
and smooth polyhedral nanoparticles (Fig. 5, G to I), which demon-
strated the successful search of distinct nanostructures with similar 
UV-Vis spectra to the target through the optimization strategy.

Fig. 6. The fully autonomous multistep synthesis with directed graph structure. (A) Workflow of the autonomous multistep synthesis of AuNPs. A graph structure is 
used to allocate the available hardware resources to samples on the chemical reaction module and design the operations to be executed for the synthesis. (B) Six target 
AuNPs, their hierarchical relations, and distribution on the chemical reaction module. They are labeled from N1-N6, which correspond to L1-5, L1-1, L2-12-2, L2-7, L3-3, 
L3-1, respectively. (C) Synthesis, reaction, and hardware graph for the multistep synthesis of the six AuNPs. The number of repeated samples is estimated on the basis 
of the volume required for seeding, characterization, and desired final volume. (D) UV-Vis spectra of samples from three repeats and the original sample. The most 
prominent peak position is 799.6 ± 6.5, 525.9 ± 0.9, 530.0 ± 1.2, 777.0 ± 6.9, 673.4 ± 2.6, and 561.0 ± 3.4 nm from N1 to N6, respectively. (E) Actual distribution of the 
samples on the chemical reaction module. (F) Procedure to generate the unique digital signatures of nanoparticles through chemical description language (DL) and 
product validation in the multistep synthesis. The combined string of DL and the validation result were encoded with UTF-8 and further converted to the unique digital 
signature using the hash function of SHA-256.
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Multistep nanoparticle synthesis using AI-EDISON architecture
The modularity of the platform allows conducting parallel multistep 
synthesis using a generic directed graph structure together with 
required characterization at each step to ensure synthesis reproduc-
ibility (Fig. 6A). This approach requires three graphs: synthesis, 
reaction, and hardware, which was illustrated by synthesizing six 
uniquely shaped AuNPs found from the previous exploration (Fig. 6B). 
As shown in Fig. 6C, the synthesis graph represents the multistep 
synthetic procedure of nanoparticles, where each node represents a 
unique nanoparticle and each directed edge implies the hierarchical 
relation between nanoparticles. To map the synthesis graph to the 
robotic platform, a reaction graph that constitutes the required 
robotic operations is generated. Furthermore, a hardware graph is 
derived from the reaction graph to allocate the available resources 
of the chemical reaction module. Each node in the reaction and 
hardware graph represents an actual sample to be prepared, and 
the directed edges represent the transfer steps required for seeding 
from one sample to another.

The parallel synthesis of all six AuNPs was repeated three times 
to demonstrate reproducibility. The observed standard deviation 
(SD) in the UV-Vis spectra is 3 to 4 nm with a maximum deviation 
around 7 nm, where all the peak positions of the repeats are within 
two SDs from the mean values (Fig. 6, D and E). Although unique 
identifiers of chemicals like CAS number exist, the equivalent unique 
signatures for nanomaterials corresponding to their distinctive syn-
thetic protocols are still lacking. A promising approach to represent 
unique identifiers for nanoparticles could be generated from the dig-
ital representations of synthetic procedures. The universal chemical 
description language DL (47) could be used to create the unique dig
ital signatures for nanomaterials. Hardware-independent synthetic pro
cedures in the standard format represented by DL were used to describe 
the reliable synthesis of nanoparticles with expected properties. The 
validation of the synthesized nanoparticles can be performed by various 
techniques, and UV-Vis was selected here because of the plasmonic 
effect of AuNPs. Later, the unique digital signatures of AuNPs were 
created from the combination of their synthetic procedures and vali-
dations of the products through a hash function (Fig. 6F). See section 
S5 and movie S2 for a complete description of the implementation.

DISCUSSION
In summary, we have developed a unified architecture AI-EDISON 
that includes a fully autonomous closed-loop synthesis robot that 
incorporates state-of-the-art ML algorithms and an extinction spec-
trum simulation engine. Using quality-diversity algorithms, we 
explored three linked chemical spaces and found AuNPs including 
spheres, rods, spherical polyhedra, bicones, and stars with diversified 
features. Although UV-Vis cannot offer detailed structural informa-
tion of nanoparticles like crystallographic phases or electron density 
distributions compared to electron microscopy, it was sufficient to 
target distinct plasmonic nanostructures. By exploration with UV-Vis 
as a primary characterization tool, we proved our hypothesis that 
structural diversity can be achieved by increasing the spectral diversity 
and that demonstrated nanoparticles with high yield and monodis-
persity can be obtained by amplifying specific spectral features. After 
coarse-grained exploration of high-dimensional chemical space, the 
system performed optimization for finely tuned optical properties 
with a target spectrum generated using electron microscopy and 
extinction spectrum simulation. The optimization strategy found 

multiple synthetic conditions that led to distinct nanostructures with 
high yield, monodispersity, and similar UV-Vis features, which were 
not directly available from the exploration. Using the modularity and 
capacity to perform parallel operations and synthesis on AI-EDISON, 
we demonstrated a highly efficient and fully digitized approach 
toward the complex multistep synthesis of nanomaterials with their 
unique digital signatures derived from DL.

MATERIALS AND METHODS
Chemical reagents
All solutions were prepared with type I water. CTAB (>99%), CTAC 
(>99%), and hydroquinone (99.5%) were purchased from Acros 
Organics. HAuCl4 (99.9%), ascorbic acid (99.9%), and AgNO3 
(99.9999%) were purchased from Sigma-Aldrich. HCl (37%) and 
sodium hydroxide (98 to 100.5%) were purchased from Honeywell 
Fluka. Orion pH buffer solutions (4.0, 7.0, and 10.0) were pur-
chased from Thermo Fisher Scientific. All the reagents were used as 
received. The procedure to prepare the stock solutions is available 
in sections S3 to S5.

Platform
The platform was constructed in-house from a range of 3D printed, 
laser-cut, and commercially available components. A full bill of 
materials and assembly instructions can be viewed in section S1. The 
software control of the platform for basic operations was written in 
Python 3. Full details of implementation can be found at https://
github.com/croningp/NanoDiscovery.

The extinction spectrum simulation engine (PyDScat-GPU)
The software was used for graphics processing unit (GPU) accelerated 
extinction spectrum simulation of metallic nanoparticles based on 
the discrete-dipole approximation method and written in Python 3 
using TensorFlow 2. The full details are available in section S2 and 
https://github.com/croningp/NanoDiscovery.

Algorithms and data analysis
The details of benchmarking the algorithms in the simulated chemical 
spaces are described in section S2, where the codes were written in 
Mathematica 12.0. The details of the spectral data analysis and the 
algorithms in the experimental exploration and optimization of the 
three chemical spaces are available in sections S3 and S4. Extra TEM 
images for the nanoparticles discussed during exploration and opti-
mization were shown in sections S3 and S4, respectively. The codes 
for the experimental implementation of both algorithms were written 
in Python 3 (https://github.com/croningp/NanoDiscovery) and con-
nected to the control software of the platform to establish a closed loop.

Directed graph structure and hash representation
The code to generate directed graphs was written in Python 3 using 
NetworkX. The control software can read the directed graph and 
execute the operations defined in the graph. The digital signatures 
of the nanoparticles were generated from the string format of the 
chemical synthetic procedures written in DL. Full details are avail-
able in section S5 and https://github.com/croningp/NanoDiscovery.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo2626
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